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Neutral community theory explains biodiversity, i.e. the coexistence of several species,
as the result of a stochastic balance between immigration and extinction on a local
level, and between speciation and extinction on a regional level. The most popular
model, presented by Hubbell in 2001, has seen many analytical developments in recent
years, which can be used in model analysis, model testing and model comparison. We
review these developments here, and present alternative derivations and shine previously
unnoticed lights on them.
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1. INTRODUCTION

Physics has Pauli’s exclusion principle, ecology has Gause’s. It states that no two
species can coexist indefinitely on the same resource: one will always outcom-
pete the other(s). Gause(39) studied experimentally the coexistence of two closely
related protozoa species (Paramecium caudatum and Paramecium aurelia). He
found that both species experience sigmoidal growth when they are alone, but that
P. caudatum is eliminated when the two species are put together. This has led to
the theory that there is a limit to the similarity of coexistent species.(1) Only when
they are sufficiently different, they can each occupy a different ecological niche
(i.e. a unique way of utilizing available resources), enabling them to coexist. How-
ever, in nature, there are diverse communities that happen to accommodate a high
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Fig. 1. The distribution of species abundances or abundance curve for a diverse group of marine algae,
Mediterranean Diatomea (112,352 individuals, 107 species); data collected by Margalef(65) in the
Mediterranean Sea and studied by Pueyo.(77) The species probability density is defined as the number
of species in each abundance interval divided by the width of the interval and by the total number of
species in the sample. The clear regularity in the species abundance distribution is one of the most
striking predictions of neutral theory.

number of coexisting species occupying the same ecological niche. A paradigmatic
example is marine plankton (see Fig. 1). There is an amazingly high diversity of
microscopic algae in a few liters of sea water. Why should they coexist if they are
all very similar in ecological requirements and all share the same homogeneous
environment? This paradox became known as the paradox of the plankton.(55) A
plausible solution for this paradox and a fierce challenge for traditional niche the-
ory was recently provided by Hubbell(53) who explained coexistence of species,
on a regional (continental) scale, as a stochastic equilibrium between origina-
tion of species (speciation) and disappearance of species (extinction), and on a
local scale as a stochastic equilibrium between immigration and local extinc-
tion (due to either mortality or emigration). In this so-called neutral theory, all
species at the same trophic level have the same demographic parameters that de-
termine their birth-death dynamics, and all species have the same probability of
colonizing empty sites. It is not so much species traits that determine their pres-
ence and abundance in a community, but stochastic demography, speciation and
dispersal.

This recognition of the importance of chance and dispersal for com-
munity structure is not new. Grinnell(46) already argued that accidentals, i.e.
species that have been observed only once, are just the result of dispersal.
Gleason’s(40,41) individualistic concept assumes that species are independent of
one another and just happen to be in a locality due to chance and dispersal; this
view challenged the then dominant view of a community as a higher level of
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organization, a superorganism.(16) The individualistic concept was largely ignored
until Whittaker(94) started to endorse it again. Some years later, MacArthur(62,63)

embraced randomness of species assembly in his broken-stick hypothesis: a stick
(the community) is broken randomly into several pieces (niches) with the length
of each piece representing the abundance of the species. Many similar hypotheses,
the so-called sequential breakage models, were devised,(79,84−86) differing only in
the rules governing the breakage process. Although the broken-stick theory was
considered a niche assembly theory, it can be argued that it is a neutral theory,(33)

because it treats species as equivalent, that is, the traits of the species do not matter
in the amount of niche space that it receives in the stick-breaking procedure. How-
ever, as other useful models in community ecology,(17,95) broken-stick theory is a
set of simple algorithms to generate abundance patterns resembling those actually
observed in nature. By contrast, and this is an essential difference, neutral theory
is based on realistic biological processes, such as birth, death, extinction, and
dispersal. The first real break-through of neutral ideas in terms of such processes
was established by MacArthur and Wilson(64) in their theory of island biogeogra-
phy, which was a main source of inspiration for Hubbell.(53) This famous theory
explains the diversity on islands as a balance between immigration and extinc-
tion of species. The main difference is that Hubbell(53) treats the individual as
the basic unit, whereas MacArthur and Wilson(64) assigned this role to species.
Individual-based neutral models such as Hubbell’s were already developed by
Caswell(10) who borrowed concepts from population genetics, as did Hubbell(53)

(see below). Stochasticity and dispersal were also key elements in so-called lottery
and voter models.(9,36) However, none of this work elicited such a strong debate
as Hubbell’s(53) book, not even Hubbell’s own summary of his theory four years
earlier.(52) The secret of this “success” probably lies in the fact that in his 2001
book Hubbell explained the theory in mostly non-technical terms, and thus pop-
ularized neutral ideas like Hutchinson had done for the ecological niche concept
five decades earlier. Or it was just a perfect time for these ideas (see e.g. Ref. 7).

Hubbell’s neutral theory is not the only solution to the paradox of the plank-
ton. The ecological niche concept has also evolved considerably since it was
coined by Grinnell(45)—yes, the same Grinnell as above—, endorsed by Elton(26)

and formally defined by Hutchinson(54) as a hypervolume, a multi-dimensional
space of resources (e.g. light, nutrients, structure) leading to standard niche the-
ory that explains species coexistence as a result of resource partitioning along
many niche axes (one niche, one species). This partitioning may be much more
detailed than originally thought: for instance, plankton partition light intensity(71)

and light frequencies/wave lengths.(83) Niche partitioning is not completely un-
restricted, however, they are subject to trade-offs in life history traits.(59) Niche
differentiation is often spatial: even if there is competitive exclusion locally, with
resource heterogeneity there may be coexistence on larger spatial scales.(74,80)

Niche differentiation along the time axis,(14) particularly in combination with
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non-equilibrium conditions,(15) is another important explanation of species coex-
istence. In these last examples, we see that stochasticity and dispersal have sneaked
in in niche theory. Indeed, recent papers claiming to reconcile neutral ideas with
niche theory incorporate these ingredients in niche models.(31,43,81)

One of the main merits of Hubbell’s theory(4) is that it has introduced
Ockham’s razor to community ecology: while traditionally ecologists searched
for a niche for each species in a community, neutral theory aims at finding the
minimal model that can explain observed patterns. In other words, ecologists
should not be trying to find differences between species, but determine to what
extent differences between species matter. The neutral model can thus act as a null
model (see also Ref. 42), to which any more complex model can be compared.
To facilitate such comparisons, precise formulation of the predictions of the neu-
tral model is crucial. One of the most successful and mostly studied predictions
of neutral theory concerns the shape of the species abundance distribution. This
distribution is usually presented in either of two ways: the number of species in
different logarithmic abundance classes, or the logarithm of the abundance versus
the rank of this abundance in the sample (but see Fig. 1 and Ref. 77 for a some-
what different presentation). With only two parameters the neutral model is able to
reproduce the various observed shapes of this distribution for very different taxa.
The species abundance distribution has intrigued ecologists for decades (see e.g.
Refs. 38 and 76). Why this is so may be partly explained by the fact that these
data are relatively easy to collect. But this distribution also lies at the heart of
the niche vs. neutral debate: if the abundance of one species is larger than that of
another, does this indicate intrinsic differences between the species, or is this just
coincidence?

Considerable progress has recently been made on the precise predictions of
the neutral model (mostly by physicists working in ecology), again particularly
with respect to species abundance distributions, and in this paper we review the
approaches that have been taken, but we provide novel derivations and mention
previously unnoticed aspects. First we formulate the model. A schematic presen-
tation of the model is given in Fig. 2.

2. THE MODEL

2.1. Regional Dynamics

Let the regional ecological community (metacommunity in Hubbell’s termi-
nology) consist of JM individuals competing for the same resource (e.g. nutrients,
light, space). It is easiest to envision a forest with sites acting as resource. The JM

individual trees are constrained by the so-called zero-sum assumption:(53) all of
the available sites are being used all the time. This means that if a site becomes
available, a new individual must emerge to colonize it. In Hubbell’s model, the
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Fig. 2. A schematic representation of the most cited neutral model according to Hubbell.(53) The
local community receives immigrants from the metacommunity that compete with local off-spring for
available resources. The metacommunity is in a balance between speciation and extinction. Neutrality
means that all individuals are equivalent, regardless of the species they belong to. This translates into
probabilities of immigration, birth and death proportional to the abundance of species.

number of sites is assumed to be constant, so sites can only become available
by the death of any of the individuals, which then must be replaced by a new
individual. Such a new individual arises through reproduction; the assumption
of neutrality requires that all reproducing individuals have an equal probability
that their offspring colonizes the empty site. Note that this allows species to be
different: the only requirement is that the colonization probability is equal for all
species, but this may be realized by producing lots of offspring with low colo-
nization potential or by producing few offspring with high colonization potential
(e.g. if c = 1 − (1 − p)s where c is the overall colonization probability, p is the
colonization probability of a single seed and s is the number of seeds produced
per individual; the question remains, however, whether realistic trade-offs can be
described in this simple way as seed production and seed survival are actually
temporally separated events). For this reason, Hubbell(53) calls the species func-
tionally equivalent; the species are identical as far as their function is concerned.
The newly produced individual will evidently be of the same species as the parent,
unless speciation occurs, with probability ν. In Hubbell’s standard model, specia-
tion is modelled in a very simple manner: a single mutation can cause a species’
offspring to be a different species than its parent, and thus this mode of specia-
tion is called the point mutation mode. Other modes of speciation are possible,
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and actually have been discussed by Hubbell,(52,53) but analytical approaches have
not yet been applied to the corresponding neutral models. The neutral model with
point mutation is an exact analog of the neutral model of molecular evolution(58) in
population genetics, with individuals replacing genes, species replacing alleles and
speciation replacing mutation. This opens up a box of mathematical and statistical
tools developed in population genetics, for use in community ecology. Conversely,
new mathematical results in community ecology will have their application in
population genetics.

Hubbell(53) modeled the dynamics of the metacommunity in discrete time.
At every time step, some individuals die. There are two extreme cases. The first
extreme case is that, at every time step, all individuals die but, before doing so,
reproduce (e.g. annual plants leaving seeds for next year) and the offspring com-
pete with equal strengths for the empty site. The second extreme case is that, at
every time step, only one individual dies, but reproduces before doing so, and
this offspring competes with the offspring of the other individuals for the empty
site. These models have exact parallels in population genetics, which has not
been made sufficiently explicit in the recent ecological literature on the neutral
model. The first extreme is known as the Wright–Fisher model,(37,96) in which
there are no overlapping generations (since all individuals die simultaneously).
The second extreme is known as the Moran(72,73) model, in which generations are
overlapping. The version of Hubbell’s model that has been subjected to careful
analytical scrutiny, and will therefore be the main model discussed in this pa-
per, is a variant of the Moran model. Where in the Moran model the individual
that dies can still contribute to the pool of offspring competing for the site left
vacant by the dying individual, in the analytically studied Hubbell model, the
dying individual cannot contribute. We will come back to these three versions of
the Hubbell model (which we will call the Wright–Fisher, Moran and Hubbell
models) when we discuss the genealogical approach to the analysis of the neutral
model.

Other neutral models, particularly models that allow metacommunity size to
vary or that drop the zero-sum assumption, have also been studied recently.(48,89,91)

The model of Volkov et al.(89) has the curious property that it drops the zero-sum
assumption at the regional level, but makes use of this assumption at the local level.
This property, which makes the model hard to interpret, has passed practically
unnoticed. In this paper we focus on the standard Hubbell model with zero-sum
assumption. Hubbell(53) argues that the zero-sum assumption has strong empirical
support. It is also a simple way to incorporate interaction between species, which
undoubtedly exist, instead of assuming them to be independent, as other neutral
models have done.(22,27,28,48) For large, species-rich communities the zero-sum
assumption and the independence assumption practically yield the same model
predictions; for species-poor systems they may differ substantially.(3) However,
for the equilibrium abundance distribution the models are equivalent as long as
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one conditions probabilities and expectations on the sample size (Ref. 94; Etienne
et al. unpubl.).

2.2. Local Dynamics

In the local community there are JL individuals, with JL � JM. Local dy-
namics are completely identical to regional dynamics, except that speciation is
replaced by immigration from the region, with probability m. Any vacant site can
thus be colonized by offspring of a local individual, or by offspring of a regional
individual. In the local community, speciation is thus neglected, and therefore spe-
ciation plays only an indirect role by having an effect on the relative abundances of
immigrating species. The boundaries of the local community are not well defined.
In fact, the local community is usually set equal to a sample, as we now explain.

2.3. Sampling Theory

One of the great advantages of the neutral theory is that it is a sampling
theory. Predictions are made for a sample of size J from the metacommunity or
from the local community, and can thus readily be applied to data, which usually
represent only a sample from the total (meta) community. The sampling property
of the theory allows us to define the local community as a sample; hence it is
usually assumed that J = JL. The probability of immigration, m, thus depends on
sample size, which complicates comparison of m-values for samples with different
sample sizes. The sampling nature of neutral theory has led to the view of dispersal-
limitation as a sampling effect. As we will see below, when a local community is
sampled, the information we obtain from the potential regional diversity is filtered
by the limited ability of species in the metacommunity to disperse and contribute to
the actual local community being sampled. This filtering process can be precisely
represented by a sampling distribution, the dispersal-limited multinomial.(30)

3. THREE APPROACHES

3.1. Simulations

Although Hubbell(53) translated some analytical results obtained in population
genetics to community ecology for the regional community, he explored the model
for the local community by simulations. One of the first contesters of the neutral
theory, McGill,(67) also resorted to simulations. This can easily be done, because the
model is a simple Markov model (Markov chain in discrete time). Yet, for accurate
predictions of the species abundance distribution in or on the way to equilibrium,
and hence reliable conclusions about the validity of the neutral model, simulations
are not suitable, because the state space is enormously large for even small-sized
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communities requiring many time steps to reach convergence and many repetitions
to obtain accurate estimates of mean and other moments. Therefore, there has been
a quest for analytical solutions for the species abundance distribution in the local
community, particularly for the equilibrium distribution, and this has resulted in
two different, yet related approaches.

3.2. Master Equation Approach

The first approach sought for expressions of the expected number of species
with a particular abundance n in a sample of size J , which we will denote by
E [Sn|�, J ] where � represents the model parameters. For the metacommunity,
E [Sn|�, J ] in equilibrium was already known in population genetics,(72,93) which
was noted by Hubbell.(53) It is given by

E [Sn|θ, J ] = θ

n

(J + 1 − n)n

(J + θ − n)n
(1)

where (x)N is the Pochhammer symbol defined as

(x)N :=
N∏

i=1

(x + i − 1) = � (x + N )

� (x)
=

N∑

j=1

s(N , j)x j (2)

where �(x) is the Gamma function and s ( j, k) is the so-called unsigned Stir-
ling number of the first kind. Furthermore, θ is the fundamental biodiversity
parameter,(53) defined by

θ := ν

1 − ν
(JM − 1) (3)

This θ is different from the formula, as defined by Hubbell,(53) which is θ := 2ν JM.
The latter formula for θ is in fact the formula for the Wright–Fisher model, as we
will see below.

For the local community, however, no such expressions were available in
population genetics. Nevertheless, part of the solution was given in McKane
et al.(69) and again in McKane et al.(70) where the local species abundance distri-
bution was related to a given species abundance distribution of the metacommunity
(which determines the species of the immigrants). The only missing step was the
use of a metacommunity model to predict the species abundance distribution of
the metacommunity, rather than the assumption of this distribution to be given.
Volkov et al.(89) using the results by McKane et al.(69) took this step, but only
partly so, because they used only an approximation of the metacommunity species
abundance distribution. Vallade and Houchmandzadeh(87) gave the full solution
for E [Sn|θ, m, J ] in the local community, with the exact description of the species
abundance distribution in the metacommunity, but their formula was erroneous.
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This error was corrected by Etienne and Alonso(30) who, finally, gave the full
solution:

E [Sn|θ, m, J ] = θ

(I )J

(
J

n

)∫ 1

0
(I x)n (I (1 − x))J−n

(1 − x)θ−1

x
dx

=
JM∑

j=1

(
J

n

) J∑

A=1

n∑

a=1

s (n, a) s (J − n, A − a)
I A

(I )J

1
(A

a

)
( j

a

)(JM− j
A−a

)
(JM

A

)

×θ

j

(JM + 1 − j) j

(JM + θ − j) j
(4)

where

I := m

1 − m
(JL − 1) (5)

is the fundamental dispersal number.(30)

McKane et al.(69,70) and Vallade and Houchmandzadeh(87) both used a master
equation approach to derive their expressions that eventually led to (4). However,
their equations were different because they had a different interpretation of specia-
tion. McKane et al.(69,70) and Volkov et al.(89,91) used the following set of equations
for the dynamics of the probability Pn(t) that a species has abundance n in the
metacommunity:

d P0

dt
= −s P0 + r1 P1 (6a)

d P1

dt
= s P0 + r2 P2 − (g1 + r1)P1 (6b)

d Pn

dt
= gn−1 Pn−1 + rn+1 Pn+1 − (rn + gn)Pn for 1 < n < c (6c)

d Pc

dt
= gc−1 Pc−1 − rc Pc (6d)

where c is the largest abundance that the species can have; c is usually equal to
the total metacommunity size JM, but it could also be a different ceiling common
to all species. The parameters gn and rn denote the growth and decline functions
for a species at abundance n. The parameter s is the rate of appearance of the
species under consideration. If s > 0, each species has a non-zero probability of
being “re-introduced” after extinction. McKane et al.(69,70) and Volkov et al.(89,91)

regard speciation as a type of immigration process from the species pool with S
species where the same species can reappear, and thus s is indeed non-zero in this
interpretation.

Vallade and Houchmandzadeh(87) do not assume a species pool and take s
to be a real speciation rate. Since it is then highly unlikely that exactly the same
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species reappears through speciation after going extinct, s should be zero which
yields the following description:

d P0

dt
= r1 P1 (7a)

d P1

dt
= r2 P2 − (g1 + r1)P1 (7b)

d Pn

dt
= gn−1 Pn−1 + rn+1 Pn+1 − (rn + gn)Pn for1 < n < c (7c)

d Pc

dt
= gc−1 Pc−1 − rc Pc (7d)

When time goes to infinity, every species will go extinct, resulting in P0(∞) = 1
and Pn(∞) = 0 for n > 0. We are however interested in the distribution of species
abundances conditional on non-extinction. As new species continuously enter
the metacommunity through speciation, there is an equilibrium distribution of
these abundances. To obtain this distribution Vallade and Houchmandzadeh(87)

elegantly used Laplace transformation. The system (7) can be written in matrix
form as

d �P(t)

dt
= H �P(t) (8)

where
−→
P (t) = (P0(t), P1(t), P2(t), . . . , PJM (t)) and H is the transition matrix with

elements (H00 is the element in the top left corner)

Hi j =

⎧
⎪⎪⎨

⎪⎪⎩

r j for j = i + 1
−(gi + r j ) for j = i

g j for j = i − 1
0 in all other cases

(9)

The Laplace transform L of �P (t) is defined by

L[ �P(t)] :=
∫ ∞

0
e−Et �P (t) dt (10)

When we apply Laplace transformation to (8), we obtain (using integration by
parts),

EL[ �P (t)] − �P (0) = HL[ �P (t)] (11)

where E is the argument of the Laplace transform, and �P(0) is the initial condition.
In this case we have �P(0) = (0, 1, 0, . . . , 0), i.e. P1(0) = 1 and Pn(0) = 1 for
n �= 1). We can easily solve (11) for L[ �P (t)] and then take the inverse Laplace
transform L−1 to arrive at the solution of (8) for �P(t):

�P(t) = L−1[G(E) �P(0)] (12)
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where we have defined

G(E) := (EI − H )−1 (13)

with I the identity matrix. The expected number of species with abundance n at
time t is the sum of all species that originated (through speciation at constant rate
ν) at any previous time t̂ between 0 and t and are still present with abundance n at
time t :

E[Sn(t)] = ν

∫ t

0
Pn(t − t̂)dt̂ = ν

∫ t

0
Pn(t̂)dt̂

= νL−1

[
(E I − H )−1 �P(0)

E

∣∣∣∣∣
n

]
= νL−1

[
Gn1(E)

E

]
(14)

The second line follows from the first due to a property of the Laplace transform,
∫ t

0
f (u)du = L−1

[
L [ f (t)]

E

]
(15)

The long time behavior of E[Sn(t)] can be studied by taking the limit t → ∞. We
can then use another property of the Laplace transform (the final value theorem),

lim
t→∞ f (t) = C ⇐⇒ lim

E→0
EL [f (t)] = C (16)

Taking f (t) = E[Sn(t)] and using (14), we obtain

lim
E→0

EL [E [Sn (t)]] = lim
E→0

EL
[
νL−1

[
Gn1 (E )

E

]]
= lim

E→0
νGn1(E ) (17)

Vallade and Houchmandzadeh(87) used a recurrence method to expand the Gn1(E)
as power series in E for n ≥ 1. Combining (16) and (17), we thus arrive at (for
n ≥ 1),

lim
t−→∞ E[Sn(t)] = νGn1,0 (18)

where Gn1,0 is the zeroth order term of Gn1. Inserting the expressions
obtained with their recurrence method, Vallade and Houchmandzadeh(87)

found (1).
There is, however, a more direct way of deriving (4), which we will present

here. It is based on Alonso(2) which was inspired by discussions with Alan McKane.
Instead of considering the probability, one considers the dynamics of the expected
number of species itself, E [Sn|θ, JM] for which we temporarily use the shorthand
notation, Sn:

d S1

dt
= s + r2S2 − (r1 + g1)S1 (19a)
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d Sn

dt
= gn−1Sn−1 + rn+1Sn+1 − (rn + gn)Sn for 1 < n < c (19b)

d Sc

dt
= gc−1Sc−1 − rc Sc (19c)

In this description there is no S0 because there are no species with abundance 0.
It is easily shown that the steady-state solution requires gn−1Sn−1 = rn Sn for all
n > 1 and s = r1S1 for n = 1 and is therefore given by

Sn = s

r1

n∏

j=2

g j−1

r j
(20)

with the convention that the product returns 1 if j > n. Now for the metacommu-
nity we have the dimensionless rates(87)

gn = (JM − n) n

JM (JM − 1)
(1 − ν) for n > 0 (21a)

rn = n

JM

(
JM − n

JM − 1
+ n − 1

JM − 1
ν

)
(21b)

s = ν (21c)

These rates can also be interpreted as probabilities in a discrete-time model as in
Hubbell.(53) When we substitute these in (19), we obtain

E [Sn|θ, JM] = Sn = s

r1

n∏

j=2

g j−1

r j
= ν

1
JM

n∏

j=2

(JM−( j−1))( j−1)
JM(JM−1) (1 − ν)

j
JM

(
JM− j
JM−1 + j−1

JM−1ν
)

= ν JM

n∏

j=2

(JM − ( j − 1)) ( j − 1) (1 − ν)

j (JM − 1 − ( j − 1) + ( j − 1) ν)

= ν JM

n

n∏

j=2

JM − ( j − 1)
JM−1
1−ν

− ( j − 1)
= ν JM

n

n∏

j=2

JM − ( j − 1)

θ + JM − 1 − ( j − 1)

= ν JM

n

n∏

j=2

JM + 1 − j

JM + θ − j
= ν

n
(JM + θ − 1)

n∏

j=1

JM + 1 − j

JM + θ − j

= ν

n

(
JM − 1

1 − ν

) n∏

j=1

JM + 1 − j

JM + θ − j
= θ

n

n∏

j=1

JM + 1 − j

JM + θ − j

= θ

n

n∏

j=1

JM + 1 − n + j − 1

JM + θ − n + j − 1
= θ

n

(JM + 1 − n)n

(JM + θ − n)n
(22)
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where we have used the identity θ + JM − 1 = JM−1
1−ν

. It can be readily shown(30)

that this formula is invariant under hypergeometric sampling, i.e. when a sample
is taken without replacement, then the formula is still valid, but with J instead of
JM. Equation (22) also has an integral form(30):

E [Sn|θ, J ] =
∫ 1

0

(
J

n

)
xn (1 − x)J−n �(x)dx (23)

where �(x)dx is the number of species with relative abundance between x and
x + dx for a metacommunity of infinite size, which is given by Alonso and
McKane(3) and Etienne and Alonso(30)

�(x)dx := θ
(1 − x)θ−1

x
dx (24)

Hypergeometric sampling from such an infinite metacommunity is equivalent to
the much simpler binomial sampling.

For the local community we have, in the spirit of Vallade and
Houchmandzadeh,(87)

gn = JL − n

JL

(
n

JL − 1
(1 − m) + mx

)
for n > 0 (25a)

rn = n

JL

(
JL − n

JL − 1
(1 − m) + m (1 − x)

)
(25b)

s = mp(x, I, JL) (25c)

where x is the relative abundance of the species in the metacommunity (which
has infinite size in this derivation) and p(x, I, JL) is the probability that the
immigrating individual has no conspecifics in the local community if it has relative
abundance x in the metacommunity. We get

E [Sn|m, x, JL] = Sn(x) = s

r1

n∏

j=2

g j−1

r j

= mp(x, I, JL)
1
JL

(1 − mx)

n∏

j=2

JL−( j−1)
JL

(
j−1

JL−1 (1 − m) + mx
)

j
JL

(
JL− j
JL−1 (1 − m) + m (1 − x)

)

= p(x, I, JL)

x

n∏

j=1

JL − ( j − 1)

j

j − 1 + I x

JL − j + I (1 − x)

= p(x, I, JL)

x

(
JL

n

)
(I x)n

n∏

j=1

(
1

I (1 − x) + JL − j

)
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×
∏JL

j=1 (I (1 − x) + JL − j)
∏JL

j=1 (I (1 − x) + JL − j)

= p(x, I, JL)

x

(
JL

n

)
(I x)n

∏JL
j=n+1 (I (1 − x) + JL − j)

∏JL
j=1 (I (1 − x) + JL − j)

= p(x, I, JL)

x

(
JL

n

)
(I x)n

∏JL−n
j=1 (I (1 − x) + j − 1)

∏JL
j=1 (I (1 − x) + j − 1)

= p(x, I, JL)

x

(
JL

n

)
(I x)n (I (1 − x))JL−n

(I (1 − x))JL

(26)

This gives the abundance distribution assuming the relative abundance of all
species is x . To account for the abundance distribution of the metacommunity, we
must take the appropriate average over x :

E [Sn|m, θ, JL] =
∫ 1

0
E [Sn|m, x, JL] x� (x) dx

=
∫ 1

0

p(x, I, JL)

x

(
JL

n

)
(I x)n (I (1 − x))JL−n

(I (1 − x))JL

xθ
(1 − x)θ−1

x
dx

=
∫ 1

0
p(x, I, JL)

(
JL

n

)
(I x)n (I (1 − x))JL−n

(I (1 − x))JL

θ
(1 − x)θ−1

x
dx

(27)

where x� (x) dx is the probability of an individual randomly taken from the
metacommunity (which applies also to the immigrants) having abundance x .
Summing this expression over n = 1, . . . , JL and using Vandermonde’s formula,(8)

(x + y)N =
N∑

n=0

(
N

n

)
(x)n (y)N−n (28)
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we obtain

E [S|m, θ, JL] =
∫ 1

0
p(x, I, JL)

(I )JL

(I (1 − x))JL

θ
(1 − x)θ−1

x
dx

−
∫ 1

0
p(x, I, JL)θ

(1 − x)θ−1

x
dx =

∫ 1

0
p(x, I, JL)

× (I )JL

(I (1 − x))JL

�(x) dx −
∫ 1

0
p(x, I, JL)�(x) dx (29)

Recalling the interpretations of p(x, I, JL) and �(x) above, the second term of this
expression represents the expected number of species in the metacommunity that
are not in the local community. Therefore the first term must represent the expected
total number of species in the metacommunity. For an infinite metacommunity this
is given by

∫ 1

0
�(x)dx (30)

and we must therefore conclude that

p(x, I, JL) = (I (1 − x))JL

(I )JL

(31)

and hence (27) becomes

E [Sn|m, θ, JL] = θ

(
JL

n

) ∫ 1

0

(I x)n (I (1 − x))JL−n

(I )JL

(1 − x)θ−1

x
dx (32)

Again, taking a hypergeometric sample from this distribution leaves the distribu-
tion invariant.(30)

We can also use the formalism provided in Etienne and Alonso(30) for the
local community. This formalism states that the local community is not a random
(hypergeometric or binomial), but a dispersal-limited sample from the metacom-
munity. For a random sample we have

E [Sn|θ, J ] =
JM∑

j=n

Phyp[n| j, JM, J ]E[Sj |θ, JM] (33)

where

Phyp[n| j, JM, J ] :=
( j

n

)(JM− j
J−n

)
(JM

J

) (34)
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is the hypergeometric distribution and E[Sj |θ, JM] is given by (1). For a dispersal-
limited sample we have a very similar expression:

E [Sn|θ, m, JM, J ] =
JM∑

j=1

PDL
hyp [n|m, j, JM, J ] E[Sj |θ, JM] (35)

where

PDL
hyp [n|m, j, JM, J ] =

(
J

n

) J∑

A=1

n∑

a=1

s (n, a) s (J − n, A − a)
I A

(I )J

1
(A

a

)

×Phyp[a| j, JM, A] (36)

is the dispersal-limited hypergeometric distribution. One can show that (32), for a
subsample of size J , and (35) are identical.

By writing the effect of dispersal limitation in the same way as the effect of
random sampling, Etienne and Alonso(30) showed that dispersal limitation can be
regarded as a sampling effect. Dispersal limitation is as ubiquitous as sampling
effects, and likewise blurs our image of other possible processes that shape com-
munities. By using dispersal-limited sampling, we are able to uncover the signature
of such other underlying processes on the species abundance distribution. If only
neutral process are at play, the structure we observe is a direct consequence of
the dispersal-limited sampling of a neutral community. According to niche theory,
there should still be some further structure left after accounting for all sampling
effects.

The master equation approach has an important advantage that has hardly
been explored. Vallade and Houchmandzadeh(87) provide a solution for the non-
equilibrium case, that is for the time dependence of Pn(t), the probability of a
species having abundance n at time t , as we noted in (12). For our master equation
in terms of Sn we can do something similar for the metacommunity case. The set
of equations (19) can be put in matrix form,

d
−→
S

dt
= H

−→
S + −→

h (37)

where
−→
S is the vector

−→
S = (S1, S2, . . . , SJM ), H is the transition matrix (9)—

with element H11 in the top left corner—and
−→
h is a vector of length JM with

h1 = s and h j = 0 for j > 1. This matrix equation is readily solved:

−→
S = et H (

−→
S 0 + H−1−→h ) − H−1−→h (38)

where
−→
S 0 is the initial abundance distribution.



Neutral Community Theory 501

3.3. Genealogical Approach

The second approach focused on the probability of observing a particular
data set

−→
D = (n1, n2, . . . , nS) where ni is the abundance of species i . For the

metacommunity case, Hubbell(53) borrowed a result long known in population
genetics as the Ewens sampling formula(35,57)

P[
−→
D |θ, J ] = J !

∏S
i=1 ni

∏J
j=1 � j !

θ S

(θ )J
(39)

where � j is the number of species with abundance j in the data set. For the local
community no such formula was available. Etienne and Olff(31,32) provided the
first formula for this probability, and this was greatly simplified in Etienne.(29) We
write it in a slightly different form here:

P
−→
[D|θ, m, J ] = J !

∏S
i=1 ni

∏J
j=1 � j !

θ S

(I )J

n1∑

a1=1

. . .

nS∑

aS=1

s (ni , ai ) s (ai , 1)

s (ni , 1)

I A

(θ )A

(40)
where

A =
S∑

k=1

ak (41)

Etienne and Alonso(30) showed that there is also an integral form of (40):

P[
−→
D |θ, m, J ] = J !

∏S
i=1 ni !

∏J
j=1 � j !

θ S

(I )J

∫ 1

0
. . .

∫ 1

0

S∏

i=1

(
(Ii xi )ni

(1 − xi )
θ−1

xi

)

×dx1, . . . , dxS (42)

where

Ii = I
i−1∏

k=1

(1 − xk) (43)

Equation (42) provides a way to avoid Stirling numbers in computing the multi-
variate probability, e.g. by Monte Carlo integration. This will, however, be very
computationally intensive for a large number of species S.

While the master equation approach is forwards in time, the genealogical
approach follows the current, equilibrium, (meta)community backwards in time.
The idea is described in detail in Etienne and Olff(31,32) and Etienne.(29) Here we
illustrate the approach with the simplest possible data set

−→
D , namely one consisting

of two individuals. There are two possibilities: either the two individuals are of the
same species, or they are of different species. In population genetics the probability
that there are of the same species is indicated by F2. We derive F2 for the three
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models (Wright–Fisher, Moran, Hubbell) mentioned above. For completeness, we
note that the original formulations of the Wright–Fisher and Moran models did
not contain mutation (speciation). The versions of these models that we discuss
here do.

In the Wright–Fisher model, all individuals die and leave off-spring which
have equal chances of being in the next generation (so generations do not overlap).
When two individuals are sampled at random, they can only be of the same species
if no speciation occurred in the previous time step. This has probability (1 − ν)2

where ν is the speciation probability per individual per time step. This probability
is equal to the speciation probability per generation, u, in this model, as generations
do not overlap. The individuals are conspecific, either if they have the same parent,
which has probability 1

JM
, or if their parents were different individuals of the same

species, which has probability (1 − 1
JM

)F2(t − 1). Hence, we have the recursion

F2(t)) = (1 − ν)2

(
1

JM
+

(
1 − 1

JM

)
F2(t − 1)

)
(44)

In equilibrium F2(t) = F2(t − 1) =: F2, so

F2 = 1

1 + 2ν JM−ν2 JM

(1−ν)2

= 1

1 + 2u JM−u2 JM

(1−u)2

≈ 1

1 + 2JMu
(45)

where the approximation uses the fact that u is very small.
In the Moran model, only one individual dies and is replaced by offspring

of itself or any of the other individuals with equal probability (so generations
overlap). When two individuals are sampled at random, there is a 2

JM
probability

that either of these two is the new individual and there is a 1
JM

probability that
they then have the same parent. As speciation can only occur in offspring, they are
then identical with probability 1 − v where v is the speciation rate per time step.
Because the average generation time of an individual is JM, the per generation
speciation rate is u = v

JM
and hence v = JMu. If neither of the sampled individuals

is new, then they are identical if their parents are. We thus have the recursion

F2 = 2

JM
(1 − v)

1

JM
+ 2

JM
(1 − v)

JM − 1

JM
F2 +

(
1 − 2

JM

)
F2 (46)

from which

F2 = 1

1 + v JM
1−v

= 1

1 + J 2
Mu

1−v

≈ 1

1 + J 2
Mu

(47)

Hubbell’s model is the same as Moran’s, but the individual that dies does not
contribute to the offspring, so we have v = (JM − 1) u and hence the recursion

F2 = 2

JM
(1 − v)

1

JM − 1
+ 2

JM
(1 − v)

JM − 2

JM − 1
F2 +

(
1 − 2

JM

)
F2 (48)
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from which

F2 = 1

1 + v(JM−1)
1−v

= 1

1 + JM(JM−1)u
1−v

≈ 1

1 + JM (JM − 1) u
(49)

For the three models described above F2 is thus actually given (to a very good
approximation) by the same formula

F2 ≈ 1

1 + θ
(50)

where

θ := 2Jeu (51)

and Je is the effective metacommunity size. In the three models we have

Je = JM, so θ = 2JMu (Wright–Fisher) (52a)

Je = J 2
M

2
, so θ = J 2

Mu (Moran) (52b)

Je = JM (JM − 1)

2
, so θ = JM (JM − 1) u (Hubbell) (52c)

which is in agreement with the results obtained in population genetics for the first
two models.(92) Hubbell(53) used the Wright–Fisher version of the model to define
θ , whereas his model description was interpreted as the modified Moran model,
which we have referred to as the Hubbell model.

The form of F2 given in (50) can be generalized to the full multivariate
probability distribution (39). This means that all three models lead to the same
sampling formula (39), provided that the speciation rate u is very small. Yet,
because the effective metacommunity sizes in the three models depend differently
on the real metacommunity size, the models do differ in their dynamics. Ecological
drift (the analog of genetic drift, stochastic change in abundances) is more effective
in the Wright–Fisher model than in the other two models, because the effective
metacommunity size is smaller.

For the local community a similar reasoning can be followed. However, in-
stead of speciation we have immigration and immigrants are not necessarily of a
new species. Therefore, we find the same Ewens sampling formula, but this now
represents the ancestry abundance distribution rather than the species abundance
distribution and it has parameter I . The ancestry abundance distribution gives the
distribution of the number of individuals that have the same immigrating ancestor,
or in other words, the distribution of the number of descendants of immigrating
ancestors. Because these ancestors have immigrated from the metacommunity,
they form a random sample from this metacommunity. Thus the species abun-
dance distribution of the local community is a kind of convolution of two Ewens
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distributions, one for the ancestors of the local community and the other for the
species in the metacommunity. The result is given in (40).

Because the genealogical approach yields the full multivariate probability
distribution, any statistic of the species abundances should be derivable from it. In
particular, the expected number of species with abundance n can be found from
the probability distributions (39) and (40). See Etienne and Alonso(30) for details.
The multivariate probability distribution is useful for parameter estimation and
model comparison as it represents the likelihood of the parameters given the full
data. An example is given in Fig. 3. This figure also shows that sometimes dual
likelihood optima are present.(34)

The genealogical approach cannot be used to determine the time evolution
of the system. For this we need to write down the full transition matrix relating
all possible states of the system to one another. As these become very large
for even small (meta) community sizes, they are difficult if not impossible to
study.

Fig. 3. Loglikelihood surface of the (θ, m)-parameter combination for the tree community on Barro
Colorado Island, Panama (21457 individuals, 225 species, 1995 census, see Ref. 18). The colorbar
shows loglikelihoods higher than −320, so the dark blue area represents loglikelihoods lower than
−320, which are indicated by contour lines. Note the presence of a global and a local maximum.



Neutral Community Theory 505

4. DISCUSSION

Statistical physics aims at predicting the collective behavior of a system con-
sisting of a large number of entities. Although these entities can have complex
individual behavior by themselves, usually simple assumptions regarding the mi-
croscopic dynamics of these individual entities and their interactions are enough
to recover most macroscopic properties of the system. The central question is
precisely to figure out which assumptions are essential at the individual level to
explain most macroscopic properties observed at the level of the whole system.
This approach has been very successful in physics. During the last decade it has
been applied to an increasing number of biological systems,(88) and, in particular,
to community ecology.(53,61) Neutral community theory is a clear example of this
“mechanico-statistical” approach. From extraordinarily simple assumptions about
the birth-death dynamics of individuals a wide range of implications are derived
for different properties of ecological communities from, for instance, the shape of
phylogenetic trees to the geographic distribution of species in space and time.(53)

We have reviewed recent developments in neutral community theory. We have
presented a more direct derivation of one of its key results, the expected number of
species with a particular abundance. We have also provided a broader context for
a second key result, the probability of observing a particular species abundance
distribution. Thus, regarding the species abundance distribution in equilibrium,
the main results have been found, and the neutral model seems to provide a
good explanation of observed species abundance distributions, although there
may be others that are equally good.(11,33,47) Particularly, recently a controversy has
arisen over whether density-dependence can explain observed species abundance
distributions as well as dispersal limitation can. Volkov et al.(91) claim this to be
the case using a particular model of density-dependence, but Chave et al.(13) argue
that this claim is not sufficiently substantiated, because Volkov et al.(91) do not
provide the multivariate probability distribution. We add that even if the claim can
be substantiated for the particular model studied by Volkov et al.,(91) it will not be
true in general for more realistic models of density-dependence.

Yet, there are many more implications of neutral theory that do not seem to
match observations so well. For example, it has been suggested that ecological
drift cannot explain the observed rapid changes in abundance,(97) and that it yields
species that are too old to be realistic.(75) However, this may only be true for
the current version of the neutral model. Extended versions may be able to solve
these problems. By adding dispersal as a key element to previous neutral theory
in ecology,(10,93) current neutral biodiversity theory(53) has become essentially a
spatial theory, yet space is still treated implicitly. Spatial ecological models are
difficult to study analytically(6,82); results are usually found by simulation.(24,25,66)

However, some analytical results have already been found in relation to how di-
versity changes under neutrality along the spatial dimension (i.e. beta diversity,
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Refs. 12, 99), spatial scaling(5) and clustering.(49,50) Nevertheless, this field is
still largely untouched. Particularly, similarity between different communities be-
longing the same metacommunity has been claimed as yielding a new test for
neutral theory,(23) but solid analytical tools are lacking. In sum, along with further
development of the theory, we need to devise stronger tests(68) that can detect a
non-neutral signal in the neutral noise.

To advance the field we believe that the parallel to population genetics and
the neutral theory of molecular evolution(58) should be explored further, as many
mathematical results have already been obtained in this field.(11,51) For example,
spatial coalescent theory may help in incorporating phylogenetics in community
ecology. The application of tools, concepts, and ideas from statistical physics
to ecology also merits further study. Energy is a key concept both in physics and
ecology. Interesting attempts have been made to introduce energetic constraints
into the stochastic framework used to develop current neutral theory.(90) The
ensemble concept is also starting to find its way to the ecological literature (Ref. 92,
online material). And a general framework for the Ewens sampling formula as well
as Maxwell–Boltzmann, Bose–Einstein and Fermi–Dirac statistics is provided by
Costantini and Garibaldi.(19) In evolutionary biology, mathematical analogies with
statistical physics has also opened the door for the powerful machinery of statistical
fields to yield new insights in nearly-neutral evolution.(78)

Neutral theory is an ideal theory(4): neutral communities do not exist, in
the same way that ideal gases do not exist. Nevertheless, neutral theory is and
will remain very helpful in identifying non-neutral (niche) factors, and has put
stochasticity, dispersal and speciation high on the agenda of community ecology.
We hope that our paper will function as a basis and a stimulus for physicists to
advance this elegant null model of biodiversity.
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