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1 Introduction 

With the rising world population and the increased value of food 
and fiber production, the losses due to agricultural pests have 
become intolerable. This situation has been aggravated by the 
spread of resistance to chemical biocides and the resultant failure of 
many pest control systems developed over the last 25 years. This has 
led to the emergence of more sophisticated pest control 
methodologies and their incorporation into systems of pest manage­
ment. 

There are three basic components of any pest management sys­
tem: a monitoring component which provides data, a decision­
making component which determines a control strategy based on 
the monitoring results, and an action component which implements 
the control decision. In previous types of control systems these 
components often have operated in an 'open-loop' fashion. That is, 
relevant states of the crop ecosystem were sensed, a control decision 
made, and then implemented with only limited concern for long-
range effects. Pest management recognizes that these components 
interact within the context of a complete agro-ecosystem. This 
results in a 'closed-loop' system as shown in Fig. 1. The closed-loop 
topology clearly suggests that control is an ongoing process where 
today's actions can influence tomorrow's conditions for good or for 
ill. 

This realization has resulted in a clear need for new types of 
analysis to cope with management system design (National 
Academy of Sciences, 1969; Luckmann & Metcalf, 1975; Tummala, 
1976). Various authors have grappled with pieces of the problem. 
Headley (1971) and, later, Hall & Norgaard (1973) examined the 
relation between population biology and control in a deterministic 
sense. Others, particularly Carlson (1969a, 1969b, 1970,1971) have 
dealt with stochastic and Bayesian approaches to decision making. 
As yet there has been little analysis of modern monitoring systems 
for pest management with the exception of physical factors in the 
environment (e.g., Haynes et al. 1973). 

The purpose of this monograph is to present an encompassing 
technique for the design and analysis of biological monitoring 
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Fig. 1. A simplified block diagram of a closed-loop management system. 

systems. Of necessity, monitoring activities must be considered in 
the context of the entire management system since it is impossible to 
know how useful data are without knowing their intended uses. 

Fig. 1 suggests four classes of factors which, among them, describe 
a management system. They are: biological processes within the 
agro-ecosystem, stochastic features of the system being observed 
and of the monitoring component, the economics of monitoring and 
decision making, and the time delays of the entire control loop. The 
biological input specifies the dynamics of the system being control­
led while economics is required to describe the objective function 
(i.e., goal) of the control process. The quality of the information on 
which decisions are based can only be assessed if the stochastic 
elements of the system are understood. Finally, the dynamics of the 
complete closed-loop system cannot be specified unless the time 
delays of the management process are known. 

The basic ideas behind this monograph emerged in the period 
between 1973 and 1976 as a result of work on phytophagous mite 
management in orchards (Croft et al., 1976b), the development of 
extension data delivery systems (Croft et al., 1976a), and the 
analysis of general modeling problems (Welch et al., 1978). This 
experience is reflected in the specific examples used herein, but the 



discussion will make clear how to apply these techniques to a wide 
variety of systems. 

The first topic discussed (Chapter 2) is a conceptual model of an 
operational pest management system. Basically it consists of the 
four components of Fig. 1 but elaborated so as to emphasize 
biological monitoring activities. The types of activities and functions 
carried out at three hierarchical levels (a decision-making level, a 
monitoring-unit level, and a regional level) are denned and 
discussed. 

This chapter also introduces the main practical example of the 
monograph. Three alternative systems for monitoring mite popula­
tions under orchard conditions are presented. Two of these involve 
the use of mobile van-based laboratories while the third is a 
traditional scouting program. These systems are quantitatively 
analyzed in the chapters that follow. 

Chapter 3 focuses on biological aspects of monitoring design. 
Topics include the biological requirements for sampling, the need 
for studies of the distribution of target species to aid in statistical 
design, and the extrapolation of population processes through time. 
Biological modeling is introduced as a method of integrating data so 
it can be applied to system design. A model of the interaction of the 
European red mite with the predator Amblyseius fallacis (Garman) 
is presented as an illustration. This model is used in a variety of 
ways throughout the monograph. 

The following chapter (4) deals with the stochastic elements of 
systems design. By applying the common language of Bayesian 
probabilities to the design problem, this chapter serves an integra­
tive function. The specific discussion centers on how to combine 
spatial variation, measurement error, and time delays to determine 
the probabilities of various ecosystem states as seen by the decision 
maker, By way of example, the dynamics of the European red mite 
under predator-free conditions are studied. The example demon­
strates monitoring analysis calculations in cases where pests are 
subject to sudden exponential outbreaks. 

Chapter 5 presents economic considerations. The treatment is 
broken into two sections: the economics of the decision maker and 
the economics of the monitoring service. Because pest management 
decisions are made at risk, the costs of monitoring, control, and 
damage are distributed random variables. Various methods are 
presented to interrelate these variables with results of the stochastic 
analysis to arrive at measures of the utility of monitoring as per­
ceived by the decision maker. Alternatively, the establishment of a 



monitoring system may be viewed as an investment whose value 
must be judged. A screening program, which calculates a return on 
investment via a discounted cash flow analysis (Park, 1973), is 
presented. This return represents the total profitability of the system 
to its operator. 

Chapter 6 discusses system time delays. Total delay is decom­
posed into a sequence of separately analyzed processing steps so 
that potential bottlenecks can be detected. As an illustration the 
effect on average service time of requiring progressively more 
accurate mite counts is calculated. 

The seventh chapter demonstrates important mathematical rela­
tionships existing between the classes of variables discussed in 
Chapters 3-6. Two theorems are proved showing that there are only 
two degrees of freedom between typical variables describing allowa­
ble time delays, monitoring unit variability, system workload, and 
economic risk. A chart or nomogram is proposed on which, for a 
given system, knowledge of any two variables will allow the predic­
tion of the other two (with one minor exception). Such a chart is 
constructed for the predator-free European red mite system. In two 
examples the nomogram is used to examine tradeoffs (1) between 
grower risks and monitor profits and (2) between sampling accuracy 
and the probability of loss. 

Chapter 8 is a synopsis of the design procedure. Following 
standard system design methods (Manetsch & Park, 1974), it begins 
with an analysis of management needs. Next the designer constructs 
and models several alternative methods of meeting these needs. 
Modeling involves the biological, statistical, economic, and timing 
studies discussed in earlier chapters. At some point during this 
process, one or more of the alternatives will be subjected to field 
testing. The chapter describes the types of auxiliary data (travel 
times, grower acceptance, etc.) which must be taken to complete the 
analysis. The nomogram of Chapter 7 provides the mechanism for 
interpreting this data. Once the best design has been chosen the last 
step is implementation. By this time, because of the extensive field 
work and contact with all affected parties, the selected alternatives 
should be seen as an effective pest management tool. Even after 
implementation, however, the system must be periodically 
reevaluated so it can adapt to changing conditions. In conclusion, 
the broad applicability of this approach to a variety of other 
agricultural and resource management tasks is emphasized. 



General organization of a monitoring-management 
system 

Biological monitoring activities are always part of some larger 
system which uses the data for some purpose. Usually monitoring 
data require interpretation and extrapolation. While such manipula­
tions make the data more useful, sample variances are generally 
increased by these activities making the results less reliable. Only by 
studying the monitoring component in the context of its overall 
system can the designer maintain a favorable balance between utility 
and reliability. This chapter is therefore devoted to the construction 
of a conceptual model of the flows and processing of biological data 
within a pest management system. 

Such a system can be conceived as having three hierarchically 
organized levels (Fig. 2): the decision-making level, the monitoring-
unit level, and the regional level. The decision maker uses the 
monitoring data to select appropriate action programs and sustains 
the resultant benefits or losses. The monitoring unit is a geographi­
cal area within which sampling serves one or more decision makers. 
At the regional level, monitoring resources are allocated among the 
monitoring units so as to best achieve system goals. 

2.1 The decision-making level 

This forms the lowest level of the system. Each decision-making 
unit consists of a production unit (e.g., parcel of land, herd, grain 
bin,) plus a decision maker who chooses control practices for that 
unit. It is assumed that all subsections of a unit are treated identi­
cally. The units are, of course, parts of an extended agro-ecosystem 
and receive environmental inputs such as solar radiation, tempera­
ture and precipitation. 

To maintain a focus on monitoring, the decision-making process 
will be treated in an aggregated sense. That is, the 'decision maker' 
will be defined as all individuals and/or organizations involved in 
selecting action programs based on monitoring results. Croft et al. 
(1976a, p. 21) gave a breakdown of these groups for Michigan's 





integrated pest management. Two exceptions to this aggregation are 
(1) organizations like testing laboratories which process raw sample 
materials and are properly considered as part of the monitoring 
component; and (2) individuals or groups who make distinct deci­
sions for two or more production units. In this latter instance, each 
unit is considered to have a separate decision maker. 

The processing of monitoring data into action recommendations 
(i.e., 'decision making') is the single most important transformation 
which the monitoring data undergo. For this reason it is important 
to discuss the various types of decision rules in use in pest manage­
ment and identify some common class on which to base the analysis. 

The simplest and earliest rule was that no pests could be toler­
ated. Better procedures are based on the relationship between pest 
density and potential damage. Stern et al. (1959) stated that control 
measures should not be instituted below that density (called the 
economic injury level) at which the marginal cost of control just 
exceeds the marginal damage. Because, however, it takes time to 
reach a control decision and then act (Delay 3 in Fig. 2) the term, 
'economic threshold,' has been introduced which is defined as "the 
density at which control measures should be applied to prevent an 
increasing population from reaching the economic injury level" 
(Stern et al., 1959). The economic threshold is therefore dependent 
on the manner in which the control is applied. Additional factors 
affecting both thresholds and injury levels are meteorology, host 
maturity and other characteristics, and the cost of control. 

Another refinement in decision rules was achieved with the 
recognition that there may be several distinct decision periods 
through the course of a season and that the outcome of one period 
can affect later decisions. Croft (1975), for example, described a 
program for plant feeding mites on apples in which early season 
application rules control impacts on non-target species so as to 
achieve payoffs later on. Mathematical techniques such as dynamic 

Fig. 2. A conceptual model of a pest management system. Each decision 
maker has control over a portion of the extended agro-ecosystem. He acts 
on information from a sampling program which monitors conditions within 
a geographical unit containing one or more decision makers. Sampling 
activities are optimized at a regional level to meet system goals such as 
profit, efficient service, etc. Important time delays are (1) the time required 
to respond to a request for sampling, (2) the time necessary to transmit the 
monitoring results to the decision maker, and (3) the time needed by the 
decision maker to interpret and act upon the monitoring data. 



programming (Shoemaker, 1973a) can be used to quantify this idea. 
This method adjusts the losses perceived in a given period to reflect 
the results of possible decisions made during that period (Wagner, 
1975). A major defect of this technique is that, except in very 
simple cases, the formulations are so complex that they burden the 
largest computers (Shoemaker, 1973c). 

All of the decision rules discussed to this point have been deter­
ministic; they either utilize average ecosystem behavior or rely on 
specific realizations of stochastic variables. In practice, of course, 
great risk attends all pest management decisions. Statistical decision 
theory (Carlson, 1970) permits this risk to be accounted for. This 
method explicitly notes three important characteristics of pest man­
agement decisions: (1) they are selections among finite sets of 
alternatives (e.g., no, low, or high spray rates), (2) they have as their 
goal the maximization of some objective function (e.g., profit), and 
(3) the decisions have associated probabilities of error. 

The decision theoretic approach partitions the possible monitor­
ing results into sets which correspond to distinct control alternatives. 
The management decision is to implement the strategy correspond­
ing to that set into which the actual monitoring outcome falls. The 
sets are constructed so as to maximize the probability of optimal 
results. This procedure contains the other rules as special cases. For 
example, setting a threshold is the same as partitioning monitoring 
results into two sets, those above and those below the threshold. 
Most multi-period decision methods assume finite sets of alterna­
tives and are therefore amenable to the same treatment. Because 
statistical decision theory is based on probability distributions, as are 
many other areas of biology and economics, it seems to provide a 
basic framework within which all of these phenomena may be 
interrelated. For this reason, we shall follow this paradigm in what 
follows. 

2.2 The monitoring unit level 

A monitoring unit consists geographically of one or more decision 
making units. Sampling is carried on within the monitoring unit to 
provide the decision makers with timely, relevant data on local 
conditions. These data may be transformed in some standard way 
for all users or tailored to their individual needs. The agro-
ecosystem is assumed to be homogenous within the monitoring unit 
boundaries. Thus, these units define the spatial resolution of the 
monitoring system. 
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Biological monitoring activities occur in a sequence we shall call 
the sampling cycle. The first event is the determination that the time 
to sample has arrived. How this happens, depends on the system 
design. One method is to sample at certain pre-specified points in 
chronological or physiological time. Biological rate functions deter­
mine the sampling rates one should use. According to the sampling 
theorem (Bekey & Karplus, 1968), accurate reconstruction of a 
signal requires sampling at a rate at least twice as fast as the most 
rapid fluctuation. Unfortunately, this is often not possible in prac­
tice. An acceptable substitute is to sample at a rate several times as 
fast as the most rapid fluctuation of major amplitude. In this way, 
the most prominent biological features will be observed. 

The disadvantage of fixed period sampling is that much effort may 
be expended while nothing of significance is occurring. Other 
methods attempt to restrict sampling to those periods of particular 
interest. Usually this involves keying the observation to some mean­
ingful biological or physical event (or 'trigger'). Triggers should have 
three properties: (1) they should be observable, (2) they should bear 
a reasonably direct relationship to the ultimate agro-ecosystem 
variable of interest, and (3) they should occur early enough to 
permit the monitoring-management system to respond to the condi­
tions the triggers herald. 

There are many possible types of triggers. For example, monitor­
ing can be linked to the phenology of the host crop or other 
indicator plants. Many countries (Hopp et al., 1972; Journet & 
Touzeau, 1979; Benedek, 1979) maintain networks of standard 
phenological gardens within which frequent observations are made. 
Tying these data to pest biology would permit observations of plant 
conditions to serve as sampling triggers. Jones (1976) described an 
apple scab monitoring program triggered directly by the environ­
ment. Two conditions are required for scab infection: the presence 
of a spore inoculum and wet foliage. In this program, leaf wetness 
meters trigger rotary spore traps automatically. The traps are then 
examined by technicians who are also 'triggered' by rainfall. The 
level of spore discharge is converted to a control recommendation 
by use of a Mills chart (Mills, 1944; Mills & LaPlante, 1951). 

Two other important types of trigger are the predictive trigger 
and the post-control trigger. When the biology of a species is well 
understood, it is often possible via biological models to predict when 
the population will require monitoring. In post-control monitoring, 
sampling is scheduled to occur at some specified interval after a 
control measure has been applied. What both of these methods have 



in common is that time Delay 1 (Fig. 2) is eliminated because the 
'trigger' occurs before sampling is actually required. This forewarn­
ing makes it easier for the monitoring resource allocator to function 
efficiently. 

Typically, however, some delay will occur, its length depending on 
system design and available resources. A general result from queu­
ing theory (Baily, 1964) states that delay increases exponentially as 
the average triggering rate approaches the rate of service. One of 
the major design goals is to determine the level of resources needed 
to satisfy demand (see the next chapter) without excessive delay 
(Chapters 6 and 7). 

The next step is to collect and process the sample. It is very 
difficult to discuss specifics in this area because of the wide variety of 
sampling schemes available (Cochran & Cox, 1957; Pielou, 1974; 
Kirk, 1968) and the hundreds of economic species to which they can 
be adapted. Instead, we shall treat this component as a 'black box' 
by focusing on the important characteristics of sampling inputs and 
outputs. That is, we shall view the sampling program as consuming 
resources and generating a distribution describing the likelihood of 
various ecosystem states (see Chapter 4). According to the Bayesian 
philosophy of Savage (1954, 1962), this distribution encodes the 
total result of a measurement procedure; a detailed knowledge of 
sample design (sequential versus fixed size, relative versus absolute 
measures, etc.) can add nothing beyond this. This approach estab­
lishes a direct and generalized link with the statistical decision 
procedures of the last section. 

The last step of the sampling cycle is to transmit the results of the 
operation to the decision makers contained within the monitoring 
unit. This can be done in any expedient fashion from direct, 
face-to-face conversation to the use of various electronic media 
(Haynes et al., 1973; Croft et al., 1976a). Each method has impor­
tant associated time delays and costs which must be explicitly 
accounted for in the system design. 

2.3 The regional level 

The highest or 'regional' level of a management system consists of 
the geographical union of all monitoring units. Organizationally it is 
the level at which the whole system is operated. There are five 
major types of activities which take place at this level: (1) the 
acquisition of operating resources, (2) the distribution of these 
resources to meet demand, (3) the determination of the prices 
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charged end users, (4) all necessary accounting and record keeping, 
and (5) advanced planning. 

In Chapter 5 we shall study design budgets of resource needs. 
These resources include materials and labor and their costs can be 
divided into capital and operating costs. How these resources are 
allocated determines sampling delay. The designer must choose a 
distribution algorithm which minimizes this delay. There are numer­
ous appropriate operations research methods (Wagner, 1975) that 
can be applied. 

Pricing decisions require a detailed understanding of market 
conditions, financial position, and organizational character, The 
designer, however, is only responsible for a general evaluation of 
system potential. This often involves a rough screening of alterna­
tive price structures. In Chapter 5, we shall adopt the point of view 
that a monitoring system is an investment whose desirability must be 
determined. 

The record keeping and planning functions are quantitatively 
important to the designer only as they contribute to system over­
head costs. Speaking qualitatively, however, they are essential to 
smooth system operation. Records of monitoring results are of use 
not only to the decision makers for whom they are intended but also 
as biological input to the planning function. This planning capability 
is required because improvements in technology are always occur­
ring as are shifts in demand, resource costs, and other market 
parameters. The organization must continually strive to anticipate 
these costs and adapt to meet them (Scanlan, 1974). 

The conceptual model in Fig. 2 can be applied to a wide variety of 
actual programs. It is not necessary that all of the functions de­
scribed here be carried out by visibly distinct groups or individuals. 
For example, a grower might do his own monitoring when he felt it 
was necessary. In such a system, functions at the regional, monitoring 
unit, and decision making levels would all be accomplished by the 
same person, Nevertheless, by separating these components as we 
have done, we are in a better position to analyze the outcomes and 
value of such a procedure. 

2.4 An example 

We shall now introduce an example which will receive recurrent 
attention throughout the remainder of this monograph: advanced 
systems for monitoring mite populations in Michigan apple or­
chards. These systems will illustrate the application of the concep-

11 
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Fig. 3. Mite monitoring simulation software. Computer analysis of the three 
alternative mite monitoring systems involved seven programs. The first four 
formed a quantitative simulation of the conceptual model. The last three 
analyzed the simulation outputs in various ways (after Croft et al., 1979). 

the van drives to an overnight lodging site where the appropriate 
data communication and computer activities take place (for the FS 
and RSI alternatives). In Reduced System II the overnight location 
is one of the three central laboratories. For this alternative, mite 
counting is simulated as occurring at the laboratory the next day 
while the van collects more samples. 

The outcomes of SAMPLE are computer analyzed in three sepa­
rate ways. Program ANALYZ tabulates distributions of logistical 
data such as travel times, waiting times, manhours spent sampling, 
etc. Program FINACL provides an economic summary of the 
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monitoring system from the point of view of the system operator. 
Program FARMR does the same thing from the grower's perspec­
tive. Results of these analyses will appear throughout the remainder 
of the monograph. 
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3 Biological aspects of design 

As a primary pest management component, biological monitoring 
requires a thorough knowledge of target species biology. There are 
three major design areas where biological data are needed; (1) 
assaying the biological demand for sampling, (2) distribution and 
dispersal studies for statistical design, and (3) the extrapolation of 
population processes through time (i.e., biological models). 

3.1 The biological demand for monitoring 

Through time, target populations will develop and, perhaps, dis­
perse within the monitoring region. At various times local popula­
tions will reach stages requiring monitoring. The spatial and tem­
poral distribution of the corresponding trigger events constitute the 
biological demand for monitoring. Clearly, it is undesirable to 
expend resources where they are not needed. Biological demand 
therefore forms the baseline from which actual demand (conditioned 
by economics, logistics, and the distribution of decision making 
units) can be calculated. 

Biological demand may be projected from historical records or 
calculated from target species phenology. For example, to estimate 
the demand for phytophagous mite monitoring, data on mite den­
sities from 146 Michigan apple growers (Croft, unpub. data) were 
examined The resulting frequency of triggering (i.e., first occur­
rences of densities between 3 and 10 mites per leaf) was determined 
by date for each of the seven management areas in the state. 

When species' developmental rates, perhaps as affected by en­
vironmental parameters, are known weather charts or other data 
sources may be used to construct maps showing the distribution of 
S ? 8 ?u °,nu& H a y n e s ' 1 9 7 5 ) - Developmental data may be 
based on either laboratory or field experiments although the latter 
ft f S ! t ? , u °?u P r ° b l e m W i t h t h i s Penological approach is that 
Lnnn t Vf- u6 ^ g raph ic distribution of the species into 
s o m L ^ % h*C u ° n d l t i° n S f o r triggering might be correct at 
mShcSTJ!thou7he/Pecies actually being present. Thus the 
method is more useful for species which are either ubiquitous or 
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whose range is at least partially known. 
Biological demand should be expressed as a probability of trigger­

ing per unit time per unit area or per decision-making unit. Demand 
is thus stated in the same probabilistic vocabulary as other variables 
in the management system model. This also permits the calculation 
of demand for various hypothetical or actual distributions of deci­
sion makers. Thus, the approximate magnitude of demand can be 
established early in the design so that unrealistic goals may be 
avoided. 

3.2 Distribution studies 

The selection of proper statistical techniques demand an under­
standing of the properties of the target species distribution. In this 
section we shall examine two common types of studies and certain 
biological mechanisms which cause variation in space. 

The first type of study attempts to develop a reasonable 
hypothesis about the (possibly time-varying) distribution of indi­
viduals among sampling units. This may range from a simple test for 
non-normality or heteroskedasticity to fits of any of a number of 
discrete distributions (e.g., Poisson, negative binomial, etc.). The 
purpose of such studies is to facilitate the selection of estimators or 
transformations, if necessary, or tests. 

This was done for P. ulmi and its predator Amblyseius fallacis by 
Croft et al. (1976b). Visual counts of approximately 66 000 leaves 
taken 10 per tree under a wide range of commercial orchard 
conditions were analyzed. The goodness-of-fit of the negative and 
positive binomial, Neyman A, Poisson, logarithmic, and several 
other distributions were determined (Gates, 1972; Bliss & Owen, 
1958; Elliot, 1971). It was found that, in the density ranges over 
which most management-oriented monitoring would take place, the 
negative binomial provided an acceptable fit. This information was 
then used to derive sample size equations applicable in orchard 
blocks up to 10 acres in size. 

In the second type of study, one desires to know how the sample 
variance is partitioned between samples and subsamples. In the 
study cited above, Croft et al. (1976b) determined the variance of 
within tree means as a function of overall mean density. These 
results were 

V(x) = 0.93x182 for P. ulmi 

and 

17 



V(x) = 0.72x148 for A. fallacis. 

This information is relevant to the design of optimal sampling plans 
which divide sampling efforts rationally into within tree and between 
tree components. It is also important in validating population mod­
els at the orchard level. Dover et al. (1979) show that between tree 
variation can dramatically affect the observed duration of prey-
predator interactions. This has implications for the calculation of 
permissible time delays (Chapter 6). 

Both of these types of studies examine variation in space. Two 
primary determinants of this variation are dispersal behavior and 
response to variation in the environment (including both biotic and 
abiotic factors). Dispersal attenuates spatial variation because the 
presence of a dispersing individual at one location implies a likeli­
hood of others nearby. For example, dispersal in the red mite is 
primarily limited to the leaf surfaces within a single tree resulting in 
the between tree variation first documented. Certain spray practices 
like alternate row middle application can cause significant variation 
even within a single tree (Hull et al., 1976). 

The six-spotted leafhopper, Macrosteles fascifrons (Stal), presents 
a completely different picture. Although this species overwinters 
locally in the egg stage throughout its range, it is the influx of 
migratory adults each spring which must be monitored. The migrat­
ory phase begins when the grain crop host plant becomes fully 
headed (Drake & Chapman, 1965). Because crops in the south 
develop more quickly than their northern counterparts, migratory 
adults can arrive in Wisconsin before local nymphs can mature. 
Because the migration proceeds on a broad front as determined by 
weather (Huff, 1963), monitoring for this pest could be done with a 
comparatively wide mesh grid. 

Variability in environmental parameters (mediated by species 
physiology and behavior) also results in biological variation. En­
vironmental variation has several scales ranging from macro-effects 
such as north-to-south climate gradients to meso-level phenomena 
like lake shore effects and the rural effects of cities. The most 
important form of variation and the one most difficult to deal with 
is, however, microhabitat variation. These effects occur on a scale 
measuring from a few centimeters to several hundred meters. While 
larger scales of variation can be dealt with deterministically, mic-
rovariation must, as a matter of practicality, be handled probabilisti­
cally. There are numerous examples of microvariation and its effect 
on monitoring in the literature. Fye et al. (1969) showed that 
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internal emergence cage temperatures can vary significantly from 
external temperatures. Observations by Richardson (pers. com-
mun.) have demonstrated that the temperatures experienced by 
codling moth larvae, Laspeyresia pomonella, inside apples can vary 
as much as 9°F from the north to the south side of the same tree. 

The response of a species to environmental variation can either 
augment or reduce its effect. For example, Haynes & Tummala 
(1976) present data from Gage & Haynes (1975) which show that 
Tetrastichus julis (Walker), a cereal leaf beetle parasite, can emerge 
up to 100 degree-days (base 48°F) earlier in oat stubble than in 
straw as measured by an external reference. This may well be due to 
microhabitat variation between the various grasses. On the other 
hand, by seeking the sun in early morning and the undersides of 
leaves later in the day, the tobacco hornworm Manduca sexta, on 
Jimson weed is able to keep its body temperature very close to that 
of the air (Casey, 1976). This would tend to moderate the 
physiological effects of microhabitat temperature variation. 

The important point of these examples is that the variation 
perceived by the monitoring component results from a complex set 
of biological interactions. On balance we can identify two major 
classes of species. For a large class of organisms factors such as 
dispersal dominate, thus permitting monitoring units to be physically 
larger. For others developmental factors are more important neces­
sitating much more intensive monitoring. 

This is certain to affect the organization of the monitoring system. 
Dispersive species might well be best handled by regional networks 
where the average decision maker would have little contact with the 
sampling technicians. Instead, they would receive pest advisories 
similar to the present weather advisories. The other class of species 
would require monitoring in the production unit itself thus promot­
ing more direct contact. Obviously, intermediate systems would also 
have their place. 

3.3 The extrapolation of population processes through time 

Often the variable actually monitored is only indirectly related to 
the variable of interest. For example, when attempting to forecast 
locust migrations, one measures the egg densities of preceding 
generations. Even when the quantity of interest is directly meas­
ured, time delays can confound the issue; the state of a population 
at the time monitoring is triggered may differ from the state actually 
sampled. Different still might be the state of the population when 
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subjected to the ultimate control measure. Beyond this is the 
relationship between current pest activity and terminal damage. To 
estimate, therefore, the ultimate system efficacy, it is necessary to 
extrapolate population processes through time. 

This is only possible if the designer has access to some form of 
biological model. The model may be a quantitative mathematical 
model, a mental conception of the species, or some experimental 
preparation which can be used as a surrogate for the real population 
(e.g., a growth chamber simulation). If it is a quantitative model it 
may or may not be distinct from the decision rules we have 
discussed previously. In any case, it must be based on a careful 
biological study of the target organism's population dynamics. 

3.4 Biological models 

In a sense all science consists of the construction of models. In 
any branch of inquiry these models will appear, evolve, and disap­
pear as new techniques and perceptions become available (Kuhn, 
1970). According to Welch et al. (1978), well designed models 
provide three useful features: (1) a systematic method of recording 
data and, therefore, (2) a specific impetus to certain avenues of 
research, and (3) a body of mathematical methods for manipulating 
the data in useful ways. 

Biological data about a species can be classified by stage of the 
life cycle. For some species these stages may be distinct develop­
mental steps while for others like host crops they may be arbitrary 
but easily recognizable morphological units (Chapman & Catlin, 
1976). Stages may be defined as capable of being monitored, 
controllable, damaging, a combination of these, or neutral. A 
neutral stage is of no particular relevance to pest management 
except as a developmental delay between more interesting stages. 

If a stage can be monitored, a list should be compiled of the types 
and, if known, the efficiency of the monitoring methods. For con­
trollable stages, of types and costs of control should be tabulated 
and the efficiency of each method (e.g., percent mortality) noted. It 
is quite possible for a particular measure to affect a number of 
stages, perhaps differently; all effects must be listed. It is also 
necessary to note how far ahead field personnel must be alerted in 
order to implement the control measure. 

For damaging stages the types and effects of damage are impor­
tant. It should not be ignored that damage is inherently integrative; 
the damage a species does per unit time is related to pest activity. 
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This suggests that damage potential should be expressed in units 
such as pest-days. For example, Hoyt & Burts (1974) expressed the 
effect of phytophagous mites on apples in terms of the reduction in 
yield per mite-day. In another case involving the Colorado potato 
beetle (Leptinotarsa decemlineata), it was found useful to consider a 
potato plant canopy to consist of 3 000 beetle-consumption days 
(Sarrette, pers. commun.). 

Of course the most important data about a stage concerns its 
contribution to the species' population dynamics. The classes of data 
needed are developmental, reproductive, and demographic. Develop­
mental data primarily include the stage durations. These may be in 
units of days, degree-days, developmental units (Shelford, 1927), or 
other measures. Reproductive data may be expressed as depending 
on the maturity of the reproducing stage and/or on environmental 
parameters. Demographic data include information on non-
reproductive factors affecting the population size. Examples are 
immigration, emigration, and mortality. In addition, there may be 
factors which alter the effective size of a population without chang­
ing its numbers. An example is diapause which removes individuals 
from the active population without killing them. 

Finally, it is necessary to relate the species to the pest manage­
ment community. Data needed include a list of regions where the 
species is found and which personnel in those regions are responsi­
ble for its management. Note should be taken of the forms of 
warning these individuals require to institute effective management 
and what inputs to the model they supply. Also important is the 
general time frame during which the pest is dangerous. For exam­
ple, an asparagus pest may feed on the plant all season but cease to 
be of economic significance after the crop has been harvested. Data 
in this class set the spatial, temporal, and institutional boundaries of 
the model. 

3.5 A P. ulmi-A. fallacis model 

Dover et al. (1979) developed a simulation of the European red 
mite-AmWyseius fallacis prey-predator system. Welch (in press) 
compared this model to similar work by other investigators. This 
model was instrumental in evaluating the alternative mite monitor­
ing systems so we shall summarize it here. 

The formulation of this model followed the steps outlined above. 
Fig. 4 shows the decomposition into life cycle stages. While most 
stages are morphological in character, the preoviposition stage exists 
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key 
E=egg 
L= larva 
PN= prolonymph 
DN= deutonymph 
PO= pre-ovipositing 
A = adult 
£=summation 

Fig. 4. Block diagram of a P. ulmi-A. fallacis simulation model. A detailed 
description of this model is given in Dover et al. (1979). 

for convenience only. All active stages of the pest are viewed as 
capable of being monitored and controlled (by the predator). They 
ako, of course cause leaf feeding damage (Hoyt & Tanigoshi, 1978). 
The P. ulmi egg stage is neutral. It is neither damaging nor preyed 
upon by this predator. Furthermore, it is ignored in the three 
alternative monitoring schemes because of the large numbers usu­
ally present. 

As might be expected, predation, as a form of control, differs 
significantly from stage to stage. The model incorporates a variety of 
factors into the consumption submodel. These include (1) the stage 
distribution of both prey and predator populations, (2) stage-specific 
consumption rates, (3) competition among predators, (4) mean prey 
density and (5) the spatial distribution of prey and predators 
throughout the tree. 

The model also incorporates developmental, reproductive, and 
demographic data. Developmental data consists of stage-specific 
developmental rates expressed as functions of temperature. Repro-

22 



Predator Density 
4.0r 

Econ. 
Thresh. 

20.0 21.0 
Pest Density 

Fig. 5. A phase plane plot showing simulations of three interactions of the 
European red mite (horizontal axis) with A. fallacis. The three curves are 
characterized by progressively poorer initial prey-predator ratios resulting, 
ultimately, in a failure of biological control. 

ductive rates depend on adult female maturity and temperature. In 
addition, the predator oviposition rate is related to prey consump­
tion. The predator population is also affected by demographic 
factors. Under conditions of low prey density, adult predators will 
exhibit an unique dispersal behavior (Johnson & Croft 1975) and 
leave the tree. This reduction in effective population size is included 
in the model. 

The following features were noted in relating the model to the 
pest management community: (1) the division of the state into 
management areas, (2) the activities of the scouts, (3) the presence 
of a network of weather stations which provide daily maximum and 
minimum temperatures, and (4) the abilities of growers to respond 
to model outputs. 
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Once the model equations were complete, they were coded using 
the FORTRAN language. The program also included routines to 
produce graphic outputs to aid validation (Fig. 5). File manipulation 
routines were added to facilitate access to the data sources described 
in the previous paragraph. These latter routines permit the model to 
operate in conjunction with Michigan's computerized extension 
information delivery system (Croft et al., 1976a; Brunner et al., in 
press). Validation procedures, results, and the quantitative details of 
this model are described in Dover et al. (1979) to which the reader 
is referred. 

This chapter has stated the needs of the monitoring system 
designer for biological data. These needs touch on virtually every 
aspect of population biology, so the use of biological models is 
advocated to help organize these data. Because of the elaborate 
nature of some models, it is natural to ask how detailed and 
complete these models must be. The answer is that system design 
can only be based on the best information currently available. One 
of the major purposes of the model is to assess the effects of 
monitoring errors. By repeated runs of the model, it is also possible 
to determine the sensitivity of the model to errors in its own 
parameters. By extension, the effects of these on system perfor­
mance can also be tested. As always, however, in the final analysis it 
requires an act of human judgement to determine whether a system 
is well enough understood to allow design to proceed. 
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4 Stochastic aspects oi design 

Elements of randomness and uncertainty assert themselves at 
several points in the monitoring-management control loop. First of 
all there is sampling error which prevents us from being certain of 
the true state of the agro-ecosystem. Secondly, this state is continu­
ously changing; delays in decision making or action programs may 
result in the application of inappropriate controls. Lastly, spatial 
variation may limit to small areas the applicability of monitoring 
results and decisions. 

This chapter is devoted to a detailed mathematical examination of 
stochastic factors in monitoring. The chapter makes use of the 
theory of continuous probability distributions; readers unfamiliar 
with this topic may wish to consult an elementary text such as 
Wadsworth & Bryan (1960). The whole point of the chapter is to 
show how the various sources of error combine to affect the ultimate 
decision making risks. In the next chapter, we shall discuss some of 
the economic aspects of these risks. 
» We begin by considering two points A and S in the monitoring 
unit. At some point in time t = f0, the sampling point (S) achieves 
state Asto which triggers monitoring. Before monitoring can occur, 
however, time delay r t elapses during which the system evolves. We 
can represent this process by constructing a probability density 
function p(AMi | A^)1 where t1 = t0+r1. Such a distribution can be 
determined via simulation studies using a biological model as out­
lined in the last chapter. 

Monitoring produces an observation xs. It is desirable to express 
our new knowledge of AMl in terms of what we know about the 
sampling design and the system being monitored. From Bayes' 
theorem we have 

n(A | v w P f e l A M , ) P ( V ) (4.1) 
P(As ' t JXs )-fp(x s |A)p(A)dA-

1. The notation p(A | B) reads "the probability of event or condition A 
given that event or condition B has occurred." 
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Frequent use of this theorem is made in what has come to be called 
Bayesian statistics (Savage, 1954, 1962; Binder, 1964). One of the 
major tenets of this theory which we shall utilize is that the posterior 
distribution, p(AMi | xs), expresses the total result of the measure­
ment. 

Similarly, the bivariate distribution p(xs| Asti) encodes all availa­
ble information on the sampling protocol and the underlying dis­
tribution among the sampling units for a given A s t . For example, 
suppose a two stage sampling design has been constructed which 
involves n subsamples for each of m samples. Suppose that Ast is to 
be estimated by xs, the grand mean over all subsamples. Further, 
assume that a one-way analysis of variance has revealed the var­
iance of sample means around the grand mean to be aj and the 
withm-sample variance to be of. Straightforward calculation and the 
application of the Central Limit Theorem (Feller 1968, Vol. 2) 
yields 

P(*s I As,tl) = N(xs; AMi, (fff+*l)Jnm) (4.2) 

where Nfo ft, a2) denotes a Gaussian distribution with mean \L and 
variance o- . In this example the underlying distribution among the 
sampling units is denoted by AMi and (af+of) while the sampling 
protocol is encoded by 1/nm. 

Among the factors on the right side of Eqn 4.1, we have yet to 
discuss p Asti) which is called the prior distribution. If \stn and T l 
are exactly known, then ^ 

P(AMl) = p(As>ti|As,to). ( 4 3 ) 

A* E ^ ' - l T 6 ^ ' t r i^er in§ may not occur at a precise value of 
t \ZI,A- f-u W 6

J
m a y e x p e c t t h e w a i t i nS t i m e f o r monitoring 

7 T ° t S d e b u t e d random variable. If we call this distribution 
PiW, then a more realistic prior is 

P(A,tl) = j[ _[ p(As^+T | As,to)p(As,to)Pl(T) dAŝ  dT (4 4) 

rng e and P (
f H+* e ^ ^ ° f * " ^ 8tate ^ ™ * m0nit0r~ 

y i e w i S p a ^ ^ h ^ *£**?- examination of historical records 

a s^de t e r rn^S%££?$&??? ^ «* P I ( T ) d i s t r i b u t i ° n 

growers RestSFna n ^NALYZ for an assumed market of 315 
growers. Restricting ourselves to predator-free systems, we can 
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