Light transmission and photosynthesis in
 greenhouses

T.Kozai, J.Goudriaan and M. Kimura

Simulation Monographs

Simulation monographs is a series on computer simulation in agriculture and its supporting sciences

Light transmission and photosynthesis in greenhouses

T.Kozai, J.Goudriaan and M.Kimura

Wageningen
Centre for Agricultural Publishing and Documentation 1978
C.T. de Wit and H. van Keulen. Simulation of transport processes in soils (2nd ed., revised). 1975. 109 pp. ISBN 90-220-0591-7. Price Dfl. 15.00
J. Beek and M.J. Frissel. Simulation of nitrogen behaviour in soils. 1973. 76 pp. ISBN 90-220-0440-6. Price Dfl. 12.50
C.T. de Wit and J. Goudriaan. Simulation of ecological processes. (2nd ed., revised). 1978. 176 pp . ISBN 90-220-0652-2. Price Dfl. 22.50
H.G. Fransz. The functional response to prey density in an acarine system. 1974. 149 pp . ISBN 90-220-0509-7. Price Dfl. 20.00
M.J. Frissel and P. Reiniger. Simulation of accumulation and leaching in soils. 1974. 124 pp . ISBN 90-220-0530-5. Price Dfl. 17.50
H. van Keulen. Simulation of water use and herbage growth in arid regions. 1975. 184 pp. ISBN 90-220-0557-7. Price Dfl. 27.50
G.F. Makkink and H.D.J. van Heemst. Simulation of the water balance of arable land and pastures. 1975. 87 pp. ISBN 90-220-0566-6. Price Dfl. 15.00
G.W. Arnold and C.T. de Wit (Eds). Critical evaluation of systems analysis in ecosystems research and management. 1976. 114 pp. ISBN 90-220-0593-3. Price Dfl. 20.00
J. van den Bos and R. Rabbinge. Simulation of the fluctuations of the grey larch bud moth. 1976. 91 pp. ISBN 90-220-0589-5. Price Dfl. 16.50
R. Rabbinge. Biological control of fruit-tree red spider mite. 1976. 234 pp. ISBN 90-220-0557-7. Price Df1. 37.50
J. Goudriaan. Crop micrometeorology: a simulation study. 1977. 257 pp. ISBN 90-220-0614-X. Price Dfl. 37.50
E. van Elderen. Heurestic strategy for scheduling farm operations. 1977. 233 pp . ISBN 90-220-0612-3. Price Dfl. 22.50
P. Kampmeijer and J.C. Zadoks. EPIMUL, a simulator of foci and epidemics in mixtures of resistant and susceptible plants, mosaics and multilines. 1977. 57 pp . ISBN 90-220-0636-0. Price Dfl. 10.00

ISBN 90-220-0646-8
(C) Centre for Agricultural Publishing and Documentation, Wageningen, the Netherlands, 1978.

Printed in the Netherlands.
1 Introduction 1
2 Description of the model 3
2.1 Transmissivity 3
2.1.1 Transmissivity of a multispan greenhouse 3
2.1.2 Total transmissivity of a greenhouse 4
2.1 .3 Transmissivity of a greenhouse for direct and diffuse light 6
2.1 .4 Transmissivity of the greenhouse for light rays of particular direction 72.1 .5
Calculation of daily solar light integrals in the greenhouse 9
2.2 Photosynthesis 12
2.2 .1 The use of photosynthetic products 12
2.2.2 Classification of the incoming radiation 13
2.2 .3 Leaf and canopy photosynthesis 14
3
Influence of orientation in multispan greenhouses 17
3.1 Description of the greenhouse 17
3.2 Transmission of diffuse light 18
3.3 Transmission of direct light 19
3.4 Daily net assimilation of carbon dioxide in the greenhouse 24
3.5 Total solar light integral and plant growth 24
3.6 The effects of orientation intermediate between N-S and E-W 26
4 Influence of roof slope 30
4.1 Transmission of diffuse light 30
4.2 Transmission of direct light 30
4.3 The effect of roof slope on the spatial distribution of daily direct light 35
5 Single-span vs multispan greenhouses 39
5.1 Transmission of diffuse light 39
5.2 Transmission of direct light 39
5.3 Total solar light integrals 43
5.4 Effect of the number of spans 46
5.5 Effect of length of spans 48
approach in estimating the light environment in a greenhouse will become more and more important as the commercial greenhouse industry expands.
At present, most of the models, however, concern only a singlespan greenhouse and only a few models are available for calculating the light environment in a multispan greenhouse (Stoffers, 1971; Kirsten, 1973). Besides, the arrangement of structural members, the width and depth of these members, and the resulting uneven light distribution in the greenhouse have not been considered in most of the models. No model is available for calculating the net photosynthesis in the greenhouse mainly because of the complexity of constructing the model and the requirement of much computing time for the simulation run.

This book describes a computer simulation model for calculating the net photosynthesis in single-span and multispan greenhouses of finite length with solid, opaque struts and with non-diffusing covering materials both for the direct and diffuse solar light. To evaluate the net photosynthesis, the variations of the light environment in space and time within the canopy have been considered in some detail in the present model. Internal reflection from the glass within the greenhouse is not considered in the present model. The model is applied to both single-span and multispan greenhouses with different roof slopes in various orientations at different localities throughout the year. Throughout the chapters, emphasis is put on winter conditions, since these are the most difficult for the greenhouse grower.

The instruction manual for the use of the computer simulation program used in the present study together with the complete list of the program is given in Appendix A, so that the program can be used by greenhouse designers and researchers. The instructions are given in such a way that anyone who has the minimum knowledge of FORTRAN and CSMP languages can use the program. The program has been kept general so that it can be adapted to most conditions.

2 Description of the model

2.1 Transmissivity

2.1.1 Transmissivity of a multispan greenhouse

In a multispan greenhouse of finite length with solid structural members a light ray may pass through the glass roofs more than once before reaching the floor or the plants. After it has passed through one glass roof, a light ray may also be intercepted by some member, as shown in Fig. 1. Therefore it is more difficult and time consuming to develop an analytical model for predicting the light transmission by a multispan greenhouse than a numerical one. In this section a numerical model for greenhouse light transmission is described. In this model each light ray is traced until either the light ray reaches the floor or is intercepted by one of the struts before reaching the floor. The extinction of light intensity due to reflection and absorption is calculated by Fresnel's equations for each time the light ray passes through the glass. The extinction coefficient, index of refraction, thickness of the glass are assumed to be $0.076 \mathrm{~cm}^{-1}$. 1.526, and 0.3 cm , respectively. When the angle of incidence changes from 0 to 90° at 10° intervals, the transmissivities of the glass are then, respectively, $0.86,0.86,0.86,0.85$, $0.85,0.82,0.77,0.65,0.40$, and 0.00 (see Fig. 2). Thus, at angles greater than 40°, transmission begins to fall more and more rapidly. At 80° even more light is reflected than passes through the glass.
To calculate the spatial average transmissivity of the greenhouse for light rays with a particular direction, many light rays with the same direction have to be traced in the computer. Each ray should fall on the floor at random to eliminate the possible bias of the transmissivity due to the regular and sparse arrangement of struts. This stochastic (Monte Carlo) method requires much computing time for the simulation, but it seems that there is no simple alternative deterministic method of predicting the spatial average transmissivity of a multispan greenhouse. Detailed computational procedures using a Monte Carlo method for predicting the greenhouse light environment are given in Section 2.1.4.

Fig. 1 | Schematic representation of direct solar light transmission into a multispan greenhouse.
upper: The sun's altitude relative to the roof not facing the sun is positive.
lower: The sun's altitude relative to the roof not facing the sun is negative. Here a part of the light passes through the roofs three times before reaching the floor or plants in the greenhouse

2.1.2 Total transmissivity of a greenhouse

The solar light reaching the Earth's surface can be divided into two components: direct light from the sun and diffuse light from the sky. The transmissivity of a greenhouse for direct light is generally different from that for diffuse * light. Both depend on the shape and structure of the house, but only direct light transmission depends on the greenhouse orientation and the position of the sun in the sky. The transmissivity for the diffuse light may be considered a constant of the greenhouse itself.
Total light transmissivity, which is defined as the ratio of total (direct plus diffuse) light intensity or total light

TRANSMISSIVITY (\%)

Fig. $2 \mid$ Relationship between the angle of incidence and transmissivity of glasspane for direct solar light.
integrals per unit area of the floor of the house to the light falling on unit area of the ground outside the house, TT, is given by the equation:
$T T=F R D I F \times T R D I F+(1-F R D I F) \times T$
where FRDIF is the ratio of diffuse to total solar light outside typical for the time of year and the site of the greenhouse, T the transmissivity of the house for direct light, and TRDIF the transmissivity for diffuse light. Therefore, in order to establish the influences of the house orientation, the latitude, and time of year on the total transmissivity of the house, the determination of the transmissivity for direct light is of primary importance. The quantitiy FRDIF is a meteorological parameter and can be derived from appropriate measurements of the solar light components at a place in question. A part of the direct light is scattered by a diffusive covering material or a non-diffusive material with water droplets and dirt. Furthermore, a part of the transmitted light is reflected by the glass within the greenhouse. The diffused light in the actual greenhouse, therefore, consists of transmitted diffuse light, scattered direct solar light, and reflected direct and diffuse solar light. Sometimes the diffuse light intensity inside the greenhouse may be larger than that outside (Uchijima et al., 1976; Kishida \& Sonoyama, 1977).
2.1.3 Transmissivity of a greenhouse for direct and diffuse light

Suppose the hemispherical sky be equally divided into $m \times n$ segments and the transmissivity of a greenhouse for parallel light rays from a centre part of the (I, J) th segment be T(I,J).

Transmissivity for direct light

Thus, $T(I, J)$ can be interpreted as the transmissivity of the house for direct light with the sun's altitude of (90I-45)/n degrees and sun's azimuth of (180J-90)/m degrees, if the numbers of m and n are large enough (m and n should be at least 36 and 18 , respectively). Then the relative daily total of direct light is given by the equation:

where $I_{t}=\left(n \cdot H_{t}+90\right) / 90, J_{t}=\left(m \cdot A_{t}+180\right) / 180$ if the integers I_{t} and J_{t} are obtained after truncation of the floating point, $H_{t}\left(0^{\circ}<H<90^{\circ}\right)$ the sun's altitude, $A_{t}\left(-180^{\circ} \leq A_{t} \leq 180^{\circ}\right)$ the sun's azimuth, and DRP(t) the direct light intensity outside at time t. The time interval for the integration, Δt in Eqn (2.2), was chosen as 1.0 hour in the present simulation. If the cross and longitudinal-sections of the house are symmetrical with respect to their centre axes, the transmissivity of the house for the solar azimuth of $A_{t}\left(00<A_{t}<90^{\circ}\right)$ is equal to that for the solar azimuth of $\left(-A_{t}\right)$, $\left(A_{t}+90^{\circ}\right)$, and $\left(A_{t}-90^{\circ}\right)$ at any solar altitude. Then the transmissivities need only be calculated within the solar azimuth range between 0° and 90°, because those for the rest of the azimuths can be derived from this range.

Transmissivity for diffuse light

The transmissivity of the greenhouse for the isotropic diffuse sky light can be obtained by the equation:

TRDIF $=\sum_{J=1}^{m} \sum_{I=1}^{n} T(I, J) \quad \sin ^{2}(90 I / n)-\sin ^{2}(90(I-1) / n / m(2.3)$
where the second term of the equation is a weighting coefficient as a function of the altitude from which the light comes, the analytical form being $\int_{h_{1}}^{h_{2}} \sin (h) \cdot \cos (h) d h$.
The transmissivity of the greenhouse for non-isotropic diffuse sky light can also be obtained in a similar way simply by changing the weighting coefficients. Bowman (1970) gave the analytical method of calculating the transmissivity of diffuse light under non-isotropic (standard overcast) conditions and showed that it is worthwhile using the radiance distribution for a standard overcast sky in calculations relating to greenhouses, where differences in transmissivity of the order of 1% are of interest. He also showed the importance of the effect of greenhouse geometry on the transmission of diffuse light and that light reflected from the underside of a pitched roof makes a significant contribution to the total illumination.

2.1.4 Transmissivity of the greenhouse for light rays of

 particular directionOnce the direction from which the solar light rays come has been determined, the transmissivity (the inside solar light intensity relative to the one outside) of a greenhouse for the light rays can be calculated according to the following computational steps:

1. give the geometry and the arrangement of structural members of the greenhouse,
2. specify the number of light rays, I, which is used to calculate the transmissivity for the particular direction of the light rays (usually more than 10000). 3. specify the range of calculation ($\mathrm{x} 1<\mathrm{x}<\mathrm{x} 2$) along the length of the house, XL , within which the transmissivities for the light rays should be averaged, where $\mathrm{x} 1 \geq 0, \mathrm{x} 2 \leq \mathrm{xL}$, and $\mathrm{x} 1<\mathrm{x} 2$, 4. assign values to $Y S$ and $Y E$ in the range for which the distribution of the transmissivities is calculated across the width, where YS>0, YE<width of the house, and YS<YE. Divide the range into $\overline{\bar{J}}$ parts, and average the transmissivities in each division. The width of each division is (YE-YS)/J. Set the values of Y1 and Y2 to YS and YS+(YE-YS)/J, respectively, 5. initialize the value of integer variable i (the sequential number for pairs of random numbers, $1 \leq i \leq I$) at 1 and the value of n (the number of light rays intercepted by the structural members, $0 \leq n \leq I$) at 0 ,
3. produce a pair of uniform random numbers (XR,YR) within the ranges between X 1 and X 2 , and between Y1 and Y2, 7. produce a light ray with the direction specified, which passes through the point (XR, YR),
4. initialize the transmissivity at the point (XR,YR), T, at 1.00,
5. initialize the value of the integer variable assigned to each of the greenhouse glass panes, k, at $1(1 \leq k \leq K$; X is the total number of greenhouse glass panes),
6. find whether the glass pane k intersects the light ray. If not, proceed to Step 15,
7. compute the point of intersection,
8. find whether the light ray is intercepted by any of the struts,
9. if so, set the value of T to zero and increase the value of n by one. Then, proceed to Step 17,
14, if not, compute the incidence angle of the light ray on the surface and the corresponding transmissivity of the surface. Calculate the new value of T by multiplying the old value of T by the transmissivity of the surface ($T_{\text {new }} * T_{\text {old }} \times T_{\text {current }}$) $T_{\text {new }}$ presents the relative intensity of light after passing through the glass pane k, 15. increase the value of k by one. If the value of k is less than K , return to Step 10,
10. add the value of T to $C T\left(C T_{\text {new }} \leftarrow C T_{o i d}+T\right)$, where $C T$ is
the intermediate value to get the average spatial transmissivity at the segment (defined as X1 x X2 and Y1 x Y2) on the floor (see Step 18).
11. if the value of i is less than I, return to Step 6 after increasing the value of i by one,
12. divide the value of CT by I to get the space averaged transmissivity at the segment on the floor. Divide the value of n by I to get the ratio of the area shaded by the structural members to the segment area,
13. increase the values of $Y 1$ and $Y 2$ by (YE-YS)/J. If the new value of Y 2 is less than or equal to the value of YE , proceed to Step 5.

The following assumptions were made:

- Internal reflection by the glass surface inside a greenhouse is ignored. The internal reflection of direct light in a single-span greenhouse with non-diffusing covering materials was studied by Kozai and Sugi (1972).
- Clear glass with parallel surfaces does not diffuse light. Basiaux et al. (1973) examined the effect of diffusion properties of greenhouse covers on the light balance in a greenhouse. - The polarization of light, which was discussed by Bownan (1970) and Stoffers (1971), is not considered in the present
model, because it does not give rise to any appreciable difference in the daily integrals of light in the region considered in the present analyses (Morris, 1972).
- The direct light rays were considered to be completely parallel, although the solar disc actually subtends 0.50. In other words the penumbra was ignored.
2.1.5 Calculation of daily solar light integrals in the greenhouse

The diurnal courses of the total solar light intensity and its daily integrals in the greenhouse were calculated as follows: The direct DRP and diffuse DSH solar light intensity outside for clear days and the diffuse light intensity DIFOV outside for overcast days were calculated by the following equations:
$\mathrm{DRP}=580 * \operatorname{SIN}(\mathrm{H}) *(1.0-\mathrm{FRDIF}) * \operatorname{TRAM}$
$\mathrm{DSH}=580 . * \operatorname{SIN}(\mathrm{H}) *$ FRDIF *TRAM
$\operatorname{DIFOV}=116 * \operatorname{SIN}(\mathrm{H}) * \operatorname{TRAM}$
$\mathrm{TRAM}=\operatorname{EXP}(-0.1 / \operatorname{SIN}(\mathrm{H}))$
where H is the sun's altitude, TRAM the atmospheric transmission coefficient, and FRDIF the fraction of the diffuse to the total solar light, which is a function of the sun's altitude. The values of $1.0,1.0,0.4,0.3$, and 0.25 were assigned to FRDIF for the sun's altitudes of $0^{\circ}, 5^{\circ}, 15^{\circ}, 25^{\circ}$ and 90°, respectively. The intermediate values of FRDIF which are not specified above were calculated by linear interpolation. The fluxes DSH, DRP, and DIFOV only present the visible part of the spectrum and are expressed in w^{-2}.
The values of DRP, DSH, and DIFOV are calculated at certain intervals for a whole day to obtain the daily integrals of the total light both for clear (CLT) and for overcast days (OVT). Fraction of overcast, f, for a given day, which is defined as:
$\mathrm{f}=(\mathrm{CLT}-\mathrm{ADT}) /(\mathrm{CLT}-\mathrm{OVT})$,
is then estimated, where $A D T$ is the actual meteorological data of daily integral of total visible solar light at the place in question on the corresponding day. Finally, the daily integral of the total light ATRT in the greenhouse is given by

$$
\text { ATRT }=\underset{(1-f)}{\substack{\text { sunset } \\ t=\text { sunrise }}}(D S H \cdot T R D I F+D R P \cdot T(t)) \cdot \Delta t+f \cdot T R D I F \cdot O V T)(2.9)
$$

where TRDIF is the transmissivity of the greenhouse for diffuse light, $T(t)$ the transmissivity of the house for direct light at each time of the day.
To illustrate the influence on light transmission by a greenhouse of the latitude where the greenhouse is built, two places were chosen: Tokyo (35041'N) (or Osaka (34039'N)) in Japan and Amsterdam (52020'N) in the Netherlands. The actual monthly meteorological data of daily solar light integrals (ADT in Eqn (2.8)) for average years at the two places, which were used as the input data in the present simulation, are given in Fig. 3. The drop in daily solar light in June in Tokyo is due to the annual rainy season in early summer. Fig. 4 shows the average monthly ratios of diffuse to total light (FRDIF in Eqn (2.1)) at the two places, estimated by using Eqns (2.4) to (2.8). The diurnal courses of the altitude and azimuth of the sun on each day were calculated by using well-known formulae (e.g., Robinson, 1966). Fig. 5 illustrates, as examples, the changes in altitude and azimuth of the sun from noon till sunset on 22 December (the winter solstice), 21 March (the spring equinox), and 22 June (the summer solstice) in Amsterdam ($522^{\circ} 20^{\prime} \mathrm{N}$) and Tokyo ($35^{\circ} 41^{\prime} \mathrm{N}$). Solar altitudes at culmination on 22 December, 21 March, and 22 June are 14, 37, and 610, respectively, in Amsterdam and are 31,54 , and 78°, respectively, in Tokyo.

Fig. 3 | Mean daily values of total solar light (400-700 nm) throughout the year in Amsterdam and Tokyo. (After Manbeck and Aldrich and data from KNMI)

Fig. 4 | Mean monthly ratio of diffuse to total solar light (After Manbeck and Aldrich and data from KNMI)
altitude and azimuth of the sun (deg.)

Fig. 5 | Changes in altitude and azimuth of the sun from noon till sunset on 22 December, 21 March, and 22 June in Amsterdam ($52^{\circ} 20^{\prime} \mathrm{N}$) and Tokyo ($35^{\circ} 41^{\prime} \mathrm{N}$).

2.2 Photosynthesis

In the previous chapter the model is discussed for the interception and transmission of the incident radiation by the greenhouse. The remaining transmitted radiative energy is used for photosynthesis, transpiration and sensible heat loss. The variation of light intensity in the horizontal direction, due to interception by the frame of the greenhouse and to transmission by differently oriented glass panes, makes the calculations more complicated than those for crops in the open.

2.2.1 The use of photosynthetic products

Before discussing the modelling of the photosynthesis itself, one should decide how to use the calculated increase in dry matter. It may be stored somewhere in a harvestable nonphotosynthesizing plant organ, without affecting the leaf area index. However, it may be used for the formation of new leaves, so that there is feedback between photosynthesis and leaf area index.
The first method essentially assumes linear growth for constant environmental conditions. The growth equation is
$\frac{d H}{d t}=a L A I$
where H is the harvestable dry matter, $L A I$ the leaf area index and a some proportionality constant, which depends on the light environment and is thus a function of transmissivity. Then the time required for the production of one crop is
$t=\left(H_{m}-H_{0}\right) /(a L A I)$
where H_{m} is the dry matter upon harvesting and H_{0} the initial dry matter. In the second method the LAI is proportional to H. The difference between the two methods is maximum, since a is not dependent on $L A I$. The resulting growth is exponential
$H=H_{0} \exp (a t / p)$
where p is the specific leaf weight.
Now the time required is
$t=\ln \left(\frac{\mathrm{H}_{\mathrm{m}}}{\mathrm{H}_{\mathrm{O}}}\right) p / a$
Thus in both methods the time requirement is inversely pro-
portional to a, which factor contains the influence of the greenhouse geometry. Therefore the two methods discussed are equivalent for the purpose of comparing greenhouse performance, as long as an accurate prediction of the actual growth period is not required. Hence the simpler, linear method is used with a constant leaf area index.

2.2.2 Classification of the incoming radiation

The division of the visible radiation into direct and diffuse follows from the equations given in Section 2.1.5. The level of background radiation, uniform in the horizontal plane, is formed by the diffuse radiation from the sky, clear or overcast, after reduction by the greenhouse. The transmission coefficient for diffuse radiation is independent of greenhouse orientation. The direct radiation can be affected in three different ways: (Fig. 1)
a) It is intercepted by the frame (structural elements).
b) It passes through the roof side not facing the sun. Thus either the radiation is incident from above so that the sine of incidence is smaller than on the other roof side, or it is incident from below so that it has already passed the other roof side, and will do so another time, before reaching the soil or plants.
c) In all other situations it passes the roof side facing the sun only once. Then the transmissivity is largest.
For each situation the fraction of projected area on the soil surface is calculated as is the corresponding transmissivity. These calculations are done by the program described in Chapter 2 for a series of sun inclinations and sun azimuths with respect to the azimuth of the glasshouse. Since the transmissivity of structural elements is always zero, and the fractions add up to one, four numbers characterize the transmissivity for each position of the sun. In the program these values are calculated and used for 19 inclinations and 19 relative azimuths, so that 1444 numbers characterize the transmissivity of a greenhouse. At a certain moment there are three classes of irradiation on the floor of the greenhouse, corresponding to situations a, b and c which all have the transmitted diffuse radiation in common. In the simulation program the penumbral effect is neglected. There is a distinct boundary between irradiation classes.

For each class of irradiation the photosynthesis and transpiration for that part the canopy considered are calculated. This procedure is described extensively by Goudriaan (1977), but the essential elements are the following:
The fraction of sunlit leaves is
$s=\left\{1-\exp \left(-K_{b} L A I\right)\right\} /\left(\right.$ LAI $\left.K_{b}\right)$
where K_{b} is the extinction coefficient for direct radiation. The intensity of the direct radiation does not matter in this equation, so that it can be equally applied for all irradiation classes. The average absorbed direct light is now
$\bar{R}_{v, d}=S_{b}\left(1-\sigma_{v}\right) s$
where S_{b} is the visible radiative flux through a horizontal surface and σ_{v} the scattering coefficient of the leaves in the visible region. Because also scattered radiation is partially absorbed upon a secondary interception, the average absorbed radiation originating from direct light is larger and is given by
$R_{v, b}=S_{b}(1-\sigma)(1-\exp (-K L A I) / L A I$
where σ and K are the reflection and extinction coefficients under direct irradiation. In these coefficients the secondary diffuse flux is included. The difference between the last equations represents the absorbed diffuse radiation, originating from direct radiation. Hence, the absorbed diffuse visible radiation, common to all leaves is
$R_{s}=R_{v, c}+R_{v, b}-R_{v, d}$
This is the absorbed visible radiation for shaded leaves. It must be noted that this irradiation is higher for the shaded leaves in the sunlit parts of the greenhouse than in the parts shaded by structural elements. Equations (2.15), (2.16) and (2.17) are applied for each of the three irradiation classes of the greenhouse floor. For the sunlit leaves the direct radiation absorbed must be added to the amount given by Eqn (2.17). Sunlit leaves are classified according to the sine of incidence of the direct light. Ten classes are distinguished so that the direct radiation absorbed is
$R_{V, d}=(0.1 t-0.05)\left(1-\sigma_{v}\right) S_{p}$
where t is the index of the sine of incidence, running from 1 to 10 and S_{p} the direct flux through a surface perpendicular to the beam. The fraction of leaves in each class of incidence is 0.1. This simple distribution function holds for a spherical leaf angle distribution, the best guess for an imaginary crop (Goudriaan, 1977; Ross, 1975).
The leaf area index remains constant throughout the period studied and is here chosen to be 0.5. This is an arbitrary choice, which will not essentially affect the results. The photosynthesis function of the individual leaves is chosen as the following equation
$F_{n}=\left(F_{m}-F_{d}\right)\left(1-\exp \left(-R_{v} \varepsilon / F_{m}\right)\right)+F_{d}$
which is close to most measured curves (van Laar \& Penning de Vries, 1972). F_{m} is the maximum rate of net CO_{2}-assimilation, F_{d} the net CO_{2} assimilation in the dark (negative dark respiration), R_{v} the absorbed visible radiation per leaf area and ε the slope of the curve at low light intensities. The latter can also be considered an efficiency and has an approximate value of $11.410^{-9} \mathrm{~kg} \mathrm{CO} 2$ per J absorbed visible light energy. This is the value for C_{3} plants to which most plants belong that are cultivated in greenhouses (lettuce, tomatoes, cucumber, etc.). The maximum rate F_{m} and the dark rate F_{d} are both temperature-dependent. Therefore the temperature regime in the greenhouse is of some importance. It is simulated by firstorder kinetics with a time constant of one hour. The equilibrium value is $10^{\circ} \mathrm{C}$ during the night period and $20^{\circ} \mathrm{C}$ during the day period, when the sun is above the horizon. In this temperature range the maximum rate F_{m} is made a linear function of air temperature.
At $10^{\circ} \mathrm{C}$ it is $10 \mathrm{~kg} \mathrm{CO}_{2} \mathrm{ha}^{-1} \mathrm{~h}^{-1}\left(0.28 \times 10^{-6} \mathrm{~kg} \mathrm{CO}_{2} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)$ and at $20^{\circ} \mathrm{C}$ it is $40 \mathrm{~kg} \mathrm{CO}_{2} \mathrm{ha}^{-1} \mathrm{~h}^{-1}\left(1.11 \times 10^{-6} \mathrm{~kg} \mathrm{CO}_{2} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)$. The respiration rate is simply taken as one tenth of the maximum assimilation rate. This is a reasonable approximation for many plants (Tooming, 1967).
According to the simulation study a uniform temperature during day and night would mean an unreasonably long winter period in the Netherlands during which the 24 hours balance of CO_{2} assimilation is negative; about four months. Lowering the night temperature to $10{ }^{\circ} \mathrm{C}$ reduces the respiration during the long nights to such an extent that the period of no growth is limited to the two darkest months. The net CO_{2}-assimilation may be, and is often, improved by CO_{2}-fertilization. In this study, however, only an ambient
concentration of 300 vpm has been considered.
The fluxes per ground area are found by the following equations
$F_{s h}=\operatorname{LAI}(1-s) F\left(R_{S}\right)$
for the shaded leaves and for the sunlit leaves
$F_{s u}=L A I s \sum_{t=1}^{10} 0.1 F\left(R_{s}+R_{v, d}\right)$

The variable $F(R)$ means F according to Eqn (2.19) in which R_{v} should be replaced by R. These two fluxes are added to give the flux per ground area in one of the three main irradiation classes. This calculation is repeated for each class and then added according to the fractions following from the inclination and azimuth of the sun. The result is the average flux per ground area under a clear sky. For an overcast sky the procedure is simpler and only one equation is used:
$F_{O V}=\operatorname{LAI} F\left(R_{V, 0}\right) \quad$.
where $R_{\text {, }}$ is found in the same way as in Eqn (2.16). The fluxes afe integrated separately to give the daily totals for clear days and for overcast days. Finally the average daily total for standard conditions is found by the equation
$\bar{F}=f \int_{O V}+(1-f) \int F_{C l}$
where f is the average fraction overcast for the time of the year and the site of the greenhouse.

3 Influence of orientation in multispan greenhouses

Whittle and Lawrence (1959) measured natural light in singlespan greenhouses differing in size and orientation to study the effect of greenhouse orientation on the transmission of winter light. They found that more direct light was transmitted by an E-W house than by a $N-S$ one. They also found a more uniform distribution of light in $E-W$ single-span houses. Their general conclusions about the orientation effect have been confirmed by measurements (e.g., Edwards, 1964) and by computer simulations (e.g., Nisen, 1962; Smith and Kingham, 1971).

However, it was uncertain which orientation is optimal in a multispan greenhouse. Morris (1972) suggested that in multispan greenhouses E-W orientation is likely to have fewer advantages because each span is shaded by its neighbor to the south. Moreover he indicated that the lack of uniformity of light in $E-W$ greenhouses due to shadows and reflections remaining stationary during the important hours of the day, was more marked in multispan greenhouses. These suggestions provide an argument in favour of $\mathrm{N}-\mathrm{S}$ orientated multispan greenhouses.
In this chapter the variation of light transmission by a multispan greenhouse with orientation, season, and latitude and of crop performance within the greenhouse are discussed in relation to our results of computer simulation. The simulated results demonstrate the dependence of the orientation effects on latitude and season.

3.1 Description of the greenhouse

Front and side views of the greenhouse used as an example in the present simulation are shown in Fig. 6. The cross-section and longitudinal-section of the house are symmetrical and the house is one of the most commonly used commercial greenhouses in Japan. The dimensions and technical details of the house are as follows:
number of spans 11 m
length of the spans 98 m
width of the spans 4 m
height of sides 2.2 m

- 2.45 mm

Fig. $6 \mid$ Front and side views of the multispan greenhouse analyzed in the present simulation.
height of ridge
3.16 m
roof slope
size of glass panes
thickness of glass panes
24.6^{0}
depth of structural members
0.3 cm
width of structural members on $\quad 3.0 \mathrm{~cm}$
width of horizontal structural members on gable ends 4.0 cm
width of vertical structural members on gable ends 5.0 cm
main structural members on the roofs and sides

- distance apart
- width
2.45 m
- depth
8.0 cm

The frame ratio (the ratio of the area covered by structural members to the total surface area) of the house is 0.16 . This frame ratio is slightly higher than that for modern greenhouses with frames of steel and aluminium; The ratio for them usually ranges from 0.08 to 0.12 . However, no other additional structural members such as trusses, ventilators, gutters, overhead heating pipes etc. are attached to the model greenhouse, so that the overall frame ratio including the additional structural members for an actual greenhouse is approximately equal to that of the model greenhouse. Simulations were made for the house in $\mathrm{N}-\mathrm{S}$ and $\mathrm{E}-\mathrm{W}$ orientations and in some cases at 15 degrees intervals between the two extreme orientations. For the purpose of the calculations, the house was assumed to be standing on an open, level site.

3.2 Transmission of diffuse light

The assumption of a uniformly bright sky for diffuse light implies that the transmissivity of the house should be indepen-
dent of both orientation and season. The transmissivity may then be considered a constant of the greenhouse structure itself. The calculated value of the transmissivity was 60\%. This is the space averaged value at the central part of the house ignoring effects from the sides and ends. Harnett (1975) reported that the transmissivity of diffuse light ranged from 59.7 to 61.9% in measurements on $N-S$ and $E-W$ multispan greenhouses throughout the year. His measurements were confined to the centre north-south strips in the greenhouses.
For diffuse light the shadows from the structural members of the house merge, so that the spatial variation in diffuse light is small and stationary. However, the transmissivity is generally slightly higher at the centre of each span than under the gutter or near the sides and ends (Edwards and Lake, 1965; Kozai and Sugi, 1972). The spatial variation in diffuse light was ignored in the present study and the space averaged value of 60% was used to simulate the diurnal course of the net rate of assimilation in the greenhouse.
The diffuse light at the floor of the greenhouse comes from the whole sky and is calculated as the sum of the contributions from each of the ($m \times n$) subdivisions with a solid angle of $1 /(m \times n)$ steradian, as is explained in Eqn (2.3).
Table 1 gives the transmissivities of the house and weighting coefficients as a function of the sine of the altitudes from which the light comes; the interval of the calculation being 0.05 . The product of the transmissivity and weighting coefficient at each altitude is summed for calculating the overall transmissivity of diffuse light. The transmissivity for each altitude is the average of those at 76 relative azimuths. The transmissivity is greater at higher altitude except for that at the lowest altitude (4.3-7.2 ${ }^{\circ}$). On an overcast day, nearly 30% of the diffuse light comes from overhead i.e. between 60° and 90° elevation and some 50% from between 30° and 60° (Lawrence, 1963). This fact, together with the higher transmissivity for higher altitude, emphasizes the importance of the diffuse light from overhead in contrast with direct light from the southern part of the sky, i.e. the greenhouse should be designed to give maximum transmission of both diffuse and direct light.
Bownan (1970) highlighted the importance of house geometry for the transmission of diffuse light, especially where about half ${ }^{-}$ of the total light received during a year is diffuse light as in England.

3.3 Transmission of direct light

Figs 7 and 8 show the changes in transmissivity of daily inte-

Table 1 Transmissivity of the multispan greenhouse and the weighting coefficients needed for the calculation of diffuse light transmission as a function of the sun's altitude (see Eqn (2.3)).

* Transmissivity of the house for altitude I
** Weighting coefficient $\left(\sin ^{2}\left(\mathrm{H}_{\mathrm{I}+1}\right)-\sin ^{2}\left(\mathrm{H}_{\mathrm{I}}\right)\right)$ for altitude I *** Cumulative transmissivity

[^0]

Fig. 7 | Seasonal variations of transmissivity of daily direct light for the $\mathrm{N}-\mathrm{S}$ and $\mathrm{E}-\mathrm{W}$ multispan greenhouses in Tokyo (35041 N).
transmissivity of direct light (x)

Fig. 8 | Seasonal variations of transmissivity of daily direct light for the $\mathrm{N}-\mathrm{S}$ and $\mathrm{E}-\mathrm{W}$ multispan greenhouses in Amsterdam ($52^{\circ} 20^{\prime} \mathrm{N}$).
and 20 February (for four months) and a greater light intensity is obtained with greenhouses orientated $\mathrm{N}-\mathrm{S}$ for the rest of the year.
In Amsterdam the $N-S$ multispan transmits only 26% of daily direct light compared with 35% for the E-W multispan house in the winter solstice, as is shown in Fig. 8. The transmissivity of $\mathrm{N}-\mathrm{S}$ house steadily increases with time and approaches a maximum of 64% at the beginning of June. The transmissivity of E-W house, on the other hand, has a maximum of 58.5% at the end of February. The advantage of an E-W over a N-S orientation exists between 20 September and 20 March (for six months). The duration of this advantage is two months longer in Amsterdam ($52^{\circ} 20^{\prime} \mathrm{N}$) than in Tokyo ($35^{\circ} \mathrm{O}^{\prime}{ }^{\prime} \mathrm{N}$), that is, the duration is longer at higher latitudes. It is also noted that in Amsterdam the maximum difference of about 15% in transmissivity between the two orientations appears in February, not in the winter solstice.
The transmissivity of direct light in Amsterdam in the winter is surprisingly low for both $\mathrm{E}-\mathrm{W}$ and N-S orientations. These low values of transmissivity are mainly due to the low incidence angle of direct light to the roofs and to the extensive shadows cast by solid structural members. The transmissivity of total light is, of course, higher than that of direct light because of the low proportion of direct light to total light (see Fig. 4) and of the relatively high transmissivity of diffuse light (60\%).
The transmissivities of direct light for the greenhouse are given in Table 2 for 19 classes of the sun's altitudes and 19 azimuths relative to the house orientation. These 361 numbers characterize all aspects of direct light transmission into the greenhouse. Since the cross-section and the longitudinalsection of the greenhouse are assumed to be symmetrical, the transmissivity for the azimuth of 800 is, for example, the same as those for the azimuths of $-80^{\circ}, 100^{\circ}$, and -100°.
As can be seen from Table 2, the transmissivity is generally low when the sun is low and is much dependent upon the azimuth angle of the sun. The minimum and maximum values of transmissivity for each class of the altitudes are underlined in the table. The maximum difference in transmissivity for different azimuths is, for instance, 238 at the sun's altitude of $13-16^{\circ}$ and is 78 at the sun's altitudes of $38 \cdot 7-42.5^{\circ}$. Greenhouse orientation, therefore, becomes more important at lower altitudes of the sun. The low transmissivity is generally obtained for the relative azimuth around 90° at the sun's altitudes of 4.3-42.50 so that the transmissivity of a $\mathrm{N}-\mathrm{S}$ multispan greenhouse is low around noon, the most important time of the day. (Relatively high transmissivities for the altitudes

The sun's altitude (deg.)	Azimuth with respect to orientation (deg.)																	
	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	8590
	180	175	170	165	160	155	150	145	140	135	130	125	120	115	110	105	100	9590
4.3-7.2	65	52	51	48	41	39	31	18	10	3	2	6	10	12	12	14	11	63
7.2-10.1	26	17	16	13	13	12	13	16	18	20	19	22	24	26	27	21	14	1111
10.1-13.0	35	30	31	30	32	31	28	29	30	32	34	36	37	37	29	- 25	20	1818
13.0-16.0	43	38	39	38	39	39	40	41	42	44	45	47	42	37	33	29	26	2424
16.0-19.0	54	49	49	48	49	49	49	51	52	53	51	46	42	39	36	34	32	3131
19.0-22.0	62	59	57	57	58	58	57	57	56	52	49	47	44	42	39	39	38	3737
22.0-25.2	70	67	64	63	61	58	58	56	54	52	51	48	47	45	44	44	43	4243
25.2-28.4	68	64	62	62	60	59	56	56	55	53	51	50	48	48	49	48	47	4747
28.4-31.7	64	62	62	60	59	58	57	56	55	54	53	52	51	52	52	51	50	5052
31.7-35.1	65	62	62	60	58	59	58	57	57	56	54	55	54	55	55	54	54	5454
35.1-38.7	65	63	62	61	60	60	59	58	58	59	58	57	57	58	57	57	57	5757
38.7-42.5	66	64	64	62	62	62	62	59	60	59	59	60	60	60	60	60	59	6060
42.5-46.5	67	64	65	65	62	63	62	63	63	63	62	63	62	62	62	61	62	6261
46.5-50.8	68	66	65	66	65	65	64	64	65	64	64	64	63	63	63	64	62	6463
50.8-55.6	69	68	68	67	67	66	67	66	65	66	67	65	65	65	65	64	65	6665
55.6-61.0	70	70	70	69	68	68	67	67	66	67	68	67	67	67	67	67	67	6768
61.0-67.7	72	71	70	70	70	70	69	69	69	69	69	69	68	68	69	69	68	6869
67.7-77.2	72	72	72	71	71	71	70	71	71	70	70	69	69	70	70	70	70	7170
77.2-90.0	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	74	73	7373

of $4 \cdot 3-7.2^{\circ}$ and for the azimuths of $0-25^{\circ}$ are due to the effects of light from the sides.)
3.4 Daily net assimilation of carbon dioxide in the greenhouse

Fig. 9 shows daily net CO_{2}-assimilation in the $\mathrm{N}-\mathrm{S}$ and E-W greenhouses under clear and overcast conditions and that in the $N-S$ greenhouses under hazy conditions ($f=0.5$ in Eqn (2.23) in Amsterdam during the period from 20 December to 1 May. Those in Tokyo are also shown in Fig. 10. The calculation method and all the values of parameters used are given in Section 2.2. The net assimilation under overcast conditions is independent of greenhouse orientation, as stated in the preceding chapter. The daily net assimilation on overcast days has a negative value until the middle of March in Amsterdam and until the beginning of February in Tokyo. The maximum difference in the daily net CO_{2}-assimilation on clear days between the two greenhouses is $5 \mathrm{~kg} \mathrm{CO}_{2} \mathrm{ha}^{-1} \mathrm{day}^{-1}$ at the most. However, the ultimate difference in plant growth between the two houses is not necessarily small, because the accumulation of these daily differences might become large during the growth period.
If a lettuce is planted at the middle or end of February in Amsterdam, it will grow faster in the E-W greenhouse than in the N-S greenhouse until the end of March. Thereafter the growth will become faster in the N-S greenhouse than in the $E-W$ house and the difference in plant growth between the two houses will become gradually less.
In our model of net CO_{2}-assimilation a constant value of LAI (leaf area index) is assumed, so that the plant growth (the accumulation and translocation of photosynthate in the plant body) cannot be simulated. We must, therefore, estimate the plant growth by some other means. However, comparison of greenhouse performances in $\mathrm{N}-\mathrm{S}$ and $\mathrm{E}-\mathrm{W}$ orientations can be based on the calculation of net CO_{2}-assimilation rates of the crops with a constant LAI within the greenhouses.
Let us assume now that a lettuce plant needs $100 \mathrm{MJ} \mathrm{m}^{-2}$ of solar light between transplantation and harvest. Then, for Amsterdam, a lettuce transplanted on 10 December can be harvested on 14 March in an E-W greenhouse, but on 19 March in a N-S greenhouse, a difference of five days.

3.5 Total solar light integral and plant growth

As far as the amount of light is a limiting factor to the plant growth, the plant growth is said to be nearly proportional to the total solar light integral during the growth period

Fig. 9 Daily net CO_{2}-assimilation in the $\mathrm{N}-\mathrm{S}$ and E-W multispan greenhouses in Amsterdam under clear, hazy and overcast conditions.
(Lawrence, 1963). The total solar light integrals inside and outside the houses in Amsterdam are given in Fig. 11. The integration of solar light was assumed to start on 10 December.
The calculations were based on Eqn (2.9) and on the meteorological data presented in Figs 3 and 4.
The five-day gain in the $E-W$ greenhouse is valid only for the lettuce transplanted on 10 December. If it is transplanted one month earlier, the gain in days will become larger. While, if it is transplanted one month later, the gain in days becomes smaller. Similar results are obtained for the houses in Tokyo in Fig. 12, except that the absolute values of the light integrals are much greater in Tokyo than in Amsterdam.
Harnett (1975) found experimentally that the cropping performance of lettuce in multispan houses follows closely the solar light measurements and that a lettuce weighing 170 g was

Fig. 10 | Daily net CO_{2}-assimilation in the $\mathrm{N}-\mathrm{S}$ and $\mathrm{E}-\mathrm{W}$ multispan greenhouses in Tokyo under clear, hazy and overcast conditions.
attained seven days earlier in the $E-W$ multispan than in the N-S multispan when harvested during late December and January. He also found that there was no significant difference in maturity of crops between the two greenhouses when harvested during April. His experiments were carried out on the south coast of England (Efford, Hants, $50^{\circ} 50^{\prime} \mathrm{N}$) where the total light integral during the winter months was only a little higher than that in Amsterdam. Our simulated results are in agreement with his experimental results.
The difference in days of plant growth between greenhouses is discussed in some detail in Chapter 6.
3.6 The effects of orientation intermediate between $N-S$ and $E-W$

Fig. 13 presents the effects of house orientation between E-W and $\mathrm{N}-\mathrm{S}$ on 20 March, 28 July, and 20 December. Vertical axis

Fig. 11 | Total solar light integrals outside and inside the $\mathrm{N}-\mathrm{S}$ and $\mathrm{E}-\mathrm{W}$ multispan greenhouses in Amsterdam ($52^{\circ} \mathrm{O}^{\prime} \mathrm{N}$) (The integration was started on 10 December).
indicates the transmissivity of mean total light (see Eqn (2.1)), not of direct light. An exact E-W orientation does not give
the maximum winter light transmission in Amsterdam, although the transmission losses at $E-W$ orientation are quite small compared with those at orientations from 30 to 45° from E-W.
In fact, there is little difference in transmissivity between the houses orientated in the range from 0 to 45° from E-W. Thereafter, however, the light transmission drops more steeply. The difference in transmissivity between the house orientated 45° from $E-W$ and the $\mathrm{N}-\mathrm{S}$ house is about 5% in Amsterdam. In Tokyo, on the other hand, an exact $E-W$ orientation is ideal for winter light transmission and the light transmission drops more rapidly up to 60° from $E-W$, while the lowest winter light transmission is seen at 15° from $\mathrm{N}-\mathrm{S}$, not at an exact N -S orientation. The difference in transmissivity between the E-W house and the house with orientation of 15° from $\mathrm{N}-\mathrm{S}$ is about 7%.

TOTAL SOLAR LIGHT INTEGRAL ($\mathrm{HJ} \cdot \mathrm{m}^{-2}$)

Fig. 12 Total solar light integrals outside and inside the $\mathrm{N}-\mathrm{S}$ and E-W multispan greenhouses in Tokyo ($35^{\circ} 41^{\prime} \mathrm{N}$) (The integration was started on 10 December).

The orientation effect on direct light transmission alone is stronger at higher altitude as stated in Section 3.3. However, the ratio of diffuse to total light in winter is higher in Amsterdam than in Tokyo and therefore the orientation effect on the total light transmission is actually more pronounced in Tokyo than in Amsterdam. It is also noted that the transmissivity of the E-W house on 20 December in Amsterdam is 49.5\% which is about 108 lower than that in Tokyo. Thus the transmissivity in winter is lower at higher altitudes.
As is suggested by Kingham and Smith (1971), a multispan house is less sensitive to orientation in winter than a single-span house, because the transmission of walls is generally more sensitive than that of roofs. Nevertheless, there is still a significant orientation effect in multispan greenhouses.

TRANSMISSIVITY OF TOTAL SOLAR LIGHT (\%)

Fig. 13 | Transmissivity of daily total solar light for the multispan greenhouse as a function of house orientation, for two sides and three dates.

4 Influence of roof slope

To illustrate the influence of roof slope on the light transmission, both direct and diffuse light transmission into multispan greenhouses with roof pitches of $15,20,30,35^{\circ}$ were calculated as well as the greenhouse with a roof pitch of 24.6°, which had been analysed in the previous chapter. Widths of spans for these houses were $4.25,4.14,3.81,3.60$, and 4.00 m , respectively. Other dimensions of the houses such as length of spans, height of sides, width and depth of structural members, number of spans etc remained unchanged. The transmissivities of daily integrated direct light for these houses in $E-W$ and $\mathrm{N}-\mathrm{S}$ orientations were calculated at two latitudes (in Amsterdam and Tokyo) throughout the year.

4.1 Transmission of diffuse light

Transmissivities of diffuse light for the houses with roof pitches of $15,20,24.6,30$, and 35° were $60.3,60.0,59.8$, 59.1, 58.1\%, respectively. Thus, the gentler the roof slope the higher the transmissivity of diffuse light obtained in the greenhouse. In the region considered, the steepest roof slope should be avoided when designing greenhouses but for the rest the differences are negligible.

4.2 Transmission of direct light

E-W greenhouse
Fig. 14 presents the changes in transmissivity of daily integrater direct light for the $E-W$ greenhouses with different roof slopes in Amsterdam during the period from 20 December to 1 July. The calculation of transmissivity was confined to the central section of 11-span houses so that the effect from the sides and ends could be neglected except when the sun's altitude was very low.
In Amsterdam, the transmissivities of an E-W greenhouse during winter months are largely dependent on roof slope. The transmissivities of the houses with roof pitches of 15 , 24.6, and 35° in the winter solstice are 49,34 , and 26%, respectively, i.e. the gentler the roof slope the higher the

Fig. 14 | Seasonal variations of transmissivity of daily direct solar light for the $E-W$ greenhouses with different roof slopes in Amsterdam ($52020^{\circ} \mathrm{N}$)
transmissivity around the winter solstice. The curve of transmissivities for each house has a maximum point in the range of from January to April. The peak is higher and clearer and is observed later in spring in the greenhouse with a steeper roof slope. The date when the local peak appears is approximately equal to the date when solar altitude at culmination (the maximum solar altitude in the day) coincides with the roof angle of the corresponding E-W greenhouse (see Fig. 15). This phenomenon can be explained as follows: (a) When the sun's altitude relative to the roof side not facing the sun is greater than zero, some part of the incident light passes througn that side with low transmissivity. (b) When the relative sun's altitude has a negative value, some part of the light passes through the roofs three or more times before reaching the soil or plants. Consequently, the transmissivity is very low. (c) When the relative sun's altitude is just or nearly equal to zero, all or most of the light passes through the roof facing the sun only once. Then the transmissivity is largest. The peak is not clear for greenhouses with a gentler roof slope because the sun is never so low around noon.
This phenomenon is illustrated in Tables 3 and 4 for roof pitches of 15 and 35° where transmissivities are given as a function of altitude and relative azimuth of the sun. The transmissivities for the house with a roof pitch of 24.6° have been listed in Table 2 in Chapter 3.
solar altitude at culmination (deg.)

Fig. 15 | Seasonal variations of solar altitude. at culmination in Amsterdam $\left(52^{\circ} 20^{\prime} \mathrm{N}\right)$ and Tokyo ($35^{\circ} 41^{\prime} \mathrm{N}$).

The transmissivities at relative azimuth of 0° has a local maximum value at the sun's altitudes of 13-160 in the house with a roof pitch of 15°, at the sun's altitudes of $22-25.2^{\circ}$ in the house with 24.6° roof angle, and at the sun's altitudes of $31.7-35.1^{\circ}$ in the house with 35° roof angle. The peak is very weak for the house with a roof pitch of 15° and the transmissivity of this house steadily increases with increasing the sun's altitude. (The high transmissivity at the sun's altitudes of 4.3-7.20 is due to the transmission by the side walls.) The low transmissivities for daily direct light for the house with a roof pitch of 35° in winter are due to the low transmissivities of the house at the sun's altitude of 7.2-25.20 and at the relative azimuth angles of $0-30^{\circ}$, as can be seen from Table 4.
Transmissivities of all the $E-W$ houses give approximately the same value (about 57\%) on 10 April. Later the transmissivity is slightly higher in the greenhouse with gentler roof slope. The variations in transmissivity by season for the $E-W$ houses with different roof slopes in Tokyo are presented in Fig. 16. The roof slope has less influence on the transmissivity of daily direct light in Tokyo than in Amsterdam. The house with a roof pitch of 15° gives the lowest transmissivity in winter months and the house with a roof pitch of 20° gives the highest transmissivity around the winter solstice. The house with a roof pitch of 35° gives the highest transmissivity from 20 January to the end of February. The transmissivity reaches a maximum of 63% in the house with a roof pitch of 35° on 10 February when the sun's altitude at noon is 40°.

	Azimuth with respect to house orientation (deg.)																		
The sun's altitude	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
(deg.)	180	175	170	165	160	155	150	145	140	135	130	125	120	115	110	105	100	95	90
4.3-7.2	49	38	37	37	29	21	17	11	15	12	13	14	16	15	13	10	7	5	3
7.2-10.1	31	26	27	25	24	26	29	26	27	28	28	27	21	18	14	13	12	12	12
10.1-13.0	49	43	42	42	42	41	41	40	40	37	33	31	28	25	23	21	19	18	19
13.0-16.0	62	55	51	50	49	47	47	44	41	39	36	33	33	30	29	27	27	26	27
16.0-19.0	59	54	53	52	50	47	47	45	44	42	40	37	36	36	34	33	34	32	34
19.0-22.0	58	54	53	51	50	50	47	47	45	44	42	42	41	39	39	40	39	39	40
22.0-25.2	58	56	55	53	52	51	50	50	48	48	46	45	46	45	45	45	45	44	46
25.2-28.4	60	56	55	55	53	53	51	52	51	49	50	50	49	49	49	48	48	48	50
28.4-31.7	62	58	58	57	57	55	55	54	54	54	53	53	53	53	53	52	53	53	55
$31.7-35.1$	64	61	61	61	59	58	58	57	57	57	57	56	55	55	56	56	56	56	57
35.1-38.7	65	64	63	62	61	61	61	60	59	58	59	59	59	59	60	58	59	58	60
38.7-42.5	66	65	64	63	62	62	62	62	62	61	61	61	60	60	61	62	61	62	62
42.5-46.5	68	67	66	65	64	65	65	63	63	63	64	64	62	63	64	63	64	63	64
46.5-50.8	69	68	67	68	67	66	66	65	66	64	65	64	63	65	64	65	65	64	66
50.8-55.6	71	69	70	69	68	67	67	68	67	67	68	67	67	66	67	66	66	66	68
55.6-61.0	71	71	71	70	70	70	69	70	69	68	70	68	69	69	68	68	68	67	69
61.0-67.7	73	72	71	72	71	70	69	70	70	70	70	70	69	70	70	69	69	69	70
67.7-77.2	73	73	73	72	71	72	71	72	71	72	71	71	71	70	71	70	71	71	72
77.2-90.0	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	75	74	73	74

Table 4 Transmissivity of the multispan greenhouse with a roof pitch of 350 as a function
of the sun's altitude and the sun's azimuth relative to the house orientation.

The sun's altitude (deg.)	Azimuth with respect to house orientation (deg.)																		
	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
	180	175	170	165	160	155	150	145	140	135	130	125	120	115	110	105	100	95	90
4.3-7.2	77	61	56	51	49	48	45	52	32	17	6	2	3	2	9	10	13	7	2
7.2-10.1	35	22	22	17	14	11	8	9	8	8	7	9	15	18	22	24	19	12	8
10.1-13.0	29	19	21	18	21	18	16	16	16	20	24	26	26	31	34	31	22	16	15
13.0-16.0	35	26	26	26	27	26	29	30	33	20	33	35	39	41	40	33	26	22	20
16.0-19.0	45	38	38	39	38	39	36	36	38	41	43	46	49	47	40	35	31	27	27
19.0-22.0	48	45	42	41	42	43	43	45	47	49	52	54	52	47	41	38	35	33	33
22.0-25.2	55	51	50	50	50	50	52	53	54	57	58	55	51	48	44	42	39	37	39
25.2-28.4	61	58	57	56	58	58	58	60	60	59	57	54	50	49	46	45	44	42	43
28.4-31.7	66	62	64	63	64	64	64	64	62	60	56	54	53	51	50	48	47	45	47
31.7-35.1	73	69	69	68	66	65	64	62	59	57	56	54	53	54	52	51	50	51	51
35.1-38.7	71	68	66	66	65	63	62	60	60	58	57	56	55	54	55	54	53	53	54
38.7-42.5	68	65	66	64	63	62	61	59	60	59	58	59	56	57	56	56	56	56	57
42.5-46.5	68	64	64	63	63	63	62	62	60	60	60	60	59	58	59	59	58	59	58
46.5-50.8	67	64	64	64	62	63	62	62	62	62	62	61	61	61	61	61	60	60	61
50.8-55.6	68	66	65	65	66	65	64	63	63	64	63	63	63	63	63	63	63	62	64
55.6-61.0	69	67	68	66	66	66	66	65	65	65	65	66	64	65	65	65	65	64	66
61.0-67.7	70	69	68	67	67	68	67	67	68	66	66	66	67	66	66	66	67	67	67
67.7-77.2	71	71	69	70	70	69	69	69	69	69	68	68	68	69	69	67	69	69	70
77.2-90.0	72	71	71	72	72	72	72	71	72	71	71	71	71	72	71	72	72	72	71

Fig. 16 | Seasonal variations of transmissivity of daily direct light for the E-W multispan greenhouses with different roof slopes in Tokyo.
$N-S$ greenhouse
Fig. 17 shows the variations in transmissivity by season for the N-S greenhouse in Amsterdam and Tokyo. The transmissivity of the greenhouse with a roof pitch of 15° is always about 0.5-3.0\% higher than that of the greenhouse with a roof pitch of 35° at both places. Thus the $N-S$ greenhouse is much less sensitive to the roof slope than the E-W greenhouse at both places. The transmissivities of the greenhouses with roof pitches of $15,24.6$, and 35° at culmination on 20 December, 20 March, and 20 July are listed in Table 5. For each date the differences in transmissivity around noon between the three greenhouses at the two places are negligible mainly because the incidence angles of light to differently pitched roofs facing the west and east are about the same.
4.3 The effect of roof slope on the spatial distribution of daily direct light

The cross-sectional distributions of the transmissivity across the floors of E-W greenhouses with roof pitches of 20 and 30° are given in Fig. 18 for Osaka ($34039^{\prime} \mathrm{N}$) in Japan and Amsterdam. (Kozai and Kimuara, 1977). The ratio of height of side walls to width of one span was assumed to be 0.66 . The calculations were made only for the northerly spans so that the effect from

Fig. 17 | Seasonal variations of transmissivity of daily direct light for the $N-S$ multispan greenhouses in Amsterdam and Tokyo.

Table 5 Seasonal variations in transmissivity of daily direct light for the E-W houses with different roof slopes in Tokyo and Amsterdam

date	roof angle (deg.)	Tokyo (35041'N)		Amsterdam the sun's altitude at noon (deg.)	$\begin{aligned} & \left(52020^{\prime} \mathrm{N}\right) \\ & \text { trans- } \\ & \text { missiv- } \\ & \text { ity at } \\ & \text { noon }(\%) \end{aligned}$
		the sun's altitude at noon (deg.)	trans- missiv- ity at noon (\%)		
20 Dec.	15.0	31	55	14	27
	24.6		52		24
	35.0		51		20
20 Mar.	15.0	54	68	37	60
	24.6		65		57
	35.0		64		54
20 June	15.0	77	74	61	70
	24.6		73		69
	35.0		71		67

the south side wall could be neglected. The distribution in the $N-S$ greenhouse with a roof pitch of 20° on 22 December is also shown for reference.
This house was assumed to be composed of glass panes alone (i.e. without any opaque structural member). Therefore, the absolute value of the transmissivity is much higher than that of an actual greenhouse with structural members and the uneven light distribution was simply due to the reflection and absorption of the glass pane.
The even distribution is observed in the $N-S$ greenhouse at both of the two places (and the distribution is not affected by the roof slope). In Osaka, the light distribution in the E-W greenhouse is more uniform with a roof pitch of 30° than with one of 20°. In Amsterdam, the opposite is true. The horizontal arrows in Fig. 18 indicate how far the centre of the low

Fig. 18 | Cross-sectional distributions of transmissivity for daily direct light on the floor of $E-W$ multispan greenhouses with roof pitches of 20 and 30° in Osaka (34039'N) and Amsterdam ($52020^{\prime} \mathrm{N}$) on 22 December and 4 February (The greenhouse was assumed to be constructed with glasspanes only, i.e. without structural members).
transmissivity region has moved in the greenhouse with a roof pitch of 20° over a period of 46 days (from 20 December to 4 February). During the winter the low transmissivity region remains almost stationary in Osaka whereas it moves over one span in Amsterdam. Hence in Osaka growers should use the low transmissivity region as a path if only short height crops such as lettuce are grown in the $E-W$ house with a roof pitch of 20°.
This lack of uniformity of light in the E-W multispan house provides an argument in favour of a $N-S$ multispan house, although an $E-W$ multispan house generally gives a higher mean transmissivity in the winter (Morris, 1972).

5 Single-span vs multispan greenhouses

In the previous chapters the light transmission by multispan greenhouses and the plant growth within them were discussed. Under these conditions the light that enters through the side walls or gable ends is practically negligible. In the singlespan or twin-span greenhouses, however, the light transmitted through the sides and ends often plays an important role in total light transmission. In this chapter the effect of the number and the length of spans on the light transmission, its variation with time and space, and the plant growth will be discussed.
The dimensions and structure of the greenhouses analysed in this chapter are basically the same as those given in Section 3.1 unless otherwise stated.

5.1 Transmission of diffuse light

The transmissivity was 64% for the single-span greenhouse with the same dimensions and structure as those described in Section 3.1 (except for the number of spans being unity). The transmissivity of the corresponding multispan greenhouse was 60\%, as stated previously in Section 3.2: that is, the transmissivity of the single-span house is 4% higher than that of the multispan house.
For a large $E-W$ single-span greenhouse on the Hampshire coast $\left(51^{\circ} \mathrm{N}\right)$ in England, Edwards and Lake (1964) give a measured value of 64.5% for diffuse light throughout the year. This figure was obtained on cloudy days. Edwards (1963) reported a percentage transmission of 57% in wooden-framed greenhouse for vines orientated $\mathrm{N}-\mathrm{S}$ under overcast conditions at Efford ($50^{\circ} 45^{\prime} \mathrm{N}$), Hants.

5.2 Transmission of direct light

Fig. 19 shows the seasonal variations in transmissivity of daily integrated direct light for single-span and multispan greenhouses in Amsterdam from 20 December to 1 July. Those in Tokyo are shown in Fig. 20. The multispan house was assumed to have an infinite. length and an infinite number of spans. The differences in transmissivity between single-span and multi-

Fig. 19 | Seasonal variations of transmissivity of daily direct light for the single-span and multispan greenhouses in $\mathrm{N}-\mathrm{S}$ and $E-W$ orientations in Amsterdam $\left(52^{\circ} 20^{\prime} \mathrm{N}\right)$.
transmissivity of direct light (x)

Fig. 20 | Seasonal variations of transmissivity of daily direct light for the single-span and multispan greenhouses in $\mathrm{N}-\mathrm{S}$ and E-W orientations in Tokyo (35041'N).
span greenhouses orientated $\mathrm{N}-\mathrm{S}$ are $2-7 \%$ in Amsterdam and are 1-4\% in Tokyo. The reduction in light transmission due to the shading by neighbouring spans is relatively small in the $\mathrm{N}-\mathrm{S}$ greenhouse throughout the year.
In the winter solstice for a greenhouse orientated E-W the transmissivity of a single-span house is 36% higher than that of a multispan house in Amsterdam and 98 higher in Tokyo. The reduction in light transmission due to the shading by the neighbouring spans to the south is very large in the E-W multispan house around the winter solstice especially at higher latitudes. The floor of the E-W single-span house, on the other hand, receives the light transmitted through the south side wall with high transmissivity most of the day during the winter. The benefits of E-W orientation in the winter are, therefore, much larger in single-span than in multispan greenhouses. Smith and Kingham (1971) calculated the transmissivity of direct light for a wide single-span alloy house at two orientations, $N-S$ and $E-W$, at latitude $51^{\circ} \mathrm{N}$. Their results are listed in Table 6. The variations by season and orientation are similar to our calculations, shown in Fig. 19. For the summer, the results of both calculations are very close. In winter, the transmissivity of an E-W house as calculated by Smith and Kingham is $5-68$ lower than our value. For a $\mathrm{N}-\mathrm{S}$ house, on the contrary, our results are 10% lower. Part of these discrepancies for the winter months can probably be attributed to, Smith and Kingham's assumption of a constant value for the ratio of the freely transmitting area to its overall area of the surface of the house (in their simulation the ratio was 0.82 for a wall surface and 0.8 for a roof surface). In other words, they assumed no depth for the structural members. As one can see from Fig. 1, such an assumption erroneously increases the transmissivity at low solar angles. Hence when the sun is in the south, the transmissivity is overestimated in a N-S greenhouse and underestimated in an E-W house.
The diurnal courses of the space averaged transmissivity of the single-span and multispan houses for the direct light in Osaka ($34^{\circ} 39^{\prime} \mathrm{N}$), Japan, in the winter solstice are given in Fig. 21. The length of the houses was assumed to be infinite. In both orientations the transmissivity of the multispan house increases at 9 h 00 and drops again at 15 h 00 because of the shading by the neighbouring spans. In E-W orientation the transmissivity of the single-span house is higher than that of the multispan house all day. In $\mathrm{N}-\mathrm{S}$ orientation the advantage of the single-span house is less. At noon there is no difference because the light passes through the roofs only. Just before and after noon the transmissivity of the single-span house is
Table 6 Seasonal variations in transmissivity of daily direct light for the $\mathrm{N}-\mathrm{S}$
and E-W single-span greenhouses (Smith and Kingham, 1971).

Orientation	Calculated percentage transmission of direct radiation											
	J	F	M	A	M	J	J	A	S	0	N	D
0° (E-W)	65.7	65.1	65.0	59.6	59.5	59.0	59.5	59.8	61.0	64.4	65.1	65.4
90° ($\mathrm{N}-\mathrm{S}$)	49.7	57.7	63.4	65.6	65.8	65.8	65.8	65.7	64.9	62.3	50.6	48.7

E-W	N-S
0	O---- SINGLE-SPAN
	-....... multispan
Fig. 21	Diurnal courses

even lower than that of the multispan house because then the transmission of direct light by the side walls is very low. Therefore, the daily average transmissivity of a N-S singlespan house is only higher than that of a $N-S$ multispan house on overcast days, when the light level is relatively low. The transmissivities of the single-span house for direct light are listed in Table 7 as a function of the altitude and relative azimuth of the sun. At relative azimuths of $0-30^{\circ}$, the transmissivities range between 65 and 75% without a clear relation with the sun's altitude. At relative azimuths of 60-90 (grazing incidence on the walls) the transmissivities range between 3 and 73% and increase gradually with the sun's altitude.

5.3 Total solar light integrals

The total solar light integrals in the $E-W$ and $N-S$ single-span greenhouses together with the N-S multispan house in Amsterdam are given in Fig. 22 and those for Tokyo in Fig. 23. The curve for the $E-W$ multispan house is omitted from the figure because it is very close to that for $N-S$ single-span house. The total solar light was integrated from 10 December. The calculations were made based on Eqn (2.9) and the meteorological data presented in Figs 3 and 4.
If we assume now that lettuce seedings just transplanted can be harvested after receiving $100 \mathrm{MJ} \mathrm{m}^{-2}$ of solar light, as al-
Table 7 Transmissivity of the single-span greenhouse with a roof pitch of 24.6° as a function
of the sun's altitude and the sun's azimuth relative to the house orientation.

| 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 180 | 175 | 170 | 165 | 160 | 155 | 150 | 145 | 140 | 135 | 130 | 125 | 120 | 115 | 110 | 105 | 100 | 95 | 90 |

 Azimuth with respect to house orientation

 The sun's altitude
(deg.)

TOTAL SOLAR LIGHT INTEGRAL (MJ.m-2)

Fig. 22 | Total solar light integrals outside and inside the $\mathrm{N}-\mathrm{S}$ and $\mathrm{E}-\mathrm{W}$ single-span greenhouses in Amsterdam ($52^{\circ} 20^{\circ} \mathrm{N}$) (The integration was started on 10 December).
ready assumed in Section 3.5, lettuce transplanted on 10 December in Amsterdam can be harvested on 9 March in the $E-W$ singlespan house, on 15 March in the $N-S$ single-span house, and on 19 March in the N-S multispan house. The corresponding dates in Tokyo are 19, 23, and 25 February.
According to Harnett (1974), a lettuce weighting 170 g was attained seven days earlier in the $E-W$ single-span house than with the $E-W$ multispan house and 14 days earlier than in the $\mathrm{N}-\mathrm{S}$ multispan house when harvested during late December and January at Efford $\left(50^{\circ} 45^{\prime} \mathrm{N}\right)$ in England. In our calculation, if the integration was started earlier than on 10 December, the gain in days in Amsterdam ($50^{\circ} 20^{\prime} \mathrm{N}$) would have been greater than those mentioned above, and the results would then be comparable to those of Harnett.

TOTAL SOLAR LIGHT INTEGRAL ($\mathrm{MJ} \cdot \mathrm{m}^{-2}$)

Fig. 23 Total solar light integrals outside and inside the $\mathrm{N}-\mathrm{S}$ and $\mathrm{E}-\mathrm{W}$ single-span greenhouses in Tokyo (35041'N) (The integration was started on 10 December).
5.4 Effect of the number of spans

Fig. 24 shows the effect of the number of spans on the transmissivity of daily direct light in Osaka ($34^{\circ} 39^{\circ} \mathrm{N}$) in the winter solstice. The dimensions of the house are the same as those described in Section 3.1 except that the length of the house is 49.0 m . The transmissivity of $\mathrm{E}-\mathrm{W}$ houses are higher than those of $\mathrm{N}-\mathrm{S}$ houses regardless of the number of spans. The transmissivity of E-W houses decreases with the increase of the number of spans, whereas that of $\mathrm{N}-\mathrm{S}$ houses is hardly affected by the number of spans. The high transmissivity of $E-W$ houses with a small number of spans is due to the high transmission of light through the south side wall. This dependence of the transmissivity of $E-W$ houses on the number of spans is more remarkable at higher latitudes. The cross-sectional distributions of daily direct light on the floor of the $E-W$ and $N-S$ greenhouse with four spans in Osaka in the winter

Fig. 24 Effect of the number of spans on the transmissivity of daily direct light in Osaka $\left(34^{\circ} 39^{\prime} N\right)$ on 22 December.
TRANSMISSIVITY (\%)

Fig. 25 | Cross-sectional distributions of daily direct light on the floor of 4-span $\mathrm{N}-\mathrm{S}$ and $\mathrm{E}-\mathrm{W}$ greenhouses in Osaka $\left(34^{\circ} 39^{\prime} N\right.$) on 22 December.
solstice are given in Fig. 25. The distribution in the N - S house is more uniform than that in the $E-W$ house and there is only a little difference in distribution pattern among the four spans. Apparently the effect of the sides is negligible so that the spatial transmissivity is not affected by the number of spans

On the other hand, the transmissivity at the most southerly spans in the E-W house is higher than that at the most northerly spans, because the light transmitted through the south wall reaches the second span from the south for almost a whole day and reaches the fourth span only during the morning and evening in Osaka in the winter solstice.
It should also be noted that a part of the floor under the northerly spans in the $E-W$ house receives only 25% of the daily direct light outside in the winter solstice. This large reduction of light is attributable both to the shadow by the structural members of the neighbouring roof to the south and to the low light transmission of the roof not facing the sun.

5.5 Effect of length of spans

The effect of the length of a ten-span house on the space averaged transmissivity of daily direct light in Osaka in the winter solstice is illustrated in Fig. 26. The transmissivity of the $E-W$ house does not vary with the length of the house, whereas that of the $\mathrm{N}-\mathrm{S}$ house decreases with the increase of the length. The transmissivity of a N-S house is strongly affected by the incident light through the south gable end when the length is relatively short. A N-S greenhouse of very short lenght gives about the same value of transmissivity as that for an E-W house. This effect of the length on the transmissivity is, of course, dependent upon the height of ridge and side walls, the latitude, and the season. Kozai (1977) discussed this dependence in some detail.
transmissivity (s)

Fig. $26 \mid$ Effect of the length of the $N-S$ and E-W multispan greenhouses on the transmissivity of daily direct light in Osaka (34039'N).

So far the single-span house was assumed to be standing on an open field, although this assumption is not always realistic. Fig. 27 shows the cross-sectional distributions of the transmissivity (relative daily integrated direct light) in the E-W single-span greenhouse with infinite length on 22 December when two identical single-span greenhouses stand parallel at intervals of 1,2 , and 3 m . The distribution in the $\mathrm{E}-\mathrm{W}$ singlespan house built on an open field is also shown in the figure for reference. The width of span, height of side walls, and roof slope were assumed to be $4.0 \mathrm{~m}, 1.48 \mathrm{~m}$ and 24.60 , respectively. The letter M in Fig. 27 denotes the average transmissivity across the floor.
The transmissivity on the southern part of the floor is largely reduced by the shadows of the neighbouring houses to the south when the distance between the houses is less than 2.0 m . The reduction in transmissivity is considerable if the distance is less than 1.0 m . The effect of a neighbouring greenhouse is, of course, not only dependent on the distance between the houses, but also on the height of sides, roof slope, and house orientation. The effect of the neighbouring greenhouse is not larger in a $\mathrm{N}-\mathrm{S}$ orientation than in an E-W orientation (Kozai, 1974).

The transmissivity of diffuse light will also be affected by neighbouring houses to a certain extent when the distance between the houses is, for example, less than 2.0 m . The diurnal courses of the space averaged transmissivity for these houses in the winter solstice are presented in Fig. 28. If the distance between the houses is less than 2.0 m , the northern house is shaded by the neighbouring house to the south all day. The transmissivity of the greenhouse 1.0 m away from the neighbouring house is worse than that of the multispan house with the same structure for each span.

Fig. 27 | Effect of the shadows of neighbouring E-W singlespan greenhouses running parallel on the cross-sectional distribution of daily direct light in the E-W single-span greenhouses in Osaka on 22 December.

Fig. 28 Effect of the shadows of neighbouring single-span greenhouses running parallel on the diurnal courses of space averaged transmissivity of direct light for the $E-W$ singlespan greenhouse in Osaka ($34^{\circ} 39^{\prime} N$) on 22 December.

6 Concluding remarks

6.1 The light integral inside the greenhouse

In Section 3.5 we discussed the total solar light integral in $\mathrm{N}-\mathrm{S}$ and $\mathrm{E}-\mathrm{W}$ greenhouses and the difference in days for plant growth. In this section this problem will be discussed in more detail.
Fig. 29 shows the increase of total solar light integrals inside single-span and multispan houses in N-S and E-W orientations in Tokyo. The total light was integrated from the end of each month during the winter. The calculations were based on Eqn (2.9) and the meteorological data presented in Figs 3 and 4. The total light integrals for the houses in Amsterdam are also given in Fig. 30. As can be seen from the figures, the differences in the integral for a certain period between $\mathrm{N}-\mathrm{S}$ and E-W houses, or between single-span and multispan houses are largely dependent upon the date on which the integration was started.
Tables 8 and 9 summarize the number of days from the start of integration to attaining the light integral of $100 \mathrm{MJ} \mathrm{m}^{-2}$ in those houses. In Amsterdam, when the integration is started on 29 August, it takes 35 days to attain the total light integral of $100 \mathrm{MJ} \mathrm{m}^{-2}$ on the floor in the $\mathrm{N}-\mathrm{S}$ and E-W multispan houses, 32 days in the N -S single-span house, and 31 days in the $\mathrm{E}-\mathrm{W}$ single-span house. Thus, the total light integral of $100 \mathrm{~mJ} \mathrm{~m}^{-2}$ is attained four days earlier in the E-W single-span than in the $\mathrm{N}-\mathrm{S}$ and $\mathrm{E}-\mathrm{W}$ multispan houses, and one day earlier compared with the $\mathrm{N}-\mathrm{S}$ single-span house. This gain in days becomes the largest when the integration is started at the end of October in Amsterdam and at the end of November in Tokyo. On the other hand, if the integration is started at the end of January in Amsterdam, or at the end of February in Tokyo, there is only a little or no difference between the houses.
Table 10 shows the experimental results of the number of days from planting to attaining 170 g head of a lettuce plant in $\mathrm{N}-\mathrm{S}$ and E-W multispan houses and an E-W single-span (wide-span) house at Hants $\left(51^{\circ} \mathrm{N}\right)$, England (Harnett, 1974). The experimental results of lettuce growth by Harnett correspond approximately to our simulated results of the total light integral, therefore, the total light integral is a major factor influencing the

Table 8 Number of days from the start of integration to attaining the total light integral of $100 \mathrm{~mJ} \mathrm{~m}^{-2}$ in Amsterdam ($52^{\circ} 20^{\prime} N$) .

| Planted | Days from planting to
 receiving the light
 quantity of 100 | $(a)-(b)$ | $(c)-(d)$ | $(b)-(d)$ | $(a)-(d)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

TOTAL SOLAR LIGHT integral (MJ.m-2)

Fig. 29 | Total solar light integrals in the single-span and multispan houses in $\mathrm{N}-\mathrm{S}$ and E-W orientations in Tokyo
(The integration was started at the end of each month).

Table 9 Number of days from the start of integration to attaining the total light integral of $100 \mathrm{~mJ} \mathrm{~m}^{-2}$ in Tokyo. (35041'N)

Planted	Days from planting to receiving the light quantity of $100 \mathrm{MJ} \mathrm{m}^{-2}$					(c)	(b)	(a) - (d)
	Multispan		Sing	span				
	$\mathrm{N}-\mathrm{S}$ (a)	$E-W$ (b)	$\begin{gathered} \mathrm{N}-\mathrm{S} \\ \text { (c) } \end{gathered}$	$E-W$ (d)				
Aug 29	25	26	24	25	-1	-1	1	0
Sept 28	30	30	28	27	0	1	3	3
Oct 29	37	35	36	31	2	5	4	6
Nov 28	42	37	39	33	5	6	4	9
Dec 29	37	34	34	31	3	3	3	6
Jan 29	30	30	28	27	0	1	3	3
Feb 27	27	27	25	25	0	0	2	2

Table 10 Number of days from planting to attaining 170 g head of Lettuce cultivar Deci minor (Harnett, 1975).

planted	Days from planting to attaining 170 g head				(b) - (d)	(a) - (d)
	Multispan		Single-span			
	$\begin{aligned} & \mathrm{N}-\mathrm{S} \\ & (\mathrm{a}) \end{aligned}$	$\mathrm{E}-\mathrm{W}$ (b)	$\overline{\mathrm{E}-\mathrm{W}}$ (d)			
Sept 25	42	40	37	2	3	5
Sept 29	44	41	38	3	3	6
Oct 4	51	47	45	4	2	6
Oct 9	63	60	60	3	0	3
Oct 13	66	56	56	10	0	10
Oct 22	66	54	52	8	2	10
Oct 27	73	66	61	7	5	12
Oct 31	91	82	78	9	4	13
Nov 6	90	85	85	5	0	5
Nov 11	90	85	80	5	5	10
Nov 23	81	78	70	3	8	11
Dec 15	71	68	61	3	7	10
Dec 31	62	61	56	1	5	6
Jan 8	60	58	54	2	4	6
Jan 24	52	50	45	2	5	7
Feb 8	41	39	38	2	1	3

growth of lettuce. The light integral changes considerably with the design and orientation of the greenhouse, although growth cannot be considered to be proportional to the total light integral.

6.2 Summary of some factors influencing transmissivity

The results of the present simulation study indicate quantitatively the influence of various climatic and design factors on the transmissivity of direct and diffuse light and, to a certain extent, on the net CO_{2}-assimilation of a crop within the greenhouse.
For the efficient use of greenhouses during the winter, it is essential to obtain maximum transmissivity and uniformity of solar light. Siting, orientation, and design of greenhouses should be based on these criteria. The following results show the advantages and disadvantages of $N-S$ and $E-W$ houses, and are summerized in Table 11.

The daily average of direct solar light transmissivity in an $E-W$ house is, in general, higher than that in a $N-S$ house. This phenomenon is more pronounced

- when the ratio of the height of side walls to the width of the span is greater than about 0.5. The transmissivity of an $E-W$ house decreases with the number of spans, whereas that of a N-S house is almost independent of the number of spans (Fig. 24).
- when the ratio of the length of house to the width of the span is greater than about 5. The transmissivity of a N-S house decreases with the increase of the ratio, whereas the transmissivity of an $E-W$ house is less dependent on the ratio (Fig. 26).
- at higher latitudes (Figs 19, 20, 29, and 30).

The cross-sectional distribution of daily integrated direct light on the floor in a $E-W$ multispan house is less uniform than in a $N-S$ multispan house. However, for a $E-W$ single-span house or for the southerly spans of an E-W multispan house, the cross-sectional distribution on the floor is as uniform as in a $\mathrm{N}-\mathrm{S}$ house (Figs 25 and 27).
The longitudinal gradient of the daily integrated direct light on the floor is considerable in a $\mathrm{N}-\mathrm{S}$ house with a relatively high pitch, especially at higher latitudes (Kozai, 1977). Diffusive covering materials increase the uniformity of the light on the floor.
As stated above, there is much variation in the average transmissivity of direct light with latitude, although it is not shown in Table 11. Figures 31 and 32 illustrate the variation in the average transmissivity of both single-span and multispan houses with latitude and orientation. The transmissivity of a single-span house is more sensitive to orientation than that of a multispan house, especially at higher latitudes. These effects are, of course, confined to sunny periods. The more direct light, the greater the effects.
6.3 Design factors not discussed in the present study

So far we discussed mainly the influences of orientation, latitude, time of the year, greenhouse shape (roof slope, length, width, and the number of spans of the house) on the light environment and the net CO_{2}-assimilation rate of a crop within the greenhouse. However, there are many other design factors influencing the light environment and plant growth in the greenhouse:

1. The influences of diffusive covering materials (including transparent material with condensed water droplets), corrugated materials, or materials of unusual optical characteristics

TRANSMISSIVITY OF DIRECT LIGHT (x)

hOUSE ORIEMTATION

hoUSE ORIENTATION

Fig: 31 | The transmissivity of the single-span house for daily direct light on 4 February and 22 December as a function of latitude and orientation.
transmissivity of direct light (\%)

house orientation

hoUSE ORIENTATION

Fig. 32 | The transmissivity of the multispan house for daily direct light on 4 February and 22 December as a function of latitude and orientation.
(selective transmission or selective reflection for radiation) on the light environment in the greenhouse,
2. The loss of light due to the weathering of covering materials (including the deposit of dirt on them).

Table 11 The advantages and disadvantages of $N-S$ and $E-W$ houses.

Number of spans	length/ width	orien- tation	uniformity	transmissivity	notation of the house given below
1	20	E-W	good	very high	A
3	20	E-W	bad	very high	B
5	20	E-W	worse	high	C
20	5	E-W	worse	hight	D
1	20	N-S	good	low	A^{\prime}
3	20	$\mathrm{N}-\mathrm{S}$	good	low	B^{\prime}
20	5	$\mathrm{N}-\mathrm{S}$	good	medium	C^{\prime}
5	20	$\mathrm{N}-\mathrm{S}$	good	low	D^{\prime}

E-W orientation $\quad \mathrm{I}-\mathrm{S}$ orientation

3. The loss of light due to the shadows of electric fans and polythene ducts for mechanical ventilation,
4. The influence of spacing and dimensions of roof bars on the light environment in the greenhouse,
5. The light transmission into dome-shaped, semi-circular, mansard-type and cylindrical greenhouses.
The effect of diffusive covering materials on the light environment in the greenhouse has been studied by Nisen (1971), Nisen and Deltour (1971) and Basiaux et al. (1973). The loss of light due to the shadows of electric fans for ventilation was studied by Kozai (1977). He also studied the effect of the spacing and dimensions of roof and wall bars on the light environment (Kozai, 1974). The use of reflective mirror to increase the light in the greenhouse was studied by Kozai and Sugi (1972). The light transmission into semi-circular or other unconventional greenhouses has been studied by Manbeck and Aldrich (1967) and Kirsten (1973).

Basiaux, P., J. Deltour and A. Nisen, 1973. Effect of diffusion properties of greenhouse covers on light balance in the shelters. Agr. Meteorol. 11: 357-372.
Bowman, G.E.. 1970. The transmission of diffuse light by a sloping roof. J. Agric. Engng. Res. 15: 100-105.
Deltour, D. and A. Nisen, 1970. Les verres diffusants en couverture des serres. Bull. Rech. Agron., Gembloux, p. 232-255, NS, V.1.

Edwards, R.I., 1963. Transmission of solar radiation by glasshouses. Expl. Hort. 9: 1-8.
Edwards, R.I., 1964. Transmission of solar radiation in a large-span east-west glasshouse. J. Agric. Engng. Res. 9(3): 245-249.
Edwards, R.I. and J.V. Lake, 1965. Transmission of solar radiation in a large-span east-west glasshouse II. J. Agric. Engng. Res. 10(2): 125-131.

Goudriaan, J., 1977. Crop micrometeorology: a simulation study. Pudoc, Wageningen, 249 pp.
Harnett, R.F., 1974. The advantage of east-west multispans. The Grower, July 13: 64-66.
Harnett, R.F., 1975. Study of glasshouse type and orientation. (Acta Horticulture 46-symposium on greenhouse design and environment). Technical communications of ISHS 46: 207-215.
Kingham, H.G. and C.V. Smith, 1971. Calculated glasshouse light transmission: the effects of orientation of single glasshouse. Experi. Horticulture 22: 1-8.
Kirsten, W., 1973. Die Natürliche Einstrahlung in Gewächshãuser in Abhăngigkeit von deren Form und Aufstellungsrichtung so wie der Beschaffenheit des Hullstoffes. Dissertation, Der Fakultăt für Maschinenwesen der Technischen Universitãt Hannover, 132 pp.
Kishida, Y. and Y. Sonoyama, 1977. Analysis of solar radiation in cylindrical vaulted plastic greenhouses. J. Agric. Meteor., Tokyo 32(4): 177-184 (in Japanese).
KNMI, 1972. Klimaatatlas van Nederland. Staatsuitgeverij Den Haag.
Kozai, T. and J. Sugi, 1972. Studies on the solar irradiation in glasshouses (2). J. Agric. Meteor., Tokyo 27(3): 105-115 (in Japanese).

Kozai, T., 1974. Numerical experiments on light transmission into greenhouses (2). J. Agric. Mețeor., Tokyo 29(4): 239-247 (in Japanese).
Kozai, T., 1974. Theoretical analyses for the relationship between greenhouse structures and light transmission. J. Agric. Meteor., Tokyo 30(2): 71-80 (in Japanese).

Kozai, T., 1977. Direct solar light transmission into singlespan greenhouses. Agric. Meteorol. (in press):
Kozai, T. and M. Kimura, 1977. Direct solar light transmission into multispan greenhouses. Agric. Meteorol. (in press).
Laar, H.H. van and F.W.T. Penning de Vries, 1972. CO_{2}-assimilation light response curves of leaves, some experimental data. Vers. Inst. biol. scheik. Onderz. LandbGewassen, 62, Wageningen.
Lawrence, W.J.C., 1963. Science and the Glasshouse (3rd ed.). Oliver and Boyd, London, 139 pp.
Manbeck, H.B. and R.A. Aldrich, 1967. Analytical determination of direct visible solar energy transmitted by rigid plastic greenhouses. Transactions of the ASAE, 564-567 and 572. Mihara, Y., 1973. Climate Control in greenhouses (in Japanese). Seibundo Shinkosha Co., Tokyo, 137 pp.
Morris, L.G., 1972. Solar radiation in greenhouses: A brief review. Isr. J. Agric. Res. $22(2): 85-97$.
Nihon Kenchiku Gattukai (ed.), 1960. Kenchikushiryo Shyusei 2. (in Japanese). Maruzen Co., Tokyo, 354 pp.
Nisen, A., 1962. Calculation of natural.light for horticulture structure (Fr.). Proceedings of International Horticultural Congress 16(4): 283-289.
Nisen, A., 1971. Les verres diffusants en couverture des serres (2). Bull. Rech. Agron., Gembloux, p. 151-181, NS VI, 1.
Nisen, A. and J. Deltour, 1971. Les verres diffusants en couverture des serres (3). Ibid., 182-202, NS, VI, 1. Robinson, N., 1966. Solar radiation. Elsevier, Amsterdam, 347 pp.
Ross, J., 1975. Radiative transfer in plant communities. J.L. Monteith (ed.). Vegetation and the atmosphere, 1: 13-52. Academic Press, London.
S.A.M.J. (The Society of the Agricultural Meteorology of Japan, ed.). 1975. A guide to the greenhouse design (a report of a working group on greenhouse design) (in Japanese), 99 pp.
Smith, C.V. and H.G. Kingham, 1971. A contribution to glasshouse design. Agr. Meteorol. 8: 447-468.
Stoffers, J.A., 1971. Lichtdurchlãssigkeit von Gewãchshãusern in Blockbauweise. Publ. 39, Inst. Tuinbtech., Wageningen, 52 Stone, G.E., 1913. The relation of light to greenhouse culture. Bull. Mass. Agric. Expl. Station 114: 3-40.

Takakura, T., K.A. Jordan and L.L. Boyd, 1971. Dynamic simulation of plant growth and environment in the greenhouse. Transactions of the ASAE 15: 964-971.
Tooming, H., 1967. Mathematical model of plant photosynthesis. Photosynthetica 1: 233-240.
Uchijima, Z., K. Inoue and S. Kimura, 1976. The climate in growth chamber (6), J. Agric. Meteor., Tokyo 32(3): 117-126 (in Japanese).
Whittle, R.N. and W.J.C. Lawrence, 1959. The climatology of glasshouse: I. Natural Illumination. J. Agric. Engng. Res. 4: 326-340.

Appendix A1 - A program for calculating the transmissivity of a greenhouse as a function of solar altitude and relative solar azimuth

OIMENSION DIMENSION	YP(99), ZP(99), BK(50),CK(50), DK(50),FRQ(101) TRAM(50),DOMY1(50),DOMY2(50), BKK(50),DKK(50)
OIMENSION	SOOMY1(50), S00MY2(50),SDOMX (50), SOOMX2(50), SHADS(50)
DIMENSION	SMODY (50), BCKK(50), SHAOY(50), SHADX(50)
DIMENSION	STYP(25),ST2P(25),SSOOM1(25), SSDOM2 (25), SSYP(25)
DIMENSION	YPERTR(300), SPERTR(300), PERY(300), STPERT(300),STPY(300)
DIMENSION	N1(300), N2(300), DOMX1(30)
DIMENSION	OSTR(50,101):1TBL (20,20)
IRANDY 5884	287
RI=0.194/2	, 54
READ 5,5000	O) HLENGT, HLX , HLX2
READ 5,5000	0) HLY1, HLY2
CALL HOUSE	(KEND, YYW,YP, $2 P, B K, C K, D K, K B N K T, H S I D E, K S P A N)$

GL	THICKNESS OF GLASS-PANE
RI	EXTINCTION COEFFICIENT FOR GLASS
IRANOY	INITIAL VALUE OF RANOOM NUMBER
IRAST	NUMBER OF RANDOM NUMEERS USED AT EACH TIME STEP
	MORE THAN 1000 AND LESS THAN 10000 RANOOM NUMBERS SHOULO
	BE USED FOR ONE SPAN OF A MULTISPAN GREENHOUSE
HLENGT	LENGTH OF THE HOUSE (METER)
HLXI	DISTANCE FROM GABLE END (METER)
HLX2	DISTANCE FROM GABLE END (METER)
	THE LENGTH OF THE HOUSE IS HLENGT, CALCULATION
	IS PERFORMED FOR THE RANGE HLXI TO HLXZ.
HLY 1	DISTANCE FROM A SIDE HALL
HLY2	DISTANCE FROM THE SIOE WALL
	CALCULATION IS PERFORMED FOR THE RANGE HLYI TO HLYZ.

10000	PNUMBER OF RANDOM	NUMBERS USED)		
100.0	50.0 75.0	(THE LENGTH OF	THE HOUSE IS	100 METRES!
		BUT THE LIGHT	DISTRIBUTION	IS CALCUGA
		ONLY IN A RANG	GE FROM 50 TO	75 METRES.
		TO CAlCulate	FOR THE WHOLE	LENGTH,
		HLXI AND HLX2	SHOULD BE O.	ANO 800.1
16.	24.	RESPECTIVELY)		
16.	24.		sthe same as OF THE WIOTH	

HHABAEYYWMFLOAT(KBNKT)
YYY = HHABA/FLOAT (KSPAN)
KDIV=KBNKT/KSPAN
WRITE (6,6307) HLENGT, HWABA,YYY,KSPAN, YYWIKENKT,HSIOE, KOIV
WRITE 6,6308)HLX1, HLX2,HLY1,HLY2
READ $(5,5000)$ AHH, ANW, $8 H H, B H W, G H H, G H W$
READ(5,5000) AHHX, AHWX, 8 HHX, BHWX, GHHX, GHWX
READ(5,5000)SAHH,SBHH,SGHW
READ 15,5000$) \mathrm{GL}$
READ (5,6305)IRLAST
WRITE $(6,6502)$ AHH, AHW, BHH, 日HW, GHH, GHW
WRITE $(6,6503)$ AHHX, AHWX, $8 H H X, 8 H W X, G H H X, G H W X ~$
WRITE $(6,6506)$ SAHH,SBHW,SGHW
WRITE $(0,9908) \mathrm{GL}$
WRITE(6,6306)IRLAST
$G L=G L \times 100$.

```
WRITE(0.9904)
```


C AHH
BHH BHW

AHW

GHH

GHW
AHHX
AHWX
BHHX

BHWX

C
C
C
C

GHWX
 SAHH

SBHW
SGHW STRYP

STR2P

KEND
YYW
KBNKT
HHABA
BK(K)
$D K(K)$
CK(K)

```
                                    DEPTH OF HORIZONTAL STRUTS FOR ROOF OR SIDE WALL
                                    WIDTH OF HORIZONTAL STRUTS FOR ROOF OR SIDE WALL
                                    WIDTH OF VERTICAL STRUTS FOR ROOF AND SIDE WALL
                                    DEPTH OF VERTICAL STRUTS FOR ROOF OR SIDE WALL
                                    LENGTH OF EACH GLASS-PANE FOR ROOF SIDE WALL
                                    WIDTH OF EACH GLASS-PANE FOR ROOF SIDE WALL
                                    DEPTH OF HORIZONTAL STRUTS FOR GABLE END
                                    DEPTH OF VERTICAL STRUTS FOR GABLE END
                                    WIOTH OF HORIZONTAL STRUTS FOR GABLE END
                                    WIDTH OF VERTICAL STRUTS FOR GABLE END
                                    LENGTH OF EACH GLASS-PANE FOR GABLE END
WIOTH OF EACH GLASS-PANE FOR GABLE END
DEPTH OF DEEPER ELEMENTS LOCATED AlONG THE LENGTH OF
ROOF AND SIDE WALL
WIOTH OF OEEPER ELEMENTS LOCATED ALONG THE LENGTH DF
ROOF AND SIDE WALL
DISTANCE BETWEEN THE DEEPER ELEMENTS
DISTANCE OF MAIN VERTICAL STRUCTURAL ELMENTS MEASURED
FROM A SIDE WALL
HEIGHT OF MAIN VERTICAL STRUCTURAL ELEMENTS
                                    FOR A N-SPAN HOUSE, (N-1) CARDS ARE REQUIRED.
                                    NUMBER OF WALLSS EXCLUDING GABLE ENDS
                                    WIOTH OF ONE SPAN
                                    NUMBER OF SPANS
                                    WIOTH OF THE HOUSE
                                    -SIN(AA(K))
                                    -(BK(K)*Y(K)+CK(K)*Z(K))
                                    COS(RK))
```


AH=AHH/YYW AWEANW/YYW BHEBHH/YYW BWEBWW/YYW GHEGHH/YYW GW: GHW/YYW SMODX=GW+BW SMODHEGH*BH AHXZAHHX/YYW AWX EAHWX/YYW BHX $=B H H X / Y Y W$ BWX = BHWX/YYW GHX $=G H H X / Y Y W$ GWX:GHWX/YYW SMOOTY \& GWX - BWX SMOOTZ $\operatorname{GHX}+B H X$ SAHESAHH/YYW

```
SBHzSBHW/YYW
SGH=SGHW/YYW
SMOOSESGH+SBH
SMAHESAH/2.
XLAST=HLENGT/YYW
XLI \(=\) HLXI/YYW
XLAMEHLXZ/YYW-XLI
YLI = HLYI/YYW
YL2 \(=H L Y 2 / Y Y W\)
IY2EYL \(2+0.5\)
YLAM \(=Y L 2-Y L 1\)
\(|Y|=Y L I+1.0000001\)
IIEKSPAN-1
STRZP = HSIDE
OO 1234 NSS=1.II
```



```
STYP(NSS) \(=\) STRYP/YYW
STZP(NSS) \(=\) STRZP/YYW
1234 CONTINUE
\(00108010=1,20\)
001080 1! 11,20
1TBL(10,11)=0
1080 CONTINUE
C
\begin{tabular}{ll} 
SA & SIN(AA) \\
CA & COS(AA) \\
SH & SIN(HH) \\
\(C H\) & COS(HH)
\end{tabular}
COS (HH)
AA AND HH ARE SOLAR AZIMUTH ANO SOLAR ALTITUDE RELATIV: TO THE GLASS WALL
ANGLE OF INCIDENCE OF LIGHT TO GLASS
EXTINCTION COEFFICIENT FOR GLASS
TRANSMISSIVITY OF GLASS SHEET
RELATIVE DAILY TOTALS OF LIGHT AT IYY space average of relative light intensity at time t
\(K H H=20\)
\(K A A=19\)
KK=KHHKKAA
LLL=0
WRITE(0.5410)
DO \(300 \mathrm{~K}=20, \mathrm{KK}\)
\(00555 \quad 10=1 \cdot 101\)
555 FRO(1Q)=0.
DO \(556 \mathrm{JD}=1,50\)
DO 556 1081.101
\(556 \operatorname{DSTR}(J D, 10)=0\).
KKD \(=(K-1) / K A A\)
(F(KKD,NE,LLL) WRITE(0,9905)
LLLEKKD
SH: (1.+FLOAT (KKD))/FLOAT(KHH)
IF (SH.GE.0.999) SH=0.999
CH=SQRT(1.-SHK*2)
MMO = MOD (K,KAA) -1
IF (MMD.LT,O) MMDEKAA-1
FMMD \(=(90\), *FLOAT \((M M D) / F L O A T(K A A-1) * 0.001) \times 0.0174533\)
SAESIN(FMMO)
CA=COS (FMMO)
XSL=CH:SA
```

```
    YSL=CH*CA
    ZSL=-SH
    YOX=YSL/XSL
    ZOX=2SL/XSL
    YOZ=YSL/ZSL
    ANX=FATAN(XSL)
    CALL GLASS(ANX,RI;GL,TRAX)
    STMYL=YOX`AWX
    STMZL=ZOX*AHX
    SHADTY&ABS(STMYL)&BWX
    SHADTZ=ABS(STMZL)*BHX
    IF(STMYL)45:45:41
45 STMYI=0.
    STMY2=STMYL
    GO TO 42
41 STMY1z-STMYL
    STMY2=0.
42 IF(STMZL)46,46,43
46 STMZ1=0.
    STM22=STMZL
    GO TO 44
43 STMZ12-STMZL
    STMZ2=0.
44 NNN=O
    DO 501 NII=IY1.IY2
501 N1(N1I)=10000
    OO 5O NOMEI,KEND
    BKN=BK(NOM)
    CKN=CK(NOM)
    SAY=AHE(YOZ员CKN-BKN)
    SSAYESAHESAY/AH
    YTL1&-YOZ*ZP(2*NOM-1)*YP(2*NOM-1)
    YTL2=-YOZ#2P(2#NOM)*YP(2*NOM)
    IF(YTL&.LT.YTL2) GO TO 5l
    {F(SAY,GT,O.) GO TO 52
    YLIT=YTL2*SAY
    YLAG=YTLI
    SYLITEYTLZ*SSAY
    SYLAG=YTLI
    GO TO 53
52 YLIT=YTL2
    YLAG=YTLI*SAY
    SYLIT=YTLZ
    SYLAG=YTLI*SSAY
    GO TO 53
51 1F(SAY)59,50,54
59 YLITEYTLI+SAY
    YLAG=YTL2
    SYLITEYTLI*SSAY
    SYLAG=YTL2
    GO TO 53
54 YLITEYTLI
    YLAG=YTL2*SAY
    SYLITEYTLI
    SYLAGEYTL2*SSAY
53 1F(SYLIT-YL2)57,57,50
57 IF(SYLAG-YL1)50,58,58
58 NNN=NNN - 1
    IYI=SYLIT+1.
    IYE=SYLAG*1.
    |F(IY|.LT.|YI) IY|EIY|
```

IF(IYE.GT.IY2) IYE=IYZ
DO 502 NIY=IYI,IYE
NZ(NIY) $=$ NNN
If(N2(NIY)-NI(NIY)) $503,502,502$
503 NI(NIY) $=$ NNN
502 CONTINUE
COSANG=YSL\#EKN + ZSLHCKN
ANG:FATAN(COSANG)
CALL GLASS(ANG,RI,GL,TR)
DOMYI(NNN) =YLIT
TRAM(NNN) $=$ TR
OOMYZ(NNN) EYLAG
SOOMY1 (NNN) $=$ SYLIT
SOOMY2(NNN) =SYLAG
BKK(NNN) $=$ BKN
DKK(NNN) $=$ DK (NOM)
SBY=BH* (YOZ*BKN+CKN)
SMODY(NNN) =ABS(SMOOH) 3 SAY/BH
SHADY(NNN) $=A B S(S A Y)+A B S(S B Y)$
BCKK(NNN) = BKNMYOX+CKNKZOX
SAXEAW/BCKK(NNN)
SSAX = SAH/BCKK(NNN)
SHADX (NNN) $=A B S(S A X)+B W$
SHADS (NNN) $=A B S(S S A X)+S B H$
(F(SAX)55,55,56
55 DOMXI(NNN) $=$ SAX
SDOMXI(NNN) =SSAX
SOOMX2(NNN) $2 \times$ LAST
GO TO 50
$56 \operatorname{DOMXI}(N N N)=0$.
SOOMX1(NNN) $=0$.
SDOMX1 (NNN) $=0$.
SOOMX2(NNN) $=$ XLAST+SSAX
50 CONTINUE
SHAD = -5 MAH/YOX
SSHAD=ABS (SHAD)
SSHADSESSHAD*SBH
XRLASTEXLAST+SSHAD
NOWEO
DO 10 NSTEI,NSS
1F(YOZ.LT.O.) GO TO 11
SYI =-YOZ*STZP(NST) +STYP(NST)-SMAH
SY2=STYP(NST)+SMAH
GO 1012
11 SY1=STYP(NST)-SMAH
SY2=-YOZ*STZP(NST)+STYP(NST)+SMAH
12 1F(SY1-YL2)13,13,10
13 IF(SY2-YL1)10.14.14
14 NOW=NOW+1
SSYP(NOW) $=\operatorname{STYP}(N S T)$
SSDOMI (NOW) $=$ SYI
SSOOM2 (NOW) $=5 \mathrm{Y} 2$
10 CONTINUE
DO 80 IYYEIYIIIYZ
SPERTR(IYY) $=0$.
YPERTR(IYY) $=0$.
STPERT(IYY) $=0$.
STPY(IYY) $=0$.
80 PERY(IYY) $=0$.
IF(XSL) $100,100,200$
200 DO 60 IRNOM=1,IRLAST

```

PERTRz1.
TRW=1.
YIEYLAMKRANO20(IRANOY)*YLI
RANO2O IS THE FUNCTIUN SUBPROGRAM WHICH PRODUCES UNIFORM RANDUM NUMBER IN THE RANGE ZERO TO ONE. IF THE COMPUTER SYSTEM YOU ARE USING DOES NOT HAVE the function subprogram, you must prepare it yourself.
\(\{Y=Y \mid+1.0\)
IDY=YLI
\(10 Y=1 Y-10 Y\)
IF(IDY.LE.O.OR.IDY.GE.51) WRITE(6.5300) IDY
IF(IDY,LE,O) 1OYEI
IF(IDY,GE,51) IOY=50
XI:XLAM*RAND20(IRANDY)*XLI
NCHEK \(=0\)
NII=NI(IY)
NI2=N2(IY)
DO 70 NNOM=NII,NI2
IF(YI-SDOMY1(NNOM)170.71.71
71 [F(YI-SDOMY2(NNOM) 175,75.70
75 XREXI-(BKK(NNOM)*YI + DKK(NNOM) )/BCKK (NNOM)
SPOINT:XR-SDOMXI(NNOM)
IF(SPOINT)72,76,76
76 IF (AMOD(SPOINT,SMODS)-SHADS(NNOM) )B6,86,89
89 YPOINTEYI-DOMY1(NNOM)
IF (YPOINT) \(70,78,78\)
78 IF(YI-DOMY2(NNOM) 7 79,79,70
79 IF(AMOD(YPOINT,SMDDY(NNOM))-SHADY(NNOM)) \(86,86,88\)
88 XPOINTEXR-DOMXI(NNOM)
IF (AMOD(XPDINT,SMODX)-SHADX(NNOM)) \(86,86,85\)
85 NCHEK=NCHEK +1
PERTR=PERTR*TRAM(NNOM)
GO TO 70
72 IF(TRW-1.)70.21,21
21 2R=-20XEXI
ZPOINT:ZR-STMZ1
IF(AMOD(2POINT,SMODTZ)=SHADTZ)82,82,83
83 YREYI-YOXKXI
YPOINTEYR-STMYI
IF(AMOD(YPOINT,SMODTY)=SHAOTY)82,82,84
84 TRW=TRAX
GO TO 70
82 TRW=O.
70 CONTINUE
IF(MOD(NCHEK,2),EQ,1) TRW=1.
(F(TRW)86,86,23
23 DO 20 NOS=1.NOW
IF(YI-SSDOMI (NOS) )20,24,24
24 IF(YI-SSDOM2(NOS))25,25,20
25 XRE(SSYP(NOS)-YI)/YOX+XI
SPOINT \(=X R-S S H A D\)
1F(SPOINT)20,27,27
27 IF (AMOD(SPOINT,SMODS)-SSHADS) \(86,86,20\)
20 CONTINUE
GO TO 87
86 PERTR=0.
STPERT(IY) \(=\) STPERT(IY)*1.
87 PERTR=PERTR*TRW
IF(PERTR.LT,0.0.OR.PERTR.GT.1.) WRITE(6.099) PERTR
```

 IQ&PERTRM100.+1.
 FRO(IO)=FRQ(10)+1.
 YPERTR([Y)=YPERTR(IY)+PERTR
 SPERTR(IY)=SPERTR(IY)+1.
 OSTR(IDY,10)=0STR(IDY,I0)+1.
 6 0 \text { CONTINUE}
 GO TO 201
 100 OO 160 IRNOMz1,IRLAST
PERTR=1.
TRW=1.
YIEYLAM*RANO2O(IRANDY)*YLI
|YEYI+1.0
IDY=YLI
IOY=1Y-IDY
IF(IDY.LE.O.OR.IDY.GE.51) WRITE(6,5300) IOY
IF(IDY,LE,O) IDYEI
IF(IDY,GE,51) IDY=50
Xl=XLAM\&RAND20(IRANDY)*XLI
NCHEK=0
N(IENI(IY)
N12=N2(IY)
DO 17O NNOM=NII,NI2
[F(Y1-SDOMY1(NNOM))170,171,171
171 {F(YI-SDOMY2(NNOM))175,175,170
175 XR=XI-(BKK(NNOM)AYI+DKK(NNOM))/BCKK(NNOM)
|F(XR-SDOMX2(NNOM))177,177,173
177 SPOINTEXR-SOOMXI(NNOM)
IF(AMOD(SPOINT,SMODS)-SHADS(NNOM))186,186,189
189 YPOINTEYI-DOMY1(NNOM)
IF(YPOINT)170,178,178
178 IF(YI-DOMY2(NNOM))1779,179,170
179 IF(AMOD(YPOINT,SMODY(NNOM))-SHADY(NNOM))186,186,188
188 XPOINT=XR-DOMXI(NNOM)
IF(AMOD(XPOINT,SMODX)-SHADX(NNOM))186,186,185
185 NCHEK=NCHEK+1
PERTR=PERTR*TRAM(NNOM)
GO TO \$70
173 1F(TRW-1,)170,122,122
122 2R=2OX*(XLAST-X1)
2POINT=2R-STMZ2
IF(AMOD(ZPOINT,SMODTZ)-SHADTZ)182:182,183
183 YR=YI+YOX*(XLAST-XI)
YPOINTEYR-STMY2
IF(AMOD(YPOINT,SMODTY)-SHADTY)182,182,184
184 TRWETRAX
GO TO 170
182 TRW=O.
170 CONTINUE
IF(MOD(NCHEK,2).EQ.1) YKW=1.
IF(TRW)186,186,123
123 OO 120 NOS=1,NOW
IF(YI-SSDOM1(NOS))120,124,124
124 \&F(YI-SSDOM2(NOS))125,125,120
125 XR=(SSYP(NOS)-YI)/YOX+XI
IF(XR-XRLAST)126,126,120
126 SPOINT=XR-SSHAD
IF(AMOD(SPOINT,SMODS)-SSHADS)186,186,120
120 CONTINUE
GO TO }18
186 PERTR=0.
STPERT(IY)=STPERT(IY)*1.

```
```

187 PERTR=PERTRMTRW
YPERTR(IY)=YPERTR(IY)+PERTR
IF(PERTR.LT,O.O.OR,PERYR.GT.1.) WRITE(6.999) PERTR
10\&PERTR*100.+1.
FRQ(IO)=FRQ(IQ)+1,
SPERTR(IY) =SPERTR(IY)+1.
DSTR(IDY,IQ)=DSTR(IDY,10)+1.
160 CONTINUE
201 TOTYP=0.
00 90 IYYz{Y},IYZ
TOTYP=TOTYP+YPERTR(IYY)
PERY(IYY)=YPERTR(IYY)/SPERTR(IYY)
STPY(IYY)=STPERT(IYY)/SPERTR(IYY)
90 CONTINUE
OO 101 10=1,101
101 FRO(10)=FRO(IO)/FLOAT(IRLAST)
LMD=MMD+1
1TBL(1,LMD)\&FRQ(1)*100;*0.5
LL=2
DO 1020 10:2.101
IF(FRQ(IQ),GE,0.004) 1TBL(LL,LMO)=FRQ(10)%100.+0.5
IF(FRQ(10).GE,0.004) IPBL(LL+10,LMO)=10-1
IF(FRO(IO).GE,0.004) LLELL+1
IF(LL,GE,II) WRITE(6,0500) LL
1020 CONTINUE
IF(LMD.NE,KAA) GO TO }100
OD 1030 1Q=1,20
100=10
IF(10.GT.10) 100=100-10
DD 1040 lle1,KAA
IF(ITBL(IQ,II).GT,0) GO TO 1050
1040 CONTINUE
GO TO }103
1050 IF(IQ.LT,10) WRITE(0,0620) SH,IOQ,(ITBL(IO,II),IIEI,KAA)
IF(IO,GE,10) WRITE(6,6610) SH,IOQ,(ITBL(IO,II),II=1,KAA)
1030 CONTINUE
00 1181 10=1,20
DO 1181 II=1,KAA
1181 1TBL(10,11)=0
1060 CONTINUE
JIYE{Y2-IY1+1
IF(JIY,GE,50) WRITE(6,5500) JIY
300 CONTINUE
999 FORMAT(IH ,OHPEPTR=,F10.4)
5000 FORMAT(8F10.0)
5300 FORMAT(IH ,4HIOYE,1110,5X,15H*\#\#\#\#ERRORO\#\#\#\#)
5410 FORMAT(IH,34X, 52HAZIMUTH OF THE SUN RELATIVE TO THE HOUSE ORIENT
\#ATION/IH,27X, 91HO 5 10 15 20 25 30 35 40 45
* 50 55 60 65 70 75 75 80 85 90/1
5500 FORMAT(IH ,4HJIY,19,5X,15H*****ERROR*****)
6305 FORMAT(110,F10.0,110)
6306 FORMATIIHO,4BHNUMEER OF RANDOM NUMBERS USED AT EACH TIME STEP ,
* 110)
6307 FORMATSIH ,/1H,15HLENGTH OF HOUSE,F10.3.5X,14HWIDTH DF HOUSE,
YF10.3/1H,18HWIOTH OF EACH SPAN,F10,3,5X:15HNUMBER OF SPANSII4/IH
YHYYYW=,F8,2,3X,6HKBNKP=,15,3X,6HHSIOE=,FB,2,3X,5HKDIV=,151
6308 PORMAT(1HO,5HHLX1E,FE,2,3X,5HHLX2E,F8,2,3X,5HHLY1=,FB,2,3X,
* 5HHLY2=,FB,2,3X,3OHSEE COMMENTS IN THE PROGRAM FOR DETAILS)
6502 FORMAT(1HO,4HAHHE,F7,2,SX,4HAHWE,F7,2,3X,4HBHH=,F7,2,3X,4HBHW=,
FF7,2,3X,4HGHHz,F7,2,3X,4HGHW=,F7,2)
6503 FORMAT(1HO,5HAHHX=,FG,2,3X,5HAHWXE,F6,2,3X,5HBHHX=,F6,2,3X,5HBHWX=

```
```

 Y,F6,2,3X,5HGHHX=,F6,2,3X,5HGHWX=,F6,2/1
 6506 FORMAT(IH,5HSAHHE,F6,2,3X,5HSBHW=,F6,2,3X,5HSGHW=,F6,2)
6600 FORMAT(1H ,3HLLs,15,15H\#\#**\#ERROR*****)
6610 FORMAT(IH ,7HSIN(H)=,F7.3,3X,2HTR,11,3X,1915)
6620 FORMAT(1H,7HSIN(H)=,F7.3,3X,2HFR,11,3X,1915)
9 9 0 4 ~ F O R M A T (I H I) ~
9905 FORMAT(IH)
9908 FORMAT(1HO,33H THICKNESS OF THE GLASS-PANE =9F8.4)
1 STOP
END

```
SUBROUTINE GLASS(R,RC,GL,U)
REFN=1.526
GLPI=SIN(R)**2
GLP =GL/SQRT(1,0-GLP1/REFNMn2)
A:EXP (-RCMGLP)
IF(R.EQ.O.O) GO TO 1
\(A B=S I N(R) / R E F N\)
AANG=ATAN(AB/SQRT(1.0-AB*22))
DOAN:R-AANG
\(A D A N=R+A A N G\)
\(\theta=((S I N(O D A N) / S I N(A D A N)) \hbar * 2+(T A N(O D A N) / T A N(A D A N)) * * 2) / 2.0\)
GO 102

2 TU: (1.-Q) \#\%2*A
TLE(1,0-0**2*A**2)
UETU/TL
RETURN
END
```

FUNCTION FATAN(X)
SINA=S@RT(1, -X**2)
FATAN=ATAN(SINA/X)
RETURN
END

```
FUNCTION TAN \((x)\)
TANESIN \((x) / \operatorname{COS}(x)\)
RETURN
END
    SUBROUTINE HOUSE (K,YYW,YP, ZP, B, C, D,KBNKT,HSIDE,KSPAN)
    OIMENSION B(50),C(50), O(50),Y(99):Z(90),YP(99),ZP(99)


\section*{\(R\)} AA
                WIDTH OF EACH WALL
                                    SLOPE OF EACH WALL (DEGREES) (ASSUME E-W MULTISPAN)
                                    THE ANGLE IS MEASURED COUNTERCLOCKWISE.
                                    FOR SOUTH SIDE WALL, AAE9O.
                                    FOR NORTH SIOE WALL, AAE=90.
                                    FOR SOUTH FACING ROOF, AA=20: FOR EXAMPLE.
\(C\)
\(C\) YYYYKAN

FOR NORTH FACING ROOF, AAE-20, FOR EXAMPLE.
FOR A \(N-S P A N\) HOUSE, \(2 K N+2\) INPUT CAROS ARE NEEDED. THE VALUES OF \(R\) AND AA FOR EACH ROOF OR SIDE WALL SHOULD BE PUNCHED ON A SEPARATE CARD. DETERMINATION OF CQEFFICIENTS B(K):C(K), AND O(K) FOR EACH WAL PLANE EQUATION \(\quad A * X+B(K) * Y+C(K) * Z+D(K)=0\).

WHERE, \(A=O\). FOR ALE SIDE WALLS ANO ROOFS. NUMBER OF WALGS WITH AEO.

NUMBER OF DIVISIONS
NUMBER OF SPANS
WIDTH OF ONE SPAN
WIDTH OF ONE OIVISION

\section*{}
```

 YI=0.
 Z1=0.
 READ(5,5102) KSPAN,KDIV,HSIDE
 KBNKT=KDIV*KSPAN
 KK=2KKSPAN+2
 READ(5,5101) RR,AAA
 WRITE(6,5104) RR,AAA
 OO 30 K=1.KK
 AAEAAA
 R=RR
 IF(K,EQ,1,OR,K.EQ,KK) R=HSIDE
 IF(K.EQ.1) AAE90.
 {F(K.EQ,KK) AA=-90.
 (F(K.NE.1,AND,MOD(K,2);EQ,1) AAEDAAA
 AN:AAKO.0174533
 C(K)=COS(AN)
 ME2*K-1
 B(K)=-SIN(AN)
 N=2*K
 Y(M)=Y&
 Y(N)=Y(M)+C(K)#R
 Z(M)=21
 Z(N)=2(M)-B(K)*R
 D(K)=-B(K)*Y(N)-C(K)*Z(N)
 Y1:Y(N)
 Z1:Z(N)
 30 CONTINUE
 YYWEY1/FLOAT(KBNKT)
 K=KK
 DO 10 1 =1,KK
 ME2MI-1
 N:2#!
 YP(M)EY(M)/YYW
 YP(N)EY(N)/YYW
 ZP(M)=Z(M)/YYW
 ZP(N)=Z(N)/YYW
 D(I)=D(I)/YYW
 5101 FORMAT(2F10.0)
10 CONTINUE
5102 FORMAT(215,F10.0)
5104 FORMAT(1H1,14HWIOTH OF ROOFz,F9.2,3X,11HROOF SLOPE=,F9,2)
RETURN
END

```

Appendix A2 - A program for calculating diurnal courses of direct and diffuse light in a greenhouse and their daily integrals
```

 DIMENSION LA(13),TSL(13),X(2527)
 DATA LA/O,31,59,90,120,151,181,212,243,273,304,334,365/
 ||=2527
 11=1805
 READ(5,5000) RFSLP,TRDIF
 READ(5,1100)(X(1),121,11)
 READ(5,5000)G
 RHE1./G
 WRITE(6,1250) RFSLP,TRDIF
 WRITE(6,1300) (X(1),I=1,11)
 WRITE(6,9902)G
 555 READ(5,5005) (TSL(1),led,12)
WRITE(6,1000)
WRITE(6,5007)
WRITE(6,5006) (1,TSL(1),1=1,12)
TSLd=(TSL(1)+TSL(12))/2.
TSL(13)=TSLI
00 5100 l=2,12
5100 TSL(I)=(TSL(I-1)+TSL(1))/2.
TSL(1)=TSL!
5 READ(5,5200)PHA1,ORIT,M1,M2,M3,M4,MINT
FMI=MINT
|F(PHAL.LE.O.) GO YO 555
IF(PHA1.GE.100.) STOP
WRITE(6,1000)
YTT=O.
YTD=O.
ATI=0.
ATT=0.
TATRT=O.
LD12=LA(M1)*M2
LD34=LA(M3)+M4
IF(LD12.GT.LD34) LO34=LD34+365
98 CONTINUE
101=0
{F(YTT,LE,O.) IOI=1
IF((LD12+MINT).GE,LO34) 1Q!z1
IF(LD12.GT.LD34) GO TO b
LD=LDI2
IF(LD.GT.365) LD=LD-365
WRITE(6,6200)PHAI
PHAI=PHAI*O.0174533
CALL FORDAY(LD,OELTA,EOT,W)
CALL FORTIM(PHAI,DELTA,KK,RH,TAU)
CALL RADIUS(W,RS)
TTAU=12.-TAU
MM=LD
WRITE(6,6302)ORIT
WRITE(6,6202) TTAU
MXM=12,\#FLOAT(MM)/366.*1.

```
phal Latitude of the place ( degrees)
MO
MD
ORIT
DELTA
EOT
taU
KK
RH
TA
DAVYYP
DRO
DRP
MONTH
DAY
HOUSE ORIENTATION
declination of the sun equation of time difference SUNRISE TIME (HOUR) NUMBER OF TIME STEPS FOR A WHOLE DAY INVERSE OF TIME INTERVAL KK \(=\) TAU \# 2 *RH
TIME ANGLE DAILY TOTALS OF LIGHT OUTSIDE LIGHT INTENSITY OUTSIDE AT TIME T
space average of relative dally totals of light inside
```

OO 300 K=1,KK
JQJ=0
IF(K.EQ.1.OR.K.EQ,KK) JQJEI
PK=K-KK/2-1
TAEFK*G
TIME=TA+12.
TAETA*15.*0.0174533
IF(TA.EQ,O.) TA=0,0000001
CALL ALTITH(PHAI,DELTA,TA,SA,CA,SH,CH,ORIT,HH,AA)
AB=AA
IF(AA,LT,O.) AAE-AA
IF(AA,GT,180) AA=360.-AA
IFPAA,GT.90.) AA=180.-AA
FROIF=AFGENI (HH)
PRATM=EXP(-0.1/AMAX1 (0.05,SH))
DIFOV=116.*SHMTRATM
OSH=580.*SHMFRDIFMTRATM
ORP=580.*SH\#(1.-FROIF)MTRATM
WRITE(0,5103) K,TIME,DRP,DSH,DIFOV,HH,AA,AB
IF(SH.LT.0.075) GO TO }120
I=20.%(SH-0.025)+0.0001
J=0,2\#(AA+7.5)
IF(II.EQ.2527) GO TO 800
T=AV(J,I,X)
GO TO 1200
800 T=AT(J,l,X)

```
```

1200 CDNTINUE
TRD=TRDIFMOSH
CAD=TKDRP
CAT=CAD+TRD
TRT=CAT/(DSH+DRP)
WR!TE(6,6303) T,CAD,CAT,TRT
GG=3600.*G
DFO=RECT(DFO,OSH,GG,JQJ)
DRO=RECT(DRO,DRP,GG,JOJ)
TDIF:RECT(TOIF,DIFOV,GG,JQJ)
DAVTYP=RECT(DAVTYP,CAD,GG,JQJ)
TTOTAL:RECT(TTOTAL,CAT,GG,JOJ)
300 CONTINUE
WRITE(6,6500)
DDD=DRO+DFO
FQV=(ODO-ADT)/(ODO-TOIF)
BTRT=DAVTYP\#(1,-FOV)
ABC=TDIF*FOV+DFO\#(1,-FOV)
RDL:ABC/ADT
YTD=RECT(YTD,DRO,FMI,IQI)
YTT:RECT(YTT,DOD,FMI,IOI)
ATT=RECT(ATT,TDIF,FMI,IQ!)
DAVTYP=DAVTYP/ORO
ATRT=TTOTAL*(1,-FOV) +FOV*TRDIF*TDIF
TATRTERECT(TATRT,ATRT,FMI,IQI)
TBTRT=RECT(TBTRT,BTRT,FMI,IQI)
DAB=ATRT/ADT
TTOTAL=TTOTAL/DDD

```
    DAVTYP RELATIVE DAILY INTEGRAL OF DIRECT LIGHT (SPACE AVERAGE
        OVER A WHOLE FLOOR
    WRITE(6,9906) DAVTYP, TTOTAL,ATKT,FOV,RDL
    WRITE(6,9909) DRO,DFO,DDD,TDIF,ADT
    WRITE 6,9910 ) YTD,YTT,ATT,ATI,TATRT
    WRITE(6,9911) DAB
    GO TO 98
1000 FORMAT( 1 HI )
1100 FORMAT( \(6 \mathrm{X}, 19 \mathrm{~F} 3.0\) )
1250 FORMAT(12HOROOF SLOPE=,F9,2,5X,6HTRDIFz,F9.2//)
1300 FORMAT(1H .19F6.2)
5000 FORMAT(8F10.0)
5005 PORMAT(BF10.2)
5006 FORMAT(1H, \(110, E 15,6\) )
5007 FORMAT(1H , 5X,5HMONTH, 3X,11HTOTAL LIGHT)
5103 FORMAT(1H,2HK=,13,2X,5HTIME =,F0,2,2X,4HDRP \(=, F 7,0,2 X, 4 H D S H=1\)
    HF7,0,3X,6HOIFOV \(=, F 8,0,3 X, 3 H H H=, F 5,1,3 X, 3 H A A=, F 6,1,3 X, 3 H A B=, F 6,1)\)
5200 FORMAT (2F10,0,515)
6200 formatilhoo 46 hLATITUDE of The place where fhe house is built,fi5,
    \(\forall\)
6201 FORMAT(IH ,5HDATE ,5X,6HMONTHE, \(14,3 X, 4\) HDAY \(, 14,3 X, 3 H L D=, 14\) )
6302 FORMAT(IH ,17HHOUSE ORIENTATION,F10,1,3X,9H(DEGREES))
6202 FORMAT(IH, \(46 H T H E\) TIME THE SUN RISES ABOVE THE HORIZON (HR,),
    FF(0.5)
6303 FORMATIIH ,14HSPACE AVERAGE \(=58,3,3 \mathrm{X}, 4 \mathrm{HCAD}=\mathrm{E} 13,5,3 \mathrm{X}, 4 \mathrm{HCAT}=\mathrm{E}, \mathrm{3}, 51\)
    Y 3 XI4HTRT \(=, E 12,4\) )
6500 FORMAT(IH ,14HDAILY AVERAGES)
9902 FORMAT(IHO,2OHTIME INTERVAL (HOUR),F10.2/)

    Y 4 HFOV \(=, E 12,4,3 X, 4 H R O L=, E 12,4\) )
9909 FORMAT(IH,4HDRD=,E12,4,3X,4HDFOz,E12,4,3X,4HDOD=,E12,4,3X,
```

 Y5HTDIF=,E12.4,3X,4HADTE,E12.4)
 9910 FORMAT(IH,4HYTD=,E12,4,3X,4HYTTE,E12,4,3X,4HATTE,E12,4,3X,4HATI=,
YE{2,4,3X,6HTATRTE,E{2,4)
9911 PORMAT(IH,4HOABE,E12,4/)
END

```
```

 SUBROUTINE FOROAY(LO,DELTA,EOT;W)
 WE2,*3,141592畐LOAT(LD)/366.
 OELTA=0,3622133-23.24763%COS(W*0,153231)-0.3368908*COS(2. MW*
 10.2070988)-0.1852646*COS(3.*W+0.0201293)
 DELTA=DELTAMO,0174533
 EOT=-0.0002786409*0.1227715*COS(W*1.498311)-0.1654575*COS(2.*W-
 11.261546)-0.00535383*COS(3.*W-1.1571)
 RETURN
 END
    ```
```

 SUBROUTINE FORTIM{PHAI,DELTA,KK,RH,TAU)
 TAUE-TAN(PHAI)&TAN(DELTA)
 TUAESQRT(1.-TAUn*2)
 TAU=ATAN2(TUA,TAU)
 TAU=TAU#180.13.141592/15.
 KK=TAU*2,MRH
 \F(MOD(KK,2),NE,1) KK=KK-1
 RETURN
 END
    ```
        SUBROUTINE RADIUS(W,RS)
        OIMENSION A(11)
        DATA A/ \(-105,06,2.958,-0.194,0.983,-0.333,-1.131,0.972,1,207,-0.08\),
        V-0.531.-0.6131
        RS: \(6.2776 / 2\).
        OO \(10 \quad 1=1,11\)
        RSERS/3.141592
        10 RSERS +0.0001 *A(I) MCOS (FLOAT (I) WW)
        RETURN
        END
            SUBROUPINE ALTITH(PHA!, DELTA,T,SINAA,COSAA,SINHH, COSHH, O,HHH, AAA)
            SINHHESIN(PHAI) \&SIN(DEGTA) ©COS(PHAI) \#COS(DELTA) \#COS(T)
        WHEATAN(SINHH/SORT(1.-SINHHK\#2))
        COSHH=COS (NH)
        SINAA=COS(DELTA)KSIN(TI/COSHH
        COSAAE (SINHHMSIN(PHAI)OSIN(DELTA))/(COSHWMCOS(PHAI))
        \(A A E A T A N 2(S I N A A, C O S A A) \not O \times O, 0174533\)
        SINAA=SIN(AA)
        \(\operatorname{COSAA}=\operatorname{COS}(A A)\)
        NHH= WH \(180.13,141592\)
        \(A A A=A A K 180.13,141592\)
        RETURN
        ENO

FUNCTION TAN(X)
TAN:SIN(X)/COS(X)
RETURN
ENO

\section*{C}

FUNCTION AV(JII;X)
DIMENSION X(2527)
\(K=J+95 \%(1-1)\)
\(A V=X(K+19) \sharp X(K+57)+X(K+38) \# X(K+76)\)
SUMF \(\equiv X(K)+X(K+19)+X(K+38)\)
IF SSUMF.LT..985,OR,SUMP.GT.1.15) WRITE(6,880) J.I,SUMF
880 FORMAT(3OH SUM OF FRACPIONS NE 1 IN JII*i2i4,F10.2)
RETURN
END

FUNCTION AT(J; \(I ; X)\)
OIMENSION X(2527)
\(K=J+133 \times(1-1)\)
AT \(=X(K+19)\) n \(X(K+76)+X(K+38) \approx X(K+95)+X(K+57) n X(K+114)\)
SUMF \(=X(K) \leftarrow X(K+19)+X(K+38)+X(K+57)\)
IF(SUMF.LT..985.OR.SUMF.GT.1.15) WRITE(6,880) J.I.SUMF
880 FORMAT(3OH SUM OF FRACFIONS NE 1 IN Jil*i2i4,F10.2)
RETURN
END
```

PUNCTION RECT(Y,X,H,K)
2:X
IF(R.EQ.1) Z=0.5KX
RECT:Y\&ZHH
RETURN
END

```

Appendix A3 - A program for calculating the transmissivity of a greenhouse for the diffuse light
```

 DIMENSION X(2527)
 11=1805
 11:2527
 1 READ(5,700)RFSLP
 IF(RFSLP.LE,O,) STOP
 READ(5,800) (X(K),K=1,11)
 WRITE(6,850) (X(K),K=1,1!)
 TROIF=0.
 DO 2 M=2,20
 I=M-1
 SUM=0,5*AV(1,1,X,11)
 OO LE2,18
 J=L
 4 SUM=SUM+AV(J,1,X,1!)
 SUM=SUM+0,5HAV(19,1,X,11)
 SUM=SUM*0.0025HFLOAT(2*M)/18.
 IF(M.EO.20) SUM=0.5*SUM
 TROIFETRDIF*SUM
 WRITE(6,950) M,SUM,TRDIF
 2 CONTINUE
 WRITE(6,1000) RFSLP,TROIF
 GO TO 1
 700 FORMAT(F10.0)
800 FORMAT(0X,19F3.0)
850 PORMAT(IH ,19F6,2)
950 FORMAT(1H, 2HMz,13,3X,4HSUM=,F8,3,5X,6HTRDIF=,F8,3)
1000 FORMAT(1HO,11HROOF SLOPEE,F6.1,5X,6HTRDIFE,F9,3/1H1)
END

```
    FUNCTION AV(J,I, \(x, 11)\)
    DIMENSION X(2527)
    IF(II,EQ,2527) GO TO 10
    \(K=j+95 x(1-1)\)
        \(A V=x(K+19) \times x(K+57)+x(K+38) * x(K+70)\)
        SUMF \(=X(K)+X(K+19)+X(K+38)\)
        IF(SUMF.LT..985,OR.SUMF,GT.1.15) WRITE(0.880) J,I,SUMF
        RETURN
    \(10 K=J+133 \mathrm{~K}(1-1)\)
        \(A V=x(K+19) w x(K+76)+x(x+38) * x(K+95)+x(K+57) * x(K+114)\)
        SUMF \(=X(K)+X(K+19)+X(K+38)+X(K+57)\)
        IF(SUMF,LT. 985 , OR,SUMF,GT.1.15) WRITE(6,880) J,I,SUMF
    880 FORMAT ( 30 H SUM OF FRACTIONS NE 1 IN JII:I2l4,FIO,2)
        RETURN
        END

\section*{Appendix A4 - A program for the calculation of net assimilation of carbon dioxide in a greenhouse}
```

TITLE FHDTDSYNTHESIS IN GLASSHDUSE
\prime}\mathrm{ IIMENSIDN X(1805)
FIXED I,J,K,NIJMLL
METHDD RECT
TIMEF FINTIM=86400., FRIELL=21600., IIELT=300.
PAFAM START=0.
FFINT LTC,LTD,FSS,FSD,FSS4,CRC,CRD,LHC,LHD,SHC,SHD,IICRC, ICRD, ...
IIASC, IASD, IIAS4,FR1,FR2,FR3,TA,TFE,TR3,SNHSS.RAZ,HDLIR
MFCRED EHL,SHL,TL,NFHDT=TRFH(YIS.NIF,TF,FF,SLQPE,IIRYP)
FROCEIIURAL
ABSRFII=YIS+NIR
AMAX=FMAK1 (0.001, FFGEN(FMTE,TA))
IFLD=0.1 FMMFX
MFHDT = (AMAX+IULLD) (1. -EXF (-VIS EFFF/FMAX)) -INFLD
CDEDPF=ECDEC-FF-1.3-MFHDT/68.4
SRESL=(CDZDFP-RCDZI)*68.4/(RMAX1 (. 001,NHFHDT) -1.66)
IF(SRESL.GT.SFLU) GD TO 700
SRESL=SFlN
NFHDT=FMIN1 (NFHDT,68.4*(ECDEC-FCDE1)/(1.6S*SPW1+1.3*FA))
700 CONTINIJE
SRES=RESCN*SFESL/ (SPESL+FESC(1)
ENF=0.3*NFHOT
EHL=(SLDFE* (AESFAII-ENP) +IRYF)/((FA*0.G3+SRES)/RF*PSCH+SLDFE)
SHL=ARSFAII-EHL-ENP
TL=TA+SHL*FF/PHOCP
ENIMAC
FAFFM SRW=130.
PAPAM ECDEC=330.
PAFAM LFI =0.5
FAFAM ILONG=0.
FINCTIDN AMTB=0.,0.001,10.,10.,20.,40.,30.,40.
FAFAM FCDEI=210.
PAFAM EFF=0.48,FESCM=20010.
FAPAM SCY=0. \#,SCN=0.85
FAFAM HIDTH =0.05
INITIFL
MDSQRT
NIJMLL=LFI+1.
IL=LAI
ZISSN=0.1
SONI =SORT (1. -SCN)
SQSC=SQRT (1.-SCV)
REFNI = (1.-SONI)/(1.+SOMI)
REFLDV=(1.-SOSC)/(1.+SOSC)
RDRY=REFLDY
RDFV=REFLDY
RIIRN=PEFNI
RDFN=REFNI
PARAM PI=3.141592,SIGMF=5.668E-8,FAI=1.74532GE-2
KEL=0.7

```
```

 KDFY=0.95-KEL - SOSC+0.035
 KIFN=0.95*KEL*SONI +0.035
 XNLF=EXF (-KIIFN *IL)
 XVIFF=EXP(-KLIFV\bulletILL)
 XL=EXP(-KEL-IL)
 PFRFM LFTT=52.
SNLT=SIN(2.*FI*LFT/360.)
CSLT=CDS(2.*PI*LAT/SE0.)
I-COH ISK=O.
IF(ISW.GT.0.5) GD TD 60
ISM=1.
FERD(5.800) (X (K),K=1,1805)
800 FDFMAT (EX.19F3.2)
60 CDNTINUE
IMNHAMIC
HOUR=FMOL (T IME/3600. +STFFT, 24.)

- CFLCULATION OF SUN ALTITUNE
SNHSS=SNLT*SIN(PAD*IEC) +CSLT*CDS (PAII*IIEC) \&CDS(FAI* 15.* (HDUP+12 . . .
-[LDNG))
SNHS=FMAX.1(0.,SNHSS)
FLIS=180.ФRTHN (SNHS/SORT (1. -SNHS*SNHS)) /PI
KDR=0.5/FMAX1 (0.1,SNHSS)
KDRV=0.95*KLF-SOSC+0.0S5
KIIRN=0.950kIIR SONI +0.035
IEC=-23.4*CDS(2.*PI/3.5.*(DAY+10.))
FRFFM UPF=10.
TA=INTGFL(10., (TAE-TA)/3600.)
THE=INSH(SNHSS,10.,20.)
VPD=SYPA-VPA
SVFA=6.11*EXP(17.4*TA/(TA+239.))
SLDFE =17.4*SVPA/(TA+E゙39.)*(1.-TA/(TH+E39.))
FAFFM RHOCP=1240.,FSCH=0.67
PARAM WIND=.ご
RA=185.*SORT (WIDTH/WINI)*0.5
DRYF=VPIORHOCP/PA
PAFRM TRI=0.,TRLIF=0.G
\& MEANS SHAIIEII EY STRUCTURAL ELEMENTS
* MEANS LDLER TRASNMISSIVITY
* 3 MEANS HIGHER TRFNSMISSIVITY
* 4 MEFNS THAT TRANSMISSIVITIES RRE FVERAGED

```

```

 AZ=(180./PI) बRTAN (SAZ/SORT (1.-SRZ-SAZ))
 FFRRFM AZGH=0.

* THE RZIMUTG AZGH IS MEFSURED FLDNG THE GUTTERS UITH RESPECT TD THE SDU
TH
* TUPNING TO THH WEST IS POSITIVE
PAZ=AES (FMOI(RES (AZ-RZGH),180.)-90.)
FRDCEDURE FR1,FR2,FR3,TR2,TR3=GLFSH(SNHS,RAZ)
I=20.* (AMAXI(.075.SNHS)-0.025)
J=0.2\bullet(HBS (RAZ)+7.5)
K=I+95*(I-1)
FR1=X(K)
FRP=X(K+19)
FR3=X (K+38)
TR2=X(K+57)
TR.3=X(K+76)
ENIIPRD
TR4=SUMX(FR'1:3',TR'1,3')
FRDIF=FFGEN(FRDIFT,FLIS)

```
```

FUNCTION FRDIFT=0.,1.,5.,1.,15.,0.4,25.,0.3,90.,0.25
TRATM=EXP (-0.1/FMAX1 (0.05,SMHSS))
DIFDV=116.*SNHS*TRFTM
IIFCL=580.*SNHS*FRDIF*TRATM
SUNNCL=580.*SNHS* (1.-FRDIF) *TRRTM
FVDR'1,4'=(1.-RINRV)*SUNINCL*TR'1,4'*(1.-XVIIR)/INL
FNDR'1,4'=(1.-RDRN) -SUNDCL-TR'1,4'*(1.-XNIFR)/DL
VDIR''1,4'=(1.-SCV)*SUNDCL*TR'1,4'*(1.-XD)/IL
NDIR'1,4'=(1.-SCN)*SUNDCL*TR'1,4'*(1.-XD)/DL
VISDF=(1.-RIFV) -DIFCL* (1.-XVDF)/DL-TRDIF
NIRDF=(1.-FDFN) DIFCL*(1.-XNIF)/DL*TRDIF
VISDFD=VISDF-IIFQV/(IIFCL+NDT (IIFCL))
NIRDFG=NIRDF DIFGV/(DIFCL+NOT(DIFCL))* 0.7
VISF'1,4'=VISDF+FVDR'1,4'-VIIIR'1,4'
NIRF'1,4'=NIRLF+FNDR'1,4'-NDIR'1,4'
VPER'1,4'=(1.-SCV) SUNDCL -TR'1,4'/SNHSS
MPER'1,4'=(1.-SCN)*SUNDCL-TR'1,4'/SNHSS
FSR= (1.-X,D)/(DL-KDR)
PHOT'1,4'=0.
SHLL'1,4'=0.
LHLL'1,4'=0.
LT'1;4'=0.
LTD=0.
ASD=0.
SHO=0.
LHD=0.
XD=EXP(-KDR*DL)
XNIR=EXP (-KIRN-IL)
XVDR=EXP (-K.IRVY DL)
NOSURT
IF(SNHSS.LT.O.) GD TO 100
10 154 I=1,NUMLL
DD 260 SN=1,10
SNINC=-0.015+0.1*SN
VIS'1,4'=VISF'1,4'4VPER'1,4'*SNINC
NIR'1,4'=NIRF'1,4'+NPER'1,4'\&SNINC
LH'1,4',SH'1,4',LTS'1,4',PH'1,4'=TRPH(VIS'1,4',NIR'1,4',TA,RH....
, SLOFE,DRYP)
SHLL'1,4'=SHLL'1,4'+ZISSN*SH'1:4'*FSR
LHLL'1,4'=LHLL'1,4'+ZISSN*LH'1,4'*FSR
PHOT'1,4'=PHDT'1,4'+ZISSN*PH'1,4'\&FSR
LT'1,4'=LT'1,4'+LTS'1,4'*FSR*ZISSN
260 CONTINHE
LHS,SHS,LT5, PHS=TRPH(VISDFD,NIRDFD,TA,FA,SLDPE, IRYP)
LHD=LHO+LHS
SHO=SHO+SHS
ASD=ASO+FHS
LTO=LTO+LT5
LH'1,4',SH'1,4',LTS'1,4',FH'1,4'=TRFH(VISF'1,4',NIRF'1,4',TH,...
RA,SLDPE,DRYP)
SHLL'1,4'=SHLL'1,4'+(1.-FSR) -SH'1,4'
LHLL'1,4'=LHLL'1,4'+(1,-FSR)*LH'1.4'
PHOT'1:4'=PHOT'1,4'+(1.-FSR) \&FH'1,4'
LT'1,4'=LT'1,4'+(1.-FSR)*LTS'1,4'
FSR=FSR*XD
VISDF=VISDF\odotXYDF
NIRDF=NIRDF XNDF
VISDFD=VISDFD*XVDF
MIRDFD=NIRDFD*XNDF
FVDR'1,4'=FVDR'1,4'*XVDR

```

FNDR'1,4'=FNDR'1,4'\&XNIR
VDIR' \(1,4^{\prime}=\) VAIR' \(1,4^{\prime} * \times D\)
NDIF' \(1,4^{\prime}=\) NIIR \(^{\prime} 1,4^{\prime} \bullet\) XD
VISF' \(1,4^{\prime}=\) VISIF \(^{\prime}\) FFVIR' \(1,4^{\prime}-\) VDIR \(^{\prime} 1,4^{\prime}\)
NIRF'1,4'=MIRIF+FNDR'1,4'-NIIR'1,4'

LHLL' \(1,4^{\prime}=\) LHLL' \(1,4^{\prime} \rightarrow\) DL
PHOT'1,4' \(=\) FHOT'1,4' IIL \(^{\text {IIL }}\)
LT'1,4'=LT'1,4'/NIIMLL
LHD=LHD* IIL
SHD=SHD•IL
ASD=ASD*DL
LTD=LTD MUMLL
\(L T C=S U M X\left(F R^{\prime} 1,3^{\prime} \cdot L T^{\prime} 1,3^{\prime}\right)\)
ASC \(=\) SUMX(FR'1, \(3^{\prime}\), FHDT' \(^{\prime} 1,3^{\prime}\) )
SHC \(=\) SUMX(FR'1, \(3^{\prime}\), STILL'1, \(3^{\prime}\) )
LHC \(=\) SUMX (FR'1, \(3^{\prime}\), LHLL'1, \(3^{\prime}\) )
AS \(4=\) FHOT 4
\(C R C=2 . *(S U N I C L+\) IIFCL)
\(C R D=1.7-11 F D V\)
GO TO 101
100 ASC \(=-0.1\) คAFGEN (AMTE, TA) \(~ \& A I\)
\(\mathrm{FS} 4=\mathrm{HSC}\)
\(A S G=A S C\)
\(\mathrm{SHC}=0\).
\(L H C=0\).
\(C R C=0\).
\(C R D=0\).
101 CONTINUE
DCRC \(=1 N T G R L\) ( \(0 .\), CRC)
ICRD \(=\) INTGRL ( \(0 .\), CRD)
DASC=INTGRL (0. PHSC/3600.)
DASD \(=1\) NTGRL ( \(0 .\), FASD \(/ 3600\).
DAS \(4=1\) NTGRL ( 0.9 AS4/3600.)
PARAM DAY= \((-10,20 \leqslant 10\).
END

\section*{RODF SLDPE IS 15 DEGREES}
.30 .45 .46 .46 .54 .65 .70 .77 .70 .78 .77 .74 .69 .68 .70 .74 .79 .84 .86
.65 .53 .54 .54 .02 .04 .06 .06 .07 .02 .01 .26 .31 .32 .30 .26 .21 .01 .14
.05 .02 .00 .00 .43 .31 .25 .17 .23 .20 .23 .00 .00 .00 .00 .00 .00 .15 .00
.69 .69 .68 .68 .16 .15 .13 .11 .09 .07 .05 .54 .51 .48 .44 .39 .35 .18 .24
.89 .89 .00 .00 .67 .66 .65 .63 .62 .59 .57 .01 .00 .00 .00 .00 .00 .30 .00
.44 .57 .56 .60 .61 .61 .57 .61 .58 .58 .57 .54 .55 .62 .66 .70 .70 .68 .65
.17 .10 .09 .05 .06 .03 .02 .01 .41 .42 .43 .46 .45 .38 .34 .02 .04 .09 .35
.39 .34 .35 .34 .33 .36 .41 .38 .00 .00 .00 .00 .00 .00 .00 .28 .26 .23 .00
.15 .15 .14 .13 .12 .11 .09 .07 .67 .66 .64 .61 .59 .56 .52 .20 .25 .30 .35
.73 .73 .73 .72 .72 .71 .70 .69 .00 .00 .00 .00 .00 .00 .00 .49 .45 .40 .00
.35 .43 .45 .45 .45 .45 .44 .45 .45 .48 .52 .54 .56 .58 .59 .59 .60 .61 .57
.01 .01 .55 .55 .55 .55 .56 .55 .55 .52 .48 .46 .01 .02 .05 .08 .11 .15 .43
.63 .56 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .43 .40 .36 .33 .29 .25 .00
.09 .09 .77 .76 .76 .75 .74 .73 .72 .71 .69 .67 .16 .22 .27 .32 .36 .41 .45
.77 .77 .00 .00 .00 .00 .00 .00 .00100 .00 .00 .65 .62 .60 .57 .53 .49 .00
.22 .31 .36 .37 .38 .40 .40 .43 .46 .47 .49 .51 .50 .51 .52 .52 .52 .53 .50
.78 .69 .64 .63 .62 .60 .60 .57 .54 .01 .02 .04 .06 .08 .11 .13 .15 .18 .50
.00 .00 .00 .00 .00 .00 .00 .00 .00 .52 .49 .45 .44 .40 .37 .34 .33 .29 .00
.80 .80 .79 .79 .79 .78 .78 .77 .76 .16 .20 .24 .29 .33 .38 .42 .46 .50 .54
.00 .00 .00 .00 .00 .00 .00 .00 .00 .75 .73 .72 .70 .68 .66 .63 .60 .57 .00
\(.28 .34 .34 .37 .37 .40 .39 .42 \cdot 42.43 \cdot 44.47 .47 .46 \cdot 47.47 \cdot 46 \cdot 47.44\) ．72．66．65．01．01．02．02．03．014．05．06．01．11．12．14．16．19．22．56 \(.00 .015 .00 .63 .62 .58 .58 .55 .54 .52 .49 .45 .43 .42: 39.36 .35 .30 .00\) ．82．82．82．12．14．16．19．22．25．29．32．36．40．44．48．51．55．58．61 ．00．00．00．82．81．81．80．80．79．78．77．76．74．73．71．69．66．64． 00 \(.27 .32 .33 .34 \cdot 35.36 .38 .39 .40 .41 .42 .43 .42 \cdot 44 \cdot 43.43 .42 .42 .40\) ．07．06．05．05．06．06．07．07．08．09．11．13．14．15．18．19．22．24．60 .67 .63 .62 .60 .58 .58 .55 .54 .52 .50 .47 .45 .44 .41 .39 .39 .36 .34 .00 ．24．24．25．26．27．29．32．34．37．40．43．46．50．53．56．59．62．65．67 ．84．84．84．83．83．83．82．82．81．81．80．79．78．76．75．73．71．69． 00 ．25．29．30．32．32．35．35．36．37．37．39．39．39．39．39．38．39．39．36 ．11．10．10．10．10．11．12．12．12．14．15．16．18．19．21．23．25．28．64 \(.64 .61 .60 .58 .57 .55 .53 .53 .51 .49 .47 .45 \cdot 44 \cdot 42 \cdot 41.39 .37 .33 .00\) \(.36 .37 \cdot 37.38 .39 .41 \cdot 43.45 .47 .50 .53 \cdot 55.58 .61 \cdot 63.66 \cdot 68.70 .72\) ．85．85．85．85．85．84．84．84．83．83．82．81．80．79．78．77．75．74． 00 ．24．27．30．30．32．32．34．34．35．36．36．35．36．36．36．37．36．36．34 －15．14．13．14．14．14．14．15．16．17．18．19．21．22．24．25．26．2＇9．66 ． \(61.58 .57 .56 .54 .53 .51 .5 \mathcal{E} \cdot 49.47 .46 .46 .43 .42 .40 .38 .37 .35 .00\) \(.47 .47 .48 .49 .50 .51 .53 .54 .56 .58 .61 .63 .65 \cdot 67.69 .71 .73 .74 .76\) ．86．86．86．86．86．86．85．85．85．84．84．83．83．82．81．80．79．77． 00 ．23．27．27．28．29．30．32．32．32．33．33．34．34．34．34．34．33．34．31 －18．17．17．18．18．17．18．18．19．19．21．21．23．24．25．27．29．31．69 ．59．56．55．54．53．52．51．50．49．48．46．45．44．42．41．39．38．36． 10 ．57．57．57．58．59．60．61．62．64．65．67．69．70．72．74．75．77．78．79 ．87．87．87．87．87．87．86．86．86．86．85．85．84．84．83．82．81．80．00 ．22．25．25．27．28．29．29．30．30．31．31．32．31．32．32．32．32．31．31 ．21．20．20．21．20．20．21．21．そこ．22．22．23．24．25．28．28．30．32．69 ．57．55．54．52．52．51．49．49．48．47．47．44．44．43．40．40．38．37．00 ．64．64．65．65．66．67．68．69．70．71．72．74．75．76．78．79．80．81．82 ．88．88．88．87．87．87．87．87．87．87．86．86．85．85．85．84．83．82．00 ．21．24．24．26．26．27．28．28．29．30．30．29．30．30．30．30．30．31．28 ．24．23．23．23．23．22．23．23．23．24．25．26．27．28．29．30．31．33．72 .54 .54 .53 .52 .51 .51 .50 .49 .48 .46 .46 .45 .43 .42 .42 .4140 .46 .00 ．71．71．71．71．72．72．73．74．75．76．77．78．79．80．81．81．82．83．84 ．88．88．88．88．88．88．88．88．87．87．87．87．87．86．86．85．85．84． 00 ．21．23．25．25．25．26．27．27．27．27．28．28．28．28．28．28．28．29．27 ．26．25．25．24．24．25．24．25．25．25．26．27．28．29．30．32．33．34．73 ．53．52．51．51．50．49．49．48．48．47．46．45．43．42．42．41．39．38． 00 ．76．76．76．76．77．77．78．78．79．79．80．81．82．82．83．84．84．85．85 ．88．88．88．88．88．88．88．88．88．88．88．88．87．87．87．86．86．86． 00 ．20．²2．23．24．25．25．25．26．27．26．26．26．28．27．26．27．27．27．26 ．27．27．26．27．26．27．27．26．26．28．28．29．29．30．32．33．35．35．74 ．52．51．51．49．49．48．49．48．47．46．46．45．43．43．42．40．39．38． 00 .80 .80 .80 .80 .80 .81 .81 .81 .82 .82 .83 .83 .84 .84 .85 .85 .86 .86 .86 .89 .89 .89 .89 .89 .89 .89 .88 .88 .88 .88 .88 .88 .88 .87 .87 .87 .87 .00 ．20．22．22．22．24．24．24．24．25．26．25．26．27．25．26．25．26．26．24 ．30．29．28．28．28．29．28．28．29．28．29．30．31．32．33．35．35．74．76 .50 .49 .49 .50 .49 .47 .48 .47 .47 .46 .46 .44 .42 .43 .41 .40 .39 .00 .00 ．83．83．83．83．83．83．84．84．84．84．85．85．85．86．86．86．87．87．87 ．89．89．89．89．89．89．89．89．89．89．88．88．88．88．88．88．88．00． 00 －19．21．21．22．22．23．23．23．24．24．24．24．24．25．24．25．25．25．23 \(.32 .29 .30 .30 .30 .30 .30 .31,30.31 \cdot 32.32 .33 \cdot 32 \cdot 34 \cdot 35.75 .75 .77\) ． 49.50 .50 .49 .48 .47 .47 .46 .46 .45 .45 .44 .43 .43 .42 .40 .00 .00 .00 .85 .85 .85 .85 .85 .85 .85 .86 .86 .86 .86 .87 .87 .87 .87 .87 .88 .88 .88 ．89．89．89．89．89．89．89．89．89．89．89．89．89．89．88．88．00．00． 10 －19．20．20．21．21．21．22．22．22．23．22．23．22．23．23．24．23．24．22 ．32．32．32．32．32．33．32．32．34．32．34．33．34．35．35．36．38．76．78 ． 49.48 .48 .47 .47 .46 .46 .47 .44 .45 .45 .44 .44 .43 .42 .41 .39 .00 .00 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87 .88 .88 .88 .88 .88 .88 .88 .88 ．89．89．89．89．89．89．89．89．89．89．89．89．89．89．89．89．89．00． 00

\section*{Appendix B1 - An input example for Program A1}

FORMAT specifications of the input data
An example of the input data make-up for Program A1 is given in Table B1, and the corresponding greenhouse geometry and the arrangement of the structural members are shown in Figs B1 and B2, respectively. In the following explanations, item number \(n\) in parenthesis corresponds to the \(n\)th input data card in Table B1. All input variables having the dimension of length are expressed in metres and the angle in degrees.
(1) The length of the greenhouse, HLENGT, and the range of calculation along the length, HLX1 and HLX2 in this order, within which the light transmissivities should be averaged to get a space avereaged transmissivity, where \(0 \leq H L X 1<H L X 2<H L E N G T\); FORMAT(3F10.0). Thus the calcutation need not be done for the whole length of the house.
(2) The range of calculation as for the width of the greenhouse, HLY1 and HLY2 in this order; FORMAT (2F10.0). The calculation need not be done in the whole range of the width, instead, it can be done in the range from HLY1 to HLY2, where \(0<\) HLY \(1<\) HLY \(2 \leq w i d t h\) of the house.
(3) The number of spans, KSPAN, the number of divisions, KDIV, for one span at each of which the light transmissivities should be averaged, and the height of the side walls HSIDE; FORMAT ( \(215, \mathrm{~F} 10.0\) ). Each span of the house is divided into KDIV segments across the width and the light transmissivities on the floor are averaged at each of the divisions in the range
\begin{tabular}{lrrrrrr} 
Table B1 & & & & & \\
\hline\((1)\) & & 98.0 & 46.55 & 51.45 & & \\
\((2)\) & & 0.01 & 3.99 & & & \\
\((3)\) & 1 & 1 & 2.2 & & & \\
\((4)\) & 2.2 & 24.62 & & & \\
\((5)\) & 0.03 & 0.03 & 0.04 & 0.04 & 0.68 & 0.45 \\
\((6)\) & 0.03 & 0.03 & 0.04 & 0.05 & 0.68 & 0.45 \\
\((7)\) & 0.10 & 0.08 & 2.37 & & & \\
\((8)\) & 0.003 & & & & & \\
\((9)\) & 8000 & & & & & \\
\end{tabular}


Fig. B1
from HLY1 to HLY2. The product of KSPAN and KDIV must be less than 300 to meet the DIMENSION limitation of the corresponding ARRAY variables in the program.
(4) The width of the roof, \(R R\), and the slope of the roofs, \(A A A\); FORMAT (2F10.0). All the spans are assumed to have the same crosssection and to have even roofs. The side walls and gable ends are assumed to be vertically constructed to the ground. Thus, the whole width of the house should be equal to \(2 * K S P A N * R R * C O S(A A A)\). (5) The thickness of horizontal AHH and non-horizontal AHW structural members, the width of horizontal BHH and non-horizontal BHW structural members, and the width GHH and length GHW of each glass pane for the roofs and side walls (see Fig. B2); FORMAT(6F10.0). The following relationships should hold between the input data:
HSIDE \(=k^{*}(\mathrm{BHH}+\mathrm{GHH})+\mathrm{BHH}\)
\(\mathrm{RR}=\mathrm{m}^{*}(\mathrm{BHH}+\mathrm{GHH})+\mathrm{BHH}\)
HLENGT \(=n^{*}(\) BHH + GHW \()+\) BHW
where \(k, m\), and \(n\) are arbitrary integer numbers.
(6) The thickness of horizontal AHHX and vertical AHWX structural members, and the width GHHX and length GHWX of each glass pane at the gable ends; FORMAT(6F10.0). The following relationship should hold between the input data:
the width of one span \(\left(=2 * R R^{*} \operatorname{COS}(A A A)\right)=m^{*}(B H H X+G H H X)+B H H X\) where \(m\) is an arbitrary integer number.
(7) The thickness SAHH and width SBHW of the main structural


\section*{SIDES AND ROOFS}


Fig. B2
members (which are supposed to be thicker and wider than those specified on the fifth and sixth input data cards) a distance of SGHW apart along the side walls and roofs. The same main structural members are assumed to be placed vertically along the joints of the spans at the interval of SGHW. The crosses in Fig. B1 indicate the places where the vertical main structural members are positioned.
(8) The thickness of the glass pane GL; FORMAT(FiU.U), which is used to calculate the transmissivity of the glass pane as a function of incidence angle.
(9) The total number of random numbers used in the calculation of the average transmissivity of the greenhouse at each time step IRLAST; FORMAT (I5). For each division (with the width of \(\left.2 * R R^{*} \operatorname{COS}(A A A) / K D I V\right)\) on the floor, more than about 2000 and less than 10000 random numbers are usually required to get

An example of the input data make-up for Program A2 is given in Table B2. In the following explanations, item number \(n\) corresponds to the \(n\)th input data card given in the table. (1) The slope of roofs in degrees, RFSLP, and the transmissivity of the house for diffuse light, TRDIF; FORMAT(2F10.0). (2 - \(n+1\) ) Transmissivities of the house as a function of solar altitude and relative solar azimuth X(I); FORMAT(6X, 19F3.0). The value of II given on the fourth line in the program should be changed into an appropriate number according to the number of the corresponding data. The value is usually 1805 (= \(19 \times 19 \times 5\) ) for a multispan house and is 2527 (= \(19 \times 19 \times 7\) ) for a single-span house. In Program A1, the transmissivities are calculated for 19 solar altitudes and 19 relative azimuths, and five or seven values are given for each combination of solar altitude and relative azimuth, showing the spatial light distribution in the house as follows: FR1 the fraction of the floor area shaded by the structural members,
TR2 the second lowest transmissivity for the direct light (The lowest is always zero where no direct light is received by that fraction of the floor area.).
FR2 the fraction of the floor area with the transmissivity of TR2,
TR3 the third lowest transmissivity for the direct light, FR3 the fraction of the floor area with the transmissivity of TR3,
TR4 FR4 \((n+2)\) The time interval for integration in hours to get the daily light integral \(G\); FORMAT(F10.0). A value between 0.4 and 1.0 is adequate. \((n+3, n+4)\) The monthly average of daily total light (300-400 nm) outside, TSL, from January to December in this order ( \(\mathrm{J} \mathrm{m}^{-2}\) day \(^{-1}\) ); FORMAT (8F10.0).
\((n+5)\) The latitude of the place where the greenhouse is built, PHA1, the house orientation, ORIT, the month, M1, and the day, M2, from which the simulation starts, the month, M3, and the day, M4, at which the simulation ends, and the increment of the day, MINT: FORMAT (2F10.0, 5I5). The value of ORIT should be zero
Table B2

for E-W orientation and be 90.0 for \(N-S\) orientation, and intermediate values for intermediate orientations.
The same kind of data cards should follow in the same FORMAT specification if you want to get the output for different ORITs or different dates in succession. If the value of zero is given to PHA1, the simulation will stop.

\title{
Appendix B3 - An output example for Program A1
}

A part of the output example for Program A1 is shown in Table B3. The transmissivities are calculated every five degrees of relative solar azimuth from \(0^{\circ}\) to \(90^{\circ}\), and every 0.05 of sine of solar altitude (SIN(H)) from 0.075 to 0.975 and are given in tabular form.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & 0 & 5 & \[
\underset{10}{A Z I M U}
\] & \[
\begin{gathered}
\mathrm{H}_{15}^{O F}
\end{gathered}
\] & \[
\begin{array}{r}
\text { THE } \\
20
\end{array}
\] & \[
\underset{25}{\text { SUN } R}
\] & \[
\begin{gathered}
\text { RELATIV } \\
30
\end{gathered}
\] & \[
\text { E } 30
\] & \[
\begin{array}{r}
\text { THE } \\
40
\end{array}
\] & \[
\begin{aligned}
& \text { HOUSE } \\
& 45
\end{aligned}
\] & \[
\begin{gathered}
\text { ORIE } \\
50
\end{gathered}
\] & \[
\begin{gathered}
\text { TAT1 } \\
55
\end{gathered}
\] & 60 & 65 & 70 & 75 & 80 & 85 & 90 \\
\hline & & FR1 & 19 & 21 & 21 & 21 & 21 & 23 & 24 & 24 & 24 & 26 & 27 & 28 & 35
65 & \[
36
\] & \[
\begin{aligned}
& 40 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & 61
1 & 80
5 & \[
\begin{aligned}
& 88 \\
& 12
\end{aligned}
\] \\
\hline \(\operatorname{SiN}(H)=\)
\(\operatorname{SiN}(H)=\) & 0.100
0.100 & FR2 & 81 & 79 & 79 & 79 & 79 & 77 & \[
76
\] & 76 & 76 & 74 & \[
73
\] & 72 & 65 & 64 & 60 & 50 & \(3{ }^{1}\) & 5
15 & 12
0 \\
\hline \(\operatorname{SiN}(H)=\) & 0.100 & FR3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 808888 & 0
88 & 87 & 80 & 83 & 80 & 75 & 67 & 56 & 30 & 22 & 23 \\
\hline Sin(H) \(=\) & 0.100 & TR2 & 89 & 89 & 89 & 89 & 8 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 41 & 32 & 0 \\
\hline \(\operatorname{Sin}(H)=\) & 0.100 & TR3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & & & \\
\hline & & & & 18 & 18 & 18 & 20 & 20 & 21 & 23 & 27 & 28 & 29 & 29 & 32 & 34 & 40 & 50 & 59 & 70 & 69 \\
\hline \(\operatorname{SiN}(\mathrm{H})=\) & 0.150 & FRI & 16 & & 82 & 82 & 80 & 80 & 79 & 77 & 73 & 72 & 71 & 71 & 68 & 66 & 60 & 2 & 25 & 3 & 31 \\
\hline SIN(H) = & 0.150 & FR2 & 84 & 82 & 82 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 48 & 16 & 18 & 0 \\
\hline \(\sin (H)=\) & O. 150 & FR3 & 0 & 0 & 0 & c
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 & 26 & 3 \\
\hline SIN(H) = & 0.150 & FR4 & 0 & 0 & 0 & 89 & 89 & 89 & 89 & 88 & 88 & 87 & 85 & 83 & 80 & 75 & 67 & 54 & 41 & 22 & 34 \\
\hline SIN(H) = & 0.150 & TR2 & 89 & 89 & 89 & 89 & 89 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 56 & 48 & 25 & 0 \\
\hline S \(\operatorname{SN}(H)=\) & 0.150 & TRS & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 41 & 0 \\
\hline SIN(H) & 0.150 & TR4 & 0 & 0 & 0 & 0 & 0 & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Appendix B4 - An output example for Program A2}

A part of the output example is shown in Table B4. The output variables can be classified into three groups. The meanings of the output variable names in each group are listed below:
(1) Current values at the Kth time step
\(K\) the sequential number of the time step counting from the sunrise time on the day in question
TIME true solar time of the day
DRP direct visible solar light (400-700 nm) outside for clear days ( \(W \cdot \mathrm{~m}^{-2}\).)
DIFOV diffuse visible solar light outside for overcast days HH solar altitude
AA solar azimuth
(2) Current values at each division on the floor at the Kth time step (Some of them are not printed out in the example) IYY sequential number of the division in question on the floor counting from one of the side walls
SPERTR total number of direct light rays actually used at the IYYth division
STPERT number of the direct light rays intercepted by the structural members from transmitting at the IYYth division
STPY average transmissivity for the direct light at the IYYth division
PERY ratio of shaded area due to the structural members to the area of the IYYth division (= STPERT/SPERTR)
SPACE space averaged transmissivity of the house for the direct light
CAD space averaged direct light intensity in the greenhouse for clear days ( \(=\) SPACE * DRP)
CAT space averaged total light intensity in the greenhouse for clear days ( \(=\) CAD + TRDIF * DSH)
(3) Daily integrals and cumulative values of the daily integrals

DRO daily integral of DRP
DFO daily integral of DSH
TDIF daily integral of DIFOV
DDD daily integral of (DRO + DFO)
DAPE daily averaged transmissivity at the IYYth division
of the direct light for clear days

DPE daily averaged transmissivity at the IYYth division of the total light for clear days
DAVTYP space averaged daily transmissivity of the direct light for clear days
TTOTAL space averaged daily transmissivity of the total light for clear days
YTD cumulative value of DRO during the specified period
YTT cumulative value of DDD during the specified period
ATT
ADT daily integral of the total light on the day in question outside, calculated from the input data, TSL
ATI cumulative value of ADT
ATRT daily integral of the total light in the greenhouse TATRT cumulative value of ATRT
FOV fraction of overcast (= (DDD - ADT)/(DDD - TDIF))
LATITUDE DF THE PLACE WHERE THE HOUSE IS RUILT
HOUSE ORIENTATION


ROL \(=0.3557 E\)
\(0.1498 E 03\)
\(0.4946 E 06\) \(0.6921 E 06\) ADT \(=\)
\(0.7491 E 03\) TATRT \(=\)


\footnotetext{
\(\begin{aligned} C A T & =0.86606 E ~ O 2 \\ \text { DIFOV }= & 34 . \\ C A T & =0.82588 E \quad 02\end{aligned}\)
}

DIFOV \(=1627806 \mathrm{C} 02\)


( \(\quad \mathrm{yH}\) ) NOZ 35
 \begin{tabular}{c}
11 \\
\multicolumn{1}{c}{\(\sim\)} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{tabular}


\section*{Appendix C - List of symbols}
\begin{tabular}{|c|c|c|}
\hline a & Growth rate per leaf area index & \(\mathrm{kg} \mathrm{m} \mathrm{m}^{-2} \mathrm{~d}^{-1}\) \\
\hline A & Azimuth of the sun & \\
\hline \(A D\) & Average daily transmissivity for direct light & \\
\hline ADT & Actual daily light integral & \(J m^{-2} d^{-1}\) \\
\hline ATRT & Actual daily light integral inside the greenhouse & \(J m^{-2} d^{-1}\) \\
\hline CLT & Daily light integral for a clear day & \(J m^{-2} d^{-1}\) \\
\hline DIFOV & Diffuse light intensity outside on a standard overcast day & \(J m^{-2} s^{-1}\) \\
\hline DRP & Direct light intensity outside on a standard clear day & \(J \mathrm{~m}^{-2} \mathrm{~s}^{-1}\) \\
\hline DSH & Diffuse light intensity outside on a standard clear day & J \(\mathrm{m}^{-2} \mathrm{~s}^{-1}\) \\
\hline \(\bar{F}\) & Daily total of net \(\mathrm{CO}_{2}\)-assimilation & \(\mathrm{kg} \mathrm{m} \mathrm{m}^{-2} \mathrm{~d}^{-1}\) \\
\hline \(\mathrm{F}_{\mathrm{d}}\) & \(F_{\mathrm{n}}\) in the dark & \(\mathrm{kg} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}\) \\
\hline \(F_{m}\) & \(F_{n}\) under light saturation & \(\mathrm{kg} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}\) \\
\hline \(\mathrm{F}_{\mathrm{n}}\) & Net \(\mathrm{CO}_{2}\)-assimilation per leaf area. & \(\mathrm{kg} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}\) \\
\hline \(\mathrm{F}_{\mathrm{Cl}}\) & Net \(\mathrm{CO}_{2}\)-assimilation per ground area under a clear sky & \(\mathrm{kg} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}\) \\
\hline \(\mathrm{F}_{\text {OV }}\) & Net \(\mathrm{CO}_{2}\)-assimilation per ground area under an overcast sky & \[
\mathrm{kg} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}
\] \\
\hline \(F_{\text {sh }}\) & Net \(\mathrm{CO}_{2}\)-assimilation of shaded leaves per ground area & \(\mathrm{kg} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}\) \\
\hline \(\mathrm{F}_{\text {Su }}\) & Net \(\mathrm{CO}_{2}\)-assimilation of sunlit leaves per ground area & \(\mathrm{kg} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}\) \\
\hline f & Fraction overcast & \\
\hline FRDI & Fraction of diffuse light outside & \\
\hline h & Inclination or altitude & \\
\hline H & Altitude of the sun & \\
\hline H & Harvestable dry matter & \(\mathrm{kg} \mathrm{m} \mathrm{m}^{-2}\) \\
\hline I & Index of the sun's altitude & \\
\hline \(I\) & Number of light rays to be traced in the progra & ram \\
\hline J & Index of the sun's relative azimuth & \\
\hline J & Number of divisions in the width of a span & \\
\hline K & Total number of glass panes & \\
\hline K & Extinction coefficient for total light under direct irradiation, in a plant canopy & \\
\hline \(\mathrm{K}_{\mathrm{b}}\) & Extinction coefficient for direct radiation in a plant canopy & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline LAI & Leaf area index \(\mathrm{m}^{2}\) lea & \(m^{2}\) leaf \(m^{-2}\) ground \\
\hline m & \multicolumn{2}{|l|}{Number of azimuth zones} \\
\hline n & \multicolumn{2}{|l|}{Number of altitude zones} \\
\hline n & \multicolumn{2}{|l|}{Number of rays, intercepted by a strut} \\
\hline OVT & Daily light integral for an overcast day & \(J \mathrm{~m}^{-2} \mathrm{~d}^{-1}\) \\
\hline p & Specific leaf weight & \(\mathrm{kg} \mathrm{m}{ }^{-2}\) \\
\hline \({ }_{\mathrm{R}}^{\mathrm{V}}\) & Absorbed visible radiation per leaf area & \(\mathrm{J} \mathrm{m}^{-2} \mathrm{~s}^{-1}\) \\
\hline \(\mathrm{R}_{\mathbf{S}}\) & \(R_{v}\) for shaded leaves & \(\mathrm{J} \mathrm{m}^{-2} \mathrm{~s}^{-1}\) \\
\hline \(\mathrm{R}_{\mathrm{v}, \mathrm{b}}\) & \(R_{v}\) originating from direct light, averaged over all leaves & \(\mathrm{J} \mathrm{m}^{-2} \mathrm{~s}^{-1}\) \\
\hline \(\mathrm{R}_{\mathrm{V}, \mathrm{C}}\) & Absorbed diffuse visible radiation & \(J \mathrm{~m}^{-2} \mathrm{~s}^{-1}\) \\
\hline \(\mathrm{R}_{\mathrm{v}, \mathrm{d}}\) & Absorbed direct visible radiation (sunlit leaves) & \(\mathrm{J}^{-2} \mathrm{~s}^{-1}\) \\
\hline \[
\overline{\mathrm{R}}_{\mathrm{s}}^{\mathrm{v}, \mathrm{~d}}
\] & \({ }^{R}{ }_{v} d^{\prime}\) averaged over all leaves Fraction of sunlit leaves & \\
\hline S & Visible radiative flux on a horizontal surface & J \(\mathrm{m}^{-2} s^{-1}\) \\
\hline \(S_{b}\) & Direct visible radiative flux & J \(\mathrm{m}^{-2} \mathrm{~s}^{-1}\) \\
\hline \(S_{p}\) & Direct visible radiative flux, through a surface perpendicular to the solar beam & \(\mathrm{J} \mathrm{m}^{-2} \mathrm{~s}^{-1}\) \\
\hline \(t\) & Index of sine of incidence & \\
\hline t & Time, also time required for harvesting & \\
\hline T & Transmissivity of the greenhouse for direct light & \\
\hline TRAM & Atmospheric transmission coefficient & \\
\hline TRDIF & Transmissivity of the greenhouse for diffus light & \\
\hline TT & Transmissivity of the greenhouse for total light & \\
\hline X & Distance along the length of the house & \\
\hline Y & Distance over the width of the house & \\
\hline \(\varepsilon\) & Maximum efficiency of light utilization for \(\mathrm{CO}_{2}\)-assimilation & \(\mathrm{kg} \mathrm{J}{ }^{-1}\) \\
\hline \(\rho\) & Reflection coefficient of the plant canopy & \\
\hline \(\sigma_{v}\) & Scattering coefficient of the leaves for visible radiation & \\
\hline
\end{tabular}```


[^0]:    grated direct light in Tokyo and Amsterdam, respectively, during the period from 20 December to 1 July. The transmissivities for the rest of the year are symmetrical with respect to 22 December (the winter solstice). The calculation of transmissivity was confined to the central part of a 11-span house so that effects from the sides and ends would be negligible except when the sun's altitude is very low. The transmissivity would then approach that of a multispan house with an infinite number of spans with an infinite lenght.
    In Tokyo, around the shortest day the E-W multispan transmits 59\% of daily direct light compared with $50 \%$ from the identical structure orientated $N-S$. But the transmissivity of the E-W house coincides with that of N-S house on 20 February and the position is reversed afterwards. The advantage of an $E-W$ over a N-S orientation, therefore, exists only between 20 October

