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I N T R O D U C T I O N 

An often met supposition about a set of random variables, each of which 
concerns the observation of the same, quantitatively expressible property of a 
set of individuals, is that the expectation of such a random variable is a function 
in the values of other, likewise quantitatively expressible, properties of the same 
individual. This function, common to the set of individuals, is called the re
gression function of the first property on the other properties. If this function is 
linear in a set of (unknown) parameters, the regression function is called linear. 
Estimation and testing concerning the parameters in linear regression functions 
is the subject of statistical regression theory. 

This theory includes a great variety of subjects, such as analysis of variance, 
analysis of covariance, regression theory in a narrower sense.(the mentioned 
function explicitly given), experimental designs, analysis of series of experiments 
etc. About all these subjects there exists an extensive literature. In the greater 
part of this literature the following facts are striking: 
1. Several terms, intensively used, are ill-defined and handled more or less in

tuitively it seems; as examples we call: degrees of freedom, orthogonality, 
comparisons, adjustment, interaction, confounding, recovery of inter-block 
information etc. 

2. Proofs and derivations are discouraging by their lengths, abundance of sym
bols and cumbersome computations. This is even true for rather simple 
situations. 

3. Presumably as a consequence of both foregoing facts, simple methods are 
wanting in case of (in practice often inevitable) deviations from the customary 
particular situations and designs. In other words, the general cases are 
neglected, also because of their feared difficult analysis. 

4. Testing is relatively overstressed in comparison with estimation, especially in 
the books on experimental design. 

Although the representation of the set of observations of the mentioned 
random variables, as a point in an Euclidean (hyper)space (and similarly for 
the values of the other properties), has been used sometimes as an illustration of 
some results in this theory, KUIPER (11,13) founded this theory on the notion of 
vector spaces. 

By means of the notion of vector spaces many definitions, so far more or less 
vague, can be given in a sound and comprehensive way. The view proceeding 
from those definitions, by which the experimental result is considered as one 
entity that, for purposes of estimating and testing, must be decomposed in in
teresting components, is clarifying and facilitates the comprehension, also for 
the beginner in this field. The geometrical language is a great intuitive support: 
cumbersome computational processes can be overlooked and summarized by 
means of simple geometrical terms such as projection, orthogonality, perpen
dicular, length, angle, dimension, space. Further, properties, valid in ordinary 
solid geometry, can be applied by analogy. By means of this tool a simple and 
transparent notation arises. Proofs and derivations are considerably simplified 
by the introduced notions and notations. It brings the estimation, which in our 
view is the most important aspect of the analysis of statistical data, to the fore
front; testing plays a secondary r61e. Also more general situations than those 
occurring in textbooks about the subject of regression analysis can be mastered 
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without use of a deterrent and insurveyable arithmetic. It is true that, for in
stance, many non-Orthogonal designs have the disadvantageous property that 
the variance of estimators is not determined simply, in general; but this is no 
reason to abandon these designs, the more as they are offered necessarily in this 
form in certain branches of research (e.g. varietal research), and as the customa
ry designs are too restricted in their possibilities. Moreover, the study of general 
cases appears to lead to a bright insight in the particular situations usually 
treated. 

The following study aims at the demonstration of the usefulness of this tool 
and at the presentation of new results. Although for other subjects in statistics 
this tool appeared to be also valuable (CORSTEN [4]) we have restricted ourselves 
to the subject of linear regression (in the wider sense of the word). Of course this 
study rests on the ideas and, partly, on the results of KUTPER. NOW we give a 
brief outline of the construction and the origin of the study. 

In chapter 1 we present the tooL linear algebra, which is of a non-statistical 
nature. We judged the insertion of this theory necessary for the following reason: 
although a great part of the exposition is not new, it is not simply within reach 
of the statistician; moreover, certain aspects of this theory must be considered in 
more detail than usually is done in abstract linear algebra, this in connection 
with the applications. In composing this chapter we are supported by the lec
tures of KUTPER and by the book of HALMOS (7). The general iterative method 
for decomposition of vectors is a new contribution; for special cases a (not 
proved) arithmetical method which amounts to the same, was invented by 
STEVENS (20) and HAMMING (8), (see also YATES [22]), while the special case of 
two classifications was derived by KUIPER (11) in terms of vectors. 

In chapter 2 the notion of random vectors is introduced. This makes it possi
ble to posit the regression problem in its most general form, to derive unbiased 
and most efficient estimators of the parameters, and to consider the appropriate 
tests, all in terms of vectors and, therefore, in a surprisingly simple way. 

In chapter 3 we consider the application of the theory, developed in the first 
two chapters, in some special cases of increasing difficulty. In all these cases the 
random variables have covariance zero. 

We mention: orthogonal polynomials, regression problems with one, two, or 
three classifications in general form (the customary analysis of variance is a part 
of this subject), and simultaneous occurrence of classifications and of explicitly 
given regression functions (the so-called analysis of covariance belongs to tins 
domain). Particular attention is paid to the general iterative method for two 
classifications (compare KUIPER [11]); this also leads to a new insight in ba
lanced, and partially balanced incomplete block designs and in two-dimensional 
lattices. For balanced blocks we owe this insight partly to KUIPER. We empha
size the importance of the mentioned general iterative method, also because 
adaptation for electronic equipment may be foreseen in the near future. Cha
racteristic properties of the concerned vector spaces are established for some 
particular cases of three classifications, namely in the designs of PEARCE(15, 16), 
and for the case that one classification is orthogonal to the interaction of the 
other two. For the case that fertility in a trial is supposed to be a continuous 
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function of the coordinates of the plots, an objective method of estimation is 
presented. For regression problems of the kind of covariance analysis, new 
more general solutions are derived. The missing plot technique has been con
sidered in its most general form. All the generalizations, enunciated in this 
chapter, have proved to be very suitable and useful in practice. 

In chapter 4 a new and very general consideration of regression problems is 
given for cases that some parameters in the regression functions are random 
variables. We mention the so-called recovery of inter-block information, designs 
of split-plot type, and the estimation from series of experiments. All these appa
rently different problems could be treated - by means of vectors again - in a 
uniform way. The derived iterative methods, which are related to those of 
chapter three, are simplified to partly known results in particular cases. The 
estimation of the variance of the random parameters, necessary in the perfor
mance of the derived methods, is the only subject in this study for which some 
computational work seemed inevitable. 

CHAPTER 1 

LINEAR ALGEBRA 

1.1. VECTOR SPACES 

1.1.1. Definition of vector spaces 
A vector space E is a set of elements with the following properties: 
(a) To every pair x and y of elements in E there corresponds an element z 

in E, called sum of x and y and denoted by z = x + y , such that addition is 
commutative i.e. x + y = y + x ; addition is associative i.e. x + ( y + z ) = 
= ( x + y ) + z ; there exists in E one vector, 0, called the null vector, such that 
for every x i n E : x + 0 = x;to every x in E corresponds a vector -x such that 
x + ( - x ) = 0. 

(b) To every pair, consisting of a real number X and a vector x in E, there 
corresponds an element y in E, called product of X and x and denoted by Xx, 
such that multiplication is distributive with respect to vector addition i.e. 
M*+y) = ta+Xy; is distributive with respect to addition of real numbers 
i.e. (X+[i)x = Xx+{ix; is associative i.e. X ((xx) = (X(z)x; Ox = 0 and Ix = x. 

It follows from this definition that every linear combination Xixi+X2X2 + . . . 
of vectors x i , . . . , x» in E is a well defined element of E. 

1.1.2. Examples 
Consider the set of arrows from one point, called origin, in a plane or in an 

ordinary three-dimensional space. Let addition take place by the well-known 
parallelogram construction in mechanics, and let the product of X > 0 and the 
arrow x be an arrow with the same direction as x, but with length X times as 
large as that of x. Let an arrow with length zero be called 0, and an arrow 
with the same length as the arrow x, but in opposite direction, be called -x. 
Then the arrows satisfy the definition of vector space. 

Another example of a vector space will be obtained by considering «-tuples 
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of real numbers with the following properties. Let the elements x and y be 
(JCI, x%,xn) and (yi, v 2 j>») respectively. Further 

x + y = (xi + yi, X2+yz xn+yn); AX = (Xxi, Xx2 Xx»); 
0 = (0, 0, 0) and -x = (-xi, - x 2 , -x»). 

One can verify that the set of all such «-tuples satisfies the definition of vector 
space, and therefore may be called a vector space. 

1.1.3. Dependence and independence 
A set of vectors xu x% is called linearly dependent, if there is a set of 

numbers Xi, X» not all equal zero such that Xixi+X2X2 + . . .+X»x w = 0. 
If on the other hand SjXjx« = 0 implies that "h — 0 for i = 1, ..., n, the set is 
called linearly independent. 

We remark that every set of vectors containing the null vector is dependent. 

If X* ^ 0 in S?X4x4 = 0, then x f c = f^j x i + ^ x 2 + . . . + ^ x„. 
Therefore a set of vectors is dependent, if and only if some vector of this set 

can be written as a linear combination of the others. 
In the example of a vector space consisting of arrows in a three-dimensional 

space, three arrows are dependent if they belong to the same plane, and inde
pendent if they do not. 

The vectors a = (i, 0, 0); b = ( 0 , 1 , 0); c = (0, 0, 1) and d = ( 2 , 1 , 1 ) are 
dependent because a + b + c - d = 0. Each can be written as a linear combi
nation of the other three. Any three of them are independent. 

1.1.4. Basis 
A basis in a vector space E is a set of independent vectors in E such that 

every vector in E is a linear combination of this set. 
In the following we shall confine ourselves to vector spaces which have a 

finite number of vectors in a basis. 
Any two arrows with different directions in a plane form a basis for the space 

of arrows in that plane, and any three arrows not lying in a plane do for the 
space of arrows in a three-dimensional space. 

Any n-tuple (Xi,..., X̂ ) can be written as Xi (/, 0,0 0)+X2 (0,1,0,..., 0)+ 
+ . . .+X»(0, 0, 0, 1) = Xiei- |- . . .+X w e w . The n vectors ei, en are 
independent and thus form a basis of the vector space of n-tuples. As this 
basis will be used frequently, we call it the standard basis of this space. 

We remark that the expression of an element x of E as a linear combination 
of a basis xi, x w is unique. For from x = S^XjXi = 2«[iiX* it follows by 
subtraction that %(kt - {¿0 x« = 0. Because of the independence of the basis, 
X$ = m for i = 1, ...,n. The numbers Xi, Xra are called coordinates of x 
(with respect to this basis). 

1.1.5. Dimension 
Theorem: Every basis of a vector space E contains the same number of ele

ments, which number is called the dimension of E . 
Proof: (HALMOS [7]). Let xi xm be a set of generators in E i.e. a set of 

vectors such that every vector in E is a linear combination of the vectors in 
that set. Let yi, y w be a set of independent vectors in E. In front of the 
vectors x i , . . . , xm we write y« and obtain: y«, xi, x 2 , . . . , xm. This set is depen
dent because y n is a linear combination of xi xm. Going from the left to 
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the right, we cancel the first vector which is a linear combination of the pre
ceding vectors e.g. x«. All vectors of E are linear combinations of the set 
y«, xi, X 2 , . . . , X4_i, %t+i,..., x m . In front of this set we write y»_i, and, in a 
similar way as before, a vector x» will be cancelled. We proceed in the same way, 
till the set yi , . . . , y n will be exhausted. We remark that, because of the indepen
dence of the y i , y n , only vectors x« will be cancelled by this procedure. 
One could ask oneself whether the x« will not be exhausted before the set 
yi. •••» y». 

Then the rernaining vectors of yi, y n would be linear combinations of 
the y i already used, which is impossible in connection with the independence 
of the set y i , . . . , y n . It follows that m " ^ n . 

If both sets are bases of E, their role in the argument above can be changed, 
and it follows that n ^ m . Thus m = n . 

The definition of dimension yields the customary dimension for the geo
metrical vector spaces of arrows. The space of all n-tuples is «-dimensional. 

1.1.6. Subspaces 
A subset A, B, etc. of a vector space E is called a subspace of E, if it is a vector 

space with the same definition of addition and multiplication as in E. 
An example of a subspace in the three-dimensional space of arrows is the 

set of all arrows in a plane which contains the origin. Another example is the 
subset, in the vector space of all «-tuples of numbers, of all those «-tuples of 
which the last m { < . n) numbers are zero. 

The set of all linear combinations of a set of vectors in E is a subspace too; 
for every linear combination of such linear combinations can be written as a 
linear combination of thesfirst/set of vectors, in other words, is an element of 
the subset. This property implies that the definition of vector space for E also 
holds for this subset. The set of generating vectors is said to span the subspace. 
Particularly a basis for E spans E. Similarly, the set of all linear combinations 
of vectors in the two subspaces A and B is said to be spanned by A and B; 
every vector in this subspace, denoted by A + B and called the join of A and 
B, can be considered as the sum of a vector in A and a vector in B. 

A basis, and thus the dimension of a subspace A, of a ra-dimensional space 
is found in the following way. If A consists of the null vector only, the dimen
sion of A is 0. If A contains a vector xi # 0, then xi spans a subspace Ai in A. 
If A = Ai, then A has dimension one. If A contains a vector X2 which is not 
in Ai, then xi and x 2 span a subspace A2 in A etc. We can find at most n vectors 
Xi which span A and are independent, for every set of n +1 vectors is dependent. 
The dimension of a subspace is thus at most n . Proceeding in the sketched way, 
one can choose a basis for E such that a part of this set forms a basis for A. 

The intersection of two subspaces A and B i.e. the set of vectors which are 
both in A and in B, is a subspace; for if two vectors are in this intersection, in 
other words, are in both subspaces, then the same holds for every linear com
bination of this pair. 

If two subspaces have the null vector only in common, they are called dis
joint. 

The decomposition of a vector z in the join A + B of two disjoint subspaces 
A a n d B t o a s u m x + y , with x in A and y in B, is unique. For fromz = x + y = 
= x '+y ' follows x - x' = y - y' with x - x' in A and y - y' in B. Because A 
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and B are disjoint x - x' = y - y' = 0 or x = x' and y = y'. Let A be spanned 
by a basis xi , . . . , x« and B by a basis yi,...,ym- Then these m+n vectors span 
A + B . Because of the uniqueness of the decomposition z = x+y> it follows 
from Xixi + . . . + X»xro + fiayi + . . . + \imym = 0 that S^x* = 0 and S^y? = 
= 0, so that >4 and \JJ are all zero, and the m + n vectors independent. The di
mension of A + B is thus m+n. 

If E has dimension n and the subspace A has dimension m, we can choose 
a subspace B with dimensionn-m such that A and B span E and are disjoint 
For we can choose a basis for E such that m vectors of that set are in A. The 
subspace, spanned by the n - m remaining vectors, is called B. From the de
finition of a basis follows that A and B are disjoint. We point out that such a 
residual space B can be chosen in various ways. 

1.2. LINEAR TRANSFORMATIONS AND MATRICES 

1.2.1. Definition of linear transformations 
A linear transformation A in a vector space E assigns to every vector x in E 

a vector Ax in E (is a mapping of E into itself) such that, for x and y in E and 
X and (i real numbers, A (Xx+w) = XAx + yiAy. In particular AO = 0. If, for 
all x, Ax = 0 or Ax = x, then A is represented by 0 or 1 respectively. 

The sum A + B of two linear transformations A and B is defined by: (A + 2?)x= 
= Ax+Bx for all x. The product of a real number X and a linear transformation 
A is defined by: (X4) x = X (Ax) for all x. The product P = AB of two trans
formations A and B is defined by Px = A(Bx) for all x. We remark that the 
order in this product is important. The given order means that x should be 
mapped by B, and that the result should be mapped by A. The product BA 
on the other hand means that x should be mapped by A, and that the result 
Ax should be mapped by B. By considering e.g. rotations in the three-dimen
sional space of arrows about the origin it will be seen that the result of AB 
in general is 
not commutative 

From the definition we have the following rules concerning the calculus of 
transformations: 

AO == OA = 0; A(B+C) = AB+AC; (A + B) C = AC+BC; 
A1=-1A = A; A(BC) = (AB)C. 

As a consequence of the last property, not only A A may be written A2, but 
also AAA. 

Suppi 

1.2.2. Inverse 
Theorem 

Ax = 0 impl[ii 
Proof: 

Axi, Ax 
that SJXJXJ 
can be written 

Conversely, 
vectors of a 
From S JXJXJ 
vectors x« 
AQiikiXi) 

tfoim 

different from that of BA: linear transformations are in general 

A, which consists of m factors A, may be written Am. 

of a transformation 
The equation Ax = y has a solution x for any y, if and only if 

x = 0. 
ose Ax = 0 implies x = 0. Let x i , . . . , xn be a basis for Ti. Then 

is also a basis. For from S{X^4x^ = 0 follows A(Ljfaxi) = 0, so 
0 and thus every X« is zero. The supposition implies that any y 
as XiKi(Axi) = AQihM), so that Ŝ Xjx̂  is a solution of Ax = y. 
if Ax = y has a solution for any y, then, corresponding to the 

basis y i , . . . , yn, there can be found vectors xj such that Ax% = y«. 
= 0 follows AEikiXi = 0, or 'S^Axt = 0 or 'Eihyi = 0. Thus the 

a basis, and any x can be written as Ŝ XiXi. Hence Ax = 0 implies 
0 or SiXjy4x« = 0 or S^yj = 0; thus every X« is zero and x = 0. 
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The solution, if it exists, is unique. For if x' ̂  x or x' - x ^ 0, then 
A(x' - x) T¿ 0 or Ax Ax'. The assignment of a vector x to every y, obtained, 
in this way, is a linear transformation (denoted by A'1). Let Axi = yi and 
Axz = ya; then AQxi+yx2) = Xyi + fi.y2; thus A-X(kyi + W2) = Xxi + ¡xx2 = 
= X4 - 1 yi + [ iy4 - 1 y2. 

The linear transformation A-1 is called the inverse of A. If A-1 exists, A is 
called non-singular; if the inverse of A does not exist, A is singular. If A has 
an inverse, AA~X = >í_1>í = 2. 

If /4JB = 1, A is the inverse of B (and thus 5 is the inverse of A) which may 
be seen as follows: ABx = x for any x; therefore x # 0 implies Bx ^= 0, or, 
in other words, Bx = 0 implies x = 0; thus 5 has an inverse B~x; multiplying 
both sides of AB — 1 on the right by Br1 yields A = J S - 1 . 

1.2.3. Matrices 
Let x i , . . . , x w be a basis for E. Let the linear transformation A be such that 

AXJ = SíocyXí, and let x = 'ZjkjXj be a vector in E. Then Ax = S ^ A x ; = 
= 2¿Aj(£íayXí) = 1n(L)04jkj) x«. The coordinates Ŝ ayX^ of 4̂x are completely 
determined by a square array of numbers a y : 

«12 . . . *lj ••• <*lra_ 

<*21 »22 . . . «2i ••• «2» 

a n Oi2 . . . a y . . . a¿» 

^ 2 . . . . . . <*nn_ 
which is called the matrix of A in this coordinate system. The element a y is 
the j-th coordinate of AXJ with respect to the basis xi,..., xn. 

It follows directly that the matrix of the transformation 0 consists of zeros 
only, and that in the matrix of the transformation 2 ay = 2 for i = j , and 
a y = 0 for / 7 6 j . If the transformations A and 2? have matrices with elements 
a y and j3y respectively in a fixed coordinate system, then the elements of the 
matrix of the transformation X4 + \LB are y y = X a y + I n order to obtain 
the matrix of the product C = AB, we consider CXJ — A(Bx)) = A(Z^>hj^ie) = 
= 2fc{3¡y Axjc = SfcPfcj(2¡iaífeXí) = St(SfcOifcP^)xi. It follows that the element 
y y of C is equal to S^a^p^, which is obtained from the f-th row of A and the 
y-th column of B. 

Singularity of A i.e. Ax = 0 for some x ^ 0 implies S^ayX; = 0 for all 1'. 
If we consider the columns of the matrix of A as vectors in the space of B-tuples, 
this means that these columns are dependent. In order to obtain a necessary 
and sufficient condition of independence for the columns ai, a B of the 
matrix we consider the function 

1.2.4. Determinant 
The determinant is a real function of the columns ai, ..., a^ of a square 

matrix, D(ai a«) such that: 
D ( a i , X a * , a « ) = X 2 ) ( a i , a * , a w ) ; 
D ( a i , a i + X a ^ , a r a ) = 2 ) ( a i , a ¿ , a » ) ; 

and if we represent the columns of the matrix of the transformation 2 by 
e i , . . . , e»: 2)(ei,.•., em) — 2. 
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From the f rst condition it follows, by choosing X = 0, that if a* = 0 then 
D = 0. If the columns are dependent e.g. ai = EJL^X^a;, t n e n 

2)(ai,..., a») = Z)(ai -X2a2, a2, . . . , a») = D(&i -X 2a2 -Xsa3, a 2, as, . . . , a») = = 
=D(0, a 2, a3, ...,nn) = 0. In other words, singularity implies D = 0. 

From i)(ai a») = Z)(ai + a 2, a 2, a 3 , . . . , a«) = 
= D(ai + a 2, a2 - ai - a 2, a 3 , . . . , a») = D(ai + a 2, -ai, as , . . . , a») = 
= D(a2, -ai, as, a») = -D(a2, ai, a 3, it follows that exchanging 
two columns changes sign of D. 

Further we will prove: 
2)(bi + b2, a 2, &n) = D(bi, a 2 a») + Z)(b2, a 2 , a ^ ) . 

If a2 a» are dependent the statement is trivial. If they are independent, 
the linear relation between bi, t>2, a» (for these are dependent) has 
not both coefficients of bi and b2 equal zero, so that e.g. 
b2 = X]bi+X2a2 + . . .+X w a B . Then: D(b2+Xbi, a2 &n) = 
= D(Xibi+X 2 a2+. . .+X M a w +Xbi, a2, a») = Z)(Xibi + Xbi, a 2, aw) = 
= (Xi+X)D(bi, a2,. . . , a»). Substituting X = 1 yields: 
Z)(bi + b2, a 2 , . . . , a») = (Xi - f1) D(bi, a2 , . . . , a»), while X = 0 gives : 
D(b2, a 2 , & n ) = X].D(bi, a 2 , a » ) . By subtraction the assertion follows. 

When the columns bi bn are dependent on ai a« then, by repeated 
application of the foregoing property, D(bi,. . . , bn) can be reduced to a linear 
combination of determinants of matrices consisting of n columns of a i , a n 

(equality of such columns will occur). If D(&i,..., a») = 0 then all such deter
minants are zero and thus D(bi, ..., bn) = 0. If the set ai a« is indepen
dent, then we may take the set e i , e » for bi bn. If D(ai, .a») were 
zero then also D(ei,..., e») would be zero. While the last is not true, D ( a i , . . a M ) 
is not zero. We have: ai, a» are dependent if and only if the determinant 
is zero. 

According to the method described in the last paragraph the determinant of 
the matrix of A can be reduced to a linear combination of determinants 
D(fiix> ej, Z)^ with coefficients oy 1 i / ,oy ] ] 2/.../oy, 1 ». 

In connection with an application to follow, we observe that a function 
L(ai a»), satisfying only the first two defining properties of determinants, 
is a linear combination of IXe)i> •••> e/«i) with ^ same coefficients as in 
D(ai, . . . , a*). Hence for any such function there exists a constant C such that 
Lfai,&n) = C - Z ) ( a i , a » ) . 

The application concerns the determinant of the product AB of tfoo matrices. 
We observe: multiplication of a column of the matrix of B by X in [plies multi
plication of the corresponding column in the matrix of AB by X, and thus 
multiplication of the determinant by X; adding X times a column c f the matrix 
of B to another column implies a similar addition of correspond ng columns 
in the matrix of AB, and therefore does not change the determinai it; if B = 1, 
then AB = A, and the considered determinant is equal to the dei erminant of 
the matrix of A. Hence D(AB) = L(B) with C = D(A), so th^t D(AB) = 
= D(A)D(B). 

In particular, if A has an inverse the product of the corresponding determi
nants is 1. 

1.2.5. Change of basis 
Let xi, xn and yi, yn be two bases for E, and let the 

formation A , which maps x$ onto y« for every i, be given by AXJ = 
inear trans-
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Let z = EJXJXJ = E^yy. The relation between the coordinates X« and [A; 

follows from: z = E^y^ = EflLjAxj = S ^ ( S ^ x « ) = E*(Ejayfi;)x$, so that 
X« = E^ayjjy. 

A is non singular, because Az — AEjkiXi = EfX^x^ = E^y* = 0 only if all 
Xi = 0 i.e. if z = 0. The transformation A'1 will be expressed by x& = E^a^y,-
in which o^l is an element of the matrix of A~l with respect to the second basis. 
The product of the matrix of A with respect to the first basis and of A~x with 
respect to the second basis is 1; these matrices are called the inverse of each 
other. 

Let B be a transformation of which the matrix with respect to the first basis 
consists of elements [3y so that BXJ — E$Pyx$. In order to obtain the matrix 
of B with respect to the second basis, we consider By>j = B(AXJ) = BEjayxj = 
= IkxtjBxt = EjEsayPjwx*: = EjEfcEray^a^yr = S^Efca^tE^ay^y,.. The 
required matrix is obtained by multiplying the given matrix of B on the right 
by the considered matrix of A, and on the left by the inverse of that matrix. It 
follows that the determinant of this product of matrices is equal to the determi
nant of the given matrix of B. Hence the determinant belonging to a trans
formation is independent of the basis. 

1.2.6. Proper vectors and proper values 
A vector x ^ 0 is a proper vector and a number X a proper value of the trans

formation B if Bx = Xx. The proper values of B are those X for which (B - X/)x = 
= 0 has a solution x ^ 0, i.e. those X for which the determinant of the trans
formation B - \ 1 , D(B - X/), is zero. 

Instead of the matrix B - X/ of this transformation we may also use the ma
trix A-\B-M)A = A-xBA-A-*hlA = A~XBA-\1 from which it follows 
that the proper values are independent of the basis. The function D(B-~kl) is 
a polynomial of degree n in X with ( - l ) w as coefficient of XB. The number of 
proper values therefore is at most n. The multiplicity of a root X of the equation 
Z>(P-XJ) = 0 is called the algebraic multiplicity of that proper value. 

The proper vectors that belong to a proper value form, together with the 
null vector, a subspace of E. The dimension of this subspace is called the geo
metric multiplicity of that proper value. 

1.2.7. Projection 
If E is spanned by the disjoint subspaces A and B, then there is a unique 

decomposition of z in E to x + y with x in A and y in B. The transformation P 
which maps z onto Pz — x is called the projection on A along B. This trans
formation is linear; for, with x^ and y« in A and B respectively, P(Xzi + \LZZ) = 
= P(Xxi+Xyi + [XX2 + W2) = Xxi + [ixa = XPzi + \iPz2. The transformation is 
singular in general: P(xi+yi ) = P ( x i + y 2 ) also for yi # yz. Because x will 
be decomposed in x + 0 , we have Px = x and thus P 2 z = P(Pz) = Px = x = 
= Pz; in other words, P = P 2 for every z. Such a transformation is called 
idempotent. 

If the first k vectors of a basis for E span the subspace A and the remaining 
vectors span B, then the projection P on A along B is expressed by a matrix 
with elements ay which are all zero except a# = 1 for j ^ k. 

file:///iPz2
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1.3. INNER PRODUCT; ORTHOGONALITY 

1.3.1. Definition of inner product 
Introduction of an inner product will enable us to introduce the notions 

length, distance and angle in vector spaces. 
The inner product is a function which assigns to every pair of vectors x and y 

in a vector space E a real number, denoted by (x, y) or by xy, such that 
(x, y) = (y, x); (Xxi + [xxa, y) = X(xi, y) + u.(x2, y); (x, x) ^ 0 and is zero only if 
x = 0. 

(x, x) will also be denoted by x 2 . The number V(x, x) also denoted by |x | is 
called the length of x. From the definition we have: |Xx[ = V(Xx, Xx) = 
= Vx(x, Xx) = Vx(Xx, x) = VX2(x, x) = |X | • | x |. Multiplication of a vector 
by the number X makes the vector | X | times longer. If x (or y) is 0, then (x, y) = 
= (Ox, y) = 0(x, y) = 0. 

Let x i , . . . , xn be a basis for E, Xi X» the coordinates of x and (ii , . . . , [x« 
those of y. Then (x, y) can be reduced to 2^Xi(jy(x«, xA This form (which is a 
positive definite form in the variables X« if x = y) will be determined by the 
inner products of the basisvectors (x«, xA Let the inner products (x& x;) be the 
elements a%j of a matrix which because of at] = <x# is called a symmetric matrix. 
Then this matrix together with the basis determines an inner product in E. 
The matrix itself will be named the metric (associated with this basis). 

1.3.2. Distance and angles 
Theorem: (x, y) 2 ̂  x 2- y 2. 
Proof: For any X: (y - Xx)2 = (y - Xx, y - Xx) ^ 0 or y 2 - 2Xxy+X2x2 ^ 0. 

The quadratic form in X thus has a discriminant ^ 0, so that (x, y) 2 ̂  x 2- y 2 . 
Equality occurs if and only if y - Xx = 0 i.e. if x and y are dependent. 

The relation just proved (Schwarz's inequality) can also be expressed by: 
(x y) 

the number , , , , is in absolute value at most / . 
| x | - | y | 

The distance of a pair of vectors x and y is defined as the length of the 
difference x-y. The name is justified by the following properties: 
| y - x [ = | x - y | i.e. the distance from x to y is as large as the distance from y 
to x; the distance is zero, if and only if x = y; otherwise it is positive; because 
| ( y + z ) - ( x + z ) | = | y - x | , the distance is said to be invariant under trans
lations; the triangle inequality holds i.e. | x - y | ^ | x - z | + | z - y | . The last 
property may be seen as follows. We have [ x + y | 2 = x 2 + 2 (x, y) + y 2 ^ | x | 2 + 
+ 2[x | - |y | + |y | 2 = {jxj + | y | } 2 or | x + y | ̂  |x | + |y|. Replacing x andy 
by x - z and z - y respectively gives the inequality, 

(x y) 
The number , , , , is named the cosine of the angle m between x and y. 

I x l - |y | 
This definition for the angle between vectors may be illustrated as follows: 
The sides of the triangle with lengths |x|, |y| and | x - y | respectively satisfy: 
| x - y | 2 = ( x - y ) 2 = x 2 - 2 x y + y 2 = l x | 2 + l y | 2 - 2 , * y . •• |x|- |y| .Bysub-

l x r iy| 
stitution of the given definition for the angle <p between x and y we just obtain 
the ordinary rule for the cosine in a triangle. Remembering the addition of vec
tors in the space of arrows (of vectors y and x - y in this case) we observe that 
any pair of vectors x and y may be represented "congruently" in the space of 



1 2 58(1 ) 

arrows by two arrows with lengths |x | and |y | respectively and an angle > 
between them. Similarly any set of three vectors can now be represented by 
arrows with the corresponding lengths and angles in an ordinary three-dimen
sional space. 

1.3.3. Orthogonality 
In accordance with the definition of angle two vectors are called orthogonal 

if their inner product is zero. 
A set of vectors in E is called orthogonal if every vector of the set is ortho

gonal to every other vector of the set. If moreover every vector in the set has 
length 1, the set is called orthonormal. (If a vector x=£ 0 is divided by its 
length |x|, a vector with length one, a so-called unit, vector, is obtained). 

An orthonormal set xi, xm is independent. For if £4X4x2 = 0, then 
(Zikpn, xj) = 1,iK((xi, xj) = X; = 0 for all /. It follows that m is n at most. 

We will prove that in a n-dimensional space there exists an orthonormal 
basis (of n vectors). 

Proof: There exists a basis xi xn. This basis will be orthogonalized i.e. 
an orthonormal set yi yn will be constructed such that every yt is a linear 
combination of xi xj. This orthogonalization process will take place in n 
steps. In the first step yi = xi/[x| . After completion of the r-th step so that 
yi , . . . , yr are available as linear combinations of xi , . . . , xr, the (r+l)-th step is 
performed as follows. First we find a vector z = xr+i - (Xiyi + ^ 2 y 2 + • • • +^ryr) 
orthogonal to y i , y r . Because (z, yj) = (x r + i , y^)-\j for j = 1 , r , we 
must take X; = (xr+i, yj). This z is not 0, for x i , x r + i are independent and 
the coefficient ofx r+i in z is not zero. Now y»-+i = z/|z|. 

From the proof it follows that every xr is a linear combination of y i , . . . , yr. 
In the space of arrows, where the inner product of two vectors is defined as 

the product of their lengths and the cosine of the angle between them, an 
orthonormal basis is formed by two (and three respectively) perpendicular 
arrows with length one. If the inner product in the space of n-tuples is defined 
by (x> y) == SjX^yj (as is often done), the standard basis ei, e w happens to 
be an orthonormal basis. 

1.3.4. Orthogonal polynomials 
An application of the orthogonalization process occurs, when the vector 

space of n-tuples (or a subspace of it) is considered as the set of n-tuples of 
function values for a function defined on a set of n real numbers. The function 
may for example be any real polynomial of degree ^ m in one variable x. 
That the corresponding set of n-tuples of function values then is a vector space 
follows from the fact that, if such a n-tuple zi corresponds to the function 
fi(x) and Z2 to fz(x), then X1Z1+X2Z2 contains the function values of the 
function X I / I ( J C ) + X 2 / 2 ( X ) ; if fi(x) &ndfz(x) are polynomials of degree ^ m, 
then the same is true for fafi(x)+'k2f2(x). If the n values of x are different, a 
basis for the space of n-tuples is obtained from the functions / , x, x2 x B _ 1 . 
For, as X O + X I X + . . . + X B - I J C W _ 1 = 0 has at least n different roots, if and 
only if all coefficients are zero, the vector corresponding to X0-r-XiJC+^2X2-r-
+...+hi-ixn~1 is the null vector, if and only if every X« = 0, i.e. if the gene
rating function is the polynomial 0. Because the space of n-tuples has dimension 
n, it follows that a vector obtained from a polynomial of degree > n also is 
generated by some polynomial of degree n - 1. 
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For purpose of computation one often orthogonalizes the above-mentioned 
basis or if m< n - 1 the first m+1 elements of this basis. This happens ac
cording to the process described in the foregoing section. Thus the j-th ele
ment of the orthonormal (or orthogonal) basis will be a linear combination of 
the first j elements of the first basis, which means that the corresponding 
function will be a polynomial of degree j - l . Such a set of functions are called 
orthogonal polynomials (associated with n values of x and a definition of inner 
product). Special cases of such functions and their tabulation will be considered 
in 3.1.4. 

1.3.5. Orthogonal subspaces and orthogonal projection 
Two subspaces A and B of E are called orthogonal if every vector of A is 

orthogonal to every vector in B. Orthogonal spaces are disjoint; for, if some z 
is in both, z 2 = (z, z) = 0 and thus z = 0. It is easily seen that A and B are 
orthogonal, if and only if a basis of one of them is orthogonal to the other 
space or to its basis. The set of vectors in E orthogonal to a subspace A clearly 
is a subspace too. It will be denoted by A-1-. Let x i , . . . , x m be an orthonormal 
basis for A and let z be any vector in E. Then x = S$L i(z, x«)x« is in A, while 
y = z-Sjli(z, Xj)x4 is orthogonal to every Xi, thus to A, in other words y is 
in A-1-. Thus z is decomposed in x + y with x in A and y in A x : A and A x 

span the n-dimensional space E. The (n - ;w)-dimensional residual space A- 1 is 
called the orthogonal residual space of E, and is spanned by n - m independent 
vectors orthogonal to A. It follows that A±J- is the same as A. 

The transformation which transforms z in x, the projection of z on A along 
A\ appears to be determined by A only (as Ax is determined by A). It is 
called l i e orthogonal projection on A. Similarly the assignment of y = z -x 
to z is called the orthogonal projection on A-1-. The orthogonal projection of 
z on A will be found as a linear combination, x, of the basis vectors of A such 
that y = z - x is orthogonal to A i.e. to the basis vectors of A. It was this 
procedure which has been applied in the orthogonalization process (xr+i is 
projected orthogonally on the space spanned by y i , . . . , yr, while z is in the or
thogonal residual space) and in the study of A1- in fact. The vector y will often 
be called the perpendicular from z on A. 

From z = x + y and x orthogonal to y follows z 2 = x 2 + y 2 , the theorem of 
Pythagoras. Thus the length of x i.e. the length of the orthogonal projection 
of z is equal to the length of z at most. Equality holds only if y = 0 i.e. if z is 
in A. 

Consider the distance of z to any vector u in A. Then we have z - u = 
= (z - x) + (x - u) = y + ( x - u) and, because y is orthogonal both to x and 
to u, and thus to x - u : (z - u) 2 = y 2 + (x - u) 2. It follows that the distance 
between z and u is at least as large as the length of y, the perpendicular from 
z on A. Equality holds only if x = u. In other words, x is the vector in A with 
the shortest distance to z, and the length of the perpendicular y is by definition 
the distance between z and A. 

Let Ai , . . . , Aft be subspaces in E. Then the residual space of E, Aft+i, ortho
gonal to the space spanned by Ai Aj is determined. If moreover Ai , . . . , Aft 
are orthogonal to each other, there is a unique decomposition of any vector 
z in E to xi + ...+Xft+i with xj in A) for j = 1 k + 1. The uniqueness fol
lows easily after choosing orthonormal bases in every Aj. Now every x; is equal 
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to the orthogonal projection of z on Aj, PJZ; for every PjZ is a vector in A$ 
such that z - Pjz is in the residual space of E orthogonal to A ,̂ in other words, 
is in the space spanned by the remaining subspaces. 

Clearly z 2 is equal to xf + xf + . . . + x\+1 which is an extension of the Pytha
gorean theorem. 

The sum of some PjZ is also an orthogonal projection namely on the space 
spanned by the corresponding A;, for the difference between z and this sum 
is orthogonal to that space. 

With a slight change of wording we have: The difference between the ortho
gonal projection on the space spanned by Ai and A 2 and the orthogonal pro
jection on the space Ai, which is a subspace of the space Ai + A2 = B, is equal 
to the orthogonal projection on A 2 , the residual space of B orthogonal to Ai. 

If the considered orthogonal subspaces A i , . . . are one-dimensional, in other 
words, form an orthogonal basis, then the corresponding orthogonal pro
jections of z yield the coordinates of z in an orthonormal coordinate system. 
For the orthogonal projection of z on e.g. the space spanned by x is obtained 

zx 
as Xx such that z - Xx is orthogonal to x, or (z, x) -X(x, x) = 0 or X = -=. Thus 

(z x) x 

the projection is jJ—x x, or (substituting x' = x/|x|) (z, x') x'. The coordinate 

of x' is equal to (z, x') = . 

1.4. CONVERGENCE OF VECTORS AND LINEAR TRANSFORMATIONS 

1.4.1. Convergence of vectors 
A sequence of vectors a» (n — 1, 2, ...) in E is said to converge to a vector 

a in E if the corresponding sequence of distances | a» - a | converges to zero. 
Let xi, Xfc be an orthonormal basis for E; let the sequence of vectors 

a» = 2 f = 1 a t o X 4 and the vector a = 2f= 1ap;a be such that 04% converges to «4 
for every i. Then because of the triangle inequality: 

I a» - a I = |2?=1(<xj» - <n)Xi | ^ S f = 1 |(xjw - oAx« | = S*=x | a<» - a« |. 
For any e > 0 there exists JV such that, for n>N, | «4n - «4 \ < ~ for every i, 

and thus | a» - a | < e. In other words, a» converges to a. 
The analogon of Cauchy's characteristic of convergence for sequences of 

real numbers is also valid for sequences of vectors: if there is a sequence of 
vectors a« such that for any s > 0 there exists N so that, for all n > m > N, 
\&n-am\ < e, then there exists a vector a to which a^ converges. To prove 
this write a» and am like in the preceding paragraph. Then a» - a m = 
= 2f = 1 (ate - <Hm)M- If I a» - a m I < e then also |ocf« - <Hm\, the length of the 
orthogonal projection of a» - a m on x«, is smaller than s for every i. According 
to Cauchy's characteristic for real numbers the sequence of real numbers a«w 

has a limit 04 for every i. Thus a« converges to Sf = 1QcjX4. 

1.4.2. Bound of a linear transformation 
A linear transformation A is said to be bounded, if there exists a positive 

number K such that for every vector x in E: | Ax | ^ K | x |, or (which is an equi
valent relation) such that the length of the mapping of a vector with length 1 
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has an upper bound, K. The minimum of these upper bounds K is called the 
bound of the transformation A and will be denoted by G(A). If A is an ortho
gonal projection e.g., the bound of A is equal to 1. 

Theorem: Every linear transformation A is bounded. 
Proof: Let x i , x & be an orthonormal basis for E; let M be the maximum 

of the set \Axi\,..., |.4x*|. Any vector x with length one is equal to 2£=i(x, x«)x« 
with |(x, x«)| < 1. Applying the triangle inequality we have 
\Ax\ = |^Sf = i (x , x<M = |S fL 1 (x , xO^ |^Sf = 1 | ( x , Xi)Axi\ = 
= 2/L 1|(x, xi) -\Axi\ £'Eit=1\Axi\ ^kM. Thus kM is an upper bound as 
meant in the definition for a bounded transformation and A is bounded. 

Theorem: Let the bound of A be G(A). Then there exists a vector x ^ O 
such that \Ax\ = GC4)-|x|. 

Proof: From the condition and the definition of a bound it follows that for 
any n(n = 1,2,...) there exists at least one vector xn with length one such that 

| l ~^JG(A) ^ \Axn\ ^ G(A)- [x»| = G(A). Let the coordinates of the vector 

xn with respect to an orthonormal basis be oc«, ¡3«, The first coordinates 
<xn form an infinite sequence of real numbers in the interval from -1 to + 1 ; 
this sequence has thus at least one limit point say a. It is possible to construct 
an infinite subsequence from the sequence which converges to a, e.g. by 
choosing successively: such that la^-a] ^ 1; oĉ  with r% > n such that 
lotr, - oc| 5S |;otj-s with r3 > f2 such that |ocr8 - a| ^ \ ; and so on. 

Consider the corresponding subsequence of vectors x n , x r a , . . . . In this sub
sequence the sequence of second coordinates fV,, P r a , . . . may be treated ana
logously. In this way an infinite sub-subsequence of vectors can be constructed 
such that the sequence of their second coordinates converges to a limit ¡3. 
The first coordinates will continue to have the limit a. 

By continuation of this process one can obtain a subsequence of the vectors 
Xn such that the corresponding sequences of coordinates converge to a, p, . . . 
respectively. According to the foregoing section this sequence of vectors conver
ges to a vector x. Because the length of a vector is a continuous function of the 
(orthonormal) coordinates of the vector, it follows that the length of x is one. 
Further in the constructed subsequence, converging to x, we have that, for 
anys > 0, there exists N such that for n > N: G(A) 2> |̂ 4x| = \Axn-A(xn-x)\^ 

^ \Axn\-\A(xn-x)|^ ( l - l ) G(A)-e• G(A) ^ (1 -2s)G(A),i.e. 

G(A) :> \Ax\ ^ (1 - lz)G(A) for any e > 0. Consequently |̂ 4x| = G(A), and 
the proof is complete. 

For all x with length one we have \(A + B)x\ ^ |^x| + \Bx\ ^ G(A) + G(B). 
Then the bound of (A+B) obeys G(A+B) ^ G(A) + G(B). 

Further \ABx\ ^ G(A)-\Bx\ ^ G(A)-G(B). Hence the bound of AB obeys 
G(AB)-^G(A)-G(B). 

1.4.3. Convergence of linear transformations 
A sequence of linear transformations An on E is said to converge to the 

linear transformation A on E, if the bound of the transformation An - A, 
G(Am - A), converges to zero. 
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It follows from the definition that for any vector x in E, |y4«x-^xj = 
— \(An- A)x\, which is at most G(An-A)- |x|, converges to zero. 

Now suppose, conversely, that AnX converges to Ax for every x in E. We 
will prove that An converges to A. Let xu x* be an orthonormalbasis for 
E. Then, for any e > 0, there exists N such that for n> N we have 

\AnXi~ Axt\ < jr for i = 1, k. Any unit vector x = Ef^x (x, xAx« 

satisfies \(An - A)x\ = |EJLi (x, x«) (An - A)xi\ ^ |(x, x«) (An - A)M\ ^ 
< S f = 1 \ ( A n - A)xi\ < s. Then also the least upper bound G(An - A) of 
(An-A)x is less than s. Consequently G(An-A) converges to zero, and An 

converges to A. 

Here too we have an analogpn of Cauchy's characteristic: if for any e > 0 
there exists JV(s) such that n> m> N implies G(An-Am)<z, then there 
exists a transformation A to which An converges. 

The proof is as follows. From the assumption follows that, for any vector x 
and s' > s - | x | , . s > 0 , there exists Nsuch that n> m> Nimplies 

\AnX-Amx\ ^ G(An-Am)-\x\ ^ e - | x j ^ e ' . 
According to Cauchy's characteristic for convergence of vectors, A%x con

verges to a limit named Ax. When we will have proved that the assignment of 
the vector Ax to x is a linear transformation, the proof that A» has a limit 
namely A will be complete. 

Let the limits of the sequences A%x and Any be Ax and Ay respectively. Then 
for any s > 0 there exists N such that for n > N both \AnX - Ax\ < s and 
\Any-Ay\ < e. Then \An<}x+[iy)-'kAx-nAy\ = 
= pAnX-lAx + yAny-yAyl ^\7J(AnX-Ax)\ + \yj(Any~Ay)\ < {|X| + |u.|}s. 
It follows that the limit of AnQ<x+fty) is equal to x k x + y A y or that XAx+[iky 
is assigned to Xx+uy for any real X and \L. Thus A is a linear transformation. 

By means of the condition for convergence of An to A, that A%x should 
converge to Ax for every x, it is possible to prove that, if An converges to A, Bn 

to B and X» to X, then An+Bn converges to A+B, %nAn to ~hA and AnBn to AB. 
For An + Bn the proof is as follows. For any fixed x and any e > 0 there 

exists N such that for n > N both \AnX - Ax\ < \s. and \BnX - Bx\ < | s . Then 
\(An+Bn)x -(A +B)x\ ^ \AnX - Ax\ + \BnX - Bx\ < E which means that the 
Ihnit of (An+Bn)x is (A + B)x. 

For TvnAn: For any fixed x and any s > 0 there exists N such that for n > JV 
both |X»-X| < s and | /4«x-^x| < s. Then \XnAnx-'kAx\ <S \kn(Anx-Ax)\ + 
+ |(X»-X)/4x| < |X»|-s-(- \Ax\-e ^ e(B+ \Ax\) where B is an upper bound 
of the set |Xj,|. This means that the limit of X^^x is XAx. 

For AnBn: For any fixed x and any s > 0 there exists N such that for h> N, 
| S « X - B X | < E and for y = Bx, \Any- Ay\ < s. Then \AnBnX-ABx £S 
< \AnBnX - AnBx\ + \AnBx-ABx\ ^ G(An) • \BnX - Bx\ + \An(Bx)-A(Bx) g 

G-s-fs, where G is an upper bound of the set of bounds of the sequence 
of transformations An. To prove the existence of G it will be shown that the 
sequence G(An) has a limit namely G(A). From G(A+B) ^ G(A)+G(B) 
we have G(AW) ^ G(An - A) + G(A) or G(An) - G(A) ^ G(An - A) and 
G(A)^G(A-An) + G(An) or G(An)~G(A) >-G(A-An). It follows that 
\G(An) - G(A)\ < G(An - A) so that, if An converges to A, G(An) converges to 
G(A). 

file:///AnXi~
file:///Ax/-e
file:///AnBnX-ABx
file:///AnBnX
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1.4.4. A power series of transformations 
Consider the sequence Sn = 2£=o where A is a linear transformation, 

while A0 represents the transformation 2. Let the bound of A obey G(A) < 1. 
It is clear that Sn is a linear transformation too. Fór'ra > m we have Sn - Sm = 
= S^m+i AP and according to the properties of a bound: 

G(Sn - Sm) ^ S ^ = m + i G(AP) ̂  25-»+! { W . 
Because G(^4) < 7 there exists, given s > 0, N such that for n > w > N 

{G(^4)}P < e. Thus Sn satisfies Cauchy's criterion for convergence of 
linear transformations and converges to a linear transformation S. 

To calculate S we remark that the transformation 1 -Ais non-singular. For 
(7 - A)x = 0 and x ^ 0 implies Ax = x or \Ax\ = ]x| on the one hand, and 
because G(A) < 1 also |y4x| G(A) • \x\ < |xl on the other hand, a contra
diction. Now (/ - A)Sn = Sn-ASn = 1 - A^\ and Sn = (1 - ÁjrH.1 - An+*). 
As G(An+1) 5g {G(A)}n+1 which converges to zero, An+1 converges to 0. 

Using the properties discussed in the foregoing section we may conclude that 
1 - An+1 converges to 1 and that Sn converges to (1 - A)~\ Thus S = (l- A)-\ 

1.5. EVALUATION OF PROJECTIONS 

1.5.1. General procedure 
In the applications we often meet the situation that E is spanned by the dis

joint spaces A and B, both given by bases. The difficulty in evaluating the pro
jection of a vector z on A along B, lies in the fact that usually z is given by the 
coordinates with respect to some basis of E , while the given basis vectors of 
A and B do not or do not all occur in that basis of E . If z is given as linear 
combination of the basis vectors of A and B the projection is trivial. 

We wish to transform the general case to this trivial case. Let X¿ and ¡M be the 
coordinates of z (X¿ given and m unknown respectively) with respect to the bases 
x i , x » and yi, y» respectively. Let y i , y * and y^+i, y« be bases 
of the disjoint spaces A and B respectively. Let y¡ be given by y¿ = Sf = jayx^. 
The set of equations X¿ = 2" = 1 04#y (compare 1.2.5) is a system of n linear 
equations in ui JÍ». From the unique solution the coordinates of the pro
jection of z on A with respect to yi, ..., yt can be taken in order to evaluate 
this projection. The decomposition of z in components in more than two dis
joint subspaces will be executed likewise. 

Because solving n linear equations, especially if n is not very small, is very 
laborious in general, we look out for other simpler methods to decompose a 
vector in its components in subspaces of E . These methods involve the evalua
tions of orthogonal projections. If the metric is not too intricate orthogonal 
projections often can be calculated easily. 

1.5.2. Evaluation of orthogonal projections 
Let xi , . . . , xm be a basis of the subspace A of E . The orthogonal projection of 

a vector z in E on A will be a linear combination, Xixi + X2X2 + . . . + "kmXm, 
of xi xm such that z - E£L 1X4X4 is orthogonal to A, or that its inner pro
duct with xi , . . . , xm is zero. This leads to a system of m linear equations in the 
unknowns X4 of the form: Xi(x4 ,x i )+X2(x4, X 2 ) + . . . + X m ( x 4 , xm) = (x4, z) for 
i = 1 , m . These equations are called normal equations. 
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It will be remarked that the matrix of coefficients is symmetric which, in 
addition to the fact that m < n, means a computational simplification in com
parison with the general case discussed in the foregoing section. After the 
solution of the X$ one can evaluate the orthogonal projection on A as I$L jXjXf 
and the projection on A-1- as its difference with z. 

If orthogonal (orthonormal) basis of A, then the solution 
of the normal equations is simple: X« = (x«, z)/(xj, x«) or X$ = (xj, z) respec
tively. This simple solution agrees with the remark at the end of 1.3.5: the 
orthogonal projection on the space spanned by the orthogonal basis 
xi xm is equal to the sum of the orthogonal projections on the spaces spanned 
by x i , . . . , xm separately. 

Therefore, if A is given by a non-orthogonal basis, one often prefers to ortho-
gonalize this basis first, and to evaluate the orthogonal projection on A then, 
instead of solving the normal equations derived from the given basis. It is also 
for this reason that orthogonal polynomials have been introduced. We remark 
that the orthogonalized basis does not need to be orthonormal. 

1.5.3. An iterative method to obtain components in given spaces 
Let E be spanned by the not necessarily disjoint subspaces Ai, A&. We 

wish to decompose the vector z in E to y i + . . . + y s such that y* is in At for 
every i. Such an yt is called an oblique component of y in A«. We assume that 
each At is given by an orthogonal basis so that orthogonal projection is easy. 
We next present ah iterative process to obtain oblique components of z, in 
which every step is an orthogonal projection. This process is valuable in the 
applications. 

For convenience we denote Asb+t = A«, in which s is a positive integer. Con
sider the sequence of pairs of vectors: z«, p n defined by: zi is the orthogonal 
projection of z on Ai and pi = z - zi is the corresponding perpendicular;...; 
Zr is the orthogonal projection of the perpendicular py_i on Ar and pr=pr-1 - Zr 
is the corresponding perpendicular. 

Every step will yield a vector Zr in one of the spaces Ai A#, while p n 

is equal to z - EJL jz^. 
We assert (which assertion will be proved) that the sequence of perpendicu

lars p n converges to the null vector. This implies that the sequence of sums of 
orthogonal projections converges to z. These converging sums consist of con
tributions in every At, so that the desired components can be approximated with 
any required accuracy. 

1.5.4. Proof of the convergence 
Let the orthogonal projection of a vector z on Atx be denoted by Pjz. Then 

the sequence of perpendiculars is: Piz; PzP\z; PzPzPiz;...; PkPk-i ...PzPiz; 
PiPkPk-i • • • P 2 P 1 Z ; PzPiPuPk-i ••• i V i z ; . . . We wish to consider the linear 
transformation D = Pr+k ... Pr+zPr+i which is a mapping of A r

x into itself. 
Without loss of generality we may take D = PkPk-i... P9P2P1, by which to a 
vector in A&x a vector in Ar 1- is assigned. Because D is a product of orthogonal 
projections the bound of D satisfies G(D) ̂  1. Our purpose is to prove: 
G(p) < 1. For if G(D) < 1, then the sequence of transformations Bn = Dn 

converges to 0, so that the sequence of perpendiculars in A& 1 converges to the 
null vector and the same is true for the sequence of all perpendiculars. The 
proof is as follows: 



19 

Assume G(D) = 1. Then according to 1.4.2 there is a vector x ^ 0 in A^1-
such that |Z?x| = |x|. We know |Pjz| ts= |z| where equality holds only if P$z = z. 
It follows that Pix = x; P&Pix = x; P 3 P 2 P 1 X = x and so on. Consequently x 
is in all Aix (i = 1, . . k ) , in other words, is orthogonal to a set of spaces that 
span E. But only the null vector is orthogonal to E which is in contradiction 
with x ^ 0. Hence G(D) < 1. 

1.5.5. Extension of the method 
Let Ai Ak be subspaces of E which do not span E. Let z be a vector in E. 

When we perform the same sequence of operations with z now, as in the case 
where Ai, Aft span E, we will obtain again orthogonal projections on the 
spaces Ai , . . . , A&, and perpendiculars, each of which is equal to the difference 
between z and the sum of orthogonal projections determined in the preceding 
steps. 

In order to find out the result of these operations we consider the (unique) 
decomposition of z in a component in the space spanned by Ai Aft and a 
component in the residual space of E orthogonal to Ai , . . . , Aft. The first com
ponent is in the same position now as z in the foregoing case: it will be decom
posed in components in the subspaces A i , A f t , while the sequence of per
pendiculars converges to the null vector. The second component will not give 
any contribution in A i , . . . , Aft so that the corresponding sequence of perpen
diculars has all elements equal to this component. It follows that the difference 
between z and the sum of the orthogonal projections on Ai Aft converges 
to the perpendicular from z on the space spanned by Ai , . . . , Aft. 

So we have found a method to evaluate an orthogonal projection without an 
orthogonal basis and without solving normal equations. In addition we obtain 
(oblique) components of this projection in the subspaces that span the space 
on which z is projected orthogonally. 

1.5.6. Another description of the same method 
An elaboration of the method will show that the sequence of perpendiculars 

plays a little role in fact. For that purpose we consider the case k = 3 first 
The subspaces A\, A 2 and A3 that span the space on which z is projected ortho
gonally are denoted now by A, B and C. Further we introduce the notation 
ZA and (ZA)B or Z A B for the orthogonal projection of z on A and the orthogonal 
projection of ZA on B respectively. In the successive rows we write the vectors 
to be projected on the left and the projections on the right We obtain: 
z ui = ZA 

pi = Z - U l VI = ( Z - U I ) B = Z B - Z A B 
P2 = Z - U l - V l Wl = ( Z - U i - V l ) c = Z c - Z A C - ( v i ) c 
p3 = Z - Ul - Vl - Wi U 2 = ZA - ( U I ) A - (Vl + W l ) A = - (Vl + W l ) A 

P4 = P 1 - V 1 - W 1 - U 2 v 2 = ( P I ) B - ( V I ) B - ( W I + U 2 ) B = - ( W I + U 2 )B 
P5 = P 2 - W 1 - U 2 - V 2 W 2 = ( P 2 ) c - ( W l ) C - ( U 2 + V 2)c = - ( U 2 + V 2 ) C 

p 6 = p 3 - U 2 - V 2 - W 2 U 3 = ( p 3 ) A - (U 2)A - (V2 + W 2 ) A = - (v 2 + W 2 ) A 
and so on. 

We observe that from the beginning of the second cycle of orthogonal pro
jections every orthogonal projection is equal to the orthogonal projection of 
the sum of the k ~ 1 foregoing orthogonal projections on the same space but 
with opposite sign. Only in the first cycle subtractions take place in fact The 
left hand side, consisting of perpendiculars, can thus be left out of consideration. 
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In the case k — 2 and subspaces A and B the sequence of orthogonal pro
jections is as follows: ui = z A ; VI = Z B - Z A B ; U2 = - ( v i ) A ; V2 = ~(U2)B; 
u 3 = - (V2) A ; V3 = - (U3)B and so on. 

We remark that in this case after the first cycle all minus signs can be omitted. 
Then the vectors in B will keep the right sign, while the vectors to be found in 
A must be subtracted from ZA. It is obvious that the sum of these vectors to be 
subtracted from z A is equal to the orthogonal projection of the component 
in B i.e. S/ijVi on A. 

1.6. SYMMETRIC TRANSFORMATIONS AND MATRICES 

1.6.1. Definitions 
Let A be a linear transformation on E. The transpose A* of A with respect 

to an inner product is defined by the identity in x and y: (Ax, y) = (x, A*y). 
A* is a linear transformation; for if y = Xyi + [J.y2 then (x, A*y) = (Ax, y) = 
= \(Ax, yi) + ¡x(^x, y 2) = X(x, ^*yi) + [x(x, ¿*y2) = (x, X^yi + t i v á ^ ) . From 
(Ax, y) = (x, A*y) = {(A^x, y} for every x and y follows: (A*)* = A. 

Let the matrix of A associated with an orthonormal basis x i , x « consist 
of elements ay. Then, because AXJ = E j t = 1 a*/ x ,̂ (AXJ, xi) = x&j (x*, x¿)= 
= ay. If the matrix of A* associated with the same basis consists of elements 
a*y, thena*y = (Ah.), xi) = (xj, Axi) = a#. The matrix of A* where a'y = a# 
is called the transpose of the matrix of A. 

If A = A*, the transformation A (and also the matrix of A associated with 
an orthonormal basis) is said to be symmetric. A symmetric transformation A 
with (x, Ax) 5i 0 for every x is called non-negative. If moreover (x, Ax) = 0 
only if x = 0, then A is called positive definite. In that case we conclude from 
the Schwarz inequality |(x, Ax)\ \Ax\• |x|, that Ax = 0 implies (x, Ax) = 0 
and x = 0, in other words, that A is non-singular. 

Consider the inner product (x, y) of the vectors x and y. If A is positive defi
nite with respect to that inner product then (Ax, y) is a second inner product 
of x and y. For (compare 1.3.1) : (Ax, y) = (Ay, x); (Ax, Xyi + ¡Jt,y2) = 
= X(Ax, yi) + y.(Ax, y¿) and (Ax, x) is positive definite. Let the symbols for 
vectors x and y etc. stand for the ra-tuples of their coordinates (Xi, X»), 
( ( x i , ( x » ) etc. with respect to the above-mentioned basis x i , . . . . xn. Because 
this basis was named orthonormal, the first inner product of x and y is equal to 
^li^i + • • • + T h e n the second inner product of the vectors x and y which, 
according to the foregoing, assigns the element ay from the matrix of" A with 
respect to xi , . . . , xn to the pair x« and Xj, and which thus is equal to S¿ ay X ^ , 
has the same value as the first inner product of the vectors Ax and y. In the 
sequel we will need that the projection, orthogonal with respect to the second 
inner product, of y on B, y e , is that vector ys in B, for which the projection, 
orthogonal with respect to the first inner product, of A(y - ys) on B is equal 
to the null vector. 

1.6.2. Proper values and vectors of symmetric transformations 
In the introduction of proper vectors and values we passed over the possi

bility of complex roots for X. To study this possibility we admit for a moment 
K-tuples of complex numbers as coordinates of a vector with respect to an ortho-
normal basis. For solution of x = (Xi,..., X») in the equation Ax = Xx, in which 
A is represented by a matrix of real numbers ay with respect to an orthonormal 
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basis and in which X is a complex number, implies the solution of n linear equa
tions of the form E âyX^ = XXj, which will yield complex values for the X« in 
general. Then (x, y) = Sf^iXju^, and if A is symmetric (Ax, y) = E«2fyxyX«{jty = 
= (x, Ay). If every (complex) coordinate a+bi of such a vector z is replaced 
by its complex conjugate a - bi we obtain z. 

Next we will prove that all proper values of a real symmetric transformation 
are real. First we observe that the complex conjugate of (z, Az) equals (the 
complex conjugate of a, product equals the product of the complex conjugates 
of the factors): (z, Az) = (z, Az) = (z,Az). Hence (z, Az) is real. If z is a proper 
vector that belongs to the proper value X, then (z, Az) = (z, Xz) = X(z, z) and, 
as (z, Az) and (z, z) are real, so is X. Complex coordinates may further be left 
out of consideration. 

Consider two proper vectors xi and x 2 of the symmetric transformation A 
associated with the two different proper values Xi and X2. We have 
0 = (Axi,xz)-(xi, y4x2) = Xi(xi, x 2 )-X 2 (xi , x 2) = (Xi-X 2) (xi, x 2). Hence 
(xi, x 2) = 0. Proper vectors of A belonging to different proper values are 
orthogonal. The same holds for two subspaces of proper vectors which belong 
to two different proper values. 

It follows that the sum of geometric multiplicities of the proper values is n 
at most. On the other hand the space spanned by these orthogonal subspaces 
must be E. 

To prove this we choose an orthonormal basis for E consisting of orthonor-
mal bases of all these subspaces and, if necessary, completed with vectors 
orthogonal to these. The matrix of A with respect to this basis will contain in 
the column corresponding to a proper vector the associated proper value on 
the diagonal, and zeros elsewhere; because of the symmetry, the remaining 
columns will contain zeros in all the rows with an index equal to that of a col
umn associated with a proper vector. Hence vectors in the space orthogonal 
to the subspaces of proper values are transformed by A in vectors in that same 
space. The linear transformation A considered within this space must have at 
least one proper value and an associated proper vector. But so we would find 
proper vectors of A not contained in the subspaces of proper vectors of A, 
which is a contradiction. Thus the subspaces of proper vectors span E. 

Moreover the matrix of A corresponding to the chosen orthonormal basis 
contains the proper values each according to the geometric multiplicity in 
the diagonal and zeros elsewhere. From the determinant of A - X/ it follows 
easily now, that the algebraic multiplicity is equal to the geometric multiplicity. 

1.6.3. Representation of symmetric transformations by means of projections 
Remembering our remark about the matrix of a projection (1.2.7) we may 

express the result at the end of the last section as follows: Let Pj be the ortho
gonal projection on the subspace of proper vectors associated with a proper 
value X̂  of A, so that S f = 1 P j = 1 (p ^ n); then A can be represented as 
E/L i ~k]P) where the \j are distinct. This representation of A as a linear com
bination of orthogonal projections on orthogonal spaces, that together span E, 
is unique. 

To prove this we assume that the symmetric transformation A can be written 
as Sf = 1 (i;g^ where the \ij are distinct and the Qj orthogonal projections on 
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orthogonal spaces which together span E. Let x be a vector in the pointwise 
invariant space of Qt i.e. QiX = x. Then Qjx. = 0 for j ^ /, and Ax = 
= HjlLjQjX = yyQiX = fijx. Thus every \ij is a proper value of A, and the 
invariant space of Qi is a set of proper vectors belonging to the proper value ̂ . 
Such a space must be the complete set of proper vectors associated with (i<> 
because the invariant spaces of the Qj span E. 

Now the following properties are simple corollaries. A is singular if and only 
if some ~k] = 0 (this is also true for non-symmetric transformations as follows 
from the definition of proper values and vectors). A is non-negative only if all 
~kj 0; for remembering PJ = Pi and PiPj = 0 for i ^ j , we find (x, Ax) = 
= (x, ZjhjPjX) = [ZjiPjX), Hjk}(P}x)] = *Ljh)(P]x)*. A is positive definite only 
if all \j > 0. The inverse of A is equal to "Lj^y^Pj (with X̂  ^ 0 of course). 
If A is positive definite the same is true for A~\ 

If A is positive definite there is one positive definite transformation X such 
that X2 = A; if A = ZfaPj, then this transformation X, which we call the 
square root of A, is S/x/X/P/ where Vfy is the positive square root of X̂ . X i s 
denoted by VA. 

With reference to the end of 1.6.1 we observe that the second inner product 
(x, Ay) of the vectors x and y (determined by the second inner products ay 
of the basis vectors, which are elements of the symmetric matrix of the trans
formation A) is equal to the first inner product of the vectors x and Ay. Ob
serve that Ay is a linear combination of orthogonal projections of y on some 
particular orthogonal spaces (with respect to the first inner product). We also 
have (x, Ay) = (VA X, VA y) or in words: The second inner product of x 
and y is equal to the first inner product of VA X and VA y. 

CHAPTER 2 

STATISTICAL CONSIDERATIONS 

2.1. RANDOM VECTORS 

2.1.1. Covariance matrix 
Let x be a vector in a n-dimensional space of «-tuples (xi,..., xn) with coor

dinates xi, ...,xn with respect to the basis ei e«. Let the coordinates have 
a joint distribution function so that x is a random vector. Let Ext be the ex
pectation (value) of xf, let a2{xj) = E(xt - Exj)2 be the variance of jc^and 
cov (xi, X)) = E[(xi - Exj) (x) - Exj)] the covariance of x% and Xj. We assume 
that the probability is not concentrated (with probability one) in any subset 
of E satisfying: E ^ x j = C. Then 2<W{X{ has positive variance for any 
(M>I, . . . . wn) # 0. This variance, E«, ƒ cov (xi, xj) WiWj, is therefore a positive 
definite quadratic form in the variables wi, . . . , wn, determined (compare 1.3.1) 
by the also positive definite covariance matrix V with elements vy — cov (xi, xj). 

Let A be a transformation with a matrix A of elements ay so that the coor
dinates of y = Ax are>>* = Zjatfty. Then cov (yu yj) = cov (Zi&ueXk) (Zixjm) = 
= Efc.Wfc cov {xk, xi)x)i = ^k,i<*4kVki<*-n = Zi&micVjciWij- This can be sum
marized in saying that the covariance matrix of Ax is equal to AVAK Because 
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V is positive definite a possible choice for the transformation A is V-V~x. We 
find that the covariance matrix of V V~xx is 2. 

In the following it will appear to be useful to introduce a metric 1 in case 
the covariance matrix is 1. With reference to the end of the foregoing section 
we observe that a metric 1 for the coordinates of V H x is equivalent to 
a metric (V V~x)2 = F - 1 for the coordinates of x. In the case of a covariance 
matrix V of the coordinates of x we introduce therefore a metric V~x for these 
coordinates. We then obtain a situation which is equivalent to the use of the 
metric 1 for the coordinates of V H x ; these coordinates have covariance 
matrix 1. Properties of orthogonal projections with metric I of random vectors 
with covariance matrix 1 also hold for orthogonal projections with metric 
V~x of random vectors with covariance matrix V. 

In the applications a slightly different metric will often be used, in case the 
covariance matrix of x is given in the form a2V. We introduce a metric V~\ 
which is equivalent to a metric 1 for the coordinates of V H x ; these coor-
dinates have the covariance matrix V V~x • a 2 • V • V V~x = a2-l. 

In the sequel we mainly study the special case V = 1, as the general case is 
obtained immediately from it. 

2.1.2. Vectors with covariance matrix a2-1 and metric 1 
Let x = ( J C I , . . . , xn) be a random vector with covariance matrix a 2 . 1 and in 

a space with metric given by x 2 = x\ +...+x\. Let the orthogonal projection 
of x on the one-dimensional space spanned by the unit vector a = (a\,..., an) 
be Xa. Then the coefficient X = (x, a) = (xiai +... + xnan) has variance 
S^afc2 = a 2 . Further if the unit vector b = (pi, ... bn) is orthogonal to a, 
then the covariance of the coefficients of the projections, (x, a) and (x, b) 
respectively, is cov (x id + . . . + x a a » ) (x\bi +...+xMa») = %Oif}^ = 0. 

If in particular Ex = 0, that is Ex% — 0 for every /, then the square XA. of the 
orthogonal projection of x on a m-dimensional subspace A, which is equal to 
the sum of the m squares of the orthogonal projections of x on m orthogonal 
one-dimensional subspaces of A, has the expectation value ma2. 

If Ex = (m, ..., u )̂ = u, then the same applies, to x - u. In particular 
E{(x - u ) A } 2 = m a 2 . Now x A = u A + ( x - u ) A and x\ = u A + (x - u ) A + 
+ 2UA(X - u) A . Let B be a linear transformation; then By is a vector of which 
the coordinates are linear functions of the coordinates of y, and thus E(By) = 
= BEy; further (y, b), where b is some vector, is a linear function in the coor^ 
dinates of y, so that E(y, b) = (Ey, b). Thus Ey = 0 implies E(By) = 0 and 
(Ey, b) = 0. Itfollowsthat^(x-u)A = 0, and, from this, that ̂ {u^ ( x - u) A } = 0. 
So we have £ x A = u A + m a 2 . In connection with the foregoing section 
we remark that the same is true, if the covariance matrix is a2V and the metric 
V~x is used. 

2.2. NORMAL DISTRIBUTION 

2.2.1. The case with covariance matrix a2-l 
Let the coordinates x\, ...,xnofx = (xi,..., xn) have expectation 0 and co-

variance matrix a2.l. It follows from the last section that the coordinates 
z\,..., zn of x with respect to any orthonormal basis of E have the covariance 
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matrix <j2-i too. We consider the particular case in which the coordinates 
xi Xfi have a normal (0, or) distribution and are mutually independent 
The probability density of x is then the product of the probability densities of n 

normal (0, a) distributions i.e. C exp | - ^ (xf +... + x^)| = C exp ^ - ^ g j . 

We observe that this density depends on the square of x only. The coordinates 
zi, zn with respect to another orthonormal basis satisfy x 2 = Sf a l zf . 
Because the functional determinant for change of variables is a constant, when 
the new variables are linear functions of the old ones (and equal to 1 here), the 

jointprobabilitydensityforzi,...,zMis:Cexp ( " " ^ ^ ^ j = CII<exp {^^j 
from which follows that the zj have a normal distribution too, and are indepen
dent. 

Because a~2 times the sum of squares of m independent variables with a 
normal (0, a) distribution has by definition a chi-square distribution with di
mension m, it follows that a~z times the square of the orthogonal projection 
of x on A has a chi-square distribution with dimension m too. Similarly if B 
is a subspace with dimension mi orthogonal to A, then X | / C T 2 has a mi-dimen-
sional chi-square distribution independent of the projection on A. It follows 

x\lm 
that — has by definition a F-distribution with the dimensions m and mi as 
parameters. If Ex = u then the foregoing holds for x - u. 

If U B = 0, then it follows from the expectations of x A and x | which are equal 
to u A + » j c r 2 and mi«r2 respectively, that an appropriate test criterion for the 

null hypothesis u A = 0 will be formed by the quotient - A - — with a one-sided 
x | /m x 

upper critical region in the F-distribution with dimensions m and mi. 

2.2.2. The general case 

Let x be a random vector of which the coordinates have covariance matrix V. 
If the coordinates of y = V F _ 1 x have the normal distribution given above 
(with covariance matrix 1 of course), then the coordinates of x are said to have 
a normal distribution too. The probability density of the coordinates of y is 
C exp ( -£y 2 ) = C exp {-4(x, F - 1 x)}, so that the probability density for the 
coordinates of xis C exp{-|(x,F _ 1 x)}. C and C are suitably chosen constants. 

Conversely, if the coordinates of x have probability density C exp {-JKX> Ax)}, 
where (x, Ax) is a positive definite form with matrix A in the coordinates of x, 
then they have a normal distribution with covariance matrix A~K For, if 
y = VA x, the probability density can be written C exp (-Jy 2), so that the pro
bability density for the coordinates of y is C" exp (~|y 2). 

Because also in this respect the use of a metric A (the inverse of the covariance 
matrix) for the coordinates of x is equivalent to the use of the metric 1 for 
the coordinates of y, it follows immediately e.g. that the square (with respect 
to a metric A) of the orthogonal projection (with respect to a metric A) of x 
on a m-dimensional subspace has a m-dimensional chi-square distribution! 
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2.3 . LINEAR REGRESSION 

2 .3 .1 . The problem 
Consider n random variables y\, yn with expectation values 

Ey{ = faxii + $&i% + .-. + $kMk for i = 1, n. 
The values of the y\ refer to observations of a property of individuals (per

sons, trial plots, countries, animals) to be studied. The observations are taken 
from n such individuals numbered 1 , n . 

The quantity xy is the value, for the f-th individual, of the j-th property from 
k also quantitatively expressible properties of the individuals. The xy are 
given, while the coefficients fa, common to all individuals, are unknown. 

The supposition about the n observations y%, ...,y% can also be written as: 
Ey = Pixi + . . . + pfcXfc, where xi, x» are vectors and y a random vector 
in the space E of «-tupíes (z\,..., zn), such that numbers with the same index i 
in yi, xa, Xiz,..., xa; are corresponding coordinates (with respect to the basis 
e i , e B ) . 

The problem is to determine an unbiased and most efficient estimator of a 
linear function of the coefficients fa, say pifa +... + pi$ic- Important examples 
of the functions to be estimated are the fa themselves and the Eyi. In connection 
with the condition of minimal variance of the estimator the covariance matrix 
of y is assumed to be a multiple of the known matrix V; it has thus the form 
a2V, with a not necessarily known. 

2.3 .2 . Unbiased linear estimators 
First we introduce the notion of linear functions on vector spaces. A linear 

function f(z) on a vector space E assigns to every vector z in E a real number 
/(z) such that, for zi and Z2 in E,/(Xzi + [IZ2) = X/(zi) + ¡//(z2). In particular 
the value, assigned to the null vector, is equal to /(O) = f(z - z) = f(z) - /(z) = 0. 
Such a function is completely determined by the values assigned to the vectors 
of a basis of E. 

We will look for an estimator which is a linear function ƒ on E, so that the 
estimate will be f(y). Even if we restrict ourselves to linear functions of the ob
servation y (which may be written as E/L jCijj if a is the value assigned to the 
f-th vector of the basis ei, ..., ew), it is possible to find an unbiased and most 
efficient estimator. Moreover such a function is multiplied by X if y is multi
plied by X, in other words, it is not sensitive to the scale of y; finally in case every 
yi is equal to the sum of e.g. two (possibly dependent) variables - for instance 
the yields of the underground and the overground parts of a crop such as tur
nips - and the observations of the parts have proportional covariance matrices, 
then the estimator of the whole will appear to be equal to the sum of the esti
mators belonging to the parts. 

In order that f(y) be an unbiased estimator, Ef(y) must be equal to 
Pxfa+...+Pkfa for any fa. Now Ef(y) = f(Ey) = f&ifax,) = 2W(x,). 
Hence f(xj) must be equal to pj for all j . 

In case the vectors xi , . . . , x̂  are independent, this restriction of ƒ will not be 
contrary to the definition of a linear function; for then these vectors may be 
considered as a part of a basis for E, of which the function values determine/. 
If, however, the vectors x¡ are dependent, say Eoyx^ = 0, then /(O) = /(Eoyx^) = 
= Ta¿f(x}) = 0, so that also 2a#ty should be zero. Hence, if and only if the 
Pj satisfy all relations Eoyp; = 0 corresponding to all relations Eoyx¿ = 0, 
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then it is possible to find an unbiased estimator for ?>Pjfa. Then %p]fa is said 
to be estimable (RAO [19]). 

Another formulation of this restriction of the pj is found by writing Ef(y) = 
= EUtCiyi = "LiCiEyt. Because Ef(y) must be equal to "LjPjfa, it follows that 
only linear combinations of the Ey% = jZjxyfa are estimable. If ^pjfa is estimable, 
then the value of any unbiased estimator ƒ is completely determined for a 
vector in the subspace A spanned by x i , X k ' . f l x j ) = pj. 

Theorem: Let g be the linear function on A which is equal to the restriction 
to A of any unbiased estimator ƒ of "Zpjfa, so that g(xj) = pj for all j . Then if 
P is any projection on A, gP is such an estimator ƒ; conversely, if ƒ is such an 
estimator, there exists a projection P on A such that ƒ = gP. 

Proof: Let P be any projection on A. Then gP is a linear function on E; for 
gPQyi + {1V2) = gQJPyi + \iPy2) = Xg(Pyi) + ug(Py2). Moreover gPxj = g(XJ) = 
= pj. Hence gP is as required. Conversely, let ƒ be any linear function 
for which f(x.j) = pj, for all j . Because not all pj are zero it is possible to choose 
a vector ai in the m-dimensional space A such that/(ai) ^ 0. Let ai, 
be a basis for E, with ai, a m in A. Now consider the set of vectors 

&r (r = 1 , . . . , m) and b s = a s jjj^ ai (5 = »»+ -1,. . . , n). Because dependence 
of this set would imply dependence of the first set, the second set is also a 
basis for E. Further we observe that /(b 8) = 0 for ail J. Let P be the projection 
on A along the space spanned by the vectors b s . Then f(y) = g(Py) for every 
y in E. The proof is complete. 

An unbiased estimate of an estimable ^pjfa is thus found with the help of a 
projection P of y on A, which yields 61X1 + ... + 6*Xfc, and calculation of 
g(Py) = bipi + ...+bjcpjc i.e. substitution of bj for fa in the function to be 
estimated. 

2.3.3. Most efficient unbiased estimators 
A uniquely determined estimator ƒ will be obtained with the help of the effi

ciency condition. Recalling that the covariance matrix of y = (vi, ..., yn) is 
<r2 • V, we introduce the metric V~x with respect to the basis ei, ..., e». Let 
di , . . . , d» be an orthonormal basis such that di , . . . , d m are in A. The coordinates 
of y with respect to this basis, coefficients of orthogonal projections (compare 
2.1.2) of y, have the covariance matrix c 2 - i , so that the variance of the esti
mator f(y) is equal to a 2Sf = 1 {f(di)}2. The values f(di) being fixed by the con
dition of unbiasedness for i = 1 , m , the variance off(y) will be minimized 
by taking /(d«) = 0 for 1 > m. It follows immediately that the corresponding 
projection P, discussed in the last section, will then be orthogonal (with respect 
to the metric F _ 1 ) . 

It is remarkable that this same orthogonal projection on A can be used for 
any estimable function. We observe: the most efficient unbiased estimate of the 
estimable function ~S>pjfa = 'Lg(xj)fa = g(Lfaxj) = g(Ey) is g(yA). The ortho
gonal projection y A has the property that, for any linear function g on A, g(yA) 
is the most efficient unbiased estimator of g(Ey). We also express this fact by 
saying: y A is the most efficient unbiased estimator of Ey. 

The numbers fa as well as their estimates bj in y A = ¿ 1 X 1 + . . + b^Xh are 
called regression coefficients. 

file:///iPy2
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2.3.4. Further remarks 
In contrast to the vector VA the bj are not necessarily unique, namely if 

x i , X f c are dependent. In that case the normal equations in b \ , have 
not a unique solution; for then the quadratic form, (Xixi + . . . + X f c X f c ) 2 , in 
Xi,. . . , Xi, of which the matrix is the matrix of coefficients of the normal equa
tions, is non-negative (positive definite in case the Xj are independent). One 
way out of that difficulty is omission of dependent vectors x; such that the 
remaining set is independent and spans A. However, when one still wants to 
maintain the whole set b \ , . . . , 6 * (for purposes of computation and study of 
the covariance matrix of these regression coefficients), it is customary ( K E M P T -
H O R N E [9]) to fit the system of k normal equations in k variables into a system of 
(k+m) independent equations in (k+m) variables, such that the normal 
equations are obtained again by putting the new variables equal to-zero in the 
first k equations. 

We will not use normal equations in those cases, so that such method is not 
necessary. Abandoning the normal equations, however, means abandoning 
the covariance matrix of the b), which is the only drawback of the following 
exposition against other great advantages. 

The square of the perpendicular from y on A, (y-yA)2, is equal to a quadratic 
form in the differences between corresponding coordinates of y and of the 
estimation of Ey (in the case of a covariance matrix a2 -1 for y the quadratic 
form is the sum of squares of these differences). Because (y - y i ) 2 is the square 
of the shortest distance between y and A, the method of estimation of E(y) is 
named the method of least squares or generally the method of the least value 
of a quadratic form. 

In the particular case that y has a normal distribution, the estimator of Ey 
in A is such that (y - Ey)2, which occurs in the exponent of the probability 
density of y, is minimal, in other words, such that the probability density of y 
is maximal. Hence it is the maximum likelihood estimator then. 

Whether y is normally distributed or not, the expectation of (y - y A ) 2 is equal 
to (n - m)a2, so that an unbiased estimate of a2 is (y - yA)2/(n - m). The calcu
lation of (y - y A ) 2 is often simplified by the following: we know (y - y A ) 2 = 
= y 2 - y A (Pythagoras); (y - y A ) 2 = y (y - y A ) - y A (y - y A ) = (the second term 
vanishes because of the orthogonality of y A and y - y A ) = y(y - y A ) = y2-yyx-
S o w e h a v e y A = y y A = y(*ixi + . . . + ^ X ) i ; ) = Ai(y,xi) + ... + fefc(y, x*). 

2.3.5. Tests in linear regression 
Now and whenever tests are concerned in the following, we suppose that y 

is normally distributed. The tests will always have the same feature, namely a 
null hypothesis that one or more of the fa are zero, against the alternative that 
they are not. The null hypothesis means that Ey is in a subspace B of A, with 
dimension, say, mi. In that case the component of y A , orthogonal to B, has 
the null vector as expectation. We consider the component of y A orthogonal 
to B because its square is stochastically independent of ys. According to 1.3.5, 
this component, the orthogonal projection of both y and y A on the (m - mi)~ 
dimensional residual space of A orthogonal to B, is equal to y A - V B -

Remembering the end of 2.2.1 we find that 9 r A~^/lSW~"W^ is the test 
(y - y A ) 2 / ( n - m) 

statistic, which has a F(m ~-m\\n-m) distribution under the null hypothesis. 
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Here we use the fact that y - y A , which is orthogonal to A and thus to y s and 
y A - y B , is independent of the last two components. ( y A - y B ) 2 will be deter
mined either by direct orthogonal projection of y on the residual space of A 
orthogonal to B, or as y A - y | , or as the difference of the squares of the perpen
diculars y - y A and y - ys i.e. y 2 - y | - (y 2 - y A ) , or, as we will see, by means of 
quantities used in the performance of the orthogonal projection on A. 

2.3.6. Conditional observations 
The first problem is to obtain the best estimate of Ey from the observation 

of a random vector y with covariance matrix a2 • 1, while the Eyi satisfy p linear 
conditions of the form: ajiEyi+ajzEy2+... + a)nEyn = aj0; (j = 1 p). 

Any of these conditions means that the difference between any pair of vectors 
satisfying the relation is orthogonal (with respect to the metric 1) to the vector 
formed by the coefficients in that relation, say â . The relations, as a whole, 
imply that the difference between any pair of admitted vectors is orthogonal 
to the vectors ax,..., av, i.e. to the space Ax spanned by these vectors. In other 
words, such a difference must belong to the space A with dimension, say, m 
and orthogonal to A-1-. The set of admitted vectors for Ey will be found by 
adding some fixed vector Xo to A. In other words, the difference between Ey 
and XQ is in A. But now with this formulation the problem is reduced to the 
regression problem. 

The best (from now on used for "unbiased and most efficient") estimate of 
Ey - XQ is found by orthogonal projection of y - x<, on A. This is done by 
choosing a vector in A-1-: Xiai + . . .+Xpa p , such that y - XQ - (Xiai + . . .+\p&p) 
is in A; this is equivalent with the condition that the vector y - (Xiai + . . . + 
+X:pai>) is in the admitted set, i.e. satisfies the given conditions for Ey. 

We find by substitution: Xi(ai, a^ + .-.+X^a^, â ) = (y, a^)-a^0 for 
j = 1, ...,/». These equations for the so-called correlates ~k) can be solved, if 
ai , . . . , &p are independent. The square of the perpendicular (Xiai + • • • + "^p&p)2 = 
= SfL i X {̂Xi(ai, &}) +... + h>(ap, &})} = Sf = x X {̂(y, ay) - ajo}, divided by a2, 
has a n - m = p dimensional chi-square distribution again. 

The only point of difference between the first and the following problem is 
that the covariance matrix of y is a2 • V now. We then introduce the metric 
V~\ Then the left hand sides of the conditions are inner products of the vectors 
Ey and Vaj. To obtain the best estimate of Ey we subtract a linear combination 
of the vectors Fay from y such that the difference satisfies the conditions. The 
equations for Xy are: 
Xi(Fai, a^ + .-.+XptFap, &]) = (y, â ) - &jQ for j = 1, p, where (Fa«, ay) 
represents the inner product of aj and with metric V, and (y, &}) the inner 
product of y and &j with metric 1. The square of the perpendicular is now 
(XiFai + .-.+XpFap) 2 with metric V~x which is equal to 

SjLiX,{Xi(Fai, a,) + . . .+X^Fa* , a,)} 

with metric 1 or EjL i X;{(y, a;) - ajQ} likewise with metric / . 
The problem of linear regression and that of conditional observations are 

not essentially different and the one can be reduced to the other. The first 
problem (and method) will be preferred if n - m > m, the second if n - m < m. 
The translation of the one problem in the other is as follows. Suppose we have 
a linear regression problem. Then from some of the equations that express 
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the Eyi in the fa, these fa can be solved, and substituted in the remaining 
equations. In this way linear relations between the Eyi are obtained. On the 
other hand, if the problem is in terms of conditional observations, then it is 
possible to express a part of all Eyt in the remaining Eyi, while the last are 
expressed in themselves. Consider now the remaining Eyi, as the regression co
efficients in the first problem. 

C H A P T E R 3 

APPLICATION OF LINEAR REGRESSION WITH 
UNCORRELATED OBSERVATIONS 

G E N E R A L R E M A R K S 

In this chapter the random vector y = (yi yn) will have a diagonal 
covariance matrix a2-D, i.e. a matrix with elements dy for which dy = 0 for 
i j . Then the appropriate metric D - 1 will be diagonal too. The elements in 
the diagonal of D"x are the reciprocals of the corresponding elements in D. 
These reciprocals (denoted by gi or Wi) are called the weights of the coordi
nates. The inner product of the vectors x = (xi,xn) and y = (yi,yn) 
is then 2JL i wtxtyi, a so-called weighted sum of products. 

As many of the problems, to be dealt with, can easily be generalized from 
that with a covariance matrix a2-l for y, to that with a diagonal̂  one, by re
placing the inner product ^myt by Z<w<Xfj>{, we will generally assume a cova
riance matrix a2-l for convenience, unless the reverse is declared explicitly. 
In each case it will be indicated whether the generalization, expressed in the last 
sentence, is possible or not. 

3.1. SOME R E G R E S S I O N P R O B L E M S W I T H BASES E X P L I C I T L Y G I V E N 

3.1.1. Level 
Let Eyi be equal to a constant ¡3 for / = 1 , n , or in terms of vectors, let 

Ey be equal to (ir, where r = (1, 1, ..., 1). The space N spanned by r will be 
called the space of levels. 

To obtain the best estimate b of fa y will be projected orthogonally on this 
one-dimensional space N. We obtain (compare 1.3.5 and 1.5.2) bt with 

b = — = ^\'\''''\j1
n or y, the average of yi,..., yn. The square of the perpen-

dicular is (y - bt)2 = y2 - (bt)2 = y2 - b2(t, r) = y 2 - (r, r) = y 2 - = 
(V. v I 2 

= "Liyf - ^ • Division of this square by the dimension of the subspacexpf 
E orthogonal to N namely n - 1 will give an unbiased estimate of a2. 

(br)2 

To test the null hypothesis |3 = 0 we use the statistic — ^ . 2 ; — r r = 
(Sv )2ln A K — '*•) 

= 7 ^ - ^ — „ . , , ,—-TV which under the null hypothesis has a JF(1 ; n - I) 
{Eyf - (Sj;«)2/«}/n(n - 1 ) 

distribution. It is the square of Student's ^-statistic. 
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(y t) If the metric is diagonal, we obtain with the weights gi'. b = ;' ( (r, r) 
= sm+-'+gnyn w M c h i s ^ j k j t h e w e i h t e d m e a n o f y ^ 

gl + + gn 
(Zgtyif In that case (y - br)2 = 'Lgiyf - -

Zgi 

3.1.2. A linear function in one variable 
Let Eyi = Po + P i W m words, the expectation of the interesting property 

of the individuals is a linear function of another property x, likewise quantita
tively expressible. In terms of vectors Ey = B0r+B].x. 

To estimate 8 0 and Bi we wish to project y on the two-dimensional space 
spanned by r and x. Because r and x in general are not orthogonal, we prefer 
(compare 1.5.2) to orthogonalize the basis first. For this purpose we replace 
x by its component x' orthogonal to r. As we know that the orthogonal pro-

(xr) (xr) 
jection of x on N is 7—^ r, we obtain x' = x - x^ = x - 7—£ r = x - xr, which 

(rr) * (rr) 
means that all the x« are diminished with their average. The orthogonal pro-

vr 
jection of y on N is y - y' = yir = — r. The orthogonal projection of y = 

rr 
= y' + (y - y') on x' is equal to that of y' on x', because y - y' = ys is ortho-

x'y' 
gonal to x'. It is therefore - A x'. 

x x 
x'y' x'y' x'y' 

The estimate of Ey is thus ys + —h, X ' = (YN - -r-, X N ) + -7-, x , from which 
X X X X X X 

x'v' vr xr 
follows that the estimate of Bi is b\ — —ri and that of S„ is bQ = — - bi — = 

ex x x / x / ro o n ^ 
= y-bix. To evaluate ¿ 1 we consider first x'x' = ( x - X N ) 2 which according 
to the foregoing section is equal to x 2 - x>j. Recalling that xn is a vector which 
consists of n times the number x, we find that x>j = . In order to compute 
x'y' = (x - XN) (y - ys) we use a lemma analogous to the Pythagorean theo
rem: if A and B are orthogonal spaces then XAYB = x s y A = 0, hence 
( X A + x B ) (yA+yiO = X A y A + X B V B -

We apply this to the case that A is N and B is the subspace orthogonal to N. 
We have xy = xjgysr+fr -XH) (y -yn) , so that x'y' = xy - xjsysi. Further 

(Sx«) (Zyt) 

The vector y is decomposed in three orthogonal components namely yj$, 
bix' and y' - bix' = y - yn - b\x'. The square of the last component i.e. the 
perpendicular from y on the space, spanned by r and x, is equal to y 2 - y^ - (&ix')2. 
Dividing this square by the dimension n - 2 yields an unbiased esti
mate of az. Further the square of b\x' will be the numerator of the statistic 
for the test of the null hypothesis that JSy.is in N, in other words, that Bi = 0. 
This is the second reason why we prefer a (this) orthogonal basis: x' is basis of 
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the residual space, of the space spanned by r and x, orthogonal to r. Compare 
(x'y')2 

2.3.5 . The square of bix' is equal to . 
The generalization to the case of a diagonal covariance matrix presents no 

difficulties. 

3.1.3. Linear functions in several variables 
The regression problem with several variables has already been considered 

in fact in 2 .3 . Therefore we confine ourselves to some remarks. 
In the supposition Ey = BiJci + ...+B**fc each of the variables xi, . . . . Xk 

represents the value of a quantitatively expressible property of the individual. 
Such a variable is often the function value of a given function tp in the values 
of one or more other such properties of the individual. In case Ey is supposed 
to be e.g. a polynomial of degree three in two variables x\ and x% with unknown 
coefficients, x\xi is one of such variables. The vector of function values (in this 
case of the function x\x£ for the n individuals is one of the basisvectors of the 
space in which Ej is supposed to be. The notion "ft notion <p" should be under
stood in the broadest sense of the word: functions jjven not only by a formula 
in the values of the properties, but also by tables or graphs (obtained e.g. from 
previous experiments) may be considered. (KUIPER [14]). 

Mostly the set of vectors Xj will contain the veclor r, which corresponds to 
an unknown constant term in the supposition about Ey. Because the value of 
this constant is, not of interest in general, the whc le procedure of estimating 
and testing will, analogously to the last section, bes performed in the residual 
space of E orthogonal to N (the space of contrasts). The determination of the 
projection of y - ys = y' on the space, spanned by 
by normal equations requires quantities of the form yf 
the calculation has been discussed in the last section 

the vectors xy-(xAx = x / , 
'y', y'xj andx/x/ , of which 
The square of a projection 

will be obtained according to the end of 2 .3 .4 . Teàting some By requires the 
projection on a subspace i.e. solution of a new sel of normal equations with 
coefficients, however, that also occur in the first set, 

Another way of performing the projections will be by complete orthogona-
lization of the basis of the space A, spanned by the 
is in general at least as cumbersome as the solutioi 

Introduction of weights is no essential difficulty. 

3.1.4. Orthogonal polynomials 
For the particular case in which Ey is supposed 

variable x, and the n values of x are equidistant, and 
riance matrix s 2 - 7 , the result of the orthogonalizai ion 
the end of the last section, is fortunately given in tat les 
PEARSON and HARTLEY [17 ] , ANDERSON and HOUSEMAN 
functions ul (j = 0 , 1 , . . . , k) are defined (compare 1 
- K + 5 , . . . , - 1 , 1 , 3 , . . . , B - 1 , when n is even, and on M 

- 2 , - 1 , 0 , 1, 2 ! ( « ~ 1) when n is odd. It follows 
values of is symmetrical if j is even, and asymmetrical 
vectors of function values for j even are orthogonal 

These vectors of function values have been orth^gonalized 
increasing j . In every step of this process either only 

vectors X). This, however, 
of normal equations. 

to be a polynomial in one 
the vector y has the cova-

process, alluded to at 
(FISHER and YATES [ 6 ] , 

[1 ] , DELURY [5]) . The 
3.4) on u = -n+1,-« + 3 , 
= - £ ( » - l ) , - | ( n - 3 ) , 

that the set of function 
if j is odd, so that the 

those for j odd. 
in the order of 

bven or only odd functions 
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have been used. It follows that the orthogonalized vector is a symmetric or an 
antisymmetric set of numbers in case j is even or odd respectively. As a conse
quence only \n (or \n +1) coordinates are recorded in fact. The length of the 
orthogonalized vector is not 1, but as small as possible and such that the coor
dinates are integers. The squares of these lengths are also noted in the table. 

In order to find of which linear combination of the functions id, v)~x, ...,u, 1 
some recorded vector is the set of function values, - it is regrettable that this 
is not noted in the tables - , one may solve linear equations in the unknown 
coefficients, obtained by substitution of some u in that combination, and equa
ting to the corresponding known function value. The fact that such a combi
nation is either even or odd in v., and that the coefficient of the highest degree 
term is noted in the tables, simplifies this procedure. 

Let the functions corresponding to the orthogonalized vectors r, vi, V2, ... 
be 1, u, au2+b, cu3+au etc. Let the average of the values xt of the original 
variable x for the n individuals be x and the distance between two successive 

x — x 
values of xi be p. Then we take u — — — . Let the coefficients in the orthogonal 

yr yvi yv2 projection be bQ* = —,bi*= - — , ¿2* = - — etc. The regression coefficients rr vivi v2V2 
b0, bi, b%,... of the polynomial in x will be obtained by reduction of: 

v + v ( ^ ) + v ( - ( ^ ) V . } + v H*-f)M^> -
The square of the separate projection ^ 3

2 serves as numerator of the sta
tistic for the test that the regression coefficient By* of vy is zero, which is equi
valent with the test that the coefficient By of xi is zero, independently of whether 
the coefficients of the functions of smaller degree are zero or not. This conse
quence is the justification of the chosen order of orthogonalization. 

3.2. REGRESSION PROBLEMS BASED O N A CLASSIFICATION 

3.2 .1 . Main effects 
Let the coordinates of the random vector y be grouped by virtue of some 

characteristic of the n individuals in a number, say k, of not necessarily equally 
large classes. Let it be supposed that the expectations of the coordinates within 
such a class are equal (but unknown). Then the set of vectors, to which Ey 
must belong, is a vector space. (Compare KUIPER [13]). Consider the k vectors 
which consist of ones in only one of the k classes and of zeros elsewhere. Every 
linear combination of these k vectors belongs to the set, and every element 
of the set can be written as a linear combination of these k vectors. For example: 

K o c a a " 1 1 1 1 ' " 0 0 0 0 ' " 0 0 0 0 " "0 0 0 0 " 
3 6 
Ï Y T 

0 0 
0 0 0 + s 

1 1 
0 0 0 + Ï 

0 0 
1 1 1 

+ 8 
0 0 
0 0 0 

_ S 8 S S S _ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

Here the n-tuples are arranged according to convenient arrays. "Homologous" 
numbers are corresponding coordinates. 

Simple inspection shows that the mentioned k vectors are independent. It 
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follows that these vectors form a basis of the considered space, so that the di
mension of that space is equal to the number of classes. Let the characteristic 
of classification be named A. Then also the classification will be named A. 
Further the ^-dimensional subspace of vectors with equal coordinates within 
the classes is named A too and it is called the space of main effects (of A). The 
term effect of the characteristic should not be understood in the limited sense 
by which in everyday life the effect of a cause is meant, but it has the looser 
sense that different values of the expectation of the considered property y always 
go together with differences, qualitative or quantitative, in the characteristic A. 

It is clear that the subspace N of levels is a subspace of A. The residual space 
of A orthogonal to N is called the space of pure main effects. It will be denoted 
by A* and it has dimension k-1. The reason of introducing this, is that the 
differences of the coordinates of vectors in A do interest us in fact. Two vectors 
in A of which corresponding coordinates differ by the same amount or, in 
other words, two vectors in A which differ by a vector in N are considered to 
represent the same effect of the classification A. The reason that the space A* 
of pure main effects, which together with N span A, is chosen orthogonal to 
N is that orthogonal projections are needed for tests (if Ey is in N, then 
(Ey)A* = 0. From the point of view of estimation any other choice of a (k -1)-
dimensional subspace of A, which together with N spans A, is permissible. 

3.2.2. Estimation and test 
The best estimate of Ey is the orthogonal projection of y on A, y A . The 

considered basis of A happens to be orthogonal (also when the metric is 
diagonal and weights are used). The projection on A is thus equal to the sum 
of the projections on the one-dimensional spaces spanned by these basisvectors 
separately. Let such a basis vector be a. Then the coefficient in the projection 

va 
is —. Here the numerator is equal to the sum of those coordinates of y, which 

aa 
are in the same class, as that in which a contains ones. The denominator is 
equal to the number of elements in that class. The coefficient is thus equal 
to the class average Jn- In the mentioned example 

VI . 

n. 
n. 

n. 
n. 

yi. yi. 

yi. yi. yi.. 
Further y\ — (if the number of elements in class / is m) 

m 
where yy is the j-th coordinate in class i. The orthogonal projection on A* 
cannot be performed easily directly in general. In our example the vectors 
" 5 5 5 5 " 

0 0 
0 0 0 

_4 —4 —4 —4 —4 

" 0 
5 
0 

-2 

0 0 0 
5 
0 0 

-2 -2 -2 
and 

0 0 
0 0 
5 5 5 

-3 -3 -3 

0 0 

-3 -3 
form a basis of this space indeed, but they are not orthogonal. However, as A* 
is orthogonal to N, y A * = y A - ysr. 



34 58(1) 

In our example 

VA* = 

yi.-y 

n.-y 
.y*.-y 

n.-y 
n.-y 
n.-y 
y\.-y 

yi.-y yi.-y 

n.-y 
yi.-y yi.-y yi.-y_ 

The vector y is thus decomposed in three orthogonal components y^, 
y A - Y N and y - y A in spaces with dimension \, k-l, n-k respectively. The 
square of y - y A which is equal to y 2 - y A , divided by the dimension n-k, 
is an unbiased estimate of a2, and is the denominator for the F-test criterion 
of the hypothesis that Ey is in N. The numerator will be y A »/(&-l ) while 
y A * = y A - y 2 j . The calculation of y^ is considered in 3.1.1. 

If weights gy are used the coordinates of y A are weighted class averages, and 

The remaining quantities are known from 3.1.1. 

3.2.3. Components of main effects 
Sometimes one is interested in the estimation and (or) testing of components 

of the main effects. These will t e in subspaces of A*. The three mentioned basis 
vectors of A* e.g. span one-dimensional spaces representing the difference in 
effect of the first, the second and the third class respectively with respect to 
that of the fourth class. 

The estimation of these effects is fairly simple: if 

y A * 

then the first component is 
a 
0 
0 

a a a a 
S S 
T Y Y 
8 8 8 8 8 

— 5 

a 
0 
0 

_ i a 
5 

0 
- Aa 5 . 1 * 

5 
ita 
6 - ! 

etc. 

The test of, say, the first component is not so simple, because the components 
are not orthogonal. Under the null hypothesis that there is no difference in 
effect between the first and the fourth class, Ey is of the form 

a a a a 
S B 

Y Y Y 
_a a a a a_ 

This means that the first and the fourth class have been united to one class. 
The orthogonal projection of y on the corresponding subspace of A contains 
class averages again, and differs with respect to y A only in the former first and 
fourth class. The difference of the squares, necessary in the numerator of F, 
i s t h u s e q u a l t o ( W ( W (Strt+W. 

m n4 ni+m 
The test is equivalent to Student's two-sided two sample test. 
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Another trio of components, which has the advantage to be orthogonal, is 
' " l ' l l l ~ " 1 1 1 - 1 " " " 5 5 5 5 " 

- 2 - 2 1 1 5 5 
0 0 0 - 3 - 3 - 3 5 5 5 

_ 0 0 0 0 0 _ _ 0 0 0 0 0 _ _ - 9 - 9 - 9 - 9 - 9 _ 

They represent the differences in effect of the first and the second class, of the 
first and the second class together with respect to the third class, and of the 
first three classes together with respect to the fourth class respectively. The 
coefficient of the last vector in the orthogonal projection e.g. is equal to 

5 ( 2 iyi)+^02)+s im) - 9 s ^ 4 j 
9 . 5 2 4 . 5 . 9 2 

and the square of that projection is equal to: 
[5 ( 2 ^ i y + S f f l 2 y + 2 j y 3 y ) - 9 S j y ^ ] 8 

9 . 5 2 + 5 . 9 2 

Another orthogonal trio of components is 
" 1 1 1 1 " ~" 0 0 0 0 ~ - 4 4 4 4 " 

- 2 - 2 0 0 4 4 
0 0 0 5 5 5 - 3 - 3 - 3 

_ 0 0 0 0 0 _ _ - 3 - 3 - 3 - 3 - 3 _ _ - 3 - 3 - 3 - 3 - 3 _ 

which represent the differences in effect of the first and the second class, of the 
third and the fourth class, and of the first and the second class together with 
respect to the third and the fourth class together. 

When the classification is based on a quantitative characteristic x and the 
classes are equally large, then by means of orthogonal polynomials appropriate 
components may be chosen. Let the four classes have e.g. three elements each 
and let the values of x be equidistant, then we may choose the trio 

~-5 -3 -3" ~ 1 1 r ~-i -1 - r 
-1 -1 -1 -1 -1 -1 3 3 3 

1 1 1 -1 -1 -1 -3 -3 -3 
3 3 3 1 1 1 •1 1 1 

which represent the spaces of linear, quadratic and cubic components of the 
effect of A. Sometimes it is useful to assume (if allowed) that Ey is in the space 
spanned by the linear and the quadratic component only. The dimension of the 
residual space orthogonal to A is raised by one then. 

Introduction of weights requires the formation of other orthogonal compo
nents in general, while the first mentioned test can be generalized to this case 
along the same lines as in 3 .2.2. 

3.3 . GENERAL REGRESSION PROBLEMS BASED O N T W O CLASSIFICATIONS 

3.3 .1 . Two spaces of main effects 
In addition to the classification A let the coordinates of y be grouped by 

virtue of a characteristic B in other classes at the same time, and for the present 
such that it is not possible to obtain one class of the one classification by uniting 
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some classes of the other. Let e.g. in our example in 3.2.1 a second classifi
cation according to columns be introduced as follows: 

B 

A 

X X X 
X 

X X 

X X X 

X 
X X X 
X 

Corresponding to these two classifications we have two spaces of main effects 
A and B, and two spaces of pure main effects A* and B*. The spaces A and B 
have the space of levels in common. Now consider the basis vectors of A and B 
that consist of ones and zeros (compare 3 .2.1) . Because both classes of any pair 
of classes of the one classification (say A) contain some coordinates that, 
together, belong to some class of the other classification (say B), any linear 
combination of the basis vectors of A that is in B has all coefficients equal, 
and thus must be in N. It follows that N is the intersection of A and B, and 
that A* and B* are disjoint. If A and B have fa and fa classes respectively, the 
dimensions of A* and B* are fa - 1 and fa-l-
- The supposition that Ey is in the (fa+fa- l)-dimensional space spanned by 

N, A* and B* implies that every Ey% is considered as the sum of a general 
constant, a constant for the corresponding class of A and a constant for the 
corresponding class of B. In other words, the effects of A and B are considered 
as additive. 

3.3 .2 . Estimation of the main effects 

In order to obtain the best estimate of Ey and with that, the best estimate 
of the effects, y must be projected orthogonally on the space spanned by A 
and B. Because A* and B* in general are not orthogonal on the one hand, but 
orthogonal bases for A and B are known on which the orthogonal projection 
is technically simple, namely by taking averages, on the other hand, the itera
tive method of 1.5.6 with k = 2 will be used. Compare YATES (22) , HAMMING 
(8)andKuiPER(ll). 

-The calculation of the following sequence of vectors is necessary: ui = y A ; 
vi = y B - YAB; U 2 = (vi) A ; v 2 = ( U 2 ) B ; U 3 = ( V 2 ) A ; V 3 = (ua)B and so on. The 
sum of the vectors v will yield a component in B, and ui, diminished with the 
sum of the remaining vectors u, will give a component in A. These together 
form the orthogonal projection of y on the space A + B . Apart from the vector 
y the vectors will not be written in full but only one coordinate of a class of A 
or B will be noted. So we obtain the following-computational scheme for an 
observation of the example in 3 .3 .1 : 
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number 
Y 
4 

sum 

24.6 20.0 18.0 
19.6 

Y 
4 82.2 

24.1 30.9 2 55.0 

20.6 19.8 15.8 3 56.2 

26.4 
25.3 
28.1 

27.8 25.9 5 133.5 

number 6 4 4 14 
sum 149.1 98.5 79.3 326.9 

y B 24.850 24.625 19.825 
y A B 24.480 23.371 21.633 check 
v , 0.370 1.254 -1.808 0.004 — 
v 2 0.098 0.091 -0.236 0.008 
Vs 0.016 0.009 -0.032 0.004 
v . 0.002 0.001 -0 .004 0.000 
Vj 0.001 0.000 0.000 0.006 

0.487 1.355 -2.080 

y J A = ui 

u t 

20.550 -0.498 -0.071 -0 .010 -0.001 0.000 

27.500 0.812 0.094 0.012 0.002 0.000 

18.733 -0.061 -0.016 -0 .002 0.000 0.000 

26.700 0.111 0.030 0.005 0.001 0.001 

Y 
21.130 

26.580 

18.812 

26.552 

0.004 0.006 0.003 0.005 0.005 

This will be, self-explanatory for the greater part. The row and the column 
"numbers" are noted, because they occur as divisors, the sums of the classes 
and the general total as a check. The number (coordinate) of y A B on the left, 
24.480, has been found from ui = y A as 20.550 + 27.500 + 18.733 + 
+ 3 x 26.700 divided by 6, and the number on the right, 21.633, as(2 x 20.550) + 
+ 18.733 + 26.700 divided by 4. Subtraction yields vi. 

The process of projection (averaging) will be continued, until all the coordi
nates in some vector are zero, or, as a consequence of rounding errors, remain 
small numbers. We will return to the latter case in the following section. 
Finally the required vectors in A and B can be calculated in the indicated way. 

It will be remarked that vi = y B - yAB = yn + V B * - ( yw+VA*)B = 
= y B * - (yA*)B- The second term, an orthogonal projection of a vector ortho
gonal to N on a space that contains N, is orthogonal to N. The same holds 
for vi, U2, vg etc. This has two consequences: we have a check for every step, 
namely the inner product of vi, U2 etc. with the vector r must be zero; the 
values of this inner product have been noted in the row and the column marked 
with "check". Secondly the vector found in B ,E£ i v«, is orthogonal to N, in 
other words is in B*; thus the vector found in A is equal to the sum of ys 
and the unique component in A*. The latter can be found by subtraction of 
yn (which is calculated by means of the general total of "sums" and "numbers") 
from the component in A. The unique components of y in A* and B* will be 
denoted by y SA* and y«B* where the letter s serves to distinguish from the 
orthogonal projections. In this section the letters A and B can be interchanged 
of course. Introduction of weights implies the use of weighted averages for 
every class and presents no further difficulties. 
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3.3.3. Some computational remarks 
Let y' be some approximation of the projection of y on a space, say A + B , 

and let y' be in the space A + B . Then the required projection of y is equal 
t o y ' + ( y _ y ' )A+B- The approximation of y A + B may be given by means of 
vectors in A and B. This will be applied for instance in case the approximating 
vectors in A and B have been obtained by the procedure of the last section, 
but with rounding and possibly other errors. In order to obtain a more accurate 
result, y - y ' should be projected according to the same procedure and the 
projection added to the approximation. But, as follows from that procedure, 
only the class sums of y - y ' are necessary. In our example the residual sum 
for the second column e.g. is equal to 98.500 - (4 x 1.355 + 21.130+26.580+ 
+18.812+26.552) = 0.006. If such a great accuracy is wanted in our example, 
we will find 0.487; 1.357; -2.081 as coordinates of y s B », and 21.130; 26.578; 
18.813; 26.553 as coordinates of y SA. 

A similar procedure will be followed, when the process converges very 
slowly. It is our experience that after several steps the coordinates of the same 
class all have the same sign in two successive steps u or v and decrease. At that 
moment an approximation of one component, say in A, will be found, by the 
supposition that the successive coordinates of the same class decrease according 
to a geometric series with the proportion of the coordinates in the two succes
sive steps as ratio. (In examples to follow this is exactly true.) An approximation 
of the component in B will be found by projecting the difference between y 
and the approximate component in A on B. This can be seen thus: y = y « A + 
+ y « B + y R with R orthogonal to A and B; then ( y - y 8 A > B = ( y « B + 
+ YR)B = ysB- The subtraction will take place via the sums of the classes of 
B again. Next the method described in the foregoing paragraph will be applied. 

The orthogonal projection y A + B is such that y - y A + B is orthogonal to A 
and to B which means that the (possibly weighted) class sums in y - y A + B are 
zero. In the particular case that a class of one classification, say A, occurs in 
only one class of the other classification B, the coordinate of y A + B in that 
class of A is thus equal to the (weighted) average of the coordinates of y in 
that class. In order to calculate the required projection y A + B , this class can 
be left out of consideration first, so that vectors in the main effect spaces of 
the mutilated y will be obtained. The coordinates of the effect of B in the 
mutilated vector are used as the corresponding coordinates for the complete 
y. The same is done for the remaining classes of A. The coordinate of the so 
far omitted class of A in the effect of A is found by subtracting the coordinate 
of the effect of B for that class from the (already known) corresponding coor
dinate of yA+B- This procedure is mentioned because it means speeding up 
the convergence compared with the iterative method for the complete y. We 
remark that, although the vectors y A + B obtained by both methods are equal 
of course, both vectors in A and both vectors in B differ by the same multiple 
of the vector r. This is a consequence of the fact that the condition of ortho
gonality of N and A*, and of N and B* are different for the complete and for 
the mutilated y. The arbitrariness of the relation between N and the pure main 
effect is elucidated in this way. 

Finally we discuss the situation that the projection y A + B has Jseen computed, 
and that a new class (with observations) of B is added to y afterwards. (Let 
e.g. A be a classification according to varieties and B according to trials so 
that the added class of B represents a new trial). In order to compute y A + B 
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quickly then, new classes of A in the added class of B are left out of conside
ration first. The vector in A, that had been computed already, is considered 
as an approximation of the required component in A. An approximation of 
the component in B, according to the method of subtraction mentioned for 
the case of a slow convergence, will yield the coordinates of the component 
in B already computed (so that computation is not necessary) and a coordinate 
for the added class of B. Then the method of the first paragraph is applied to 
obtain the effect of A and B in the mutilated y. Finally the omitted classes of 
A will be treated as mentioned in the preceding paragraph. Because the residual 
sums will be considerably smaller than when one performs the iterative process 
from the beginning for the extended y, the described method is more advan
tageous. 

3 . 3 . 4 . Another formulation of the method of estimation 
y A + B must be found as the sum of two vectors in A and in B, ySA and y g s , 

such that y - y SA - y«B is orthogonal to A and to B. The orthogonal projection 
of that difference on A and on B must thus be equal to the null vector. So we 
have: y A - y«A - (y«B)A = 0 and ys - (y SA)B - y s B = 0 . Subtracting the or
thogonal projection of the first expression for the null vector on B from the 
latter yields the equation: y S B - ( y « B ) A B = y B - y A B , while the first equation 
may be written as y g A = Y A - (y«B)A-

Let the product of the linear transformations in E consisting of the orthogonal 
projection on A followed by the orthogonal projection on B, PB PA, be denoted 
by Q. Then the equation for y s s may be written (/ - 0y«B = ys - YAS- NOW 
we consider the transformation Q within the space B*. This is possible because 
for any x in B* (that is orthogonal to N ) Qx is in B and orthogonal to N and 
thus in B*. In the proof of 1 . 5 . 4 we used the theorem that a similar trans
formation D, which was a product of orthogonal projections too, could have 
a bound 1 , only if there would exist a vector x 0 0 such that Dxg = XQ. In 
our case there should exist a vector in B* such that the orthogonal projection 
of that vector on A should leave that vector unchanged. Because A and B* 
are disjoint, this is impossible. It follows that the considered transformation Q 
has a bound smaller than one. 

From 1 . 4 . 4 we see that the sequence Sn = 2 £ = 0 Q? converges to the inverse 
of 1-Q. While y B - y A B according to 3 . 3 . 2 is in B* too, the equation 
(/ - 0y«B = ys - YAB, with Q a transformation in B*, is solved by 
y S B = 2 £ = o 6p(yB - YAB) = vi + Qyy + Q*vi + Q^vi +.... Further y s A = 
= y A - ( y « B ) A . 

This solution is the same as that described in 3 . 3 . 2 . It is given in connection 
with similar solutions in chapter 4 . 

3 . 3 . 5 . Testing main effects or components of main effects 
For testing the null hypothesis that e.g. there is no effect of B we need 

Y A + B ' V R = y 2 _ y i + B '
 a n d ( y A + B "" V a ) 2 , A c c ording to the end of 2 . 3 . 4 

y A + B = y y A + B = yy*A + yy«B. In order to calculate yy«A for every class of A, 
the corresponding coordinate of y 8 A is multiplied by the corresponding class 
sum in y, and the products are added. In the computational scheme of 3 . 3 . 2 
these quantities are available. From the description in words it follows that 
y A + B also can be written as y A y « A + y B y « B . The calculation, however, by 
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means of this identity is not accurate, because small errors in the components 
of the orthogonal projection y A + B are inflated by the multiplication. 

Therefore we calculate ( y A + B - y A ) 2 directly. Recalling that y - y A + B is 
orthogonal to A and to B, and y A + B - y A orthogonal to A, we have: 

( y A + B - YA) 2 = (y«B+y*A - YA) (YA+B - YA) = y«B(yA+B - YA) = 
y*B {y - y A - (y - YA+B)} = y«B(y - YA) 

which, on the analogy of the foregoing remark about yySA, is equal to 
y«B(y - YA)B = viySB- This expression is equal to a sum of products. For each 
class of B, such a product must be calculated; it is equal to the coordinate in 
y S B times the coordinate in vi times the number of coordinates in that class. 

In order to simplify this calculation the computational scheme in 3.3.2 may 
be altered and simplified in the following way. The vectors ys and y A B will 
not be calculated. Instead of them the sums in the classes of B in y - y A will 
be determined and noted. They are obtained by subtraction of the class sums 
in y A = ui from the corresponding sums in y. Division by the corresponding 
number of coordinates gives vi. So viy s s can be obtained as a sum of products 
consisting of two factors instead of three. 

In this way we find at the same time the quantity necessary in the numerator 
of the test statistic (which must be divided by the dimension k% - 1 ) , and the 
square of the perpendicular y 2 - ( y A + v i y « B ) , which divided by the dimension 
n-ki-k2+l, occurs in the denominator of the F-test statistic. To test the 
effect of A we need y A + B - y | which will be found as y A - y | + v i y « B -

When certain components of main effects must be estimated e.g. of A, then 
the estimate of the effect of A, Y«A*, can be decomposed in the same way as 
yA was in the case of one classification. But testing such components will be 
more difficult. 

By way of example we consider again the classification of 3.3.1 and in partic
ular A , also discussed in 3.2.3. Suppose we are interested in the difference of 
effect of the first three classes together and of the fourth class on the one hand, 
and in the mutual differences in effect between the first three classes on the 
other hand. Bases of the corresponding subspaces are the already mentioned 
vector c on the one hand, and (for instance) di and d 2 on the other hand (fig. 1). 

In order to test the null hypothesis that the first three classes have no dif
ferences in effect, y must be projected orthogonally on the space spanned by 
c and B. When one desires to use the method of 3.3.2, c can be replaced by the 
subspace of A, A', spanned by b and d (see fig. 1). 

Let now vi be y A ' - YBA' (changing of A' and B). From the fact that vi is 
orthogonal to N, it follows that all vectors Vi are multiples of c. The linear 
transformation Q = PA'PB is thus a multiplication by a real number less 

than one, say [x. It follows that y SA' is equal to (1 + [L + \>? + . . .)vi = vi» 
1 — [L 

so that vi and v 2 (the latter to determine u,) are sufficient to know the result of 
the iterative process. This is generally true, if one classification contains two 
classes only. This case is pointed out in connection with still following particu
lar cases, but can be treated in a simpler way. 

The vector c, obtained by orthogonalizing the vector d on N, can be ortho-
gonalized on B, which gives the same result as orthogonalizing d on B. The 
orthogonal projection of d on B is ds (see fig. 1). Subtracting this vector from-
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c = 

5 5 5 
5 

5 5 

-9 -9 -9 

-9 
-9 -9 -9 
-9 

; d i = 

1 1 1 
1 

-2 -2 

0 0 0 

0 
0 0 0 
0 

; d 2 = 

1 1 1 1 
1 

1 1 

-3 -3 -3 

0 
0 0 0 
0 

0 0 0 0 0 
0 

0 0 

0 0 0 

1 
1 1 1 
1 

; d s = d' = 

0 
0 

. 0 

-1 
-1 

-1 -1 

2 
2 
2 

Figure 1 

d and multiplying by 4 to get integers, we obtain the required vector d' (see 
fig. 1). The sum of the squares of the orthogonal projections of y on B and on 
the space spanned by d' is the square necessary in the numerator of the test 
statistic. 

In order to test the null hypothesis that the effect of the fourth class does not 
differ from that of the first three classes together, we need the orthogonal pro
jection of y on the space spanned by B and the residual space A" of A ortho
gonal to A'. To calculate this projection we may use the iterative method, now 
with the spaces B and A". The only question is how to perform orthogonal 
projections on A". For the considered example an orthogonal basis of A" has 
been given; use of this basis would imply for every orthogonal projection the 
calculation of two coefficients and summation of corresponding coordinates 
for three classes of A. 

When the number of classes is larger, it will be simpler to calculate the pro
jection on A" as the difference between the projection on A and that on A'; 
such projections require only averaging. Application of this method in the 
considered example shows that every projection on A" only pertains the first 
three classes: the coordinate for the fourth class will be zero. The coordinate 
of the other classes will be equal to the average of that class diminished with 
the average of the three classes together. 

Introduction of weights gives no difficulties; averages will be replaced by 
weighted averages. 
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3 .4 . PARTICULAR CASES O F T W O CLASSIFICATIONS 

3 .4 .1 . Orthogonal classifications 

Two classifications A and B are called orthogonal, if A* and B* are ortho
gonal. In that case the iterative -method comes quickly to an end, because 
U2 = 0. Further vi = y s » , and y 8 A* = YA - VN- Finally viy«B = vf = yjj*, 
so that y A + B = YA+YB*- All these relations also follow directly from the 
orthogonality of A* and B*. So we find that the estimate of Ey is equal to 
Y N + Y A * + YB* = Y A + Y B - YN and the square of this estimate is 

y N + y i ~ y N + y B ~ y N = y i + y l - ^ ' s o t n a t y R = y 2 - Y A ~ y B + y N -

Apart from the simplicity of the calculations we have the particularity that 
the estimate of an effect, say A, is the same whether the other effect B is sup
posed to be present or not. 

To obtain a general condition for orthogonality, also in case of a diagonal 
metric, the sum of weights in class j of B is called W(J). A vector with the coor
dinates W(j%) in class j \ of B, and with coordinates -W(ji) in class 72 of B and 
with zeros in the remaining classes is in B*. We choose a (any) class of A and 
also consider the corresponding basis vector of A consisting of ones and zeros. 
Let the sum of the weights of the coordinates that are in that class of A as well 
as in class j of B be rj. Then the two mentioned vectors are orthogonal if and 
only if rjJVQ'it) - rj,W(ji) = 0, or r^ : r^ = W(ji) '• W(J2). Because the num
bers ji and j2 have been chosen arbitrarily, it follows that the sums of weights, 
rj, are proportional to the numbers WQ). Moreover this is true for every class 
of^. 

We have: Two classifications are orthogonal, if and only if the proportions 
between the sums of weights of the coordinates of all the classes of the one 
classification are equal within all classes of the other classification. This pro
portion will be equal to the proportion of the sums of weights of the complete 
classes of the first classification. Compare KUIPER (11) . 

3 .4 .2 . Balanced incomplete blocks 
In classifications with the name "incomplete blocks" A is often called a 

classification according to treatments, and B a classification according to blocks, 
which are more or less homogeneous groups of individuals (plots). The dif
ferences in effect of these blocks are taken into account, in order to eliminate 
the inevitable variation between them. Every block will be a natural unit such 
as animals with the same parents, estimates by one person, yields of adjacent 
plots etc. Especially when the number of classes of A is large, it is impossible, 
in general, to form so large homogeneous groups of individuals (plots, animals 
etc) that all classes of A can be included in such a group. 

In balanced incomplete blocks any of the t classes of A consists of r coor
dinates; any of the b classes of B consists of k coordinates. Clearly n = tr = kb. 
Any class of A has with any class of B one or no coordinate in common. Any 
two classes of A are represented together in A blocks. Considering the r classes 
of B in which class i of A is represented, we observe that these r classes of B 
contain kr-r coordinates that belong to the t - 1 remaining classes of A. 

Because every of these t-1 classes is represented in a class of B together 
with class 1 equally frequently, namely X times, we have: X = (kr - r)/(t -1). 
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In order to observe the course of the iterative method for the orthogonal pro
jection of y on A + B , we consider a vector a in A* consisting of coordinates 
(H, with S ' = 1 a j = 0 because A* is orthogonal to N. Applying the linear trans
formation Q = PAPB on a we obtain ga. The coordinate of ga in class i of A 
is equal to the average of r from the averages of the classes of B in a, namely 
of those classes of B in which class i of A is represented. Because every of the 
remaining t -1 classes of A is represented in those classes of B X times, we find 
(rai+'k?>i'*iai')lrk, which, because of the relation between the at, is equal to 
(r - ttynfrk. Because this is true for every i, it follows that g is a multiplication 
by the number [x = (r - X)/rfc. The factor [x is the only proper value of the 
transformation g in A*. 

Analogously to the case of a classification in two classes we have 

y«A* = y - "TfrJ (YA - YBA) or substituting X = (kr - r)l(t - 1): 

Clearly viyGA, necessary for testing the effect of A and for computing y^, is 

equal to ^ ~ (y A - YBA) 2. 

Geometrically the property of this g means that a in A*, Psa and PAPB& 
can be represented by arrows in a plane, so that the angle between a and Psa 
is equal to that between Psa and PAPBZ- Denoting this angle by <p we remark 
that the length of Psa is cos<p times the length of a, and that the length of 
PAPB& is cos<p times the length of Psa, so that [x = cos 2?. We conclude: the 
balanced incomplete block design has the characteristic property that any 
vector in A* forms the same angle <p with (its orthogonal projection on) B* 
or B. Because PAPB restricted to A* is non-singular, there is a one-to-one 
correspondence between A* and the set of orthogonal projections of the vectors 
in A* on B. This set is a vector space PB(A*), with the same dimension as A* 
of course. Any vector in PB(A*) forms the same angle <p with A* (or A). The 
residual space of B orthogonal to PB(A*) is also orthogonal to A*; for, if a is 
in A*, then the projection Psa and the perpendicular a - P s a are orthogonal 
to that space, so that the same holds for their sum a. 

It follows also geometrically that the square of the perpendicular, necessary 
for testing the effect of A, y A + B - y B = YSA* + (y - V S A * ) B - V B = y«A* - ( V S A « ) B , 
i.e. the perpendicular from y SA* on B, is equal to 

sin2<p -(y s A ») 2 = (1 - [i) j-q^ vij = — v 2 . 

Similarly the square of any perpendicular from a vector a in A* on B is equal 

to T — a?.. 
1 - (X A 

Let ai and a 2 be two vectors in A*, and bi and b 2 their orthogonal projections 
on B. Then the identity (x(ai + a 2 ) 2 = (bi + b 2 ) 2 holds. Because fxa; = bf 
(i = 1, 2), we obtain [xaia2 = bib 2 . Let 91 and <p2 be the angle between ai 
and a 2, or between bi and bz, respectively. Then the last identity may be writ
ten as 
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txaia2 bib2 
r- 7= = Or COS <pi = COS 92-

V^|ai|Vj*|ail |b i | . |b« | V V 

Hence the orthogonal projection of A* on B preserves the angles between vec
tors. In particular, the orthogonal projection of orthogonal vectors in A* 
on B will be orthogonal. 

Let ai and a2, and therefore bi and bz, be orthogonal non-zero vectors. 
Then the inner product aib2 = {bi + (ai-bi)}b2 = b]b2 + (ai - bi)b2 is zero, 
because ai - bi is a perpendicular on B. It follows that also the perpendiculars 
ai - bi and a2 - b2 are orthogonal. We conclude: the perpendiculars from any 
set of orthogonal basis vectors of A* on B span the residual space of A + B 
orthogonal to B . The sum of some of such perpendiculars is equal to the 
perpendicular from the sum of corresponding vectors in A* on B. The space 
spanned by B and some subspace Ai of A* is also spanned by B and the set 
of perpendiculars from an orthogonal basis of Ai on B. Let A2 be the residual 
space of A* orthogonal to Ai. The orthogonal projection of y or of y A + B on 
the residual space of A + B orthogonal to A i + B is equal to the perpendicular 
on B from the orthogonal projection of y«A« on A2. This projection of y is 
needed in the numerator of the statistic for the test of the hypothesis that the 
expectation of the component of y in A2 vanishes. The square of the corres
ponding perpendicular is sin 2 <p times the square of (y S A*)A 2 i-e. 

T ^ ( v i ) i 2 = i 4 ] I ( y A 2 - y B A 2 ) 2 -
From the fact that the perpendiculars corresponding to orthogonal compo

nents of the pure effect of A to be tested are orthogonal, it follows that the 
set of corresponding squares are independent (in case of a normal distribution 

1 , 
of y) and their sum is equal to vf. The square viy«A can thus simply be 

1 — [X 

decomposed in a sum of independent squares necessary for testing orthogonal 
components of the effect of A, namely by projection of the vector vi on the 
corresponding subspaces of A and multiplication of the squares of these pro
jections by j - ^ — . See also KRAMER and BRADLEY (10). 

1 tx 

3.4.3. Group divisible partially balanced incomplete blocks 
In partially balanced incomplete blocks with two associate classes there is, 

analogously to the balanced incomplete blocks, a classification A according 
to treatments and a classification B according to blocks. Any of the t classes 
of A consists of r coordinates; any of the b classes of B consists of & coordinates. 
Any class of A has with any class of B one or no coordinate in common. The 
pairs of classes of A satisfy a so-called relation of association. This relation is: 
any two classes are either first associates or second associates; every class has 
m first associates and n% second associates (so that n\-\-m = t- 1); any two 
first associates are represented together in Xi blocks and any two second asso
ciates are represented together in X2 blocks. If Xi = X2 we have balanced in
complete blocks again. 

In order to observe the linear transformation Q — PAPB we consider again 
a vector a in A* with coordinates a%, with E;=ia« = 0. Applying Q we will 
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find in class i of A, analogously to the foregoing case, \\rk times the sum of the 
coordinates of a in those classes of B in which class i of A is represented. Be
cause every of the remaining t-l classes of A is represented in those classes 
of B, either Xi times if it is a first associate class of i, or X2 times if it is a second 
associate class of i, this sum is equal to raj+XiSi+XjjSa; here Si represents 
the sum of coordinates <H corresponding to the first associates of /, and S2 the 
similar for second associates; at + Si + Sz = 0. So we find in class 1: 

. (ra«+XiSi+X2S2)M 
which, because of the relation between the m, is equal to 

{(r-X2)fl« + (Xi-X2)Si}/rA:. 
The classification A is named group divisible, if the classes of A can be 

divided in m groups of n such that any two classes in the same group are first 
associates (thus «i = n - 1 ) and any two classes in different groups are second 
associates (thus n% = nm- n). Considering again the r classes of B in which 
a certain class of A is represented, we find the relation: rk = r+Xim+X2»2 = 
= r + X i ( « - l ) + X 2 ( ? - « ) . Or: rk-\2t = r -X 2 + ( w - l ) (Xi-X 2). 

Uniting the classes which are first associates to new classes, we denote the 
corresponding space of main effects, which is a subspace of A*, by Ai. If a is in 
Ai, then {(r-A2)(H + (Xi - X2)Si}/rfc is equal to {(r-X2)aj+(Xi -X2) (n - l)m}lrk= 
= {(rk - >.2t)cn}lrk. Q applied to any vector in Ai is a multiplication by [xi = 
= (rk - K2t)lrk. If a is in the residual space A2 of A* orthogonal to Ai so that 
at + Si = 0, we find {(r-X2)o$ - (Xi - Xi^lrk = {(r - Xi)aj}/r&. Q applied to 
A2 is a multiplication by 512 = (r - Xi)//#. The transformation Q in A* has two 
proper values (ii and [X2 with Ai and A2 as associated spaces of proper vectors 
respectively. It follows immediately that 

y«A* = ( y A - y u A ) A i + ( y A - y B A ) A 2 = 
1 - 111 1 '1 - U.2 ' 

( y A - y B A ) A i + rk-r+Kx ( Y A - y B A ) A * = 

rk 

rk-r+h! J™ 1 A2t 

Further viy 8 A = g (y A - y B A ) i i + yk 

yA - y B A + 
« ( X i - x 2 ) 

i y A - y B A ) A i 

^ l 7 + x i ( Y J - Y B A ) A 2 = 

rk 
r f c - r + X i 

( y A - Y B A ) 2 + 
« ( X i - t a ) . v .2 

( y A - y B A ) M Kit 

Analogously to the case of balanced incomplete 
in Ai forms the same angle 91 with P B ( A I ) and any vector 
angle 92 with PB{M). Further A I + P B ( A I ) is orthogonal 
which is seen from the fact that P B ( A I ) and P B ( A 
vectors of P B P A in B* associated with the proper values 
that any orthogonal component in Ai or in A2 will 

vk TIC cation by the appropriate factor -— or -. —— 
K%t rk — r + X i 

of the orthogonal projection 

of vi on the corresponding subspace. For testing sudh a component we need 

t lock designs any vector 
in A% forms the same 

to A 2 + P B ( A 2 ) 
a) are spaces of proper 

[xi and (X2. It follows 
estimated by multipli-t e 
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the square of this projection of vi as well multiplied by the appropriate factor. 
The sum of such quantities (squares of perpendiculars on B ) is equal to viy«A 
again. Compare KRAMER and BRADLEY (10). 

We remark that 283 of the 376 partially balanced designs compiled by BOSE 
e.a. (2) are group divisible. 

3.4.4. Latin square type partially balanced incomplete blocks 

20 designs in the just mentioned compilation are of the Latin square type. 
We consider the simplest type first. There are nz classes in A which can be re
presented by the lattice points of a square n by n. 

Two classes are first associates, if they are represented in the same row or 
the same column of this square. Thus m = 2(n - 1). Otherwise they are second 
associates. The orthogonal classifications according to rows and columns 
correspond to orthogonal subspace Ai and A2 of A*. 

If the vector a in A* with coordinates at happens to be in Ai or in A 2 , then 
the coordinate of ga in class / of A (compare foregoing section), 

{(r-X2)a« + (Xi-X2)5i}/rA:, 
is because Si = (n - l)at + (0 - at) equal to {(r - K2)at + (Xi - X2) (n -2)a$\rk. 
Then Q is a multiplication by 

{(r - X2 + (n - 2) (Xx - X2)}/rfe = {rk - \%TP - <Xi - X2)}/rAr. 
If the vector a is in the residual space A3 of A* orthogonal to Ai and A 2 , so 

that Si = (0-at) + (0-ai), {(r-X2)a« + (Xi - X2)Si}/rA: is equal to 
(r - 2Xi + ~k2)a\\rk. It follows that 

y*A* = . rk-lJ-nQ,i-KV) to*-ynbi + ^ B A M + 
rk 

+ • r -2X!+X 2 frA"YBA)A3 = R K _ F ^ _ X Z ( Y A - Y B A ) + 

rk 

I rk rk \ 
+ (x^+MXi-Xa) - ^ - r + 2 X x - X 2 j [ ( y A _ y B A > A l + ^ " y B A ) A 2 ] ' 

The expression for viyGA and the investigation of orthogonal components of 
the effect of A will be analogous to the foregoing section. 

An extension forms the case where in the square there is also a third classi
fication in n classes of size n, orthogonal to the classifications according to 
rows and columns; now two classes in the same row or column or the same 
class of the third classification are first associates. To these three classifications 
correspond three orthogonal subspaces of A* : Ai, A2 and A3. If the vector 
a in A* is in one of these three subspaces, Q is a multiplication by 

{r - X2 + (n -. 3) (Xi - K2)}lrk = {rk - X2H2 - 2»(XX - X2)}/rfc. 

If a is orthogonal to these subspaces, then Q is a multiplication by 
( r - 3 X i + 2X2)/rfc. 
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It follows that 
rk 

ysA* = rfc~r+3Xi-2X 2 

+ 

( V A - V B A ) + 

rk rk 
2k2) \h2ti2 + 2H(XI - X 2) rk-r+3XX 

The expression for v i y s A ^ n d the investigation o: 
to the preceding cases. 

3.4.5. Two-dimensional lattices 
In a two-dimensional lattice rp2 coordinates are divided 

ments (A) and blocks (B) again. There is a (sub)classiiication 
coordinates in r groups such that every group contains 
Each of these groups is divided in p blocks of p treatments 
partitions of the treatments are orthogonal classifications 
every class of one of these classifications is represented 
another classification. We observe that any vector in 
B orthogonal to Bi, has a vanishing sum of coordinate!! 

We consider the linear transformation g = PBPA 
coordinates b%. If b is in Bi, then g = 0, as Bi* is orthogonal 
B 2 , then the coordinate of gb in a block will be 1/r ? 
coordinates of b in those classes of A, which are represented 
bi is the coordinate of b in that block, the contributiqn 
block group, to which the considered block belong! 
contribution from the remaining block groups is zero 
represented in the considered block, occur in p differen|t 
Hence the required coordinate of g b is pb%\rp = b%\r, 
vector is concerned, g is a multiplication by 1/r. Any 
same angle arc cos r~~* with A. It follows that 

y«B* = ( V B - y A B ) B l -{—l~j ( V B -

j s ^ x C y A - y B A ) ^ 

f components in A is analogous 

Ha 

(m 

•1-

JTTÏ <XB - y AS) - (fui - Y A B ] ) 1 

Because the second term is orthogonal to A, y SA* = y A 

f 
For the calculation of y A + B we use v i y s B = -—^ 

and y \ . Subtraction of y | from y i + B supplies the tes ; 
thesis that the treatments have no effect. 

The particularities, established for incomplete blocks 
when the covariance matrix of y is not a 2 • 2. 

3.5. REGRESSION PROBLEMS W I T H T W O M AIN EFFECTS 

3.5.1. Interaction 
By two classifications A and B of the coordinates of a vector y in E a third 

classification is determined, which arises b y uniting those elements into one 

according to treat-
Bi (of B) of the 

all p2 treatments once, 
such that these 

of the p2 treatments: 
once in every class of 
, the residual space of 
in any class of B%. 

a vector b in B with 
to A. If b is in 

times the sum of the 
in this block. If 

to this sum from the 
is equal to ph. The 
as the p classes of Ay 

blocks of every group. 
\ s far as the considered 
vector in B 2 forms the 

y.UB)B2 

1 
^ A B ) - — [ ( y B j - y N ) . 

- y N - ; r ^ ( y B - y A B ) A . 

l (YB - YAJÎ)2 - —[ {toi - YABH}2 

statistic for the hypo-

and lattices, are lost. 

A N D INTERACTIONS 

file:///h2ti2


4 8 58(1) 

class which belong simultaneously to a certain class of A and to a certain 
class of B. In our example of 3.3.1 eleven classes are obtained in this way. 
(Compare KUIPER [11]). 

Corresponding to such a classification the vector space of vectors, that have 
the same coordinates within a class, may be defined; a basis of this space is 
formed by vectors with coordinates one in one class and zeros elsewhere. This 
space, as well as the corresponding classification, is denoted by A X B. It is 
called the space of interactions of A and B. It is easily seen that the spaces N, 
A, and B and thus also A + B are subspaces of A x B. The residual space of 
A x B orthogonal to the space A + B is called the space of pure interactions 
and denoted by (A x B)*. In our example it is 11-1-2-3 = 5 dimensional. 

The supposition that Ey is in the space A x B implies that to every combi
nation of the qualitative or quantitative characters considered in the classi
fications A and B there corresponds an expectation, which cannot (in general) 
be described as the sum of effects of the characteristics A and B separately. 
The space A x B may also be considered as a space of main effects of one 
characteristic, which consists of combinations of the characteristics A and B. 

3.5.2 . Estimation and test 
The estimate of Ey is the projection of y on A X B. Projecting is simple 

because A x B is a space of main effects: in every class of A x B the coordinates 
of y are replaced by their average. The square of the perpendicular is obtained 
in the same way as in 3 .2 .2 ; division by the dimension of the space orthogonal 
to A x B yields an unbiased estimate of a2, which also will be used as denomi
nator in test statistics. 

The estimation of the components of Ey in N, A * and B* remains equal to 
what we found in the foregoing; for the orthogonal projection of y on A + B 
is the same as the orthogonal projection of Y A X B on A + B. The estimate of the 
component in (A x B)* is equal to Y A X B - YA+B. 

The null hypothesis that Ey is in A + B, against the alternative that Ey 
is in A x B, is equivalent to £y(AxB)* = 0 . In the test of this hypothesis 
^ A X B ) * = YAXB ~~ ^ A + B ^ e 1 1 8 m t n e n u m e r a t o r °f the test statistic. 
Rejecting this null hypothesis implies the presence of effects namely joint 
effects of A and B. When the null hypothesis is not rejected, a test on the pres
ence of main effects may be performed along the same lines as in the fore
going. However, in order that the test will be independent of whether there is 
an interaction or not, the component in the denominator is the perpendicular 
on A x B and not on A + B. 

Consider the following decomposition of a vector Ey in its components 
in N, A*, B*, and (A x B ) » : 

B 
" 1 2 12" "14 14" ~ - 2 - 2 " ~ - 2 2" ~ 2 - 2 ~ 

A = +. + + 
1 2 2 0 14 14 2 2 - 2 2 - 2 2 

On the left hand side we observe that three combinations of characteristics 
yield the same effect. On the right hand side we find two main effects and an 
interaction. With this example in mind, we remark that estimation of pure 
•interactions is full of sense, while testing the presence of interactions, or esti
mating the joint effects of two or more characteristics, but, that an isolated 
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presentation of a formal pure interaction may be mis 
interpretation. 

Similarly an isolated presentation of main effects is 
interaction between the corresponding characteristics. A 
remark is that any supposition about Ey which contains 
tween A and B must contain the corresponding main 
remark applies also to the null hypothesis and the alternative 

Often every class of A x B has only one coordinate 
with E. The residual space orthogonal to A x B then cdnsists 
only. In such a case (the incomplete blocks and the lattices 
will suppose in general that Ey is in A + B; this supposition 
of course. The orthogonal projection of y on the space. 
(A X B)*, will have expectation zero then. Another possibility 
is supposed to be in a special subspace of (A x B)* 
sidered in the following section. 

leading for purposes of 

rusl 

3.5.3. Components of interaction 
We here consider only orthogonal classifications 

every class of A X B. Let x = (Xi, X») be a vectoi-
of K-tuples and y = ([ii, ..., y.m) a vector y in the vector 
To every pair of vectors x and y a vector x • y, called tensor 
is assigned; this is a vector in the space of mn 
~kiW(i= 1, . . . , « ; 7 = 1 m): 

with one coordinate in 
in the vector space X 

space Y of m-tuples. 
product of x and y, 

tjiples with coordinates 

x . y : 

~Xl[Al XlU.2 
X2[X1 X2U-2 

Xj (il Xj [Z2 

Xiw 
X2fitf 

The space of all linear combinations of such produces 
the tensor product X • Y of the spaces X and Y. 

The inner product (with respect to the metric 1) of (? 
and (Xj, X„) • (u-i, y.m) i.e. of x • yand x' • y' is 

XiXjUifi! + XiX^Us + ••• + WiV-mAi 

+ X2X2fXlfli + X2X2(i.2[A2 + ••• + >^2V-m\\ 

+ ^ f l U i [ A i + XwXflU.2̂ 2 + • • • + ^n^nV-i 
= ftlXi + . . . + XœX̂ ) ([Aifi.]' + . . . + f l , 

So we have (x • y, x' • y') = (x, x') (y, y'). It follows 
to x', and y is orthogonal to y' then x • y is orthogonal 
tensor products of the vectors of an orthogonal basis 
orthogonal basis of Y form an orthogonal basis for X 

of ones. In X • Y the subspaces X • r y and r x • Y art 

that if x is orthogonal 
to x' • y'. Hence the 

of X and those of an 
• Y. 

Let r x be the vector in X consisting of ones and r y th|e vector in Y consisting 
spaces of main effects 

leading, if there is an 
related and self-evident 

the interaction be-
In particular, this 

in a test, 
that A x B is identical 

of the null vector 
form examples) one 
must be acceptable 

i, formally indicated by 
is that £y(AxB)» 

Examples will be con-

Xä(A« 

\Lm_ 

: ^m(xi • yi), is called 

1, .... X») • ( ( X I , . . . , [Lm) 
equal to 

•m 4" 
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according to the columns and rows respectively in the given mxn array. Any 
main effect x • r y or r x • y will also be represented by x or y respectively. The 
tensor product of two pure main effects x and y (which are vectors orthogonal 
to rx̂  and r y respectively) is a pure interaction, because with any main effect 
x' * r y and r x • y': 
(x«y) (x'»r y) = (x«y) (r x • y') = 0; for e.g. (x • y) (x' • r y) = (x, x') (y,ry) = 0. 

The tensor product U • V of the two subspaces, U in the space of pure main 
effects X* in X, and V in the space of pure main effects Y* in Y, is called the 
space of pure interactions of U and V. 

Asan example we consider the case in which U has the basis x = (1,1, —1, -1), 
and V the basis y = (2, - 1 , -1). The tensor product U • V has the basis 

~ 2 -1 - 1 ~ 

_-2 1 L 
This is the basis of the pure interactions of the two mentioned main effects 

U and V. 
Next let the vector x (or y) be the set of function values of a polynomial, 

defined on n (or m) equidistant real numbers x\ (or x2). If x represents the 
function f(xi) and y the function g{x2\ then x • y represents the function 

f(xi) •gixz), i.e. a polynomial in two variables, defined on a rectangular lattice 
of points in a Cartesian (JCI; X2) coordinate system. Ifƒ(*].) or g(x2) is the func
tion 1, in other words, if one of the vectors x or y is r x or r y, then we obtain 
main effects again. The tensor products of a set of orthogonal vectors in X, 
representing orthogonal polynomials of degree in xi, and a set of orthogo
nal vectors in Y, representing orthogonal polynomials of degree in x2, 
form an orthogonal basis of the subspace of X • Y, representing polynomials 
in two variables xi and x2, which for every fixed x2 are of degree ^ s in x\, 
and for every fixed x\ of degree ^ t in x2. 

Let, for example, x = (1, - 1 , - 1 , 1) represent the quadratic orthogonal com
ponent of pure main effects X*, and y = (1, 0, -1) the linear component of 
pure main effects Y*. Then the tensor product 

x • y = 

is the basis of the pure interactions of the quadratic main effects U and the 
linear main effects V, and corresponds to the function x\x2 - Sx2. Bases of pure 
interactions can also be formed as tensor products of main effects based on a 
classification on the one hand, and of main effects based on polynomials on 
the other hand. 

Another example is the tensor product of the best estimates of the pure 
main effects x and y (which stand for the corresponding vectors in A*' and B*) 
of A and B. The subspace of pure interactions, spanned by this product, 
represents non-additivity of the effects of A and B (TUKEY [21]). 

All such components can be tested in a way similar to that in 3.2.3. The 
supposition about Ey determines the residual space, while all the components 
are orthogonal; hence, the square of the projection of y on the corresponding 

1 0 -1 
-1 0 1 
-1 0 1 

1 0 -1 
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valid spaces can be found easily. That the F-test is also 
(non-additivity), in which the space on which y must be 
basis vector, follows by considering the conditional 
statistic, under the condition of fixed effects of A and A 
tion is independent of the condition, this condition may 

in the last example 
projected has a random 

distribution of the F-Xs&X. 
Because this distribu
te omitted. 

3.6. GENERAL REGRESSION PROBLEMS BASED ON THRIE CLASSD?ICATIONS 

three 
sp atial 

iibsp ice 

and 

3.6 .1 . Definitions and hypotheses 
Let the coordinates of y be divided according to 

and C. Such classifications can be represented in a 
the three classifications a classification is determined 
contains the coordinates which belong simultaneously 
the same class of B and the same class of C. The sul 
same coordinates within every of these classes, is the 
interactions of A, B and C, denoted by A x B x C. 

It contains N, A, B, and C, further A x B, A x C 
space of A x B x C orthogonal to the space spanned 
A x C, and thus orthogonal to N, A*, B*, C*, (A x B)*, 
is the space of pure second-order interactions (A x B: 
that Ey is in A x B x C implies that, to every combination 
A, B and C, there corresponds an expectation which can lot 
as the sum of the main effects and the ordinary interactions 
C and B, and A and C only. 

Generalizations to four or more classifications will 
the treatment is analogous; interactions of third and 
introduced. 

Every hypothesis about Ey (and thus also the null 
native in a test) is of the form: Ey is in some subspace 
action is included in W, then all main effects and 
which pertain the same classifications as that interaction 
occur in W; if any of them is dropped, then interaction 
obtain the following types of admissible tests (and thup 
spaces that span W under the null hypothesis on the 
corresponding alternative on the right: 

null hypothesis: alternative 
IV: N, A®, B®, C®, (A X B)®, (A X Q®, (B x Q*; V: N, A*, B®, C*. 

classifications A, B 
diagram best. By 

of which every class 
:o the same class of A, 

of vectors, with the 
space of second-order 

B x C . The residual 
by A x B, B x C and 

(A x Q*, and ( B x C ) * 
Q*. The supposition 
of the characteristics 
always be described 

between A and A, 

not 

III:N, A* 
II: N, A* 
I:N,A®. 

N, A*. 
N, A*. 
N,A«. 
N, A* 
N; 

B*,C*,(AxB)*,(AxC)»; 
B*,C*,(AxB)®; 
B* C®* 
B»'(AxB)*; 
B*; 
B*; 

N, A®. 
N, A*. 
N,A» 
N, A' 
N, A®, 
N, A®, 
N, A®, 
N, A*. 

C®, 
C®, 
c*. 
c®, 
c*. 
(A> 

4 (A: 
The following test concerning the effect of C is not 

tive hypothesis is W = N + A * + B* + C* + (A x B)* 
hypothesis is W = N + A * + B* + (A x B)* + (A x C)* 
hypothesis contains (A x Q* and not the main effect Cf. 

The last three of the mentioned admissible tests and tl ie corresponding hypo-

be discussed, because 
er order have to be high 

hypothesis and the alter-
W of E. If some inter-

interjactions of lower order, 
does, should also 

looses its sense. So we 
hypotheses), with the 

: left, and those under the 

CAxB)*,(AxQ®, 
( B x Q * , ( A x B x Q * . 

A X B)*, (A X Q®, (B X Q*. 
AxB)®,(AxQ*. 
AXB)*. 
AxB)». 

B)». 

reasonable: the alterna-
X Q*, and the null 

For W under the null 
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theses need no further consideration, because they have been discussed in the 
foregoing; we need only remark that the denominator of the test statistic will 
be formed from the square of the perpendicular on the space, corresponding to 
the most extended hypothesis about Ey, taken in consideration in any special 
case. 

3.6 .2 . Performance of estimations and tests 
We consider some special cases of the set of hypotheses given in the previous 

section, namely those marked I, ..., V, in detail. 
First we take case I. The estimate of Ey is the orthogonal projection of y on 

the space spanned by A, B and C then. Remembering that orthogonal pro
jection on each of these spaces requires a very simple procedure (averaging 
within classes), we use the iterative method of 1.5.6 with k = 3 . Compare 
YATES (22) and STEVENS (20) . Analogously to the case of two classifications, 
the vectors u, v and w will not be written in full, but only one coordinate of 
every class will be noted. For the following example of y, in which the symbols 
at, bi and ct indicate the classes of A, B and C respectively: 

¿ 1 

¿ 2 

¿ 4 

« 1 a 2 a» « 4 OB a6 

Ci c 2 c s Ca C3 Cx C 2 C3 ct c 2 ca C\ C 2 C3 Ci c a c 3 

21.6 20.1 16.4 20.2 18.9 20.1 20.2 30.9 19.8 20.1 26.5 32.2 20.1 

26.7 17.3 14.3 22.8 15.9 11.0 

22.6 25.1 21.9 20.9 21.7 28.8 

18.8 12.2 24.6 17.3 20.1 10.9 

we obtain this computational scheme: 
= V A 20.42 19.78 . 19.96 

u 2 

= V A 

0.17 -0.17 0.00 

S u = ysA 20.68 19.52 19.96 

VB VAB Vl v a . . . S v = y „ * 
22.25 20.68 1.57 -0 .04 . . . 1.46 
18.00 20.77 -2.77 -0 .08 . . .-2.84 
23.50 20.63 2.87 0.12. . . 3.08 
17.32 20.56 -3.24 0.04. . .-3.15 

22.42 
0.00 

22.42 

20.48 
0.26 

20.81 

20.92 
-0.26 

20.59 

yc 22.15 20.98 19.60 
VAC 20.66 20.66 20.66 

( V I ) C 1.57 -0.39 -0.39 
Wi -0.08 0.71 -0.67 
w 8 0.04 -0.01 -0.01 

= S w 0.02 0.68 -0.70 

ThestepsyA,yB-yAB,ycandyAcneed no further explanation. (vi)c is formed 
by averaging in vi; the second coordinate e.g. is 3 x 1.57 + 3 x ( -2 .77) + 
+ 3 x 2 .87 + 3 x ( -3 .24 ) divided by 12. wi = y c - yAC - (vi)c- The first 
coordinate of u 2 is found as 3 x 1.57 + 2 x ( -2 .77) from vi, and - 0 . 0 8 + 
4- 2 x 0 .71 + 2 x ( -0 .67) from wi, the sum of which has been divided by 5 , 
and the quotient noted with opposite sign: 0.17. The subsequent steps are found 
similarly. Analogously to the case of two classifications, vi, wi, u 2 , v 2 , w 2 etc. 
are orthogonal to N, which affords a check again. Further Sv and Sw are 
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spice 

3 

orthogonal to N, so that they are equal to ySB* and 
2u=yN+y«A«- Finally YA+B+C=yy«A+ yy SB+ yy s c ; 

so that the calculation of this square is analogous to th< 
in 3.3.5. 

In case II the hypothesis can be summarized in: 
estimate of Ey is 4he orthogonal projection of y on 
means of the iterative method for two classifications. 
If desired, the component in A x B can be decompose^ 
N, A*, B*, and (A x B)*, by applying the iterative 
fications A and B on y«AxBj the component in the 
is found by subtraction. The last decomposition is nol 
of testing. In ordert© determine the square of the 
need only the components in A x B and C. 

In case III the hypothesis can be summarized in ^ 
Estimation of Ey requires the iterative method for 
AxB and AxC. Arranging the classes of both A x 
according to the classes of A shows, that the array falls 
for every class of A. This is reflected in the technical 
iterative method: the method will be applied to ever/ 
with respect to the classifications B and C in it. It is 
traction which yields vi, always takes place in the same 
or A x C. In order to decompose the unique projecti m 
nents, the method for two classifications will be applied 
component in A x B with the classifications A and B, 
component in A x C with A and C. In one of them 
unique) component in A*, so that the required unique 
is equal to the sum of these two not unique components. 

In case IV the estimate of Ey is obtained by the 
classifications, namely AxB, AxC, and BxC. If 
components of the projection in the separate subspaces 
method for two classifications will then be applied to 
unique) components separately. One of them will contMn 
main effects will each be found as the sum of two not 

In case V the estimate of Ey is the orthogonal 
A x B x C, which can be obtained in a very simple v. 
in the components in the subspaces mentioned in V 
discussed in the last paragraph; the second-order i 
as a residual. 

y sc* respectively, while 
yAy«A+ yBy«B+ ycysc, 
first method discussed 

W = ( A x B ) + C. The 
W. This is obtained by 

namely AxB and C. 
in the components in 

mejthod for the two classi-
of pure interactions 

necessary for purposes 
orthogonal projection, we 

= (A x B) + (A x C). 
the two classifications 

and AxC in.groups 
apart in separate arrays 

performance of the 
class of A separately, 

convenient that the sub-
subspace, either A x B 

into further compo-
to the (not unique) 

rad to the (not unique) 
yij-. Both yield a (not 

component in A, ySA», is 

takes 

to 

Because the squares of the projections correspondu!: » 
and the alternative can be calculated in any case no\r. 
can be performed (compare 2.3.5). For the denomin 
we refer to the end of the last section. We still need 
of the subspaces. In our example we have 1 for N, 5 for 
9 - 1 - 3 - 2 = 3 for (BxC)*, and 3 0 - 1 - 5 - 3 - 2 -
space of E orthogonal to N, A*, B*, C*, and (B x Q*. 
remaining interaction spaces in this example, because 
the distribution of the coordinates in comparatively 
vectors, and thus spaces, in common with each 
considered spaces. This phenomenon is indicated by 

other 
t ie 

iterative method for three 
one is interested in the 

mentioned in IV, the 
every of the three (not 

ysr; the unique pure 
unique components, 

projection on the space 
ay. The decomposition 

place by the method 
interaction will be obtained 

to the null hypothesis 
every admissible test 

4tor of the test statistic 
know the dimensions 

A*, 3 for B*, 2 for C*, 
3 = 16 for the residual 
We do not consider the 

as a consequence of 
ihany classes, they have 

and with the already 
term "confounding". 
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To the case that every class of A xBx C contains one coordinate only, 
remarks similar to those at the end of 3.5.1 apply. 

The considerations are also valid for any diagonal metric. 

3.7. P A R T I C U L A R R E G R E S S I O N P R O B L E M S W I T H T H R E E CLASSIFICATIONS 

3.7.1. Complete orthogonality 
Three classifications A, B and C are called completely orthogonal, if every 

classification is orthogonal to the classifications generated by the remaining 
classifications i.e. A* is orthogonal to B x C, B* is orthogonal to A x C, and C* 
is orthogonal to A x B. This definition implies 6 relations of orthogonality 
which are not true in the general case. In diagram: 

( B x Q * - A * - B * - ( A x C ) * 
\ / 

C* 
I 

(A x B)* 
In this particular case e.g. also (A x C)* is orthogonal to (A x B)*. This may 

be seen as follows: Choose a class of Ax B, i.e. a class of A and a class of B. 
Any vector in (A x Q* will contain coordinates c% corresponding to class i 
of C in the chosen class of A. Let the number of coordinates in class i of C 
and in the chosen class of A be n%. Then, because (A x Q* is orthogonal to 
A, liifHCi = 0. Let the number of coordinates in class i of C, which are in 
the chosen class of A x B, be equal to my. Then, as the classes of C are repre
sented in the classes of A x B in the same proportion as in the classes of A, 
we have also YiçnijCi = 0. The inner product of any vector in (A x C)* with 
the basis vector of A x B, consisting of ones in the chosen class of A x B 
and of zeros elsewhere, is zero. This is true for every basis vector of A x B. 
Hence (A x Q* and A x B are orthogonal, and also the assertion is true. 

Another sufficient condition for complete orthogonality is: A is orthogonal 
to B, and C is orthogonal to A x B. For let the number of coordinates in 
class i of A be k, in class j of B m;, and in class k of C «fo then the number of 

coordinates in class (/, j , k) of A x B x C is equal to ^w>^>>* t from which 
n* 

follows a proportional representation of the classes of B in those of A x C, 
and similarly of the classes of A in those of B x C. 

Orthogonality of A, B and C is not sufficient for complete orthogonality, 
as may be seen by the following example, where the numbers are the numbers 
of coordinates in the classes of Ax Bx C: 

ci c 2 

b\ Z>2 ¿»1 ¿»2 

ai 14 16 a i 16 14 
Û2 16 14 a% 14 16 

In the case of completeorthogonality the estimation of effects and the perfor
mance of tests is very simple again. We mention only 

y(AxB)» = YAXB - YA - YB + YN ; Y(AXB)» = YAXB - YA - YB + YN 

which are the formulas for two orthogonal classifications, and 
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yAxBxc — ys -foyA*+yB* + yc* + y<AxB)*+y<Axc)* 
from which follows 

y<AXBXC)* = yAXBXC ~ YAXB - YAXC - YBXC 
Y C A X B X O * = yixBxc - Y A X B - y ixc - Y B X C + y i . 

With the definition of orthogonality, given in 3.4.1 
be extended to the case in which weights are present. 

+ y A + y b + y c - y N , and 

+ ) B + y c - y N -
, the considerations can 

teen 

3.7.2. Latin squares 
In the case of Latin squares there are rfi coordinates 

gonal classifications, each in classes of n coordinates, 
sification the classes of the two remaining classifications 
one coordinate. Such classifications have already 
nection with lattices and incomplete blocks. Two 
indicated by the terms "rows" and "columns". 

The most extended hypothesis about Ey will concen]i 
because the spaces of pure interactions have vectors 
with the spaces of main effects: interactions and mail 
The estimate of Ey under the mentioned hypothesis is 
= y A + y B + y c - 2 y N , with the square y i + y i + yc 
also hold in every other case in which A, B, and C are o 

By introduction of weights the particularity of 

in y and three ortho-
every class of one clas-

are represented with 
mentioned in con-

cllassifications are usually 

Latin 

three main effects only, 
thus spaces in common 
effects are confounded. 

yN+yA*+yB*+yc* = 
N - These formulae 

i|rthogonal classifications, 
squares is lost. 

•vi 

3.7.3. Two classifications orthogonal (Pearce) 
There are several designs with three classifications 

where two of these classifications, say A and B, are 
only main effects are taken in consideration. It is tn 
Ey can be found then by application of the iterative 
fications. But it is simpler to consider the two spaces 
apply the iterative method for obtaining orthogonal 
spanned by two spaces. We obtain the following 
= YA + Y B - ysr; the three components are not add^d 
vi = ( y - y A - y B + y i d c ; the contributions of the 
within every class of C before averaging. U 2 = ( V I ) A 
are noted separately (the orthogonal projection of 
V 2 = { ( V I ) A + ( V I ) B } C ; the contributions of the 
class by class of C . And so on. 

y sc* will be found as SKLJVJ; y S A* as y^-ys 
V B - V N - S ^ V O B . 

An interesting example (PEARCE [16], figure XVHI|) 
Latin square with pz coordinates (p 2ï 3). In the 
of A) is deleted, and a column (class of B) is added 
p +1 is obtained. In the added column all classes of 
sented. This missing class is called class p of C. In 
class i of C is not represented; in column jp + 1 , 
p of C is not represented. In row j(j = I , p - 1 ) 
twice. It is clear that the new classifications to rows 
orthogonal, but that C is not to A and to B. 
w'H be performed in the way just described. For this 

; components 

array 
such 

+ y<Bxc)* + y(AxBxo»* 

(cpmpare P E A R C E [15,16]), 
orthogonal, and where 
s that the estimation of 

method for three classi-
A + B and C , and to 

projections on a space 
iequence: ui = yA+B 

but noted separately, 
components will be added 

( V I ) B ; the components 
on N is 0 of course), 

will be determined 

2 £ I ( V Í ) A ; and y s B * as 

can be derived from a 
p by p, one row (class 
that an array p -1 by 

C but for one are repre-
column / (i = 1 , p) 

added column, class 
class j of C is represented 

A) and columns (2?) are 
Orthogonal projection on A + B + C 

purpose we consider the 
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transformation Q = PCPA+B on a vector in C* with coordinates Ci in class 
i of C so that 

Cp 
pXfz\ci + (p-l)cp = 0 or S f - i « = y 

PA gives in row 1: 

in row p - 1: 

PB gives in column 1: 

in column p - 1: 

in column p: 

and in column p+1: 

P + 

P + 

P + 

P-

(2ci + c* + ... + cp)= j ~ (ci+ 

(Cl + ... + Cp~2 + 2Cp-l + Cp) = 

( ~ + ? ) • 
(C2 + C3 + ... + Cp) = -JL^£?-<^ 

(Cl + C 2 + ... + C j , - 2 +Cj,) = ^ ^-Cj^ x j 

(ci + c2 + ... + c^i) = -

(Cl + ... + Cp-l) = 

PCPA+B gives in class 1 of C: 

1 Mb + 4 i ( « + ^ ) + . . . + - ^ T ( C , - X + + 
p p + 1 \ Pi p+l\ p) p+l \ Pi 

similarly in class 2 of C: 

in class p - 1 : 

and in class p of C: 

,4ï[à(«+?) + 

+ 
2 

0+1)0 -1) 
2 

0+1)0» - 1 ) 
2 

O + D O - i ) ( C p - 1 _ 3 ) ' 

p o - i r 

We consider two orthogonal subspaces of C, namely Cx which corresponds 
to the classification obtained by uniting the first p - 1 classes of C into one 
class, and the residual space C 2 of C orthogonal to Cx. A basis for the subspace 
of Cx orthogonal to N will be formed by the vector for which ci = 1 for 
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/ # p, and cp = -p. 

multiplication by 

The transformation Q = PCPA 
2 

, — . Further a vector in C2 

in C2 Q is a multiplication by / _ , t x /_——. Now, (p+i)(P-iy 
derivation of these proper values of Q in C* would 
one would consider the transformation Q in the 
from the beginning. 

We find: ysc* = ^ — ( v i ) d H 

.t-B on that vector is a 

has Cp = 0. For vectors 

\yith this knowledge, the 

t e very much simpler, if 
separate subspaces Ci and C 2 

(vi)c 2 

1 

p2-l 
Pip-l) 

(pz-l 
V l i / ^ 3 - < 

1 -

PJP-l) 
•2)0+1)1 p* - 5 yp* - 3 (p 

where vi = ( y - y A - y B + yn)o The quantity viy s C 

and for calculating the square of the perpendicular, is 
! - l P(P-D 

(vi)c x , 

, necessary for testing 
jqual to 

' - 3 1 - 2 ) ( p + l ) | 
• V 2 

cova lance 

p'-i 1 ypi-'i (p 
Besides we need the quantity y A + y | 

These considerations are only valid in case of a 
The design (PEARCE [ 16 ] , figure X V I I ) , in which a row 
to a Latin square can be dealt with similarly, as well 
of the interesting subspaces of C* is again the spact 
coordinates in all those classes of C which are equally 
finds that Q is a multiplication by a real number forj 
P E A R C E [ 16 ] , figures X V and X V I ) . 

C'i)ci 

aiy 

pars 
except 

3.7.4. One classification orthogonal to the interaction 
The situation in which C is orthogonal to A x B, bul 

may also be somewhat simpler than the general case, 
in 3 .7 .1 , in which has been used only that the cla 
in any class of A x B in the same proportion as in 
(A x Q* is orthogonal to A x B, i.e. to A*, B*, and 
true of course for (B x C)*. We observe that all 
pure main effects or interactions, are orthogonal 
and the pair (A x C)* and (B x Q*. 

Now we consider the estimate of Ey in the four casek 
in 3 .6 .1 , and discussed for the general case in 3 .6 .2 , agtin 

In case I, the best estimate yA+B+c will be found as 
projection yc* = yc - ys, and the orthogonal projection 
obtained iteratively. This is also true in any other case i 
to A and to B only. An example of the latter situation i$ 
squares. 

In case II the hypothesis may be: W = N + A * 1 
= (A X B) + C*. The orthogonal projection of y on 
of the orthogonal projections on A x B and on C* separately 
however, that Ey is in N + A * + B* + C* + (A x Q* 
in: Ey is in (A + B) + C* + (A X Q*. These three spaces 

matrix a 2 • 1 for y. 
md a column are added 
as other examples. One 

of vectors with equal 
large. Sometimes one 

all vectors in C*. (e.g. 

of the other two 
A not orthogonal to B, 
Referring to the proof 
3 of C are represented 

class of A, we have: 
(A x B)*. The same is 

of subspaces, named 
the pair A* and B*, 

5, indicated by I , . . . , I V 

1 1 

sum of the orthogonal 
yA+B which can be 

which C is orthogonal 
formed by the Youden 

B* + C* + (A X B)* = 
W is equal to the sum 

The hypothesis, 
now be summarized 
are orthogonal. The 

file:///yith
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orthogonal projection on A + B will be obtained iteratively again, the compo
nent in C* is equal to yc - yis, and the component in (A x Q* is, as A and C 
are orthogonal, equal to yx x c - YA - y c + yri. 

In case III the hypothesis may be: Ey is in N + A * + B * + C* + (A x B)* + 
+' (A x Q* = (A x B) + C* + (A x Q*. The three spaces in the right hand 
side member are orthogonal. The desired projection is equal to the sum of 
the separate orthogonal projections on these spaces. Another hypothesis may 
be: £y is in N + A * + B* + C* + (A x Q* + (B x C)*. In the general case we 
observed that the projection on this space is found by separate applications 
of the iterative method for two classifications in every class of C with the 
classifications A and B (and the subtraction which yields vi always either in 
A or in B, say B). In this way we obtain in A x C: u = y « A x c . Because A 
and C are orthogonal, u can be decomposed in ys and in components in A*, 
C* and (A x Q* by simple averaging. In particular we note y S A = HA . The 
second component v = y S B x c will be orthogonal to N, while its orthogonal 
projection on C will be the null vector. Because B and C are orthogonal, v 
contains only components in B* and in (B x C)*. Hence y 8 B * = YB and 
ys(Bxo* = V - V B . The effect of C is completely in u. 

In caseIV the hypothesis: Ey is in N + A * + B * + C * + ( A x B ) * + 
+ (A x Q* + (B x Q*, is represented by: Ey is in (A x C) + (B x Q + (A x B)* 
because (A x B)* is orthogonal to A x C and to B x C . The corresponding 
orthogonal projection is thus found as the sum of the orthogonal projection 
on (A x C) + (B x C) on the one hand, and on (A x B)* on the other hand. 
The projection on W = (A x C) + (B x C) has just been discussed in the last 
paragraph and is equal to u + v with u in A x C and v in B x C . The pro
jection on (A x B)* should be obtained as Y A X B - YA+B-

Now we assert that y A + B needs not be calculated again, but is equal to 
the sum of y S A = U A and y S B* = V B as found by the method of the foregoing 
paragraph. 

Proof: When we have demonstrated that y - U A - V B is orthogonal to A and 
to B the proof will be complete. Because A + B is a subspace of W, y A + B = 
= ( y W ) A + B • Now (y - u A - VB)A = (yw - u A - V B ) A = ( u + v - u A - v B ) A = 
= YA - YBA- We know v = V B + ( v - VB) with v - V B in (B x C)*. Because 
V B A - V B B A = V B A - V B A = 0 and ( v - V B ) A - ( v - V B ) B A = 0 - 0 = 0, 
y - U A - V B is orthogonal to A. Similarly: (y - U A - YB)B = ( u + v - U A - V B ) B = 
= U B - U A B . We know u = U A + ( U - U A ) with U - U A in C* + (BxC)*. 
Because U A B - U A A B = U A B - U A B = 0 and (u - U A ) B - (u - U A ) A B = 0 - 0 = 
= 0, y - U A - V B is also orthogonal to B. 

Finally we remark that ycXxB)* will be obtained as y i x B - YA - v i y s B - Here 
y«B = V B , while the orthogonal projection of the first step in the mentioned 
iterative process on B, { y B x c - (YAXC)BXC}B = YB - ( Y A X C ) B = YB - YAB = vi. 

3.8. R E G R E S S I O N P R O B L E M S W I T H BASES G I V E N B O T H E X P L I C I T L Y A N D B Y 

C L A S S I F I C A T I O N S 

3.8.1. One classification and orthogonal polynomials 

An example, in which at the same time occurred classifications and ortho
gonal polynomials, has been introduced in 3.5.3 already. There the correspond
ing basis of the space, in which Ey was supposed to be, was orthogonal. 
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Now we wish to consider the case where Ey is in a space A - f B spanned 
by a space of main effects A on the one hand, and by the space B of function 
values of polynomials of degree A: on the other hand. This situation occurs 
e.g. in a field trial of which the plots have been arranged in one strip. A cor
responds to the "treatments" to be investigated. The contribution of the soil 
to the measured property y, often called fertility, is supposed to be a con
tinuous function, e.g. a polynomial, of the serial mmber of the plot in the 
strip. If the covariance matrix is <y2*2, the space B will be spanned by the 
(tabulated) orthogonal vectors of function values (orthogonal polynomials) 
r, x i , . . . , Xft. The vector r is in A, while the remainin % vectors, in general, are 
not orthogonal to A*. 

To estimate Ey the projection of y on the space spa ined by A and by B* i.e. 
by xi, x& must be performed, and this is fairly simple by means of the 
iterative method for two spaces A and B. 

If we choose vi = ( y - y A ) B , then we find here ~Lf=i{(yxi-yAXi)lxj}xi 
which, for computational facilities, will be replaced by Sf= j {(yx« - ytMhil^M 
Next U 2 = Sf= i {(yxi - yAx«A)/x2} X«A ; this will be the fi rst vector to be computed 
in fact (one coordinate in each class of A): After arranging the coordinates of 
the vectors y, xi, x^ according to the classes of A the coordinates of the 
vectors x«A are deterrnined by averaging. Next the : lumbers (yx« - yAx«A)/x 2 

are computed (the denominators are tabulated), anc with these numbers as 
coefficients the coordinates of the linear combination af the vectors X«A will be 
determined class by class of A. 

Analogously, 113 = S/=i {U2X«A/X2} xo. the computation of which requires 
the coefficients U2X$A/X 2 first; they are simple to compute because both U 2 

and XIA are in A; next linear combinations in each cl iss of A are determined. 
Similarly 114 = 2?=i {U3XIA/X2}X«A, and so on. The orthogonality of every u 
to N affords a check on the computations. 

The interesting component y s A * = YA - YN - Sj(L 2 U j , and 
ySB* = S f = 1 {(yxi - YAX*A)/X2 + S ^ U ^ A / X 2 } xif 

where the term in braces is the sum of all the coeificients found for XJA ip 
the vectors U 2 , us , . . . . In order to compute y^+B we i se y& and 

viy«B* = 2/Li{(yx« 
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;/x 2} {(yx«-yAX«A)/x 2 

= Sf = j {yx«-y Ax«A} { ( y x ^ - y A X ^ / x 2 + ^T^iMA^} 
i.e. the sum of A: products of already computed numbers. For testing the effect 
of A we finally need: y | = YN + Sf = i (yx,) 2 /x 2 . 

This method can simply be extended to the case of a polynomial in e.g. two 
variables defined on a rectangular lattice of points in a Cartesian coordinate 
system. We may consider, for instance, a field trial in which A corresponds 
to "treatments" again, and the plots are arranged in a rectangular array. By 
the method of 3.5.3 an orthogonal basis for effects of fertility can easily be 
obtained. 

3.8.2. One classification and one vector 
Let Ey be in the space spanned by A, the space of main effects corresponding 

to a classification A, and a vector x. This means that Eyt is equal to the sum of 
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a constant, which is the same for all yi within every class of A, and ¡3 times xt, 
where xi is the value for the i-th individual of a quantitatively expressible pro
perty x of the n individuals. In general, A does not contain x. Let the space, 
spanned by A and x, be called A + X. If A has k classes the dimension of 
A + X i s fc+1. 

In order to obtain the best estimate of Ey, i.e. to project y orthogonally on 
this space, the vector x, after the example of 3.1.2 and 3.3.5, is replaced by 
XR = x - XA, orthogonal to A. The orthogonal projection of y on XR is 6RXR, 
with OB, = yx»/xR as estimate for p. Thus y A + x = y A + & B X R - The square 
of this projection is equal to y A + ( y x R ) 2 / x R . The square of the perpendicular 
is y 2 - y A . - ( y x B . ) 2 / x R , which, divided by the dimension n-k-l, gives an 
unbiased estimate of IT2. The F-test statistic for the null hypothesis that p = 0, 
or that Ey is in A, has (6RXR)2 as numerator. 

In general one does not wish to write the estimate y A + # R X R as the sum 
of a multiple of x and an effect of A, but as the sum of a multiple of x - XN = x' 
and an effect of A, so that we obtain: y A - &RXA* + &ax'• The reason of this 
choice is that the characteristic for the classification A will be the object of the 
investigation in fact, while px' will represent a disturbing, but mostly inevitable, 
effect on Ey from a property, independent of A and measured by x; this effect 
must be taken into account necessarily; the average of the measurements of 
this disturbing property is therefore taken as origin of the measurements. The 
component 6RX a*, to ie subtracted from y A , is named the correction for this 
disturbing property. The component in A, y A - & B X A « ' , is named the effect 
of A corrected for the disturbing property. Another advantage of the mentioned 
choice is that the average variance of the coordinates in the vector of cor
rections is minimal then. 

The hypothesis that A has no effect implies that Ey is in the space spanned 
by x and N. The corresponding orthogonal projection of y, or of y A + x , is 
known from 3.1.2, namely ym + bx', with b = x'y'/x'x'. The orthogonal pro
jection of y on the (k - l)-dimensional residual space of A + X orthogonal 
to x and N is y A * + 6RXR - bx', while the square is y\» + (6RXR) 2-(6X') 2. 
This square occurs in the numerator of the test statistic for the mentioned 
hypothesis. 

Sometimes the investigation of the component in A + X will be more refined. 
For this purpose the orthogonal projection of yA* on XA* will be considered 
i.e. the linear dependence of the effect of A on the class means of x. This pro
jection is equal to 6*xA», with b* = x A » y A * / x A * . So we have four orthogonal 
components in y A +x , namely y^, &*xA«, y A * - b*xx*, and 6RXR, in spaces 
with dimension 1, 1, k -2 and 1 respectively. 

The second and fourth vector span a two-dimensional space which contains 
XA* + XR = x'. It follows that the third component is orthogonal to x'. The 
orthogonal projection of y on this two-dimensional space can be decomposed 
in two other orthogonal components, namely the orthogonal projection on x', 
and the component orthogonal to x'. The last is equal to Z>*xA* +£RXR - bx'. 
Let Eb* = Ebs,, which means that the linear dependence of the effect of A 
on the class means is the same as that of y on x. Then E(D*XA» + 6RXR - bx'), 
which is orthogonal to x', is a multiple of x'; this multiple must be the null 
vector. Hence the square of the component, 6*xA* + 6RXR - bx', may serve 
as the numerator of the test statistic for the hypothesis: Eb* = Ebs,- The 
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refinement thus consists of a decomposition of the component of the effect 
of A orthogonal to x', namely y A* + &RXR - £x', in the two orthogonal 
components yA» - 6*XA» and 6*XA* + 6RXR - bx'. 

The first component VA* - b*x\* represents the part of the effect of A that, 
although linear dependence of Ey on x has been taken into account, cannot 
be described only by linear dependence of the effect of A on the corresponding 
class means of x. If the component of Isy.in this (k - 2)-dimensional subspace 
is not zero, then there is an effect of A unmixed with linear dependence on x, 
of which it is doubtful sometimes whether it is an effect of A that happens to 
present itself as linear in x, or real dependence on x. Further, when the non
linear component of the effect of A is zero, one may test the null hypothesis 
that the expectations of b* and b& are equal. Under this null hypothesis there 
is no effect of A at all. Here we meet a second advantage of the refinement: 
when the real effect of A happens to be linear in x in substance, so that dis
tinction between a real dependence of y on x and an effect of A that happens 
to be linear in x is necessary, then the last test will be more powerful than the 
over-all test on effect of A. 

3.8.3. Performance of tests and estimations 
The tests indicated in the last section will be performed as follows: One 

determines y R as y 2 - y i . Further (6RXR)2 = ( y x R . ) 2 / x R = (yx-yx±)2l(x2-x\) = 
= (xy - XAyA)2/(x2 - XA) where x A y A is found analogously to x A : for every 
class the product of corresponding sums of classes in x and y is divided by the 
number of coordinates in that class, and the quotients are added. Next the 
denominator for the. test statistics and the unbiased estimate of o 2 can be 
computed. In order to test the non-linear component of the effect of A (di
mension k - 2), we compute 

( y A . - 6 * x A . ) 2 = y A . - ( 6 * x A . ) 2 = y i - y N - ( x A * y A * ) 2 / x A * = 
= y i - YN - (XAYA - xNyir) 2/(xA - x N ) . 

When the null hypothesis is rejected, there is an effect of A. 
If the null hypothesis is true (which may be assumed when it is not rejected), 

the equality of the regression coefficients Eb* and Eb& can be tested by means of 
(6*XA» + &RXR-6X') 2 = (6*xA*)2 + ( t o ) 2 - (bx')2 = 

( x A y A - x N y N ) 2 / ( x i - x N ) + (xy - X A y A ) 2 / ( x 2 - x\) - (xy - x N y N ) 2 / (x 2 - x N ) . 
When the null hypothesis is rejected, there is an effect of A. 
If both null hypotheses are true (which may be assumed when neither is 

rejected), the hypothesis ¡3 = 0 may be tested by means of 
(6x')2 = ( x y - x N y N ) 2 / ( x 2 - x N ) . 

When the effect of A is not considered by its components but as a whole 
one makes use of the quantity 

YA - A + (xy - XAyA) 2/(x 2 - x i ) - (xy - x N yN) 2 /(x 2 - x N ) 
and the corresponding dimension k - 1. 

The effect of A and that of x may sometimes be investigated in the reverse 
order. Then (6RXR)2 = (xy - XAyA)2/(x2 - x i ) will serve as numerator in the 
test statistic for the null hypothesis ¡3 = 0. If this hypothesis is true, the effect 
of A will be tested by means of y A*. 
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Iri accbrdance with the results of the tests the following estimates of Eymay 
be possible: 

(yA - & B X A * ) + 6RX' ; 

ys + 6*XA* + 6RXR = ys + (b* -&R)XA» + &RX'; y N + bx'; y A ; y s r . 

3.8.4. Interaction between A and x 
It is possible that the supposition about Ey, mentioned in 3.8.2, is too 

stringent, and that the linear dependence of Ey on x, described by a regression 
coefficient, is not the same in all classes of A. Let the classes of A be grouped 
in m sets. Each set determines a vector x% (i = 1, .... m), which in that set of 
classes of A (e.g. one class) contains the same coordinates as x and zeros else
where; the sum of these vectors which are orthogonal, will be x. The suppo
sition that Ey is in the space, spanned by A and the m vectors x«, attributes 
to each of the m sets of classes a regression coefficient. 

In order to determine the orthogonal projection of y on this space we con
sider the vectors X«A, i-e. the orthogonal projection of xt on A, and X«R = X ^ - X J A . 
Because the projection on A is obtained by averaging within classes of A, 

. the vectors XJR, ( / = 1 m), will have zeros in all except one of the sets of 
classes. Hence they are mutually orthogonal. The orthogonal projection of y 
is y A + ZiLtbiXfa, with bt = y x i R / x 2

R . 
The square of the perpendicular (in a space with dimension n-k-m) is 

This gives an unbiased estimate of IT 2, and the denominator for the test statistic 
of the null hypothesis that the Ebi are equal; for, because 2£Lix« = x, the 
space A + X is a subspace of the (k + m)-dimensional space in which Ey is 
supposed to be. In the numerator the square of the difference 

y A + 2 / 1 ikxiR - ( y A + & R X R ) = 2/1 I6«X«R - 6 R X R 

will occur. This square is 
2 /11 ( 6 « R ) 2 - ( 6 B X R ) 2 = S £ j {(x*y-xuyA) 2/(x 2 - x?A)} - (xy - X A y A ) 2 / ( x 2 - x i ) , 
while the corresponding dimension is m - 1. 

When the null hypothesis is rejected, so that there is "interaction" of A and 
x, and thus effect of both A and x, one may wish to obtain an impression of 
the influence of the effect of A on Ey, without disturbance of the property x. 
For that purpose, we introduce a vector x®$ which is obtained from X N in the 
same way as x* has been formed from x. We have: xx = 'ZILiXm. Next we 
apply the following decomposition: 

y A + 2 / 1 xbtXiR = yA - 2/1 ]bi(xi - x / N - X«R) + 2£L ih(Xi - x«N) = 
= { y A - 2,1 ]bi(xix - X«N)} + 2/1 ih(xi - xm) • 

The first term in braces represents the effect of A "reduced" to one particular 
value of x, namely the average of x. 

3.8.5. Two classifications and one vector 
Suppose that Ey is in a space A + B + X spanned by two spaces of main 

effects A and B, which in general are not orthogonal, and by a vector x, re
presenting a disturbing property again. In a field trial, A may be the object of 
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investigation, B the blocks in any incomplete block design, and x the number 
of plants, which is assumed to be independent of the effect of A. 

In order to determine the projection of y on A + B + X we use the compo
nent X R of x orthogonal to A + B . By means of the iterative method x will 
be projected orthogonally on A + B , so that XgA and X « B * are obtained. Next y 
must be projected on A + B on the one hand, and on X R on the other hand, so 
that the required projection is y S A + Y S B * + & R X R , with bn = V X R / X r . For the 
evaluation of 6 R we recall first that the denominator X R is equal to 

x 2 - x A + B = x 2 - x A - V I X S B , with vi = (x - X A ) B . 

Further: y x B = y(x - X A + B ) = xy - yx A - y(xA+B - x A ). 
Analogously to the reduction in 3.3.5: 
y(xA+B - x A ) = (ySA+y8B«) ( X A + B - x A ) = ySB* {x - x A - (x - X A + B ) } = 

= y«B* (x - x A ) = viy«B*. 
Hence y x R = yRXR = x y - X A Y A - y«B*(x - X A ) B - In the third term the symbols 

x and y may be interchanged. These expressions are preferred, because of their 
accuracy and computational facility, to expressions like 

y(x - X«A - XsB*) = Xy - X S A Y A - x«B*yB. 
The square of the perpendicular on A + B + X is equal to 

y 2-yi+B-(*BXR) 2=y 2-yA-y«B*(y-yA)B-(xy-XAyA-viy«B») 2/(x 2-XA-vix 8 B*) 
which yields an unbiased estimate of a2 and the denominator for test statistics. 
The last term in this expression is the numerator of the F-test statistic for the 
effect of x. If such an effect is assumed, yA+B+^RXR will often be written as 
(y«A - 2>RXSA*) + (y«B* - £RXSB») + 6 R X \ in which the terms in brackets are 
the "corrected" effects of A and B. 

In order to test the effect of A i.e. the null hypothesis that Ey is in B + X 
we need the projection ys+x- This oan be found according to the method for 
one classification and one vector (3.8.2). The difference y i + B + x - y l + x will 
appear in the numerator of the test statistic. 

The procedure to' investigate whether the regression coefficients are equal 
in all classes of, say, A, will be as follows. After the example of the last section 
one forms vectors xt from x which in a set of classes of A have the same coor
dinates as x and zeros elsewhere again. The space A + B + X is in the space 
spanned by A, B and the vectors x«. In order to determine the orthogonal 
projection of y on the latter spade, we need the components of the vectors 
Xi orthogonal to A + B . Therefore every x$ will (iteratively) be projected on 
A + B , so that XfeA and X ^ B * are found. The components X J R = Xi- X ^ A - X & B * , 

in general, are not orthogonal. But, apart from the projection of y on A + B , 
we wish to know the orthogonal projection of y on the space spanned by the 
vectors X $ R ; the coefficients of X $ R in these projections are the estimates of the 
regression coefficients. This will lead to a system of normal equations, with 
numbers x 2

R and X ^ R X / R as coefficients of the unknowns, and numbers yx̂ R 
as known terms. These numbers can easily be determined; for x 2

R = 
= x 2 - x 2

A - vix teB* with vi = y{° = (Xi - X I A ) B ; similarly X ^ R X ^ R = 

= XiXf-XiAXjA-vfxjsB* and yx«t = x«y-X4AyA- Vi0y«B*. We remark that 
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x{x.j = 0 and that many terms in inner products, such as xtsXjA and x{y, are 
zero. The number of equations will be small in practice. Let the solutions be 
bp Then the square of the required projection is y ,A+B+2A (yx*B . ) . Compare 
the end of 2 .3 .4 . The denominator of the test statistic can be calculated now. 
In the numerator the difference between the last square and y i . + B + x appears. 

When the null hypothesis of equality of the regression coefficients is rejected 
(interaction between A and x, then we write the orthogonal projection as 
y A + B + S ^ X « R . Let xm be a vector again, which is formed from x$ in the 
same way as xt is formed from x, then the expression can be reduced to 

y A + B - (x« - xm - X«R) + £ibt(xt - xm) = 

= YA+B - % ( X f e A + XfeB* - x«j) + SA (x« - Xm) = 
= {y«A - S A ( x t e A - X«N)} + {y«B* - S ^ X f e B * } + SA (x« - xm). 

The first and the second term are the "corrected" effects of A and B. It will be 
remarked that vectors XUA and X^B may have non-zero coordinates in classes 
in which the corresponding x% and xm have compulsory zeros. 

The methods discussed in the last four sections may be applied without 
difficulty to the case of a diagonal metric. 

3.9. MISSING PLOTS 

When y must be projected orthogonally on spaces, spanned by subspaces 
of the kind considered in this chapter, we meet sometimes the following situ
ation: the technical performance of a similar projection would be considerably 
more simple, if the vectors in E would contain a few, say one, two or three, 
coordinates in addition; for then one of those particular situations would occur, 
in which the orthogonal projection is an explicit expression in terms of a finite 
number of simply workable orthogonal projections. It is true that the required 
projection can be found e.g. iteratively, but it may be possible to take advantage 
of the simplicity of the performance of the orthogonal projection in the men
tioned particular situation. 

For this purpose we consider the vector space E corresponding to the given 
problem, and the vector space E' corresponding to the particular situation. 
Vectors in E' contain as many coordinates more than vectors in E do, as the 
number of coordinates missing for "completeness", the number of "missing 
plots", amounts. Now we assume that an independent basis for the space D, in 
which Ey is supposed to be, can be obtained by omission of the "missing plot" 
coordinates in a basis for the corresponding space D' in E \ (The correspondence 
between D and D' is determined by the supposition about the coordinates of 
Ey). In that case the correspondence between vectors x' in D' and vectors x in 
D, in which x is obtained by omission of the "missing plot" coordinates in x', 
is one-to-one. This is e.g. not true, if a whole block is omitted from a particular 
incomplete block design, or in case Ey is supposed to be a polynomial 
function of degree 3 in five equidistant values of x, from which two are deleted. 

We will show (compare KUIPER and CORSTEN [12 ] , CORSTEN [3 ] ) that the 
following method leads to a simple solution: We construct from the given 
vector y a vector y' in E' such that homologous coordinates of y and y' are 
equal, while the missing plots are filled up with unknown variables, and we 
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further determine a vector x' in D' such that (y' - x') 2 is minimal. The vector 
x' depends on y and the unknown variables. Let x be the vector in D corres
ponding to x' in D' according to the foregoing paragraph. Then, if the metric 
is diagonal, (y' - x') 2 is equal to the sum of the square (y - x) 2 in E, and a non-
negative contribution from the missing plot coordinates (a weighted sum 
of squares of differences). Whatever be the choice for x (or for x', which 
amounts to the same) the optimal values for the variables in y' will be such 
that the contribution from the missing plot coordinates to (y' - x*)2 is mini
mal, i.e. zero. Therefore, in minimizing (y' - x') 2 we have to take the unknown 
coordinates of y' equal to the (so far unknown) corresponding coordinates of 
x', so that (y' - x') 2 = (y - x) 2. In other words, the rninimum of (y' - x') 2 is 
equal to the minimum of (y - x) 2 . Because minimizing (y - x) 2 is our purpose 
(for then x is the required projection on D), our method will lead to the solution. 
The method consists in minimizing (y' - x') 2 i.e. orthogonal projection of y' 
on D'. The only question remains how to choose the missing plot coordinates 
in y'. 

The coordinates of x', the orthogonal projection of y' on D', are simple 
expressions in the coordinates of y' i.e. in the known coordinates of y and the 
unknown missing plot coordinatejs of y'. These expressions follow from the 
expression for the orthogonal projection of y' on D'. According to the fore
going, each of the missing plot coordinates of x' is equal to the corresponding 
unknown coordinate in y \ So we tobtain linear equations for these unknowns, 
which must be solved. After solution y' is projected on D'. 

The method yields x' = y'\y frjom which x = yo follows. Further it yields 
(y - x) 2 = (y' - x')2. However, it does not give automatically x 2 ( ^ x' 2 in 
general). Further the components of x, say in a space of main effects, found 
by this method will, in general, differ from the same component, found by e.g. 
the iterative method, by some multiple of the vector r, owing to the different 
consequences from the definition of orthogonality in the different spaces E 
and E'. 

Not all statistical procedures applied to y can be carried over by analogy to 
y'. Sometimes, however, wrong tests are performed in this way. Consider the 
null hypothesis that Ey is in C, a subspace of D, and let C in E' correspond 
to C. Then (for convenience sake) one often uses in the numerator of the test 
statistic y'o' - y% instead of yk - y<> Now the first quantity is equal to 
( y ' D ' - y ' c ) 2 , which is a weighted] sum of squares of coordinates. The contri
bution to this sum from the "not-missing plots" is the inner product in E, 
( y D - y s c) 2 , where y s c is some vector in C. According to the property of 
orthogonal projections this quantity is at least as large as ( y D - yc) 2 . Hence 
y'v>'-y'c ^ ( y D - y s c ) 2 ^ (Sn-ycf- In words: the null hypothesis will be 
rejected wrongly more frequently than is indicated by the nominal level of 
significance. On the other hand: if the null hypothesis will not be rejected with 
the wrong test, it will certainly not with the right test. 

Right tests require new projections of y. These may be evaluated by means 
of another application of the just described method, in case that is advantageous. 
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CHAPTER 4 

SOME REGRESSION PROBLEMS WITH CORRELATED 
OBSERVATIONS 

4 . 1 . GENERAL CONSH)ERATIONS 

4 .1 .1 . Kind of the problems 
In this chapter we consider random vectors y with a non-diagonal covariance 

matrix, and we determine estimations of Ey and its components. We restrict 
ourselves to regression problems in which the main effect spaces and the inter
action spaces are given by classifications of the components of y. 

In practice it will often occur that the individuals to which the observations 
within a class of y belong, form certain natural units which, as a group, may be 
considered as individuals of higher order. Such a unit, like a set of animals 
with the same parents, a block of adjacent plots, or a set of estimates by the 
same person, have been introduced already in 3.4 .2 in connection with block 
designs. A classification of y may have the property that it can be considered 
as a classification of these units. It may also happen that, moreover, each unit 
is divided over the classes of one or more other classifications of y. Within the 
class of these situations we will choose a number of more or less general 
examples which have practical importance. 

First example: y consists of measurements of differences in yield between 
two varieties. Each measurement has been obtained from a trial with these 
two varieties in a random place of the area, for which the expectation of this 
difference must be investigated. Because it will be expected that meteorologic 
conditions influence this difference, y will be divided according to the year 
of the trial. One might think that an appropriate supposition about Ey would 
be that it is a vector in the space of year effects. In that case the best estimate of 
Ey would be found by orthogonal projection of y on this space. This is right 
indeed, if one wishes to consider the level of this difference in these years in 
which the trials have been performed. But mostly it is the purpose of this kind 
of investigations to estimate the expectation of the considered difference over 
all years. For, although effects of the years are undeniable, the size of such an 
effect cannot be predicted, in the first place because the future meteorological 
conditions cannot predicted till now, secondly because the relation between the 
meteorological and connected conditions on the one hand, and the effect on 
the considered difference on the other hand are unknown. Therefore a random 
variable is introduced: the expectation of the difference in a random year. The 
expectation of this random variable is, under the sketched conditions, the best 
quantity for purposes of prediction; the estimation of this expectation is the 
problem in fact. 

The supposition about y arises in two steps: to every year, unit of higher 
order, corresponds a random variable. All these random variables have the 
same expectation, covariance zero, and variance c i 2 . Under the condition of 
a fixed year the coordinates of y in that year all have the same fixed expectation, 
covariance zero and variance a%z. In other words, every coordinate of y is 
equal to the sum of a general constant (to be estimated), a random contribution 
of the year under consideration, and a random contribution of the trial under 
consideration in this year. 
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Second example: Consider an experiment with animals in which two treat
ments (to which two classifications A and B correspond) are investigated. 
Every class of A x B contains a set of animals of the same litter or in the same 
stable, while in different classes of A x B there are represented different stables 
or litters. It is possible to estimate and to test formally the main effects of A and 
B and their interaction according to the methods of the foregoing chapter, 
because there is more than one coordinate in every class of A x B (we suppose 
that a covariance matrix a 2 '1 for y is acceptable). 

However, these formal components concern these litters or stables. If there 
are remarkable differences between some of these, they will be reflected as 
main effects and interaction. However, it will be in general the purpose of the 
experiment to investigate, the effects of the treatments on such litters or stables, 
from the population of which these litters or stables are samples. For this 
purpose the considered estimates and tests are without value. 

The appropriate supposition about y arises as follows: Consider some stable 
or Utter in a fixed class of A x B; the animals of this stable in that class of A x B 
have an expectation value. Another stable or litter in the same class of A x B 
will have another expectation. So we obtain a random variable in that class of 
AxB, namely the expectation of a random stable or litter in that class. Now 
such a random variable is attached to every class of A X B. We assume that 
each of these random variables is the sum of an effect of A, an effect of B, and 
a random variable with expectation zero and variance ffj2. Moreover, these • 
variables are supposed to have covariance zero. In other words, the vector of 
random expectations for the classes of A x B has as expectation the sum of an 
effect of A and an effect of B. To every class of A x B a random variable is 
attached. These random variables all have expectation zero, covariance zero 
and variance a2. Finally, under the condition that the coordinates of y 
(animals) are in a certain class of AxB, unit of higher order now, they are 
random variables with the same expectation (equal to the now fixed expectation 
for that class), with covariance zero, and with variance tia2. 

The investigation of the effects will, with this supposition, be different from 
that in case the expectations in every class of A x B are considered as constants. 
It will be observed that interaction of A and B is not included in the new 
hypothesis, because the classes of AxB contain only one unit of higher order. 
Otherwise the space of (random) expectations would have no residual space. 

Third example: This is related to the above-mentioned block designs. As 
pointed out in 3.4.2 the classification according to blocks in block designs does 
not take place, because one is interested in the size of the block effect, but in 
order to take into account an inevitable variation. Onlythe effect of A, the treat
ments, is interesting. Analogously to the foregoing examples, it is often justified 
to construct the supposition about y thus: to each block, unit of higher order, 
a random variable is attached. These random variables have covariance zero, 
variance ci2, and may or may Hot have the same expectation (in the last case 
each class of a classification, with as elements these units of higher order, has 
its own expectation). Further, evpry coordinate of y is, under the condition that 
it is in a certain unit, a random variable with variance 0 2 2 ; the expectation is 
equal to the sum of the (under the condition fixed) expectation for the class of 
B, and a contribution from the class of A to which the coordinate under con
sideration belongs. The covariance of these variables is zero. This supposition 
is equivalent to: Every coordinate of y is equal to the sum of: a constant 
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determined by the class of A, secondly a constant determined by the class of 
the above-mentioned classification of the blocks, further a random con
tribution of the unit, the block, under consideration (all these contributions 
have expectation zero, covariance zero and variance <ri2), and finally a random 
contribution of the coordinate under consideration (Under the condition that 
the expectation of the unit has its particular value, these contributions have 
expectation zero, covariance zero and variance 0%). 

Comparing the assumption, given here, with the assumption of a non-random 
block effect, we will find that the assumption of a random block effect gives a 
more efficient estimate of the effect of A, in general. 

The mentioned problems and those to be treated, in which subjects of 
apparently different kind such as components of variance, analysis of series 
of experiments, recovery of inter-block information (RAO [18]), and split-plot 
experiments may be recognized, all have this in common: There is a random 
contribution common to all coordinates in a class of the classification B of y 
according to units of higher order; these contributions have expectation zero, 
covariance zero, and variance oi 2 . Further the coordinates of y have, under the 
condition that they are in the units of higher order in which they are, the co-
variance matrix e722 • 1. 

4 .1 .2 . General remarks about the estimation 
The covariance matrix of y, with respect to the standard basis e i , . . . , en of 

the space of «-tuples, has a very unsuitable form in the situation sketched in 
the foregoing section. It is true that coordinates, belonging to different classes 
of the classification (say B) in units of higher order, have covariance zero, but 
if they belong to the same class, they will have a covariance CTI2. The inverse 
of the covariance matrix should be chosen as metric, in order to obtain the 
best estimate of Ey by means of orthogonal projection. It is not clever to use 
this metric directly. 

According to the end of chapter 1, we know that the inner product of two 
vectors with some metric with respect to the basis e i , . . . , e w is equal to the 
inner product with metric 1, after replacement of one of these vectors by a 
linear combination of its orthogonal (metric 2 ) projections on some particular 
orthogonal (metric 1) subspaces. If this metric is the inverse of the covariance 
matrix of the coordinates of y with respect to e i , . . . , e«, then the covariance 
matrix of the coordinates of y with respect to another basis, orthonormal with 
respect to metric 1, of which the basis vectors are either in or orthogonal to 
the above-mentioned subspaces, has the diagonal form. The elements in the 
diagonal of this matrix are the reciprocals of the coefficients in the mentioned 
linear combination. 

Conversely, if a basis, orthonormal with respect to metric 2 , can be found 
such that the coordinates have a diagonal covariance matrix, the coefficients 
in the linear combination of orthogonal projections, occurring in the inner 
product, will be the reciprocals of the corresponding elements in that matrix. 

Now we introduce a new orthogonal (metric 1) basis of E: the basis vectors 
of-the space B, consisting of ones in one class of B and of zeros elsewhere, 
completed with vectors orthogonal to B. Next we consider the corresponding 
orthonormal basis. The coordinates of y with respect to this basis have a co-
variance matrix which will turn out to be simple. 
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Let one class of B consist of k coordinates. Then the coordinate of the 
projection on the space spanned Jjy the corresponding unit basis vector (com
pare the end of 1.3.5) is equal to 1/V^ times the sum of the coordinates in that 
class; the variance of this coordinate is equal to (k^ai2+kaz^/k = ka%2+G2

2 . 
The covariance of two such coordinates is zero, because they have no random 
variable in common. In any basis vector, orthogonal to B, the sum of the 
coordinates in every class of B is zero. The inner product of y and such a basis 
vector will not contain a random variable common to any class of B, while 
the sum of the n squares of the coefficients of the other random variables in 
that inner product is equal to the square of the basis vector. It follows that the 
corresponding variance is a2

z. The covariance of two such coordinates of pro
jections appears to be zero in the same way as in 2.1.2. Finally the covariance 
of the coordinate of the projection on a one-dimensional space in B and that 
on a one-dimensional space in B 1 - is zero; in the expectation of the product of 
the two inner products the variables with variance tri2, vanish, because they 
occur linearly, and the vectors of coefficients of the other random variables 
are orthogonal. Summarizing we have found a diagonal covariance matrix for 
these coordinates of y. 

The appropriate inner product of two vectors xi and x2 will be found thus: 
one of these vectors will be projected orthogonally (metric 1) on each of the 
one-dimensional spaces spanned by the above-mentioned basis vectors of B, 
named Bt, and on Bx; each of these orthogonal components will be multiplied 
by the reciprocal of the corresponding variance (the numbers k may be different 
for different Bj, and be called At). .The results are added; finally, the inner 
product (metric 1) of this sum and the other vector will be determined. 

The estimate of Ey in A, i.e. the appropriate orthogonal projection of y on 
A, will be that vector y«A in A (the symbol s is used because it is not the customary 
inner product orthogonal projection), for which y-y«A is orthogonal to A 
according to the new metric. For this purpose y - y s A will be projected ortho
gonally (with metric / ) on the spaces B« and B x ; we form a linear combination 
of these components, with the reciprocals of the corresponding variances as 
coefficients. The orthogonality with respect to the new metric requires that the 
orthogonal projection of this linear combination on A, with respect to the 
ordinary metric 7, is equal to the null vector. (Compare 1.6.1). 

With the foregoing in mind, we will use the term "orthogonal" and the 
index, say, A in y A , only with respect to the metric 1 from now on, unless 
indicated explicitly otherwise. Further B will always be the classification ac
cording to the units of higher order, to which random variables are attached. 
For the present, i.e. up to 4.4, <T]a and <T22 are supposed to be known. 

4.2. A CONSTANT MAIN EFFECT 

4.2.1. General method of estiniation 
Let y be divided according to 

A be the object of investigation 
variable is attached, beside the 
separately. One may think of any incompli 
to treatments and B to blocks, 
equal fa. Put ( ^ t v i 2 + f f 2 2 ) - 1 = 

The best estimate of the effect 

AND A RANDOM MAIN EFFECT 

classifications A and B. Let the main effect of 
while to every class of B a common random 
random variables for every coordinate of y 

ete block design, where A corresponds 
the number of coordinates in class i of B 

'Vi and ( T 2 - 2 = w. 
of A will be found as y S A such that the ortho-

l^t 
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gonal projection of 2* {wi(y - ySA>Bt} + w{y - y»A - 2*(y - y«A>Bj on A is the 
null vector. Consequently: 

(2* -7 yB«)A - 2 , - i ( y ^ A + y A - y S A - ¡ ( 2 ^ + { ^ ( y ^ A = 0 

We consider the following linear transformation by which to a vector x in 
B a vector z = x^A in A is assigned: the coordinate of z in a class of A, con
taining m coordinates, is equal to \\m times the linear combination of the 
coordinates of x in those classes i of B, which are represented in this class of A, 
with coefficients gt. We remark that this transformation is the orthogonal 
projection on A, if the coefficients gt are 1. 

Choosing gi = wijw — ki<5\2\(kiG\2 + a 2

2 ) , we write the last equation as: 
y « A - { ( y « A ) B W = y A - { y B } f f A - Denoting the linear transformation, which 
consists of the orthogonal projection on B, PB, followed by the transformation 
gA, by the symbol Q, we have: (1 - 0ySA = y A - 6y- This is very much 
similar to the resulting equation in 3.3.4. 

The transformation Q of vectors in A may be paraphrased as follows: project 
orthogonally on B; multiply in the projection the coordinates in class i of B by 
gt (0^gi<l); project the vector, obtained in this way, orthogonally on A. 

The length of the vector in B, to be projected on A, is smaller than the 
length of the projection on B, so that the bound of Q satisfies (7{0<1. It 
follows that y s A = (1 + Q + Q2+...) (y A - y B - *A). 

The difference with the iterative method for two classifications in 3.3 consists 
only in the insertion of an additional operation between the orthogonal pro
jection on B and that on A, namely multiplication of the coordinates of the 
vector in B by the corresponding gi. 

4.2.2. Special cases and computational remarks 

It will be clear that the iterative process will converge the faster the smaller 
the numbers gi are. In particular, if these numbers are zero, which is the case 
if <7i = 0 (the random block variables are zero) we find at once: y 8 A = y A ; 
the classification B will be neglected. On the other hand, if tTi/<72 is large, then 
gt is approximately 1, and the iterative process may be replaced by the process 
which is formally obtained for gt = 1 i.e. the iterative process of 3.3. It 
follows that y A + B yields the most efficient estimate of the effect of A, if az is 
negligible in comparison with oi. When the effect of A is estimated from y A + B 
in case this extreme situation does not occur, the estimate is unbiased, but not 
most efficient, since the metric is not chosen in the appropriate way (compare 
2.3.3). This conclusion proves our assertion at the end of the discussion of the 
third example in 4.1.1. 

Equality of the numbers kt implies equality of the numbers gf. gt= g . 
Then Q = P A - £ ' P B = S'-PAPB, which means a considerable simplification: 
the iterative method of 3.3 will be applied with the difference only that, instead 

2«{w*(y - y « A ) B j A + w{y - y g A - 2«(y - y«A)Bi}A = 0 
or 

or 
y « A - ^ ( . - ^ ( , . ^ - , . - ^ ( 1 - ^ ) 4 
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of writing down the coordinates of the orthogonal projection of a vector in B 
on A, one notes these coordinates multiplied by g. 

It will be useful to perform the transformation (1 - Q)~\PA-g•PAPB) 
on yn and on y-ys separately in this case, and to add the results, as will 
become clear in the following. The transformation (PA-g'PAPB) of yir yields 
(1 -g)yif, so that the whole transformation yields (1 +g+g2+...) (1 -g)y~T$ = 
= yir. Further, application of the iterative method to y - y u = y' yields, as 
first component in A, y A - g * y ' B A , a vector in A*. The same will be true for 
the following components in A. This fact can be used as a check in the com
putations. The first component will be obtained in fact as y A - y^ - g(ys - ysr)A. 

A second advantage of this separation is that the computations lead much 
faster to the results; for the coordinates of y - y w are very much smaller, in 
general, than those of yn. 

A third advantage appears in the consideration of those incomplete block 
designs; for which the transformation PAPB of certain vectors in A* is^ a 
multipMcatioh by a real number u.. The transformation Q = ^ - P A P B is then 
a multiplication by gp. 

It follows directly that the estimate of Ey for balanced incomplete blocks 
(compare 3.4.2) is, in this case, equal to 

y«A = yu 4- (l - g [ i ) _ 1 { y A - y N - g(yB - y i d A } , with ^ = (r - \)lrk. 

Similarly for group divisible partially balanced incomplete blocks (compare 
3.4.3): 

y « A = ys+(i-gixi)_1{yA-yN-^0rB-yN)A}Ai4-(i-SF2)_1{yA-yN-g(yB-yN)A}A2= 
= y N + ( l ^ i ) ^ { y A - y N - g ( y B - y ; N ) A H ^ 

with fxi = (rk-~hf)jrk and \x% = (r-K\)jrk. 

Latin square type partially balanced incomplete blocks (3.4.4) yield completely 
analogous results. 

Returning to the general case with unequal gi, we remark that, unless the 
average of gi over the elements in any class of A is the same, gyir is not in N. 
Separation of y in ys and y - y^, and performance of the transformation on 
the second component only, will be an improvement, also in the general case, 
if one is interested only in the differences between the coordinates in y SA. 
Attention to this computational aspect may be justified by the illustrative 
remark, that in an example the performance of the calculations on y as a whole 
required 64 steps, and on y - y N 2 steps! 

If, however, y g A is wanted, and not only the differences between its coordi
nates, then y«N will be determined first, and after that the operations are per
formed on y - y & N . The equation for yss, which is a particular case of that for 
y SA, will be: yss - (ysvdgs = Yn- (yBW. Let the coordinate of yss bedenoted 
by p., the coordinate of ys by y, and the coordinate of ys in class i by yt. Then 
we have: 

£(1 - S « % « / H ) =y-'Zikigiyiln, or p t { S ^ ( l - gi)} = 2<ftfc<(l - gi), or 
p. S«(<ri 2 + « 2 *tkirx = S o t f o i * + o f it*-1. 

This is also the solution of the first problem discussed in 4.1.1. 
Another particular case is that in which the classifications A and B are ortho

gonal in the customary sense of chapter 3. ys-$ is obtained as before. For the 
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calculation of y«A we consider ysr and y - y N separately. Because g y N is in N 
(the average of gi over the elements in any class of A is the same), the contri
bution to y SA from y^ is ysr. 

Usually one has the situation that all gi are equal. In that case the result 
of the transformation of y - y N will be y A - y N ; for then (ys - yiO^A = 0, and 
thus the contribution from y - y$t is (1 + Q +...) (y A - y N ) , which is y A - y N , 
because ( V A * ) B = 0. Hence, in this case y s A = y A-

4.2.3. A design of split-plot type 
Let the classes of a classification B of y be units of higher order (e.g. blocks), 

with a random variable for every unit. Let C be a classification of these units. 
Let A be another classification of y. Let A, B, and C be the corresponding 
spaces. We suppose that Ey is in A x C. In addition to the non-orthogonality 
this design deviates from the usual split-plot design in that a second classification 
of the units of higher order and the corresponding main effect (effect of re
plicates in orthogonal designs) is absent. 

The estimation of the effects of A and C and their interaction will take place 
by projection of y on A x C, orthogonal with respect to the appropriate metric. 
But this is the same problem as that in the previous sections: we need only 
replace A by A x C. 

In the application of the iterative method with the classifications B and 
A x C we may arrange y according to the classes of C (B is a subclassification 
of C). It follows that the method falls apart in separate applications of the 
method for every class of C. The vector in A x C obtained in this way can 
be decomposed in components in N, A*, C* and (A x Q* according to the 
methods of chapter 3. 

It will be clear that the estimation is simplified, if in any class of C the units 
(blocks) have equal ki, and thus equal gi. If, moreover, in any class of C the 
classification according to A is orthogonal to the classification according to 
blocks, then the effect of A x C will be found by taking averages in every class 
of A x C, as follows from the discussion in the foregoing section (whatever be 
cri and CF2). If, moreover, all classes of A are represented in every class of C, the 
decomposition of y«Axc is also simple because of the orthogonality of A and C. 

4.3. T W O CONSTANT MAIN EFFECTS, AND A RANDOM EFFECT 

4.3.1. The general case 
The classes of a classification B of y are units of higher order with a random 

variable with expectation zero and variance <r| for every unit. Let C be a 
classification of these units. Let A be another classification of y. We suppose 
that iiy is in A + C . The difference with the preceding problem is that inter
action between A and C is not present. 

A first example of this situation is that of a block design with treatments A, 
in which adjacent blocks (units) are taken together in classes, in order to take 
into account a great part of the variation between the blocks as a non-random 
block effect, while the effect of the blocks (units) within these classes is considered 
as a random variable. One hopes that the variance of this variable is much 
smaller than (as in 4.2.1) without the classification C. Further important 
examples will be considered later on (4.3.4 and 4.3.5). 

The estimation of Ey will take place by determining y SA in A and y«c in 
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C such that the orthogonal projection of y-ysA-y«c» according to the 
appropriate metric, on A and on C is the null vector. With the same notation 
as in 4.2.1 we obtain the equations: 

Z>i{wt(y - y s A - yscWA + w{y - y s A - y s c - ( y - ys\ - y*c)B}A = 0 (1) 
2*{w«(y - y«A - y«c)Bj}c + w{y - y»A - ysc - ( y - y«A - y s c )B}c = o (2) 

Because C is a subspace of B, so that PCPB is equal to Pc, equation (2) is 
equivalent to: E^wj/w) ( y - y S A - y«c)Bjc = 0. We introduce the projection on 
C, which maps x as z = xwc, with the property: the coordinate of z in a class 
of C is equal to the weighted average of the coordinates of x in that class of C, 
while the weight of every coordinate of x is equal to the number wt\w = 
= 1 - ft = ft' = ff22/(A*7i2+ff22) °fthe c ^ a s s °f B t o which it belongs. 

In terms of this projection the last equation can be replaced by 
( y - y«A - y«cVc = 0 (2') 

The left hand sides of (2') and the former equation are not equal nor pro
portional, in general. 

In passing it may be remarked that we have obtained the solution of the 
second example in 4.1.1 where A and C both are subspaces of B: for equation 
(1) is then ( y - y«A - y « c W = 0, so that y S A and y«c can be found by the 
iterative method of 3.3 with A and C, attaching weights ft' to the coordinates 
of y ; this is equivalent to the application of that iterative method on a vector 
consisting of the class averages of B in y (every class counted once) attaching 
the weights (<yi 2+ff2 2/fc0 _ 1 to them. 

Continuing with the present case we write the modified equation (2') as: 
y«c = ywc - (y«A)wc. Thus y s c will be found easily, if y S A is known. Let the 
transformation indicated by gA have the same meaning as in 4.2.1, and let the 
transformation indicated by g'A be a similar transformation, with the difference 
only that the numbers ft are replaced by ft'; the sum of these transformations 
is the orthogonal projection on A. Now equation (1) may be reduced as 
follows: 
(YBVA - { ( y S A ) B ] v A - (y«cVA + y A - y«A - (yscU - ysA + (y«A>BA + (y«c)A = 0. 

Substituting from equation (2'): (y«cVA = (ywcVA - {(YSAVCVA we obtain 
by some reduction: y g A - [ { ( y s A ) B } ? A + {(ysAVcVA] = y A - [ ( y B ) f f A + (YWCVA] • 

This can be summarized in (1 - g ) y « A = VA - £?y where Q is the linear trans
formation with Qz = ( z B ) f f A + {(ZB)WCVA. 

Q can be described as follows: to every class i of B belong numbers 
gi = kiaizl(kiGi2 + tT 2

2) and gi = o2

2/(A:itTi2 + CT2

2). 
The first step in Q (on z) is the orthogonal projection on B (averaging within 

classes of B) and yields ZB. On the resulting vector ZB the projection wC is per
formed; the coordinate of a class of C will be found as the weighted mean of 
the coordinates of ZB in that class of C with weights gi, or what amounts to 
the same, as the weighted mean of the means of the classes of B in that class of 
C (every class of B counted once) with weights (ai 2 + oa2/^*) - 1- So we obtain 
(ZBW- Then follows a multiplication of the coordinate of ZB in class i of B by 
ft, and similarly of (ZBVC by ft'. Addition of these products, class by class 
of B, yields a new vector, z' = Rz, in B. Orthogonal projection of z' on A 
(averaging within classes of A) completes Q. 

We conclude that, in comparison with the transformation PAPB, the trans
formation PB has been extended with a projection on the subspace C of B , 
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and with the formation of linear combinations of the coordinates of the results 
of these two projections in every class of B. Within every class i of B the coor
dinates of ZB and (ZB)WC are averaged with weights gi and gi respectively. 

We observe that Q transforms a vector in N in itself. Let PBZ have coordinates 
fa in class i of B. Then the vector z' has as coordinate in class / of B: 

ci = gik + gi , 

where the summation pertains all the coordinates in the class of C, to which 
class i of B belongs. It follows that 

Ha = Vgtbt + (SftO ̂  = S f c . 
Therefore, if PBZ is orthogonal to N, the same holds for z'. Hence, if z is in A*, 

then Q z is in A* too. 
The right hand member of the equation for y s A may be written as 

ysr + yA* - CYST - Qy' = YA* - Qy', 
a vector in A*. If we know (which will be proved) that the bound of the trans
formation Q on vectors in A* is smaller than 1, then it follows that the solution 
of the equation is: y s A = (/ + Q + Q2 + • ••) (yA-Qy). This implies an 
iterative procedure similar to preceding cases. From the fact that y A - Qy and 
all the following components in A, obtained by this procedure, are orthogonal 
to N, we have a check on the computations. Because the projection wC will be 
performed on y and on all the components of which the sum is ySA, all material 
for the computation of y s c = y«>c _ (YSAVC comes also available. 

4.3 .2 . The bound of Q 
We will prove that the bound G(Q) of the transformation Q of vectors in A* 

obeys G(Q)< i. Let z be in A*, and z' = Rz in B such that Qz = PAZ' = P A Pz. 
In case | P Z | < | P B Z | we have |(2Z| = |PAPZ|^JPZ|< |PBZ|^1Z | ; hence 
|Qz|<|z|. Further, we will find that, if |P»Z| = |PBZ|, then PBZ = Pcz; this 
implies (from the definition of R): Rz = Pcz and therefore Q — P A Pc; then 
\Qz\ = |PAPCZ | < | Z | , because A* and C* are disjoint (compare 3 .3.4) . From 
these considerations it follows that it is sufficient to prove that | P Z | ^ | P B Z | 
for all z in A*, with equality only if Rz = Pcz. 

For this purpose we consider the relation between the coordinates Ci and fa 
of Rz — z' and PBZ, respectively, in class i of B given in the last section: 
Ci=gifa+gi(Hgibi)fLgi, and we prove that T,cf^Ebf (where the summations 
pertain a class of C), with equality only if all fa (within this class of C) are 
equal. 

We have the inequality : 0 < f t ^ l . Then b=Hgi'fa'[S,gi is not larger than the 
largest, and not smaller than the smallest of the numbers fa; for if we denote 
the numbers fa smaller than b by fa', and those larger than b by fa", then in the 
identity £'&'(& - fa') = 2 " giXfa" - b) every term must be positive (the 
identity 0 = 0 arises, if all fa are equal). 

From Ci — gtfa + gib — fa-gilfa-b) it follows that every Ci arises by 
subtracting from fa a part (0<g{'^ 1) of its difference with b: every a is closer 
to b than the corresponding fa. The total of the subtracted values amounts to 
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Hgi'ifa - b) — 0, which has been used already in the preceding section. If b—0, 
the assertion is thus trivial. 

Now we assume b>0 (for b<0 an analogous argument may be given). 
First we observe that the ci corresponding to fa^ - b will give a smaller con
tribution to 2 c 2 than the corresponding fa in Eft2. 

The <H corresponding to the fa in the interval -b<fa^b may give a larger 
contribution to 2 c 2 than the corresponding fa to T>bf. Let these fa be denoted 
by the index j : fa. Let the corresponding -gj'(fa-b), which is positive or 
zero for every / , be denoted by dj. Then the increase of the sum of squares is 
equal to Hj(b}+dj)2-'Zijbj = IHjbjdj+'Ljdf which, because bj^b-dj for 
every j , is at most IbZjdj - Y,jdj. 

The a corresponding to fa>b will give a smaller contribution to S c 2 than 
the corresponding fa to S6 2 . Let these fa be denoted by the index k, bk, and let 
the corresponding gk'(pic - b), which are positive, be denoted by d& Then the 
decrease in the sum of squares is equal to 2fc&2 - - <4)2 = l^kbkdk - 2>kdj-, 
which, because bk>b+dk for every k, is larger than 2 6 2 / ^ 4 - 2 ^ 2 . 

Now we compare the upper bound of the increase, IVZjdj-1>jdj, with the 
lower bound of the decrease, 2 6 2 ^ + 2 ^ . Because Hjdj, the absolute value 
of the sum of the quantities subtracted from the fa is at most equal to SJSA, the 
sum of the quantities subtracted from the bje (the sum of the quantities sub
tracted from all the fa was zero), the increase is smaller than the decrease, 
unless all die and thus all dj are zero. Hence 2 c 2 <2Z>2 with equality only if 

all fa in class i of C are equal. 

4.3.3. Particular cases 
It follows from the transformation Q that, if tTi/<72 is large, the orthogonal 

projection on B plays a preponderate r61e in the estimation of y S A- If m is 
small, the vector in C, which is very much similar to the orthogonal projection 
on C (gi nearly 1) then, comes into prominence. 

In the extreme case that o i = 0 , and thus gi=Q and gi = 1 , the transfor
mation wC is the orthogonal projection on C, and Q=PxPc- The projection 
on B will not be used at all. The equation for y g A becomes completely the same 
as that in 3.3 for two classifications, now A and C. Further y s c will be yc-(y«A)c 
as in chapter 3. 

In the other extreme case, approximated in case oi/az is large, gi = 1 and 
gi = 0. Then the projection on C is absent in Q, so that Q =PAPB- We obtain 
the method of 3.3 with the classifications A and B in order to determine y S A . 
Further y«c will be found as (y - VSAVC- If <*i is large, the numbers gi are 
proportional to \\ki. The coordinate in a class of C will be calculated as 
follows: add the coordinates of a class of B and multiply the sum by l/fo, i.e. 
take the class means of B; next add the class means of B in this class of C and 
divide by 2^(1/A^), that is the number of classes of B in this class of C. The 
projection wC means thus averaging the class means of B within every class 
of C, every class of B counted once. 

A condition that simplifies the calculations is equality of the numbers fa. 
Then Q=PA(gPB+g'Pc); the numbers gi are replaced by g and the numbers 
gi by g'. A further simplification is obtained, if moreover all classes of A are 
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proportionally represented in every class of C. This, for instance, is the case, 
if C represents a so-called classification according to replicates in an incomplete 
block design. Then Pc will only yield a contribution to y«A in the first step. The 
first step yields ui = y A - (gy~B + g'ycU; the second U2 = #(UI)BA; the third 
us = #(U2)BA and so on. We observe that, from the second step on, the 
operations are equal to those for an incomplete block design without the 
classification C (compare 4.2.2). 

Let such a classification according to replicates be applied in the designs 
(compare 3.4.2, 3.4.3 and 3.4.4), for which we found explicit solutions for ySA 
in 4.2.2. Then the estimate y s A will be given by replacing the expression 
YA - y»r -g(yB - ysrU in the solutions of 4.2.2 by y A - ( g y B + g ' y c U , and omit
ting the first term y^. This component will be represented in the component y sc-

4.3.4. Split-plot designs 
The classes of a classification B of y are units of higher order (e.g. blocks) 

with a random variable for every unit. Let C be a classification of these units 
according to a characteristic C (e.g. adjacent blocks form a class of C), and D 
another classification of these units according to a characteristic D (the main 
factor). Further there is another classification A in y (the split-plot factor). 
We suppose that Ey is in C + (A x D). 

The problem to determine the best estimate of Ey can immediately be reduced 
to that of the preceding sections. We need only replace the space A x D of 
this problem by the space A in the foregoing problem. To every block (main 
plot) belong numbers g% and gï which are necessary for the transformation Q. 
In this occur successively an orthogonal projection on B, a projection on the 
subspace C of B (weights gi), the formation of a new vector in B from these 
two projections, and finally an orthogonal projection on A x D. In this way 
we find y S AxD, which can be decomposed according to chapter 3 in com
ponents in N, A*, D*, and (A x D)*, if desired. Further ysc will be found as 
(y - ysAxoVc-

Equality of the k% is a simplification: the projection on C is now orthogonal 
and Q = PAxudPs + g'Pc), as in the last section. If, moreover, the classi
fication according to A is orthogonal to the classification according to blocks 
in every class of D, then, from the second step on, all components of y 8 A x D 
are in D (as follows from the orthogonal projection of a vector in B on A x D). 
The third and following components in A x D are of the type: 
U3 = {gii2 + g'(U2)C}B- Hence only projections on C and D occur. Moreover, 
the first step contains the whole main effect of A and the interaction of A and D. 
If, moreover, C is orthogonal to D, then the second term in the third and 
following components vanishes; the sum of the second and all following 
components is equal to (1 - g ) - 1 U2- If, moreover, every class of D contains the 
same classes of A, we have orthogonality of A and D, of D and C, and hence 
of A xD and C. Now we find, with y - y N = y', 

ui = Y'AXD - (gy'B + g'y'c)Axr> = y AXD -gy'x>; 
U2 = £(y'AXD-gyüto = s(l -g)y'D; sr=2 m = (1 - g ) _ 1 u 2 = ^y'D-

Hence we will find y s A x D = Y'AXD = VAXD - yss- This very particular situa
tion is the one usually indicated with the term split-plot designs. 
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4.3.5. Series of experiments and similar problems 
Now we consider an extension of the first problem discussed in 4.1.1, in this 

sense that there are trials with more than two varieties (or other characteristics). 
We assume that every trial gives one measurement (the mean) of the yield of 
every variety in that trial. Different trials in the same year do not all contain 
the same set of varieties for many practical reasons, while trials in different 
years will not contain the same set of varieties by virtue of the nature of varietal 
research, which implies the introduction of new varieties. For purposes of 
prediction and advice the best estimate of the expectation of varietal differences 
is necessary. 

Consider the classification of the yields y according to years on the one hand, 
and according to varieties on the other hand. It will be expected that, analogously 
to the case in 4.1.1, the expectations of the differences between varieties are not 
the same in different years, in other words, that there is interaction between 
varieties and years. Because, however, this interaction (which in 4.1.1 was a 
main effect of years) cannot be predicted, a random variable is introduced for 
every variety: the expectation of the yield of that variety in the considered 
area in a random year. The estimation of the expectations (over all years) of 
these random variables, but for a constant, will be our purpose. 

Each of these random variables is equal to the sum of the varietal expectation 
and a random contribution from the year to this variety. The random con
tribution is supposed to be equal to the sum of a non-random contribution of 
the year common to all varieties, and a random variable, with expectation 0 
and variance i n 2 , both the same for all variables. Moreover, these variables 
are supposed to be uncorrelated. In other words, the vector of expectations for 
variety-year combinations has as expectation the sum of an effect of varieties 
and an effect of years; to every combination a random variable is attached. 
All these random variables have expectation zero, covariance zero and vari
ance tT]2. 

Every variety-year combination in y has been divided according to the trials 
in that year. This leads to the supposition that the coordinates, under the 
condition that they are in a fixed variety-year combination, have an expectation 
equal to the sum of the (now) fixed expectation, corresponding to this com
bination, and a contribution of the trial, common to all varieties in that trial. 
Further they have, under the same condition, covariance zero and variance <T22. 

The whole supposition may be summarized as follows: the coordinate of y 
belonging to some variety-trial combination is equal to the sum of a constant 
determined by the variety; a constant determined by the trial (the effect of 
years is included), a random variable with expectation zero common to the 
coordinates in the variety-year combination (these variables have covariance 
zero and variance i n 2 ) and a random variable for this particular coordinate 
(these variables have, under the condition that the expectation for the variety-
year combination has its particular value, expectation zero, covariance zero 
and variance 1T22). 

One might ask, why the effect of trials is not considered as a random variable 
too, because this effect (of trials and years) has a random character, and we 
are not interested in the effect of any particular year or trial field. The answer 
is in the foregoing sections: we observed, that when such an effect is assumed 
random and the associated variance is large, then the estimators can be approxi
mated by the estimators under the assumption that random effects are constant 
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effects. Because the effects of trials (and years) are very large in comparison 
with <7i and 02, we suppose them to be constants from the teginning. 

It follows from our suppositions that the problem of the best estimate for 
varietal differences is a special case of the foregoing problems. The variety-
year combinations are now the units of higher order (to be compared with 
blocks in the case of 4.3.1); they arise from the classification B. The classification 
according to varieties corresponds to the classification C of the classes of B. 
The classification according to trials corresponds to the classification A. We 
need the orthogonal projection on the space spanned by A and C. A difference 
with the preceding cases is that there the component in A is the most interesting, 
while here we aim at the component in C. The component in A is the sum of a 
component in D, the space of year effects, and a residual named trial effect 
within years. This is in contrast with the split-plot design, in which the effect 
corresponding to A consisted of two main effects and an interaction. 

The solution of the estimation problem requires no difficulties now: to every 
variety-year combination (every class of CxD=B) consistingof^coordinates 
belong numbers gt and gt'. The transformation Q consists in: orthogonal 
projection on B (varietal means for every year); projection on C (weighted 
means of the annual means for each variety with weights (ai2 + G2?lkt)~v); 
a combination of these two projections to a new vector in B by means of the 
numbers gt and g%; finally orthogonal projection of the result in B on A. 

In order to get a survey of the computation one may write the data for 
every year (arranged according to trial and variety) on different sheets, while 
there is a special sheet on which the vectors in C will be noted. It appears that 
the projections on B will be performed in every year (sheet) separately; when 
the projection of the result in B on C is performed, we pick one or none number 
from every sheet of the years, and the result is noted on the special sheet By 
means of this last result and one of the other sheets every time, the required 
vector in B will be formed. The projection of this vector on A will be performed 
on every sheet separately. When the process has come to an end (all coordinates 
zero), the estimate y s c will be found on the special sheet by subtracting from the 
first vector in C all the following vectors in C. 

In the extreme case a\ = 0 i.e. no interaction between variety and year, Q 
will be (compare 4.3.3) P&Pc. This means the application of the iterative 
method of 3.3 on the complete classification according to trials and to varieties, 
irrespective of the number of trials in which a variety is represented, in a year. 
In the other extreme case of a very large interaction between variety and year, 
we obtain with reference to 4.3.3: In every year separately the iterative method 
of 3.3 will be applied in order to find y«A, i.e. the effect of the trials within a 
year. Next ysc = (y - ySA)wc, which means that the coordinates of the effect 
of C for every year separately (found by the method of 3.3), also called the 
varietal means "adjusted for trial effects" for every year, are simply averaged, 
variety by variety, over the years, every year which contains that variety 
counted once. 

Now we consider the particular case, in which any two trials within a year 
contain the same varieties (one coordinate for a variety-trial combination as 
before); the varieties in different years may be different. Then the transformation 
Q, which ends with an orthogonal projection of a vector in B on A, will yield 
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the same coordinates within a year, in other words, yields a vector in D. The 
first step in Q is an orthogonal projection on B, which reduces for this vector to 
the transformation 1. As U2 = 6ui is also in D, U3 = 6u2 reduces to Qu% = 
— (U2)»D + {(u2)wc}ff'D, and so on. Because the effect of the trials is not 
interesting in the problem, we will simplify in replacing ui = y A - Qy by 
TAB - Qy. Then the vectors U2, U3, . . . obtained from this vector are equal to 
those obtained from the original m; for the orthogonal projection of y A - Qy 
on Bis equal to VAB - fiy. For the computations we observe yAB = y D = yso', 
hence the new ui = y s D - (yBVD - (YWCVD = ( y B - YWCVD. NOW we work 
with the array of annual varietal means only. From the sum of the varietal 
means in year / the corresponding components in ywc = (YBVC are subtracted, 
and the difference is multiplied by gi'lmi, where m% is the number of varieties in 
that year. The resulting vector is ui. Further U2 = (ui) f fn + {(ULWVD, i.e. 
gilrhi times the sum of the coordinates of (ui)wc, corresponding to varieties 
occurring in year i, is added to gt times the coordinate of ui in year i. Similarly 
us = (u2)ffD + {(u2)wc}g'J) and so on. Finally y g C = y w c - 2 r = i Ohhoc-

We will show that this method is not the same as the following which 
sometimes has been proposed. To every annual varietal mean the weight 
( i n 2 + a22lki)~1 is attached. Next the method of 3.3 is applied with the classifi
cations C and D. 

For we observe that, in the extreme case of a very large 01, the weights in 
different years will be equal, so that also then the iterative method of 3.3 would 
be applied. The right procedure, however, then consists only in simple averaging 
the annual means variety by variety. One might say that the proposed application 
of the method of 3.3 tends to a too great adjustment for year effects. If CTI=0, 
the two methods are equivalent. 

In case not only the trials within a year, but also the different years contain 
the same varieties, C is orthogonal to A and to D. Then y«c is ywc - 2 / ^ I(U*)MIC 
again. But every (u«)a,c will be formed from a vector in D and thus is in N. 
Therefore, if the level of y 8 c is not important, then ywc yields all information 
required. If, moreover, the ki are equal, y«jc=yc-

Another particular situation in the case of the same varieties within a year 
(but not in different years) occurs, if the k% for all years are equal. Then we 
find: u i = g ' ( y B - y c ) D = ^ ( y D - y c D ) ; U2=£UI+£'(UI)CD; 
U3=gxi2+g'(u2)cD and so on; y s c = y c - 2 / = i (u«)c 

This method can be applied, if D corresponds to randomized block trials in 
one year in some area, A to the blocks (of which there are a constant number 
in every trial), C to varieties, and B to trial-variety combinations. The usual 
problem is now the estimation of the expectation of the varietal differences in 
that year over that area, taking into account a random interaction between 
trials and varieties. 

The method of this section also applies in the following case. The classification 
C corresponds to trials in some year, A to varieties and D to more or less 
homogeneous groups of these varieties (e.g. with about the same sensitiveness 
to drought or to a disease, or of botanically very much related varieties). 
Further B corresponds to trial-group combinations. The supposition about 
the yields y is, that every coordinate is the sum of an effect of the corresponding 
variety, an effect of the corresponding trial (place), a random contribution 
common to the coordinates within a place-group combination (interaction 
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between groups of varieties and places) and a random contribution for every 
coordinate separately. In the problem of estimation of Ey, assumed in A + C, 
the component in A will be the most interesting. The extreme ci = 0 leads 
to the iterative method of 3.3 with the classifications A and C. The other 
extreme leads to separate applications of the iterative method of 3.3 with the 
subclassifications A and C in every class of D; the difference between groups 
of varieties will be estimated as zero, which is the best that may be said in this 
case indeed. 

4.4. ESTIMATION OF THE VARIANCES 

4 .4 .1 . General remark 
Up to now we have considered the quantities <ri and a% as given. Mostly 

however, they must be taken, or rather be estimated from y itself. If we use the 
estimates for these quantities in the expressions of the preceding two sections, 
we replace constants by random variables. This procedure, however, will be 
applied, only if the variance of the estimate of ori2 and C2 2 is sufficiently small. 
The effect, of using these random variables instead of constants, on the proper
ties of the estimate of Ey or of its components will not be considered. 

It will appear that the estimates of i n 2 and ©2 2 will be obtained from the 
squares of orthogonal projections of y (or of vectors which arise by omitting 
coordinates from y) on orthogonal subspaces. We adopt the rule of thumb 
(compare KEMPTHORNE [9]) that the effect of using the estimates instead of the 
true values is negligible, if the dimension of these subspaces is 10 or more. If the 
dimension of the space, on which the orthogonal projection supplies the estimate 
for <TI2, is too small (the other will be large enough nearly always), then the 
random effects will be considered as constant effects. 

4.4 .2 . A constant main effect and a random main effect 
First we consider the case considered in 4 .2 .1 . Let the coordinates of y be 

ya = oy + Pi+ey, where ct) is the constant associated with class j of A, fa the 
random variable (with expectation zero and variance ai 2) associated with class 
(block) i of B, and the random variable (with expectation zero and variance 
<722) that belongs to the combination of the characteristic j of A and i of B. 
(We assume for the present that every class of A is represented at most once 
in any class of B). Let nj be the number of coordinates in class j of A, so that 
EJHJ=n. Let the number of classes of A be v and that of B be b. 

Under the condition that the fa have fixed values, Ey2^ (R is the residual 
space orthogonal to A and B) is 

[„ _ i _ ^ _ i) _ (y _ i ) ] f f 2 2 = (n _ j , _ V + 1 ) ^ 2 . 
Because the condition does not occur in this expression, the same is true 

unconditionally. 
Further isy 2 = i?2^(ay + fa+st))z = (because covariances are zero, all 

double products vanish) = 2 ^ a 2 + H a i 2 + «tT22. And 
Ey\ = EX, {nr1 S*(oy + fa +e«) 2 } , 

where pertains the coordinates in class j of A. Then 
Ey\ = 2 , nriEinm+Xtfa + S«ey)2 = 

S ^ _ 1 ( n ? a 2 + njai2 + npz2) = S;H;a 2 + vtTi 2 + vtT22-. 
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Hence E(y2 - y A ) = (« - v) ai2 + (n - v)az2. We observe that the numbers 
fa in class i of B do not matter. 

An unbiased estimate of 1722 is y R/(» - v - 6 + 1 ) and an unbiased estimate 
of ax2 is (y 2 - y2)/(» - v) - y|/(n - v - b +1). 

We remark that, if in this and the following cases the expression for the 
estimator of ax2 will yield a negative number, then the estimate will be taken 
equal to 0. 

According to the rule of thumb (KEMPTHORNE [9]) given for special cases, 
b-l must be larger than 10, in order that we will permit ourselves to use the 
random effect. 

If classes of A are represented more than once in a class of B, then 2?yA 

will be different from the expression given above, because T^fa for such a 
class j of A contains a multiple of some fa. The expression must be calculated 
for every individual case. 

A particular case is that where A = N (first example 4.1.1), so that every 
class of "A" is represented kt times in class i of B. Then 

Ey\ = £y2j = Err* {2(<x+fr+ey)}2 = jrK"W+2|ftJ«i a+i>otf) = 
= na2 +rr l I, ikfai 2 +a* 2 . 

Hence E(y2 - yQ = (n - rr^Jcfysx2 + (» - l)ff22. An unbiased estimate for 
en2 will be (n - 1 ) (n - nr^tkfr1 {(y2 - y^)l(n - 1) - (y 2 - y|)/(« - b)}. In the 
special case that all fa are equal to k (hence kb = n), n- rr^Jc2 is equal 
to kb-k2b\kb = Kb - 1). 

The design of split-plot type, discussed in 4.2.3, will be treated similarly. 
In order to estimate ff22 the perpendicular on the space spanned by B and A x C 
is necessary. It is found by separate application of the method of 3.3 on each 
class of C, according to the subclassifications A and B. The estimation of c i 2 

will take place by means of y 2 - y A x C . 

4.4.3. Two constant main effects and a random effect 
The different cases discussed in 4.3 require separate consideration with respect 

to the estimation of the variances, especially of C F I 2 . First we consider the block 
designs with a classification C of the blocks and another classification A. 

The estimation of as 2 will take place by means of the perpendicular from y 
on the space A+B. For the estimation of o i 2 we take as many as possible 
coordinates from y, such that the classes of A are represented proportionally 
in every class of C (for the particular incomplete block designs, such as balanced 
or partially balanced incomplete block designs, this is true for the complete y). 
In the vector space corresponding to this mutilated y, we determine the square 
of the orthogonal projection on the corresponding space (A x C)*. When we 
know the expectation of this square, tri2 can be estimated. In the calculation of 
this expectation the vector to be projected will be denoted by y, whether it is 
a mutilated y or not. 

The supposition about the coordinates of y is yy* = Yi+<tk+.faj+stj&, 
where y« is the constant associated with class i (i—1,..., r) of C, a* is the con
stant belonging to class k(k = 1,..., v) of A, fa} the random variable associated 
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with block j in class i of C, also named block ij, and ey» the random variable 
for the coordinate of class k of A in block ij. We assume that class k of A is 
represented at most once in block ij. Let the number of coordinates in block ij 
be ky. Then the number of coordinates in class i of C, k%, is and 

= n. Let the number of coordinates, which are together in class k of A 
and in class i of C, be r«. Then 2^«: == and the number of coordinates in 
class k of A is = 2 « ^ . Because of the orthogonality of A and C we have: 
riklfa = nt/fl for all /. From the relation S ^ Y « = 0 (C* orthogonal to A) 
follows 2V«fcY$ = 0 for every k. 

Now £ y 2 = £#fc/?(Yi+a f c+frj+<Hik)* = 
= 2*%i 2+2E«i;Yi*fc+Sfcntai+nci 2+na%2 = 

£ y A =Sfct(l/rj;)7i:(S^4-S«(x*4-S«^+S«e«;j :) 2] = 
(because 2V«i;Y* = 0) 

= (1/r*) ( f W + r&ffi2 + r#y2

2) = Sfcr*a| + vai2 + ve?2

2. 

£ y 2 = E«[(l/&i) E(£)ifti+2jk*k+2jtc$ij+;2'}m}k)2] = 
= S^Kl/A^X^* 2+2kifi HmtP-k+(Zkntp.kf+^kij2ai2+kiaz2}]= 
= Hiked2+E^{2ft(r«/&0<*fc}2+s* ( S # « 2 / ^ > 1 2 + w 2

2 = 
= S«%* 2 +(l/«) (SVfca^+S* (S,% 2/**>7i 2 + ra2

2. 

= (l/n) { ( £ * r f c a f c ) 2 + H*2 2} = 
= (l/n) (S*r*a*)2 + (S t f% 2/n)<n 2 + a 2

2 . 

It follows that £ y 2

A x C ) . = £ y 2 - £ y A - £ y c + £y?, = 

[n - v - S 4 (Sj% 2 /^) + (Zijkiflnfci2 + (n-v-r + l)ff2

2. 

We observe that, if C = N, the expression for E(y2- y 2 ) in the preceding 
section will be found. In the particular case that all ky are equal, say k, the 
expression becomes: [n- v-k(r- 1)]<JI2 + (n-v-r + l )a 2

2 . If, moreover, 
every class of C occurs once in every class of A, so that n = vr, then the ex
pression will be: (v - k) (r - Vp\2 + (v - 1) (r - 1 ) ^ 2 2 . 

Now we consider the case of which the series of experiments was an example. 
The estimation of <J2

2 will take place by means of the perpendicular on A- fB 
again. This implies the application of the iterative method of 3.3 for every 
year (class of D) separately. The separate squares of perpendiculars will be 
added to find the required square. 

In order to estimate ax
2 we lift out from y one or more parts, such that in 

every part at least two classes of D occur, and that in every class of A (every 
trial) the same classes of C (varieties) are represented. We will use the square 
of the projection on the corresponding space (C x D)*. If there are more parts, 
then these squares and the corresponding expectations will be added in order 
to estimate a i 2 . In the following calculation we call such a part y again. 

The supposition about the coordinates of y is: yy^ — Y«+oy*-i-P#-l-etf* 
(i = 1, r and j = 1, m), where Y« is the constant associated with 
class i of C, oyfc the constant belonging to the k-tb. trial in class j of D (the 
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7-th year), faj the random variable associated with the combination of class 
i of C and class j of D (with variance cri2) and ey* the random variable for the 
coordinate of class i of C in class jk of A (with variance CT2

2). Let the number 
of trials in yeaxjbekj, so that rLjkj = n. Because A* is taken orthogonal to C: 
HjKP-jk = 0. 

Now-Ey2^ = (lln)E(frjW+?HjtXfle+J«j!&j+'fy]m)*1P = 
= (1/JI) [WW (S i Y

2)+rVjUjoi*+iwsfl. 

£ y c = (l/S/fci) ISt£(S;sY*+ s i e a ;*+ s ^^+ : s Jfcs« i*) 2 ] = 
= (1 /S^) Si [ ( S ^ ^ f + S ^ ^ + S ^ a 2 ] = 
= (1/S,fc,) [(ZikifXnf+rXjkjait+noz*]. 

J?yD = Sj [(1/rfcj) ii (SffcYt+S^fc+Sttptf+2<&e<;*)2] = 
= S,(l/r^)[fc2S«Y2 +2r%(Sm)(Sfca^) +r 2 S*oy* 2 +r£ 2c7i 2 +r%cr2

2]= 
= (1/r) ( S ^ ) (S 4 T

2 ) + r S ^ ( a , * 2 / f y ) + S ^ i 2 + m<7 2

2. 

EycxD = s « [(1/^) ^(S f cY«+Sfca^+Sj;^+Sfcs«^) 2] = 
= Sy (1/*,) [kjyf+2kj(2m) ( S f c a i J f c ) + S W f c

2 + f c 2 0 i 2 + ^ 2
2 ] = 

= ( S ^ ) (S«Y 2 )+rLju (xjk2lkj)+Hai2 + rmaf. 
Hence 
^ ( C X D ) * = [« + ( r S ^ 2 / « ) - ( r S ^ 2 / S # , ) - S ^ ] ( 7 i 2 + (rm + l-m-r)<T 2

2 = 
= (r - 1 ) [ S # , - ( S ^ / E ^ i 2 + (r - 1 ) (m - l )a 2

2 . 

By means of this relation and the unbiased estimate of c?2

2 we may find an 
unbiased estimate of <ri2. Incase all kj are equal, say k, then £ y 2

C x D ) » = 
= k (r - 1 ) (m - l)ffi 2 + ( r - 1) (m - l)«y2

2. Or £ y 2

C x D ) * / d i m (C x D)* = 
= kai2 + CT2

2. 
For split-plot designs, as in 4.3.4, the estimation will proceed analogously. 

For the estimation of <y2

2 the perpendicular on ( A x D ) + C + B = 
= (A x D) + B is necessary. This implies the application of the iterative 
method of 3.3 on every class of D separately with the subclassifications A and 
B. In order to estimate a i 2 , a part as large as possible is lifted out from y, such 
that the classification A x D (the combinations of main and split-plot factors) 
is orthogonal to the classification C. Then the just derived expression for 
Ey2

Cxjy)* will be used, where kj is now the number of coordinates (plots) 
in (the residual of) a block which are together in a class of the main factor D 
and in a class of C. 

If, for instance, there is one missing value in an ordinary orthogonal split-
plot design, then, for the estimation of CTI2, the plots with the corresponding 
combination of main and split-plot factors remain out of consideration; in the 
square of the orthogonal projection of the residual on (C x D)* one, of {he 
kj differs by one from the other kj. 

Finally we consider the case in which A and C are subspaces of B. Compare 
4.1.1 and 4.3.1. For this purpose we consider first the classification of coor
dinates according to A x B with one coordinate in every class of A x B, and 
A and B orthogonal. 

Let the coordinate ya in class i of A and class 7" of B be equal to at+fa+ey, 
where 04 is a constant for class i (z = 1 m) of A, fa a constant for class 7' 
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(J = 1, . . . , k) of B, and e y a random variable with expectation 0 and variance 
c?y2. The random variables have covariance zero. Because of the orthogonality 
of A and B we assume \$j = 0. In order to determine Ey\K X B)» we compute: 

Ef = ££y(o« + ^ + e y ) 2 = A S ^ + m S ^ + S y a y 2 ; 
Ey\ = ( l / f c ) S i £ [ S ^ + ^ + ^ ) l 2 = (•l/*)S»£(*a«+2Jw)« = 

= &2«a2+(1/&) Syay 2 ; 
£ y 2 = (l/m)2,£[E4(a* + fy+ey)]2 = ( l / m ) S , i i ( S w + m p , + 2 4 e y ) 2 = 

= (klm) W + m£ ,p 2 +( l /m )2W; 
^ y N = ( l /M £ [£y(a*+P ,+ey) ] 2 = (I/fen) i i ( A : 2 W + E y S y ) 2 = 

= (klm) (S«a0 2 + (l/£m) 2yc?y2. 
We find: 

^ ( A x B ) * = [l-(l/*)-01/»») + CI/*")] * W = (*~U (» - 1) QbfHflkm). 
The formal estimation of u 2 in case all c r y 2 were equal has an expectation 

value equal to the average of all e?y2. 
Returning to our problem, we estimate cr| with the help of the perpendicular 

on the space corresponding to the classification in units of higher order. Fur
ther, we consider the averages of these classes, which are supposed to satisfy 
a relation which agrees to that for the above-mentioned coordinates yy. For, 
let the number of coordinates in a unit of higher order be k%, then the average 
has variance c?2 + dijki, while the expectation is the sum of the effects of the 
two classifications of the units. If we take from the set of averages a part, such 
that the two classifications become orthogonal, the way to estimate c r i 2 is open 
now. 

4.5. TESTS 

4.5.1. A constant main effect and a random effect 
First we consider the testing of the effect of A in the general regression prob

lem discussed in 4.2.1 (incomplete blocks). Under the null hypothesis and 
under the condition of a fixed effect of B, the test statistic F, calculated accord
ing to chapter 3 with the help of the vectors y - y A + B and y A + B - y B both 
orthogonal to B, has a F-distribution. Because this distribution is independent 
of the condition, the same holds unconditionally. It follows that the test on A 
will be performed as in chapter 3. 

Now we consider the design of split-plot type discussed in 4.2.3. Under the 
condition of fixed block effects, we perform first the test on the interaction 
(A x C)*. This requires the perpendicular on B + (A x C), i.e. the iterative 
method of 3.3 for every separate class of C, according to the subclassifications 
A and B on the one hand, and the perpendicular on A + B according to 3.3 
on the other hand. Because both perpendiculars have expectations indepen
dent of the effect of B, the conditional test will be unconditional. 

The best estimate of Ey under the alternative hypothesis has been discussed 
in 4.2.3, while that under the null hypothesis (Ey in A + Q will be found 
according to the method of 4.3.1. 

The conditional test on effect of A requires the perpendiculars on A + B 
and on B (both according to chapter 3) and appears to be unconditional again. 
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The best estimate of Ey under the null hypothesis (Ey in C) will be obtained 
by the method for the determination of y S N (end of 4 .2 .2) for every class of C 
separately. 

For testing the main effect of C, with the null hypothesis that Ey is in A, 
against the alternative that Ey is in A + C , we cannot use a conditional test, 
as C is a subspace of B. Therefore we need (with the appropriate metric) the 
orthogonal projections of y on both subspaces. The projection (according to 
the new metric) on A takes place according to the method of 4 . 2 .1 , and that on 
A + C according to the method of 4 .3 .1 . The square (with respect to the new 
metric) of the first projection ySA is equal to (compare 1 .6 .3) 

Ztwt {(y g A)Bi} 2 + w{y9A - (y S A)B> 2 = { (y«A)Bj 2 + w y f A - w {(y«A)B} 2 . 

In case all k% are equal and hence all w% equal, say w', this is 

f . ( W - M 0 { ( y 8 A ) B } 2 - ^ f A • . , 

Similarly the square (with respect to the new metric) of the second projection 
y«A + y«q is : { ( y s A + y s c ) ^ } 2 + w { y s A +y«c - (y«A - y«c)B} 2 = 

•, = 2m {(y8A)Bi+ysc}2 + { ( y ^ B } 2 ] . 

The difference of these squares will occur in the numerator of F. In the deno
minator iwe need the square (with the appropriate metric) of the perpendicular 
on A x C, which can be found in a similar way. 

For a special case, which we will study now, there exists a known method. 
We want to compare our technique with the known technique. 

In the special case any of the k classes of A is represented once in every 
block. Let the number of blocks be b, so that n = bk, and let the number of 
classes of C be c. Then the estimate of <T22, obtained from the perpendicular 
(with metric 1) on B + ( A x Q is ( y 2 - y | - y A x C + y C ) / { £ £ - ( 6 - c ) - ck) 
or ( y 2 - y B - y A x C + y c ) / ( f c ~ l ) ( £ - c ) . In order to estimate ai 2 , we need the 
perpendicular on A x C : y 2 - y A x c with expectation k(b - c) (c?i 2+c^ 2). The 
estimate of ai2 will be 

(y2 - yAxoW - c » - (y 2 - y B - y \ x c WcW - *> <è - c»-
And the estimate of kai2+c?22 will be then : (y | - y C ) / ( 6 - c). 
The orthogonal projection of y on A x C (with the appropriate metric) will 

according to 4 .2.3 be ysAxc = YAXC and the square (with that metric) of the 
corresponding perpendicular: 

w'y|+w(y2 - y | ) - w' {(yAx C)B} 2 - w{yAx c - (YAX C)B} 2 = 
= w'yB + wy2 - wy\ - w'y c - wy\xc + wyc

 = 

= ̂ -yixc-yB+y^+^B-yc)-
This perpendicular is in a space with dimension k(b - c). 
The orthogonal (with the appropriate metric) projection on A + C will be 

y c + ( y A - y n ) , as follows from 4 .3 .3 . Further the projection on A is y A . 
The square (with this metric) of the difference yc - ys will occur in the nume
rator of F. Hence the P-statistic will be 

w ' f r c - y ^ / f c - i ) 

My2 - y A x c - y|+yc)+wH - yc»/* (* - c> 
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{(k-l){b-c) + (b-c)}lk(b~c) ( y 2 _ y 2 ) / ( i _ c ) -

It is remarkable that we obtain the same value as would be found if, which 
is usual, the classification A would be left out of consideration, and if only 
the block sums would be considered as random variables. In our treatment, 
however, a F-distribution with dimensions c - 1 and k(b - c) must be used, 
while in the usual treatment the dimensions c-1 and b-c would be used. 
This apparent greater power of our test, however, is merely the consequence 
of the fact that we have considered the estimates of ca 2 and c?22 as constants, 
while they are random variables. It follows again that the effect of this wrong 
assumption will decrease, in case b-c will be large. In order to escape this 
effect completely in a not special case, one should perform the usual test on 
a part of y, which part is of the kind just considered. 

4.5.2. Two constant main effects and a random effect 
The test on effect of A in the general case of 4.3.1 will be performed by a 

conditional test, under the condition of fixed block effects. This test appears 
to be unconditional again. It requires a projection on A + B and on B according 
to chapter 3; the classification C plays no r61e in this test. 

The test on effect of C will be analogous to that on effect of C in designs of 
split-plot type considered in the last section. In this case, however, the deno
minator of F will be obtained from the square of the perpendicular on A + C 
(with respect to the new metric again). This square is equal to the difference of 
the square (new metric) of y, S^wty|̂  + wy2 - wy| and the square (new metric) 
of (y«A + ysc). 

In case both A and C (compare 4.1.1 and 4.3.1) are subspaces of B, the 
square of the projection (new metric) of y on A + C is S ^ { ( y g A + y s c ) B 4 } 2 . 
This is equal to the square of the projection of the vector of class averages of 
B with weights (c?i2 + <72 2/&0 - 1 on the corresponding A + C . Similarly the 
square (with appropriate metric) of e.g. y g A , the projection corresponding 
to the null hypothesis that C has no effect will be found. In this case the square 
(with appropriate metric) of y is equal to the sum of the (weighted) square of 
the vector of class averages and of w(y2 - y2,). 

If in the example of a series of experiments (4.3.5) c?i ̂  0, then there is 
effect of C (varieties) which is different in different years; testing the effect of 
varieties has thus no sense. In this example only the best estimation is of 
interest. 

The last case to be discussed is the split-plot design (4.3.4), with a classifi
cation C of the blocks and a corresponding main effect, and with the inter
action AxD, where D is the main factor. The test on interaction of A and D, 
and that on main effect of A, are completely analogous to those in the split-
plot design without the classification C. Conditional tests appear to be uncon
ditional again. Projection on B + (A x D) requires the iterative method of 3.3 
in every separate class of D according to the subclassifications A and B; 
projection on A + B (corresponding to the null hypothesis of no interaction) 
requires this iterative method with the classifications A and B; projection on 
B (corresponding to the null hypothesis: Ey is in B + C) is quite simple. 
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The best estimates of Ey under the different hypotheses are obtained as 
follows: Under the hypothesis that Ey is in C + (A x D) we use the method 
of 473.4. Under the hypothesis that Ey is in C + A we use the method of 4.3.1. 
The estimate of Ey, under the hypothesis that Ey is in C, will be obtained by 
the method for y8s (end of 4.2.2) for every class of C separately. For one 
case, namely that Ey is in the space A + C + D , we have no general solution, 
similar to the other solutions, available. 

This absence of a general solution also complicates the test on the effect of 
D Le. the test of the null hyp othesis that J5y is in A + C , against the alternative 
that Ey is in A + C + D . 

In the particular case that the classes of A are represented proportionally, 
say once, in every class of 2' (which classes thus all have the same number of 
coordinates, say k) the estimate is a vector y s A * + y s C + y « D » , such that 
w'(y - y«A» - y«c - y»D*)B + w{y - y«A* - y s c - y*D* - (y - y«A» - y«c - y«D*)B> 
is orthogonal to A*, C and D*. Because A* is orthogonal to B, and thus to C 
and D, we obtain the equations: 

w(y - y«A» - y«c - YSDOA = 0 or (y - y s A * ) A » - 0 
w'(y - y g A» - y s c - ySD»)Bc = 0 or (y - y«c - y«D*)c = 0 
w'(y - y«A» - y«c - y«D*)BD = 0 or (y - y g C - y«D*)r> = 0. 

It follows that y 8 A» = yx-yis and that y«c and y S D* are obtained by appli
cation of the iterative method of 3.3 with the classifications C and D. This 
implies that the classification A has no influence on this test (the orthogonal 
projection on A + C in this special case has already been considered in the last 
section). 

In the usual treatment of this problem for ordinary split-plot designs one 
leaves the classification A out of consideration and uses only the block sums. 
In the construction of the test statistic we will observe a similar difference in 
the dimensions of F between the usual and our technique, as in the last section. 

If, however, A is not orthogonal to B, and the effect of A is significant, it is 
wrong to neglect the classification A. One way out of this difficulty is to per
form the test (and the estimate) with the help of a part of y such that A is ortho
gonal to B. Another possibility for the test (not for the estimation), especially 
in case this part of y becomes too small, may be the following. We test (with 
the complete y) the null hypothesis that Ey is in A + C against the alternative 
that Ey is in A + ( C x D). In this way, the main effect of D is investigated 
together with its interaction with C, which is supposed to be absent in fact. 
This procedure has the drawback that it leads to a decrease of the power 
of the test on effect of D only. 

The projection (with appropriate metric) on A + C requires the method of 
4.3.1, while that on A + ( C x D) will take place in a similar way, because 
C x D is in B. Mostly, the classification C X D will be the same as the classi
fication B (e.g. in the case of missing plots in an ordinary split-plot design). 
But then the transformation Q is simply P A P B , SO that the orthogonal projec
tion will be obtained according to the method of 3.3 with the classifications 
A and B. The square (with appropriate metric) of the corresponding perpendi
cular is thus wiy - y g A - y«B) 2 . The square (with appropriate metric) of the 
perpendicular on A + C is (compare the foregoing section): 

SiW*(yB,) a + wy2 - wy| - S w { ( J S A ) ^ + y 8 c} 2 - wy2
A + w{(ysA)B> 2 -

In the denominator of F we use w{y - y B + ( A x i > ) } 2 . 
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SUMMARY 

In the introduction some objections against the usual definitions and notation, 
derivations and application of regression theory (to be understood in a broad 
sense) are enumerated. Therefore a sound and comprehensive foundation of 
this theory by linear algebra, as devised by KUIPER, is welcome. This study is 
an elaboration of that method, and the presentation of new results and insights 
obtained. 

In chapter 1 linear algebra, as far as needed for the applications, is explained. 
In particular, more than usual attention is paid to the evaluation of projections. 
A new iterative method to obtain orthogonal projections is given. 

In chapter 2 the general problems in regression theory are considered in 
terms of vectors. The most interesting conclusion is that unbiased estimates 
are obtained by projection, and that unbiased, most efficient estimates are 
obtained by orthogonal projection after choosing the appropriate metric. 

In chapter 3 several regression problems for uncorrelated observations are 
considered in a general way. Beside some attention to the linear regression 
problem in a narrower sense (with e.g. orthogonal polynomials), the main 
interest is in regression problems, connected with classifications of the obser
vations. Levels, main effects, interactions and components of effects are defined 
in terms of subspaces. A general definition of orthogonality of classifications, 
and the formation of components of interaction in orthogonal classifications 
by means of tensor products are given. 

An iterative procedure, very useful for theoretical considerations as well as 
in practice, in order to solve the general regression problems with two and more 
classifications, is. discussed. This procedure, together with the ideas developed 
in the previous chapters, leads to a surprising insight into the balanced incom
plete block designs, the group divisible partially balanced incomplete block 
designs, the two-dimensional lattices, and some designs of Latin square type 
of PEARCE. 

Another interesting case is that of one classification orthogonal to the inter
action of the other two. 

A general treatment of problems related to analysis of covariance is given. 
In particular, the case with two non-orthogonal classifications and a "concomi
tant variable" seems to be new. Further a simple iterative method is given in 
order to estimate and to test the effect of treatments in a trial field, where the 
fertility of the plots is supposed to be a polynomial in the coordinates of the 
centres of the plots. 

The chapter ends with a general exposition of a missing plot technique. 

In chapter 4 we consider regression problems, mainly estimation problems, 
in case of classifications of the observations, but with a random effect correspon
ding to one of the classifications. The so-called recovery of inter-block infor
mation in incomplete blocks forms an example. 

A new iterative method for the best estimation in a very general situation of 
incomplete blocks is given. A design of split-plot type, also of a very general 
character, can be ranged under the same heading. 

Similarly, a new iterative method for the best estimation in case of a random 
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(block) effect and two constant effects from two characteristics, of which at 
least one determines a classification in classes consisting of a number of whole 
blocks, is derived. A trivial particular case is that of replicates in an incomplete 
block design. But also the problem of estimation of a general effect of treat
ments from a series of trials, in which the interaction between years and treat
ments is considered as random, is solved for very general situations, under 
certain presuppositions. Further the customary split-plot design, however 
without the requirement of orthogonality, belongs to this type of problems. 

For all the cases the estimation of the two variances, on which the derived 
methods are based, is presented. Finally some remarks are made about the 
tests of null hypotheses in all the considered cases. 

SAMENVATTING 

„Vectoren, een werktuig in de statistische regressietheorie" beoogt meer in
zicht en, daardoor, vereenvoudiging te brengen in het terrein van de regressie
rekening. Tot dit terrein behoren vele onderwerpen, die met verschillende namen 
worden aangeduid, zoals variantie-analyse, covariantie-analyse, proefschema's, 
lineaire vereffening, vruchtbaarheidscorrecties, samenvatten van proeven enz. 
Door volgens de denkbeelden van KUIPER deze theorie te funderen op de lineaire 
algebra, waarin men verzamelingen van z.g. vectoren beschouwt, werd niet 
alleen genoemd doel bereikt, maar konden ook nieuwe resultaten en inzichten 
worden verworven. 

In de inleiding wordt gewezen op enige ernstige bezwaren tegen de gebruike
lijke fundering, die in vele opzichten vaag is en aanleiding geeft tot een staal
kaart van onoverzichtelijke technieken en formules voor een toch nog vrij be
perkt geheel. 

Het niet-statistische hoofdstuk 1 is een beknopte, maar volledige uiteenzet
ting van die delen van de lineaire algebra, die voor de gewenste toepassing 
noodzakelijk zijn. Allereerst worden begrippen zoals vectoren, vectorruimten, 
basis, dimensie en deelruimten ingevoerd. Vervolgens behandelen wij lineaire 
transformaties in vectorruimten, en bijbehorende matrices en eigenwaarden. 
Met behulp van het inwendige product worden metrische eigenschappen, zoals 
lengten, afstanden, hoeken en loodrechtheid, ingevoerd, gevolgd door een bij
zondere lineaire transformatie, de loodrechte projectie. 

Na invoering van de begrippen convergentie van vectoren en van transfor
maties bespreken wij een belangrijke machtreeks van transformaties, analoog 
aan de gewone convergente meetkundige reeks. 

In het gedeelte, waarin de uitvoering van projecties, o.a. met behulp van 
normaalvergelijkingen, ter sprake komt, wordt een nieuwe algemene iteratieve 
methode gegeven voor de bepaling van loodrechte projecties. Opmerkingen 
over symmetrische transformaties en matrices, dit in verband met de begrippen 
metriek en inwendig product, besluiten het hoofdstuk. 

Vanaf hoofdstuk 2 zijn de te gebruiken vectoren rijtjes van n getallen, waar
voor bepaalde rekenregels zijn afgesproken. Na enige opmerkingen over de 
covariantie-matrix en de narmale verdeling van een stochastische vector, en 
over de geschikte keuze vsn een metriek, volgen op eenvoudige wijze enige 
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eigenschappen van loodrechte projecties van dergelijke vectoren, o.a. over de 
verwachting van het kwadraat van zo een projectie en de bijbehorende x2- en 
P-verdelingen. Vervolgens wordt de beste schatting in het algemene lineaire 
regressieprobleem afgeleid: zuivere schattingen ontstaan door projectie; zuivere, 
meest doeltreffende schattingen ontstaan door loodrechte projectie, na keuze 
van de passende metriek. Dan volgt een zeer algemene behandeling van de 
toetsing bij lineaire regressie. Tot slot geven wij de oplossing van het probleem 
der voorwaardelijke waarnemingen, dat in wezen hetzelfde blijkt te zijn als het 
lineaire regressieprobleem. 

In hoofdstuk 3 worden de ontwikkelde begrippen toegepast in verscheidene 
bijzondere gevallen, waarbij de waarnemingsuitkomsten ongecorreleerd zijn. 
Wij onderscheiden „verklarende variabelen" die expliciet gegeven zijn, van op 
klasse-indelingen naar aanleiding van een of ander kenmerk berustende varia
belen. 

Van de eerste groep worden de lineaire functies in het algemeen, en de ortho-
gonale polynomen in het bijzonder besproken. 

Bij de tweede groep worden niveau's, hoofdeffecten en interacties gedefinieerd 
als vectoren in deelruimten. Voor het algemene geval van twee indelingen (twee 
hoofdeffeclxuimten) bespreken wij een uit de iteratieve methode van hoofdstuk 1 
voortkomende methode van schatten, waarbij als vrijwel enige operatie het be
palen van gemiddelden optreedt. Als bijzondere gevallen verschijnen de ortho-
gonale indelingen (met een zeer algemene definitie van orthogonaliteit), voorts 
de evenwichtige en sommige, gedeeltelijk evenwichtige, onverzadigde blokken-
schema's en de twee-dimensionale roosterschema's. Bij de laatste drie groepen 
van schema's blijkt de iteratieve methode te leiden tot het gebruik van transfor
maties met slechts één of twee eigenwaarden met zeer bijzondere ruimten van 
eigenvectoren. Daaruit volgen merkwaardige eigenschappen van componenten 
van effecten, aan wier schatting en toetsing wij ook in het algemeen veel aandacht 
besteden. 

Voor componenten van de mteractie-ruimte bij een tweetal orthogonale in
delingen blijkt het begrip tensor-product met vrucht te kunnen worden gebruikt. 

Uitvoerig wordt ingegaan op schattingen en toetsingen in het algemene geval 
van drie indelingen. Ook hier speelt de iteratieve methode, afgeleid in hoofdstuk 
1, een belangrijke rol. Als bijzonderheden treden op: volledige orthogonaliteit 
der drie indelingen, Latijnse vierkanten, schema's van PEARCE en het geval, dat 
één indeling orthogonaal is met de interactie van de andere twee. Bij de schema's 
van PEARCE zijn twee van de drié indelingen orthogonaal en blijkt de bijbehoren
de iteratieve methode eveneens te leiden tot een transformatie met twee eigen
waarden. Bij het laatst genoemde bijzondere geval treden merkwaardige eigen
schappen en vereenvoudigingen op. 

Tot de behandelde problemen, waarbij beide soorten van „verklarende varia
belen" optreden, behoren die, welke ten dele met covariantie-analyse worden 
betiteld. Een nieuwe bijdrage daarin is de beschouwing van het algemene geval 
van twee indelingen en een „verklarende variabele". Voorts wordt een iteratieve 
methode gegeven, om in een proef in de vorm van een strook of van een recht
hoekig rooster, onder de veronderstelling, dat de vruchtbaarheid een continue 
functie nl. een veelterm in de coördinaten der veldjesmiddelpunten is, schattin
gen en toetsingen met betrekking tot het te onderzoeken effect uit te voeren. 

Het hoofdstuk eindigt met een algemene methode tot leemtevulling d.i. ge-
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bruik van een eenvoudig schema, als het gegeven schema enige gapingen vertoont 
ten opzichte van dat eenvoudiger schema. 

In hoofdstuk 4 geven wij een algemene en nieuwe behandeling van regressie
problemen eveneens met klassenindelingen; sommige effecten worden echter zelf 
als stochastische variabelen opgevat. Na een inleiding omtrent de aard van deze 
problemen voeren wij op een, in hoofdstuk 1 voorbereide, wijze het passende 
inwendig product in. 

De twee bij de veronderstellingen behorende varianties als gegeven beschou
wend, leiden wij, met behulp van de machtreeks in hoofdstuk 1, een iteratieve 
methode af ter bepaling van de beste schatting voor het geval van onvolledige 
blokken met een stochastisch blokeffect (recovery of inter-block information). 
De reeds bekende oplossingen âjn bijzondere gevallen hiervan. Een zeer alge
meen schema met het karakter van een split-plot schema blijkt tot hetzelfde 
onderwerp te behoren. 

Eveneens geven wij een nieuwe iteratieve methode ter bepaling van de beste 
schatting voor het geval van onvolledige blokkenschema's, waarin de blok-
effecten stochastisch zijn, maar waarin door een indeling van de blokken een 
constant hoofdeffect, naast dat voor de behandelingen, is toegevoegd. „Split-
plot"-proeven in de gebruikelijke zin, maar zonder noodzakelijke orthogonaliteit 
der indelingen, zijn hiervan een bijzonder geval. Hetzelfde blijkt te gelden voor 
het probleem der schatting van gemiddeld te verwachten rasverschillen uit 
rassenproeven over verscheidene jaren, waarin de interactie tussen rassen en 
jaren als stochastisch wordt opgevat en waarin eveneens orthogonaliteit ont
breekt. Verder behoort hiertoe het geval van twee indelingen met meer dan een 
waarneming per combinatie van twee klassen en met een stochastische interactie. 

Bij al de problemen van dit hoofdstuk wordt ingegaan op bijzondere situaties, 
zoals hetzelfde aantal veldjes in elk blok, orthogonaliteit van onderindelingen in 
de afzonderlijke klassen van een hoofdindeling, of een zeer kleine of een zeer 
grote verhouding van de genoemde twee varianties. 

Hierna wordt de schatting van het tweetal benodigde varianties voor al de be
handelde gevallen besproken en afgeleid. Enige opmerkingen over de uitvoe
ring van toetsingen in al de beschouwde gevallen besluiten het hoofdstuk. 
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