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INTRODUCTION

An often met supposition about a set of random variables, each of which
concerns the observation of the same, quantitatively expressible property of a
set of individuals, is that the expectation of such a random variable is a function
in the values of other, likewise quantitatively expressible, properties of the same
individual. This function, common to the set of individuals, is called the re-
gression function of the first property on the other properties. If this function is
linear in a set of (unknown) parameters, the regression function is called linear.
Estimation and testing concerning the parameters in linear regression functions
is the subject of statistical regression theory.

This theory includes a great variety of subjects, such as analysis of variance,
analysis of covariance, regression theory in a narrower sense_(the mentioned
function explicitly given), experimental designs, analysis of series of experiments
etc. About all these subjects there exists an extensive literature. In the greater
part of this literature the following facts are striking:

1. Several terms, intensively used, are ill-defined and handled more or less in-
tuitively it seems; as examples we call: degrees of freedom, orthogonality,
comparisons, adjustment, interaction, confounding, recovery of inter-block
information eic.

2. Proofs and derivations are discouraging by their lengths, abundance of sym-
bols and cumbersome computations. This is even true for rather simple
situations.

3. Presumably as a consequence of both foregoing facts, simple methods are
wanting in case of (in practice often inevitable) deviations from the customary
particular situations and designs. In other words, the general cases are
neglected, also because of their feared difficult analysis.

4. Testing is relatively overstressed in comparison with estimation, especially in

" the books on experimental design.

Although the representation of the set of observations of the mentioned
random variables, as a point in an Euclidean (hyper)space (and similarly for
the values of the other properties), has been used sometimes as an illustration of
some results in this theory, Kuiper (11, 13) Jfounded this theory on the notion of
vector spaces.

By means of the notion of vector spaces many definitions, so far more or less
vague, can be given in a sound and comprehensive way. The view proceeding
from those definitions, by which the experimental result is considered as one
entity that, for purposes of estimating and testing, must be decomposed in in-
teresting components, is clarifying and facilitates the comprehensmn, also for
the beginner in this field. The geometrical language is a great intuitive support:
cumbersome computational processes can be overlooked and summarized by
means of simple geometrical terms such as projection, orthogonality, perpen-
dicular, length, angle, dimension, space. Further, properties, valid in ordinary
solid geometry, can be applied by analogy. By means of this tool a simple and
transparent notation arises. Proofs and derivations are considerably simplified
by the introduced notions and notations. It brings the estimation, which in our
view is the most important aspect of the analysis of statistical data, to the fore-
front; testing plays a secondary role. Also more general situations than those
occurring in textbooks about the subject of regression analysis can be mastered
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without use of a deterrent and insurveyable arithmetic. It is true that, for in-
stance, many non-orthogonal designs have the disadvantageous property that
the variance of estimators is-not determined simply, in general; but this is no
reason to abandon these designs, the more as they are offered necessarily in this
form in certain branches of research (e.g. varietal research), and as the customa-
1y designs are too restricted in their possibilities. Moreover, the study of general
cases appears to lead to a bright insight in the particular situations usually
treated.

The following study aims at the demonstration of the usefulness of this tool
and at the presentation of new results. Although for other subjects in statistics
this tool appeared to be also valuable (CorsTEN [4]) we have restricted ourselves
to the subject of linear regression (in the wider sense of the word). Of course this
study rests on the ideas and, partly, on the results of KurPErR. Now we give a
brief outline of the construction and the origin of the study.

In chapter 1 we present the tool, linear algebra, which is of a non-statistical
nature. We judged the insertion of this theory necessary for the following reason:
although a. great part of the exposition is not new, it is not simply within reach
of the statistician ; moreover, certain aspects of this theory must be considered in
more detail than usually is done in abstract linear algebra, this in connection
with the applications. In composing this chapter we are supported by the lec-
tures of KurPEr and by the book of HALMOs (7). The general iterative method
for decomposition of vectors is a new contribution; for special cases a (not
proved) arithmetical method which amounts to the same, was invented by
STEVENS (20) and HAMMING (8), (see also YATEs [22]), while the special case of
two classifications was derived by Kurper (11) in terms of vectors.

In chapter 2 the notion of random vectors is introduced. This makes it possi-
ble to posit the regression. problem in its most general form, to derive unbiased
and most efficient estimators of the parameters, and to consider the appropriate
tests, all in terms of vectors and, therefore, in a surprisingly simple way.

In chapter 3 we consider the application of the theory, developed in the first
two chapters, in some special cases of increasing difficulty. In all these cases the
random variables have covariance zero.

We mention: orthogonal polynomials, regression problems with one, two, or
three classifications in general form (the customary analysis of variance is a part
of this subject), and simultaneous occurrence of classifications and of explicitly .
given regression functions (the so-called analysis of covariance belongs to this
domain). Particular attention is paid to the general iterative method for two
classifications (compare Kurper [11]); this also leads to a new insight in ba-
lanced, and partially balanced incomplete block designs and in two-dimensional
lattices. For balanced blocks we owe this insight partly to KureErR. We empha-
size the importance of the mentioned general iterative method, also because
adaptation for electronic equipment may be foreseen in the near future. Cha-
racteristic properties of the concerned vector spaces are established for some
particular cases of three classifications, namely in the designs of PEARCE(15, 16),
and for the case that one classification is orthogonal to the interaction of the
other two. For the case that fertility in a trial is supposed to be a continuous
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function of the coordinates of the plots, an objective method of estimation is
presented. For regression problems of the kind of covariance analysis, new
more general solutions are derived. The missing plot technique has been con-
sidered in its most general form. All the generalizations, enunciated in this
chapter, have proved to be very suitable and useful in practice.

In chapter 4 a new and very general consideration of regression problems is
given for cases that some parameters in the regression functions are random
variables. We mention the so-called recovery of inter-block information, designs
of split-plot type, and the estimation from series of experiments. All these appa-
rently different problems could be treated — by means of vectors again —in a
uniform way. The derived iterative methods, which are related to those of
chapter three, are simplified to partly known results in particular cases. The
estimation of the variance of the random parameters, necessary in the perfor-
mance of the derived methods, is the only subject in this study for which some
computational work seemed inevitable.

CHAPTER 1

LINEAR ALGEBRA

1.1. VECTOR SPACES

1.1.1. Definition of vector spaces

A vector space E is a set of elements with the following properties:

(a) To every pair x and y of elements in E there corresponds an element z
in E, called sum of x and y and denoted by z = x4y, such that addition is
commutative ie. x+y=y-+x; addition is associative ie. x-+(y+2) =
= (x4 y)+z; there exists in E one vector, 0, called the null vector, such that
for every x in E: x+0 = x; to every x in E corresponds a vector —x such that
x+(=x) =0.

(b) To every pair, consisting of a real number A and a vector x in E, there
corresponds an element y in E, called product of A and x and denoted by Ax,
such that multiplication is distributive with respect to vector addition i.e.
A (x-y) = Ax-Ay; is distributive with respect to addition of real numbers
ie. (A 4+ w)x = Ax+ px; is associative i.e. A (ux) = (Aw)x; 0x = O and Ix = x.

It follows from this definition that everylinear combination Ajxj—+hexz-+-...
of vectors xi, ..., X5 in E is a well defined element of E.

1.1.2. Examples

Consider the set of arrows from one point, called origin, in a plane or in an
ordinary three-dimensional space. Let addition take place by the well-known
parallelogram construction in mechanics, and let the product of A > 0 and the
arrow X be an arrow with the same direction as x, but with length A times as
large as that of x. Let an arrow with: length zero be called 0, and an arrow
with the same length as the arrow x, but in opposite direction, be called —x.
Then the arrows satisfy the definition of vector space.

Another example of a vector space will be obtained by considering n-tuples
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of real numbers with the following properties. Let the elements x and y be
(x1, X2, ..., Xp) and (31, y2, ..., Yu) respectively. Further
’ X+y = (x1+y1’ x2+y2’ eosy xn+.1’n); X = ()‘x].’ )\x2s ceey M’lb);
0=(,0,...,0) and X = (=x1, —X2, +.., —Xn)
One can verify that the set of all such n-tuples satisfies the definition of vector
space, and therefore may be called a vector space.

1.1.3. Dependence and independence

A set of vectors xi, ..., X5 is called linearly dependent, if there is a set of
numbers Aj, ..., Ay DOt all equal zero such that \x; +2Asxe ... +MXy = 0.
If on the other hand X;\;x; = 0 implies that \; =0 for i = 1, ..., », the set is
called linearly independent.

We remark that every set of vectors containing the null vector is dependent.
If Az 5 0-in XiAx; = 0, then x5 = (;:) X1+ ( ) x2+.. —|—( )Z)

Therefore a set of vectors is dependent, if and only if some vector of this set
can be written as a linear combination of the others.

In the example of a vector space consisting of arrows in a three-dimensional
space, three arrows are dependent if they belong to the same plane, and inde-
pendent if they do not.

The vectorsa =(1,0,0); b= (0, 1,0);¢c= (0,0, ) and d = (I, 1, I) are
dependent because a-+b-+c—d == 0. Each ‘can be written as a linear combi-
nation of the other three. Any three of them are independent.

1.1.4. Basis

A basis in a vector space E is a set of independent vectors in E such that
every vector in E is a linear combination of this set.

In the following we shall confine ourselves to vector spaces which have a
finite number of vectors in a basis.

Any two arrows with different directions in a plane form a basis for the space
of arrows in that plane, and any three arrows not lying in a plane do for the
space of arrows in a three-dimensional space.
~ Any n-tuple (A4, ..., Ay) can be written as>; (1,0,0,...,0)+22(0, 1,0, ..., 0)-
+ ...+, 0, ..., 0, D =Ne1+...+Men. The n vectors ey, ..., e, are
independent and thus form a basis of the vector space of n-tuples. As this
basis will be used frequently, we call it the standard basis of this space.

We remark that the expression of an element x of E as a linear combination
of a basis xi, ..., X4 is unique. For from x = Z;Ax; = Zyuyx; it follows by
subtraction that Z(A; — pg) X; = 0. Because of the independence of the basis,
M=y fori=1, ..., n. The numbers 2y, ..., A, are called coordinates of x
(with respect to this basis).

. 1.1.5. Dimension

Theorem: Every basis of a vector space E contains the same number of ele-
ments, which number is called the dimension of E .

Proof: (HAaLMos [7]). Let x1, ..., X be a set of generators in E ie. a set of
vectors such that every vector in E is a linear combination of the vectors in
that set. Let y1, ..., y» be a set of independent vectors in E. In‘front of the
vectors xy, ..., Xy We Write y, and obtain: yy, X1, X9, ..., Xsz. This set is depen-
dent because y, is a linear combination of xj, ..., X;;. Going from the léft to
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the right, we cancel the first vector which is a linear combination of the-pre-
ceding vectors e.g. x;. All vectors of E are linear combinations of the set
Vs X5 X2, <oy Xg—1, Xg-+1, -+, Xsp. In. front of this set we write y,—1,and, in a
similar way as before, a vector x; will be cancelled. We proceed in the same way,
till the set y1, ..., y» will be exhausted. We remark that, because of the indepen-
dence of the yi, ..., yu, only vectors x; will be cancelled by this procedure.
One could ask oneself whether the x; will not be exhausted before the set
Vis oo0s Yoo

Then the remaining vectors of yi, ..., y» would be linear combinations of
the y; already used, which is impossible in connection with the independence
of the set yy, ..., yz. It follows that m = a. )

If both sets are bases of E, their role in the argument above can be changed,
and it follows that z=m. Thus m=n.

The definition of dimension yields the customary dimension for the geo-
metrical vector spaces of arrows. The space of all n-tuples is n-dimensional.

1.1.6. Subspaces

A subset A, B, etc. of a vector space E is called a subspace of E, if it is a vector
space with the same definition of addition and multiplication as in E.

An example of a subspace in the three-dimensional space of arrows is the
set of all arrows in a plane which contains the origin. Another example is the
subset, in the vector space of all #-tuples of numbers, of all those n-tuples of
which the last m (< ») numbers are zero.

The set of all linear combinations of a set of vectors in E is a subspace too;
for every linear combination of such linear combinations can be written as a
linear combination of the first, set of vectors, in other words, is an element of
the subset. This property implies that the definition of vector space for E also
holds for this subset. The set of generating vectors is said to span the subspace.
Particularly a basis for E spans E. Similarly, the set of all linear combinations
of vectors in the two subspaces A and B is said to be spanned by A and B;
every vector in this subspace, denoted by A 1+ B and called the join of A and
B, can be considered as the sum of a vector in A and a vector in B.

A basis, and thus the dimension of a subspace A, of a n-dimensional space
is found in the following way. If A consists of the null vector only, the dimen-
sion of A is 0. If A contains a vector x; 7= 0, then x; spans a subspace A; in A.
If A = Ay, then A has dimension one. If A contains a vector xg which is not
in Aj, then x; and xa span a subspace Ag in A etc. We can find at most n vectors
X; which span A and are independent, for every set of n+ 1 vectors is dependent.
The dimension of a subspace is thus at most ». Proceeding in the sketched way,
one can choose a basis for E such that a part of this set forms a basis for A.

The intersection of two subspaces A and B i.e. the set of vectors which are
both in A and in B, is a subspace; for if two vectors are in this intersection, in
other words, are in both subspaces, then the same holds for every linear com-
bination of this pair.

If two subspaces have the null vector only in common, they are called dis-
joint.

The decomposition of a vector z in the join A --B of two disjoint subspaces
Aand Btoasumx-+y, withxin A and y in B, is unique. For fromz = x+y =
=x"4y follows x—x' = y-y with x-x’"in A and y-y' in B. Because A
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and B are disjoint x-x’ = y-y = 0orx =x"and y = y'. Let A be spanned
by a basis xi, ..., X, and B by a basis yi, ..., yz. Then these m+ # vectors span
A+ B. Because of the uniqueness of the decomposition z = x+y, it follows
from Mx1 ...+ AuXp +pay1+... + wmyYm = O that Zxs = 0 and Zjuy; =
= 0, so that ; and y; are all zero, and the m -+ n vectors independent. The di-
mension of A+ B is thus m--n.

If E has dimension » and the subspace A has dimension m, we can choose
a subspace B with dimension # — m such that A and B span E and are disjoint.
For we can choose a basis for E such that m vectors of that set are in A. The
subspace, spanned by the # — m remaining vectors, is called B. From the de-
finition of a basis follows that A and B are disjoint. We point out that such a
residual space B can be chosen in various ways.

1.2. LINEAR TRANSFORMATIONS AND MATRICES

1.2.1. Definition of linear transformations

A linear transformation 4 in a vector space E assigns to every vector x in E
a vector Ax in E (is a mapping of E into itself) such that, for x and y in E and
Aand p real numbers, 4 (Ax+ py) = A4x +pdy. In particular 40 = 0. If, for
all x, Ax = 0 or Ax = x, then A is represented by 0 or I respectively.

The sum 4 + B of two linear transformations 4 and B is defined by: (4 + B)x=
= Ax - Bx for all x. The product of a real number A and a linear transformation
A is defined by: (A4) x = A (4x) for all x. The product P = AB of two trans-
formations A4 and B is defined by Px = A(Bx) for all x. We remark that the
order in this product is important. The given order means that x should be
mapped by B, and that the result should be mapped by 4. The product BA
on the other hand means that x should be mapped by A, and that the result
Ax should be mapped by B. By considering e.g. rotations in the three-dimen-
sional space of.arrows about the origin it will be seen that the result of 4B
in general is|different from that of BA: linear transformations are in general
not commutative.

From the definition we have the following rules concerning the calculus of
transformations:

A0 = 04 =0; A(B+C)= AB+ AC; (4+B)C = AC+ BC;
Al == 14 = A; A(BC)= (4B)C.

As a consequence of the last property, not only A4 may be written 42, but

also AAA...|A, which consists of m factors 4, may be written A™,

1.2.2. Inverse of a transformation

Theorem:|The equation 4x = y has a solution x for any vy, if and only if
Ax = 0 implies x = 0.

Proof: Suppose Ax = 0 implies x = 0. Let xj, ..., X, be a basis for E. Then
Axi, ..., AX, is also a basis. For from ZjnuAx; = 0 follows A(XMx;) = 0, so
that x; == 0 and thus every ) is zero. The supposition implies that any y
can be written as 2(4x;) = A(XMxq), so that Zyx; is a solution of Ax = y.

Conversely, if 4x = y has a solution for any y, then, corresponding to the
vectors of a |basis yi, ..., Yu, there can be found vectors x; such that Ax; = y;.
From 2x;|= 0 follows 4Xx; = 0, or Za4x; = 0 or Zpyy; = 0. Thus the
vectors x; form a basis, and any x can be written as £;4x;. Hence 4x = 0 implies
AExg) = 0 or TghAx; = 0 or Ty = 0; thus every A is zero and x = 0.

—
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The solution, if it exists, is unique. For if x"s% x or x'-x5 0, then
A(X’ —x) 5~ 0 or Ax £ Ax’. The assignment of a vector x to every y, obtained
in this way, is a linear transformation (denoted by 4~1). Let Ax1 = y1 and
Axg = yz; then AQAX1+pxa) = Ay1-+uys; thus 4-1(Ay1 +pys) = Axy+uxe =
= M lyy+pd-1ys.

The linear transformation 41 is called the inverse of 4. If 41 exists, 4 is
called non-singular; if the inverse of 4 does not exist, A4 is singular. If 4 has
an inverse, AA™l = 4714 = 1.

If AB = 1, A is the inverse of B (and thus B is the inverse of A) which may
be seen as follows: ABx = x for any x; therefore x 7 0 implies Bx =~ 0, or,
in other words, Bx = 0 implies x = 0; thus B has an inverse B-!; multiplying
both sides of 4B = I on the right by B-1 yields 4 = B1,

1.2.3. Matrices

Let x1, ..., X5 be a basis for E. Let the linear transformation A4 be such that
Ax; = Xyaysxg, and let x = Xj5x; be a vector in E. Then Ax = X Ax; =
= Dh(Zgogxe) = Zg(Zgo905) X¢. The coordinates Zjuhs of Ax are completely
determined by a square array of numbers ay;:

Tar o1z ... ®1f ... i
%2l 092 ... U2f ... ¥2n

o1 0(42 cee OGF ... Op

%l %2 %J cos Upp 4
which is called the matrix of 4 in th1s coordmate system. The element ay; is
the i-th coordinate of Ax; with respect to the basis xi, ..., Xg.

It follows directly that the matrix of the transformation 0 consists of zeros
only, and that in the matrix of the transformation I as; = I for i =j, and
oy = 0 for i 5~ j. If the transformations 4 and B have matrices with elements
o7 and B4 respectively in a fixed coordinate system, then the elements of the
matrix of the transformation A4 + p.B are vy = Aoy + pfsy. In order to obtain
the matrix of the product C = 4B, we consider Cx; = A(Bxy) = A(ZxBrsXx) =
= ZgPrs Axx = ZpPriCiourxs) = Li(CroaurPrs)xi. It follows that the element
vi7 of C is equal to ZgotzBys, which is obtained from the i-th row of 4 and the
J-th column of B.

Singularity of 4 i.e. Ax = 0 for some X s 0 implies 227 = 0 for all i.
If we consider the columns of the matrix of 4 as vectors in the space of #-tuples,
this means that these columns are dependent. In order to obtain a necessary
and sufficient condition of independence for the columns aj, ..., a, of the
matrix we consider the function

1.2.4. Determinant
The determinant is a real function of the columns aj, ..., a, of a square
matrix, D(ay, ..., a5) such that:
D(ay, ..., Aag, ..., ap) = AD(ay, ..., ag, ..., an);
D(ay, ..., ai—H\aj, cees 8n) == D(@1, v0uy Yy +0vs An);
and if we represent the columns of the matrix of the transformation I by
€ ..ol D(e1, ..., e5) = 1.



From the first condition it follows, by choosing A = 0, that if az = 0 then
D = 0. If the'columns are dependent e.g. a3 = Zj.,Mjay, then
D(ay, ..., an) = D(a1—Asa3, 82, ..., 84) = D(a1-A2d2—Agas, 83, 83, .. ., An) =.....=
=D(0, ag, as, ..., az) = 0. In other words, singularity implies D =0.

From D(al’ ) a’lI,) D(al +ap, ag, ag, ..., an)
= D(ar+2g, 32— a1 - ag, 83, ..., 8g) = D(a1+a2, —a1, 83, ..., ap) =
= D(ap, a1, 23, ..., an) = —D(az, aj, ag, ..., ay) it follows that exchanging
two columns changes sign of D.

Further we will prove:

D(b1+b2’ a2,y ou 0y aﬂ) = D(bla a2, .oy an) + D(b2, A2y <o vy an)-

If ag, ..., ay are dependent the statement is trivial. If they are independent,
the linear relation between bj, ba, ag, ..., a5 (for these are dependent) has
not both coefficients of by and bz equal zero, so that e.g.
bz = Aib1+2gaz+ ... +2Azan. Then: D(be by, ag, ..., ag) =
= D(Mb1+2Aeag+-... +Man+Aby, as, ..., az) = D(b1 4 Aby, ag, ..., a) =
= (M +2)D(by, as,..., ay). Substituting A = 1 yields:

D(b1+bg, ag, ..., az) = M+ 1) D(bl, ag, ..., ap), whileA =0 gives:
D(bg, ag, ..., ag) = MD(by, ag, ..., ax). By subtraction the assertion follows.

When the columns by, .. b,,, are dependent on ay, ..., a, then, by repeated
" application of the foregomg property, D(by, ..., by) can be reduced to a linear
combination of determinants of matrices cons1stmg of n columns of aj, ..., a5
(equality of such columns will occur). If D(ay, ..., a5) = 0 then all such deter-
minants are zero and thus D(by, ..., by) = 0. If the set ay, ..., a, is indepen-
dent, then we may take the set ey, ..., e, for by, ..., by, If D(ay, ..., a,) were
zero then also D(ey, ..., €x) would be zero. While the last is not true, D(ay, ..., az)
is not zero. We have: ay, ..., a, are dependent if and only if the determinant
is zero.

" According to the method described in the last paragraph the determinant of
the matrix of A can be reduced to a linear combination of determinants
D(es,, €4, -+, ©1,) With coefficients a1 07,2 . - oy @sume

In connectlon with an application to follow, we observe that a function
L(ay, ..., ag), satisfying only the first two defining properties of determinants,
is a linear combination of L{ey,, ..., e;,) with the same coefficients as in
D(ai, ..., ap). Hence for any such function there exists a constant C such that
Ly, ..., ap) = C-D(ay, ..., ag).

The application concerns the determinant of the product 4B of two matrices.
We observe: multiplication of a column of the matrix of B by A implies multi-
plication of the corresponding column in the matrix of 4B by [A, and thus
multiplication of the determinant by A; addmg A times a column df the matrix

the matrix of 4. Hence D(AB) = L(B) with C = D(4), so
= D(A)- D(B). '

In particular, if 4 has an inverse the product of the correspon
nants is 1.

1.2.5. Change of basis

Let x3, ..., X and y1, ..., Y be two bases for E, and let the linear trans-
formation 4, which maps x; onto y; for every i, be given by 4x; = ¥; = ZuXs.
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Let z = Xjqx; = Zjugy;. The telation between the coordinates A; and pj
{(;110%8 from: z = Zypgy; = Zyusdxs = DyyBaoagxe) = Ze(Zgougien)xs, so that
= Zgaigug.

A is non singular, because 4z = AT x; = XhAXy = Zqys = O only if all
M = Oie. if z = 0. The transformation 4-1 will be expressed by x = Z,o;Ayr
in which «; is an element of the matrix of 4-1 with respect to the second basis.
The product of the matrix of 4 with respect to the first basis and of 4—1 with
respect to the second basis is I; these matrices are called the inverse of each
other.

Let B be a transformation of which the matrix with respect to the first basis
consists of elements (3;; so that Bx; = X;f¢;x;. In order to obtain the matrix
of B with respect to the second basis, we consider By; = B(Axy) = BXoyyx; =
= BiousBxe = ZyZpusBurke = ZyZuSoousBricrkyr = Sr{Zuok(EiBrioss)}yr. The
required matrix is obtained by multiplying the given matrix of B on the right
by the considered matrix of 4, and on the left by the inverse of that matrix, It
follows that the determinant of this product of matrices is equal to the determi-
nant of the given matrix of B. Hence the determinant belonging to a trans-
formation is independent of the basis.

1.2.6. Proper vectors and proper values

A vector x 5~ 0 is a proper vector and a number A a proper value of the trans-
formation B if Bx = Ax. The proper values of B are those A for which (B —Al)x =
= 0 has a solution x 5% 0, i.e. those A for which the determinant of the trans-
formation B —AI, D(B - 11), is zero.

Instead of the matrix B — Al of this transformation we may also use the ma-
trix A= Y(B-A)4d = A71BA - A" \]A = A~1BA - Al from which it follows
that the proper values are independent of the basis. The function D(B —Al) is
a polynomial of degree n in A with (~1)® as coefficient of A%. The number. of
proper values therefore is at most #. The multiplicity of a root A of the equation
D(B-2AI) = 0 is called the algebraic multiplicity of that proper value.

The proper vectors that belong to a proper value form, together with the
null vector, a subspace of E. The dimension of this subspace is called the geo-
metric multiplicity of that proper value.

1.2.7. Projection

If E is spanned by the disjoint subspaces A and B, then there is a unique
decomposition of z in E to x+y with x in A and y in B. The transformation P
which maps z onto Pz = x is called the projection on A along B. This trans-
formation is linear; for, with x; and y; in A and B respectively, P(Az1 + uzg) =
= P(Ax1 +Ay1 + uxg + wye) = AX1 + Xz = APz + wPzp. The transformation is
singular in general: P(x1+v1) = P(X1-}ye) also for y; & ya. Because x will
be decomposed in x+ 0, we have Px = x and thus P2z = P(Pz) = PX =x =
= Pz; in other words, P = P2 for every z. Such a transformation is called
idempotent.

If the first k& vectors of a basis for E span the subspace A and the remaining
vectors span B, then the projection P on A along B is expressed by a matrix
with elements az; which are all zero except ay; = I for j < k.
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1.3. INNER PRODUCT; ORTHOGONALITY

1.3.1. Definition of inner product

Introduction of an inner product will enable us to introduce the notions
length, distance and angle in vector spaces.

The inner product is a function which assigns to every pair of vectors x and y
in a vector space E a real number, denoted by (x,y) or by xy, such that
x, y)0= (¥, X); (Ax1 + pxa, y) = MX1, ¥) + (X2, y); (X, X) = 0 and is zero only if
x=0.

(x,-x) will also be denoted by x2. The number V (X, x) also denoted by |x| is
called the length of x. From the definition we have: [Ax| = V(Ax, Xx) =
= VA, Ax) = VM, x) = V¥(x, x) = |A[|x|. Multiplication of a vector
by the number A makes the vector |A| times longer. If x (or y) is O, then (x, y) =

= (0x, y) = 0(x, y) = 0. )

Let xy, ..., X4 be a basis for E, A, ..., A, the coordinates of x and p;, ..., s
those of y. Then (x, y) can be reduced to Zgsaus(x;, X7). This form (which is a
positive definite form in the variables 3; if x = y) will be determined by the
inner products of the basisvectors (x;, x5). Let the inner products (x;, X;) be the
elements oy; of a matrix which because of a5 = ay; is called a symmetric matrix.
Then this matrix together with the basis determines an inner product in E.
The matrix itself will be named the metric (associated with this basis).

1.3.2. Distance and angles

Theorem: (x, y)2 < x2-y2.

Proof: For any A:(y —-Ax)2 = (y —AX, Y- 2AX) = 0 or y2 - 2\xy+A%x2 = 0.
The quadratic form in A thus has a discriminant < 0, so that (x, y)2 < x2.y2,
Equality occurs if and only if y —Ax = 0 i.e. if X and y are dependent.

The relation just proved (Schwarz’s inequality) can also be expressed by:

&y

the number I—;—I is in absolute value at most 1.

The distance of a pair of vectors x and y is defined as the length of the
difference x—y. The name is justified by the following properties:
|y ~x| = |x-y| ie. the distance from x to y is as large as the distance from y
to x; the distance is zero, if and only if x = y; otherwise it is positive; because
|(y+z) (x+2)| = |y - x|, the distance is said to be invariant under trans-
lations; the triangle inequality holds i.e. |x~y| < |x-z| + |z-y]. The last
property may be seen as follows. We have [x-+y[2 =x2+2(x,y) +y2 < |x|2+
+2(x[- [y +[y[2 = {|x[+|y[? or [x+y]|= IXI + [y|- Replacing x and y
by x—z and z -y respectively gives the inequality.

The number l( y§| is named the cosine of the angle ¢ between x and y.

This definition for the angle between vectors may be illustrated as follows:
The sides of the triangle with lengths |x|, |y| and |x - yl respectively satisfy:

[x~y|2=(x-y)2=1x2-2xy+y2= |x|2+|y|2- 2le v | |x|- |y|. By sub-

stitution of the given definition for the angle ¢ between x and y we just obtain
the ordinary rule for the cosine in a triangle. Remembering the addition of vec-
tors in the space of arrows (of vectors y and x — y in this case) we observe that
any pair of vectors x and y may be represented “congruently” in the space of
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arrows by two arrows with lengths |x|-and |y| respectively and an angle ¢
between them. Similarly any set of three vectors can now be represented by
arrows with the corresponding lengths and angles in an ordinary three-dimen-
sional space.

1.3.3. Orthogonality

In accordance with the definition of angle two vectors are called orthogonal
if their inner product is zero.

A set of vectors in E is called orthogonal if every vector of the set is ortho-
gonal to every other vector of the set. If moreover every vector in the set has
length I, the set is called orthonormal. (If a vector x = 0 is divided by its
length |x|, a vector with length one, a so-called unit. vector, is obtained).

An orthonormal set xi, ..., X4 is independent. For if X;\;x; = 0, then
(Zohixs, x5) = Zgh(Xy, X7) = Ay = O for all i, It follows that m is r at most.

We will prove that in a n-dimensional space there exists an orthonormal
basis (of # vectors).

Proof: There exists a basis xj, ..., Xy. This basis will be orthogonalized i.e.
an orthonormal set yy, ..., y» Will be constructed such that every y; is a linear
combination of xi, ..., X;. This orthogonalization process will take place in »
steps. In the first step y1 = x1/[x|. After completion of the r-th step so that
Y1, ..., ¥r are available as linear combinations of xy, ..., Xy, the (4 1)-th step is
performed as follows. First we find a vector z = Xr11— (A1y1+22y2 -+ ... +Ar)
orthogonal to yy, ..., yr. Because (z, y;) = (Xps1, Y7)—Nforj=1, ..., r, we
must take A = (Xr41, ¥7)- This z is not O, for xi, ..., Xr+1 are independent and
the coefficient of Xy.+1 in z is not zero. Now yr41 = z/|z|.

From the proof it follows that every x is a linear combination of yi, ..., ¥

In the space of arrows, where the inner product of two vectors is defined as
the product of their lengths and the cosine of the angle between them, an
orthonormal basis is formed by two (and three respectively) perpendicular
arrows with length one. If the inner product in the space of r-tuples is defined
by (%, y) = 24Xsy; (as is often done), the standard basis ey, ..., e, happens to

" be an orthonormal basis.

1.3.4. Orthogonal polynomials

An application of the orthogonalization process occurs, when the vector
space of n-tuples (or a subspace of it) is considered as the set of n-tuples of
function values for a function defined on a set of » real numbers. The function
may for example be any real polynomial of degree = m in one variable x.
That the corresponding set of n-tuples of function values then is a vector space
follows from the fact that, if such a n-tuple z; corresponds to the function
Ji(x) and z3 to fa(x), then A1z1-+-Agzz contains the function values of the
function M fi(x) +2zf2(x); if fi(x) and f>(x) are polynomials of degree =< m,
then the same is true for A1 f1(x) +22f2(x). If the # values of x are different, a
basis for the space of n-tuples is obtained from the functions 1, x, x2, ...., x#1,
For, as Ao+MxX-+...+Ag—~1x%—1 = 0 has at least # different roots, if and
only if all coefficients are zero, the vector corresponding to A4 Arx -+Agx24-
+...42g—1x7~1 is the null vector, if and only if every &; = 0, i.e. if the gene-
rating function is the polynomial 0. Because the space of n-tuples has dimension
n, it follows that a vector obtained from a polynomial of degree > n also is
generated by some polynomial of degree < n— 1.
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For purpose of computation one often orthogonalizes the above-mentioned
basis or if m < n—1 the first m+ 1 elements of this basis. This happens ac-
cording to the process described in the foregoing section. Thus the j-th ele-
ment of the orthonormal (or orthogonal) basis will be a linear combination of
the first j elements of the first basis, which means that the corresponding
function will be a polynomial of degree j— 1. Such a set of functions are called
orthogonal polynomials (associated with » values of x and a definition of inner

product). Special cases of such functions and their tabulation will be considered
in 3.1.4, .

1.3.5. Orthogonal subspaces and orthogonal prajection

Two subspaces A and B of E are called orthogonal if every vector of A is
orthogonal to every vector in B. Orthogonal spaces are disjoint; for, if some z
is in both, 22 = (z, z) = 0 and thus z = 0. It is easily seen that A and B are
orthogonal, if and only if .a basis of one of them is orthogonal to the other
space or to its basis. The set of vectors in E orthogonal to a subspace A clearly
is a subspace too. It will be denoted by A-+. Let xy, ..., X, be an orthonormal
basis for A and let z be any vector in E. Then x = X7%.(z, X¢)x; isin A, while
y = z-3/%1(z, X¢)x; is orthogonal to every x4, thus to A, in other words y is
in A+. Thus z is decomposed in x-}y with xin A and y in A+: A and AL
span the n-dimensional space E. The (z — m)-dimensional residual space AL is
called the orthogonal residual space of E, and is spanned by n — m independent
vectors orthogonal to A. It follows that AL is the same as A.

The transformation which transforms z in x, the projection of z on A along
AL, appears to be determined by A only (as A is determined by A). It is
called the orthogonal projection on A. Similarly. the assignment of y = z—x
to z is called the orthogonal projection on A-l. The orthogonal projection of
z on A will be found as a linear combination, x, of the basis vectors of A such
that y = z—x is orthogonal to A i.e. to the basis vectors of A. It was this
procedure which has been applied in the orthogonalization process (Xr+1 is
projected orthogonally on the space spanned by Vi oo Yy while z is in the or-
thogonal residual space) and in the study of AL in fact The vector y will often
be called the perpendicular from z on A.

From z = x-y and x orthogonal to y follows z2 = x2-4y2, the theorem of
Pythagoras. Thus the length of x i.e. the length of the orthogonal projection
of z is equal to the length of z at most. Equality holds only if y = O i.e. if z is
in A.

Consider the distance of z to any vector u in A. Then we have z-u =
=(z-X) 4 (x—u) = y+(x—u) and, because y is orthogonal both to x and
to u, and thus to x-u : (z-u)?2 = y2+ (x—u)2. It follows that the distance
between z and u is at least as large as the length of y, the perpendicular from
z on A, Equality holds only if x = u. In other words, x is the vector in A with
the shortest distance to z, and the length of the perpendicular y is by definition
the distance between z and A.

Let Ay, ..., Az be subspaces in E. Then the residual space of E, Ag41, ortho-
gonal to the space spanned by Ay, ..., Az is determined. If moreover Ay, ..., Ag
are orthogonal to each other, there is-a unique decomposition of any vector
zin E to X1 +... 4 Xz4+1 withxyin Ay for j = 1, ..., k+ 1. The uniqueness fol-
lows easily after choosing orthonormal bases in every A;. Now every x; is equal




S5 L)

to the orthogonal projection of z on Ay, Psz; for every Pjz is a vector in Ag.
such that z — Pyz is in the residual space of E orthogonal to Ay, in other words,
is in the space spanned by the remaining subspaces.

Clearly z? is equal to x§ +x2+ ... +x241 which is an extension of the Pytha-
gorean theorem.

The sum of some P;z is also an orthogonal projection namely on the space
spanned by the corresponding Ay, for the difference between z and this sum
is orthogonal to that space. '

With a slight change of wording we have: The difference between the ortho-
gonal projection on the space spanned by Aj and Ay and the orthogonal pro-
jection on the space Ay, which is a subspace of the space A; + Az = B, is equal
to the orthogonal projection on As, the residual space of B orthogonal to A;.

If the considered orthogonal subspaces Aj, ... are one-dimensional, in other
words, form an orthogonal basis, then the corresponding orthogonal pro-
jections of z yield the coordinates of z in an orthonormal coordinate system.
For the orthogonal projection of z on e.g. the space spanned by x is obtained

as Ax such that z — Ax is orthogonal to x, or (z, X) -A(X, X) = 0 or A = ?—; . Thus

the projection is E)Z(’ :; %, or (substituting X' = x/|x|) (z, X’) x'. The coordinate
‘s "N @X)
of x’ is equal to (z, x’) == W

1.4. CONVERGENCE OF VECTORS AND LINEAR TRANSFORMATIONS

1.4.1. Convergence of vectors

A sequence of vectors a, (n = 1, 2, ...) in E is said to converge to a vector
a in E if the corresponding sequence of distances |a, —a| converges to zero.

Let xy, ..., Xz be an orthonormal basis for E; let the sequence of vectors
ag = 25; 104nX; and the vector a = Zf;la,m be such that oy, converges to o
for every i. Then because of the triangle inequality:

lan—a| = | 251 (oun — a)xs| = =K1 |(um — aa)xe| = =51 [tgn — g
For any e>0 there exists N such that, for #>>N, |os — o < 7"2_ for every i,

and thus |a, —a| < e. In other words, a, converges to a.

. The analogon of Cauchy’s characteristic of convergence for sequences of
real numbers is also valid for sequences of vectors: if there is a sequence of
vectors a, such that for any € > 0 there exists N so that, for all # > m > N,
|an —am| <&, then there exists a vector a to which a, converges. To prove
this write a, and a, like in the preceding paragraph. Then a;-—a, =
= 3% 1 (4m ~ dgm)%s. If |8n — 8, << € then also | — agm |, the length of the
orthogonal projection of a, — as, on x4, is smaller than e for every 7. According
to Cauchy’s characteristic for real numbers the sequence of real numbers oy

has a limit «; for every i. Thus a, converges to Zf;lngi.

1.4.2. Bound of a linear transformation

A linear transformation A4 is said to be bounded, if there exists a positive
number K such that for every vector x in E: | 4x | < K|x|, or (which is an equi-
valent relation) such that the length of the mapping of a vector with length 1
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has an upper bound, K. The minimum of these upper bounds X is called the
bound of the transformation 4 and will be denoted by G(4). If A4 is an ortho-
gonal projection e.g., the bound of 4 is equal to 1.

Theorem: Every linear transformation A4 is bounded.

Proof: Let xy, ..., Xg be an orthonormal basis for E; let M be the maximum
of the set |4x1}, ..., |4xz|. Any vector x with length one is equal to =K1 (x, X0)xq
with |(x, xg)| < 1. Applying the triangle inequality we have
|Ax] = [4 Zj_y (x, Xz)X2= ZE 1 (% x)Axs| S T |(x, xe)dxi| =
=XK1 |(x, x4)|- |4xs| & =K., |4xg| < kM. Thus kM is an upper bound as
meant in the definition for a bounded transformation and A is bounded.

Theorem: Let the bound of 4 be G(4). Then there exists a vector x 0
such that |4x| = G(4)-x|.

Proof: From the condition and the definition of a bound it follows that for
any n (n = 1, 2, ...) there exists at least one vector x, with length one such that

(1 ——:l—) G(A4) = |4xq| = G(4)- |xa] = G(4). Let the coordinates of the vector

x5 With respect to an orthonormal basis be ay, By, ... . The first coordinates
oy form an infinite sequence of real numbers in the interval from -1 to +1;
this sequence has thus at least one limit point say a. It is possible to construct
an infinite subsequence from the sequence a, which converges to «, e.g. by
choosing successively: «, such that |ay, —a| < 1; a7, with 7o > r1 such that
|otr, — | < %; o, With r3 > g such that |o, —a| < §; and so on.

Consider the corresponding subsequence of vectors Xy, , Xr,, ... . In this sub-
sequence the sequence of second coordinates B,, 8r,, ... may be treated ana-
logously. In this way an infinite sub-subsequence of vectors can be constructed
such that the sequence of their second coordinates converges to a limit B.
The first coordinates will continue to have the limit «.

By continuation of this process one can obtain a subsequence of the vectors
Xy such that the corresponding sequences of coordinates converge to «, B, ...
respectively. According to the foregoing section this sequence of vectors conver-
ges to a vector x. Because the length of a vector is a continuous function of the
(orthonormal) coordinates of the vector, it follows that the length of x is one.
Further in the constructed subsequence, converging to x, we have that, for
anye > 0, there exists N such that for n > N: G(4) = | 4x| = |Axp—AFn—X)| =

> |dxg|— A0 - %)| = (1 - %) G(d) — e+ G(4) = (1-26)G(A), i.e.

G(4) = [4x| = (1 - 2)G(A4) for any e > 0. Consequently |4x| = G(4), and
the proof is complete.

For all x with length one we have |(4+ B)x| < |4x] 4 |Bx| = G(4)+ G(B).
Then the bound of (4 + B) obeys G(4+ B) < G(4)+ G(B).

Further | ABx| < G(4)-|Bx| < G(4)-G(B). Hence the bound of AB obeys
G(4B) = G(4)-G(B).

1.4.3. Convergence of linear transformations )

A sequence of linear transformations 4, on E is said to converge to the
linear transformation 4 on E, if the bound of the transformation Ag - 4,
G(4y — A), converges to zero.
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It follows from. the definition that for any vector x in E, |4gx—Ax| =
=|(4n — A)x|,-which is at most G(4, - 4)- |x|, converges to zero.

Now suppose, conversely, that 4,x converges to 4x for every x in E. We
will prove that 4, converges to 4. Let xi, ..., Xz be an orthonormal basis for
E. Then, for any ¢ > 0, there exists N such that for » > N we have

|Anxs — Axg) < % for i=1, ..., k. Any unit vector x = Z’f,:l (X, X4)Xg

satisfies |(dn - x| = [Z1 (x, %) (Un — Dxe| < .y |(x, %) (dn— A)xi| <
= Z,l‘;l [(4n — A)x¢| < . Then also the least upper bound G(d, — A4) of
(Ag — A)X is less than . Consequently G(A4, — A) converges to zero, and 4,
converges to A.

Here too we have an analogon of Cauchy’s characteristic: if for any e > 0
there exists N(¢) such that » > m > N implies G(4y, - 4,) < ¢, then there
exists a transformation 4 to which A4, converges.

The proof is as follows. From the assumption follows that, for any vector x
and ¢’ >e¢-|x|,. &> 0, there exists N such that » > m > N implies

[Aux — AmX| < G(An—Am)- X Se- x| <€

According to Cauchy’s characteristic for convergence of vectors, 4,x con-
verges to a limit named 4Ax. When we will have proved that the assignment of
the vector 4x to x is a linear transformation, the proof that 4, has a limit
namely 4 will be complete.

Let the limits of the sequences A,x and A,y be 4x and Ay respectively. Then
for any € > O there exists N such that for n > N both {4,x - 4x| < ¢ and
|Any— Ay| < . Then |An(Ax+py) —Adx —pdy| =
= [AMax—Mx + pdgy - pAy| <| Mdnx-4%)| + [w(4ay ~ A9 < {N -+ |efle.
It follows that the limit of 4,4(Ax + py) is equal to Adx 4 Ay or that Adx 4 pdy
is assigned to Ax -y for any real A and p. Thus 4 is a linear transformation.

By means of the condition for convergence of 4, to A, that 4,x should
converge to Ax for every X, it is possible to prove that, if A, converges to 4, By,
to Band A, to ), then 4, -+ By, converges to A 4 B,ApA4y to A and A, By, to AB.

For Ay + By the proof is as follows. For any fixed x and any € > O there
exists N such that for n > N both |4yx — Ax| < e and |{Byx — Bx| < 4¢. Then
(An+ Br)x — (A+ B)x| < |Anx ~ AX| 4 |Byx — Bx| < € which means that the
limit of (As + By)x is (4 + B)x.

For ApAdy,: For any fixed x and any € > 0 there exists N such that forn > N
both My —A] < e and [4gx — 4X| < & Then Mdpx — Mx| < [M(Anx—A4X)| +
+ | —N4x| < [Ay]-€ + |4x]-e < e(B+ |4x|) where B is an upper bound
of the set [A,|. This means that the limit of A,4,x is Adx.

For AnBy: For any fixed x and any € > 0 there exists N such that for # > N,
|Bux — Bx| < e and for y = Bx, |Aqy—Ay|<e. Then [AyBux— ABx|=<
= |AnBnX — AnBx| + |AnBx— ABX| < G(An)- | Bnx - Bx| + |An(Bx)- A(Bx)| <
= G-s+¢, where G is an upper bound of the set of bounds of the sequence
of transformations 4. To prove the existence of G it will be shown that the
sequence G(A4,) has a limit namely G(4). From G(4+ B) < G(4)+G(B)
we have G(dy) = G(An—A)+G(4) or G(4y) - G(A) = G(Ap—A4) and
G(A) = G(A - Ar)+G(An) or G(An)~ G(A) >~ G(A ~ 4g). It follows that
|G(An) — G(4)| < G(4n — A) so that, if 4, converges to 4, G(4,) converges to
G(A).
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1.4.4. A power series of transformations

Consider the sequence S, = Zj—y A?, where A is a linear transformation,
while 40 represents the transformation 1. Let the bound of 4 obey G(4) < 1.
It is clear that Sy is a linear transformation too. Forn > m we have S;, — Sy, =
= 2)—m+1 A? and according to the properties of a bound:

G(Sn ~ Sm) < Zpo ms1 G(A) < Zie w1 {GLAP.

Because G(A) < I there exists, given € > 0, N such that for n >m > N
2= m+1 {G(4)}? < e. Thus Sy satisfies Cauchy’s criterion for convergence of
linear transformations and converges to a linear transformation S.

To calculate S we remark that the transformation I — A4 is non-singular. For
(I - 4)x =0 and x # 0 implies Ax = x or |4x| = |x| on the one hand, and
because G(4) < I also |Ax| = G4)-[x| < 1 on the other hand, a contra-
diction. Now (I - A)Sp = Sy — ASp = 1 - A" and Sy, = (I - A)“l(l Antly,
As G(A™) < {G(A)}”’rl wh1ch converges to zero, A?*1 converges to 0.

Using the properties discussed in the foregoing section we may conclude that
1 - A7l converges to 1 and that Sy, converges to (I — 4) L. Thus S = (I - 4)"L.

1.5. EVALUATION OF PROJECTIONS

1.5.1. General procedure

In the applications we often meet the situation that E is spanned by the dis-
joint spaces A and B, both given by bases. The difficulty in evaluating the pro-
jection of a vector z on A along B, lies in the fact that usually z is given by the
coordinates with respect to some basis of E, while the given basis vectors of
A and B do not or do not all occur in that basis of E. If z is given as linear
combination of the basis vectors of A and B the projection is trivial.

We wish to transform the general case to this trivial case. Let A; and p; be the
coordinates of z (A; given and y; unknown respectively) with respect to the bases
X1, «++y Xg and yi, ..., ¥n respectively. Let y1, ..., Y& and Yg+1, ..., yu be bases
of the disjoint spaces A and B respectively. Let y; be given by y, = X} 144Xy
The set of equations A; = Z}_ jayjuy (compare 1.2.5) is a system of » linear
equations in yj, ..., y. From the unique solution the coordinates of the pro-
jection of z on A with respect to yi, ..., yz can be taken in order to evaluate
this projection. The decomposition of z in components in more than two dis-
joint subspaces will be executed likewise.

Because solving z linear equations, especially if # is not very small, is very
laborious in general, we look out for other simpler methods to decompose a
vector in its components in subspaces of E. These methods involve the evalua-
tions of orthogonal projections. If the metric is not too intricate orthogonal
projections often can be calculated easily.

1.5.2. Evaluation of orthogonal projections

Letxy, ..., X4 be a basis of the subspace A of E. The orthogonal projection of
a vector z in E on A will be a linear combination, A1x1 + Aex2 + ... + ApXm,
of X1, ..., X such that z — X2 ;04x; is orthogonal to A, or that its inner pro-
duct w1th X1, ..., Xom 1S Z€rO., Thls leads to a system of m linear equations in the
unknowns of the form: A1(xq, x1) +A2(Xs, X2)+ ... +Am(Xsy Xm) = (%¢, Z) for
i =1, ..., m. These equations are called normal equations.
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It will be remarked that the matrix of coefficients is symmetric which, in
addition to the fact that m < n, means a computational simplification in com-
parison with.the general case discussed in the foregoing section. After the
solution of the A; one can evaluate the orthogonal projection on A as ZjZ. yx;
and the projection on A+ as its difference with z.

If x4, ..., X; is an orthogonal (orthonormal) basis of A, then the solution
of the normal equations is simple: A; = (X, 2)/(Xs, Xg) or A = (X, Z) respec-
tively. This simple solution agrees with the remark at the end of 1.3.5: the
orthogonal projection on the space spanned by the orthogonal basis
X1, ..., X is equal to the sum of the orthogonal projections on the spaces spanned
by X1, ..., Xm separately

Therefore, if A is given by a non-orthogonal basis, one often prefers to ortho-
gonalize this basis first, and to evaluate the orthogonal projection on A then,
instead of solving the normal equations derived from the given basis. It is also
for this reason that orthogonal polynomials have been introduced. We remark
that the orthogonalized basis does not need to be orthonormal.

1.5.3. An iterative method to obtain components in given spaces

Let E be spanned by the not necessarily disjoint subspaces Ay, ..., Az. We
wish to decompose the vector z in E to y1+...+yx such that y; is in A, for
every i. Such an y; is called an oblique component of y in A;. We assume that
each A; is given by an orthogonal basis so that orthogonal projection is easy.
We next present an iterative process to obtain oblique components of z, in
which every step is an orthogonal projection. This process is valuable in the
applications.

For convenience we denote Agp+s = Ay, in which sis a positive integer. Con-
sider the sequence of pairs of vectors: z,, p, defined by: z is the orthogonal
pro_]ectlon of z on A; and p1 = z - z; is the corresponding perpendicular; ...;
z is the orthogonal projection of the perpend;lcular pr—10nAzand pr=pr_1-2r
is the corresponding perpendicular.

Every step will yield a vector z- in one of the spaces Ay, ..., Ag, while p,.
is equal to z - X7 1z,

We assert (which assertion will be proved) that the sequence of perpendicu-
lars p, converges to the null vector. This implies that the sequence of sums of
orthogonal projections converges to z. These converging sums consist of con-
tributions in every Ay, so that the desired components can be approximated with
any required accuracy.

1.5.4. Proof of the convergence

Let the orthogonal projection of a vector z on A;* be denoted by P;z. Then
the sequence of perpendiculars is: P1z; PaP1z; PgPaP1z; ...; PpPy—1 ... PaP1z;
P1PyPy_ ... PoP1Z; PoP1PyPy—1 ... PoP1z; ... We wish to consider the linear
transformation D = Ppig ... PrioPpy1 which is a mapping of A, into itself.
Without loss of generality we may take D = PgP;—1 ... P3PaPy, by which to a
vector in Az~ a vector in Ay is assigned. Because D is a product of orthogonal
projections the bound of D satisfies G(D) =< 1. Our purpose is to prove:
G(D) < 1. For if G(D) < 1, then the sequence of transformations B, = D®
converges to 0, so that the sequence of perpendiculars in Az converges to the
null vector and the same is true for the sequence of-all perpendiculars. The
proof is as follows:

4
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Assume G(D) = 1. Then according to 1.4.2 there is a vector X # 0 in Azt
such that | Dx| = |x|. We know |P;z| < |z| where equality holds only if Pz = z.
It follows that P1x = x; PaP1x = X; PgP2P1x = x and so on. Consequently x
is in all As* (i = 1, ..., k), in other words, is orthogonal to a set of spaces that
span E. But only the null vector is orthogonal to E which is in contradiction
with x 5~ 0. Hence G(D) < 1.

1.5.5. Extension of the method

Let Ay, ..., Ax be subspaces of E which do not span E. Let z be a vector in E.
When we perform the same sequence of operations with z now, as in the case
where Ay, ..., Az span E, we will obtain again orthogonal projections on the
spaces Ay, ..., Ax, and perpendiculars, each of which is equal to the difference -
between z and the sum of orthogonal projections determined in the preceding

- steps.

In order to find out the result of these operations we consider the (unique)
decomposition of z in a component in the space spanned by Aj, ..., Az and a
component in the residual space of E orthogonal to Ay, ..., Ag. The first com-
ponent is in the same position now as z in the foregoing case: it will be decom-
posed in components in the subspaces Aj, ..., Ay, while the sequence of per-
pendiculars converges to the null vector. The second component will not give
any contribution in Ay, ..., Az so that the corresponding sequence of perpen-

_ diculars has all elements equal to this component. It follows that the difference
between z and the sum of the orthogonal projections on Ay, ..., A converges
to the perpendicular from z on the space spanned by Ay, ..., Ag.

So we have found a method to evaluate an orthogonal projection without an
orthogonal basis and without solving normal equations. In addition we obtain
(oblique) components of this projection in the subspaces that span the space
on which z is projected orthogonally.

1.5.6. Another description of the same method

An elaboration of the method will show that the sequence of perpendiculars
plays a little réle in fact. For that purpose we consider the case k£ = 3 first.
The subspaces Ay, Az and Ag that span the space on which z is projected ortho-
gonally are denoted now by A, B and C. Further we introduce the notation
z, and (za)B or zap for the orthogonal projection of z on A and the orthogonal
projection of z4 on B respectively. In the successive rows we write the vectors
to be projected on the left and the projections on the right. We obtain:

z Uy =ZA
pL=z-u vi = (Z—-U1)B = ZB — ZaAB
pp=2z-u-vi w1 = (z— W - V1)¢ = zc —Zac — (Vi)c

P3=2z-u1-vi-w1 Uz =za—(u)a—(vi+wi)a=-(vi+wpa
Ppa=p1-vi—-wi-uz ve=(p1)B—(V1)B—(W1+ug)p =~ (W1-}-ug)B

=Ppa-Wi1-Uz-Vz Wz = (p2)c— (Wi)c— (uz+vz)c = —(uz+Va)c
Ps =PpP3—Uz—Va—Wz Us= (P3)a—(U2)a—(Va+Wa)a = —(v2+Wa)a
and so on.

We observe that from the begmnmg of the second cycle of orthogonal pro-
jections every orthogonal projection is equal to the orthogonal projection of
the sum of the & — 1 foregoing orthogonal projections on the same ‘space but
with opposite sign. Only in the first cycle subtractions take place in fact. The
left hand side, consisting of perpendiculars, can thus be left out of consideration.
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In the case k = 2 and subspaces A and B the sequence of orthogonal pro-
jections is as follows: Uy = za; Vi = Zp—ZaB; Uz = —(V1)a; V2 = —(ug)sB;
ug = —(v2)a; v3 = —(ug)B and so on.

We remark that in this case after the first cycle all minus signs can be omitted.
Then the vectors in B will keep the right sign, while the vectors to be found in
A must be subtracted from z,. It is obvious that the sum of these vectors to be
subtracted from z, is equal to the orthogonal projection of the component
in Bie Z2,;v; on A.

1.6. SYMMETRIC TRANSFORMATIONS AND MATRICES

1.6.1. Definitions

Let A be a linear transformation on E. The transpose 4¢ of 4 with respect
to an inner product is defined by the identity in x and y: (4x, y) = (x, A%y).
At is a linear transformation; for if y = Ay1 -+ pyz then (x, A%y) = (4x, y) =
= N4Xx, y1)+p(4x, y2) = Mx, 4%y1) +w(x, Ays) = (x, Adly1 + ud’ys). From
(4x, y) = (3, Aty) = {(4*)’x, y} for every x and y follows: (4% = A.

Let the matrix of 4 associated with an orthonormal basis xy, ..., X5 consist
of elements a;;. Then, because Ax; = Zf—; axs Xk, (AXg, Xg) = Zf=y arg (X, X¢)=
= ayy. If the matrix of 4 associated with the same basis consists of elements
by, then afyy = (A%, %5) = (%4, Axs) = oz The matrix of 4* where a®y; = ay
is called the transpose of the matrix of 4.

If A = A, the transformation 4 (and also the matrix of 4 associated with
an orthonormal basis) is said to be symmetric. A symmetric transformation 4
with (x, Ax) = 0 for every x is called non-negative. If moreover (x, 4x) = 0
only if x = 0, then A is called positive definite. In that case we conclude from
the Schwarz inequality |(x, 4x)| =< |4x|. |x|, that Ax = O implies (x, 4x) = 0
and x = 0, in other words, that 4 is non-singular.

Consider the inner product (x, y) of the vectors x and y. If 4 is positive defi-
nite with respect to that inner product then (4x, y) is a second inner product
of x and y. For (compare 1.3.1) : (4x, ¥) = (4y, X); (4x, Ay1+uye) =
= M4Xx, y1) +u(4x, y2) and (4x, x) is positive definite. Let the symbols for
vectors x and y etc. stand for the n-tuples of their coordinates (A1, ..., Ag),
(1, ..., tn) etc. with respect to the above-mentioned basis x, ..., X4. Because
this basis was named orthonormal, the first inner product of x and y is equal to
A1+ ... +Agpen. Then the second inner product of the vectors x and y which,
according to the foregoing, assigns the element a;; from the matrix of 4 with

- respect to X1, ..., X to the pair x; and x4, and which thus is equal to X; X7 ez Ay,
has the same value as the first inner product of the vectors Ax and y. In the
sequel we will need that the projection, orthogonal with respect to the second
inner product, of y on B, ys, is that vector yg in B, for which the projection,
orthogonal with respect to the first inner product, of A(y — ys) on B is equal
to the null vector.

1.6.2. Proper values and vectors of symmetric transformations

In the introduction of proper vectors and values we passed over the possi-
bility of complex roots for A. To study this possibility we admit for a moment
n-tuples of complex numbers as coordinates of a vector with respect to an ortho-
normal basis. For solution of x = (A, ..., An) in the equation Ax = Ax, in which
A is represented by a matrix of real numbers «;; with respect to an orthonormal
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basis and in which A is a complex number, implies the solution of # linear equa-
tions of the form A5 = X, which will yield complex values for. the A; in
general. Then (x, y) = 371 My, and if 4 is symmetric (4X, y) = ZZjuhuy =
= (x, Ay). If every (complex) coordinate a-} bi of such a vector z is replaced
by its complex conjugate a — bi we obtain z.

Next we will prove that all proper values of a real symmetric transformation
are real. First we observe that the complex conjugate of (z, 4z) equals (the
complex conjugate of a product equals the product of the complex conjugates

of the factors): (z, 4z) = (z, AZ) = (Z, Az). Hence (Z, Az) is real. If z is a proper
vector that belongs to the proper value A, then (z, 4z) = (z, \z) = Mz, 2) and,
as (z, Az) and (z, z) are real, so is A. Complex coordinates may further be left
out of consideration.

Consider two proper vectors x; and xa of the symmetric transformation 4
associated with the two different proper values A; and As. We have
0 = (4x1, x2)— (X1, AX2) = M(X1, X2) —A2(X1, X2) = (A1 —A2) (X1, X2). Hence
(%1, x2) = 0. Proper vectors of A belonging to different proper values are
orthogonal. The same holds for two subspaces of proper vectors which belong
to two different proper values.

It follows that the sum of geometric multiplicities of the proper values is »
at most. On the other hand the space spanned by these orthogonal subspaces
must be E.

To prove this we choose an orthonormal basis for E consisting of orthonor-
mal bases of all these subspaces and, if necessary, completed with vectors
orthogonal to these. The matrix of 4 with respect to this basis will contain in
the column corresponding to a proper vector the associated proper value on
the diagonal, and zeros elsewhere; because of the symmetry, the remaining
columns will contain zeros in all the rows with an index equal to that of a col-
umn associated with a proper vector. Hence vectors in the space orthogonal
to the subspaces of proper values are transformed by 4 in vectors in that same
space. The linear transformation 4 considered within this space must have at
least one proper value and an associated proper vector. But so we would find
proper vectors of 4 not contained in the subspaces of proper vectors of 4,
which is a contradiction. Thus the subspaces of proper vectors span E.

Moreover the matrix of 4 corresponding to the chosen orthonormal basis
contains the proper values each according to the geometric multiplicity in
the diagonal and zeros elsewhere. From the determinant of 4 —Al it follows
easily now, that the algebraic multiplicity is equal to the geometric multiplicity.

1.6.3. Representation of symmetric transformations by means of projections

Remembering our remark about the matrix of a projection (1.2.7) we may
express the result at the end of the last section as follows: Let Py be the ortho-
gonal projection on the subspace of proper vectors associated with a proper
value 2y of A4, so that 3f_,P; =1 (p < n); then A4 can be represented as
271 MP; where the A; are distinct. This representation of 4 as a linear com-
pinat.ion of orthogonal projections on orthogonal spaces, that together span E,
is unique,

To grove this we assume that the symmetric transformation 4 can be written
as Xf_,u40; where the p; are distinct and the Qj orthogonal projections on
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orthogonal spaces which together span E. Let x be a vector in the pointwise
invariant space of Q; i.e. @;x =x. Then Qsx = 0 for j+ i, and 4x =
= 2yus0sx = wQx = pyx. Thus every py is a proper value of 4, and the
invariant space of Q; is a set of proper vectors belonging to the proper value y;.
Such a space must be the complete set of proper vectors associated with pg,
because the invariant spaces of the Oy span E.

Now the following properties are simple corollaries. A4 is singular if and only
if some Ay = O (this is also true for non-symmetric transformations as follows
from the definition of proper values and vectors). 4 is non-negative only if all
}; = 0; for remembering P? = P, and PPy = 0 for i + j, we find (x, 4X) =
= (X, ZyMPix) = [Z4(Pyx), ZjM(Px)] = Zhi(Pyx)2. A is positive definite only
if all A; > 0. The inverse of 4 is equal to 2y (A))~1P; (With A; 5% 0 of course).
¥ A4 is positive definite the same is true for 41,

If A is positive definite there is one positive definite transformation X such
that X2 = 4; if 4 = Z;\yP;, then this transformation X, which we call the
square root of 4, is Zg\/ijl’j where VA 2y is the positive square root of A;. X is
denoted by V4.

With reference to the end of 1.6.1 we observe that the second inner product
(x, Ay) of the vectors x and y (determined by the second inner products ey
of the basis vectors, which are elements of the symmetric matrix of the trans-
formation A) is equal to the first inner product of the vectors x and Ay. Ob-
serve that Ay is a linear combination of orthogonal projections of y on some
particular orthogonal spaces (with respect to the first inner product). We also
have (x, Ay) = (VA x, VAy) or in words: The second inner product of x
and y is equal to the first inner product of V4 x and V4 y.

CHAPTER 2
STATISTICAL CONSIDERATIONS

2.1. RANDOM VECTORS

2.1.1. Covariance matrix

Let x be a vector in a n-dimensional space of n-tuples (xi, ..., X5) with coor-
dinates x1, ..., X, with respect to the basis ey, ..., e4. Let the coordinates have
a joint distribution function so that x is a random vector. Let Ex; be the ex-
pectation (value) of x;; let 62(x;) = E(x; — Ex;)2 be the variance of x;and
cov (x4, x7) = E[(x; — Exz) (x; — Exy)] the covariance of x; and x;. We assume
that the probability is not concentrated (with probability one) in any subset
of E satisfying: Xswsx; = C. Then XZ;wyx; has positive variance for any
(w1, ..., wg) 5 0. This variance, X, s cov (xz, xs) wywy, is therefore a positive
definite quadratic form in the variables wy, ..., wy, determined (compare 1.3.1)
by the also positive definite covariance matrix V with elements vg; = cov (xy, x3).

Let A4 be a transformation with a matrix 4 of elements a4; so that the coor-
dinates of y = Ax are y; = Zyyx;. Then cov (ys, y5) = cov (Zpxaex) (Ciesxr) =
= X g €OV (Xg, xi)agr = Zpppvionn = Zy(Spevir)etyy. This can be sum-
marized in saying that the covariance matrix of 4x is equal to AVA*. Because
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V is positive definite a possible choice for the transformation 4 is V'V-1, We

find that the covariance matrix of vV V-Ix is 1.
In the following it will appear to be useful to mtroduce a metric 7 in case
the covariance matrix is 1. With reference to the end of the foregoing section

we observe that a metric / for the coordinates of v V—Ix is equivalent to

a metric (V' V-1)2 = V-1 for the coordinates of x. In the case of a covariance
matrix ¥ of the coordinates of x we introduce therefore a metric V-2 for these
coordinates. We then obtain a situation which is. equivalent to the use of the

‘metric I for the coordinates of vV V1x; these coordinates have covariance
matrix 1. Properties of orthogonal projections with metric I of random vectors
with covariance matrix I also hold for orthogonal projections with metric
V-1 of random vectors with covariance matrix V.

In the applications a slightly different metric will often be used, in case the
covariance matrix of x is given in the form o2¥. We introduce a metric V-1,
which is equivalent to a metric I for the coordinates of v/ ¥~Ix; these coor-
dinates have the covariance matrix V' V-1.62. V.V J-1 = ¢2-I.

In the sequel we mainly study the special case V' = I, as the general case is
obtained immediately from it.

2.1.2. Vectors with covariance matrix c2. 1 and metric 1
Let x = (x1, ..., X») be a random vector with covariance matrix ¢2. I and in

a space with metric given by x% = x7+ ...+ x2. Let the orthogonal projection
of x on the one-dimensional space spanned by the unit vector a = (ay, ..., an)

be Aa. Then the coefficient A = (x, a) = (x1a1+...+ xnay) has variance

Syafe? = o®. Further if the unit vector b = (b1, ... by) is orthogonal to a,

then the covariance of the coefficients of the projections, (X, a) and (x, b)

Tespectively, is cov (x101 ...+ Xpaz) (¥151+ ...+ Xnan) = Zgaho® = 0.

If in particular Ex = 0, that is Ex; = 0 for every i, then the square x3 of the
orthogonal projection of x on a m-dimensional subspace A, which is equal to
the sum of the m squares of the orthogonal projections of x on m orthogonal
one-dimensional subspaces of A, has the expectation value mo2.

If Ex = (g1, ..., g) = u, then the same applies to x—u. In particular
E{(x—1u)a}2 = mo2 Now xs = usa+(x—u)s and x3 = vl +(x-wi+
+2ua(x — u)a. Let B be a linear transformation; then By is a vector of which
the coordinates are linear functions of the coordinates of y, and thus E(By) =
= BEy; further (y, b), where b is some vector, is a linear function in the coor-
dinates of y, so that E(y, b) = (Ey, b). Thus Ey = 0 implies E(By) = 0 and
(Ey, b) = 0. Itfollows that E(x—u)s = 0, and, from this, that E{uas, (x—uw)a}=0.
So we have Exf\ = uf\ -+ mo2. In connection with the foregoing section
Welremark that the same is true, if the covariance matrix is 62V and the metric
V-11is used.

2.2. NORMAL DISTRIBUTION

2.2.1. The case with covariance matrix ¢2-1

Let the coordinates x3, ..., x5 of x = (X1, ..., x») have expecta’uou 0 and co-
variance matrix 2. 1. It follows from the last section that the coordinates
Z1, ..., Zp Of x With respect to any orthonormal basis of E have the covariance
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matrix 2. ] too. We consider the particular case in which the coordinates
X1, ..., Xy have a normal (0, ¢) distribution and are mutually independent.
The probability density of x is then the product of the probability densities of #

2
normal (0, o) distributions i.e. C exp {— 2%2 oA4...+ xf,)}: C exp (— 2’%2).

We observe that this density depends on the square of x only. The coordinates
21, ..., zp With respect to another orthonormal basis satisfy x2 = =P ,z2.
Because the functional determinant for change of variables is a constant, when
the new variables are linear functions of the old ones (and equal to 1 here), the

3 2
joint probability density for z1, ..., zzis: Cexp (- L 2uzi?] = Cllzexp (- .
202 202

from which follows that the z; have a normal distribution too, and are indepen-
dent. ‘

Because o2 times the sum of squares of 7 independent variables with a
normal (0, ) distribution has by definition a chi-square distribution with di-
mension m, it follows that 62 times the square of the orthogonal projection
of x on A has a chi-square distribution with dimension m too. Similarly if B
is a subspace with dimension m; orthogonal to A, then x2/0? has a m;-dimen-
sional chi-square distribution independent of the projection on A. It follows

2
Xa/m
that —A

2 jm has by definition a F-distribution with the dimensions m and me as
B/ .
parameters. If £x = u then the foregoing holds for x ~ u.
If ug = 0, then it follows from the expectations of x3 and x} which are equal
to uZ 4 mo?® and mie® respectively, that an appropriate test criterion for the
2
x3/m

null hypothesis us = 0 will be formed by the quotient with a one-sided

2
upper critical region in the F-distribution with dimensions #2 and ;.

2.2.2. The general case

Let x be a random vector of which the coordinates have covariance matrix V.

If the coordinates of y = v/ V-Ix have the normal distribution given above
(with covariance matrix 7 of course), then the coordinates of x are said to have
a normal distribution too. The probability density of the coordinates of y is
Cexp (-4 y?) = Cexp {-}(x, V-1x)}, so. that the probability density for the
coordinates of x is C’ exp {—}(x,V-1x)}. C and C’ are suitably chosen constants.

Conversely, if the coordinates of x have probability density C exp {—}(x, 4x)},
where (x, 4x) is a positive definite form with matrix 4 in the coordinates of x,
then they have a normal’ distribution with covariance matrix 41, For, if
y = V/4 x, the probability density can be written C exp (-$y?), so that the pro-
bability density for the coordinates of y is C”’ exp (-3y2). -

Because also in this respect the use of a metric 4 (the inverse of the covariance
matrix) for the coordinates of x is equivalent to the use of the metric I for
the coordinates of y, it follows immediately e.g. that the square (with respect
to a metric 4) of the orthogonal projection (with respect to a metric 4) of x
on a m-dimensional subspace has a m-dimensional chi-square distribution!
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2.3. LINEAR REGRESSION

2.3.1. The problem

Consider » random vanables 1, ..., ¥n With expectation values
Ey; = Bixp +Bexsa+... 4 Bexeg for i = 1, ..., n.

The values of the y; refer to observations of a property of individuals (per-
sons, trial plots, countries, animals) to be studied. The observations are taken
from » such individuals numbered 1,

The quantity x;; is the value, for the z-th 1nd1v1dual of the j-th property from
k also quantitatively expressible properties of the individuals. The x;; are
given, while the coefficients B, common to all individuals, are unknown.

The supposition about the # observations y1, ..., ¥ can also be written as:
Ey = B1x1+... -+ Bxxg, where X1, ..., Xz are vectors and y a random vector
in the space E of n-tuples (z1, ..., Z5), such that numbers with the same index i
in yg, x1, X2, ..., X4 are corresponding coordinates (with respect to the basis
€1, «.vs €n).

The problem is to determine an unbiased and most efficient estimator of a
linear function of the coefficients 34, say piP1+- ...+ pxBx. Important examples
of the functions to be estimated are the 8 themselves and the Ey;. In connection
with the condition of minimal variance of the estimator the covariance matrix
of y is assumed to be a multiple of the known matrix V; it has thus the form
62V, with ¢ not necessarily known.

2.3.2. Unbiased linear estimators

First we introduce the notion of linear functions on vector spaces. A linear
function f(z) on a vector space E assigns to every vector z in E a real number
f(z) such that, for z; and zy in E, f(Az1 + pzs) = M(z1) + vf(ze). In particular
thevalue, assigned to the null vector, is equal to f(0) = f(z — z) = f(z) - f(2) =
Such a function is completely determined by the values assigned to the vectors
of a basis of E.

We will look for an estimator which is a linear function f on E, so that the
estimate will be f{y). Even if we restrict ourselves to linear functions of the ob-

servation y (which may be written as X ;¢4 if ¢ is the value assigned to the
i-th vector of the basis ey, ..., €4), it is possible to find an unbiased and most
efficient estimator. Moreover such a function is multiplied by A if y is multi-
plied by A, in other words, it is not sensitive to the scale of y; finally in case every
¥ is equal to the sum of e.g. two (possibly dependent) variables ~ for instance
the yields of the underground and the overground parts of a crop such as tur-
nips — and the observations of the parts have proportional covariance matrices,
then the estimator of the whole will appear to be equal to the sum of the esti-
mators belonging to the parts.

In order that fly) be an unbiased estimator, Ef(y) must be equal to
pBit...+puBy for any By Now Efly) = f(Ey) = fEBsxs) = ZyBafxy)-
Hence f(x;) must be equal to p; for all j.

In case the vectors xu, ..., Xg are independent, this restriction of f will not be
contrary to the definition of a linear function; for then these vectors may be
considered as a part of a basis for E, of which the function values determine f.
If, however, the vectors x; are dependent, say Zayx; = 0, then f(0) = f(Zasxs) =
= Zayf(x5) = 0, so that also Zayp; should be zero. Hence, if and only if the
py satisfy all relations Zasp; = 0 corresponding to all relations Zayx; =0,
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then it is possible to find an unbiased estimator for 2p;8s. Then 2p,B; is said
to be estimable (Rao [19]).

Another formulation of this restriction of the p; is found by writing Ef(y) =
= EXyeip = ZyciEyq. Because Ef(y) must be equal to ZgpsBy, it follows that
only linear combinations of the Ey; = 2x;83; are estimable. If Zp;3;is estimable,
then the value of any unbiased estimator f is completely determined for a
vector in the subspace A spanned by xi, ..., Xz: f(X5) = ps.

Theorem: Let g be the linear function on A which is equal to the restrigtion
to A of any unbiased estimator f of Zp;B;, so that g(xs) = p; for all j. Then if
P is any prOJectlon on A, gP is such an estimator f; conversely, if fis such an
estimator, there exists a projection P on A such that f = gP.

Proof: Let P be any projection on A. Then gP is a linear function on E; for
8P(Ay1+ pys) = g(APy1 +wPys2) = Ag(Py1) + pg(Pys). Moreover gPx; = g(x) =
= p;. Hence gP is as required. Conversely, let f be any linear function
for which f(x;) = pj, for all j. Because not all p; are zero it is possible to choose
a vector aj in the m-dimensional space A such that f(a;) # 0. Let ay, ..., a5 -
be a basis for E, with aj, ..., a, in A. Now consider the set of vectors

a,(r=1,...,m)and by = ag— .];Ea:; ai(s=m-+1, ..., ). Because dependence
of this set would imply dependence of the first set, the second set is also a
basis for E. Further we observe that f{(bs) = 0 for all 5. Let P be the projection
on A along the space spanned by the vectors bs. Then f(y) = g(Py) for every
y in E. The proof is complete. '

An unbiased estimate of an estimable Zp,B; is thus found with the help of a
projection P of y on A, which yields b1x1+...-+bgxz, and calculation of
8(Py) = bip1-+...-}- bypy i.e. substitution of b; for B; in the function to be
estimated.

2.3.3. Most efficient unbiased estimators

A uniquely determined estimator f will be obtained with the help of the effi-
ciency condition. Recalling that the covariance matrix of y = (31, ..., Yn) I8
o2+ ¥, we introduce the metric -1 with respect to the basis e, ..., €. Let
dy, ..., ds be an orthonormal basis such that dy, ..., d 5 arein A. The coordinates
of y with respect to this basis, coefficients of orthogonal projections (compare
2.1.2) of y, have the covariance matrix 621, so that the variance of the esti-
mator f{y) is equal to 62X _; {f(d;)}2. The values f(d;) being fixed by the con-
dition of unbiasedness for i = 1, ..., m, the variance of f(y) will be minimized
by taking f(d;) = 0 for i > m. It follows immediately that the corresponding
projection P, discussed in the last section, will then be orthogonal (with respect
to the metric V1),

It is remarkable that this same orthogonal projection on A can be used for
any estimable function. We observe: the most efficient unbiased estimate of the
estimable function 2psB; = Zg(x5)B; = g(EBsx;) = g(Ey) is g(ya). The ortho-
gonal projection ya has the property that, for any linear function g on A, g(va)
is the most efficient unbiased estimator of g(Ey). We also express this fact by
saying: ya is the most efficient unbiased estimator of Ey.

The numbers $3; as well as their estimates b; in ya = bix1+ ..+ bgxz are
called regression coefficients.
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2.3.4. Further remarks

In contrast to the vector ya the b; are not necessarily unique, namely if
X1, ..., Xg are dependent. In that case the normal equations in bj, ..., bg have
not a unique solution; for then the quadratic form, (A1x1-...+2Xg)%, in
A1, +.os A, Of which the matrix is the matrix of coefficients of the normal equa-
tions, is non-negative (positive definite in case the x; are independent). One
way out of that difficulty is omission of dependent vectors x; such that the
remaining set is independent and spans A. However, when one still wants to
maintain the whole set b1, ..., by (for purposes of computation and study of
the covariance matrix of these regression coefficients), it is customary (Kemet-
HORNE [9]) to fit the system of k& normal equations in & variables into a system of
(k+m) independent equatlons in (k-m) variables, such that the normal
equations are obtained agam by putting the new variables-equal to-zero in the
first k& equations.

'We will not use normal equations in those cases, so that such method is not
necessary. Abandoning the normal equations, however, means abandoning
the covariance matrix of the by, which is the only drawback of the following
exposition against other great advantages.

The square of the perpendicular from y on A, (y—ya)?, is equal to a quadratic
form in the differences between corresponding coordinates of y and of the
estimation of Ey (in the case of a covariance matrix ¢2-/ for y the quadratic
form is the sum of squares of these differences). Because (y — ya)?2 is the square
of the shortest distance between y and A, the method of estimation of E(y) is
named the method of least squares or generally the method of the least value
of a quadratic form,

In the particular case that y has a normal distribution, the estimator of Ey
in A is such that (y - Ey)?, which occurs in the exponent of the probability
density of y, is minimal, in other words, such that the probability density of y
is maximal. Hence it is the maximum likelihood estimator then.

‘Whether y is normally distributed or not, the expectation of (y — ya)? is equal
to (n — m)o?, so that an unbiased estimate of o2 is (y — ya)2/(n — m). The calcu-
lation of (y —ya)? is often simplified by the following: we know (y — ya)® =
=y2 -y} (Pythagoras); (y - ya)? = y (¥ —ya) - Ya (¥ - ya) = (the second term
vanishes because of the orthogonality of ya and y — ya) = y(y — ya) = y2-yya.
Sowehavey2 = yya = y(bix1+... -+ bexg) = bi(y, X1) +... + bi(y, X&)-

2.3.5. Tests in linear regression

Now and whenever tests are concerned in the following, we suppose that y
is normally distributed. The tests will always have the same feature, namely a
null hypothesis that one or more of the By are zero, against the alternative that
they are not. The null hypothesis means that Ey is in a subspace B of A, with
dimension, say, #. In that case the component of ys, orthogonal to B, has
the null vector as expectation. We consider the component of ya orthogonal
to B because its square is stochastically independent of yg. According to 1.3.5,
this component, the orthogonal projection of both y and ya on the (m — my)-
dimensional residual space of A orthogonal to B, is equal to ya — ya.

Remembering the end of 2.2.1 we find that (yA yi))zll((t Z;) is the test
statistic, which has a F(m — m1; n — m) distribution under the null hypothesis.




A8 (1)

Here we use the fact that y — ya, which is orthogonal to A and thus to yp and
ya — B, is independent of the last two components. (ya — ys)2 will be deter-
mined either by direct orthogonal projection of y on the residual space of A
orthogonal to B, or as y2 -y}, or as the difference of the squares of the perpen-

diculars y — ys and y ~ ygi.e. y2 - y4 — (y2~ y3), or, as we will see, by means of
quantities used in the performance of the orthogonal projection on A.

2.3.6. Conditional observations

The first problem is to obtain the best estimate of Ey from the observation
of a random vector y with covariance matrix 2 - 1, while the Ey; satisfy p linear
conditions of the form: anEy1+ apEye+t...+ambyn = ai0; (=1, ..., D).

Any of these conditions means that the difference between any pair of vectors
satisfying the relation is orthogonal (with respect to the metric /) to the vector
formed by the coefficients in that relation, say a;. The relations, as a whole,
imply that the difference between any pair of admitted vectors is orthogonal
to the vectors ai, ..., dp, i.€. to the space Al spanned by these vectors. In other
words, such a difference must belong to the space A with dimension, say, m
and orthogonal to AL. The set of admitted vectors for Ey will be found by
adding some fixed vector x, to A. In other words, the difference between Ey
and x, is in A. But now with this formulation the problem is reduced to the
regression problem.

The best (from now on used for “unbiased and most efficient™) estimate of
Ey - x, is found by orthogonal projection of y—x, on A. This is done by
choosing a vector in Al : Maj ... +Apag, such that y — X, — (Aa1+ ... +Apap)
is in A; this is equivalent with the condition that the vector y - (a1 +...+
+Apayp) is in the admitted set, i.e. satisfies the given conditions for Ey.

We find by substitution: Ai(ai, aj)+...+Ag(ap, 25) = (v, a5) —ay, for
j=1, ..., p. These equations for the so-called correlates A; can be solved, if
ai, ..., apareindependent. The square of the perpendicular (\a1 +... +Apap)2 =
= 7.1 M{M(as, ag)+. .. +0p(ap, )} = Zf_1 M{(Y, 29) — ago}, divided by o,
has a n—m = p dimensional chi-square distribution again.

The only point of difference between the first and the following problem is’

that the covariance matrix of y is 62- 7 now. We then introduce the metric
V-1, Then the left hand sides of the conditions are inner products of the vectors
Ey and Va;. To obtain the best estimate of Ey we subtract a linear combination
of the vectors Va; from y such that the difference satisfies the conditions. The
equations for A; are:
M(Vay, ag)+... +2p(Vap, ag) = (v, ag) — ago for j = 1, ..., p, where (Vay, a5)
represents the inner product of a; and a; with metric ¥, and (y, a;) the inner
product of y and a; with metric /. The square of the perpendicular is now
(MVag+...+ApVap)? with metric V-1 which is equal to

1 y{a(Vay, a) ... +2p(Vap, a7}

with metric 1 or Zf_ 1 M{(y, ay) — azo} likewise with metric 1.

The problem of linear regression and that of conditional observations are
not essentially different and the one can be reduced to the other. The first
problem (and method) will be preferred if # — m > m, the second if n — m < m.
The translation of the one problem in the other is as follows. Suppose we have
a linear regression problem. Then from some of the equations that express
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the Ey; in the Py, these §; can be solved, and substituted in the remaining
equations. In this way linear relations between the Ey; are obtained. On the
other hand, if the problem is in terms of conditional observations, then it is
possible to express a part of all Ey; in the remaining Ey;, while the last are
expressed in themselves. Consider now the remaining Eyy, as the regression co-
efficients in the first problem. '

CHAPTER 3

APPLICATION OF LINEAR REGRESSION WITH
UNCORRELATED OBSERVATIONS

GENERAL REMARKS

In this chapter the random vector y = (31, ..., ¥») Will have a diagonal
covariance matrix o2-D, i.e. a matrix with elements d;; for which d;; = 0 for
i # j. Then the appropriate metric D~1 will be diagonal too. The elements in
the diagonal of D1 are the reciprocals of the corresponding elements in D.
These reciprocals (denoted by g; or wy) are called the weights of the coordi-
nates. The inner product of the vectors x = (x1, ..., Xz) and y = (1, --., V)
is then X ; wyxyys, a so-called weighted sum of products.

As many of the problems, to be dealt with, can easily be generalized from
that with a covariance matrix ¢2- for y, to that with a diagonal one, by re-
placing the inner product Xsx;p; by Xsw;ix;y4, we will generally assume a cova-
riance matrix o2/ for convenience, unless the reverse is declared explicitly.
In each case it will be indicated whether the generalization, expressed in the last
sentence, is possible or not.

3.1. SOME REGRESSION PROBLEMS WITH BASES EXPLICITLY GIVEN

3.1.1. Level

Let Ey; be equal to a constant § for i = 1, ..., », or in terms of vectors, let
Ey be equal to fr, where r = (I, 1, ..., I). The space N spanned by r will be
called the space of levels.

To obtain the best estimate b of B, y will be projected orthogonally on this
one-dimensional space N. We obtain (compare 1.3.5 and 1.5.2) br with

b= = yit...tym or y, theaverage of yi, ..., y». Thesquare of the perpen-

I+ 1 9 9
dicular s (y — br)? = y?— (be)? = y2 - B3z, 1) = y2- ?2 ) =y- ((yrrx)) -
2 ] ’
=7 - @;ﬂ Division of this square by the dimension of the subspace.of

E orthogonal to N namely » — 1 will give an unbiased estimate of 62.

2

To test the null hypothesis B = 0 we use the statistic —i;)——— =
Cyi?ln (y-br)?/(n—1)

which under the null hypothesis has a F(1; n—1)

= {52 - Cripin}in(n—1)
distribution. It is the square of Student’s ¢-statistic.
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If the metric is diagonal, we obtain with the weights g;: b = T

_ 8t gnyn
g1+ ...... + En

In that case (y = br)2 = Sgy? -

which is called the weighted mean of yi, ..., Y.

Cguye)?
Zg :

3.1.2. A linear function in one variable

Let Ey; = Bo+B1xs; in words, the expectation of the interesting property
of the individuals is a linear function of another property x, likewise quantita-
tively expressible. In terms of vectors Ey = B,r -+ ix.

To estimate 8, and ; we wish to project y on the two-dimensional space
spanned by r and x. Because r and x in general are not orthogonal, we prefer
(compare 1.5.2) to orthogonalize the basis first. For this purpose we replace
x by its component x’ orthogonal to r. As we know that the orthogonal pro-

(xr )r, we obtain X’ = x - xN—x—ur = X — X1, which
means that all the xz are diminished with their average. The orthogonal pro-

jection of x on N is
! @)
jection of yon Nis y-y = yn = %r. The orthogonal projection of y =

=y +(y-y') on x’ is equal to that of y’ on X', because y -y’ = y is ortho-
gonal to X', It is therefore % x',

The estimate of Ey is thus yx + o F = (y % xN) + o from which

follows that the estimate of By is by = > and that of B is bo = 2=~ b1 - =

=y —biX. To evaluate b; we consider first x'x’ = (x — xx)? which according
to the foregoing section is equal to x2 — x%;. Recalling that xy is a vector which

(Zxy)?
n

X'y = (x-xx) (¥ - yx) we use a lemma analogous to the Pythagorean theo-
rem: if A and B are orthogonal spaces then xsys = xpya = 0, hence
(%a+xB) (Yao--YB) = XaYA -+ XBYB.

‘We apply this to the case that A is N and B is the subspace orthogonal to N.
We have xy = xnyn+ (X —xx) (Y- yn), so that X'y’ = xy— xyyn. Further

ANYN =R (273%) (g;ﬁ) = @’%(_zy_i)

The vector y is decomposed in three orthogonal components namely VN>
bix’ and y' - b1x’ = y—yx — bix’. The square of the last component ie. the

perpendicular from y on the space, spanned by and x, is equal to y2— y& — (b1x")2.
Dividing this square by the dimension n-2 yields an unbiased esti-
mate of 62, Further the square of 51x’ will be the numerator of the statistic
for the test of the null hypothesis that Ey.is in N, in other words, that §; = 0.
This is the second reason why we prefer a (this) orthogonal basis: x’ is basis of

consists of # times the number x, we find that x4 = . In order to compute
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the residual space, of the space spanned by r and x, orthogonal to r. Compare
] 1<, N\2
2.3.5. The square of b1x’ is equal to % .
The generalization to the case of a diagonal coyariance matrix presents no
difficulties. '

3.1.3. Linear functions in several variables

The regression problem with several variables has already been considered
in fact in 2,3. Therefore we confine ourselves to some remarks.

In the supposition Ey = fix1+ ...+ Bgxz each |of the variables xi, ..., xz
represents the value of a quantitatively expressible| property of the individual.
Such a variable is often the function value of a given function ¢ in the values
of one or more other such properties of the individual. In case Ey is supposed
to be e.g. a polynoinial of degree three in two variables x; and xg with unknown
coefficients, x3x is one of such variables. The vectar of function values (in this

case of the function x3x5) for the » individuals is one of the basisvectors of the
space in which E; is supposed to be. The notion “fynction ¢ should be under-
stood in the broadest sense of the word: functions given not only by a formula
in the values of the properties, but also by tables or] graphs (obtained e.g. from
previous experiments) may be considered. (KUIPER [14]).

Mostly the set of vectors x; will contain the vector r, which corresponds to
an unknown constant term in the supposition about Ey. Because the value of
this constant is not of interest in general, the whale procedure of estimating
and testing will, analogously to the last section, be performed in the residual
space of E orthogonal to N (the space of contrasts). The determination of the -
projection of y — yx = y’ on the space, spanned by the vectors x;—(x))xy = Xy,
by normal equations requires quantities of the form y'y’, y'x;’ and x;'x;’, of which
the calculation has been discussed in the last section| The square of a projection

. will be obtained according to the end of 2.3.4. Testing some B; requires the
projection on a subspace i.e. solution of a new set of normal equations with
coefficients, however, that also occur in the first set

Another way of performing the projections will be by complete orthogona-
lization of the basis of the space A, spanned by the vectors x;. This, however,
is in general at least as cumbersome as the solution of normal equations.

Introduction of weights is no essential difficulty.

3.1.4. Orthogonal polynomials

For the particular case in which Ey is supposed to be a polynomial in one
variable x, and the # values of x are equidistant, and the vector y has the cova-
riance matrix ¢2- 1, the result of the orthogonalization process, alluded to at
the end of the last section, is fortunately given in tables (FISHER and YATEs [6],
PEARSON and HARTLEY [17], ANDERSON and Hous [1], DeELURY [5]). The
functions ' (j =0, 1, ..., k) are defined (compare 1.3.4) on 4 = -n+1,-n+3,
-n+5,..,-1,1,3, ..., n-1, when n is even, and on ¢/ = }(n - 1), - -3), ...,
-2,-1,0, 1, 2, ..., 3(n~ 1) when »n is odd. It follows that the set of function
values of #/ is'symmetrical if j is even, and asymmetrical if j is odd, so that the
vectors of function values for j even are orthogonal to those for j odd.

These vectors of function values have been orthogonalized in the order of
increasing j. In every step of this process either only even or only odd functions
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have been used. It follows that the orthogonalized vector is a symmetric or an
antisymmetric set of numbers in case j is even or odd respectively. As a conse-
quence only 3n (or 3z %) coordinates are recorded in fact. The length of the
orthogonalized vector is not 1, but as small as possible and such that the coor-
dinates are integers. The squares of these lengths are also noted in the table.

In order to find of which linear combination of the functions /, w-1, ..., u, 1
some recorded vector is the set of function values, — it is regrettable that this
is not noted in the tables —, one may solve linear equations in the unknown
coefficients, obtained by substitution of some ¢ in that combination, and equa-
ting to the corresponding known function value. The fact that such a combi-
nation is either even or odd in i:, and that the coefficient of the highest degree
term is noted in the tables, simplifies this procedure.

Let the functions corresponding to the orthogonalized vectors r, vi, Vg, ...
be 1, u, au®+ b, cud+du etc. Let the average of the values x; of the original
variable x for the » individuals be X and the distance between two successive

values of x; be p. Then we take u = ? . Let the coefficients in the orthogonal

V1 2 ’ . .
L, bo* = IV2 otc. The regression coeflicients
Vivi Vave

bo, b1, b, ... of the polynomial in x will be obtained by reduction of:

bt e (%57) (0 (7)) e (o (557) (7)o

(yvy)?
v 2

projection be b,* = g,bﬁ‘:

serves as numerator of the sta-

The square of the separate projection

tistic for the test that the regression coefficient 8s* of v; is zero, which is equi-
valent with the test that the coefficient 8, of x/ is zero, independently of whether
the coefficients of the functions of smaller degree are zero or not. This conse-
quence is the justification of the chosen order of orthogonalization.

3.2. REGRESSION PROBLEMS BASED ON A CLASSIFICATION

3.2.1. Main effects

Let the coordinates of the random vector y be grouped by virtue of some
characteristic of the » individuals in a number, say &, of not necessarily equally
large classes. Let it be supposed that the expectations of the coordinates within
such a class are equal (but unknown). Then the set of vectors, to which Ey
must belong, is a vector space. (Compare Kurper [13]). Consider the k vectors
which consist of ones in only one of the k classes and of zeros elsewhere. Every
linear combination of these k vectors belongs to the set, and every element
of the set can be written as a linear combination of these k vectors. For example:

Teaaa 7| 71111 7 70000 7 70000 7j 70000 7
BB ~ loo 11 00 00
yyy |=%looo [T®looo [TY|111 |*¥]|o000
155538 Joooool |oooool [oooool lrriiil

Here the n-tuples are arranged according to convenient arrays. “Homologous™
numbers are corresponding coordinates.
Simple inspection shows that the mentioned & vectors are independent. It



follows that these vectors form a basis of the considered space, so that the di-
mension of that space is equal to the number of classes. Let the characteristic
of classification be named 4. Then also the classification will be named 4.
Further the k-dimensional subspace of vectors with equal coordirates within
the classes is named A too and it is called the space of main effects (of 4). The
term effect of the characteristic should not be understood in the limited sense
by which in everyday life the effect of a cause is meant, but it has the looser
sense that different values of the expectation of the considered property y always
go together with differences, qualitative or quantitative, in the characteristic 4.

" Tt is clear that the subspace N of levels is a subspace of A. The residual space
of A orthogonal to N is called the space of pure main effects. It will be denoted ..
by A* and it has dimension k — 1. The reason of introducing this, is that the
differences of the coordinates of vectors in A do interest us in fact. Two vectors
in A of which corresponding coordinates differ by the same amount or, in
other words, two vectors in A which differ by a vector in N are considered to
represent the same effect of the classification 4. The reason that the space A*
of pure main effects, which together with N span A, is chosen orthogonal to
N is that orthogonal projections are needed for tests (if Ey is in N, then
(Ey)a» = 0. From the point of view of estimation any other choice of a (k —1)-
dimensional subspace of A, which together with N spans A, is permissible.

3.2.2. Estimation and test

The best estimate of Ey is the orthogonal projection of y on A, ya. The
considered basis of A happens to be orthogonal (also when the metric is
diagonal and weights are used). The projection on A is thus equal to the sum
of the projections on the one-dimensional spaces spanned by these basisvectors
separately. Let such a basis vector be a. Then the coefficient in the projection
is z—a Here the numerator is equal to the sum of those coordinates of y, which
are in the same class, as that in which a contains ones. The denominator is
equal to the number of elements in that class. The coefficient is thus equal
to the class average 4. In the mentioned example
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Further y = (if the number of elements in class i is ng)
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where yy; is the j-th coordinate in class i. The orthogonal projection on A*
cannot be performed easily directly in general. In our example the vectois
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‘form a basis of this space indeed, but they are not orthogonal. However, as A*
is orthogonal to N, ya®* = ya — yx.
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The vector y is thus decomposed in three orthogonal components yx,
ya~yNn and y—ya in spaces with dimension 1, k — 1, n— k respectively. The
square of y—ya which is equal to. y2—y3, divided by the dimension 7 -k,
is an unbiased estimate of 62, and is the denominator for the F-test criterion
of the hypothesis that Ey is in N. The numerator will be yf“/(k—-l) while
¥4+ = ¥4 — Y4. The calculation of y2 is considered in 3.1.1.

If weights g;; are used the coordinates of y, are weighted class averages, and
_ 5, Gy

28y
The remaining quantities are known from 3.1.1.

YA

3.2.3. Components of main effects .

Sometimes one is interested in the estimation and (or) testing of components
of the main effects. These will te in subspaces of A*. The three mentioned basis
vectors of A* e.g. span one-dimensional spaces representing the difference in
effect of the first, the second and the third class respectively with respect to
that of the fourth class.

The estimation of these effects is fairly simple: if
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then the first component is
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The test of, say, the first component is not so simple, because the components
are not orthogonal. Under the null hypothesis that there is no difference in
effect between the first and the fourth class, Ey is of the form

Teaxaa 7
BB

YYY
lacaaxal

This means that the first and the fourth class have been united to one class.
The orthogonal projection of y on the corresponding subspace of A contains
class averages again, and differs with respect to ya only in the former first and
fourth class. The difference of the squares, necessary in the numerator of F,

is thus equal to ,
o Gygy19)? I Cpyaf  Epy+Zyag)
n g n1+ng
The test is equivalent to Student’s two-sided two samplé test.
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They represent the differences in effect of the first and the second class, of the
first and the second class together with respect to the third class, and of the
first three classes together with respect to the fourth class respectively. The
coefficient of the last vector in the orthogonal projection e.g. is equal to

5(Zy15 1 Zgyes + Zgysg) — 9 Tyyay
9.521.5.92
and the square of that projection is equal to:
[5 Ggy1s+2gyes+2gysg) — 9 Zyyag)?

9.521.5.92
Another orthogonal frio of components is
1111 7 700 00 7 T4 4 44 7
-2 -2 00 4 4
000 5§55 -3-3-3
L0 0 0 0 0/ 1-3-3-3-3-31 1-3-3-3-3-31

which represent the differences in effect of the first and the second class, of the
third and the fourth class, and of the first and the second class together with
respect to the third and the fourth class together.

When the classification is based on a quantitative characteristic x and the
classes are equally large, then by means of orthogonal polynomials appropriate
components may be chosen. Let the four classes have e.g. three elements each
and let the values of x be equidistant, then we may choose the trio

7-3 -3 -37 T1 1 17 T=1 -1 -17
-1 -1 -1 -1-1-1 3 33
111 -1-1 -1 -3-3-3
13 3 3] 111 1d 11 1]

which represent the spaces of linear, quadratic and cubic components of the
effect of 4. Sometimes it is useful to assume (if allowed) that Ey is in the space
-spanned by the linear and the quadratic component only. The dimension of the
residual space orthogonal to A is raised by one then.

Introduction of weights requires the formation of other orthogonal compo-
nents in general, while the first mentioned test can be generalized to this case
along the same lines as in 3.2.2.

3.3. GENERAL REGRESSION PROBLEMS BASED ON TWO CLASSIFICATIONS

3.3.1. Two spaces of main effects

In addition to the classification 4 let the coordmates of y be grouped by
virtue of a characteristic B in other classes at the same time, and for the present
such that it is not possible to obtain one class of the one classification by uniting



b S—)

SOLIC Cldsdus Ol LG OUILL. LAt L.g. Ul Oul CA4dIIIPIC 1L J.401 a dSULOLIU Lldsdill=
cation according to columns be introduced as follows:

B
X
X X %
X X
A
X X X
x .
X X X
X

Corresponding to these two classifications we have two spaces of main effects
A and B, and two spaces of pure main effects A* and B*. The spaces A and B
have the space of levels in common. Now consider the basis vectors of A and B
that consist of ones and zeros (compare 3.2.1). Because both classes of any pair
of classes of the one classification (say A4) contain some coordinates that,
together, belong to some class of the other classification (say B), any linear
combination of the basis vectors of A that is in B has all coefficients equal,
and thus must be in N. It follows that N is the intersection of A and B, and
that A* and B* are disjoint. If A and B have k1 and k3 classes respectively, the
dimensions of A* and B* are k1 — 1 and ka2 — 1.

- The supposition that Ey is in the (k1 k2 — 1)-dimensional space spanned by
N, A* and B* implies that every Ey; is considered as the sum of a general
constant, a constant for the corresponding class of 4 and a constant for the
corresponding class of B. In other words, the effects of 4 and B are considered
as additive.

3.3.2. Estimation of the main effects

In order to obtain the best estimate of Ey and with that, the best estimate
of the effects, y must be projected orthogonally on the space spanned by A

‘and B. Because A* and B* in general are not orthogonal on the one hand, but
-orthogonal bases for A and B are known on which the orthogonal projection

is technically simple, namely by taking averages, on the other hand, the itera-
tive method of 1.5.6 with k = 2 will be used. Compare YATES (22), HAMMING

-(8) and Xurper (11).
- ..The calculation of the following sequence of vectors is necessary: Uy = ya;

V1 = yB-YAB; U2 = (V1)a; V2 = (u2)B; us = (v2)a; V3 = (ug)s and so on. The
sum of the vectors v will yield a component in B, and u;, diminished with the
sum of the remaining vectors u, will give a component in A. These together
form the orthogonal projection of y on the space A -+ B. Apart from the vector
y the vectors will not be written in full but only one coordinate of a class of 4
or B will be noted. So we obtain the following: computational scheme for an

“observation of the example in-3.3.1:
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206 | 198 15.8 3 562 | 18.733 -0.061 -0.016 -0.002 0.000 0.000| 18.812
26.4

23| 218 | 259 |5 1335 | 26700 0111 0030 0005 0001 0.001)26.552
number 6 | 4 [ 4 [14 7‘
sum 149.1| 98.5 | 793 326.9 s
vy 24.850 | 24.625 | 19.825
Yap 24480 | 23.371 | 21.633 [ check 7 0.004 0006 0.003 0.005 0.005

vy 0.370 | 1.254 | -1.808 | 0.004 —
va 0,098 |. 0.091 | -0.236 | 0.008
ve 0016 [ 0.009 | —-0.032| 0.004
ve 0002 | 0.001 | -0.004 | 0.000
vs  0.001 | 0000 | 0.000) 0.006
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This will be, self-explanatory for the greater part. The row and the column
“numbers™ are noted, because they occur as divisors, the sums of the classes
and the general total as a check. The number (coordinate) of yan on the left,
24.480, has been found from u; = ya as 20.550-4-27.500- 18.733+
+3 % 26.700 divided by 6, and the number on the right, 21.633, as(2 x 20.550) +
4 18.733 126,700 divided by 4. Subtraction yields vi.

The process of projection (averaging) will be continued, until all the coordi-
nates in some vector are zero, or, as a consequence of rounding errors, remain
small numbers. We will return to the latter case in the following section.
Finally the required vectors in A and B can be calculated in the indicated way.

It will be remarked that v1 = yg—yas = YN +yBs — (YNt Yya®)B =
= yB» — (ya*)B. The second term, an orthogonal projection of a vector ortho-
gonal to N on a space that containS‘N, is orthogonal to N. The same holds
for v1, us, va etc. This has two consequences: we have a check for every step,’
namely the inner product of vi, ua etc. with the vector r must be zero; the
values of this inner product have been noted in the row and the column marked
with “check”. Secondly the vector found in B, 2., v4, is orthogonal to N, in
other words is in B*; thus the vector found in A is equal to the sum of yx
and the unique component in A*. The latter can be found by subtraction of
y~ (which is calculated by means of the general total of “sums” and “numbers®)
from the component in A. The unique components of y in A* and B* will be
denoted by yga+ and ysge where the letter s serves to distinguish from the
orthogonal projections. In this section the letters'A and B can be interchanged:
of course. Introduction of weights implies the use of weighted averages for
every class and presents no further difficulties.
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3.3.3. Some computational remarks

Let y' be some approximation of the projection of y on a space, say A+ B,
and let y’ be in the space A B. Then the required projection of y is equal
to y'+(y - y)a+s. The approximation of yais may be given by means of
vectors in A and B. This will be applied for instance in case the approximating
vectors in A and B have been obtained by the procedure of the last section,
but with rounding and possibly other errors. In order to obtain a more accurate
result, y -y’ should be projected according to the same procedure and the
projection added to the approximation. But, as follows from that procedure,
only the class sums of y—y' are necessary. In our example the residual sum
for the second column e.g. is equal to 98.500 — (4 x 1.355--21.13026.580
-+ 18.812+ 26.552) = 0.006. If such a great accuracy is wanted in our example,
we will find 0.487; 1.357; —-2.081 as coordinates of yspe, and 21.130; 26.578;
18.813; 26.553 as coordinates of ysa.

A similar procedure will be followed, when the process converges very
slowly. It is our experience that after several steps the coordinates of the same
class all have the same sign in two successive steps u or v and decrease. At that
moment an approximation of one component, say in A, will be found, by the
supposition that the successive coordinates of the same class decrease according
to a geometric series with the proportion of the coordinates in the two succes-
sive steps as ratio. (In examples to follow this is exactly true.) An approximation
of the component in B will be found by projecting the difference between y
and the approximate component in A on B. This can be seen thus: y = yga +
+yss+yr with R orthogonal to A and B; then (y-ysa)s = (VsB -+
—l—yR)B = ysB. The subtraction will take place via the sums of the classes of
B again. Next the method.described in the foregoing paragraph will be applied.

The orthogonal projection yais is such that y —ya4s is orthogonal to A
and to B which means that the (possibly weighted) class sums in y — ya+s are
zero. In the particular case that a class of one classification, say 4, occurs in
only one class of the other classification B, the coordinate of ys+s in that
class of 4 is thus equal to the (weighted) average of the coordinates of y in
that class. In order to calculate the required projection ya+m, this class can
be left -out of consideration first, so that vectors in the main effect spaces of
the mutilated y will be obtained. The coordinates of the effect of B in the
mutilated vector are used as the corresponding coordinates for the complete
y. The same is done for the remaining classes of 4. The coordinate of the so
far omitted class of 4 in the effect of 4 is found by subtracting the coordinate
of the effect of B for that class from the (already known) corresponding coor-
dinate of ys4n. This procedure is mentioned because it means speeding up
the convergence compared with the iterative method for the complete y. We
remark that, although the vectors ya+s obtained by both methods are equal
of course, both vectors in A and both vectors in B differ by the same multiple
of the vector r. This is a consequence of the fact that the condition of ortho-
gonality of N and A*, and of N and B* are different for the complete and for
the mutilated y. The arbitrariness of the relation between N and the pure main
effect is elucidated in this way.

Finally we discuss the situation that the pmJectlon ya+B has been computed,
and that a new class (with observations) of B is added to y afterwards. (Let
e.g. A be a classification according to varieties and B according to trials so
that the added class of B represents a new trial). In order to compute ya+n
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quickly then, new classes of 4 in the added class of B are left out of conside-
ration first. The vector in A, that had been computed already, is considered
as an approximation of the required component in A. An approximation of
the component in B, according to the method of subtraction mentioned for
the case of a slow convergence, will yield the coordinates of the component
in B already computed (so that computation is not necessary) and a coordinate
for the added class of B. Then the method of the first paragraph is applied to
obtain the effect of 4 and B in the mutilated y. Finally the omitted classes of
A will be treated as mentioned in the preceding paragraph. Because the residual
sums will be considerably smaller than when one performs the iterative process
from the beginning for the extended y, the described method is more advan-
tageous. :

3.3.4. Another formulation of the method of estimation

ya+B must be found as the sum of two vectors in A and in B, ysa and ysg,
such that y — ysa — ysB is orthogonal to A and to B. The orthogonal projection
of that difference on A and on B must thus be equal to the null vector. So we
have: ya —ysa— (¥sB)a = 0 and yp-— (¥sa)B— ¥sg = 0. Subtracting the or-
thogonal projection of the first expression for the null vector on B from the
latter yields the equation: ysB — (YsB)aB = ¥B — YaB, While the first equation
may be written as ysa = ya — (YsB)A-

Let the product of the linear transformations in E consisting of the orthogonal
projection on A followed by the orthogonal projection on B, Py Pa, be denoted
by Q. Then the equation for y;g may be written (I — Q)ysp = yB— yaB. Now
we consider the transformation Q within the space B*. This is possible because
for any x in B* (that is orthogonal to N) Qx is in B and orthogonal to N and
thus in B*. In the proof of 1.5.4 we used the theorem that a similar trans-
formation D, which was a product of orthogonal projections too, could have
a bound 1, only if there would exist a vector x, 7% 0 such that Dx, = X,,. In
our case there should exist a vector in B* such that the orthogonal projection
of that vector on A should leave that vector unchanged. Because A and B*
are disjoint, this is impossible. It follows that the considered transformation Q
has a bound smaller than one.

From 1.4.4 we see that the sequence Sy, = X;_, QP converges to the inverse
of I-Q. While yg—yaB according to 3.3.2 is in B* too, the equation
(I - Q)ysB = yB— yaB, With Q a transformation in B¥, is solved by
¥sB = 3,0 OP(YB — yaB) = V1+ Qvi+ Q%1+ Q%1 +.... Further ysa =
= ya — (¥sB)A-

This solution is the same as that described in 3.3.2. It is given in connection
with similar solutions in chapter 4.

3.3.5. Testing main effects or components of main effects

For testing the null hypothesis that e.g. there is no effect of B we need
Y& +3 Y3=Y2-¥%,p and (YasB-ya)®. According to the end of 2.3.4
y%ms = YYA+B = Yysa+Y¥sB. In order to calculate yysa for every class of A,
the corresponding coordinate of ysa is multiplied by the corresponding class
sum in y, and the products are added. In the computational scheme of 3.3.2
these quantities are available. From the description in words it follows that
yi +p also can be written as yaysa-yBYss. The calculation, however, by
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means of this identity is not accurate, because small errors in the components

of the orthogonal projection ya+p are inflated by the multiplication.
Therefore we calculate (ya+B—ya)? directly. Recalling that y—yats is

orthogonal to A and to B, and ya;p—ya orthogonal to A, we have:

"""" “(ya+B—-YA)? = (YsB+Ysa—YA) (Ya+B—YA) = ¥sB(YA+B—YA) =
¥sB {y — YA — (Y - Ya+B)} = ¥sB(Y — ¥A)

wh1ch on the analogy of the foregomg remark about yysa, is equal to
ysB(Y — ya)B = V1¥sB. This expression is equal to a sum of products. For each
class of B, such a product must be calculated; it is equal to the coordinate in
ysB times the coordinate in vy times the number of coordinates in that class.

In order to simplify this calculation the computational scheme in 3.3.2 may
be altered and simplified in the following way. The vectors yp and yap will
not be calculated. Instead of them the sums in the classes of B in y —ya will
be determined and noted. They are obtained by subtraction of the class sums
in y5 = uy from the corresponding sums in y. Division by the corresponding
number of coordinates gives vi. So viyss can be obtained as a sum of products
consisting of two factors instead of three.

In this way we find at the same time the quantity necessary in the numerator
of the test statistic (which must be divided by the dimension k2 — 1), and the
square of the perpendicular y2 - (y + v1yss), which divided by the dimension
n—ky— k21, occurs in the denominator of the F-test statistic. To test the
effect of 4 we need y4 , ; ~ y4 which will be found as y3 - y3 +viyss.

When certain components of main effects must be estimated e.g. of A, then
the estimate of the effect of A4, ysas, can be decomposed in the same way as
ya was in the case of one classification. But testing such components will be
more difficult.

By way of example we consider again the classification of 3.3.1 and in partic-
ular 4, also discussed in 3.2.3. Suppose we are interested in the difference of
effect of the first three classes together and of the fourth class on the one hand,
and in the mutual differences in effect between the first three classes on the
other hand. Bases of the corresponding subspaces are the already mentioned
vector ¢ on the one hand, and (for instance) d; and dg on the other hand (fig. 1).

In order to test the null hypothesis that the first three classes have no dif-
ferences in effect, y must be projected orthogonally on the space spanned by
c and B. When one desires to use the method of 3.3.2, ¢ can be replaced by the
subspace of A, A’, spanned by b and d (see fig. 1).

Let now v1 be ya’ — yBa’ (changing of A’ and B). From the fact that v; is
orthogonal to N, it follows that all vectors v; are multiples of c¢. The linear
transformation Q = Pa-Pg is thus a multiplication by a real number less

than one, say u. It follows that ysa- is equal to (1 +p 4 p24...) vy = ﬁ Vi,

so that v; and va (the latter to determine ) are sufficient to know the result of
the iterative process. This is generally true, if one classification contains two
classes only. This case is pointed out in connection with still following particu-
lar cases, but can be treated in a simpler way.

The vector ¢, obtained by orthogonalizing the vector d on N, can be ortho-
gonalized on B, which gives the same result as orthogonalizing d on B. The
orthogonal projection of d on B is dg (see fig. 1). Subtracting this vector from.
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d and multiplying by 4 to get integers, we obtain the required vector d’ (see
fig. 1). The sum of the squares of the orthogonal prOJectlons of y on B and on
the space spanned by d’ is the square necessary in the numerator of the test
statistic.

In order to test the null hypothesis that the effect of the fourth class does not
differ from that of the first three classes together, we need the orthogonal pro-
jection of y on the space spanned by B and the residual space A" of A ortho-
gonal to A'. To calculate this projection we may use the iterative method, now
with the spaces B and A”'. The only question is how to perform orthogonal
projections on A". For the considered example an orthogonal basis of A" has
been given; use of this basis would imply for every orthogonal projection the
calculation of two coefficients and summation of corresponding coordinates
for three classes of A.

When the number of classes is larger, it will be simpler to calculate the pro-
jection on A’ as the difference between the projection on A and that on A’;
such projections require only averaging. Application of this method in the
considered example shows that every projection on A’ only pertains the first
three classes: the coordinate for the fourth class will be zero. The coordinate
of the other classes will be equal to the average of that class diminished with
the average of the three classes together.

Introduction of weights gives no difficulties; averages will be replaced by
weighted averages.




3.4. PARTICULAR CASES OF TWO CLASSIFICATIONS

3.4.1. Orthogonal classifications

Two classifications 4 and B are called orthogonal, if A* and B* are ortho-
gonal, In that case the iterative method comes quickly to an end, because
ug = 0. Further vi = yg+, and ysa* = ya — yn. Finally viys = v% = ylzgs,
so that yx.ip = ¥4 +yhs. All these relations also follow directly from the
orthogonality of A* and B*. So we find that the estimate of Ey is equal to
YN+ ya*+yB* = ya-+yB — yx and the square of this estimate is

Yt YA YTV - Y = Va i -vi, sothat y} = y?-y3 -vi+v%

Apart from the simplicity of the calculations we have the particularity that
the estimate of an effect, say A4, is the same whether the other effect B is sup-
posed to be present or not.

To obtain a general condition for orthogonality, also in case of a diagonal
metric, the sum of weights in class j of B is called W(;). A vector with the coor-
dinates W(jz) in class ji1 of B, and with coordinates —W{( 1) in class jo of B and
with zeros in the remaining classes is in B*. We choose a (any) class of 4 and
also consider the corresponding basis vector of A consisting of ones and zeros.
Let the sum of the weights of the coordinates that are in that class of 4 as well
as in class j of B be r;. Then the two mentioned vectors are orthogonal if and
only if rs, W(ja) — rs, W(j1) = 0, or ry, : r5, = W(j1) : W(ja). Because the num-
bers j1 and j» have been chosen arbitrarily, it follows that the sums of weights,
r;, are proportional to the numbers W{(j). Moreover this is true for every class
of 4.

We have: Two classifications are orthogonal, if and only if the proportions
between the sums of weights of the coordinates of all the classes of the one
classification are equal within all classes of the other classification. This pro-
portion will be equal to the proportion of the sums of weights of the complete
classes of the first classification. Compare Kuiper (11).

3.4.2. Balanced incomplete blocks

In classifications with the name “incomplete blocks” A is often called a
classification according to treatments, and B a classification according to blocks,
which are more or less homogeneous groups of individuals (plots). The dif-
ferences in effect of these blocks are taken into account, in order to eliminate
the inevitable variation between them. Every block will be a natural unit such
as animals with the same parents, estimates by one person, yields of adjacent
plots etc. Especially when the number of classes of 4 is large, it is impossible,
in general, to form so large homogeneous groups of individuals (plots, animals
etc) that all classes of 4 can be included in such a group.

In balanced incomplete blocks any of the ¢ classes of A4 consists of r coor-
dinates; any of the b classes of B consists of k coordinates. Clearly n = tr = kb.
Any class of 4 has with any class of B one or no coordinate in common. Any
two classes of 4 are represented together in A blocks. Considering the » classes
of B in which class i of A4 is represented, we observe that these r classes of B
contain kr — r coordinates that belong to the 7 — 1 remaining classes of A4.

Because every of these #— 1 classes is represented in a class of B together
with class i equally frequently, namely A times, we have: A = (kr — r)/(z ~ 1).
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In order to observe the course of the iterative method for the orthogonal pro-
jection of y on A+ B, we consider a vector a in A* consisting of coordinates

@, with /_,a; = 0 because A* is orthogonal to N. Applying the linear trans-
formation Q = PaPg on a we obtain Qa. The coordinate of Qa in class i of 4
is equal to the average of r from the averages of the classes of B in a, namely
of those classes of B in which class i of 4 is represented. Because every of the
remaining ¢ —1 classes of A4 is represented in those classes of B A times, we find
(ras + 22y 21 ap)rk, which, because of the relation between the a;, is equal to
(r —May[rk. Because this is true for every i, it follows that Q is a multiplication
by the number w = (r —A)/rk. The factor . is the only proper value of the
transformation Q in A%,
Analogously to the case of a classification in two classes we have

YAk = (1 - u) (ya —yBa) or substituting A = (kr - r)/(z - 1):

rk
Ysar = t((; 3 (ya—yBa)-

Clearly v1ysa, necessary for testing the effect of 4 and for computing yfl, is

equal to t((k 1; (ya - yBa)2

Geometrically the property of this Q means that a in A%, Ppa and PsPpa
can be represented by arrows in a plane, so that the angle between a and Pga
is equal to that between Pga and PsPgpa. Denoting this angle by ¢ we remark
that the length of Pga is cos¢ times the length of a, and that the length of
P, Pga is cos¢ times the length of Pga, so that pu = cos?p. We conclude: the
balanced incomplete block design has the characteristic property that any
vector in A* forms the same angle ¢ with (its orthogonal projection on) B*
or B. Because PyPg restricted to A* is non-singular, there is a one-to-one
correspondence between A* and the set of orthogonal projections of the vectors
in A* on B. This set is a vector space Pg(A*), with the same dimension as A*
of course. Any vector in Pp(A*) forms the same angle ¢ with A* (or A). The
residual space of B orthogonal to Pp(A¥) is also orthogonal to A*; for, if a is
in A*, then the projection Pga and the perpendicular a — Ppa are orthogonal
to that space, so that the same holds for their sum a.

It follows also geometrically that the square of the perpendicular, necessary
for testing the effect of 4, ya+B— ¥YB = Ysa* + (¥ — ¥s4*)B — ¥B = Ysa* — (Ysa*)B,
i.e. the perpendicular from ysa+ on B, is equal to

1 2 1
in2 . AR 2 f—1 —_ —_ = — 2 .
sin?@ - (ysa*)? = (1 u)( “E"VI) - Vi
Similarly the square of any perpendicular from a vector a in A* on B is equal
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Let a; and ag be two vectors in A*, and by and by their orthogonal projections
on B. Then the identity w(ai+ as)? = (b1-+bs)2 holds. Because p.a% =17
(i =1, 2), we obtain pajag = bibe. Let @1 and @2 be the angle between a3
and ag, or between by and be, respectively. Then the last identity may be writ-
ten as



paiag bbb
Vilai|-Vulaz|  [b1]+[be]

Hence the orthogonal projection of A* on B preserves the angles between vec-'
tors. In particular, the orthogonal projection of orthogonal vectors in A*
on B will be orthogonal.

Let a; and ag, and therefore by and bg, be orthogonal ‘non-zero vectors.
Then the inner product ajbs = {b1 -+ (a1—b1)}bz = bibs + (a1 — by)bs is zero,
because a1 — by is a perpendicular on B. It follows that also the perpendiculars
a1 — b and ag — bg are orthogonal. We conclude: the perpendiculars from any
set of orthogonal basis vectors of A* on B span the residual space of A+ B
orthogonal to B. The sum of some of such perpendiculars is equal to the
" perpendicular from the sum of corresponding vectors in A* on B. The-space
spanned by B and some subspace A1 of A* is also spanned by B and the set
of perpendiculars from an orthogonal basis of A1 on B. Let Ay be the residual
space of A* orthogonal to Aj. The orthogonal projection of y or of ya+s on
the residual space of A -+ B orthogonal to A;+ B is equal to the perpendicular
on B from the orthogonal projection of ysas« on Ag. This projection of y is
needed in the numerator of the statistic for the test of the hypothesis that the
expectation of the component of y in Ag vanishes. The square of the corres-
ponding perpendicular is sin® ¢ times the square of (ysas)a, i.e.

Or COS @1 = COS Q2.

1 1
- (Vl)i2 = 1- (yAg - YBA2)2-

From the fact that the perpendlculars correspondmg to orthogonal compo-
nents of the pure effect of 4 to be tested are orthogonal, it follows that the
set of corresponding squares are independent (in case of a normal distribution
of y) and their sum is equal to 1% v3. The square viysa can thus simply be
decomposed in a sum of independent squares necessary for testing orthogonal
components of the effect of 4, namely by projection of the vector v1 on the
corresponding subspaces of A and multiplication of the squares of these pro-

jections by ﬁ - See also KRAMER and BRADLEY (10).

3.4.3. Group divisible partially balanced incomplete blocks

In partially balanced incomplete blocks with two associate classes there is,
analogously to the balanced incomplete blocks, a classification 4 according
to treatments and a classification B according to blocks. Any of the ¢ classes
of A4 consists of # coordinates; any of the b classes of B consists of k coordinates.
Any class of 4 has with any class of B one or no coordinate in common. The
pairs of classes of 4 satisfy a so-called relation of association. This relation is:’
any two classes are either first associates or second associates; every class has
n first associates and ng second associates (so that #; +#s = ¢ — 1); any two
first associates are represented together in A1 blocks and any two second asso-
ciates are represented together in Az blocks. If A; = A2 we have balanced in-
complete blocks again. v

In order to observe the linear transformation Q = PaPg we consider again

a vector a in A* with coordinates a;, with Z{_;a; = 0. Applying Q we will
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find in class i of 4, analogously to the foregoing case, 1/rk times the sum of the
coordinates of a in those classes of B in which class i of 4 is represented. Be-
cause every of the remaining ¢ — 1 classes of A4 is represented in those classes
of B, either A; times if it is a first associate class of i, or Ag times if it is a second
associate class of i, this sum is equal to ra; +A1S1-A2S2; here Sy represents
the sum of coordinates a@; corresponding to the first associates of i, and Sy the
similar for second associates; a;+ S1+ S2 = 0. So we find in class i:
- (rag - M81+ e S2) rk
which, because of the relation: between the a;, is equal to
{r -22) a4 (M - M2) Sa}/rk.

The classification 4 is named group divisible, if the classes of 4 can be
divided in m groups of n such that any two classes in the same group are first
associates (thus n; = r — 1) and any two classes in different groups are second
associates (thus #p = nm — n). Considering again the 7 classes of B in which
a certain class of A4 is represented, we find the relation: rk = r+Am - hontg =
=rd+Mmu-1)+2r@E-n). Or: rk—2at = r—-dg-+(n—1) (M —29).

Uniting the classes which are first associates to new classes, we denote the
corresponding space of main effects, which is a subspace of A*, by A;. Ifaisin
Ay, then {(r—Ag)a; + (M1 - A2)S1}/rk is equal to {(r —Ae)as+ (A ~2e) (- Das}/rk =
= {(rk — Aet)a;}/rk. Y apphed to any vector in A; is a multiplication by p1 =

= (rk —Aat)/rk. If a is in the residual space Aa of A* orthogonal to A; so that
a;+ S1 = 0, we find {(r-Ag)a; — (M - )i} /rk = {(r —M)ag}/rk. Q applied to
Agisa multlphcatlon by pe = (r —\1)/rk. The transformation Q in A* has two
proper values p; and pp with Ay and Ag as associated spaces of proper vectors
respectively. It follows immediately that

1 1
Ysar = l—~— (ya—yBa)a; + (yA YBA)Ag =

k
3\; (YA~ ¥YBA)A; + korim (YA —yBA)A; =

rk 1A\ —A2)
= fk——r—l——)\ [YA_" yBA + Tt PAT YBA)Al:l .
rk _ .
Further viysa = — (YA yBA)A; + rk'——mi (YA-YBA)ag = |
.rk
= TN e [(YA YBA)2 + (YA—YBA)?M] .

which is seen from the fact that Pp(Ai) and Pg(Ap) are spaces of proper
vectors of PpPs in B* associated with the proper valpies p1 and pa. It follows
that any orthogonal component in A; or in Ag will be estimated by multipli-
rk
rk-r+M
of v1 on the corresponding subspace. For testing such a component we need

cation by the appropriate factor k of the orthogonal projection
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the square of this projection of v; as well multiplied by the appropriate factor.
The sum of such quantities (squares of perpendiculars on B) is equal to v1ysa
again. Compare KRAMER and BRADLEY (10).

We remark that 283 of the 376 partially balanced designs compiled by Bose
e.a. (2) are group divisible.

3.4.4. Latin square type partially balanced incomplete blocks

20 designs in the just mentioned compilation are of the Latin square type.
We consider the simplest type first. There are #n2 classes in A which can be re-
presented by the lattice points of a square n by n.

Two classes are first associates, if they are represented in the same row or
the same column of this square. Thus #; = 2(n — 1). Otherwise they are second
associates. The orthogonal classifications according to TOWS and columns
correspond to orthogonal subspace A1 and Ag of A*.

If the vector a in A* with coordinates a; happens to be in A; or in Ag, then
the coordinate of Qa in class i of 4 (compare foregoing section),

{(r =2 + (- A)S1}/rk,
is because S1 = (n— 1)a; + (0 — &) equal to {(r — A2)a; + (A1 —A2) (n —ag}/rk.
Then Q is a multiplication by
{r-22 + (n-2) (A1 — M)} /rk = {rk — Aon® — n(M1 — M2)}/rk.

If the vector a is in the residual space Ag of A* orthogonal to Az and Ag, so

that S1 = (0-a) 4 (0-a), {(r —Me)a + (A —22)S1}/rk is equal to
(r — 271 + Ag)ayfrk. It follows that

e = A3y [0A~ YnRay + Oa- Yeadag] +
B rk
1 . rk
+ .l—m (yA-YBA)Ag = P VW (ya-yBa) +
rk
rk rk
+ ()\ B n0a—%e) Tk =1+ D= )[(YA YBA)A; + (YA — YBA)A,] -

The expression for v1ysa and the investigation of orthogonal components of
the effect of 4 will be analogous to the foregoing section.

An extension forms the case where in the square there is also a third classi-
fication in r classes of size n, orthogonal to the classifications according to
rows and columns; now two classes in the same row or column or the same
class of the third classification are first associates. To these three classifications
correspond three orthogonal subspaces of A* : A1, Az and Ag. If the vector
a in A* is in one of these three subspaces, Q is a multiplication by

{r-2a + (m=3) (1 —A)}rk = {rk —2on® - 2n(A - Ao)}/rk.
If a is orthogonal to these subspaces, then Q is a multiplication by
(r - 3\ -+ 29)rk.
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It follows that
rk

Ysar = T — 143 - D (Ya-yBa) +
‘ rk rk
+ (7\21’12 +2n( —he)  rk—r43n
The expression for v1ys4 and the investigation of comp
to the preceding cases.

2)\2) 27— 1(ya- YBA)Az’

onentsin-A is analogous

3.4.5. Two-dimensional lattices
In a two-dimensional lattice 7p? coordinates are divided according to treat-
ments (4) and blocks (B) again. There is a (sub)classification By (of B) of the
coordinates in # groups such that every group contains:all p2 treatments once.
Each of these groups is divided in p blocks of p treatments such that these

partitions of the treatments are orthogonal classificati
every class of one of these classifications is represent
another classification. We observe that any vector in
B orthogonal to Bi, has a vanishing sum of coordinate

We consider the linear transformation Q = PP
coordinates b;. If b is in By, then Q = 0, as B1* is o
Bg, then the coordinate of @b in a block will be 1/r
coordinates of b in those classes of 4, which are repr
b; is the coordinate of b in that block, the contributia
block group, to which the considered block belongs
contribution from the remaining block groups is zero
represented in the considered block, occur in p differen|
Hence the required coordinate of Qb is pby/rp = by/r.
vector is concerned, Q is a multiplication by 1/r. Any
same angle arc cos r—* with A. It follows that

1
Ysb+ = (YB-YaB)B, + — (B Y;

r
r 1 r

=71 (YB—-YAB)—m (¥B, ~yaB) = - —7 (B~

Because the second term is orthogonalto A, ysas = yA

For the calculation of yi +p We Use V1ysB = ’%1 (YB-Yaj

and yi. Subtraction of ylz_;, from yﬁﬂ; supplies the tes
thesis that the treatments have no effect.

The particularities, established for incomplete block
when the covariance matrix of y is not o2- 1,

3.5. REGRESSION PROBLEMS WITH TWO MAIN EFFECTS

3.5.1. Interaction

s of the p2 treatments:
once in every class of
9, the residual space of
in any class of Bj.
n a vector b in B with
hogonal to A. If bisin
times the sum of the
sented in this block. If
n to this sum from the
, is equal to pb;. The
, as the p classes of 4,
t blocks of every group.
As far as the considered
I vector in By forms the

AB)By =

1
yaB) — — (yB; ~ yN)-
r
-yN- P (YB—yAB)A-
1
B)2— 71 {(YB - )’AB)Bl}2
t statistic-for the hypo-

s and lattices, are lost,

AND INTERACTIONS

By two classifications 4 and B of the coordinates of a vector y in E a third
classification is determined, which arises by uniting those elements into one
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class which belong simultaneously to a certain class of 4 and to a certain
class of B. In our example of 3.3.1 eleven classes are obtained in this way.
(Compare Kuiper [11]).

Corresponding to such a classification the vector space of vectors, that have
the same coordinates within a class, may be defined; a basis of this space is
formed by vectors with coordinates one in one class and zeros elsewhere, This
space, as well as the corresponding classification, is denoted by AXB. It is
called the space of interactions of 4 and B. It is easily seen that the spaces N,
A, and B and thus also A 4 B are subspaces of A X B. The residual space of
A X B orthogonal to the space A+ B is called the space of pure interactions
and denoted by (A X B)*. In our example it is 11-1-2-3 = § dimensional.

The supposition that Ey is in the space A X B implies that to every combi-
nation of the qualitative or quantitative characters considered- in the classi-
fications 4 and B there corresponds an expectation, which cannot (in general)
be described as the sum of effects of the characteristics 4 and B separately.
The space A X B may also be considered as a space of main effects of one
characteristic, which consists of combinations of the characteristics 4 and B.

3.5.2. Estimation and test

The estimate of Ey is the projection of y on A X B. Projecting is simple
because A X B is a space of main effects: in every class of A X B the coordinates
of y are replaced by their average. The square of the perpendicular is obtained
in the same way as in 3.2.2; division by the dimension of the space orthogonal
to A x B yields an unbiased estimate of o2, which also will be used as denomi-
nator in test statistics.

The estimation of the components of Ey in N, A* and B* remains equal to
what we found in the foregoing; for the orthogonal projection of y on A+ B
is the same as the orthogonal projection of yaxs on A 4 B. The estimate of the
component in (A X B)* is equal to yAxB — YA+B-

The null hypothesis that Ey is in A+ B, against the alternative that Ey
is in A X B, is equivalent to Eyaxp* = 0. In the test of this hypothesis
y(ZAXB)o = y3xp —Ya+p Will be used in the numerator of the test statistic.
Rejecting this null hypothesis implies the presence of effects namely joint
effects of 4 and B. When the null hypothesis is not rejected, a test on the pres-
ence of main effects may be performed along the same lines as in the fore-
going. However, in order that the test will be independent of whether there is
an interaction or not, the component in the denominator is the perpendicular

714 147 T2 —2‘~

-on A X B and not on A} B.
Consider the following decomposition of a vector Ey in its components
in N, A* B*, and (A X B)*:
B
12 127 -2 27 -2 27
{ | ] l
112 204 114 141 12 21 (-2 23 -2 2}

On the left hand side we observe that three combinations of characteristics
yield the same effect. On the right hand side we find two main effects and an
interaction. With this example in mind, we remark that estimation of pure
‘interactions is full of sense, while testing the presence of interactions, or esti-
‘mating the joint effects of two or more characteristics, but, that an isolated
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presentation of a formal pure interaction may be misleading for purposes of
interpretation.

Similarly an isolated presentation of main effects is
interaction between the corresponding characteristics.
remark is that any suppos1t10n about Ey whlch con

isleading, if thereisan
related and self-evident

Often every class of 4 X B has only one coordinate s¢ that A x B is identical
with E. The residual space orthogonal to A X B then consists of the null vector
only. In such a case (the mcomplete blocks and the lattices form examples) one
will suppose in general that Ey is in A -+ B; this supposition must be acceptable
of course. The orthogonal projection of y on the space, formally indicated by
(A x B)*, will have expectation zero then. Another possibility is that Ey xB)*
is supposed to be in a special subspace of (A X B)*. |Examples will be con-
sidered in the following section. '

3.5.3. Components of interaction

We here consider only orthogonal classifications
every class of 4 X B. Let x = (A1, ..., Ay) be a vector in the vector space X
of n-tuples and y = (u1, ..., m) a vector y in the vector space Y of m-tuples.
To every pair of vectors x and y a vector x ey, called zensor product of x and y,

is assigned; this is a vector in the space of mm-tpples with coordinates
apg=1,..,n j=1,....m
_)\1 ELI )\1 y-2 ....... )\1 ELI ....... )\1 Ll'm_
)\2}“1 )\2. p-Z ....... )\2 p. IR )\’2“ m
Xey= | : : : :
)\i.ll-l 7\'{!’-2 ....... )\i y.] ....... )\Z.[&m
_7\n.P-1 My-z ....... )\”:w ....... 7\n.P-m_

The space of all linear combinations of such produc
the tensor product X ¢ Y of the spaces X and Y.
The inner product (with respect to the metric 1) of (A1, ..., Az) ® (1, ...y )

and (\f, ..., Ay) ® (g ++-» Uy i€ Of X @ yand X’ @ ¥’ i§ equal to
MM + MAais + ... + MABmiby -+
+ Aohguany + Aedgpiatts + ... + AAomllmt
+ Madabiip] + Midgbi2is + -e + Medglhmihn =
= (A1 + oo+ Mdy) (apg + - padtm)-

Sowe have (xeoy, x’ oy’) = (x,X) (¥, ¥). It follows| that if x is orthogonal
to X, and y is orthogonal to y’ then x e y is orthogonal to x’ e y’. Hence the
tensor products of the vectors of an orthogonal ‘basig of X and those of an
orthogonal basis of Y form an orthogonal basis for X|e Y.

Let ry be the vector in X consisting of ones and ry the vector in Y consistiilg
of ones. In X o Y the subspaces X o ry and 1, ® Y arg spaces of main effects

s: Zgou(Xxq @ yy), is called
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accordmg to the columns and rows respectively in the given m X n array. Any
main effect X e 1, or r @ y will also be represented by x or y respectively. The
tensor product of two pure main effects x and y (which are vectors orthogonal
to ry:and 1y respec’uvely) is a pure interaction, because with any main effect
xeryandryey':
(xey) (x'or1y) = (x8y) (1; 0 y') = 0; for e.g. (x 0 y) (x' o 1y) = (%, X)) (¥, 1y) = 0..
The tensor product U e V of the two subspaces U in the space of pure main
eﬂ‘eets X* in X, and V in the space of pure main effects Y* in Y, is called the
space of pure interactions of U and V.

As.an éxample we consider the case in which U has the basis x == (1, 1,~1,-1),
and V the basis y = (2, -1, —1). The tensor product U e V has the basxs
' I 2-1-17
2 -1-1
Xey=|2 11
12 1 1]

This is the basis of the pure interactions of the two mentioned main effects
Uand V.

Next let the vector x (or y) be the set of function values of a polynomial,
defined on r (or m) equidistant real numbers x3 (or xg). If x represents the
function f(x1) and y the function g(xz), then x e y represents the function
f(x1) - g(x2), i.e. a polynomial in two variables, defined on a rectangular lattice
of points in a Cartesian (x1; x2) coordinate system. If f(x1) or g(x2) is the func-
tion I, in other words, if one of the vectors x or y is ry or ry, then we obtain
main effects again. The tensor products of a set of orthogonal vectors in X,
representing orthogonal polynomials of degree =<s in x1, and a set of orthogo-
nal vectors in Y, representing orthogonal polynomials of degree =¢ in xs,
form an orthogonal basis of the subspace of X e Y, representing polynomials.
in two variables x; and xg, which for every fixed x2 are of degree <s in xi,
and for every fixed x; of degree <1 in xs.

Let, for example, x = (1, -1, —1, 1) represent the quadratic orthogonal com-
ponent of pure main effects X*, and y = (1, 0, —1) the linear component of
pure main effects Y*. Then the tensor product

1 0-17

-1 0 1

Xe¥=1l-1 0 1

L1 0-1]
is the basis of the pure mteractlons of the quadratic main effects U and the
linear main effects V, and corresponds to the function x3x3 — 5xa. Bases of pure
interactions can also be formed as tensor products of main effects based on a
classification on the one hand, and of main effects based on polynomials on

the other hand.

Another example is the tensor product of the best estimates of the pure
main effects x and y (which stand for the corresponding vectors in A* and B*)
of 4 and B. The subspace of pure interactions, spanned by this product,
represents non-additivity of the effects of 4 and B (TukEy [21]).

All such components can be tested in a way similar to that in 3.2.3. The
supposition about Ey determines the residual space, while all the components
are orthogonal; hence, the square of the projection of y on the corresponding
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spaces can be found easily. That the F-test is also valid in the last example
(non-additivity), in which the space on which y must be projected has a random
ba81s vector, follows by considering the conditional distribution of the F-test
statlstlc, under the condition of fixed effects of 4 and B. Because this distribu-
tion is independent of the condition, this condition may be omitted.

3.6. GENERAL REGRESSION PROBLEMS BASED ON

3.6.1. Definitions and hypotheses

Let the coordinates of y be divided according to three classifications 4, B
and C. Such classifications can be represented in a spatial diagram best. By
the three classifications a classification is determined| of which every class
contains the coordinates which belong simultaneously to the same class of 4,
the same class of B and the same class of C. The subsp ce of vectors, with the
same coordinates within every of these classes, is the space of second-order
interactions of 4, B and C, denoted by A X B x C.,

It contains N, A B, and C, further A X B, A X C ahd B X C. The residual
space of A X B X C orthogonal to the space spanned|by A X B, BXx C and
A X C, and thus orthogonal to N, A*, B*, C*, (A X B)*,|(A X C)*, and (B X C)*
is the space of pure second-order interactions (A X B x C)*. The supposition
that Ey is in A X B x C implies that, to every combination of the characteristics
4, B and C, there corresponds an expectation which cannot always be described
as the sum of the main effects and the ordinary interactions between 4 and B,
C and B, and A and C only.

Generalizations to four or more classifications will ngt be discussed, because
the treatment is analogous; interactions of third and higher order have to be
introduced.

Every hypothesis about Ey (and thus also the null hypothesis and the alter-
native in a test) is of the form: Ey is in some subspace|W of E. If some inter-
action is included in W, then all main effects and interactions of lower order,
which pertain the same classifications as that interaction does, should also
occur in W; if any of them is dropped, then interaction| looses its sense. So we
obtain the following types of admissible tests (and thu§ hypotheses), with the
spaces that span W under the null hypothesis on the left, and those under the
corresponding alternative on the right:

null hypothesis: alternative hyppthesis:

CLASSIFICATIONS

IV: N, A®, B* C* (AXB)*, (AXC)*, (BXC)*; |V:N, A%, B?, C*, (A XB)*,(A XC)*,
BXO*, (AXBXO)*.
III: N, A*, B*, C*, (A X B)*, (AX C)*; N, A%, B*, C*, (A XB)*, (AXC)*, (BXC)*.
I[: N, A%, B*, C*, (AXB)*; N, A®, B%, C*, (AXB)* (AXC)*.
I:N, A* B*, C*; N, A%, B*, C*, (A X B)*.
N, A B‘ (AxB)‘ N, A*, B*, C*, (A XB)*.
N B ; N, A%, B*, C*.
N, A*, N, A%, B*, (AXB)*.
N,A N, A®, B*,
: N, A*,

The following test concerning the effect of C is not reasonable: the alterna-
tive hypothesis is W = N4 A* + B* -} C*+ (A x B)* + (A x O)*, and the null
hypothesis is W = N4 A* { B* - (A X B)*+(A X C)*' For W under the null
hypothesis contains (A x C)* and not the main effect C}".

The last three of the mentioned admissible tests and the correspondmg hypo-

W
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theses need no further consideration, because they have been discussed in the
foregoing; we need only remark that the denominator of the test statistic will
be formed from the square of the perpendicular on the space, corresponding to
the most extended hypothesis about Ey, taken in consideration in any special
case.

3.6.2. Performance of estimations and tests

We consider some special cases of the set of hypotheses given in the previous
section, namely those marked I, ..., V, in detail.

First we take case I. The estimate of Ey is the orthogonal projection of y on
the space spanned by A, B and C then. Remembering that orthogonal pro-
jection on each of these spaces requires a very simple procedure (averaging
within classes), we use the iterative method of 1.5.6 with k¥ = 3. Compare
Yates (22) and STEVENS (20). Analogously to the case of two classifications,
the vectors u, v and w will not be written in full, but only one coordinate of
every class will be noted. For the following example of y, in which the symbols
a4, by and ¢; indicate the classes of 4, B and C respectively:

a as as a, as ag

¢ €y Cg € €z Cg C: €3 C3 €y C2 Cg €1 €3 C3 €1 €2 C3

b, |21.6 20.1 16.4|20.2 18.9 20.120.2 30.9 19.8 20.1 26.5|32.2 20.1
be 26.711.3 14.3 22.8 15.9 11.0
by 22.6 25.1 21.9 209 4 21.7 28.8
b, 18.8 12.2 24.6 17.3 20.1 10.9

we obtain this computational scheme:

U; = Ya 20.42 19.78 . 19.96 22.42 20.48 20.92
uy 0.17 -0.17 0.00 0.00 0.26 -0.26

SU =y 2068 19.52 19.96 242 20.81 20.59

¥s Yaz Vi Va... XV = ym* Ye 22.15 20.98 19.60
2225 20.68 1.57 —0.04... 146 Yac  20.66 20,66 20.66
18.00 2077 277  -0.08...-2.84 (vde 157 039 -0.39
23.50 20.63 2.87 0.12... 3.08 w; -0.08 0.71 -0.67
17.32 20.56  ~3.24 0.04...-3.15 wp 004 -0.01 -0.01

Yec®=3Zw 002 068 -0.70

The steps ya, YB—YaB, Yoand ya ¢ need no further explanation. (vy)¢ is formed
by averaging in vi; the second coordinate e.g. is 3 x 1.57 + 3 X (-2.77) +
-+ 3 x2.87 + 3x(-3.24) divided by 12. wi = yc-yac—(Vi)c. The first
coordinate of ug is found as 3 x 1.57 4 2 X(-2.77) from v;, and —0.08 +
+ 2x0.71 + 2 X (-0.67) from w1, the sum of which has been divided by §5,
and the quotient noted with opposite sign: 0.17. The subsequent steps are found
similarly. Analogously to the case of two classifications, vi, w1, ug, va, wa etc.
are orthogonal to N, which affords a check again. Further Xv and Xw are
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orthogonal to N, so that they are equal to ysg+ and

Y u=yN+ Ysa+. Finally Y,2&+B+C= YYsa+ YYsB+ ¥¥sc
so that the calculation of this square is analogous to th
in 3.3.5.

In case II the hypothesis can be summarized in:
estimate of Ey is-the orthogonal projection of y on
means of the iterative method for two classifications
If desired, the component in A X B can be decompos
N, A*, B*, and (A X B)*, by applying the iterative m

sc* respectively, while

YAYsa+ YBYsB+ YcYsc,
first method discussed

= (A XB)+C. The
. This is obtained by
namely 4 X B and C.
in the components in
od for the two classi-

fications 4 and B on ysaxs; the component in the space of pure interactions
is found by subtraction. The last decomposition is not necessary for purposes
of testing. In orderte-determine the square of the orthogonal projection, we
need only the components in AX B and C.

In case IIT the hypothesis can be summarized in W = (A X B) + (A X O).
Estimation of Ey requires the iterative method for|the two classifications
AXB and A x C. Arranging the classes of both 4 X B and 4 X C in groups
according to the classes of 4 shows, that the array falls|apart in separate arrays
for every class of A. This is reflected in the techni¢al performance of the
iterative method: the method will be applied to every class of 4 separately,
with respect to the classifications B and C in it. It is gonvenient that the sub-
traction which yields vi, always takes place in the same subspace, either A X B
or A X C, In order to decompose the unique projection into further compo-
nents, the method for two classifications will be applied to the (not unique)
component in A X B with the classifications 4 and B, and to the (not unique)
component in A X C with 4 and C. In one of them is yx. Both yield a (not
unique) component in A¥*, so that the required unique; component in A, ysas,

is equal to the sum of these two not unique components.

In case IV the estimate of Ey is obtained by the ite
classifications, namely 4 X B, A x C, and BX C. If
components of the projection in the separate subsp:
method for two classifications will then be applied to
unique) components separately. One of them will conts
main effects will each be found as the sum of two not

In case V the estimate of Ey is the orthogonal p

in the components in the subspaces mentioned in V

ative method for three
ne is interested in the
s mentioned in IV, the
every of the three (not
1in yn; the unique pure
unique components.

rojection on the space

es place by the method

A X B x C, which can be obtained in a very simple %ay. The decomposition

discussed in the last paragraph; the second-order inte
as a residual.

action will be obtained

Because the squares of the projections correspondin;

s to the null hypothesis

and the alternative can be calculated in any case now, every admissible test
can be performed (compare 2.3.5). For the denominator of the test statistic

we refer to the end of the last section. We still need t
of the subspaces. In our éxample we have 1 for N, 5 fo
9-1-3-2=3for(BxO* and 30-1-5-3-2—
space of E orthogonal to N, A*, B¥, C*, and (B x C)*.
remaining interaction spaces in this example, becaus
the distribution of the coordinates in comparatively

vectors, and thus spaces, in common with each oth
considered spaces. This phenomenon is indicated by th

know the dimensions
A¥, 3 for B*, 2 for C*,
3 = 16 for the residual
'We do not consider the
,”as a consequence of
any classes, they have
r and with the already
e term “‘confounding’.
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To the case that every class of 4 X B X C contains one coordmate _only,
remarks similar to those at the end of 3.5.1 apply.
The considerations are also valid for any diagonal metric.

3.7. PARTICULAR REGRESSION PROBLEMS WITH THREE CLASSIFICATIONS

3.7.1. Complete orthogonality

Three classifications 4, B and C are called completely orthogonal, if every
classification is orthogonal to the classifications generated by the remaining
classifications i.e. A* is orthogonal to B X C, B* is orthogonal to A x C, and C*
is orthogonal to A X B. This definition implies 6 relations of orthogonality
which are not true in the general case. In diagram:

(B x C)* - A* —B* — (A x C)*
N

(A ><I B)*
In this particular case e.g. also (A X C)* is orthogonal to (A X B)*. This may
be seen as follows: Choose a class of 4 X B, i.e. a class of 4 and a class of B.
Any vector in (A X C)* will contain coordinates ¢; corresponding to class /
of C in the chosen class of 4. Let the number of coordinates in class i of C
and in the chosen class of 4 be »;. Then, because (A x C)* is orthogonal to
A, Zyme; = 0. Let the number of coordinates in class i of C, which are in
the chosen class of 4 X B, be equal to ny;. Then, as the classes of C are repre-
sented in the classes of 4 X B in the same proportion as in the classes of 4,
we have also Xymyc; = 0. The inner product of any vector in (A X C)* with
the basis vector of A X B, consisting of ones in the chosen class of 4 X B
and of zeros elsewhere, is zero. This is true for every basis ‘vector of A X B.
Hence (A X Cy* and A X B are orthogonal, and also the assertion is true.
Another sufficient condition for complete orthogonality is: A is orthogonal
to B, and C is orthogonal to A X B. For let the number of coordinates in
class i of 4 be ;, in class j of B my, and in class k of C ng, then the number of
lymyny,

coordinates in class (i, j, k) of AX BXx C is equal to , from which

follows a proportional representation of the classes of B in those of 4 X C,
and similarly of the classes of 4 in those of B X C.

Orthogonality of 4, B and C is not sufficient for complete orthogonality,
as may be seen by the following example, where the numbers are the numbers
of coordinates in the classes of 4 X B x C:

4] C2
h be b ba
a 14 16 a1 16 14
as 16 14 as 14 16

In the case of complete.orthogonality the estimation of effects and the perfor-
mance of tests is very simple again. We mention only

Y(axB)* = YAXB— YA —YB+¥N; Y%AXB)‘ = YaxB ~ Ya - Y+ &
which are the formulas for two orthogonal classifications, and
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YAxBxC = YN Ya* + YB* + Yor + YaxB)* + Y(ax0)*
from which follows

Y(AXBXC)* = YAXBXC — YAXB — YAXC — ¥BxC+YAa+Y
YEXBXO* = YAXBXC — YAxB — YAxC — YExc+ YA+

With the definition of orthogonality, given in 3.4.1}

be extended to the case in which weights are present.

3.7.2. Latin squares

In the case of Latin squares there are n2 coordinati
gonal classifications, each in classes of # coordinates. I

+ YBx0)* + YaxBxO*s

B-+Yc—yn, and
B +ye - yh

the considerations can

es in y and three ortho-
n every class of one clas-

sification the classes of the two remaining classificati
one coordinate. Such classifications have already

ns are represented with
n mentioned in con-

nection with lattices and incomplete blocks. Two classifications are usually
indicated by the terms *“‘rows” and ‘“‘columns”.

The most extended hypothesis about Ey will concern three main effects only,
because the spaces of pure interactions have vectors an thus spaces in common
with the spaces of main effects: mteractlons and effects are confounded.

Ey can be found then by application of the iterative method for three classi-
fications. But it is simpler to consider the two spaces A+B and C, and to
apply the iterative method for obtaining orthogonall projections on a space
spanned by two spaces. We obtain the following sequence: u; = yaiB =
= ya+ yB-yn; the three components are not add¢d but noted separately.

= (y-ya-yB+Yyn)c; the contributions of the ¢
within every class of C before averaging. uz = (vi)a
are noted separately (the orthogonal projection of
va = {(vi)a -+ (vi)B}c; the contributions of the comp
class by class of C. And so on.

yscx will be found as Xj21v;; ysa® as ya — yN -
yB -y~ - Zi21(V4)B.

An interesting example (PEARCE [16], figure XVIII|

mponents will be added
(v1)B ; the components
1 on N is 0 of course).
nents will be determined

2i21(ve)a; and yss* as

) can be derived from a

Latin square with p2 coordinates (p = 3). In the array p by p, one row (class

of A) is deleted, and a column (class of B) is added suc
p—+1 is obtained. In the added column all classes of
sented. This missing class is called class p of C. In
class i of C is not represented; in column p1, t
p of Cis not represented. Inrowj(j =1, ..., p—1)¢
twice. It is clear that the new classifications to rows

orthogonal, but that Cis not to 4 and to B. Orthogonall
will be performed in the way just described. For this

h that an array p—1 by
C but for one are repre-
column i (=1, ..., p)
he added column, class
lass j of C is represented
A) and columns (B) are
projectiononA+B+C
purpose we consider: the
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transformation Q = P¢Pay+p on a vector in C* with coordinates ¢; in: class
i of C so that .
cp

pz 1Ci+(p—1)0p~0 or Eip=lci=~;z
PAgivesinro:wlz (2€1+cz+ ep) = +1 (cﬂ—%’)

inrowp—1: m(c1+...+cp—2+2cp-1+cp)=

_ 1 7
VRS (c"'l T p)'

1 c
i (cat+ez+...+cp) =p—_1 (;p—cl)

Pg gives in column 1:

in célumnp -1: E)i—l (c1+ea+...+ep—g+cp) = ;-1—1- (@~Cp~1)

in column p: 1 (catea+...+cp-1) = —f
; L __%
and in columnp—l—l.p_1 (c1+...+cp-1) ?
PoPasip gives in class 1 of C:
7 |5 (o) + 5 (o 5) (e 3)
p[p+l(cl+p +p+1 e+ —)+.. +p—|—1 Cp~1+p +

_l_c_m_)Lc_p_) (c,, )2%:
Jrp~1(p ¢ +10—1(1J “ +"'+p— p P p

- oD (4 5)

2 c
similarly in class 2 of C: e (c ——p) s
yn e G+D) (- D \? p?

in clazss p-1: 2 (c ‘v )
-1: = lep-1—-3]),
(p+D(-D\P p2

and in class p of C:
p-l[lﬂrl (cl+p +”'+p+1 o1t y) T T T

(2 _ e

+o1 (3o 1)} T -0
We consider two orthogonal subspaces of C, namely C; which corresponds
to the classification obtained by uniting the first p — 1 classes of C info one

class, and the residual space Cz of C orthogonal to C;. A basis for the subspace
of C; orthogonal to N will be formed by the vector for which ¢; = I for
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7

i+ p, and ¢p = —p. The transformation Q@ = PcPsln on that vector is a

multlphcatlon by 7= 2 0

in Cg Q is a multiplication by ————— 2

»+1) (P )
derivation of these proper values of Q in C* would
one would consider the transformation Q in the separ
from the beginning.

Now,

1 1
We find: Yocr = ———— (vi)e; + - )
1-—— =
p(p-1) -1
_pr-1 vi— -1 p(p-1) }
p2-3 2-3 (p-2)(p+))
where vi = (y—ya—Y¥B + yn)c. The quantity viysg
and for calculating the square of the perpendicular, is
-1 vz_{pz—l __p(p-1) } R
=31 -3 (p-2)(p+1)

Besides we need the quantity yZ -+y3 - y%.

Further a vector in Cp has ¢, = 0. For vectors

ith this knowledge, the

very. much simpler, if
te subspaces C; and Ca

(Vl) Cg =

(v1)ey»

, necessary for testing
equal to

2
/1)C1 -

These considerations are only valid in case of a covai
The design (PEARCE [16], figure XVII), in which a row

riance matrix 62- 1 for y.
nd a column are added

to a Latin square can be dealt with similarly, as well jas other examples. One

of the interesting subspaces of C* is again the spa
coordinates in all those classes of C which are equal

of vectors with equal
large. Sometimes one

finds that Q is a multiplication by a real number for all vectors in C*. (e.g.

PeARCE [16], figures XV and XVI).

3.7.4. One classification orthogonal to the interaction of the other two

The situation in which C is orthogonal to 4 X B, but 4 not orthogonal to B,
may also be somewhat simpler than the general case.| Referring to the proof

in 3.7.1, in which has been used only that the class
in any class of 4 X B in the same proportion as in aj
(A x C)* is orthogonal to A X B, i.e. to A*, B*, and
true of course for (B x C)*. We observe that all pai
pure main effects or interactions, are orthogonal exce
and the pair (A X C)* and (B X O)*.

Now we consider the estimate of Ey in the four case
in 3.6.1, and discussed for the general case in 3.6.2, ag

In case I, the best estimate ya+p+c will be found as t
projection yc* = y¢— yN, and the orthogonal projec
obtained iteratively. This is also true in any other case i
to 4 and 10 B only. An example of the latter situation i
. squares.

In case II the hypothesis may be: W = N4 A*

= (A X B) -+ C*. The orthogonal projection of y on
of the orthogonal pro_]ectlons on A X B and on C* sep
however, that Ey is in N-- A* 4+ B* 4+ C*+ (A X O)*

in: Ey is in (A + B)+ C*+ (A x C)*. These three spa

s of C are represented
ny class of 4, we have:
(A x B)*. The same is
rs of subspaces, named
pt the pair A* and B*,

v

, indicated by I, ...,
in.

e sum of the orthogonal
ion ya+s Which can be
which C is orthogonal
formed by the Youden

B"'+C*—|—(A>< B)*
W is equal to the sum
rately. The hypothesis,

ill now be summanzed

ses are orthogonal. The
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orthogonal prOJectlon on A - B will be obtained 1terat1ve1y agam the compo-
nent in C* is equal to yc - yx, and the component in (A x C)*is,as 4 and C
are orthogonal, equal to yaxc—Ya—Yyc +yx.

In case III the hypothesis may be: Ey isin N+ A* - B* + C*+ (A xB)* 4
4+ (A X O)* = (A X B)+C*+ (A X CO)*. The three spaces in the right hand
side member are orthogonal. The desired projection is equal to. the sum of
the separate orthogonal projections on these spaces. Another hypothesis may
be: Eyisin N+ A*4-B* -+ C*4 (A X C)*- (B X C)*. In the general case we
observed that the projection on this space is found by separate applications
of the iterative method for two classifications in every class of C with the
classifications 4 and B (and the subtraction which yields vy always either in
A or in B, say B). In this way we obtain in A X C: u = ysaxc. Because 4
and C are orthogonal, u can be decomposed in yx and in components in A%,
C* and (A x C)* by simple averaging. In particular we note ysa = ua. The
second component v = yspxc Will be orthogonal to N, while its orthogonal
projection on C will be the null vector. Because B and C are orthogonal, v
contains only components in B* and in (B X C)*. Hence ys;B* = vp and
ysBxcy* = V—vi. The effect of C is completely in u.

In case IV the hypothesis: Ey is in N+A*+B*+ C*4+ (A X B)*
+ (A X O)* 4 (B x O)*,isrepresented by: Eyisin (A X C)4 (B x C)+ (A xB)*
because (A x B)* is orthogonal to A X C and to B X C. The corresponding
orthogonal projection is thus found as the sum of the orthogonal projection
on (A x C) + (B x C) on the one hand, and on (A X B)* on the other hand.
The projection on W = (A X C) + (B x C) has just been discussed in the last
paragraph and is equal to u+v with uin A XC and v in B X C. The pro-
jection on (A X B)* should be obtained as yaxB— ya+B-

Now we assert that yarp needs not be calculated again, but is equal to
the sum of yg4 = us and ysp+ = vp as found by the method of the foregoing
paragraph.

Proof: When we have demonstrated that y — ua — v is orthogonal to A and

to B the proof will be complete. Because A + B is a subspace of W, ya+s =
= (Yw)a+B. Now (y—~us-VB)a = (YwW-Ua—VB)A = (U+V-UsA—VB)A =
= va-—-VvBa. We know v = vg+(v-vg) with v—vg in (B x C)*. Because
VBA—VBBA = VBA—VBA =0 and (v-vB)a-(v-vp)Ba = 0-0=0,
y — ua — vpis orthogonal to A. Similarly: (y — us — vB)B = (Uu+V—us —VB)B=
=ug—uss. We know u=ua+(u-us) with u-us in C*4+@BXxO*.
Because uaB—uaaB = uaB—UaB =0 and (u-ua)B-(u—-ua)aB =0-0=
= 0, y—ua — v is also orthogonal to B.

Finally we remark that Y%Axn)* will be obtained as y:ix}; - yi — v1ysB. Here
ysB = VB, while the orthogonal projection of the first step in the mentioned
iterative process on B, {yBxc — (Yaxc)Bxc}B = ¥B — (YAXC)B = YB — YAB = V1.

3.8. REGRESSION PROBLEMS WITH BASES GIVEN BOTH EXPLICITLY AND BY
CLASSIFICATIONS

3.8.1. One classification and orthogonal polynomials

An example, in which at the same time occurred classifications and ortho-
gonal polynomials, has been introduced in 3.5.3 already. There the correspond-
ing basis of the space, in which Ey was supposed to be, was orthogonal.
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Now. we wish to consider the case where Ey is in|a space A+ B spanned
by a space of main effects A on the one hand, and by the space B of function
values of polynomials. of degree k on the other hand. This situation occurs

_e.g. in a field trial of which the plots have been. arranged in one strip. 4 cor-
responds to the “treatments” to be investigated. The contribution of the soil
to the measured property y, often called fertility, is supposed to be a con-
tinuous function, e.g. a polynomial, of the serial number of the plot in the
strip. If the covariance matrix is ¢2-1, the space B|will be spanned by the
(tabulated) orthogonal vectors of function values ( rthogonal polynomials)
T, X1, ..., Xg. The vector r is in A, while the remaining vectors, in general are
not orthogonal to A*,

To estimate Ey the projection of y on the space spapned by A and by B* i.c.
by x1, ..., Xz must be performed, and this is fairly [simple by means of the
iterative method for two spaces A and B.

If we choose vi = (y—ya)B, then we find her 21_1 {Ooxs— yAxi)/xz} X4
which, for computatlonal famhtles, will be replaced b 2,=1 {(yx¢— yAxM)/ ;}Xz

Next ug = ,=1 {(yx¢ ~yax: A)/xi} Xz ; this will be the first vector to be computed
in fact (one coordinate in each class of 4): After arranging the coordinates of
the vectors y, X, ..., Xz according to the classes of 4 the coordinates of the

vectors x;a are determined by averaging. Next the numbers (yx; — yaxe)/x?
are computed (the denominators are tabulated), and with these numbers as
coefficients the coordinates of the linear combination pf the vectors x;a will be
determined class by class of 4. :

Analogously, ug = =¥, {ugxiA/x,?} x¢a the compu
the coefficients ugxsa/x; first; they are simple to
and x;a are in A; next linear combinations in each cl

Similarly uy = Zf‘=1 {uaxiA/xg}xM, and so on. The o
to N affords a check on the computations.

The interesting component ysa+ = ya — yn — 2i2ou4, and

yaBe = 2y {(yxe - yaxea)/xF + 2
where the term in braces is the sum of all the coe ments found for x4 ip
the vectors 112, us, .... In order to compute yA+B we use yA and

ViYsme = e l{(yxi—YAxiA)/xz} {(W—YAXiA)/Xx z1—2111XzA/X1} X7 =

= XK 1 {yxs—yaxea} {(yxe—yaxe)/xr + I usmsalxi}
i.e. the sum of k products of already computed numbers. For testing the effect
. of A we finally need: y% = y& + =X (yx,)%/x2.

This method can simply be extended to the case of a polynomial in e.g. two
variables defined on a rectangular lattice of points in a Cartesian coordinate
system. We may consider, for instance, a field trial in which 4 corresponds
to “treatments™ again, and the plots are arranged in a rectangular array. By
the method of 3.5.3 an orthogonal basis for effects of fertility can easily be
obtained.

tion of which requires

3.8.2. One classification and one vector

Let Ey be in the space spanned by A, the space of main effects corresponding
to a classification A4, and a vector x. This means that Ey; is equal to the sum of
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a constant, which is the same for all y; within every class of 4, and § times x;,
where x; is the value for the i-th individual of a quantitatively expressible pro-
perty x of the » individuals. In general, A does not contain x. Let the space,
spanned by A and x, be called A+ X. If 4 has k classes the dimension of
A+Xisk+1.

In order to obtain the best estimate of Ey, i.e. to project y orthogonally on
this space, the vector x, after the example of 3.1.2 and 3.3.5, is replaced by
XR = X — Xa, orthogonal to A. The orthogonal projection of y on xg is brxg,
with bg, = yxR/xi as estimate for 8. Thus ys+x = ya-+ brxr. The square
of this projection is equal to ya+ (yxR)Z/xi. The square of the perpendicular
is y2—y4 — (yxg)?/x%, which, divided by the dimension n-k—1, gives an
unbiased estimate of o2. The F-test statistic for the null hypothesis that § = 0,
or that Ey is in A, has (brxr)? as numerator.

In general one does not wish to write the estimate ya + brxr as the sum
of a multiple of x and an effect of 4, but as the sum of a multiple of x — Xy == X’
and an effect of 4, so that we obtain: ya — brxas |- bgx’. The reason of this
choice is that the characteristic for the classification A4 will be the object of the
investigation in fact, while Bx’ will represent a disturbing, but mostly inevitable,
effect on Ey from a property, independent of 4 and measured by x; this effect
must be taken into account necessarily; the average of the measurements of
this disturbing property is therefore taken as origin of the measurements.- The
component brxa*, to be subtracted from ya, is named the correction for this
disturbing property. The component in A, ya — brxas, is named the effect
of 4 corrected for the disturbing property. Another advantage of the mentioned
choice is that the average variance of the coordinates in the vector of cor-
rections is minimal then.

The hypothesis that 4 has no effect implies that Ey is in the space spanned
by x and N. The corresponding orthogonal projection of y, or of ya+x, is
known from 3.1.2, namely yy-bx’, with- b = x'y’/x'x’. The orthogonal pro-
jection of y on the (k — 1)-dimensional residual space of A4 X orthogonal
to x and N is yas +brxg — bx’, while the square is yx*+ (brxr)2—(bx)2
This square occurs in the numerator of the test statistic for the mentioned
hypothesis.

Sometimes the investigation of the component in A 4 X will be more refined.
For this purpose the orthogonal projection of yas on xa+ will be considered
i.e. the linear dependence of the effect of 4 on the class means of x. This pro-
jection is equal to b*xa=, with b* = xAtyAt/xit. So we have four orthogonal
components in ya.x, namely yn, b*xas, yas — b*xa», and brxg, in spaces
with dimension 1, 1, Xk —2 and 1 respectively. '

The second and fourth vector span a two-dimensional space which contains
xa*+xg = x'. It follows that the third component is orthogonal to x’. The
orthogonal projection of y on this two-dimensional space can be decomposed
in two other orthogonal components, namely the orthogonal projection on x’,
and the component orthogonal to x’. The last is equal to b*xa+ - bgxg — bx'.
Let E b* = Ebg, which means that the linear dependence of the effect of 4
on the class means is the same as that of y on x. Then E(*xa* + brxg — bX’),
which is orthogonal to x’, is a multiple of x’; this multiple must be the null
vector. Hence the square of the component, 5*xa+ - brxgr — bx’, may serve
as the numerator of the test statistic for the hypothesis: Eb* = Ebg. The
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refinement thus consists of a decomposition of the component of the effect
of 4 -orthogonal to x’, namely ya*-I-brxg — bx’, in the two orthogonal
components yas —b*xa+ and b*xs+ + brxg — bx'.

The first component ya= — b*xa» represents the part of the effect of 4 that,
although linear dependence of Ey on x has been taken into account, cannot
be described only by linear dependence of the effect of 4 on the corresponding
class means of x. If the component of Ey in this (k — 2)-dimensional subspace
is not zero, then there is an effect of 4 unmixed with linear dependence on x,
of which it is doubtful sometimes whether it is an effect of 4 that happens to
present itself as linear in x, or real dependence on x. Further, when the non- -
linear component of the effect of A4 is zero, one may test the null hypothesis
that the expectations of b* and bg, are equal. Under this null hypothesis there
is no effect of 4 at all. Here we meet a second advantage of the refinement:
when the real effect of 4 happens to be linear in x in substance, so that dis-
tinction between a real dependence of y on x and an effect of 4 that happens
to be linear in x is necessary, then the last test will be more powerful than the
over-all test on effect of 4. ’

3.8.3. Performance of tests and estimations

The tests indicated in the last section will be performed-as follows: One
determines y§ as - yA . Further (brxg)? = (yxr)2/xk = (yX—yXa)?/(x2—X3) =
= (xy — xaya)?/(x2 — x1) where xAya is found analogously to xi: for every
class the product of corresponding sums of classes in x and y is divided by the
number of coordinates in that class, and the quotients are added. Next the
denominator for the, test statistics and the unbiased estimate of o2 can be
computed. In order to test the non-linear component of the effect of 4 (di-
mension k — 2), we compute

(s = B*xa)? =Yg+ — (6*xa)? = YA - X~ (Raeyar)?/xRe =
= y& - Yk — (Xaya — xxyN)%/(x% — x%).
‘When the null hypothesis is rejected, there is an effect of 4.

If the null hypothesis is true (which may be assumed when it is not rejected),
the equality of the regression coefficients £b* and Ebg can be tested by means of
(b*xa* + brXR — bX')% = (b*xa¢)? + (brxm)® — (bx')% =
(xaya — xxyN?/(xR - %) + (xy — xayal2/(x% — x3) — (xy - XNym)P/(xE - x%0).

‘When the null hypothesis is rejected, there is an effect of 4.

If both null hypotheses are true (which may be assumed when neither is
rejected), the hypothesis B = 0 may be tested by means of

(Bx)? = (xy - xnyn)2/(x2 - x5).

When the effect of 4 is not considered by its components but as a whole
one makes use of the quantity

Y& - ¥h + (xy - Xaya)¥/(x2 - xX) — (xy ~ xxyN)?/(x2 - x§)
and the corresponding dimension &k — 1.

The effect of A and that of x may sometimes be investigated in the reverse
order. Then (brxg)?:= (Xy— Xaya)?/(x2— x3) will serve as numerator in the
test statistic for the null hypothesis f == 0. If this hypothesisis true, the effect
of A will be tested by means of y3+.
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In accordance with the results of the tests the following estimates of Ey miay
be possible:
(YA — brxa*) + brx’;
YN + b*xas + brxRr = yx + (b* - br)xa* + brX'; yn + bX'; ya; yn.

3.8.4. Interaction between A and x
It is possible that the supposition about Ey, mentioned in 3.8.2, is too
stringent, and that the linear dependence of Ey on x, described by a regression
coefficient, is not the same in all classes of 4. Let the classes of 4 be grouped
in m sets. Each set determines a vector x; ({ = 1, ..., m), which in that set of
classes of 4 (e.g. one class) contains the same coordinates as x and zeros else-
where; the sum of these vectors which are orthogonal, will be x. The suppo-
sition that Ey is in the space, spanned by A and the m vectors x;, attributes
to each of the m sets of classes a regression coefficient. '
In order to determine the orthogonal projection of y on this space we con-
sider the vectors x;4, i.e. the orthogonal projection of x; on A, and x;p = X;—Xsa.
Because the projection on A is obtained by averaging within classes of 4,
. the vectors x;r, ({ = 1, ..., m), will have zeros in all except one of the sets of
classes. Hence they are mutually orthogonal. The orthogonal projection of y
is ya + = 1bxem, With b; = yx/x7R.
The square of the perpendicular (in a space with dimension n -k —m) is

¥2 - YA - Z {xm)%xTR} = ¥2 - YA - S 1{(ay — Xeaya)?/(x] - xia)}-
This gives an unbiased estimate of %, and the denominator for the test statistic
of the null hypothesis that the Eb; are equal; for, because X2 ;x; = x, the

space A+ X is a subspace of the (k -+ m)-dimensional space in which Ey is
supposed to be. In the numerator the square of the difference

ya+ZZ 1bixin ~ (Ya+brxg) = I 1biXer - brXR
will occur. This square is

B7L 1 (bixir)®~ (bRXR)? = 27 1 {(%ey ~ %aYA)2/(x] — x72)} — (xy — XayA)2/(x% - X3),
while the corresponding dimension is m — 1.

When the null hypothesis is rejected, so that there is “interaction” of 4 and
x, and thus effect of both 4 and x, one may wish to obtain an impression of
the influence of the effect of 4 on Ey, without disturbance of the property x.
For that purpose, we introduce a vector xgn which is obtained from xy in the
same way as x; has been formed from x. We have: xy = XjZ x;n. Next we
apply the following decomposition:

ya+ZZ1bixir = ya — T2 1bi(Xs — XN — Xer) + Zim1bi(Xs - Xon) =
= {ya —Z{Z1bs(Xsa — Xen)} + Z7Z1be(Xs — X4x)-

The first term in braces represents the effect of A “reduced” to one particular
value of x, namely the average of x.

3.8.5. Two classifications and one vector

Suppose that Ey is in a space A+B+X spanned by two spaces of main
effects A and B, which in general are not orthogonal, and by a vector x, re-
presenting a disturbing property again. In a field trial, 4 may be the object of
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investigation, B the blocks in-any incomplete block design, and x the number
of plants, which is assumed to be independent of the effect of 4.

In order to determine the projection of y on A+ B+ X we use the compo-
nent xg, of x orthogonal to A -+ B. By means of the iterative method x will
be projected orthogonally on A + B, so that x;4 and xsp+ are obtained. Next y
must be projected on A B on the one hand, and on xr on the other hand, so
that the required projection is ysa+ ysB* + brXm, With b = yxR/xi. For the
evaluatlon of bR we recall first that. the denominator xf{ is equal to

~ x5 +B= X2~ X} ~ ViXsB, With vi = (X~ Xa)B.
Further: yxg = y(x — Xa+B) = Xy — yXa — ¥(Xa+B — Xa).
Analogously to the reduction in 3.3.5:

¥(Xa+B — Xa) = (Yso+ ¥sB*) (Xa+B —Xa) = ¥sB* {X — Xa — (X — Xa4B)} =
= YsB* (X —Xa) = V1¥sB*.
Hence yxgr = YRXR = Xy —XaYA ~ ¥s8+*(X — Xa)B. In the third term the symbols -
x and y may be interchanged. These expressions are preferred, because of their
accuracy and computational facility, to expressions like

Y(X — XsA — XgB*) = XY — XsAYA — XsB*YB.
The square of the perpendicular on A+ B+ X is equal to v
¥2-y& + B—(BRXR)? = ¥2-y4 —YsB* (Y- YA)B— (Xy—XAYA-V1YsB*)2/(X2—X4 — V1XsB*)

which yields an unbiased estimate of 62 and the denominator for test statistics.
The last term in this expression is the numerator of the F-test statistic for the
effect of x. If such an effect is assumed, yai1B-4-brxg Will often be written as
(ysa — brxsa*) + (ysB* — brXsB*) + bRrX', in which the terms in brackets are
the “corrected” effects of 4 and B.

In order to test the effect of A4 i.e. the null hypothesis that Ey is in B+ X
we need the projection yp+x. This can be found according to the method for
one classification and one vector (3.8.2). The difference Y%\+B+X y]2;+x will
appear in the numerator of the test statistic.

The procedure to investigate whether the regression coefficients are equal
in all classes of, say, 4, will be as follows. After the example of the last section
one forms vectors x; from x which in a set of classes of 4 have the same coor-
dinates as x and zeros elsewhere again. The space A+B-+X is in the space
spanned by A, B and the vectors x;. In order to determine the orthogonal
projection of y on the latter spade, we need the components of the vectors
x; orthogonal to .A 4 B. Thereforé every x; will (iteratively) be projected on
A+ B, so that 454 and x;spe are found. The components X;g = X; — XisA — XisB*,
in general, are not orthogonal. But, apart from the projection of y on A B,
we wish to know the orthogonal projection of y on the space spanned by the
vectors x;r; the coefficients of x;g in these projections are the estimates of the
regression coefficients. This will lead to a system of normal equations, with
numbers.x_,zR and x;gxsg as coefficients of the unknowns, and numbers yxg
as known terms. These numbers :can easily be determined; for x%R =
= xiz xizA vixipes with v = VY) (% —x;a)B; similarly xmgpxmp =
= X¢Xf ~ X{AXJA — v(l)xm;. and yxm = X¢¥ — Xiaya — Vi ¥sB*. We remark that
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x;x; = 0 and that many terms in inner products, such as x;axsa and xgy, are
zero. The number of equations will be small in practlce Let the solutions be

b;. Then the square of the required projection is y2 4B+ Ziby(yxir). Compare
the end of 2.3.4. The denominator of the test statistic can be calculated now.

In the numerator the difference between the last square and y,ZHB.Fx appears.

When the null hypothesis of equality of the regression coefficients is rejected
(interaction between 4 and x, then we write the orthogonal projection as
ya+B + Zibixir. Let xix be a vector again, which is formed from xy in the
same way as x; is formed from x, then the expression can be reduced to

Ya+B — by (X — Xon — XqR) + Zebe(Xs - Xn) =
= YA+B — 2ibi(Xesa + XisB* — XoN) + Zghe(Xs — Xon) =
= {ysa — Zibi(xssa — X¢n)} + {VsB* — Zbixsspe} + Sabe(Xe — Xin)-

The first and the second term are the “corrected” effects of 4 and B. It will be
remarked that vectors x;sa and x5 may have non-zero coordinates in classes
in which thé¢ corresponding x; and x;x have compulsory zeros.

The methods discussed in the last four sections may be apphed without
difficulty to the case of a diagonal metric.

3.9. MISSING PLOTS

When y must be projected orthogonally on spaces, spanned by subspaces
of the kind considered in this chapter, we meet sometimes the following situ-
ation: the technical performance of a similar projection would be considerably
more simple, if the vectors in' E would contain a few, say one, two or three,
coordinates in addition ; for then one of those particular situations would occur,
in which the orthogonal projection is an explicit expression in terms of a finite
number of simply workable orthogonal projections. It is true that the required
projection can be found e.g. iteratively, but it may be poss1b1e to take advantage
of the simplicity of the performance of the orthogonal projection in the men-
tioned particular situation.

For this purpose we consider the vector space E corresponding to the given
problem, and the vector space E’ corresponding to the particular situation.
Vectors in E’ contain as many coordinates more than vectors in E do, as the
number of coordinates missing for “‘completeness”, the number of “missing
plots”, amounts. Now we assume that an independent basis for the space D, in
which Ey is supposed to be, can be obtained by omission of the “missing plot”
coordinates in a basis for the corresponding space D' in E’. (The correspondence
between D and D’ is determined by the supposition about the coordinates of
Ey). In that case the correspondence between vectors x’ in D’ and vectors x in
D, in which x is obtained by omission of the “missing plot™ coordinates in x’,
is one-to-one. This is e.g. not true, if a whole block is omitted from a particular
incomplete block design, or in case Ey is supposed to be a polynomial
function of degree 3 in five equidistant values of x, from which two are deleted.

We will show (compare KuipER and CORSTEN [12], CORSTEN [3]) that the
following method leads to a simple solution: We construct from the given
vector y a vector y’ in E’ such that homologous coordinates of y and y’ are
equal, while the missing plots are filled up with unknown variables, and we
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further determine a vector x’ in D’ such that (y’ — x')2 is minimal. The vector
x’ depends on y and the unknown variables. Let x be the vector in D corres-
ponding to x’ in D’ according to the foregoing paragraph. Then, if the metric
is diagonal, (y' — x)? is equal to the sum of the square (y — x)2 in E, and a non-
negative contribution from the tnissing plot coordinates (a weighted sum
of squares of differences). Whatever be the choice for x (or for x’, which
amounts to the same) the optimal values for.the variables in y’ will be such
that the contribution from the missing plot coordinates to (y' ~x’)? is mini-
mal, i.e. zero. Therefore, in minimizing (v’ — x’)2 we have to take the unknown
coordinates of y’ equal to the (so ‘far unknown) corresponding coordinates of
x’, so that (y' —-x')2 = (y - x)2. In other words, the minimum of (y' —x')2 is
equal to the minimum of (y — x)2. Because minimizing (y —x)2 is our purpose
(for then x is the required projection on D), our method will lead to the solution.
The method consists in minimizing (y’ —x')2 i.e. orthogonal projection of y’
on D'. The only question remains how to choose the missing plot coordinates
iny’. o

The coordinates of x’, the orthogonal projection of y" on D', are simple
expressions in the coordinates of y' i.e. in the known coordinates of y and the
unknown missing plot coordinates of y’. These expressions follow from the
expression for the orthogonal projection of y' on D’. According to the fore-
going, each of the missing plot coordinates of x’ is equal to the corresponding
unknown coordinate in y’. So we pbtain linear equations for these unknowns,
which must be solved. After solution y’ is projected on D',

The method yields x’' = y'py from which x = yp follows. Further it yields
(y -x)2 = (y' —x)2. However, it does not give automatically x2 (s x'2 in
general). Further the components of x, say in a space of main effects, found
by this method will, in general, differ from the same component, found by e.g.
the iterative method, by some multiple of the vector r, owing to the different
consequences from the definition. of orthogonality in the different spaces E
and E'.

Not all statistical procedures applied to y can be carried over by analogy to
y’. Sometimes, however, wrong tests are performed in this way. Consider the
null hypothesis that Ey is in C, a;subspace of D, and let C’' in E’ correspond
to C. Then (for convenience sake) one often uses in the numerator of the test
statistic y'3 —y'% instead of v2 ~y%. Now the first quantity is equal to
'p =¥ )2, which is a weighted sum of squares of coordinates. The contri-
bution to this sum from the “not-missing plots™ is the inner product in E,
(YD - ¥s0)2, where ysc¢ is some vector in C. According to the property of
orthogonal projections this quantity is at least as large as (yp - yc)?. Hence
v -y% = (yp - ¥s0)2 = (yp — Yo)2 In words: the null hypothesis will be
rejected wrongly more frequently than is indicated by the nominal level of
significance. On the other hand: if the null hypothesis will not be rejected with
the wrong test, it will certainly not with the right test.

Right tests require new projections of y. These may be evaluated by means
of another application of the just described method, in case that is advantageous.
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CHAPTER 4

SOME REGRESSION PROBLEMS WITH CORRELATED
OBSERVATIONS

4.1. GENERAL CONSIDERATIONS

4.1.1. Kind of the problems

In this chapter we consider random vectors y with a non-diagonal covariance
matrix, and we determine estimations of Ey and its components. We restrict
ourselves to regression problems in which the main effect spaces and the inter-
action spaces are given by classifications of the components of y.

In practice it will often occur that the individuals to which the observations
within a class of y belong, form certain natural units which, as a group, may be
considered as individuals of higher order. Such a unit, like a set of animals
with the same parents, a block of adjacent plots, or a set of estimates by the
same person, have been introduced already in 3.4.2 in connection with block
designs. A classification of y may have the property that it can be considered
as a classification of these units. It may also happen that, moreover, each unit
is divided over the classes of one or more other classifications of y. Within the
class of these situations we will choose a number of more or less general
examples which have practical importance.
~ First example: y consists of measurements of differences in yield between
two varieties. Each measurement has been obtained from a trial with these
two varieties in a random place of the area, for which the expectation of this
.difference must be investigated. Because it will be expected that meteorologic
.conditions influence this difference, y will be divided according to the year
of the trial. One might think that an appropriate supposition about Ey would
‘be that it is a vector in the space of year effects. In that case the best estimate of
Ey would be found by orthogonal projection of y on this space. This is right
indeed, if one wishes to consider the level of this difference in these years in
‘which the trials have been performed. But mostly it is the purpose of this kind
of investigations to estimate the expectation of the considered difference over
all years. For, although effects of the years are undeniable, the size of such an
effect cannot be predicted, in the first place because the future meteorological
conditions cannot predicted till now, secondly because the relation between the
meteorological and connected conditions on the one hand, and the effect on
the considered difference on the other hand are unknown. Therefore a random
variable is introduced: the expectation of the difference in a random year. The
expectation of this random variable is, under the sketched conditions, the best
quantity for purposes of prediction; the estimation of this expectation is the
problem in fact.

The supposition about y arises in two steps: to every year, unit of higher
order, corresponds a random variable. All these random variables have the
same expectation, covariance zero, and variance o12. Under the condition of
a fixed year the coordinates of y in that year all have the same fixed expectation,
covariance zero and variance o22. In other words, every coordinate of y is
equal to the sum of a general constant (to be estimated), a random contribution
of the year under consideration, and a random contribution of the trial under
consideration in this year.
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Second example: Consider an experiment with animals in which two treat-
ments (to which two classifications 4 and B correspond) are investigated.
Every class of 4 X B contains a set of animals of the same litter or in the same
stable, while in different classes of A4 x B there are represented different stables
or litters. It is possible to estimate and to test formally the main effects of 4 and
B and their interaction according to the methods of the foregoing chapter,
because there is more than one coordinate in every class of 4 X B (we suppose
that a covariance matrix o2-1 for y is acceptable).

However, these formal components concern these litters or stables. If there
are remarkable differences between some of these, they will be reflected as
main effects and interaction. However, it will be in general the purpose of the
experiment to investigate.the effects of the treatments on such litters or stables,
from the population of which these litters or stables are samples. For this
purpose the considered estimates and tests are without value.

The appropriate supposition about y arises as follows: Consider some stable
or litter in a fixed class of 4 X B; the animals of this stable in that class of 4 X B
have an expectation value. Another stable or litter in the same class of 4 X B
will have another expectation. So we obtain a random variable in that class of
A X B, namely the expectation of a random stable or litter in that class. Now
such a random variable is attached to. every class of 4 X B. We assume that
each of these random variables is the sum of an effect of A4, an effect of B, and
a random variable with expectation zero and variance 632, Moreover, these
variables are supposed to have covariance zero. In other words, the vector of
random expectations for the classes of 4 X B has as expectation the sum of an
effect of 4 and an effect of B. To every class of 4 X B a random variable is
attached. These random variables all have expectation zero, covariance zero
and variance c%. Finally, under the condition that the coordinates of y

(animals) are in a certain class of 4 X B, unit of higher order now, they are
random variables with the same expectation (equal to the now fixed expectation
for that class), with covariance zero, and with variance c32.

The investigation of the effects will, with this supposition, be different from
that in case the expectations in every class of 4 X B are considered as constants. .
It will be observed that interaction of 4 and B is not included in the new
hypothesis, because the classes of 4 X B contain only one unit of higher order.
Otherwise the space of (random) expectations would have no residual space.

Third example: This is related to the above-mentioned block designs. As
pointed out in 3.4.2 the classification according to blocks in block designs does
not take place, because one is interested in the size of the block effect, but in
order to take into account an inevitable variation. Only the effect of 4, the treat-
ments, is interesting, Analogousj;; to the foregoing examples, it is often justified
to construct the supposition about y thus: to each block, unit of higher order,
a random variable is attached. These random variables have covariance zero,
variance 12, and may or may not have the same expectation (in the last case
each class of a classification, with as elements these units of higher order, has
its own expectation). Further, every coordinate of y is, under the condition that
it is in a certain unif, a random variable with variance o22; the expectation is
equal to the sum of the (under the condition fixed) expectation for the class of
B, and a contribution from the class of 4 to which the coordinate under con-
sideration belongs. The covariance of these variables is zero. This supposition
is equivalent to: Every coordinate of y is equal to.- the sum of: a constant
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determined by the class of 4, secondly a constant determined by the class of
the above-mentioned classification of the blocks, further a random con-
tribution of the unit, the block, under consideration (all these contributions
have expectation zero, covariance zero and variance ¢1%), and finally a random
contribution of the coordinate under consideration (under the condition that
the expectation of the unit has its particular value, these contributions have
expectation zero, covariance zero and variance 63).

Comparing the assumption, given here, with the assumption of a non-random
block effect, we will find that the assumption of a random block effect gives a
more efficient estimate of the effect of 4, in general.

The mentioned problems and those to be treated, in which subjects of
apparently different kind such as components of variance, analysis of series
of experiments, recovery of inter-block information (Rao [18]), and split-plot
experiments may be recognized, all have this in common: There is a random
contribution common to all coordinates in a class of the classification B of y
according to units of higher order; these contributions have expectation zero,
covariance zero, and variance ¢12. Further the coordinates of y have, under the
condition that they are in the units of higher order in wh1ch they are, the co-
variance matrix c22- 1.

© 4.1.2. General remarks about the estimation

"The covariance matrix of y, with respect to the standard basis ey, ..., €, of
the space of n-tuples, has a very unsuitable form in the situation sketched in
the foregoing section. It is true that coordinates, belonging to different classes
of the classification (say B) in units of higher order, have covariance zero, but
if they belong to the same class, they will have a covariance o12. The inverse
of the covariance matrix should be chosen as metric, in order to obtain the
best estimate of Ey by means of orthogonal projection. It is not clever to use
this metric directly.

According to the end of chapter 1, we know that the inner product of two
vectors with some metric with respect to the basis ey, ..., e, is equal to the
inner product with metric 1, after replacement of one of these vectors by a
linear combination of its orthogonal (metric I) projections on some particular
orthogonal (metric 7) subspaces. If this metric is the inverse of the covariance
matrix of the coordinates of y with respect to ey, ..., €, then the covariance
matrix of the coordinates of y with respect to another basis, orthonormal with
respect to metric /, of which the basis vectors are either in or orthogonal to
the above-mentioned subspaces, has the diagonal form. The elements in the
diagonal of this matrix are the reciprocals of the coefficients in the mentioned
linear combination.

Conversely, if a basis, orthonormal with respect to metric /, can be found
such that the coordinates have a diagonal covariance matrix, the coefficients
in the linear combination of orthogonal projections, occurring in the inner
product, will be the reciprocals of the corresponding elements in that matrix.

Now we introduce a new orthogonal (metric I) basis of E: the basis vectors
-of the space B, consisting of ones in one class of B and of zeros elsewhere,
completed with vectors orthogonal to B. Next we consider the corresponding
orthonormal basis. The coordinates of y with respect to this basis have a co-
variance matrix which will turn out to be simple.



58 (1) ’ 69

Let one class of B consist of k coordinates. Then the coordinate of the
projection on the space spanned by the corresponding unit basis vector (com-
‘pare the end of 1.3.5) is equal to 1/4/k times the sum of the coordinates in that
class; the variance of this coordinate is equal to (k2012 + ko22)/k = ko12 +a22.
The covariance of two such coordinates is zero, because they have no random
variable in common. In any basis vector, orthogonal to B, the sum of the
coordinates in every class of B is zero. The inner product of y and such a basis
vector will not contain a random variable common to any class of B, while
the sum of the n squares of the coefficients of the other random variables in
that inner product is equal to the square of the basis vector. It follows that the
corresponding variance is 632 The covariance of two such coordinates of pro-
jections appears to be zero in the same way as in 2.1.2. Finally the covariance
'of the coordinate of the projection on a one-dimensional space in B and that
on a one-dimensional space in B is zero; in the expectation of the product of
the two inner products the variables with variance o312, vanish, because they
occur linearly, and the vectors of coefficients of the other random variables
are orthogonal. Summarizing we have found a diagonal covariance matrix for
these coordinates of y.

The appropriate inner product of two vectors x; and x2 will be found thus:
one of these vectors will be projected orthogonally (metric 1) on each of the
one-dimensional spaces spanned by the above-mentioned basis vectors of B,
named B;, and on B ; each of these orthogonal components will be multiplied
by the reciprocal of the corresponding variance (the numbers k£ may be different
for different B;, and be called k;). The results are added; finally, the inner
product (metric 1) of this sum and the other vector will be determined.

The estimate of Ey in A, i.e. the appropriate orthogonal projection of y on
A, will be that vector y;4 in A (the symbol s is used because if is not the customary
inner product orthogonal projection), for which y—ysa is orthogonal to A
according to the new metric. For this purpose y—ysa will be projected ortho-
gonally (with metric /) on the spaces B; and B--; we form a linear combination
of these components, with the reciprocals of the corresponding variances as
coefficients. The orthogonality with respect to the new metric requires that the
orthogonal projection of this linear combination on A, with respect to the
ordinary metric /, is equal to the null vector. (Compare 1.6.1).

With the foregoing in mind,| we will use the term “orthogonal” and the
index, say, A in ya, only with respect to the metric / from now on, unless
indicated explicitly otherwise. Hurther B will always be the classification ac-
cording to the units of higher order, to which random variables are attached.
For the present, i.e. up to 4.4, 632 and o2? are supposed to be known.

4.2. A CONSTANT MAIN EFFECT AND A RANDOM MAIN EFFECT

4.2.1. General method of estimation

Let y be divided according to|classifications A and B. Let the main effect of
A be the object of investigation, while to every class of B a common random
variable is attached, beside the| random variables for every coordinate of y
separately. One may think of any incomplete block design, where 4 corresponds
to treatments and B to blocks. Let the number of coordinates in class i of B
equal k;. Put (k612+ 6221 = w; and 6272 = w.

The best estimate of the effect jof 4 will be found as ysa such that the ortho-
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gonal projection of Zg {wy(y — yaa)Bs} + W{y — Ysa — Z4(y — Yaa)s;} on A is the
null vector. Consequently:

Za{wi(y — Ysa)Bi}a + Wy — Ysa — Z4(y — Yea)Bi}a = O
or

& % By~ [zi {1‘3 (ySA)Bi}:'A + ya -~ Yoa —(ZeyB)a + {Zi(¥sa)B s = O

N YsA— {Ez (l - %) (YSA)Bz}A =yA- {24 (1 —%) sz}A

We consider the following linear transformation by which to a vector x in
B a vector z = xg4 in A is assigned: the coordinate of zin a class of 4, con-
taining m coordinates, is equal to 1/m times the linear combination of the
coordinates of x in those classes i of B, which are represented in this class of 4,
with coefficients g;. We remark that this transformation is the orthogonal
projection on A, if the coefficients g; are 1.

Choosing g; = wy/w = ki612/(kio12 + 022), we write the last equation as:
Ysa — {(Vsa)B}ga = YA — {yB}ga. Denoting the linear transformation, which
consists of the orthogonal projection on B, Pg, followed by the transformation
gA, by the symbol Q, we have: (1 — Q)ysa = ya— Qy. This is very much
similar to the resulting equation in 3.3.4.

The transformation Q of vectors in A may be paraphrased as follows: project
orthogonally on B; multiply in the projection the coordinates in class i of B by
81 (0=gi<1); project the vector, obtained in this way, orthogonally on A.

The length of the vector in B, to be projected on A, is smaller than the
length of the projection on B, so that the bound of Q satisfies G(Q)<<1. It
follows that ysa = (I+ Q-+ 02%4...) (Yo —YB-ga)-

The difference with the iterative method for two classifications in 3.3 consists
only in the insertion of an additional operation between the orthogonal pro-
jection on B and that on A, namely multiplication of the coordinates of the
vector in B by the corresponding g;.

4.2.2. Special cases and computational remarks

It will be clear that the iterative process will converge the faster the smaller.
the numbers g; are. In particular, if these numbers are zero, which is the case
if o1 = 0 (the random block variables are zero) we find at once: yza = ya;
the classification B will be neglected. On the other hand, if &1/o2 is large, then
g is approximately 1, and the iterative process may be replaced by the process
which is formally obtained for g; = 1 ie. the iterative process of 3.3. It
follows that yasp yields the most efficient estimate of the effect of 4, if o2 is
negligible in comparison with 61. When the effect of A4 is estimated from yais
in case this extreme situation does not occur, the estimate is unbiased, but not
most efficient, since the metric is not chosen in the appropriate way (compare
2.3.3). This conclusion proves our assertion at the end of the discussion of the
third example in 4.1.1.

Equality of the numbers k; implies equality of the numbers g;: g; = g.
Then Q = Pa-g-Pp = g.PaPp, which means a considerable simplification:-
the iterative method of 3.3 will be applied with the difference only that, instead
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of writing down the coordinates of the orthogonal projection of a vector in B
on A, one notes these coordinates multiplied by g.

It w111 be useful to perform the transformation (1 — Q) Y(Ps-g- PAPB)
on yy and on y—yx separately in this case, and to add the results, as will
become clear in the following. The transformation (Pa —g-PaPs) of yx yields
(1 - 2)yxn, so that the whole transformation yields (1 +g--22+...) 1 - gyx =
= yn. Further, application of the iterative method to y—yy =y’ yields, as
first component in A, y'a—g-y'Ba, a vector in A*. The same will be true for
the following components in A. This fact can be used as a check in the com-
putations. The first component will be obtained in fact as ya — ynx — g(yB — YN)A.

A second advantage of this separation is that the computations lead much
faster to the results; for the coordinates of y —yx are very much smaller, in
general, than those of YN-

A third advantage appears in the consideration of those mcomplete block
designg for which the transformation PoPg of certain vectors in A* isia
multlpllcatlon by a real number p. The transformation Q = g-PaP3 is then
a multiplication by gu.

It follows dlrectly that the estimate of Ey for balanced incomplete blocks
(compare 3.4.2) is, in this case, equal to

Yoo = YN + (1 - gy Yya -~ yn —g(yB—yn)a}, With p = (r—-N/rk.

Similarly for group divisible partially balanced incomplete blocks (compare
3.4.3):

Yoa= YN+ (1-gu1) " {ya-yn-g(yB-yx)a}ar +(1-gue) {ya-yn-g(ys-yN)a}az =
=yN+(1-gua) {ya-yn-g(yp-yma}+{(1-gua) - (1-gue)  Hys-yn-8(yB-yna}a1
with p1 = (rk-220)/rk and pp = (r—A)/rk.

Latin square type partially balanced incomplete blocks (3.4.4) yield completely
analogous results.

Returning to the general case with unequal g;, we remark that, unless the
average of g; over the elements in any class of 4 is the same, Qyy is not in N.
Separation of y in yx and y — yx, and performance of the transformation on
the second component only, will be an improvement, also in the general case,
if one is interested only in the differences between the coordinates in ysa.
Attention to this computational aspect may be justified by the illustrative
remark, that in an example the performance of the calculations on y as a whole
required 64 steps, and on y — yn 2 steps!

If, however, ysa is wanted, and not only the differences between its coordi-
nates, then ysn will be determined first, and after that the operations are per-
formed on y - ysx. The equation for ygx, which is a particular case of that for
Yaa, Wil be: Yen — (Vsn)gw = Yn — (YB)g . Let the coordinate of ygy be denoted
by {i, the coordinate of yx by ¥, and the coordinate of yp in class by y;. Then
we have:

31— Zekugiln) = y — Zokagiyafn, or {Zeki(l - g)} = Zyyike(1-go), or
. Ze(o12 + 02 ke) ™t = Zyyi(o1® + oa?(ks) 1.
This is also the solution of the first problem discussed in 4.1.1.

Another particular case is that in which the classifications 4 and B are ortho-
gonal in the customary sense of chapter 3. ygy is obtained as before. For the
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calculation of ysa we consider yx and y - yy separately. Because Qyx i$in N
(the average of g; over the elements in any class of A4 is the same), the contri-
bution to ysa from ynis yx.

Usually one has the situation that all g; are equal. In that case the result
of the transformation of y — yx will be ya — yn; for then (y8 — yx)ga = 0, and
thus the contribution from y ~yy is (I -+ Q-...) (o —y~), whichis ya - yn,
because (ya*)s = 0. Hence, in this case ysa =ya.

4.2.3. A design of split-plot type

Let the classes of a classification B of y be units of higher order (e.g. blocks),
with a random variable for every unit. Let C be a classification of these units,
Let A be another classification of y. Let A, B, and C be the corresponding
spaces. We suppose that Ey is in A X C. In addition to the non-orthogonality
this design deviates from the usual split-plot design in that a second classification
of the units of higher order and the corresponding main effect (effect of re-
plicates in orthogonal designs) is absent.

The estimation of the effects of 4 and C and their interaction will take place
by projection of y on A X C, orthogonal with respect to the appropriate metric.
But this is the same problem as that in the previous sections: we need only
replace A by A X C.

In the application of the iterative method with the classifications B and
A X C'we may arrange y according to the classes of C (B is a subclassification
of C). It follows that the method falls apart in separate applications of the
method for every class of C. The vector in A X C obtained in this way can
be decomposed in components in N, A*, C* and (A X C)* according to the
methods of chapter 3.

It will be clear that the estimation is simplified, if in any class of C the units
(blocks) have equal k;, and thus equal g;. If, moreover, in any class of C the
classification according to 4 is orthogonal to the classification according to
blocks, then the effect of 4 x C will be found by taking averages in every class
of A x C, as follows from the discussion in the foregoing section (whatever be
o1 and o). If, moreover, all classes of 4 are represented in every class of C, the
decomposition of ysaxc is also simple because of the orthogonality of 4 and C.

4.3. TWO CONSTANT MAIN EFFECTS, AND A RANDOM EFFECT

4.3.1. The general case

The classes of a classification B of y are units of higher order with a random
variable with expectation zero and variance 0'% for every unit. Let C be a

classification of these units. Let 4 be another classification of y. We suppose
that Ey is in A+ C. The difference with the preceding problem is that inter-
action between A4 and C is not present.

A first example of this situation is that of a block design with treatments A4,
in which adjacent blocks (units) are taken together in classes, in order to take
into account a great part of the variation between the blocks as a non-random
block effect, while the effect of the blocks (units) within these classes is considered
as a random variable. One hopes that the variance of this variable is much
smaller than (as in 4.2.1) without the classification C. Further 1mportant
examples will be considered later on (4.3.4 and 4.3.5).

The estimation of Ey will take place by determining ysa in A and ysc in
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C such that the orthogonal projection of y—Vsa —V¥sc, according to the
appropriate metric, on A and on C is the null vector. With the same notation
as in 4,2.1 we obtain the equations:

Z{wi(y — Ysa — Ysc)Bg}A + WY — ¥sa - Ysc — (Y~ Ysa— Ysc)BJa = 0 (1)
Ze{wi(y — Ysa ~ YsO)Bgic + WY — Ysa— Ysc — (Y~ Ysa —~ Ye0)B}c = 0 (2)

Because C is a subspace of B, so that PcPg is equal to Pg, equation (2) is
equivalent to: Zy(wi/w) (¥ — ¥sa - ¥sc)B;c = 0. We introduce the projection on
C, which maps x as z=2xXy¢, with the property: the coordinate of z in a class
of C is equal to the weighted average of the coordinates of x in that class of C,
while the weight of every coordinate of x is equal to the number w;jw =
= 1-g; = gi' = 022/(kio12 -+ 622) of the class of B to which it belongs.

In terms of this projection the last equation can be replaced by

(Y- ¥sa—YsClwec =0 @)

The left hand sides of (2) and the former equation are not equal nor pro-
portional, in general.

In passing it may be remarked that we have obtained the solution of the
second example in 4.1.1 where A and C both are subspaces of B: for equation
(1) is then (Y —ysa —¥sc)wa = 0, so that ysa and yse can be found by the
iterative method of 3.3 with A and C, attaching weights g;’ to the coordinates
of y; this is equivalent to the application of that iterative method on a vector
consisting of the class averages of B in y (every class counted once) attaching
the weights (012 + o92/k;)~ to them.

Continuing with the present case we write the modified equation (2') as:
Ys¢ = Ywc — (Ysa)we. Thus ysc will be found easily, if ysa is known. Let the
transformation indicated by gA have the same meaning as in 4.2.1, and let the
transformation indicated by g’A be a similar transformation, with the difference
only that the numbers g; are replaced by g;'; the sum of these transformations
is the orthogonal projection on A. Now equation (1) may be reduced as
follows:

(YB)g'a — {(¥sa)B}wA — (Ys©)g’a + YA —Ysa— (¥sc)a — YBA + (Ysa)BA 4 (Ysc)a=0.

Substituting from equation (2'): (¥sc)y'a = (Ywc)g’a — {(Ysa)wc}s'a We obtain
by some reduction: ysa—[{(ysa)B}ga + {(Vsadwc}g'al = ya — [(YB)ga + (Ywc)g'al-

This can be summarized in (1 — Q)ysa = ya — Qy where Q is the linear trans-
formation with Qz = (zB)ga + {(ZB)wc}yA-

Q can be described as follows: to every class i of B belong numbers

gt = kio1?/(kio1? + 02?) and g’ = o2?/(kic1® + 027).

The first stepin Q (on z) is the orthogonal projection on B (averaging within
classes of B) and yields zp. On the resulting vector zg the projection wC is per-
formed; the coordinate of a class of C will be found as the weighted mean of
the coordinates of zg in that class of C with weights g;/, or what amounts to
the same, as the weighted mean of the means of the classes of B in that class of
C (every class of B counted once) with weights (512 1+ 622/k;)1. So we obtain
(zB)wc. Then follows a multiplication of the coordinate of zg in class i of B by
8¢, and similarly of (zg)wc by gi'. Addition of these products, class by class
of B, yields a new vector, z’ = Rz, in B. Orthogonal projection of z’ on A
(averaging within classes of 4) completes Q.

We conclude that, in comparison with the transformation P4 Ps, the trans-
formation Py has been extended with a projection on the subspace C of B,



and with the formation of linear combinations of the coordinates of the results
of these two projections in every class of B. Within every class i of B the coor-
dinates of zg and (zg)y,c are averaged with weights g; and g’ respectively.

We observe that Q transforms a vector in N in itself. Let Ppz have coordinates
by in class i of B. Then the vector z’ has as coordinate in class i of B:

2gi'b;
= gib ! )
gibi -+ & S

where the summation pertains all the coordinates in the class of C, to which
class 7 of B belongs. It follows that

ey —= Xgehy + (zgz')

Therefore, if Ppz is orthogonal to N, the same holds for z’. Hence, if zis in A%,
then Qz is in A* too.
The right hand member of the equation for y;4 may be written as

YN + yar - Qyn - Qy' = yas— QY

a vector in A*, If we know (Wh1ch will be proved) that the bound of the trans-
formation Q on vectors in A* is smaller than 1, then it follows that the solution
of the equation is: ysa =( + @+ Q%2 + ...) (ya— Qy). This implies an
iterative procedure similar to preceding cases. From the fact that ys — Qy and
all the following components in A, obtained by this procedure, are orthogonal
to N, we have a check on the computations. Because the projection wC will be
performed ony and on all the components of which the sum is ysa, all material
for the computation of ys¢ = Ywc — (¥sa)we comes also available.

Zgi bi — 5B

4.3.2. The bound of Q

We will prove that the bound G(Q) of the transformation Q of vectors in A*
obeys G(Q)<< 1. Let z be in A*, and z’= Rz in B such that Qz — Pz’ = PaRz.
In case |Rz|<|Ppz| we have |Qz|— |PaRz|<|Rz|<|Ppz|<|z|; hence
|Qz|<|z|. Further, we will find that, if |Rz|=|Psz|, then Pgz = Pcz; this
implies (from the definition of R): Rz Pcz and therefore Q = PyPc;. then
|Qz| =|PaPcz |<|z|, because A* and C* are disjoint (compare 3.3.4). From ~
these considerations it follows that it is sufficient to prove that |Rz|<|Psz|
for all z in A*, with equality only if Rz = Pc¢z.

For this purpose we consider the relation between the coordinates c; and b;
of Rz=z' and Ppz, respectively, in class { of B glven in the last section:

co=gibs+gi'(Sgi'bi)/Sg¢’, and we prove that Xc?< Zb? (where the summations
pertain a class of C), with equality only if all b, (w1th1n this class of C) are
equal.

We have the inequality: 0<g;=<1. Then b=2g;'b;'[Xg,;’ is not larger than the
largest, and not smaller than the smallest of the numbers b;; for if we denote
the numbers b; smaller than b by by, and those larger than b by b;”', then in the
identity X'gy'(b — by') = X" gi'(bs” — b) every term must be positive (the
identity 0= 0 arises, if all 5; are equal).

From ¢; = gib; + gi'b = by — gi'(by - b) it follows that every c¢; arises by
subtracting from b; a part (0<<gy'=<1) of its difference with b: every ¢, is closer
to b than the corresponding b;. The total of the subtracted values amounts to
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g4 (bs — b) = 0, which has been used already in the preceding section. If =0,
the assertion is thus trivial.

Now we assume 5>0 (for b<<0 an analogous argument may be given).
First we observe that the ¢; corresponding to ;= — b will give a smaller con-
tribution to X¢? than the corresponding b; in %b2.

The ¢; corresponding to the b; in the interval —b<<b;=b may give a larger
contribution to Zc? than the corresponding b; to 2:b2. Let these b; be denoted
by the index j: b;. Let the corresponding —&j '(bs — b), which is positive or
zero for every j, be denoted by d;. Then the increase of the sum of squares is
equal to Zy(b;+dj)?-Zsb? = szbjdj +2yd? which, because bj=b - dj for
every j, is at most 2b3d; — Zjdz

The ¢; corresponding to b¢>b will give a smaller contribution to %c? than
the corresponding b; to %b2. Let these b; be denoted by the index k, by, and let

the corresponding gz'(bz — b), which are positive, be denoted by di. Then the
decrease in the sum of squares is equal to 2izb2 — Zp(by — dr)2 = 22brdy, — Tyd2,
which, because bx>b+-dy for every k, is larger than 2b%ydy + Xd?.

Now we compare the upper bound of the increase, 2b%d; — Zjdjz, with the
lower bound of the decrease, 2bZydy+Xpd?2. Because 2yd;, the absolute value
of the sum of the quantities subtracted from the by is at most equal to Zzdy, the
sum of the quantities subtracted from the by (the sum of the quantities sub-
tracted from all the b; was zero), the increase is smaller than the decrease,
unless all d and thus all d; are zero. Hence %c? <Zb? with equality only if
all b; in class i of C are equal.

4.3.3. Particular cases

It follows from the transformation Q that, if o1/o2 is large, the orthogonal
projection on B plays a preponderable role in the estimation of ysa. If o1 is
small, the vector in C, which is very much similar to the orthogonal projection
on C (g; nearly 1) then, comes into prominence.

In the extreme case that o1 =0, and thus g;=0 and g;/=1, the transfor-
mation wC is the orthogonal projection on C, and Q= PsP¢. The projection
on B will not be used at all. The equation for yz4 becomes completely the same
as that in 3.3 for two classifications, now 4 and C. Further y;¢ will be ye—(¥sa)c
as in chapter 3.

In the other exireme case, approximated in case 61/o2 is large, gs=1 and
g¢ =0. Then the projection on C is absent in Q, so that Q = P,Pp. We obtain
the method of 3.3 with the classifications 4 and B in order to determine ysa.
Further ysc will be found as (y —ysa)we. If o1 is large, the numbers g;' are
proportional to 1/k;. The coordinate in a class of C will be calculated as
follows: add the coordinates of a class of B and multiply the sum by 1/k;, i.e.
take the class means of B; next add the class means of B in this class of C and
divide by Xk;(1/k;), that is the number of classes of B in this class of C. The
projection wC means thus averaging the class means of B within every class
of C, every class of B counted once.

A condition that simplifies the calculations is equality of the numbers k;.
Then Q=Pa(gPs-g'Pc); the numbers g; are replaced by g and the numbers
gi by g’. A further simplification is obtained, if moreover all classes of 4 are
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proportionally represented in every class of C. This, for instance, is the case,
if C represents a so-called classification according to replicates in an incomplete
block design. Then P will only yield a contribution to y,4 in the first step. The
first step yields u; = ys — (gyB + £'yc)a; the second uz = g(u1)pa; the third
ug = g(u2)sa and so on. We observe that, from the second step on, the
operations are equal to those for an incomplete block design without the
classification C (compare 4.2.2).

Let such a classification according to replicates be applied in the designs
(compare 3.4.2, 3.4.3 and 3.4.4), for which we found explicit solutions for ysa
in 4.2.2. Then the estimate yss will be given by replacing the expression
yA— YN — g(yB — yn)a in the solutions of 4.2.2 by ya — (gyB+2'y0)a, and omit-
ting the first term yy. This component will be represented in the component ysc.

4.3.4. Split-plot designs v

The classes of a classification B of y are units of higher order (e.g. blocks)
with a random variable for every unit. Let C be a classification of these units
according to a characteristic C (e.g. adjacent blocks form a class of C), and D
another classification of these units according to a characteristic D (the main
factor). Further there is another classification 4 in y (the split-plot factor).
We suppose that Ey is in C+ (A X D).

The problem to determine the best estimate of Ey can immediately be reduced
to that of the preceding sections. We need only replace the space A XD of
this problem by the space A in the foregoing problem. To every block (main
plot) belong numbers g; and g4 which are necessary for the transformation Q.
In this occur successively an orthogonal projection on B, a projection on the
subspace C of B (weights g;), the formation of a new vector in B from these
two projections, and finally an orthogonal projection on A X D. In this way
we find ygaxp, which can be decomposed according to chapter 3 in com-
ponents in N, A*, D*, and (A X D)*, if desired. Further y;c will be found as
¥ - Ysaxm)we-

Equality of the k; is a simplification: the projection on C is now orthogonal
and Q = Paxn(gPs + g'Pc), as in the last section. If, moreover, the classi-
fication according to 4 is orthogonal to the classification according to blocks
in every class of D, then, from the second step on, all components of Ysaxp
are in D (as follows from the orthogonal projection of a vector in B on A x D).
The third and following components in A X D are of the type:
ug = {gus + g’(ug)c}p. Hence only projections on C and D occur. Moreover,
the first step contains the whole main effect of 4 and the interaction of 4 and D.
If, moreover, C is orthogonal to D, then the second term in the third and
following components vanishes; the sum of the second and all following
components is equal to (1 — g)~lus. If, moreover, every class of D contains the
same classes of 4, we have orthogonality of 4 and D, of D and C, and hence
of AxD and C. Now we find, with y—~yn =Y/,

u =y axp—(8Y'B + &Y c)axp = Y axp —‘ng'Di
uz = g(¥'axp—g¥p)p = g1 - )y'p; Zils wy = (1-g)luz = gy'p.

Hence we will find ysaxp = Y'axp = ¥axp — yn. This very particular situa-
tion is the one usually indicated with the term split-plot designs.
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4.3.5. Series of experiments and similar problems

Now we consider an extension of the first problem discussed in 4.1.1, in this
sense that there are trials with more than two varieties (or other characteristics).
‘We assume that every trial gives one measurement (the mean) of the yield of
every variety in that trial. Different trials in the same year do not all contain
the same set of varieties for many practical reasons, while trials in different
years will not contain the same set of varieties by virtue of the nature of varietal
research, which implies the introduction of new varieties. For purposes of
prediction and advice the best estimate of the expectation of varietal differences
is necessary.

Consider the classification of the yields y according to years on the one hand,
and according to varieties on the other hand. It will be expected that, analogously
to the case in 4.1.1, the expectations of the differences between varieties are not
the same in different years, in other words, that there is interaction between
varieties and years. Because, however, this interaction (which in 4.1.1 was a
main effect of years) cannot be predicted, a random variable is introduced for
every variety: the expectation of the yield of that variety in.the considered
area in a random year. The estimation of the expectations (over all years) of
these random variables, but for a constant, will be our purpose.

Each of these random variables is equal to the sum of the varietal expectation
and a random contribution from the year to this variety. The random con-
tribution is supposed to be equal to the sum of a non-random contribution of
the year common to all varieties, and a random variable, with expectation 0
and variance o12, both the same for all variables. Moreover, these variables
are supposed to be uncorrelated. In other words, the vector of expectations for
variety-year combinations has as expectation the sum of an effect of varieties
and an effect of years; to every combination a random variable is attached.
All these random variables have expectation zero, covariance zero and vari-
ance o12.

Every variety-year combination in y has been divided according to the trials
in that year. This leads to the supposition that the coordinates, under the
- condition that they are in a fixed variety-year combination, have an expectation
equal to the sum of the (now) fixed expectation, corresponding to this com-
bination, and a contribution of the trial, common to all varieties in that trial.
Further they have, under the same condition, covariance zero and variance o22.

The whole supposition may be summarized as follows: the coordinate of y
belonging to some variety-trial combination is equal to the sum of a constant
determined by the variety; a constant determined by the trial (the effect of
years is included), a random variable with expectation zero common to the
coordinates in the variety-year combination (these variables have covariance
zero and variance 612) and a random variable for this particular coordinate
(these variables have, under the condition that the expectation for the variety-
year combination has its particular value, expectation zero, covariance zero
and variance ¢22).

One might ask, why the effect of trials is not cons1dered as a random variable
too, because th1s effect (of trials and years) has a random character, and we
are not interested in the effect of any particular year or trial field. The answer
is in the foregoing sections: we observed, that when such an effect is assumed
random and the associated variance is large, then the estimators can be approxi-
mated by the estimators under the assumption that random effects are constant
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effects. Because the effects of trials (and years) are very large in comparison
with o1 and o2, we suppose them to be constants from the beginning.

It follows from our suppositions that the problem of the best estimate for
varjetal differences is a special case of the foregoing problems. The variety-
year combinations are now the units of higher order (to be compared with
blocks in the case of 4.3.1); they arise from the classification B. The classification
according to varieties corresponds to the classification C of the classes of B.
The classification according to trials corresponds to the classification 4. We
need the orthogonal projection on the space spanned by A and C. A difference
with the preceding cases is that there the component in A is the most interesting,
while here we aim at the component in C. The component in A is the sum of a
component in D, the space of year effects, and a residual named trial effect
within years. This is in contrast with the split-plot design, in which the effect
corresponding to 4 consisted of two main effects and an interaction.

The solution of the estimation problem requires no difficulties now: to every
variety-year combination (everyclassof C X D= B) consistingofk;coordinates
Jbelong numbers g; and g;’. The transformation Q consists in: orthogonal
projection on B (varietal means for every year); projection on C (weighted
means of the annual means for each variety with weights (612 +a22/k)™);
a combination of these two projections to a new vector in B by means of the
numbers g; and g;’; finally orthogonal projection of the result in B on A.

In order to get a survey of the computation one may write the data for
every year (arranged according to trial and variety) on different sheets, while
there is a special sheet on which the vectors in C will be noted. It appears that
the projections on B will be performed in every year (sheet) separately; when
the projection of the result in B on C is performed, we pick one or none number
from every sheet of the years, and the result is noted on the special sheet. By
means of this last result and one of the other sheets every time, the required
vector in B will be formed. The projection of this vector on A will be performed
on every sheet separately. When the process has come to an end (all coordinates
zero), the estimate ys¢ will be found on the special sheet by subtracting from the
first vector in C all the following vectors in C.

In the extreme case 61=0 ie. no interaction between variety and year, Q
will be (compare 4.3.3) PsPc. This means the application of the iterative
method of 3.3 on the complete classification according to trials and to varieties,
irrespective of the number of trials in which a variety is represented in a year.
In the other extreme case of a very large interaction between variety and year,
we obtain with reference to 4.3.3: In every year separately the iterative method
of 3.3 will be applied in order to find ysa, i.e. the effect of the trials within a
year. Next ys¢ = (V ~ VsaA)we, Which means that the coordinates of the effect
of C for every year separately (found by the method of 3.3), also called the
varietal means “adjusted for trial effects” for every year, are simply averaged,
variety by variety, over the years, every year which contains that variety
counted once.

Now we consider the particular case, in which any two trials within a year
contain the same varieties (one coordinate for a variety-trial combination as
before); the varieties in different years may be different. Then the transformation
Q, which ends with an orthogonal projection of a vector in B on A, will yield
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the same coordinates within a year, in other words, yields a vector in D. The
first step in Q is an orthogonal projection on B, which reduces for this vector to
the transformation 1. As uz= Quy is also in D, ug=Qug reduces to Quz=
= (ug)yp + {(u2)wc}yp, and so on. Because the effect of the trials is not
interesting in the problem, we will simplify in replacing u;=ya - Qy by
yaB — Qy. Then the vectors ug, us, ... obtained from this vector are equal to
those obtained from the original u;; for the orthogonal projection of ya — Qy
on Bisequalto yag— Qy. For the computations we observe yas = yp = yBD;
hence the new u; = ysp — (¥8)yD — (Jwc)ed = (¥B — Ywc)yD. Now we work
with the array of annual varietal means only. From the sum of the varietal
means in year i the corresponding components in y,,¢ =(¥B)wc are subtracted,
and the difference is multiplied by g;’ /4, where my is the number of varieties in
that year. The resulting vector is u;. Further uz = (u1)yp + {(u1)wc}en, ie.
g4’ [my times the sum of the coordinates of (u1)wc, corresponding to varieties
occurnng in year i, is added to g; times the coordinate of u; in year i. Similarly
= (ug)yp + {(U2)wc}y'p and so on. Finally ysc = ywc ~ZiZ 1 (Uewe-

We will show that this method is not the same as the following which
sometimes has been proposed. To every annual varietal mean the weight
(012 +022/kg)™ is attached. Next the method of 3.3 is applied with the classifi-
cations C and D.

For we observe that, in the extreme case of a very large o1, the weights in
different years will be equal, so that also then the iterative method of 3.3 would
be applied. The right procedure, however, then consists only in simple averaging
the annual means variety by variety. One might say that the proposed application
of the method of 3.3 tends to a too great adjustment for year effects. If 61=0,
the two methods are equivalent.

In case not only the trials within a year, but also the different years contain
the same varieties, Cis orthogonal to 4 and to D. Then ys¢ is Yo — 2= 1(Uwe
again. But every (uz),c will be formed from a vector in D and thus is in N.
Therefore, if the level of ys¢ is not important, then y,¢ yields all information
required. If, moreover, the k; are equal, Yypc=yc.

Another particular situation in the case of the same varieties within a year
(but not in different years) occurs, if the k; for all years are equal. Then we
find: m=g'(ys-yc)p=¢'(yp—-ycp); uz=gu+g'(u1)cp;
us=gua+g'(uz)cp and so on; yso=yc - ;21 (W)c-

This method can be applied, if D corresponds to randomized block trials in
one year in some area, A to the blocks (of which there are a constant number
in every trial), C to varieties, and B to trial-variety combinations. The usual
problem is now the estimation of the expectation of the varietal differences in
that year over that area, taking into account a random interaction between
trials and varieties.

The method of this section also appliesin the following case. The classification
C corresponds to trials in some year, 4 to varieties and D to more or less
homogeneous groups of these varieties (e.g. with about the same sensitiveness
to drought or to a disease, or of botanically very much related varieties).
Further B corresponds to trial-group combinations. The supposition about
the yields y is, that every coordinate is the sum of an effect of the corresponding
variety, an effect of the corresponding trial (place), a random contribution
common to the coordinates within a place-group combination (interaction
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between groups of varieties and places) and a random contribution for every
coordinate separately. In the problem of estimation of Ey, assumed in A +4-C,
the component in A will be the most interesting. The extreme 61 =0 leads
to the iterative method of 3.3 with the classifications 4 and C. The other
extreme leads to separate applications of the iterative method of 3.3 with the
subclassifications 4 and C in every class of D; the difference between groups
of varieties will be estimated as zero, which is the best that may be said in this
case indeed.

4.4, ESTIMATION OF THE VARIANCES

4.4.1. General remark

Up to now we have considered the quantities o1 and o2 as given. Mostly
however, they must be taken, or rather be estimated from y itself. If we use the
estimates for these quantities in the expressions of the preceding two sections,
we replace constants by random variables. This procedure, however, will be
applied, only if the variance of the estimate of 612 and 622 is sufficiently small.
The effect, of using these random variables instead of constants, on the proper-
ties of the estimate of Ey or of its components will not be considered.

It will appear that the estimates of 612 and o2 will be obtained from the
squares of orthogonal projections of y (or of vectors which arise by omitting
coordinates from y) on orthogonal subspaces. We adopt the rule of thumb
(compare KEMPTHORNE [9]) that the effect of using the estimates instead of the
true values is negligible, if the dimension of these subspaces is 10 or more. If the
dimension of the space, on which the orthogonal projection supplies the estimate
for 612, is too small (the other will be large enough nearly always), then the
random effects will be considered as constant effects.

4.4.2. A constant main effect and a random main effect

First we consider the case considered in 4.2.1. Let the coordinates of y be
yis = a3+ B;+e4y, where ay is the constant associated with class j of 4, B; the
random variable (with expectation zero and variance o12) associated with class
(block) i of B, and ¢4 the random variable (with expectation zero and variance
o322) that belongs to the combination of the characteristic j of 4 and i of B.
(We assume for the present that every class of 4 is represented at most once
in any class of B). Let n; be the number of coordinates in class j of 4, so that
2ny=n. Let the number of classes of 4 be v and that of B be 5.

Under the condition that the B; have fixed values, Ey} (R is the residual

space orthogonal to A and B) is
[n-1-G®-1D)~(@-Dlo2=m~-b-v+ o2
Because the condition does not occur in this expression, the same is true
unconditionally. -
Further Ey? = E 3;j(ay+ B¢ +e1)2 = (because covariances are zero, all
double products vanish) = Z;n;a%—l—ncﬁ—{—ncgz. And
Ey} = E Xy {n; 7 Zy(oy+Bs-+ee)?},
where I; pertains the coordinates in class j of 4. Then
Ey% = Xy nj~t E(ngey+Zqfs + Zqeq)? =
ZyngH(n2a? + nyo1® + nyo?) = Tynge? + vo1® + vk
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Hence E(y?-y3) = (n—v)01% -+ (n—v)os®. We observe that the numbers
k; in class i of B do not matter.

An unbiased estimate of os? is y3/(n—v—b--1) and an unbiased estimate
of 612 is (y2 - y2)/(n-v) -y /(m-v—-b+1).

We remark that, if in this and the following cases the expression for the
estimator of o312 will yield a negative number, then the estimate will be taken

ual to 0.
quccordmg to the rule of thumb (KEMPTHORNE [9]) given for special cases,
b — 1 must be larger than 10, in order that we will permit ourselves to use the
random effect.

If classes of A are represented more than once in a class of B, then Eyi

will be different from the expression given above, because 2;8; for such a
class j of 4 contains a multiple of some 8;. The expression must be calculated
for every individual case.

A particular case is that where A = N (first example 4.1.1), so that every
class of **4” is represented k; times in class i of B. Then

By} = By} = En {S@+Bite)} = m)(nPa? + Zklor® + no?) —
= no®+n1Zeko12 + o2?.

Hence E(y2-y%) = (n—-n1242)012 + (n - 1)o2?. An unbiased estimate for
o1 will be (z—1) (0 - 1241 {(y2 - y2)/(n - 1)~ (y2 - y3)/(n - b)}. In the
special case that all k; are equal to k (hence kb =n), n- n—12¢k2 is equal
to kb - k2b/kb = k(b - 1).

The design of split-plot type, discussed in 4.2,3, will be treated similarly.
In order to estimate 622 the perpendicular on the space spanned by B and A x C
is necessary. It is found by separate application of the method of 3.3 on each
class of C, according to the subclassifications 4 and B. The estimation of 612
will take place by means of y2-y3 , ..

4.4.3. Two constant main effects and a random effect

The different cases discussed in 4.3 require separate consideration with respect
to the estimation of the variances, especially of o12. First we consider the block
designs with a classification C of the blocks and another classification A..

The estimation of a22 will take place by means of the perpendicular from y
on the space A+B. For the estimation of 6;2 we take as many as possible
coordinates'from y, such that the classes of 4 are represented proportionally
in every class of C (for the particular incomplete block designs, such as balanced
or partially balanced incomplete block designs, this is true for the complete y).
In the vector space corresponding to this mutilated y, we determine the square
of the orthogonal projection on the corresponding space (A X C)*. When we
know the expectation of this square, 612 can be estimated. In the calculation of
this expectation the vector to be projected will be denoted by y, whether it is
a mutilated y or not.

The supposition about .the coordinates of y is yik = vi +ax By +-eog,
where vy is the constant associated with class i (i = 1, ..., ) of C, az is the con-
stant belonging to class k (k = 1, ..., v) of 4, B¢s the random variable associated
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with block j in class i of C, also named block ij, and gz the random variable
for the coordinate of class k of 4 in block ij. We assume that class k of 4 is
represented at most once in block ij. Let the number of coordinates in block if
be k. Then the number of coordinates in class i of C, k;, is Xsksy, and
ks = n. Let the number of coordinates, which are together in class k of 4
and in class i of C, be r;. Then Zgriz = ki, and the number of coordinates in
class k of 4 is ri = Xy, Because of the orthogonality of 4 and C we have:
rlky = rg/n for all i. From the relation Zgksy; = 0 (C* orthogonal to A)
follows Z4ryry; = O for every k.

Now Ey2 = ZysiE(ys+ e+ Beg+€egw)® =
= Nikpye? + 2Zuvion + Sruod + no12 4-nog? =
= Tkrys® + Spreag -+ noy® + nog?.
Ey} = 2 [(1re) E Carys+ Zagte + BesPig -+ Zogeagn)®] =
(because Z{l’zk‘ﬂ = 0)
= B (1/r) (i + ruo1® + rgoa?) = Serpag 4 vor + voo?.

Ey% = X4 [(1/ks) E Ggeys -+ Zguoue +ZguBeg + Zgueige)®] =
= Syl (ko) {Faye® + 2kpye Zpriwen + Crroer)? +DikiPo12+kioo?}]=
= Zgkaye® + Sika{Zalrfko)or}? +Zi Bykig?ki)or? 4 rog? =
= Zekeyi? +(1/n) Crrear)® -2 Sgkig?ki)or® + rog?.

Ey%, = (1/n) E Cygiys+ Zigror + BugrBs + Zagreisn)® =
= (1/n) {Cerean)® + Soskis?o12 - nos?} —
= (1/n) Cgrrar)® + Eiskss?[n)o12 4 022,

It follows that Ey?, , o« = Ey? - Ey - Ey% + Ey% =
[n— v - Zesksg?lks) + CaskesInlor? + (m—v—r + 1)o22.

We observe that, if C = N, the expression for E(y*~y3) in the preceding
section will be found. In the particular case that all k¢ are equal, say &, the
expression becomes: [n~v—-k (- Dlo12 + (n—v—r + 1)os2. If, moreover,
every class of C occurs once in every class of 4, so that n = vr, then the ex-
pression will be: (v —k) (7 — 1)o12 + (v — 1) (r — Do2?.

Now we consider the case of which the series of experiments was an example.
The estimation of 692 will take place by means of the perpendicular on A+ B
again. This implies the application of the iterative method of 3.3 for every
year (class of D) separately. The separate squares of perpendiculars will be
added to find the required square.

In order to estimate 612 we lift out from y one or more parts, such that in
every part at least two classes of D occur, and that in every class of 4 (every
trial) the same classes of C (varieties) are represented. We will use the square
of the projection on the corresponding space (C x D)*, If there are more parts,
then these squares and the corresponding expectations will be added in order
to estimate 012, In the following calculation we call such a part y again.

The supposition about the coordinates of y is: yyg = vi+ oy -+ Bes +eisn
(=1, .., rand j=1, ..., m), where y; is the constant associated with
class i of C, ags; the constant belonging to the k-th trial in class j of D (the
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]-th year), B¢ the random variable associated with the combination of class
i of C and class j of D (w1th variance 612) and g the random variable for the
coordinate of class 7 of C in class jk of A4 (with variance o92). Let the number
of trials in year j be kj, so that r2;k; = n. Because A* is taken orthogonal to C:

Ty = 0.

Now Ey%. = (1/n) E Gk -+ Zageosr +ZiguBes + Zegresse)?® =
= (1/n) [(Zsks)? Eay?) + rZgkio1? +- noa?].

Ey2, = (1/Z4kcs) [Z4E @grve+Zmoge + ZuBeg + Zguese)®] =
= (1/24ks) Zy [((Sgkg)>? + ZykFo12 + Zgksoo?] =
= (1/Z4kg) [(Zsks)? Ty} + rEsko1 + nos?).

Ey} = X4 [(1/rks) E By + Zexoegr + ZxBeg + Zanesge)?] =
= Zg(1[rk) K222 +2rky(Eoye)Cuage) +r2Exogn? + rk2or® -+rkos?] =
= (1/r) Ggks) ey?) + rZsm (agu?lkes) + Zgkgo1% +-mog? .

Eyixp = Z4s [(1/ks) E v+ Suoye + Zxboy+ Seeom)?] =
= Zgg (1kg) Uy + 2k (vs) (Baoege) +Zaosn® + ko012 + kgoa?] =
= (Zyks) Eey?) -+ rZgx (agu?/ks) + no1? + rmog?.
Hence
Ey}pyt = [n+ 2k [n) - (rZgk2[Zgks) — Zyklor® + (rm + 1 -m—r)os® =
= (r—1) [Zgk; - (kazlszjlclz + (r—1) (m - Dos?.

By means of this relation and the unbiased estimate of 622 we may find an

unbiased estimate of ¢12. In case all k; are equal, say %k, then Ey( oxp)® =

=k@r-Dm-1)012 + (¢-1)(m-1o22 Or Ey(CxD)e/dlm (CxD)y* =
= ko12 4 a9?.

For split-plot designs, as in 4.3.4, the estimation will proceed analogously.
For the estimation of o22 the perpendicular on (AXD)+ C+ B =
= (A X D) + B is necessary. This implies the application of the iterative
method of 3.3 on every class of D separately with the subclassifications 4 and
B. In order to estimate 612, a part as large as possible is lifted out from y, such
that the classification 4 X D (the combinations of main and split-plot factors)
is orthogonal to the classification C. Then the just derived expression for
Ey(zch)‘ will be used, where k; is now the number of coordinates (plots)

in (the residual of ) a block which are together in a class of the main factor D
and in a class of C.

If, for instance, there is one missing value in an ordinary orthogonal split-
plot design, then, for the estimation of 612, the plots with the corresponding
combination of main and split-plot factors remain out of consideration; in the
square of the orthogonal projection of the residual on (C X D)* gne of the
k;j differs by one from the other kj.

Finally we consider the case in which A and C are subspaces of B. Compare
4.1.1 and 4.3.1. For this purpose we consider first the classification of coor-
dinates according to 4 X B with one coordinate in every class of 4 X B, and
A and B orthogonal.

Let the coordinate y;4 in class i of 4 and class j of B be equal to a; 4 B5 4249,
where o is a constant for class i (i = 1, ..., m) of 4, B; a constant for class j
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(j=1, ..., k) of B, and ¢;; a random variable with expectation 0 and variance
o2, The random vanables have covariance zero. Because of the orthogonality

of 4 and B we assume X¥ i—187 = 0. In order to determine EyzA xB)* We compute:
Ey? = E e+ Byteu)? = kZ® +mEgB2 +Zgs00% ;
"By} = (1/k) ZE[Z 4o + By +eap)? = (1/k) ZeEkoy + Zgegs)? =
= k22 -+ (1/k) Zggoes® 5
Ey2 = (1/m) Z4E[Z4(% 4By +ean)l? = (1/m) B+ mPy+ Zgeqs)® =
= (k[m) Be)? + mZsp2+ (1/m)Zesoe® 5
Ey% = (1/km) E[Zg(o By +eun))? = (1/km) EkZqoy +Zygees)? =
= (kfm) Zgo)® + (1/km) Zggoss®.
Wefind:
Ey}, o py = [1-(1K)~(1[m) + (1/km)] Zigo1s2 = (k1) (m — 1) Sggous®/km).
The formal estimation of 62 in case all 642 were equal has an expectation

value equal to the average of all o7;2.
Returning to our problem, we estimate 62 with the help of the perpendicular

on the space corresponding to the class1ﬁcat10n in units of higher order. Fur-
ther, we consider the averages of these classes, which are supposed to satisfy
a relation which agrees to that for the above-mentioned coordinates y;;. For,
let the number of coordinates in a unit of higher order be k;, then the average
has variance o-% + o-%/kg, while the expectation is the sum of the effects of the

two classifications of the units. If we take from the set of averages a part, such
that the two classifications become orthogonal, the way to estimate 612 is open
now,

4.5. TESTS

4.5.1. A4 constant main effect and a random effect

First we consider the testing of the effect of A4 in the general regression prob-
lem discussed in 4.2.1 (incomplete blocks). Under the null hypothesis and
under the condition of a fixed effect of B, the test statistic F, calculated accord-
ing to chapter 3 with the help of the vectors y —ya+s and yais—ys both
orthogonal to B, has a F-distribution. Because this distribution is independent
of the condition, the same holds unconditionally. It follows that the test on 4
will be performed as in chapter 3.

Now we consider the design of split-plot type discussed in 4.2.3. Under the
condition of fixed block effects, we perform first the test on the interaction
(A x C)*. This requires the perpendicular on B--(A x C), ie. the iterative
method of 3.3 for every separate class of C, according to the subclassifications
A and B on the one hand, and the perpendicular on A - B according to 3.3
on the other hand. Because both perpendiculars have expectations indepen-
dent of the effect of B, the conditional test will be unconditional.

The best estimate of Ey under the alternative hypothes1s has been discussed
in 4.2.3, while that under the null hypothesis (Ey in A +-C) will be found
accordmg to the method of 4.3.1.

The conditional test on effect of 4 requires the perpendiculars on A+ B
and on B (both according to chapter 3) and appears to be unconditional again.
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The best estimate of Ey under the null hypothesis (Ey in C) will be obtained
by the method for the determination of ysx (end of 4.2.2) for every class of C
separately.

For testing the main effect of C, with the null hypothesis that Ey is in A,
against the alternative that Ey is in A+ C, we cannot use a conditional test,
as C is a subspace of B. Therefore we need (with the appropriate metric) the
orthogonal projections of y on both subspaces. The projection (according to
the new metric) on A takes place according to the method of 4.2.1, and that on
A -} C according to the method of 4.3.1. The square (with respect to the new
metric) of the first projection ysa is equal to (compare 1.6.3)

Zowi {(Ysa)B,}2 + w{Yea — (Vsa)B}® = Zowy {(ysa)B,}2 + wyda — w {(Vaa)B}?.
In casg all k; are equal and hence all w; equal, say w', this is

f (' —w) {(Ysa)B}% — wysa '
Slmﬂaﬂy the square (with respect to the new metric) of the second pro;ectlon
Yea + Ysqis: Zgws { (Ysa+Ye0)Bs}® + W {¥sa+Ysc — (Ysa ~ Yso)B} =

C =S { (9sa)By - Yec: + wiyia — {Ta)B}2.

The diﬂ'erence of these squares will occur in the numerator of F. In the deno-
minator ;we need the square (w1th the appropriate metric) of the perpendicular
on A xC, wh1ch can be found in a similar way.

For a speclal case, which we will study now, there exists a known method.
We want to compare our technique with the known technique.

In the special case any of the & classes of 4 is represented once in every
block. Let the number of blocks be b, so that » = bk, and let the number of
classes of C be c. Then the estimate of 622, obtained from the perpendicular
(with metric /) on B4+(AXC) is (y2-y3 -3, +Y2/{bk—(b-c) - ck}
or (yY2-y3 -y o+ Y&)/(k~1) (b-c). In order to estimate 6,% we need the
perpendicular on A X C: y2—-y2Z . with expectation k(b - c) (612 +62%). The
estimate of ¢12 will be

2= VA kB -} - (2 -3~ Y& c+yDk-1) (B~}

And the estimate of k512 1022 will be then: (y3 ~ y2)/(b - c).

The orthogonal projection of y on A X C (with the appropriate metric) will
according to 4.2.3 be ysaxc = yaxc and the square (with that metric) of the
corresponding perpendicular:

w'y3+w(y? - y3) - w' {(yaxo)s}? - w{yaxc— (Yaxc)s}? =
= WYRHWy" - Wy~ WyE —wyixc Wit =
= w2 -Yixc Y3 HYD + W3- ¥D)-

This perpendicular is in a space with dimension k(b - ¢).

The orthogonal (with the appropriate metric) projection on A+ C will be
yo+ (Ya-¥yn), as follows from 4.3.3. Further the projection on A is ya.
The square (with this metric) of the difference y¢ ~ yx will occur in the nume-
rator of F. Hence the F-statistic will be

Wk - yRle=1) _
W2 -¥2 xc— Y3+ YD)+ w3 -y} k (b-0)




. w(y% - yRlc-1) _ OZ-yRle-1)
C{E-D@-9+@-Bkb-)  6F-¥RIb-0)"

It is remarkable that we obtain the same value as would be found if, which
is usual, the classification 4 would be left out of consideration, and if only
the block sums would be considered as random variables. In our treatment,
however, a F-distribution with dimensions ¢—1 and k(b —¢) must be used,
while in the usual treatment the dimensions ¢—1 and b - ¢ would be used.
This apparent greater power of our test, however, is merely the consequence
of the fact that we have considered the estimates of 612 and 622 as constants,
while they are random variables. It follows again that the effect of this wrong
assumption will decrease, in case b — ¢ will be large. In order to escape this
effect completely in a not special case, one should perform the usual test on
a part of y, which part is of the kind just considered.

4.5.2. Two constant main effects and a random effect

The test on effect of 4 in the general case of 4.3.1 will be performed by a
conditional test, under the condition of fixed block effects. This test appears
to be unconditional again. It requires a projection on A + B and on B according
to chapter 3; the classification C plays no role in this test.

The test on effect of C will be analogous to that on effect of C in designs of
split-plot type considered in the last section. In this case, however, the deno-
minator of F will be obtained from the square of the perpendicular on A+-C
(with respect to the new metric again). This square is equal to the difference of
the square (new metric) of y, 2¢w,;y]231 +wy? - wy} and the square (new metric)

of (Ysa + ¥s0).

In case both A and C (compare 4.1.1 and 4.3.1) are subspaces of B, the
square of the projection (new metric) of y on A+ C is 2wy {(Ysa + Ys0)B )2
This is equal to the square of the projection of the vector of class averages of
B with weights (012 + o22/ks)t on the corresponding A+ C. Similarly the
square (with appropriate metric) of e.g. ysa, the projection corresponding
to the null hypothesis that C has no effect will be found. In this case the square
(with appropriate metric) of y is equal to the sum of the (weighted) square of
the vector.of class averages and of w(y2 - y3).

If in the example of a series of experiments (4.3.5) o1 5~ 0, then there is
effect of C (varieties) which is different in different years; testing the effect of
varieties has thus no sense. In this example only the best estimation is of
interest.

The last case to be discussed is the split-plot design (4.3.4), with a classifi-
cation C of the blocks and a corresponding main effect, and with the inter-
action 4 X D, where D is the main factor. The test on interaction of 4 and D,
and that on main effect of 4, are completely analogous to those in the split-
plot design without the classification C. Conditional tests appear to be uncon-
ditional again. Projection on B+ (A X D) requires the iterative method of 3.3
in every separate class of D according to the subclassifications 4 and B;
projection on A 4 B (corresponding to the null hypothesis of no interaction)
requires this iterative method with the classifications 4 and B; projection on
B (corresponding to the null hypothesis: Ey is in B4 C) is quite simple.
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The best estimates of Eyl under the different hypotheses are obtained as
follows: Under the hypothesis that Ey is in C + (A X D) we use the method
of 4:3.4. Under the hypothesis that Ey is in C+ A we use the method of 4.3.1.
The estimate of Ey, under the hypothesis that Ey is in C, will be obtained by
the method for ysx (end of|4.2.2) for every class of C separately. For one
case, namely that Ey is in the space A 4 C—+ D, we have no general solution,
similar to the other solutions, available.

This absence of a general |solution also comphcates the test on the effect of
D i.e. the test of the null hypothesis that Ey is in A -} C, against the alternative
that Ey is in A+ C+-D.

In the particular case that the classes of A are represented proportionally,
say once, in every class of B (which classes thus all have the same number of
coordinates, say k) the estimate is a vector ysa* +ysc -} Vsp*, such that
W(y — Ysa®* — Ysc ~ ¥YsD*)B + W{y — Yea® — ¥sC — YsD* — (¥ — Ysa® — YsC — YsD*)B}
is orthogonal to A¥*, C and D*. Because A* is orthogonal to B, and thus to C
and D, we obtain the equations:

WY —Ysa* ~Ysc—¥sD*)Aa =0 or (y-—ysas)ar =0
W(y - Ysa* —¥sc—¥sp*)Bc =0 or (Y-Ysc—Ysp*)c =0
W (Y - Ysas ~Ysc = Ysp*)BD = 0 oOr (y-Ysc—Ysp*)p = 0.

It follows that yzas = ya — yx and that ysc and ysp+ are obtained by appli-
cation of the iterative method of 3.3 with the classifications C and D. This
implies that the classification 4 has no influence on this test (the orthogonal
projection on A + C in this special case has already been considered in the last
section).

In the usual treatment of this problem for ordinary split-plot designs one
leaves the classification 4 out of consideration and uses only the block sums,
In the construction of the test statistic we will observe a similar difference in
the dimensions of F between the usual and our technique, as in the last section.

If, however, A is not orthogonal to B, and the effect of A4 is significant, it is
wrong to neglect the classification 4. One way out of this difficulty is to per-
form the test (and the estimate) with the help of a part of y such that A is ortho-
gonal to B. Another possibility for the test (not for the estimation), especially
in case this part of y becomes too small, may be the following. We test (with
the complete y) the null hypothesis that Ey is in A - C against the alternative
that Ey is in A+ (C x D). In this way, the main effect of D is investigated
together with its interaction with C, which is supposed to be absent in fact.
This procedure has the drawback that it leads to a decrease of the power
of the test on effect of D only.

The projection (with appropriate metric) on A+ C requires the method of
4.3.1, while that on A+ (C x D) will take place in a similar way, because
C x D is in B. Mostly, the classification C X D will be the same as the classi-
fication B (e.g. in the case of missing plots in an ordinary split-plot design).
But then the transformation Q is simply PaPg, so that the orthogonal projec-
tion will be obtained according to the method of 3.3 with the classifications
A and B. The square (with appropriate metric) of the corresponding perpendi-
cular is thus w(y—ysa—ysB)2 The square (with appropriate metric) of the
perpendicular on A + C is (compare the foregoing section):

Zwi(yB,)? + wy? — wy2 — Zows {(Vsa)B; + Ysc}® — wy2, + w{(ysa)p}?
In the denominator of F we use w{y — yB+@axn)}2.
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SUMMARY

In the introduction some objections against the usual definitions and notation,
derivations and application of regression theory (to be understood in a broad
sense) are enumerated. Therefore a sound and comprehensive foundation of
this theory by linear algebra, as devised by KUIPER, is welcome. This study is
an elaboration of that method, and the presentation of new results and insights
obtained.

In chapter 1 linear algebra, as far as needed for the applications, is explained.
In particular, more than usual attention is paid to the evaluation of projections.
A new iterative method to obtain orthogonal projections is given.

In chapter 2 the general problems in regression theory are considered in
terms of vectors. The most interesting conclusion is that unbiased estimates
are obtained by projection, and that unbiased, most efficient estimates are
obtained by orthogonal projection after choosing the appropriate metric.

In chapter 3 several regression problems for uncorrelated observations are
considered in a general way. Beside some attention to the linear regression
problem in a narrower sense (with e.g. orthogonal polynomials), the main
interest is in regression problems, connected with classifications of the obser-
vations. Levels, main effects, interactions and components of effects are defined
in terms of subspaces. A general definition of orthogonality of classifications,
and the formation of components of interaction in orthogonal classifications
by means of tensor products are given.

An iterative procedure, very useful for theoretical considerations as well as
in practice, in order to solve the general regression problems with two and more
classifications, is. discussed. This procedure, together with the ideas developed
in the previous chapters, leads to a surprising insight into the balanced incom-
plete block designs, the group divisible partially balanced incomplete block
designs, the two-dimensional lattices, and some designs of Latin square type
of PEARCE.

Another interesting case is that of one classification orthogonal to the inter-
action of the other two.

A general treatment of problems related to analysis of covariance is given.
In particular, the case with two non-orthogonal classifications and a ‘“‘concomi-
tant variable” seems to be new. Further a simple iterative method is given in
order to estimate and to test the effect of treatments in a trial field, where the
fertility of the plots is supposed to be a polynomial in the coordinates of the
centres of the plots.

The chapter ends with a general exposition of a missing plot technique.

In chapter 4 we consider regression problems, mainly estimation problems,
in case of classifications of the observations, but with a random effect correspon-
ding to one of the classifications. The so-called recovery of inter-block infor-
mation in incomplete blocks forms an example.

A new iterative method for the best estimation in a very general situation of
incomplete blocks is given. A design of split-plot type, also of a very general
character, can be ranged under the same heading,

Similarly, a new iterative method for the best estimation in case of a random
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(block) effect and two constant effects from two characteristics, of which at
least one determines a classification in classes consisting of a number of whole
blocks, is derived. A trivial particular case is that of replicates in an incomplete
block design. But also the problem of estimation of a general effect of treat-
ments from a series of trials, in which the interaction between years and treat-
ments is considered as random, is solved for very general situations, under
certain presuppositions. Further the customary split-plot design, however
without the requirement of orthogonality, belongs to this type of problems.

For all the cases the estimation of the two variances, on which the derived
methods are based, is presented. Finally some remarks are made about the
tests of null hypotheses in all the considered cases.

SAMENVATTING

ssvectoren, een werktuig in de statistische regressietheorie” beoogt meer in-
zicht en, daardoor, vereenvoudiging te brengen in het terrein van de regressie-
rekening. Tot dit terrein behoren vele onderwerpen, die met verschillende namen
worden aangeduid, zoals variantie-analyse, covariantie-analyse, proefschema’s,
lineaire vereffening, vruchtbaarheidscorrecties, samenvatten van proeven enz.
Door volgens de denkbeelden van KurPER deze theorie te funderen op de lineaire
algebra, waarin men verzamelingen van z.g. vectoren beschouwt, werd niet
alleen genoemd doel bereikt, maar konden ook nieuwe resultaten en inzichten
worden verworven.

In de inleiding wordt gewezen op enige ernstige bezwaren tegen de gebruike-
lijke fundering, die in vele opzichten vaag is en aanleiding geeft 1ot een staal-
kaart van onoverzichtelijke technieken en formules voor een toch nog vrij be-
perkt geheel.

Het niet-statistische hoofdstuk 1 is een beknopte, maar volledige uiteenzet-
ting van die delen van de lineaire algebra, die voor de gewenste toepassing
noodzakelijk zijn. Allereerst worden begrippen zoals vectoren, vectorruimten,
basis, dimensie en deelruimten ingevoerd. Vervolgens behandelen wij lineaire
transformaties in vectorruimten, en bijbehorende matrices en eigenwaarden.
Met behulp van het inwendige product worden metrische eigenschappen, zoals
lengten, afstanden, hoeken en loodrechtheid, ingevoerd, gevolgd door een bij-
zondere lineaire transformatie, de loodrechte projectie.

Na invoering van de begrippen convergentie van vectoren en van transfor-
maties bespreken wij een belangrijke machtrecks van transformaties, analoog
aan de gewone convergente meetkundige recks.

In het gedeelte, waarin de uitvoering van projecties, 0.a. met behulp van
normaalvergelijkingen, ter sprake komt, wordt een nicuwe algemene iteratieve
methode gegeven voor de |bepaling van loodrechte projecties. Opmerkingen
over symmetrische transformaties en matrices, dit in verband met de begrippen
metriek en inwendig product, besluiten het hoofdstuk.

Vanaf hoofdstuk 2 zijn de te gebruiken vectoren rijtjes van z getallen, waar-
voor bepaalde rekenregels zijn afgesproken. Na enige opmerkingen over de
covariantie-matrix en de nprmale verdeling van een stochastische vector, en
over de geschikte keuze van een metriek, volgen op eenvoudige wijze enige
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eigenschappen van loodrechte projecties van dergelijke vectoren, o.a. over de
verwachting van het kwadraat van zo een projectie en de bijbehorende ¥2- en
F-verdelingen. Vervolgens wordt de beste schatting in het algemene lineaire
regressieprobleem afgeleid : zuivere schattingen ontstaan door projectie; zuivere,
meest doeltreffende schattingen ontstaan door loodrechte projectie, na keuze
van de passende metrick. Dan volgt een zeer algemene behandeling van de
toetsing bij lineaire regressie. Tot slot geven wij de oplossing van het probleem
der voorwaardelijke waarnemingen, dat in wezen hetzelfde blijkt te zijn als het
lineaire regressieprobleem.

In hoofdstuk 3 worden de ontwikkelde begrippen toegepast in verscheidene
bijzondere gevallen, waarbij de waarnemingsuitkomsten ongecorreleerd zijn.
Wij onderscheiden ,,verklarende variabelen” die expliciet gegeven zijn, van op
klasse-indelingen naar aanleiding van een of ander kenmerk berustende varia-
belen.

Van de eerste groep worden de lineaire functies in het algemeen, en de ortho-
gonale polynomen in het buzonder besproken

Bij de tweede groep worden niveau’s, hoofdeffecten en interacties gedefinieerd
als vectoren in deelruimten. Voor het algemene geval van twee indelingen (twee
hoofdeffectruimten) bespreken wij een uit de iteratieve methode van hoofdstuk 1
voortkomende methode van schatten, waarbij als vrijwel enige operatie het be-
palen van gemiddelden optreedt. Als bijzondere gevallen verschijnen de ortho-
gonale indelingen (met een zeer algemene definitie van orthogonaliteit), voorts
de evenwichtige en sommige, gedeeltelijk evenwichtige, onverzadigde blokken-
schema’s en de twee-dimensionale roosterschema’s. Bij de laatste drie groepen
van schema’s blijkt de iteraticve methode te leiden tot het gebruik van transfor-
maties met slechts één of twee eigenwaarden met zeer bijzondere ruimten van
eigenvectoren. Daaruit volgen merkwaardige eigenschappen van componenten
van effecten, aan wier schatting en toetsing wij ook in het algemeen veel aandacht
besteden.

Voor componenten van de interactie-ruimte bij een tweetal orthogonale in-
delingen blijkt het begrip tensor-product met vrucht te kunnen worden gebruikt.

Uitvoerig wordt ingegaan op schattingen en toetsingen in het algemene geval
van drie indelingen. Ook hier speelt de iteratieve methode, afgeleid in hoofdstuk
1, een belangrijke rol. Als bijzonderheden treden op: volledige orthogonaliteit
der drie indelingen, Latijnse vierkanten, schema’s van PEARCE en het geval, dat
één indeling orthogonaal is met de interactie van de andere twee. Bij de schema’s
van PEARCE zijn twee van de drie indelingen orthogonaal en blijkt de bijbehoren-
de iteratieve methode eveneens te leiden tot een transformatie met twee eigen-
waarden. Bij het laatst genoemde bijzondere geval treden merkwaardige eigen-
schappen en vereenvoudigingen op.

Tot de behandelde problemen, waarbij beide soorten van ,,verklarende varia-
belen” optreden, behoren die, welke ten dele met covariantie-analyse worden
betiteld. Een nieuwe bijdrage daarin is de beschouwing van het algemene geval
van twee indelingen en een ,,verklarende variabele”. Voorts wordt een iteratieve
methode gegeven, om in een proef in de vorm van een strook of van een recht-
hoekig rooster, onder de veronderstelling, dat de vruchtbaarheid een continue
functie nl. een veelterm in de codrdinaten der veldjesmiddelpunten is, schattin-
gen en toetsingen met betrekking tot het te onderzoeken effect uit te voeren.

Het hoofdstuk eindigt met een algemene methode tot leemtevulling d.i. ge-
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bruik van een eenvoudig schema, als het gegeven schema enige gapingen vertoont
ten opzichte van dat eenvoudiger schema.

In hoofdstuk 4 geven wij een algemene en nieuwe behandeling van regressie-
problemen eveneens met klassenindelingen ; sommige effecten worden echter zelf
als stochastische variabelen opgevat. Na een inleiding omtrent de aard van deze
problemen voeren wij op een, in hoofdstuk 1 voorbereide, wijze het passende
inwendig product in.

De twee bij de veronderstellingen behorende varianties als gegeven beschou-
wend, leiden wij, met behulp van de machtreeks in hoofdstuk 1, een iteratieve
methode af ter bepaling van de beste schatting voor het geval van onvolledige
blokken met een stochastisch blokeffect (recovery of inter-block information).
De reeds bekende oplossingen Fl_]n bijzondere gevallen hiervan. Een zeer alge-
meen schema met het karakter van een split-plot schema blijkt tot hetzelfde
onderwerp te behoren.

Eveneens geven wij een nieuwe iteratieve methode ter bepaling van de beste
schatting voor het geval van onvolledige blokkenschema’s, waarin de blok-
effecten stochastisch zijn, maar waarin door een indeling van de blokken een
constant hoofdeffect, naast dat voor de behandelingen, is toegevoegd. ,,Split-
plot”-proeven in de gebruikelijke zin, maar zonder noodzakelijke orthogonaliteit
der indelingen, zijn hiervan een. bijzonder geval. Hetzelfde blijkt te gelden voor
het probleem der schatting van gemiddeld te verwachten rasverschillen wit
rassenproeven over verscheidene jaren, waarin de interactie tussen rassen en
jaren als stochastisch wordt opgevat en waarin eveneens orthogonaliteit ont-
breekt. Verder behoort hiertoe het geval van twee indelingen met meer dan een
waarneming per combinatie van twee klassen en met een stochastische interactie.

Bij al de problemen van dit hoofdstuk wordt ingegaan op bijzondere situaties,
zoals hetzelfde aantal veldjes in elk blok, orthogonaliteit van onderindelingen in
de afzonderlijke klassen van een hoofdindeling, of een zeer kleine of een zeer
grote verhouding van de genoemde twee varianties.

Hierna wordt de schatting van het tweetal benodigde vananues voor al de be-
handelde gevallen besproken en afgeleid. Enige opmerkingen over de uitvoe-
ring van toetsingen in al de beschouwde gevallen besluiten het hoofdstuk. -
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