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Chapter 1 
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We assign the label „plant pathogen‟ to all living organisms which threaten our crop 

production. Plant pathogens include all kinds of fungi, bacteria, oomycets, and viruses. 

„Pest‟ is used for insects and small animals. Plants are equipped with different defense 

mechanisms to cope with their pathogens and pests. The ultimate output of these defense 

mechanisms is that only those organisms which are able to pass these defense layers are 

pathogenic. 

 

Plant defense mechanisms against pathogens and pests 

Some of the plant features, like architecture, morphology, chemical and biochemical 

contents, growth habit, etc., can decrease the plant vulnerability to attacking pathogens. 

Since these features have evolved for other purposes and indirectly enhance plant fitness 

in response to pathogens, I refer to the resistance due to these characteristics as indirect 

defense. In addition to indirect defense, a sophisticated innate immune system has 

evolved in plant cells which is specialized in pathogen recognition and defense responses 

triggering.  

 

I. Indirect defense 

The surface of the plant is the first battlefield between pathogens and plants, therefore, it 

seems straightforward to have barriers there to prevent pathogen attack. It is believed that 

hydrophobicity, hardness, chemical components, and topographical properties of the 

plant surface are important for pre-penetration processes of many fungal pathogens 

(Mendgen et al., 1996). The cuticle is a good example of the contribution of the plant 

surface composition to defense. Plant cuticle forms a hydrophobic layer, 0.02–200 

micrometer thick, which covers almost all aerial surfaces of land plants and forms the 

interface between plant and environment (Nawrath, 2006). Cutin is one of the main 

components of the cuticle (Nawrath, 2006), and therefore, cutin-deficient tomatoes have a 

thinner layer of cuticle. It has been observed that fruits of cutin-deficient tomato mutants 

were more susceptible to pathogens like Botrytis cinera (Isaacson et al., 2009). 

Stomata are microscopic pores on the plant leaf surface for exchanging gas and 

water. Some pathogens take advantage of these pores to penetrate the plant. Interestingly, 



 

10 

 

it has been observed that stomata act as a barrier against bacterial infection, partly in tie 

with the innate immunity system (Melotto et al., 2006).  

Plant morphology also contribute to the response to pathogens. It has been shown 

that there is a high correlation between resistance to yellow mottle virus and plant 

architecture related traits in rice (Albar et al., 1998). Another example is that some 

morphological traits were shown to influence the expression of sheath blight resistance 

genes in rice indirectly (Han et al., 2003). 

Secondary metabolites, which are derived from the isoprenoid, phenylpropanoid, 

alkaloid or fatty acid/polyketide pathways, are known for a long time as antimicrobial 

plant components (Dixon, 2001). For instance, Arabidopsis root exudates contain 

antimicrobial metabolites and confer resistance to a wide range of bacterial pathogens 

(Bais et al., 2005). The pre-formed secondary metabolites, referred to as phytoanticipins 

versus phytoallexins, like pisatin and phaseollin, which are induced upon pathogen 

infection (VanEtten et al., 1994). For example, α-tomatine in Solanaceous plants is a 

phytoanticipin that has been shown to have antimicrobial function (Morrissey and 

Osbourn, 1999). The induction of phytoallexins formation upon pathogen infection has 

been well-documented by visualizing vesicle trafficking during delivery of vesicles 

which carry flavonoids toward the pathogen infection site (Snyder and Nicholson, 1990). 

Usually crops contain lower amounts of secondary metabolites compared to their wild 

relatives. It is believed that during domestication, crops have lost some secondary 

metabolites and therefore, crops are more vulnerable to pathogens compared to their wild 

relatives (Wink, 1988).  

 

II. Direct defense: Plant innate immunity 

Innate immunity is the defense strategy which relies on a set of specialized receptors so 

called pathogen- or pattern-recognition receptors (PRRs) which recognize microbe-

associated molecules (Ausubel, 2005). There are two groups of PRRs in plant cells, 

PAMP-receptors and resistance (R) proteins (Ausubel, 2005). 

PAMP- receptors: pathogen-associated molecular patterns (PAMPs) are evolutionary 

conserved pathogen-derived molecules that distinguish pathogens from their hosts 

(Ausubel, 2005). Perception of PAMPs by PAMP-receptors in plants results in PAMP-
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triggered immunity (PTI) (Jones and Dangl, 2006). For example, FLS2 which is a 

transmembrane leucine-rich repeat (LRR) receptor kinase, is a well-characterized PAMP-

receptor which percepts eubacterial flagellin (Gómez-Gómez and Boller, 2000).  

 R proteins: these proteins are localized in the plasma membrane (like CF-2 and 

XA21 proteins) or, more frequent, in the intracellular area. The most common R proteins 

are the NBS-LRR protein family. In Arabidopsis and rice there are 140 and 500 genes, 

respectively, that are predicted to encode NBS-LRR proteins (Meyers et al., 2003; Zhou 

et al., 2004). A preliminary analysis suggests that there are around 140 putative genes 

encoding NBS-LRR proteins in the tomato genome (Fig. 3). R proteins perceive pathogen 

effectors (directly or indirectly) and thereby, trigger effector-triggered immunity (ETI) 

(Jones and Dangl, 2006). In the absence of pathogen effector, activation of NBS-LRR 

proteins is prevented by autoinhibition mediated by the LRR domain. NBS-LRR protein 

is bound to ADP (adenosine diphosphate) when it is in “Off” state. Effector recognition 

would lead to intermediated open state where ATP (adenosine triphosphate) replaces 

ADP and then the protein retains its “On” state, which is the active form. ATP hydrolysis 

returns the protein to the autoinhibited “Off” state (Takken et al., 2006). Effector 

recognition by the LRR domain (Takken et al., 2006) or both N- terminus and LRR 

(Takken and Tameling, 2009) triggers activation of the R protein. If N-terminus and LRR 

domain are both involved in pathogen recognition, then the NBS domain could be serving 

as an interaction platform for the downstream signaling components (Takken and 

Tameling, 2009).  

R proteins are specialized in immune response, however there are few exceptions 

suggesting pleiotropic roles for some R proteins. There are instances of contribution of 

TIR-NBS-LRR proteins to response to abiotic stresses (Noutoshi et al., 2005) and shade 

avoidance response (Faigon-Soverna et al., 2006). In the case of CC-NBS-LRR proteins 

it has been shown that constitutive activation of such an R protein alters morphogenesis 

through the cytokinin pathway in Arabidopsis (Igari et al., 2008). 

 

 Events after pathogen recognition 

PTI and ETI trigger similar processes and most probably the main difference is in 

magnitude of these processes (Tao et al., 2000). Common events in ETI and PTI include 
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calcium ion influx, oxidative burst, activation of mitogen-activated protein kinases 

(MAPKs) cascades, reprogramming of gene expression, reinforcing the cell wall at 

pathogen attempt sites and, often, programmed cell death (PCD) (Dodds and Rathjen, 

2010). Hypersensitivity reaction (HR) is a form of apoptosis-like PCD (Hofius et al., 

2009) which is the hallmark for ETI (Nimchuk et al., 2003).  

Plant hormones, salicylic acid (SA), jasmonic acid (JA), ethylene (ET), auxin, 

abscisic acid (ABA), and gibberellic acid (GA), cytokinins, and even brassinosteroids 

contribute to both ETI and PTI significantly (BR) (Bari and Jones, 2009). In general SA 

is considered to be mostly involved in response to biotrophic pathogens, while JA and ET 

trigger immunity responses to necrotrophic pathogens (Glazebrook, 2005). The other 

phytohormones exert their role in immunity response mostly via SA, JA, and ET 

pathways (Bari and Jones, 2009).  

 

 RNA silencing contribution to plant immunity 

RNA silencing, or RNA interference (RNAi), was first described as the immune response 

of animal (Fire et al., 1998) and plant (Hamilton and Baulcombe, 1999) cells to 

exogenous double-stranded RNAs. Now we know that RNA silencing is a conserved 

mechanisms in eukaryotes for transcriptional and post-transcriptional regulation of gene 

expression (Baulcombe, 2004)
 
and for genome defense and stability (Plasterk, 2002; 

Moazed, 2009). RNA silencing in the model plant, Arabidopsis thaliana involves the 

production of small RNAs (sRNA), 18-24 nucleotide (nt) in size, from a double-stranded 

RNA (dsRNA) by one of the four dicer-like (DCL) enzymes (Ruiz-Ferrer and Voinnet, 

2009). Depending on the precursor, there are two known groups of small RNAs in 

Arabidopsis, microRNAs (miRNAs) and small interfering RNAs (siRNAs) (Jones-

Rhoades et al., 2006). The miRNAs are diced from single strand RNA molecules that 

include an imperfect stem-loop secondary structure, whereas siRNAs are processed from 

long, double-stranded RNAs (Ruiz-Ferrer and Voinnet, 2009). Four different types of 

siRNAs are known in plants: trans-acting siRNAs (ta-siRNAs), natural antisense 

transcripts-derived siRNAs (nat-siRNAs), heterochromatic siRNAs (hc-siRNAs), and 

long siRNAs (lsiRNAs) (Katiyar-Agarwal and Jin, 2010). Both miRNAs and siRNAs are 

incorporated into silencing complexes, wherein they guide repression of target genes 
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(Jones-Rhoades et al., 2006). Once RNA silencing starts, it can be amplified (Baulcombe, 

2007) especially through 22-nt sRNAs (Chen et al., 2010). 

There is overwhelming evidence implicating plant RNA silencing pathways in 

immunity (reviewed in Jin, 2008; Voinnet, 2008; Padmanabhan et al., 2009; Ruiz-Ferrer 

and Voinnet, 2009; Katiyar-Agarwal and Jin, 2010). There are instances showing that 

miRNAs (Navarro et al., 2006; Navarro et al., 2008; Li et al., 2010), nat-siRNAs 

(Katiyar-Agarwal et al., 2006), lsiRNAs (Katiyar-Agarwal et al., 2007), and hc-siRNAs 

(Pavet et al., 2006; Agorio and Vera, 2007) play a role in Arabidopsis immunity 

responses. These pathogen-responsive sRNAs induce post-transcriptional gene silencing 

by guiding mRNA degradation or translational repression, or may guide transcriptional 

gene silencing by direct DNA methylation or chromatin modification (Ruiz-Ferrer and 

Voinnet, 2009; Katiyar-Agarwal and Jin, 2010). Surprisingly, it has recently been shown 

that the plant-derived sRNAs are even able to silence the pathogen‟s genes inside the 

pathogen (Nowara et al., 2010). 

 

 Plant innate immunity responses fitness trade-off 

As mentioned above, a lot of processes and pathways are involved in immunity response. 

Of course, activation of these processes is costly for the plant cell and it needs to be kept 

tightly regulated and in balance. A recent discovery in Arabidopsis showed that a single 

locus, ACD6, is one of the genes which increase defense response by compromising 

growth (Todesco et al., 2010). Hyperactivity of ACD6 enhances resistance to pathogens 

but, on the other hand results in decreasing plant biomass (Todesco et al., 2010). In the 

RPP5 resistance gene cluster in Arabidopsis, it was shown that sRNAs derived from this 

gene cluster regulate the transcript level of SNC1 gene in the same cluster to restrict the 

fitness cost associated with constitutive expression of these R genes (Yi and Richards, 

2007). Therefore, fine-tuning of R genes expression and activity is also very important, 

especially in crop breeding for pathogen resistance. It should not be forgotten that a 

healthy plant needs to keep the immune response in balance. Crop breeding strategies 

relying on manipulation of the innate immunity system will increase the risk to mess this 

balance up.  
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 Crop breeding for resistance to pathogens and pests 

The prevalence of undernourishment in the world in 2010 was estimated as much as 925 

millions (Food and Agriculture Organization, 2010). On the other hand, the world 

population will be around 8.3 billions by 2030 (http://faostat.fao.org). “The challenge is 

clear. The world must produce 40 percent more food, with limited land and water, using 

less energy, fertilizer and pesticide by 2030 at the same time as bringing down sharply 

the level of greenhouse gases emitted globally, and while coping with the impact of 

climate changes that cannot be avoided. To do so, we must maximize both the use of 

those technologies already developed and generate and exploit new scientific discoveries. 

We need a new and greener revolution, a revolution with science and technology at its 

heart” (Beddington, 2010).  

 

 

Fig. 1. Worldwide crop production losses due to different pathogen and pest groups in 2001–03. The data 

represent the average loss in production of 6 major crops (wheat, rice, maize, potatoes, soybean). Animal 

pests refers to arthropods, nematodes, rodents, birds, slugs and snails. Pathogens refers to fungi and 

bacteria. Potential loss is the estimated loss if there is no pathogen and pest control applied (adapted from 

Oerke, 2006). 

 

As demonstrated in Figure 1, pests and pathogens contribute significantly to losses in 

crop production. Therefore it is clear that efforts towards producing crops with 

resistances to pests and pathogens are valuable. 

http://faostat.fao.org/
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As Beddington (2010) suggested, classic crop breeding strategies together with new 

technologies in genetic engineering and transgenesis are required for a “greener 

revolution”. Classic breeding for resistance to pathogens and pests mostly relies on 

finding resistance genes in wild relatives of crops and then introgress those genes into 

crops. It sounds like a straightforward procedure, however, one of the main bottlenecks is 

that it can take years to deliver the final product, a variety. Introducing molecular biology 

techniques in the 1980s was the onset of a new and fast-developing era in crop breeding. 

First, it made it possible to accelerate the selection steps in breeding programs by using 

molecular markers that are closely-linked to the target trait for selecting the trait. This 

strategy is called marker-assisted selection. Second, genetic engineering techniques 

helped to shorten the process of introducing resistance genes to crops. It provided the 

possibility to clone individual resistance-conferring genes and transform them to crops in 

order to produce transgenic crops. In this case, genetic linkage drag is not a problem 

anymore, however, to produce a transgenic line with proper temporal and spatial 

expression of the resistance gene is the challenge. With transgenic approaches it is 

possible to introduce genes from other plant species which are not crossable with the 

target crop or even from other organisms, like bacteria. The classic example is the 

expression of delta endotoxin proteins derived from Bacillus thuringiensis (Bt) in the 

plant which confers resistance to insects (Barton et al., 1987). Since then, Bt crops, 

particularly cotton and corn, have been cultivated widely. In 2008 Bt corn and cotton 

constituted 17% and 18% , respectively, of the cultivated U.S. acreage (Lemaux, 2009). 

 

Tomato -powdery mildew interaction 

In this thesis, I will focus on the pathosystem of tomato and tomato powdery mildew to 

study several tomato resistance genes to this pathogen. Tomato powdery mildew (PM), 

Oidium neolycopersici, is an obligate biotrophic fungus which can parasitize more than 

60 species in 13 plant families especially Solanacea and Cucurbitacae (Jones et al., 

2001). In Figure 2, the effect of PM pathogenecity on S. lycopersicum cv. Moneymaker 

(MM) is illustrated.  
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Tomato resistance to O. neolycopersici 

Most of the cultivated tomatoes are susceptible to PM, however in wild tomato species 

several sources of resistance have been identified and introgressed into cultivated tomato 

(Lindhout et al., 1993). Till now, 9 loci have been identified which confer resistance to 

PM. Ol-1 which has been introgressed from S. habrochites G1.1560 (van der Beek et al., 

1994) and was mapped on the long arm of tomato chromosome 6 (Bai et al., 2005). ol-2 

is a recessive resistance gene found in S. lycopersicum var cerasiforme LA1230 and 

located on chromosome 4 (Ciccarese et al., 1998). Cloning of this gene revealed that ol-2 

is a homologue of the barley Mlo gene (Bai et al., 2008). Ol-3 has been  introgressed 

from S. habrochites G1.1290 (Huang et al., 2000) and is located on the same 

chromosomal region as Ol-1 and there are some evidences suggesting that Ol-1 and Ol-3 

are probably allelic variants (Bai et al., 2005). Ol-4 was introgressed from S. peruvianum 

LA2172 and mapped on the short arm of chromosome 6 (Bai et al., 2004). Ol-5 is 

introgressed from S. habrochites PI247087 and was mapped closely linked to Ol-1 and 

Ol-3 on the long arm of chromosome 6 (Bai et al., 2005). Ol-6 was found in an advanced 

breeding line with unknown origin and is mapped in the same position as Ol-4 (Bai et al., 

2005). In addition, three quantitative trait loci (Ol-qtls) were identified for PM resistance 

in S. neorickii G1.1601 (Bai et al., 2003). Ol-qtl1 was mapped on chromosome 6 in a 

chromosomal region where also Ol-1, Ol-3 and Ol-5 are located. Ol-qtl2 and Ol-qtl3 were 

mapped on chromosome 12 in the vicinity of the Lv gene conferring resistance to another 

powdery mildew (Leveillula taurica) (Bai et al., 2003). The approximate locations of 

these Ol loci on the tomato chromosomes are shown in Figure 3.  

 

Scope of the thesis 

This thesis reports the efforts undertaken to obtain a better understanding of tomato 

response to O. neolycopersici, with the main focus on the dominant Ol genes located on 

tomato chromosome 6. The tomato Mi-1 gene confers resistance to root-knot nematodes, 

aphids and whiteflies. This gene is located in a gene cluster (Mi-1 gene cluster) on the 

short arm of tomato chromosome 6. Previously we mapped Ol-4 and Ol-6 in this cluster. 
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Fig.2. Tomato-powdery mildew interaction. A. A leaflet of the resistant tomato near-isogenic line carry the 

Ol-4 gene, showing no powdery mildew (PM) sporulation. B. Sporulation of PM on a leaflet of the 

susceptible tomato line, Solanum lycopersicum cv. Moneymaker (MM). Pictures were taken two weeks 

after PM inoculation. C. Biomass loss in MM seedlings due to heavy inoculation of PM. The seedlings 

were heavily inoculated with PM spores 10 days after germination and 10 days later, 20 seedlings were 

weighted. The average weight of the control (MM) seedlings and inoculated with PM (MM+PM) seedlings 

is shown here.  

 

In Chapter 2 we show that near-isogenic lines (NILs) harboring Ol-4 (NIL-Ol-4) and 

Ol-6 (NIL-Ol-6) are also resistant to nematodes and aphids. We also demonstrate that the 

resistance to both nematodes and tomato powdery mildew in these two NILs is governed 

by linked (if not the same) Mi-1 homologues in the Mi-1 gene cluster.  

Chapter 3 is also devoted to the Mi-1 gene cluster, showing the potential 

involvement of transport inhibitor like (TIR-like) genes embedded in this cluster in 

tomato response to root-knot nematodes. TIR1 is an auxin receptor that plays a pivotal 

role in auxin signaling. Since auxin is involved in the pathogenicity of tumor-inducing 

pathogens like pseudomonads and nematodes, the co-localization of TIR-like genes with 

the Mi-1 gene was intriguing to check if TIR-like genes play a role in the resistance 

conferred by the Mi-1 gene. We monitored the TIR-like transcript abundance (TTA) in 

both roots and leaves of nematode-resistant and –susceptible tomato lines. TTA was 

lower in the roots, but not in the leaves, of nematode-resistant plants compared to that in 

nematode-susceptible plants. In order to check whether the TIR-like genes are involved in 

the Mi-1 gene resistance pathway, we transiently silenced the Mi-1 homologues in the 

nematode-resistant tomato line and measured TTA. Results showed that knocking down 
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the expression of the Mi-1 homologues had no effect on TIR-like transcription regulation. 

Our results show that there is an association between TTA and the tomato response to 

nematodes.  

In Chapter 4 we studied Ol-1 and Ol-5, two closely-linked genes, located on the 

long arm of chromosome 6. Ol-1 mediates delayed cell death which is different from HR 

in the magnitude and in the timing of the response. We fine-mapped the Ol-1 locus to a 

73 Kb interval. Interestingly, our results show that another locus, located in the 

chromosomal region where the Ol-5 locus is mapped, is required for Ol-1-mediated 

resistance. Furthermore, delayed cell death associated with Ol-1- and Ol-5-mediated 

resistance is regulated by the interaction of both loci. Loss of the S. habrochaites allele of 

the Ol-5 locus results in abolishing the delayed cell death, while loss of S. habrochaites 

Ol-1 allele reduces the effectiveness of delayed cell death probably by disturbing the right 

timing of this process.  

Chapter 5 shows that phytohormone pathways are involved differently in resistance 

conferred by the Ol genes, Ol-1, ol-2, Ol-4 and Ol-qtls. We investigated the role of SA, 

ABA, JA, and ET pathways, in the response of these Ol gene to PM. We monitored the 

trend of these phytohormone pathways based on the quantification of the expression of 

marker genes for these pathways. We also crossed the NILs carring these Ol genes with 

tomato mutants that have altered responses to a subset of these phytohormones. Results 

suggest that the SA pathway is the main hormone pathway that is recruited HR-based 

resistance mechanism. Ethylene pathway is associated with delayed cell death. The 

resistance mechanism relying on callose deposition require ABA pathway. We provide a 

comparative analysis on the contribution of different phytohormone pathways to different 

forms of plant defense mechanisms in the same pathosystem.  

In Chapter 6, I have summarized all our data and discussed our findings in the 

context of known mechanisms of plant response to pathogens.  
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Fig.3. Estimated locations of the putative NBS-LRR coding genes (depicted with NL followed by a 

number) in the tomato genome. NBS-LRR domain of the Mi-1.2 gene (AAC67238.1) was used for 

TBLSTN against tomato genome sequences (WGS version 1.03, http://solgenomics.net). The cut off for E 

value was set at – 4 (Meyers et al., 2003). Based on this simple analysis there are 142 putative NBS-LRR in 

the tomato genome of which 6 could not be mapped on any chromosome. The distances are in cM based on 

Tomato-EXPEN 2000 map (http://solgenomics.net). The approximate locations of the Ol loci for resistance 

to tomato powdery mildew are also included and shown in red color.
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Linked, if not the same, Mi-1 homologues confer resistance to tomato powdery 

mildew and root-knot nematodes 

 

 

Abstract 

On the short arm of tomato chromosome 6, a cluster of disease resistance (R) genes has 

evolved harboring the Mi-1 and Cf genes. The Mi-1 gene confers resistance to root-knot 

nematodes, aphids and whiteflies. Previously we mapped two genes, Ol-4 and Ol-6 for 

resistance to tomato powdery mildew in this cluster. The aim of this study was to 

investigate whether Ol-4 and Ol-6 are homologues of the R genes located in this cluster. 

We show that near-isogenic lines (NILs) harboring Ol-4 (NIL-Ol-4) and Ol-6 (NIL-Ol-6) 

are also resistant to nematodes and aphids. Genetically, the resistance to nematodes co-

segregates with Ol-4 and Ol-6, which are further fine-mapped to the Mi-1 cluster. We 

provide evidence that the composition of Mi-1 homologues in NIL-Ol-4 and NIL-Ol-6 is 

different from other nematode-resistant tomato lines, Motelle and VFNT harboring the 

Mi-1 gene. Furthermore, we demonstrate that the resistance to both nematodes and 

tomato powdery mildew in these two NILs is governed by linked (if not the same) Mi-1 

homologues in the Mi-1 gene cluster. Finally, how Solanum crops exploit Mi-1 

homologues to defend themselves against distinct pathogens is discussed.  
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Introduction 

A cluster of disease resistance (R) genes has evolved on the short arm of tomato 

(Solanum lycopersicum) chromosome 6 (Fig.1), which harbors R genes (Cf-2, Cf-5 and 

Mi-1) that mediate resistance to distinct pathogens. Cf-2 (originating from S. 

pimpinellifolium) and Cf-5 (found in S. lycopersicum var. cerasiforme)
 
confer resistance 

to the fungus Cladosporium fulvum. Mi-1 (originating from S. peruvianum) mediates 

resistance to three very different organisms; root-knot nematodes (Meloidogyne 

incognita, M. arenaria and M. javanica; hereafter refer to as Meloidogyne spp.), aphids 

(Macrosiphum euphorbiae) and whiteflies (Bemisia tabaci) (Dickinson et al., 1993); 

(Kaloshian et al., 1998). Mi-1 belongs to the largest class of R genes that encodes a 

protein containing a nucleotide-binding site plus leucine-rich repeats (NBS-LRR) 

(Milligan et al., 1998). Cf-2 and Cf-5 encode receptor-like proteins with LRR and 

transmembrane domains (Dixon et al., 1996). Cloning of these R genes uncovered the 

presence of seven Mi-1 homologues (Seah et al., 2007), three Cf-2 homologues (Dixon et 

al., 1996) and four Cf-5 homologues (Dixon et al., 1998) in this R gene cluster. The 

cluster of Mi-1 homologues spans about 430 Kb (Fig.1B) and consists of two 

pseudogenes, one truncated and four intact genes (Seah et al., 2007). Among these seven 

Mi-1 homologues only Mi-1.2 has been shown to be functional and confer resistance to 

nematodes (Milligan et al., 1998), aphids (Rossi et al., 1998) and whiteflies (Nombela et 

al., 2003). 

In addition to the cloned Cf and Mi-1 genes, Mi-9 (Ammiraju et al., 2003), Ty-1 (a 

locus for resistance to tomato yellow leaf curling virus, TYLCV) and Cm6.1 (Zhang et 

al., 2002) have been mapped in the Mi-1 cluster (Ammiraju et al., 2003; Zhang et al., 

2002). Interestingly, Mi-9 in tomato has been shown to be a Mi-1 homologue (Jablonska 

et al., 2007). In addition, Mi-1 homologues have been identified at syntenic positions in 

other solanaceous crops. For example, the potato Rpi-blb2 gene conferring late blight 

resistance is a Mi-1 homologue on the short arm of potato chromosome 6 (Vossen et al., 

2005). It is intriguing to investigate whether other resistance genes mapped in this cluster 

are also homologues of Mi-1 or Cf genes.  

Previously we mapped two resistance genes, Ol-4 originating from Solanum 

peruvianum LA2172 and Ol-6 with unknown origin, on the short arm of tomato 
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chromosome 6 in the Mi-1 cluster. These Ol genes confer resistance to the fungus Oidium 

neolycopersici, causal agent of tomato powdery mildew by triggering hypersensitive 

response (HR) (Bai et al., 2005). In this study, we show that near-isogenic lines (NILs) 

harboring Ol-4 and Ol-6 are resistant to O. neolycopersici, M. incognita and M. 

euphorbiae but not to TYLCV or C. fulvum. We provide the evidence that resistance to 

nematodes co-segregates with Ol-4 and Ol-6. Further, we demonstrate that silencing Mi-1 

homologues in these NILs compromises the resistance to both O. neolycopersici and M. 

incognita, suggesting that Ol-4 and Ol-6 are Mi-1 homologues and the resistance to 

nematodes in these two NILs is also controlled by Mi-1 homologues.   

 

Results 

NIL-Ol-4 and NIL-Ol-6 are resistant to O. neolycopersici, nematodes and aphids 

Two NILs were generated with an introgression on the short arm of tomato chromosome 

6 that contains either Ol-4 (NIL-Ol-4) or Ol-6 (NIL-Ol-6) in the genetic background of S. 

lycopersicum cv Moneymaker (MM) (Bai et al., 2005). In these two NILs, the 

introgression resides only on the short arm including at least the chromosomal region 

between markers T1198 and cLET-2-H1 (Fig. 1A), which embraces the Mi-1 gene cluster  

harboring Mi-1, Cf-2 and Cf-5. In addition, Ty-1 is also mapped in this cluster (Zamir et 

al. 1994). To test whether NIL-Ol-4 and NIL-Ol-6 have functional alleles of these R 

genes, these two NILs were challenged with the corresponding pathogens; M. incognita, 

M. euphorbiae, C. fulvum (race 2, 5 and 2.4.5) and one TYLCV strain. In the disease 

assays with C. fulvum and TYLCV, the susceptible control MM as well as NIL-Ol-4 and 

NIL-Ol-6 were equally susceptible to the three races of C. fulvum and TYLCV, except for 

an intermediate level of resistance to race 5 of C. fulvum in NIL-Ol-6 (Table 1 and Fig.2). 

Since C. fulvum race 5 contains Avr2, the intermediate level of resistance in NIL-Ol-6 

might imply that the allele of Cf-2 in NIL-Ol-6 is functional to confer a certain level of 

resistance. As to nematode resistance, NIL-Ol-4 and NIL-Ol-6 were as resistant as 

Motelle, the resistant control which contains the Mi-1.2 functional homologue of the Mi-1 

gene originating from S. peruvianum PI 128657. No galls or egg masses were observed 

on the roots of NIL-Ol-4 and NIL-Ol-6 plants in contrast to more than 50 egg masses 

observed on the roots of MM plants. As to the aphid assay, MM and Motelle were used as  
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susceptible and resistant controls, respectively. Seven days after confining aphids on the 

plants with clip cages, the number of adult aphids was similar among the lines. However, 

the number of nymphs was significantly less on Motelle than that on other lines (Fig.3a).  

 

Fig. 1. Genetic and physical maps showing the part of the short arm of tomato chromosome 6 which 

harbors the Mi-1 gene cluster. The introgression in NIL-Ol-4 and NIL-Ol-6 is defined on the short arm 

covering at least the chromosomal region between markers T1198 and cLET-2-H1. A). Genetic map was 

based on recombinant screening for the Ol-4 gene by using a BC3S1 population derived from interspecific 

crosses of Solanum lycopersicum cv. Moneymaker with S. peruvianum LA2172. Genetic distances (cM) are 

shown in the lower part, while the number of recombinants obtained in each marker interval is mentioned 

in the interval. B). Physical map of the same region in tomato (S. lycopersicum) based on the whole 

genome shotgun sequencing release 1.05 (www.solgenomics.net). The distances in 100 Kb scale are shown 

in the lower part. The segment spanning the Mi-1 gene cluster is shown in solid black (from 1170-1600 Kb) 

as well as  the Cf gene cluster which is  located above ct119 (from 990 to 1010 Kb). 

 

After the second seven days, comparable numbers of adult aphids were found on Motelle 

and NIL-Ol-4, which were significantly lower than that on NIL-Ol-6 and MM (Fig. 3b).   

Though the number of adults and nymphs on NIL-Ol-6 was not as low as that on NIL-Ol-

4 and Motelle, it was still significantly lower than that on MM. Similar results were 

obtained in another aphid assay without using clip cages (Fig. 3c). Furthermore, 

Electrical Penetration Graph (EPG) (Tjallingii, 1988) was applied to monitor the feeding 

http://www.solgenomics.net/
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behavior of aphids as a different method for aphid assay. The proportion of time 

(recorded in second (s)) that aphids spent ingesting the phloem sap on MM, NIL-Ol-4, 

NIL-Ol-6 and Motelle was 10227s, 4737s, 9534s and 4324s, respectively. Comparing to 

MM, Motelle and NIL-Ol-4 but not NIL-Ol-6 showed significant reduction on the 

proportion of time. Although NIL-Ol-4 and Motelle showed a comparable level of 

resistance, substantial differences were observed between these two lines in the 

performance test (Fig. 3a). Thus, the performance and the feeding behavior of aphids 

showed that these two NILs were not as resistant as Motelle, suggesting that either the 

allele of Mi-1.2 in these two NILs is not as strong as the allele in Motelle or another Mi-1 

homologue (rather than Mi-1.2) is involved in response to aphids in these two NILs.  

 

 

Fig. 2. The abaxial side of leaves of different tomato lines inoculated with Cladosporum fulvum race 5. No 

symptoms of fungal infection are visible on the resistant control Tradiro, while there is heavy sporulation 

on susceptible control Moneymaker (MM) and NIL-Ol-4. Slight fungal sporulation is visible on NIL-Ol-6, 

suggesting an intermediate level of resistance in this line.   

 

The composition of Mi-1 homologues in NIL-Ol-4 and NIL-Ol-6 is different from 

other nematode-resistant tomato lines  

The size and sequence of the first intron of Mi-1 is variable among Mi-1 homologues and 

has been used to differentiate Mi-1.2 from other Mi-1 homologues (Seah et al., 2007). To 

check the presence or absence of Mi-1.2 in NIL-Ol-4 and NIL-Ol-6, the first intron of Mi-
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1 homologues was amplified in these two NILs. The size of the three easily discernable 

amplified introns from NIL-Ol-4 and NIL-Ol-6 appeared to be different from those 

amplified in MM and Motelle (harboring the functional Mi-1.2 homologue of the Mi-1 

gene) (Fig. 4A). Furthermore, we sequenced the amplified intron fragments from these  

 

Table 1. Qualitative evaluation of responses of different tomato lines to the tested pathogens and 

pests.  

  
Oidium 

neolycopersici 

Meloidogyne 

incognita 
TYLCV 

Cladosporium fulvum race 

2 5 2.4.5 

Moneymaker S
a
 S S S S S 

NIL-Ol-4 R R S S S S 

NIL-Ol-6 R R S S IR S 

Resistant controls R R R R R R 

Plants tested per 

line  
20 20 20 10 10 10 

a
R stands for resistant, S for susceptible and IR for intermediate resistant. For disease tests with O. 

neolycopersici and C. fulvum, plants with no fungal sporulation were regarded as R, while plants 

with heavy sporulation as S, plant with weak fungal sporulation as IR. For disease assay with M. 

incognita, plants were scored as resistant if the number of egg masses were less than 10% of the egg 

masses on the susceptible control Moneymaker. For TYLCV test, plants showing symptoms like 

curling and yellowing of young leaves (resulting in stop of growth sometimes) were scored as S and 

plants without any symptom as R. Resistant control for M. incognita disease test was Motelle, a 

cultivar carrying the Mi-1 gene. In the disease test with TYLCV, we used a breeding line carrying 

the Ty-1 gene as resistant control. A commercial hybrid, Tradiro, was the resistant control in C. 

fulvum disease test.  

 

NILs and performed sequence alignment along with available Mi-1 first intron sequences 

from VFNT cherry tomato (carrying the Mi-1.2 homologue and therefore nematode-

resistant) (Seah et al., 2004), S. arcanum LA2157 (donor of the nematode resistance gene 

Mi-9) and LA392 (nematode susceptible) (Jablonska et al., 2007). The introns of these 

two NILs were different from the Mi-1.2 intron and formed two clades which were 

clearly distinct from other clades derived from VFNT, S. arcanum LA2157 and LA392 

(Fig. 4B). Thus, we conclude that the Mi-1.2 allele of the Mi-1 gene is not present in NIL-

Ol-4 and NIL-Ol-6. Furthermore, the intron sequences were not exactly the same in NIL-

Ol-4 and NIL-Ol-6, implying that these two NILs have introgressions from different 

donors.  
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Resistances to root-knot nematodes and powdery mildew co-segregate  

So far, genes conferring resistance to root-knot nematodes in tomato have been mapped 

on both chromosome 6 and 12. Though we were sure that NIL-Ol-4 and NIL-Ol-6 have 

introgression on tomato chromosome 6, we could not exclude the possibility that they 

also contain introgressions on chromosome 12. To verify whether genes for nematode 

resistance in these two NILs are located on chromosome 6, two BC3S1 populations (80 

individuals each) segregating for Ol-4 and Ol-6 were tested for response to both O. 

neolycopersici and M. incognita. By making cuttings, two disease tests were performed 

on the same individual plant (see M&M). The nematode resistance segregated in both 

populations following a 3R:1S ratio (58R:22S with χ
2
 = 0.27 for the Ol-4 population, and 

64R:16S with χ
2
 =1.07 for the Ol-6 population). In addition, the nematode resistance in 

these two populations fully co-segregated with the resistance to O. neolycopersici as well 

as markers linked to Ol-4 and Ol-6 loci (Table 2 and Fig. 1A). These results raised the 

possibility that Ol-4 and Ol-6 govern resistance to both nematodes and O. neolycopersici 

or that genes conferring nematode resistance in these NILs are linked to Ol-4 and Ol-6.  

 

Ol-4 is located in the Mi-1 gene cluster 

Previously our mapping results suggested that Ol-4 and Ol-6 are likely allelic variants of 

the same gene (Bai et al., 2005). Therefore, we performed fine-mapping only for the Ol-4 

gene. A recombinant screening was carried out in a BC2S1 population by using markers 

located on the short arm of chromosome 6 (Table 2, Fig.1A). From 2000 plants screened, 

16 recombinants were found between the Ol-4 locus and ct119 marker that is tightly 

linked to the Cf gene cluster (Fig. 1A), suggesting that Ol-4 is not located in this cluster. 

No recombination events occurred between Ol-4 and an interval flanked by markers 

32.5Cla and REX-1 where the Mi-1 gene is located (Fig.1A), showing that Ol-4 is located 

in the Mi-1 gene cluster. 

  

Ol-4 and Ol-6 are homologues of Mi-1 

Besides seven Mi-1 homologues, several other genes including transport inhibitor 

response-1 (TIR-1), jumonji transcription factors, Na+/H+ antiporter, transposase, as well  
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Fig. 3. Aphid tests on NIL-Ol-4 and NIL-Ol-6 compared to Moneymaker (MM; susceptible control) and 

Motelle (resistant control). Mean value per line is presented and means with a different letter show 

significance at 5% level (P<0.05). A and B, Performance of aphids within clip cages. On each plant (four 

plant per line in total) 10 aphids were mounted with a clip cage. After 7 days the number of aphids (adults 

and nymphs) wase counted and then adults were removed. Seven days later (14 days time point) counting 

was repeated. C, Performance of aphids without clip cage. Data was collected 10 days after placing 10 

aphids on the abaxial leaf surface of each plant (three plants per line).  
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as genes with unknown function are present in the Mi-1 gene cluster (Seah et al., 2007). 

Considering Ol-4 and Ol-6 are located in the Mi-1 gene cluster, the first possibility 

wouldbe that the Ol-4 and Ol-6 genes are Mi-1 homologues. To test this possibility, 

transient silencing of Mi-1 homologues was carried out through Virus-Induced Gene 

Silencing (VIGS). A conserved domain of Mi-1 homologues was used for VIGS, which 

had been utilized previously to silence successfully all the Mi-1 homologues on tomato 

chromosome 6 (Jablonska et al., 2007; Li et al., 2006). Upon inoculation with O. 

neolycopersici, all MM plants infiltrated with the empty vector showed heavy fungal 

sporulation suggesting that VIGS did not influence the susceptibility of tomato to O. 

neolycopersici (Fig. 5A). No fungal sporulation was observed on NIL-Ol-4 and NIL-Ol-6 

plants infiltrated with the empty vector (Fig. 5A). In contrast, clear fungal sporulation 

was observed on plants which were infiltrated with the Mi-1 silencing construct (Fig. 

5A). We extracted RNA from the leaves of these infected plants and monitored the Mi-1 

homologues transcript level. In these Mi-silenced plants, up to four fold reduction of Mi-1 

transcript levels was detected by qRT-PCR (Fig. 5B). Similar results were obtained in 

three independent experiments. Thus, silencing Mi-1 homologues compromised 

resistance to O. neolycopersici in NIL-Ol-4 and NIL-Ol-6, demonstrating that at least one 

of the Mi-1 homologues in the Mi-1 gene cluster is required for resistance to O. 

neolycopersici.    

The same Mi-1 silencing constructs were used to infiltrate another set of MM, 

NIL-Ol-4 and NIL-Ol-6 plants to test whether silencing Mi-1 homologues could also 

compromise resistance to root-knot nematodes in these NILs. More than 200 egg masses 

appeared on the roots of the susceptible MM plants and almost no egg masses on the 

roots of the two resistant NILs infiltrated with the empty vector (Fig. 6). However, half of 

the Mi-silenced NIL plants showed egg masses, ranging between 10 to 50 for NIL-Ol-4 

and 10 to 100 for NIL-Ol-6 (Fig. 6). Since the nematode resistance in these two NILs is 

complete, presence of more than 10 egg masses was a clear indication that the resistance 

was compromised by silencing Mi-1 homologues. Thus, the resistance to both O. 

neolycopersici and root-knot nematodes in these two NILs is conferred by Mi-1 

homologues.  
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Table 2. Information of PCR markers.  

Marker Primer Sequence( 5'-3') 
Annealing 

temperature °C 

Enzyme 

produced 

polymorphism 

Reference 

T1198 
F- tagtgggtatggtggctcaatg 

56 HhaI This study 
R- gatggcttccgatggtaggtg 

GP79L 
F- cactcaatgggggaagcaac 

53 ApoI Bai et al., 2005 
R- aatggtaaacgagcgggact 

ct119 
F- ctattctcacgtaaggggacac 

60 RsaI 
Dixon et al., 

1995 R- gtgtacatgtatgaaactctagc 

REX-1 
F- tcggagccttggtctgaatt 

55 TaqI 
Williamson et 

al., 1994 
R- gccagagatgattcgtgaga 

32.5Cla 
F- acacgaaacaaagtgccaag 

56 HinfI Bai et al., 2005 
R- caccaccaaacaggagtgtg 

24L 
F- tctggggaaggtagtatgtatgc 

64 HpyCH4IV This study 
R- aagccggggcgtggttc 

cLET-2-H1 
F-cttcttcttcttcaccctaacaca 

56 HpyF10VI This study 
R- ctcgctgctgcactcgtctcttc 

 

Discussion 

Mapping of the tomato genes Ol-4 and Ol-6 in the Mi-1 gene cluster and co-segregation 

of resistance to tomato powdery mildew with resistance to root-knot nematodes put 

forward the hypothesis that Ol-4 and Ol-6 are homologues of the Mi-1 gene. Transient 

silencing of Mi-1 homologues on tomato chromosome 6 indeed compromised both 

powdery mildew (Fig. 5) and nematode (Fig. 6) resistances in NIL-Ol-4 and NIL-Ol-6 

supporting our hypothesis. Analysis of the first intron of Mi-1 homologues showed that 

the composition of Mi-1 gene cluster in NIL-Ol-4 and NIL-Ol-6 is different from the 

cluster in MM (nematode-susceptible), Motelle and VFTN (nematode-resistant) (Fig. 4). 

This difference in the Mi-1 gene cluster was also reflected by the response of NIL-Ol-4 

and NIL-Ol-6 to aphids (M. euphorbiae). These two lines were not as resistant as Motelle 

(Fig. 3). It is worthwhile to mention that the aphid clone (the same clone as used by 

Kaloshian et al, 1998) was not very well adapted to MM in this study when clip cages 

were applied (Fig. 3A and 3B). A high number of adult aphids was observed without 

using clip cages (Fig. 3C). Nevertheless, performance and EPGs showed distinct 

differences between plant genotypes. Therefore, we conclude that the Mi-1.2 allele in  
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Fig. 4. Analysis of the sequence of first intron of Mi-1 gene. A) The first intron pattern of the Mi-1 gene in 

MM, NIL-Ol-4, NIL-Ol-6, and Motelle (from left to right, respectively).  PCR fragments indicated by 

arrows were sequenced. B) Similarity tree was constructed based on Mi-1 first intron sequences in 

susceptible cv. Heinz1706 (assigned as Mi-1B, Mi-1C, Mi-1E,  Mi-1F, and Mi-1G), VFNT (Mi-1.1, Mi-

1.2, Mi-1.4, Mi-1.6, and Mi-1.7), S. arcanum LA2157 (RH1, RH2, RH3, and RH4), S. arcanum LA392 

(SH1-SH2, SH3, and SH4), NIL-Ol-6 (Mint-Ol6S1, Mint-Ol6S2 and Mint-Ol6M), and NIL-Ol-4 (Mint-

Ol4S, Mint-Ol-4M and Mint-Ol4L). The size of each intron is mentioned in the bracket. The introns from 

NIL-Ol-4 and NIL-Ol-6 are indicated by dots. The bootstrap values are shown. The intron from potato Rpi-

blb2 gene (referring to as Mint-Rpi-blb2) was used as the outgroup sequence. Motelle and VFNT both 

carrying introgression from Solanum peruvianum PI 128657, the donor of Mi-1 gene. Therefore, the Mi-1 

gene cluster in these two cultivars is the same. 
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NIL-Ol-4 and NIL-Ol-6 is different from that in Motelle. 

It remains to be answered whether, in NIL-Ol-4 or NIL-Ol-6, the same Mi-1 

homologue on the short arm of tomato chromosome 6 governs the resistance to root-knot 

nematodes, tomato powdery mildew and partial resistance to aphid. It has been suggested 

that though many homologues of a specific R gene are located in a cluster, usually only 

one of the homologues is functional (Michelmore and Meyers, 1998). For example, in S. 

peruvianum PI 128657, the donor of the Mi-1 gene, only one (Mi-1.2) out of seven 

homologues has been shown to be functional which confers resistance to three different 

pathogens including nematodes, aphids and whiteflies (Williamson and Kumar, 2006). 

Currently, we are in the progress of cloning of Ol-4 and Ol-6, which will reveal the 

identities of these two genes and also shed light on the genome structure and organization 

of related homologues in the Mi-1 gene cluster.  

Since the donor of the Ol-6 gene is unknown, it is unclear whether Ol-4 and Ol-6 

are alleles of the same Mi-1 homologue or they are different homologues of Mi-1. 

Though the marker pattern and resistance spectrum to O. neolycopersici indicate that Ol-

6 is possibly identical or allelic to Ol-4, differences between these two genes have been 

observed in the level of resistance to tomato powdery mildew (Bai et al. 2005) and aphids 

(Fig. 3). Furthermore, the Mi-1 first intron sequences were not exactly the same in NIL-

Ol-4 and NIL-Ol-6 (Fig. 4), suggesting that the Mi-1 gene cluster composition is different 

in these two lines. So, we conclude that Ol-4 and Ol-6 are not identical but are allelic 

variants, although we could not exclude the possibility that they are different Mi-1 

homologues.  

The Mi-1 gene triggers HR to root-knot nematodes (Dropkin et al., 1969; Roberts 

and Thomason, 1986), but not to aphids (de Ilarduya et al., 2003). Interestingly, Ol-4 and 

Ol-6 also mediates HR in response to powdery mildew (Bai et al., 2005; Li et al., 2007). 

HR is a hallmark of R gene mediated response (Nimchuk et al., 2003) to biotrophic, but 

not necrotrophic, pathogens (Glazebrook, 2005). Therefore it is not a surprise to observe 

HR in the resistance mediated by Mi-1 gene to powdery mildew and nematodes. No HR 

has been detected in the Mi-1–mediated resistance to potato aphids (de Ilarduya et al., 
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Fig. 5. Silencing of Mi homologues compromised resistance to Oidium neolycopersici in NIL-Ol-4 and 

NIL-Ol-6. A) NIL-Ol-4, NIL-Ol-6 and Moneymaker (MM) were infiltrated with empty vector (TRV) or 

Mi-silencing constructs (TRV-Mi) that silence all seven Mi-1 homologues on tomato chromosome 6. 

Pictures were taken of the fourth leaves 14 days after fungal inoculation. B) The association of Mi-1 

transcript levels with O. neolycopersici sporulation on the same NIL-Ol-4 and NIL-Ol-6 plants. White bars 

show the disease index (scale from 0 to 3; 0: no sporulation, 3: heavy sporulation). Black bars show the 

relative abundance of the Mi-1 transcripts as measured by the normalized fold expression of the Mi-1 

transcript. TRV plants (3 replicates; TRV1- to TRV-3) were infiltrated with an empty vector and TRV-Mi 

plants (7 replicates; TRV-Mi-1 to TRV-Mi-7) were infiltrated with a TRV-Mi construct. As is shown on 

the graph, the disease index for TRV-1 to TRV-3 is zero.  
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2003). Data from previous EPG study on feeding behavior indicate that aphids ingest 

only limited amounts of vascular fluids from resistant tomato plants carrying the Mi-1 

gene (Kaloshian et al. 2000). In our study, results showed that the proportion of time that 

aphids spent ingesting the phloem sap was significantly reduced on NIL-Ol-4 and 

Motelle. Further experiments are needed to study the nature of the Mi-1–mediated 

resistance mechanism to potato aphids. The Mi-1 gene fails to confer nematode resistance 

at higher temperatures (above 28°C), which is a well-documented phenomenon for NBS-

LRR proteins (Whitham et al., 1996; Yang and Hua, 2004; Wang et al., 2009). Another 

Mi-1 homologue, Mi-9 that is located in Mi-1 gene cluster, confers heat-stable resistance 

to nematodes. It would be interesting to test the heat-stability of nematode resistance in 

NIL-Ol-4 and NIL-Ol-6.   

 

 

 

Fig. 6. Silencing Mi-1 homologues compromised resistance to Meloidogyne incognita in NIL-Ol-4 and 

NIL-Ol-6. Number of egg masses of M. incognita on the roots of NIL-Ol-4 and NIL-Ol-6 plants and 

susceptible control Moneymaker (MM) plants. For MM, NIL-Ol-4-Mi-silenced, NIL-Ol-6-Mi-silenced, 

NIL-Ol-4-EV and NIL-Ol-6-EV, 12, 25, 30, 12, and 12 plants were tested, respectively. EV plants were 

infiltrated with the empty vector and Mi-silenced plants were infiltrated with a construct which silences all 

seven Mi homologues on tomato chromosome 6. The horizontal bar indicates the mean.  
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The most intriguing question is how Mi-1 homologues can recognize different 

pathogens. In addition to tomato powdery mildew, Mi-1 homologues can confer 

resistance to a wide range of pathogens including root-knot nematodes (Meloidogyne 

spp.), insects (M. euphorbiae and B. tabaci) and oomycete (P. infestans). Dual or 

multiple specificities of R genes can be explained by the guard hypothesis (Dangl, J., and 

Jones, J. 2001) that R gene guards one single virulence target which is modified by 

multiple effectors. Examples are Rpm1 in Arabidopsis (Bisgrove et al., 1994) and Pto in 

tomato (Kim et al., 2002)  that recognize different effectors of the same bacterial 

pathogen. Also, the RRS1 gene in Arabidopsis confers resistance to two different 

pathogens (bacteria and fungus), by interacting with another R gene, RPS4 (Narusaka et 

al., 2009). The finding that Mi-1 homologues in Solanum recognize a wide array of 

pathogen and pest species may suggest that they guard a common or structurally similar 

virulence target(s). On the other hand, embedding several homologues in an R gene 

cluster could be a mechanism of making a haplotype of R genes to give resistance to 

several different pathogens simultaneously. One example is the Rx/Gpa2 R gene cluster 

in which two homologues confer resistance to two distinct pathogens, virus and nematode 

(van der Vossen et al., 2000). The distinct functionality of R gene homologues could be 

explained by amplification or reduction in the number of LRR motifs in LRR domains 

that could modify R gene recognition specificity (Staskawicz et al., 1995). For instance, 

10 of the 11 alleles that express different rust resistance specificities, showed large 

variation in the LRR domain (Ellis et al., 1999). Comparing different Mi-1 homologues in 

the Mi-1 gene cluster revealed diversifying nucleotide changes in the LRR domain of 

these homologues (Seah et al., 2007), which supports the possibility that different 

homologues in Mi-1 cluster could be involved in recognition of different effectors. 

Isolation and functional characterization of pathogen effectors and/or their virulence 

targets interacting with homologues the Mi-1 gene family in Solanum will deepen our 

understanding on how Solanum crops exploit Mi-1 homologues to defend themselves 

against distinct pathogens.  
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Materials and Methods 

Plant materials 

Plant material used for mapping and disease tests were described previously (Bai et al., 

2005). In short, backcross selfing populations (BC2S1 and BC3S1) and near-isogenic lines 

(NILs) harboring Ol-4 and Ol-6 (NIL-Ol-4 and NIL-Ol-6) were derived from 

interspecific crosses of S. lycopersicum cultivar (cv.) Moneymaker (MM) with S. 

peruvianum LA2172 and an advanced breeding line, respectively. MM was used as the 

recurrent parent. Motelle harboring the Mi-1 gene introgressed from S. peruvianum 

PI128657 (Ho et al., 1992), was kindly provided by the Laboratory of Cell Biology of 

Wageningen University, the Netherlands.  

 

Disease test 

Leaf mold assay: Plants were inoculated with Cladosporum fulvum isolate 2 (containing 

Avr4, 5 and 9), isolate 5 (containing Avr2, 4 and 9), and isolate 2.4.5 (containing Avr9). 

MM was used as susceptible control and the commercial hybrid Tradiro (resistant to these 

three races) as resistant control. Leaflets were inoculated as described by Lindhout and 

associates (1993). 

TYLCV test: Agroinoculation was done using an Agrobacterium clone (Agroclone) with 

1.8 copy of the TYLCV virus (Israel strain) cloned in Ti plasmid. To prepare the 

inoculum, Agoclone was first grown for 48 hours at 28°C in LB medium with antibiotics 

(Kanamycin and Rifampicin, both 100 µg/mL), then the culture was washed three times 

with water to remove culture media and finally the bacterium was dissolved in water (30 

ml culture was dissolved in 3 mL water).  The plants were inoculated at 2-3 true leaf 

stage by infiltrating the inoculum using a syringe with needle. After inoculation plants 

were grown in 16 hours light at 25˚C and after 14-20 days were evaluated for TYLCV 

symptoms including curling and yellowing of the young leaves and in the extreme 

situation stopping of growth. MM was used as susceptible control and a breeding line 

carrying the Ty-1 gene originating from S. chilense LA1969 (Zamir et al., 1994) as 

resistant control. 
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Nematode Assay: Nematode (M. incognita, Laboratory of Nematology, Wageningen 

University) inoculation was performed on two-month-old plants by injecting nematode 

suspension (300-350 second-stage juveniles per mL, 3 mL per plant) into the sand around 

the roots. The second inoculation was followed one week later to ensure successful 

infection.  Plants were grown in silver sand and maintained at 25˚C. One day before the 

inoculation watering of the plants was stopped. Inoculated plants were watered from the 

tray under the pots for at least one week, in order to prevent washing nematodes away. 

The phloxine-B staining (10 ng/100 mL) was used to visualize the nematode egg masses 

on the roots 60 days after inoculation. Plants were scored as resistant if the mean number 

of egg masses was less than 10% of the susceptible controls (Veremis et al., 1999). For 

nematode inoculation in VIGS experiments, each plant was inoculated once with 10,000 

juveniles.  

Powdery mildew assay: Wageningen isolate of O. neolycopersici was used (Bai et al., 

2005). Fungal spores were washed off from heavily infected tomato leaves and diluted to 

the concentration of 2.5×10
4
 spores per mL. The inoculum was evenly sprayed on the 4-

weak-old plants.  

Co-segregation test: Two BC2S1 populations (80 individuals each) segregating for Ol-4 

and Ol-6 were tested with O. neolycopersici and M. incognita. Plants were first tested 

with nematodes. Then, a cutting of each individual was made and challenged with O. 

neolycopersici. Tomato cultivars MM, Motelle (carrying the Mi-1 gene), Poldje (resistant 

to nematodes) as well as NIL-Ol-4 and NIL-Ol-6 were used as controls.  

Aphid assay: Two different methods, performance assay and monitoring aphid feeding 

behavior by Electrical Penetration Graph (EPG) method, were used to compare response 

of different tomato lines to aphid (M. euphorbiae). For performance assay, two 

experiments were carried out on 6-week old plants of MM, Motelle, NIL-Ol-4 and NIL-

Ol-6. In the first one, a randomized block design was used with four replications (four 

plants per line in total). On each plant, a clip cage with 10 aphids was mounted on the 

fully expended youngest leaf. After 7 days the number of aphids (adults and nymphs) was 

counted and then adults were removed. After another 7 days aphids were counted again. 

In the second performance test, three plants per line were placed in one tray containing 

water to prevent the movement of aphid from one plant to another. Ten adults were 
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placed on the abaxial leaf surface of the fully expanded young leaf of each plant. Data 

was taken 10 days after infestation by counting surviving adults and nymphs. For both 

experiments, the data was transformed to (X+0.5)
0.5 

and then used for ANOVA analysis. 

Means of all the four lines were compared by using Duncan‟s multiple range test. As to 

the EPG experiment, aphids were tested on young, almost fully expanded leaves of 6-

week old plants (four plants per line and two aphids per plant) and EPG recording was 

carried out for 10 hours (h) based on the standard procedure (Tjallingii, 1988). By using 

non-parametric Mann-Whitney test, the data was analyzed separately for the first 4, 6, 8, 

and total 10 h of the recordings. The analysis of the first 6 h provided the best distinction 

between genotypes and is presented here.  

 

Virus-induced gene silencing 

The TRV construct and method that have been successfully used to silence Mi-1 

homologues in tomato (Li et al., 2006) and S. arcanum LA2157 (Jablonska et al., 2007) 

was used for silencing Mi-1 homologues in NIL-Ol-4 and NIL-Ol-6. In brief, the TRV 

vector carrying a 300 bp fragment of 3‟-end of Mi-1 cDNA, was transformed into 

Agrobacterium tumefaciens GV3101. For VIGS with powdery mildew assay, 

agroinfiltration was done on cotyledons of 10 day-old seedlings using needle-less syringe 

and plants were maintained at 21/19°C (day/night). After 21 days, the plants were 

inoculated with tomato powdery mildew. For VIGS with nematode assay, agroinfiltration 

was done on 20 day-old seedlings using needle-less syringe and plants were maintained at 

21/19°C (day/night). After 27 days, each plant was inoculated with 10,000 juveniles of 

M. incognita. Then, plants were maintained at 26/24°C (day/night) and evaluated for 

presence/absence of egg masses 12 weeks after nematode inoculation. 

 

Quantitative Real-time PCR 

Total RNA was extracted from the leaves of the Mi-silenced and TRV- inoculated plants 

by using RNeasy™ Plant RNA extraction kit (Invitrogen). Total RNA (1-3 micrograms) 

was used for cDNA synthesis using Superscritp™ III first strand cDNA sysnthesis kit 

(Invitrogen). Real-time PCR was done by using iQ SYBR Green Supermix (Bio-Rad). 

The fold change of the target genes were normalized to Elongation factor 1-alpha (the 
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internal control gene). Data was analyzed using 2
-∆∆Ct

 method (Livak and Schmittgen, 

2001) and reported as normalized fold expression. 

 

Mi-1 gene first intron analysis 

NIL-Ol-4 and NIL-Ol-6 genomic DNA was used as the template to amplify the first 

intron of Mi-1 using primers, 5'-TTCTCTAGCTAAACTTCAGCC-3' and 5'-

TTTTCGTTTTTCCATGATTCTAC-3' (Jablonska et al. 2007), at 50°C as annealing 

temperature. The amplified fragments were gel-purified and cloned into pGEM-T-Easy 

vector (Promega). Three clones per each fragment were sequenced. In NIL-Ol-4 we 

named these fragments as Mint-Ol4S, Mint-Ol-4M, and Mint-Ol-4L, referring to short 

(S), medium (M), and long (L) size fragments, respectively. In NIL-Ol-6 we only 

sequenced short and medium size fragments named as Mint-Ol-6S1, Mint-Ol-6S2, and 

Mint-Ol6M (there are two short fragments in NIL-Ol-6). These sequences were deposited 

in GenBank under following accession numbers: HQ259295 (Mint-Ol4S), HQ259296 

(Mint-Ol4M ), HQ259297 (Mint-Ol4L), HQ259298 (Mint-Ol6S1), HQ259299 (Mint-

Ol6S2), and  HQ259300 (Mint-Ol6M). Intron sequences from VFNT, Heinz 1706 

(similar to MM in response to nematode and powdery mildew), S. arcanum LA1257 and 

LA392 were downloaded from GeneBank. By using Mega4 software(Tamura et al., 

2007), alignment and construction of similarity tree  were performed. The Neighbor-

Joining method (Saitou and Nei, 1987) was used to obtain the optimal tree with the sum 

of branch length=1.99122550. The distances were computed using the Maximum 

Composite Likelihood method (Tamura et al., 2004) in the units of the number of base 

substitutions per site. All positions containing gaps were eliminated from the dataset 

(Complete deletion option). The intron from potato Rpi-blb2 gene (a homologue of Mi-1, 

referring to as Mint-Rpi-blb2) was used as the outgroup in this analysis. 
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Differential expression of TIR-like genes embedded in the Mi-1 gene 

cluster in nematode-resistant and –susceptible tomato roots 

 

 

Abstract 

Transport inhibitor 1 (TIR1) is an auxin receptor that plays a pivotal role in auxin 

signaling. It has been reported that TIR-like genes are present in a gene cluster carrying 

the Mi-1 gene that confers resistance to nematodes, aphids and whiteflies. Since auxin is 

involved in the pathogenicity of tumor-inducing pathogens like pseudomonads and 

nematodes, the co- localization of TIR-like genes with the Mi-1 gene may imply a role of 

TIR-like genes in the resistance conferred by the Mi-1 gene. In this study, we first 

monitored the TIR-like transcript abundance (TTA) in both roots and leaves of nematode-

resistant and –susceptible tomato lines. Our results demonstrated that in tomato roots, but 

not in leaves, the TIR-like gene transcript abundance (TTA) was lower in nematode-

resistant plants than that in nematode-susceptible plants. Further, we found that the TIR-

like genes could be cleaved by miR393 in both nematode-resistant and -susceptible 

plants. These results suggest a possible role for TIR-like genes in resistance to root-knot 

nematodes in tomato. In order to test whether the TIR-like genes are involved in Mi-1 

gene resistance pathway, we transiently silenced the Mi-1 homologues in the nematode-

resistant tomato line and measured TTA. Results showed that knocking down the 

expression of the Mi-1 homologues had no effect on TIR-like transcription regulation. 

Therefore, we concluded that, involvement of TIR-like genes in the response of tomato 

roots to nematodes, is probably independent of the Mi-1 homologues. Altogether, our 

results show that there is an association between TTA and the tomato response to 

nematodes. We further propose two different scenarios that could explain how TTA are 

connected to resistance to root-knot nematodes in tomato. 
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Introduction 

Plant nematodes manipulate the morphogenesis and development of root cells of their 

susceptible host to produce nematode feeding sites (NSF) which appear as cysts or root-

knots on the roots (Williamson and Hussey, 1996). There are evidence implicating auxin 

in the initiation and development of NFSs (Goverse et al., 2000; Viglierchio, 1971). In 

Arabidopsis, analysis of gene expression in roots infected by Meloidogyne incognita (M. 

incognita) revealed significant changes in expression of auxin transporter genes 

(Hammes et al., 2005). In both tomato and Arabidopsis, formation of NFSs was restricted 

on roots of auxin-insensitive mutants or on roots treated by auxin transport inhibitors, 

suggesting that local accumulation of auxin is required for NFS formation (Goverse et al., 

2000). Interfering with both expression and polarity of PIN (pin-formed) proteins, 

particularly PIN1 and PIN7, has been suggested as the mechanism by which cyst 

nematodes block auxin efflux (Grunewald et al., 2009). Nematode proteins like 

chorismate mutase 1 (Doyle and Lambert, 2003) could interfere with PIN proteins, 

through probably manipulating the flavonoid pathways in the plant cell (Wasson et al., 

2006). 

Transport inhibitor response1 (TIR1) is an auxin receptor which binds to auxin 

directly and triggers ubiquitination of IAA/AUX proteins, resulting in the activation of 

auxin responsive factors (ARFs) and therefore triggering expression of auxin-responsive 

genes (Dharmasiri et al., 2005; Kepinski and Leyser, 2005). TIR1 belongs to the F-box 

protein family that is negatively regulated by certain plant microRNAs (miRNAs). In 

Arabidopsis, perception of Flg22, a well-characterized bacterial PAMP (pathogen-

associated molecular pattern), triggers resistance to Pseudomonas syringae by repression 

of auxin signaling through manipulating the expression of TIR1 and AFB1/2/3 (TIR1 

homologues), as well as the miR393 (Navarro et al., 2006). Interestingly, genomic 

association of TIR1-like genes with nematode resistance gene, Mi-1, has been reported in 

tomato (Seah et al., 2007). Mi-1 is an NBS-LRR gene conferring resistance to root-knot 

nematodes (Milligan et al., 1998), aphids (Rossi et al., 1998) and whiteflies (Nombela et 

al., 2003). On the short arm of tomato chromosome 6, the Mi-1 gene cluster has been 

identified consisting of seven Mi-1 homologues spanning about 400 Kb. In the Mi-1 gene 

cluster of the nematode-resistant tomato line VFNT, there is only one TIR-like gene while 
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in the susceptible lines, Heinz 1706 or Moneymaker (MM), at least three homologues of 

TIR-like genes are present (Seah et al., 2007).  

Since it has been demonstrated that, in both Arabidopsis and tomato, cyst 

nematodes manipulate auxin distribution network to facilitate the infection process, it is 

very likely that auxin plays a similar role in establishing NFS by root-knot nematodes. In 

addition, miR393 is a highly conserved miRNA and present in different plants including 

tomato. The presence of TIR-like genes in the Mi-1 gene cluster may suggest a possible 

role of TIR-like genes for resistance to root-knot nematodes in tomato, via repression of 

auxin signaling. In the present study, our objective was to investigate whether there is any 

association between TIR1-like genes embedded in the Mi-1 gene cluster and tomato 

resistance to M. incognita. We provide evidence that, in tomato, the expression level of 

TIR-like genes in roots of nematode-resistant plants is lower than that of nematode–

susceptible plants. Also we show that the mRNA of TIR-like genes in the Mi-1 gene 

cluster is cleaved by miR393. Though the transcript abundance of the TIR-like and Mi-1 

gene seems to be independent from each other, the possible involvement of TIR-like 

genes in the response of tomato roots to root-knot nematodes is further discussed.  

 

Results 

TIR-like genes in the Mi-1 gene cluster 

On the short arm of tomato chromosome 6, six TIR-like genes have been identified in the 

Mi-1 gene cluster in S. lycopersicum (susceptible to nematodes) (Fig. 1). According to the 

prediction, three of the six TIR-like genes encode TIR-like proteins, which we refer to as 

TIR-D, TIR-E, and TIR-G (Fig. 1, Seah et al., 2007). In contrast, in the Mi-1 gene cluster 

introgressed from S. peruvianum (donor of the Mi-1 gene and resistant to root-knot 

nematodes), four TIR-like sequences have been identified and only one of them (referred 

to as TIR-1) encodes TIR-like protein. Figure 1 shows the deduced amino acid sequences 

of these TIR-like genes compared with TIR1 in S. lycopersicum cv. Microtom (SlTIR) 

that is used as the out-group sequence. As is depicted in Fig 1B, these TIR-like protein 

sequences in the Mi-1 gene cluster are quite diverged from SlTIR. The F-box domain that 

is required for the interaction with the ubiquitin ligase complex (Schulman et al., 2000) is 

missing in TIR-1 as well as TIR-D and TIR-E (Fig. 1A), suggesting that even if these two 
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homologues are expressed they are probably not involved in protein degradation. TIR-G 

has part of the F-box and probably is able to interact with ubiquitin complex. 

     

 

Fig. 1. Comparison of the deduced amino acid sequences of the TIR-like genes which are present in the Mi-

1 gene cluster on the short arm of tomato chromosome 6. The tomato TIR-like which is located on 

chromosome 4 (referred as to SlTIR) is also included in the analysis. A. Alignment of the deduced amino 

acid sequences of the TIR-like genes. The F-box and LRR domains are shown on the alignment. B. 

Similarity tree based on the number of amino acid substitutions. C. Relative locations of TIR-like genes and 

the Mi-1 gene homologues (black boxes) in the Mi-1 gene cluster of S. lycopersicum cv. Heinz 1706. The 

relative distances are in Kb.  

 

TIR-like transcript abundance is lower in roots of nematode-resistant tomato lines 

To test if the genomic differences in the number of TIR-like genes influence the transcript 

level of these genes, we carried out quantitative RT-PCR to compare the TIR-like 
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transcript abundant (TTA) in both leaves and roots of nematode-resistant and -susceptible 

tomato lines. The primers were designed to amplify TIR-1, TIR-D, TIR-E, and TIR-G in 

the Mi-1 gene cluster, but not other TIR-like sequences (Table 2). Interestingly, lower 

TTA was observed in three nematode-resistant lines (Motelle, NIL-Ol-4 and NIL-Ol-6) 

compared to nematode-susceptible lines (NIL-ol-2 and MM) (Fig. 2). This result was 

verified on selected F2 plants (n=12) of a population segregating for resistance to 

nematodes. Again, TTA was lower in the roots of resistant plants than in susceptible 

plants (Fig. 3). These results could be due to the difference in the number of TIR-like 

genes between nematode-resistant and –susceptible plants. To check this possibility, we 

monitored TTA in the leaves of a subset (n=6) of the F2 plants. Surprisingly, comparable 

TTA was observed in the leaves of all these plants. It seems that TTA was even higher in 

the leaves of nematode-resistant plants (Fig. 4). This result implies that probably other 

factor(s) rather than the number of TIR-like genes is/are involved in regulating the 

transcript level of the TIR-like genes.  

 

Table 1. The list and sequences of the primers used for qRT-PCR. 

Gene Sequence(5' to 3') 

TIR-like 
F- CTTTGCAGCATTAGCCAACA 

R- ATCGAGCCTCAAACTCCTGA 

Mi 
F- AACTGTTGATTTCCTATTCG 

R AACCAATGTTGCTCTGTTG 

Elongation Factor 

1-Alpha 

F- GAGGGTATTCAGCAAAGGTCTC 

R- ACAGGCGTTCAGGTAAGGAA 

SAUR-1 
F- GAGCGTTACTGGGTGGATGT 

R- TTTTGTTTTTCGCCATCTCC 

SAUR-2 
F- GTTCGTCTCCGTCAAATGCT 

R- CCGACGTTTACAGCTACGTG 

GH3 
F- GCCAACAACAGAGGAAGAGC 

R- TACATTCCTTTGCCCGTCTC 

AJ937282 F- GCCACCCATTCGATCTTTTA 

R- TCAAATAGGGAGCACCATCC 

 

Transcripts of the TIR-like genes are cleaved by miR393 

The recognition site for miR393-mediated cleavage is present in the sequence of the TIR-

like genes (Fig. 5A). To test whether the transcript of the TIR-like genes is cleaved by 
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tomato miR393, a rapid amplification of cDNA ends (RACE) assay was performed. 

PCR-amplified cleavage products from the TIR-like genes were detected in the roots of 

both susceptible and resistant tomato lines (Fig. 5B). Sequencing of the cleaved 

fragments confirmed that these fragments are the result of miR393 cleavage.  

 

Difference in TTA is not mirrored in the expression level of auxin-responsive genes  

Since the F-box protein TIR1 is an auxin receptor and mediates auxin signaling (Kepinski 

and Leyser, 2005) (Dharmasiri et al., 2005), in the next step we tested the possibility that 

higher expression of TIR-like sequences in nematode-susceptible tomatoes, might trigger 

higher level of auxin signaling. Three immediate auxin-responsive genes were selected 

(Navarro et al., 2006) and their expression was compared in the roots of resistant 

(Motelle) and susceptible (MM) lines (Fig. 6). Although the expression level of SAUR 

and GH3 was different between resistant and susceptible lines, these differences were not 

as significant as one might expect for downstream responsive genes. Thus, we concluded 

that this set of auxin-responsive genes were not affected by differences in TTA under the 

tested conditions. 

 

Table 2. TIR-like sequences in the tomato genome. The first column shows the 

scaffold numbers on which TIR-like genes are identified. 

Scaffold 
number 

E value chromosomal location 
homologues 

number 

SL1.03sc00192  1.00E-148 4 1 

SL1.03sc01319  1.00E-116 6 (Mi-1 gene cluster) 6 

SL1.03sc02256  1.00E-106 4 1 

SL1.03sc00215  1.00E-76 2 1 

SL1.03sc00446  6.00E-64 6 (long arm) 1 

SL1.03sc00002  1.00E-30 5 1 

SL1.03sc00208  5.00E-27 5 1 

 

TIR-like transcript abundance is not affected by the expression of the Mi-1 

homologues   

The Mi-1 gene is required for nematode resistance in Motelle. In NIL-Ol-4 and NIL-Ol-6, 

we previously showed that the resistance to nematodes is also controlled by Mi-1 

homologues in the Mi-1 cluster on the short arm of tomato chromosome 6 (Chapter 2). In 
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Fig. 2. A. Comparison of TIR-like transcript abundance (TTA) in the roots of nematode-resistant and -

susceptible tomato lines. MM and NIL-ol-2 are the susceptible lines, while Motelle, NIL-Ol-4 and NIL-Ol-

6 are resistant lines. Error bars show the standard deviation. B. Comparison of TIR-like transcript 

abundance (TTA) in the roots of nematode- resistant and -susceptible tomato plants of an F2 population that 

segregates for resistance to nematodes. Resistant ( R) and  susceptible (S) plants were selected by a marker 

that is fully linked with the Mi-1 homologue. Error bars show the standard deviation. 

 

order to explain an association between TTA and nematode resistance, we considered the 

possibility that TIR-like genes act in the resistance pathway triggered by Mi-1 

homologues. We knocked down the expression of the Mi-1 homologues transiently in the 



Chapter 3 

51 

 

roots of NIL-Ol-4 plants and then measured the TTA. Virus-induced gene silencing 

(VIGS) was performed to silence all the Mi homologues in the Mi gene cluster on the 

short arm of the tomato chromosome 6 (Chapter 2). Results showed that silencing the Mi-

1 gene homologues up to 75% didn‟t change TTA significantly (Fig. 7). We have shown 

that this level of silencing of Mi-1 homologues is enough to abolish Mi-mediated 

resistance to root-knot nematodes and powdery mildew in tomato (Chapter 2). Therefore 

we concluded that the transcript level of the Mi-1gene homologues has no effect on the 

TIR-like genes transcript abundance. 

 

 

Fig. 4. Comparison of TIR-like transcript abundance (TTA) in roots and in leaves of nematode-resistant and 

–susceptible tomato plants. From an F2 population segregating for resistance to nematodes, resistant (R) 

and  susceptible (S) plants were selected based on a marker which is fully linked to the Mi-1 gene 

homologue. Error bars show the standard deviation. 

 

Discussion 

The tumor-inducing pathogen, Pseudomonas syringae, elevates the auxin receptor protein 

TIR1 in Arabidopis thaliana cells, resulting in higher activation of auxin signalling and 

eventually tumour induction (Navarro et al., 2006). The root-knot nematode, M. 

incognita, also produces galls on roots of their host plants, which needs manipulation of 

the plant hormones especially auxin (Viglierchio, 1971). The gene for resistance to M. 
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incognita, Mi-1, is located in the Mi-1 gene cluster on the short arm of tomato 

chromosome 6, wherein TIR-like genes are also embedded (Seah et al., 2007). 

Interestingly, the number of TIR-like genes differ between nematode-resistant and -

susceptible tomato lines (Seah et al., 2007). Moreover, instability of the resistance to  

 

Fig. 5. Vulnerability of TIR-like genes to miR393-mediated cleavage. A. Presence of miR393 recognition 

site on TIR-E, TIR-G, and TIR-1 as well as SlTIR. B. Detection of cleaved fragments of the TIR-like genes 

in both nematode-resistant (R) and -susceptible (S) lines. The arrow shows the expected cleaved fragment 

(about 260 bp).  

 

nematodes has been reported in the tomato lines which have been transformed by Mi-1 

gene (Goggin et al., 2004), suggesting that the Mi-1 gene is probably not the only factor 

needed for resistance to nematodes. These evidences intrigued us to hypothesize that TIR-

like genes might have a role in the response to nematodes. Our results showed the 

association between TIR-like transcript abundance and nematode-resistance in the roots 

of tomato plants (Figs. 2 & 3). Interestingly, this association was not observed in the 

leaves (Fig. 4), suggesting that the number of TIR-like homologues is probably not the 

only factor influencing the TTA. Further, we demonstrated that these TIR-like genes have 

the recognition site for miR393 and that cleavage of these TIR-like genes by miR393 

occurs. Whether the efficiency of the cleavage is the same in both nematode-resistant and 

-susceptible tomato lines needs to be further investigated. Next, we tested the possibility 
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that TIR-like genes play a role in conferring resistance to root-knot nematodes 

downstream of the Mi-1 gene. A reduction in the transcript level of the Mi-1 gene in the 

nematode-resistant tomato line did not influence the TTA (Fig. 7). Our conclusion is that, 

if TIR-like genes are involved in the response of tomato roots to nematodes, it seems to be 

independent of the Mi-1 gene. Also, we compared the expression level of four auxin-

responsive genes in nematode-resistant and –susceptible roots. As is depicted in Fig. 6, 

results showed that differences in TTA did not influence the expression of these auxin-

responsive genes. 

 

 

Fig. 6. Relative expression of four auxin-responsive genes and TIR-like genes in nematode-resistant 

(Motelle) and -susceptible (MM) lines.  Error bars show the standard deviation. 

 

To explain our observations we propose a model for the possible involvement of 

these TIR-like genes in tomato response to root-knot nematodes. Nematodes attack 

tomato root cells (resistant or susceptible) and trigger local accumulation of auxin by 

blocking auxin efflux (Goverse et al., 2000), through manipulation of PIN proteins 
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Fig. 7. Effect of silencing the Mi-1 homologues on TIR-like transcript abundance (TTA). NIL-Ol-4 plants 

were infiltrated with empty vector (TRV) or Mi-silencing constructs (TRV-Mi) that silence all seven Mi-1 

homologues on the short arm of tomato chromosome 6. White bars show the relative expression of the Mi-1 

homologues and black bars show TTA. Error bars show the standard deviation. TRV plants (5 replicates; 

TRV-1 to TRV-5) were infiltrated with an empty vector and TRV-Mi plants (5 replicates; TRV-Mi-1 to 

TRV-Mi-5) were infiltrated with a TRV-Mi construct.  

 

(Grunewald et al., 2009). With a higher amount of TIR protein present in the roots of 

nematode-susceptible tomato plants, accumulation of auxin would lead to an activation of 

auxin-responsive genes and eventually gall production on the roots. In contrast, a lower 

amount of TIR protein present in the roots of nematode-resistant plants may prevent 

further changes in auxin signalling even though nematode could probably accumulate 

auxin locally. So we speculate that the level of TIR protein in the root cells influences the 

auxin signalling leading ultimately to the success or failure of the formation of NFS.  

The other possibility of the involvement of the TIR-like genes in response to 

nematodes might be a regulatory role of these TIR-like genes on the expression of the Mi-

1 homologues. The Mi-1 gene cluster consists of seven Mi-1 homologues, of which five 

(including a pseudogene) are expressed (Seah et al., 2007). In the RPP5 gene cluster in 

Arabidopsis, RNA silencing could regulate the transcript level of resistance (R) genes to 
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restrict the fitness cost associated with constitutive expression of the genes (Yi and 

Richards, 2007). The TIR-like genes which are located in the Mi-1 gene cluster have 

some interesting features. Firstly, they are all located on the antisense DNA strand in 

relation to their corresponding Mi-1 gene. Secondly, the F-box domain is missing at least 

in TIR-D, TIR-E and probably TIR-1 (Fig. 1), suggesting that these proteins are probably  

not involved in protein degradation in the auxin signaling pathway. Thirdly, TIR-like 

genes are cleaved by miR393 (Fig. 5). We speculate that  these TIR-like genes might act 

as a source for producing small RNAs to regulate the transcript level of the Mi-1 

homologues. For instance, the miRNA-cleaved transcripts could be a source of 

production of the trans-acting small RNAs (tasiRNAs) (Vaucheret et al, 2005). Besides 

TIR-like genes, there are also jumonji transcription factors in the Mi-1 gene cluster (Seah 

et al., 2007). Recently, it has been shown that a member of the jumonji gene family is 

involved in RNA silencing (Searle et al., 2010). Decreasing of susceptibility to cyst 

nematodes in Arabidopsis RNAi mutants, dcl1 and rdr, also suggests a role for small 

RNAs in plant-nematode interaction (Hewezi et al., 2008).  

Based on our preliminary results we propose that TIR-like genes embedded in the 

Mi-1 gene cluster probably have a role in tomato response to root-knot nematodes. We 

propose two different scenarios which could explain this role. These speculations  

demand further investigations. For instance, monitoring TTA in Mi-transgenic lines 

which showed decreased levels of resistance to nematodes may reveal the importance of 

TIR-like genes in resistance to nematodes. It is also tempting to monitor the mechanisms 

of transcriptional and translational regulation of Mi-1 homologues, whether there is a 

footprint of TIR-like genes there. Future studies will shed light on the complexity of Mi-1 

gene cluster and the genes embedded there including TIR-like genes. 

 

 

Material and Methods 

Plant Materials 

S. lycopersicum cv. MoneyMaker (MM) and NIL-ol-2 were used as nematode-susceptible 

tomato lines. NIL-ol2 is a near-isogenic line in which the ol-2 gene is introgressed  in 

MM background (Bai et al. 2005). Motelle, NIL-Ol-4 and NIL-Ol-6 which have 
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introgression from S. peruvianum, were used as nematode resistant lines (Chapter 2). One 

F2 population segregating for the nematode-resistance derived from a cross between MM 

and S. peruvianum. Nematode-resistant (R) and susceptible (S) plants were selected by 

using a marker fully co-segregating with resistance conferred by the Mi-1 gene 

homologue (Chapter 2).  

 

TIR-like sequences analysis 

Arabidopsis TIR1 protein sequence was used for TBLASTN against tomato genome 

sequences( http://solgenomics.net) to find the TIR1 orthologs in tomato. Protein sequence 

alignment and similarity tree construction was done by DNASTAR™ software. The level 

of similarity is reported based on number of amino acid substitutions. 

 

Quantitative Real-time PCR 

Total RNA was extracted from the tomato roots or leaves by using RNeasy™ Plant RNA 

extraction kit (Invitrogen). 1-3 micrograms of total RNA was used for cDNA synthesis 

using Superscritp™ III first strand cDNA sysnthesis kit (Invitrogen). Real-time PCR was 

done by using iQ SYBR Green Supermix (Bio-Rad). The fold change of the target genes 

were normalized to Elongation factor 1-alpha (the internal control gene). Data was 

analyzed using 2
-∆∆Ct

 method (Livak and Schmittgen, 2001) and reported as normalized 

fold expression. 

 

Auxin-responsive genes in tomato 

Arabidopsis proteins GH3 (AT1G48690) and SAUR (AT1G75590) were used for 

TBLASTN to find orthologs in the tomato Unigene database (http://solgenomics.net). 

SGN-U326221 and SGN-U330915 were the best hits for SAUR which we called SAUR1 

and SAUR2, respectively. SGN-U325385 was the best hit for GH3. Tomato AUX/IAA 

was already available in GenBank under accession number AJ937282.  

 

Oligonucleotides 

Primers for qRT-PCR were designed by using OligoPerfect™ Designer 

(http://tools.invitrogen.com/content.cfm?pageid=9716). The primers (Table 1) have the 

http://solgenomics.net/
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Tm at about 60 °C and amplify a fragment between 100-150 bp in size. The primers for 

TIR-like genes amplify only TIR-E, TIR-D, TIR-G and TIR-1 but not SlTIR or any other 

TIR-like genes from other chromosomes.  

  

Virus-Induced Silencing of the Mi-1 gene homologues 

The method and construct which has been used successfully by Jablonska et al. (2007) 

was applied for silencing of the Mi-1 homologues. In brief, the TRV vector carrying a 

300 bp fragment of 3‟-end of Mi-1 cDNA, was transformed into Agrobacterium 

tumefaciens GV3101 and used for agroinfiltration of four-week-old tomato seedlings 

using needleless syringe. Three weeks later, roots were sampled for RNA extraction. 

 

RACE  

To detect cleaved fragments of TIR-like genes, RACE was carried out by using 

GeneRacer™ kit (Invitrogen).  
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Two interacting loci on the long arm of tomato chromosome 6 confer resistance to 

tomato powdery mildew by coordinating delayed cell death  

 

 

Abstract 

 

On the long arm of tomato chromosome 6, two closely linked loci, Ol-1 and Ol-5, have 

been mapped conferring resistance to Oidium neolycopersici. Both Ol-1 and Ol-5 are 

identified from the wild tomato species Solanum habrochaites. We performed fine-

mapping coupled with physical mapping for the Ol-1 gene and narrowed down this locus 

to a 73 Kb interval. This interval contains at least 10 putative genes, of which none 

belongs to resistance (R) gene family members cloned so far. Microscopically, the 

response mediated by Ol-1 is delayed cell death that allows limited fungal colonization.. 

Interestingly, our results show that another locus, located in the chromosomal region 

where the Ol-5 locus is mapped, is required for Ol-1-mediated resistance, suggesting that 

the interaction between Ol-1 and Ol-5 is needed to confer resistance to O. neolycopersici.  

In fine-mapping of the Ol-5 locus, we observed that resistance mediated by Ol-5 requires 

an additional locus that is located in the Ol-1 interval. Furthermore, our data show that 

the interaction between Ol-1 and Ol-5 regulates delayed cell death. Loss of the S. 

habrochaites allele of the Ol-5 locus results in abolishing the cell death, while loss of S. 

habrochaites Ol-1 allele reduces the effectiveness of cell death probably by disturbing the 

right timing of this process. Altogether our results suggest that Ol-1, by interacting with 

Ol-5, confers resistance to O. neolycopersici by regulating delayed cell death upon 

pathogen attack. Preliminary functional analysis suggests that Ol-1 encodes a 

homeodomain-leucine zipper transcription factor, which silencing comprised resistance 

mediated by both Ol-1 and Ol-5.   
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Introduction 

Plant cell death is one of mechanisms of resistance against biotrophic pathogens by 

delimiting pathogen progress on plant tissues. The hypersensitivity response (HR) is a 

form of cell death which is typically triggered upon recognition of pathogen avirulence 

(Avr) proteins by plant resistance (R) proteins (Nimchuk et al., 2003). It has been 

reported that HR is the main resistance mechanism of tomato (Solanum lycopersicum) to 

Oidium neolycopersici, the causal agent of tomato powdery mildew (PM) (Huang et al., 

1998). Particularly, two different forms of HR have been observed in tomato response to 

PM. Single-cell HR (Huang et al., 1998; Bai et al. 2005), also defined as fast HR (Li et 

al., 2007) happens in the presence of Ol-4. The Ol-4 gene is derived from S. peruvianum 

LA2172 and homologous to Mi-1 encoding an NBS-LRR R protein (Chapter 2). On the 

other hand, multiple-cell HR (Huang et al. 1998; Bai et al. 2005), also described as slow 

HR (Li et al, 2007), occurs in tomato plants carrying the Ol-1 or Ol-5 gene. The Ol-1 and 

Ol-5 genes are identified from the wild tomato species S. habrochaites G1.1560 and 

PI247087, respectively (Huang et al., 2000; Bai et al., 2005) and mapped as a cluster on 

the long arm of chromosome 6 of tomato (Bai et al., 2005). Resistance mediated by Ol-1 

or Ol-5 is incomplete and race-non-specific, since near-isogenic lines carrying these 

genes (NIL-Ol-1 and NIL-Ol-5) showed variable levels of resistance to all different PM 

isolates which were tested (Bai et al., 2005).  

Map-based cloning of genes in some plant species have been accelerated by 

availability of the genome sequence of these plant species. Tomato genome sequence is 

available now (http://solgenomics.net) and makes it easy to narrow down the interval of 

the gene of interest. However, the remained challenge to clone the gene is functional 

confirmation, which demands genetic complementation of the candidate genes by 

performing stable transformation. Alternatively, virus-induced gene silencing (VIGS) has 

been widely used as a fast and relatively simple method for functional analysis of genes 

in plants (Liu et al., 2002; Lu et al., 2003; Brigneti et al., 2004; Chapter 2). This 

technique involves cloning of a short fragment of the target gene into a viral-based vector 

that can be infiltrated into the target plant (Liu et al., 2002). Virus propoagte and spread 

systemically in the plant and produce double-stranded RNA of the fragment of the target 

http://solgenomics.net/
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gene, which will be processed by RNA silencing machinary of the plant cell to knock 

down the transcript level of the targeted gene (Liu et al., 2002). 

Here we report that Ol-1 triggers delayed cell death, which is microscopically 

discernible from HR mediated by Ol-4. Then, based on genetic and physical mapping 

data, we show that Ol-1 is not an R gene and also it requires another locus, Ol-5, for 

conferring resistance to O. neolycopersici. Data from VIGS experiments suggest the 

possibility of involvement of a homeodomain-leucine zipper (HD-Zip) transcription 

factor in Ol-1-mediated resistance. 

 

Results  

Ol-1 confers broad-spectrum resistance to PM by triggering delayed cell death 

Previously, we reported that a near-isogenic line carrying Ol-1 (NIL-Ol-1) showed 

variable levels of resistance to all the tested isolates of O. neolycopersici, compared to its 

background, Moneymaker (MM) that was fully susceptible (Bai et al., 2005). However, 

MM and NIL-Ol-1 show similar fungal growth patterns as defined by the number of 

primary haustoria, hyphae, and secondary appressoria and haustoria per infection unit (Li 

et al., 2007). In this study, we microscopically compared the type of cell death that occurs 

in the wild species, S. habrochaites G1. 1560 and S. peruvianum LA2172 that are donors 

of Ol-1 and Ol-4, respectively. The result revealed a clear distinction in cell death 

between these two species (Fig.1). In S. peruvianum, HR occurred in invaded epidermal 

cells at the stage when primary appressoria and haustoria were formed. At 48 hour post 

inoculation (hpi), all epidermal cells attacked by PM in S. peruvianum showed HR, which 

was effective to prevent secondary hyphal production. However, in S. habrochaites, 

delayed cell death happened in epidermal cells invaded by PM haustoria. In this case, 

epidermal cell death occurred after the conidia produced functional primary haustoria and 

elongated secondary hyphae. At the primary penetration sites, the percentage of cell death 

in S. habrochaites was 70% at 48 hpi and 80% at 72 hpi (Table 1), compared to 100% 

HR in S. peruvianum at 48 hpi. Obviously, delayed cell death in S. habrochaites was less 

severe and did not engulf the entire cell (Fig. 1B, D), which enabled the fungus to 

produce secondary hyphae to attack other cells. Thus, cell death triggered by Ol-1 is 
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delayed and allows limited fungal colonization, leading to moderate but not complete 

resistance of S. habrochaites to O. neolycopersici.  

 

Fig.1. Death of cells attacked by Oidium neolycopersici. A. A tomato epidermal cell attacked by infection 

pegs from an appressorium of O. neolycopersici (stained in blue) and committed hypersensitive response 

(HR). B. Tomato epidermal cells which respond to O. neolycopersici attack by triggering slow cell death 

allowing limited fungal growth. C and D are the same as A and B, respectively, but under the florescent 

microscope. The samples for microscopy were taken 10 days after inoculation with O. neolycopersici. 

 

Fine-mapping of the Ol-1 gene 

The Ol-1 gene was previously mapped on the long arm of tomato chromosome 6 between 

markers P13M49 and H9A11 (Bai et al., 2005) which spans about 210 Kb on the tomato 

genome (Fig. 2C). In this study, screening of about 1350 BC2S3 plants for recombinants 

in this marker interval resulted in identification of several recombinants carrying four 

different crossing-over events (Fig. 2C). Recombinant inbred lines (RILs) were generated 
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by selfing these recombinants. Based on the sequences in the P13M49-H9A11 interval, 

new molecular markers were developed (Table 2 and Fig. 2B and C) and used to narrow 

 

Table 1. Percentage of epidermal cells in S. habrochites G1. 1560 showing cell 

death upon fungal attack at primary penetration sites. 

  48 hours post inoculation 72 hours post inoculation 

leaflet Plant number Plant number 

 
1 2 3 4 5 1 2 3 4 5 

1 70 70 80 60 70 80 70 70 80 80 

2 60 90 70 60 70 80 70 80 70 90 

3 70 70 70 70 70 70 80 60 80 90 

4 70 80 70 60 80 100 90 70 90 80 

5 80 70 60 70 70 80 70 90 90 90 

Mean  70.4 ± 4.3 80.0 ± 4.9 

 

down the Ol-1 locus by genotyping these four RILs. By applying disease tests, resistance 

or susceptibility of the RILs was determined (Fig. 2). As shown in Figure 2C, RIL1 was 

resistant, showing that the resistant allele of the Ol-1 gene is present. In this RIL, markers 

in the chromosomal interval between markers scaff4 and P13M49 have resistant 

genotype, indicating that the Ol-1 gene is located in this marker interval. In contrast, the 

other three RILs were all susceptible, showing the resistant allele of the Ol-1 gene is not 

present. All these three RILs have susceptible genotype for markers in a chromosomal 

region below marker scaff6 towards H9A11, indicating that the Ol-1 gene is below 

marker scaff6. Altogether, results of these four RILs showed that Ol-1 is located between 

markers scaff6 and TAG, a chromosomal interval of  about 73 Kb (Fig. 2D). Gene 

prediction programs suggested that there are at least ten putative genes in the 73 Kb Ol-1 

interval, based on the genomic sequence of Heinz 1706 cultivar which is susceptible to 

PM (Fig. 2D). The best hints for these genes in protein database and also in the Unigene 

database are presented in Table 3. One of these genes (gene number 2) has no match in 

the Unigene database and no match in experimentally-evidenced proteins in NCBI, 

suggesting that it is probably a wrongly predicted gene. The other one is a polyprotein. 

Interestingly, there is no R gene in this genomic interval. 
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Fig. 2. Genetic and physical map of Ol-1 locus on the long arm of tomato chromosome 6. A. Part of the 

long arm of chromosome 6 which harbors Ol-1 and Ol-5 loci. The introgression region in NIL-Ol-1 is 

shown as filled bar. B. Physical map of the part of the chromosome which harbors Ol-1 locus. The relative 

distances in Kb are shown. C. Physical map of the previous Ol-1 interval, P13M49-H9A11. The four 

recombinant inbred lines (RIL 1-4) which resulted in new interval for Ol-1 (TAG- scaff6) are also shown. 

The phenotype of each RIL is indicated as R (resistant) or S (susceptible). The black color indicates 

markers are homozygous for the resistant parental genotype, white homozygous for the susceptible parental 

genotype. D. Illustrates the predicted genes in the Ol-1 interval based on the AGUSTUS software 

(http://augustus.gobics.de/). 

 

 An additional locus interacts with the Ol-1 locus 

In the recombinant screening for Ol-1 fine-mapping we encountered a controversial 

phenomenon. One recombinant inbred line, Line 6 in Fig. 4, homozygous for the resistant 

parental allele for the markers in the Ol-1 interval was fully susceptible to PM. The 

genotype and susceptibility were confirmed in the selfed progeny of this line. We 

http://augustus.gobics.de/


 

66 

 

compared the size of the introgression from the donor species, S.  habrochaites in NIL-

Ol-1 and in Line 6, by genotyping them with markers on the long arm of chromosome 6 

(Tables 2 and 4). In NIL-Ol-1, the S. habrochaites introgression is between markers 

 

Fig. 3. Informative recombination events in Ol-5 region. A. The genetic map showing part of the long arm 

of tomato chromosome 6 harboring Ol-1 and Ol-5 loci. B. Genotypes and phenotypes of the recombinants 

identified in the region between ct184 and tg25. The relative location of the markers on the physical map is 

shown. The phenotype of each recombinant is indicated as IR (intermediate resistant), S (susceptible), or R 

(resistant). The level of cell death is shown as strong, intermediate (IM), no necrosis (none), or not 

determined (nd). The black color indicates markers are homozygous for the resistant parental genotype („b‟ 

genotype), white homozygous for the susceptible parental genotype („a‟ genotype), and grey as 

heterozygous genotype („h‟ genotype). As is shown, tg25 is mapped distal to U217233, while on the 

physical map it is located proximal to U217233. The physical map in the region between markers tg25 and 

U217233 is still gapped. 

 

ct174 and T0834 (Fig.1A), while in Line 6 the introgression starts from a region below 

marker ct174 and stops between markers U217233 and tg25 (Fig. 4). Previously we have 

shown that Ol-5 locus is linked to Ol-1 and mapped between tg25 and P21M47 (Bai et 

al., 2005). Thus, this result is striking as the introgression in NIL-Ol-1, but not that in 

Line 6 covers a chromosomal region where the Ol-5 locus is located (Bai et al., 2005) 
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(Fig. 2A). This raised the possibility that Ol-1 requires another locus located in the Ol-5 

interval for conferring resistance.   

 

Table 2. Markers which were developed based on Solanum lycopersicon cv. MM and Solanaum 

habrochites G. 1560 

Marker 

Name 
Primer Sequence 

Annealing 

Temp. (°C) 
Polymorphisym 

2C17 
F- ATGCTGCAACTCCACTGATG 

55 HypF3I 
R- TGACAGAAGCAGCAAAAGGA 

123E21 
F- ATGCCCTTTTGGTGTTCTTG 

55 RsaI  
R- AAGTTTGGCCTTGACACCAG 

135H21 
F- GAGCGTTGCTGAAAACATCA 

55 HypF3I 
R- ATGCACGCTGTGTTCAGTTC 

123G17 
F-TCAAACATTTTTCCCCGTGT 

55 HypF3I 
R-CACGAGAGTGCCAAAGAGTG 

177K13 
F-TTGGCACTGGGACATTCATA 

55 
dominant 

SCAR R-GCGTACACCACATGTTCAGG 

215M16 
F- TCTACGGAGGGTAGATCGTG 

62 
dominant 

SCAR R- GAGACTACGCCTGTAGGATC 

PSD-1 
F-ACGAGCAGCAGGTGTGATAGAC 

62 SCAR 
R- GTGGTTAATGAGATGGGTGGAC 

PSD-2 
F-AAGAAATAATATCCCCATCGTG 

62 
dominant 

SCAR R- AACAAAAACATCCGCAGTGAGA 

123G17-2 
F-AGAATCCGCGCTACAACTACA 

55 SpeI  
R-ACAGGACCTGATGGAAGTGTG 

P13M49 
F-TGCTAAGAATCAGAAACCACACCT 

56 XcmI 
R-ACAACAAGCTGATCCACCTAAAGA 

ct184 
F-TTTCCGTGTATTGCCAACAA 

56 DdeI 
R-ACCAAAGAGTCAATGGATGG 

tg25 
F- TAATTTGGCACTGCCGT 

52 SCAR 
R-TTGTYATRTTGTGYTTATCG 

161G17 
F- CATAGGTGGGCAGTGTTGAGT 

55 XapI 
R- ATGGGCTTAGGAAATGAGGTG 

H9A11 
F- TGCTCTAACAAAATCACCAAAATC 

52 SCAR 
R- AAATGGTCAAACAAAGTCTATTGAG 

scaff1 
F- GGGACAGAAAGTCAGCTTCG 

60 FspBI 
R- CACTGTCGGTTCCTTCTGGT 

scaff2 
F- AAATTTGGAAGGCCTCTGCT 

55 SCAR  
R- ATATTCCCCTGCCCAATTTC 

scaff5 
F- ATCCTGTTCACGTCGATTCC 

60 
dominant 

SCAR R- CCTTGCAAACACTCTTGCTC 

scaff4 
F- CGTTTTACACCTCCGACCAT 

55 XapI  
R- ACTTGGCCGTGATTAGATGC 

TAG 
F- ATGCAGATCGGAACAGCACTTC 

60 CfrI13I  
R- TCATGATGATGGACTAGGCA 

 

The Ol-5 locus needs likely Ol-1 for resistance to PM 

To verify whether Ol-5 also requires Ol-1 for resistance to PM we performed a 

recombinant screening for fine-mapping of Ol-5. By screening about 700 plants from a 

BC2S2 population we identified six informative recombinants representing four different 
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crossing-over events between markers tg25 and P21M47 (Line 2, 3, 4 and 5 in Fig. 3). 

We scored the disease resistance level and macroscopically the severity of cell death in 

 

Table 3. The best hints of predicted genes in the Ol-1 interval in protein and Unigene databases 

(http://solgenomics.net/). 

No. 
Arbitrary 

name 
BLASTP Hints E value Unigene E value 

1 TGA 
Triacylglycerol lipase (Nicotiana 

attenuata) 
0 U603232 0 

2 - 
conserved hypothetical protein (Ricinus 

communis) 
4.00E-27 none none 

3 UCH 
UCH3 (Ubiquitin C-terminal 

hydroxylase3)(Arabidopsis thaliana) 
1.00E-30 U570457 1.00E-138 

4 Ole Oleosine (Coffea canephora) 3.00E-45 U577353 0 

5 ZT 
Zinc transporter, putative (Asparagus 

officinalis) 
4.00E-16 U564556 1.00E-154 

6 HD-Zip 
homeodomain-leucine zipper protein 

HD2 (Gossypium hirsutum) 
4.00E-90 U573653 0 

7 HPRG 
hydroxyproline-rich glycoprotein family 

protein (Arabidopsis lyrata) 
3.00E-12 U296457 3.00E-80 

8 FS 

Flavonol synthase/flavanone 3-

hydroxylase, putative (Ricinus 

communis) 

1.00E-75 U574730  0 

9 - 
putative polyprotein (Solanum 

lycopersicum) 
0 U107559  0 

10 ID 

putative 3-isopropylmalate 

dehydrogenase small subunit (Capsicum 

annuum) 

2.00E-115 U430720 2.00E-26 

 

these lines. Results are presented in Fig. 3. Lines 2, 3 and 5 were susceptible to PM, 

pointing Ol-5 to the chromosomal region below marker P13M49 towards marker ct184, 

where markers have the susceptible genotype. Since Ol-1 is located in between markers 

P13M49 and ct184, it is possible that Ol-5 is allelic to Ol-1. However, Line 4 that shows 

the resistant genotype for markers in the Ol-1 interval was fully susceptible. The result of 

Line 4 implicated that Ol-5 is located between markers U217233 and tg25, which is in 

agreement with previously obtained results that Ol-5 was between P21M27 and tg25. 

Interestingly, we observed resistance in Line 1 and 7 (Fig. 3), in which the S. 

habrochaites introgression covers the chromosomal region between markers ct184 and 

tg25, flanking both Ol-1 and Ol-5 intervals. Thus, we concluded that the Ol-5 locus 
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requires likely Ol-1 for conferring resistance to PM. This conclusion is supported by the 

recombinant event identified in fine-mapping of the Ol-1 gene (Line 6, Fig. 3). 

 

Table 4. Markers which were developed based on Solanum lycopersicon cv. MM and 

Solanaum habrochites PI247087. 

Marker 

Name 
Primer Sequence 

Annealing 

Temp. (°C) 
Polymorphisym 

23B17 
F- AAGGTGCATCGAGAATGTCC 

55 RsaI 
R- CACACCCACACCATATCCAA 

40F08 
F- TATGCTTGCTTGGACTGTCG 

55 RsaI 
R- CTTGATCGGACACAACATGG 

76N05 
F-GGACATAGGTTGSGGGGCT 

55 SCAR 
R-GTCACAGTTCCGCTCCAGAT 

116O16 
F- GAAAGTGAGCCATTCCCGTA 

55 HypF3I 
R- GGCAAGAACAGAAGCAATCA 

5H10 
F-AAATCACCTTCCACAGTGCAG 

55 RsaI 
R- CTGGCCATAAAGTCTGGACAA 

167M06 
F- TTGGGAGAAGGGAAGAGAGAG 

55 XapI 
R- AAGGAACCCACCAGTGAAATC 

U217233 
F-AGGCATAGCAATTCTATGGATGGG 

55 RsaI 
R-TTGGAACGTGCAGCAGATTGTC 

P13M49 
F-TGCTAAGAATCAGAAACCACACCT 

56 XcmI 
R-ACAACAAGCTGATCCACCTAAAGA 

ct184 
F-TTTCCGTGTATTGCCAACAA 

56 DdeI 
R-ACCAAAGAGTCAATGGATGG 

tg25 
F- TAATTTGGCACTGCCGT 

52 SCAR 
R-TTGTYATRTTGTGYTTATCG 

216A18 
F-CACCACAAGGCTACCATCCT 

58 SduI 
R-GCATTACATGGGTTGGGTTG 

 

Further, the cell death level, measured as necrotic spots surrounding fungal 

colonies, varied between these lines. Plants of Line 7 carrying S. habrochaites alleles of 

both loci in homozygous status were completely resistant to PM and showed a very 

severe cell death (Line 7 in Fig. 3B). Plants of Line 1 harboring heterozygous S. 

habrochaites alleles of both loci showed intermediate levels of resistance accompanied 

with also an intermediate level of cell death (Line 1 in Fig. 3). However when the S. 

habrochaites introgression does not cover the Ol-5 interval, the cell death  was abolished 

(Line 6, Fig. 3). On the other hand, when the S. habrochaites introgression does not cover 

the Ol-1 locus (Line 3, Fig. 3), there was a level of cell death, but no PM resistance.  
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Functional analysis of the putative genes in the Ol-1 interval 

To identify which of the putative genes is the Ol-1 gene, we performed virus-induced 

gene silencing (VIGS) experiment to silence transiently all the genes in the Ol-1 interval 

except for the putative zinc transporter, because we only identified this gene in the later 

genome sequence release. For each gene, one construct was made (Table 5) and applied 

  

Table 5. Primers used for silencing constructs in virus-induced gene silencing 

experiments. 

Gene Primers Sequence 
Amplicon 

Size (bp) 

ID 
F- TGTTTCCAGTTCCATCACCA 

438 
R- GATGATCCGCATCCAAAGTT 

DDS 
F- TGGGCTTAGGAAATGAGGTG 

411 
R- CAACCAAAGTCCCATGATCC 

HPRG 
F- GCCAGTGGTTGTTGTTGCTA 

413 
R- CTCTTGCAGCCCCTATGAAC 

HLZ 
F- AAAGAAGATCTGGGGTTGAGC 

255 
R- AATAGTGCTGTTCGGAGACGA 

Ole 
F- ATGAGCAGCACCTTTCTCGT 

378 
R- TAATCTGCTGCTGTGCTTGG 

UCH 
F- GCGTATGCAGTTCTTGGTGT 

260 
R- TCACGACAGCAGCCAATAAA 

PLA 
F- GATTCAACGAATGGGAAGGA 

314 
R- AATCATCTGCGACCAAAAGG 

HLZutr 
F- GGGGTCTAGAAAATCTCTTGC 

146 
R- CTCTTCTCCACTCCCCACAA 

FS 
F- AATCGACCTTACTTCCCCTGA 

494 
R- AATCCTCCATGGTTGATCTCC 

 

on seven plants of MM and NIL-Ol-1 for silencing. The number of PM colonies was 

counted for NIL-Ol-1, but not for MM due to the spreading of colonies. All MM plants 

were heavily infected by PM, showing that silencing these nine genes did not influenced 

the susceptibility of MM. To compare the effect of silencing Ol-1 candidate genes on PM 

sporulation in NIL-Ol-1, colony numbers were compared between plants in which a 

specific candidate gene was silenced and control plants infiltrated with an empty vector 

(TRV). Transient silencing is not homogenous and the rate of silencing is variable 
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between different plants. Assuming that silencing a given gene results in increased PM 

sporulation, we expect to observe more sporulation on those plants in which the given 

gene is silenced better. For each gene we selected 3 plants with the highest number of PM 

colonies. Then the average numbers of colonies on these 3 plants were compared to the 

average colony number of the 3 empty vector plants which showed highest sporulation 

rate. Results showed that silencing all of these genes compromised resistance in NIL-Ol-1 

at different levels (Fig. 4A). The highest number of PM colonies was observed on plants 

in which the homeodomain-leucine zipper (HD-Zip) transcription factor gene was 

silenced.  

 Since our fine-mapping results suggested that Ol-5 requires likely Ol-1 for 

conferring resistance to PM, we expect that silencing the potential candidate of Ol-1, HD-

Zip would also compromise Ol-5-mediated resistance. We further preformed a VIGS 

experiment to silence the HD-Zip gene in NIL-Ol-5 that carries a S. habrochaites 

introgression covering both Ol-1 and Ol-5 intervals. Results demonstrated that silencing 

HD-Zip also compromised the PM resistance in NIL-Ol-5 (Fig. 4B), supporting the 

conclusion drawn from the fine-mapping results that Ol-1 and Ol-5 jointly confers PM 

resistance.  

 

Discussion 

By fine-mapping of Ol-1 and Ol-5, we demonstrated that Ol-1 mediates delayed cell 

death, by interacting with the Ol-5 locus. The fact, that Ol-1 confers resistance to a broad 

range of PM isolates and that no R genes are identified as the candidate for Ol-1, suggests 

that Ol-1 is an enhancer of the basal defense. Transient gene silencing results suggested 

that a homeodomain-leucine zipper transcription factor is probably involved in resistance 

mediated by both Ol-1 and Ol-5.  

During the recombinant screening for Ol-1 and Ol-5, we found that an S. 

habrochaites introgression covering both Ol-1 and Ol-5 intervals is required for PM 

resistance showing that these two genes require each other for their function. In those 

plants where the S. habrochaites introgression covers only the Ol-1 interval, plants were 

completely susceptible and showed no necrotic spots (Line 6 in Fig. 3), suggesting that 

Ol-5 is the gene which potentiates cell death. On the other hand, when only the Ol-5 
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interval is introgressed from S. habrochaites, an intermediate level of necrotic spots were 

observed which could not prevent PM growing (Line 3 in Fig. 3), indicating that Ol-1 

regulates the timing of cell death occurrence. Presence of S. habrochaites alleles of both 

loci resulted in strong cell death associated with complete resistance (Line 7 in Fig. 3). 

Thus, we concluded that Ol-1 and Ol-5 coordinate jointly the effective cell death upon 

PM infection and therefore confer resistance.  

In the Ol-1 interval of 73 Kb, 10 genes are predicted (Table 3). This prediction is 

based on the sequence of a tomato cultivar susceptible to PM, so we cannot exclude the 

possibility of the presence of additional gene(s) in this interval in the resistant line.   

VIGS experiments showed that silencing these genes in NIL-Ol-1 compromised 

resistance to PM with different levels (Fig. 4). Nevertheless, the highest PM colony 

number was observed on the HD-Zip-silenced plants of NIL-Ol-1. Moreover, silencing 

this HD-Zip gene compromised resistance in NIL-Ol-5 (Fig. 4), showing that this gene is 

also required for Ol-5-mediated resistance. This supports the results obtained in fine-

mapping that Ol-1 and Ol-5 jointly confer PM resistance. This HD-zip belong to the class 

II of HD-Zip transcription factors featured by their CPSCE motif, located downstream of 

the leucine zipper motif and is involved in sensing the changes in the cellular redox status 

(Chan et al., 1998; Tron et al., 2002; Ariel et al., 2007). Such a transcription factor, 

NbHB1, was shown to be a positive regulator of pathogen-induced cell death in 

Nicotiana via JA signaling pathway (Yoon et al., 2009). Another HD-Zip transcription 

factor located on the tomato chromosome 4, is involved in limiting the cell death in 

response to pathogen and its silencing resulted in cell death due to oxidative burst 

(Mayda et al., 1999). Based on these evidence, we speculate that the HD-Zip transcription 

factor in the Ol-1 interval plays a role in regulating the cell death and thereby, conferring 

resistance to PM.  

Two major kinds of cell death have been described in plant cells, apoptosis-like 

PCD (AL-PCD) and autophagic PCD, and timing is the factor determines which kind of 

cell death should be undergone (Love et al., 2008). HR is a form of AL-PCD cell death 

(van Doorn and Woltering, 2005; Hofius et al., 2009) which is typically triggered upon 

recognition of pathogen avirulence (Avr) proteins by plant resistance (R) proteins 

(Nimchuk et al., 2003). Previously, the cell death in S. habrochaites (Huang et al., 2000) 
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and NIL-Ol-1 (Bai et al., 2005; Li et al., 2007) have been defined as slow HR. In this 

study, we would like to suggest that the cell death associated with Ol-1-mediated 

resistance resemables autophagic PCD, and is not HR. Our suggestion is based on the fact 

that the cell death mediated by Ol-1 is slow and not complete, which is discernable from 

the HR mediated by Ol-4, an R gene. Furthermore, transient gene silencing results 

suggested that a homeodomain-leucine zipper transcription factor is probably involved in 

resistance mediated by both Ol-1. Autophagic PCD is believed to be an exaggerated form 

of autophagy and happens during senescence or those responses that do not demand a fast 

reaction (Love et al., 2008). Autophagy is an evolutionary conserved process in 

eukaryotes in which unwanted cellular components (including proteins, lipids, entire 

organelles and invading pathogens) are engulfed by double-membraned vesicles called 

autophagosomes and delivered to lysosomes where they are destroyed (Levine and 

Ranganathan, 2010). It has been shown that autophagy negatively regulates cell death in 

plant cells and limit it to the pathogen-infected cells (Diaz et al., 2005; Yoshimoto et al., 

2009). Further investigations are needed to characterize the cell death triggered by Ol-1 

and Ol-5 in more details, in order to get a better idea of the involvement of autophagy in 

the pathogen resistance mediated by these genes.  

Based on gene expression profiling, our previous results suggested that the 

molecular events underlying Ol-1-mediated response to PM is more similar to the 

response which occurs in MM than that triggered by Ol-4 (Li et al., 2007). Moreover, 

MM and NIL-Ol-1 showed similar fungal growth patterns as defined by the number of 

primary haustoria, hyphae, and secondary appressoria and haustoria per infection unit, 

with the exception that cell death happens in NIL-Ol-1 preventing further pathogen 

progress (Li et al., 2007). All these evidence suggest the delayed cell death associated 

with Ol-1-mediated resistance is not dependent on R-Avr protein cognition. The fact that 

no R genes are identified as the candidate for Ol-1, suggests that Ol-1 is an enhancer of 

the basal defense. 

Apart from the HD-Zip gene, silencing the other seven genes in Ol-1 interval also 

compromised resistance to PM with lower levels (Fig. 4). One explanation for this 

observation may be the contribution of these genes to basal defense. For example, 

Hydroxylproline-rich glycoprotein (HRGP) are one of the main protein groups in plant 
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cell walls, which cross-linking strengthens the cell wall and therefore provides added 

resistance to pathogen-derived cell wall depredating enzymes (Bradley et al., 1992). 
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Fig. 4. Silencing the predicted genes in the Ol-1 interval compromised resistance in NIL-Ol-1 with 

different levels (A). Silencing the HD-Zip gene reduced the level of resistance in NIL-Ol-5 (B). Seven 

plants per construct were infiltrated with TRV empty vector (EV, as the control) or silencing constructs 

harboring a small fragment of the target gene. Two weeks after sowing, agroinfiltration was done on the 

cotyledonary leaves and 2 weeks later, PM spores were sprayed on the plants. Fungal colonies were 

counted two weeks after fungal inoculation.  For each construct, the average number of colonies on three 

plants bearing the highest colony number was calculated. The result is shown on the graph. Error bars show 

standard deviation. 

 

Ubiquitin carboxyl-terminal hydrolase (UCH) enzyme is involved in protein 

deubiquitination (Wilkinson, 1997). The role of ubiquitination in plant immunity has 

attracted more attentions recently (Trujillo and Shirasu, 2010). It would be also expected 

that reverse reaction, deubiquitination, play a role in plant immunity, for instance, by 

regulating phytohormones signaling pathways. FS encodes a putative 2OG-Fe(II) 

oxygenase. Such a gene, DMR6, has been reported to enhance Arabidopsis susceptibility 
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to Hyaloperonospora parasitica (Van Damme et al., 2008). However, in our 

pathosystem, FS seems to be positively involved in PM resistance in tomato since 

silencing FS resulted in partial loss of resistance conferred jointly by Ol-1 and Ol-5. We 

expect that oxygenase activity of FS is involved in regulating the ROS levels in the cell 

and thereby, influence the PCD associated with resistance mediated by Ol-1 and Ol-5. ID 

encodes the small subunit of 3-isopropylmalate/(R)-2-methylmalate dehydratase. This 

enzyme is involved in amino acids valine, leucine, and isoleucine biosynthesis pathway. 

This gene also has an aconitase domain which has been shown to be involved in the 

activation of both resistance-associated HR and disease-associated cell death (Moeder et 

al., 2007). Ole encodes a protein with similarity to Oleosine proteins which are structural 

proteins in oilbodies (Frandsen et al., 2001), containing triacylglycerol (TAG). TAG is 

the substrate for glycerolipid pathway in chloroplast which is necessary for induction of 

systemic acquired resistance (Nandi et al., 2004) and is a source of production of 

molecules like phosphatidic acid, a well-known signaling molecule in plant defense 

(Distéfano et al., 2010). In Nicotiana attenuate, it has been shown that TAG is essential 

for JA biosynthesis (Kallenbach et al., 2010). Based on above listed evidence we 

conclude that silencing these genes would impair the basal defense to certain level and 

thus reduce the level of Ol-1-mediated resistance.  

In sum, our data suggest that Ol-1 mediates autophagic PCD, but not HR, against 

tomato PM. The Ol-1 gene is affected by Ol-5, another locus conferring resistance to PM 

in tomato. Future work focused on the fine-mapping of the Ol-5 gene in populations 

where the Ol-1 gene is present will help to identify candidates for the interacting genes. 

Further, monitoring the expression of the genes regulating autophagy in NIL-Ol-1 and 

NIL-Ol-5 and in the RILs carrying both Ol-1 and Ol-5 genes, will shed light on the 

regulation of autophagy by these genes which results in delayed cell detah and thereby, 

resistance to the pathogen. Moreover, experiments on functional analysis need to be 

performed to verify whether Ol-1 encodes a homeodomain-leucine zipper transcription 

factor.  
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Materials and Methods 

Plant materials 

We used a BC2S3 population developed from crossing Solanum lycopersicum cv. 

Moneymaker (MM) and S. habrochaites G.1560 for recombinant screening in the Ol-1 

fine-mapping experiments. For fine-mapping of the Ol-5 gene, a BC2S2 population 

derived from the crossing of MM with S. habrochaites PI247087 was used. In both cases, 

MM was used as the recurrent parent. Near-isogenic lines (NILs) harboring the Ol-1 and 

Ol-5 genes (Bai et al. 2005) in the genetic background of MM were used. 

 

Powdery mildew assay 

For disease tests, Wageningen isolate of O. neolycopersici was used (Bai et al., 2005). 

Fungal spores were washed off from heavily infected tomato leaves and diluted to the 

concentration of 2.5×10
4
 spores per mL. The inoculum was evenly sprayed on the 4-

weak-old plants. We scored the plants based on the macroscopic observation of PM 

sporulation. Plants showing no sporulation were scored as resistant. Plants with a high 

level of sporulation, comparable to that on the susceptible control MM plants, were 

considered as susceptible. Plants showing sporulation with necrosis surrounding the 

colonies, were considered as intermediate resistance. 

 

Microscopic observation  

To monitor cell death, Japanese isolate KTP-01 was used for inoculation (Kashimoto et 

al., 2003). Inoculation was conducted by collecting conidia on conidiophores with an 

electric spore collector and suspending them in water containing Mixpower (10
-5

 diluted) 

to produce inoculum (Nonomura et al., 2009). Tested leaves (3
rd

 and 4
th

 true leaves) of 

one-month-old plants were spray-inoculated. Two and three days post inoculation (dpi), 

five leaflets of the 3
rd

 and 4
th

 true leaves were harvested from five individual plants, 

decolored in a boiling alcoholic lactophenol solution for 1–2 min, and stained with 

aniline blue, according to a previous method (Sameshima et al., 2004). The leaves were 

observed under an Olympus light and fluorescence microscope (B excitation, B 

absorption filter and O-515 barrier filter). Ten conidia per leaflet were observed. 
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Marker development 

Based on the bacterial artificial chromosome (BAC) sequences which were available in 

the region of interest, primers were designed by using Primer 3 software (Rozen and 

Skaletsky, 2000). If amplified fragments derived from MM and NIL-Ol-1 or NIL-Ol-5 

were not polymorphic, PCR products were digested with different restriction enzymes to 

reveal polymorphism (Tables 2 and 4).  

 

Gene prediction and annotation 

The gene prediction for the Ol-1 interval (73 Kb) was done by using AGUSTUS 

(http://augustus.gobics.de/) and Fgenesh (http://linux1.softberry.com/berry.phtml) web-

based gene prediction softwares. Then the predicted amino acid sequence were used for 

BLASTP against protein database in NCBI. To check if these predicted genes are 

expressed, the predicted cDNA was used for BLASTN against tomato Unigene database 

(http://solgenomics.net/) (Table 3).  

 

Virus-induced gene silencing (VIGS) 

The TRV vector  that has been developed for transient gene silencing in tomato (Liu et 

al., 2002b) was used. In brief, the TRV vector carrying a fragment between 150-500 bp of 

the cDNA of each of the 9 candidate genes (primer used for preparing the construct are 

listed in Table 5) in the Ol-1 interval, was transformed into Agrobacterium tumefaciens 

strain GV3101. Agroinfiltration was done on cotyledons of 10 day-old seedlings using 

needle-less syringe and plants were maintained at 19-21°C. After 21 days, the plants were 

inoculated with tomato powdery mildew. 

 

 

http://solgenomics.net/
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Tomato recruits phytohormone pathways in different ways to withstand 

Oidium neolycopersici 

 

 

Abstract 

Phytohormones are involved in different aspects of plant life including response to biotic 

stresses. We investigated the role of different phytohormones, salicylic acid (SA), 

abscisic acid (ABA), jasmonic acid (JA), and ethylene (ET) in tomato in response to 

Oidium neolycopersici infection. A set of tomato (Solanum lycopersicum) near-isogeneic 

lines (NILs) which carry different resistance genes were used. These NILs show different 

levels of resistance that are based on hypersensitive response (HR), delayed cell death 

(DCD), callose deposition and also a combination of DCD and callose deposition. First 

we monitored the trend of the phytohormone pathways by quantification of the 

expression of marker genes for these pathways. Second, we crossed the NILs with tomato 

mutants that have altered responses to a subset of these phytohormones. Our results 

suggest that the SA pathway is the main hormone pathway that is recruited in HR-based 

resistance. For the resistance associated with DCD, the ethylene pathway is essential. The 

ABA pathway is crucial for the resistance mechanism relying on callose deposition. Our 

data provide a comparative analysis on the contribution of different phytohormone 

pathways to different forms of plant defense mechanisms in the same pathosystem, 

tomato and O. neolycopersici.  
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Introduction 

Plant-pathogen studies based on gene-specific interactions have distracted attentions from 

the role of phytohormones in plant responses to attacking pathogens. Recent findings 

show that to establish a successful defense response, plants need to attenuate any 

pathogen-induced hormone perturbations (Grant and Jones, 2009). Salicylic acid (SA), 

jasmonic acid (JA) and ethylene (ET) signaling pathways are considered as the backbone 

of phytohormone networks in plant immune system, with which auxin, abscisic acid 

(ABA), and gibberellic acid pathways interact (Pieterse et al., 2009). In general, SA and 

JA are believed to be signaling molecules in defense against biotrophic and necrotrophic 

pathogens, respectively (Glazebrook, 2005). SA pathway is well-documented as an 

essential component in effector-triggered immunity (ETI), PAMP-triggered immunity 

(PTI) and systemic acquired resistance (SAR) (Vlot et al., 2009). JA in the presence of 

low levels of ET is only able to trigger response to herbivores and wounding, while in 

combination with high ET levels, it triggers responses to necrotrophes as well (Grant and 

Jones, 2009). ABA is mainly considered as a negative regulator of plant immunity 

(Mauch-Mani and Mauch, 2005), probably because of its antagonistic interaction with the 

ET-JA signaling pathways (Anderson et al., 2004). 

Tomato response to tomato powdery mildew (PM), Oidium neolycopersici, is 

conditioned by several resistance genes including Ol-1, ol-2, Ol-4, and Ol-qtls which 

trigger different resistance mechanisms (Bai et al., 2003; Li et al., 2006). Ol-1 enhances 

basal defense by inducing delayed cell death (DCD) in the late stages of pathogen 

infection (Li et al., 2007; Chapter 4). A recessive gene, ol-2, which encodes a membrane 

protein homologous to barley mlo, mediates resistance to PM by inducing callose 

deposition and cell wall fortification to stop PM at penetration stage (Bai et al., 2008). 

We also have shown that an R gene, Ol-4, which is an NBS-LRR gene homologue to Mi-

1 (Chapter 2) triggers hypersensitivity reaction (HR) and thereby prevents the PM 

colonization after formation of primary haustoria. Interestingly, a combination of callose 

deposition and cell death is triggered by three combined quantitative trait loci, Ol-qtls, 

conferring resistance to PM (Bai et al., 2003; Li et al., 2006). We had previously 

developed near-isogenic lines (NILs) harboring Ol-1, ol-2, Ol-4 and Ol-qtls (NIL-Ol-1, 
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NIL-ol-2, NIL-Ol-4 and NIL-Ol-qtls, respectively) in the genetic background of S. 

lycopersicum cv. Moneymaker (MM) which is susceptible to PM (Bai et al., 2003). 

In this study, we took advantage of the above mentioned tomato-PM interactions to 

study the involvement of phytohormone pathways in four different kinds of plant defense 

mechanisms. Two complementary strategies were adopted in this work. First we 

monitored the expression of marker genes for different phytohormone pathways by using 

NILs that carry each of the different Ol genes (including Ol-1, ol-2, Ol-4 and Ol-qtls). 

Then we evaluated whether PM resistance in these NILs would be compromised if JA, 

ET and ABA pathways are impaired. We show in this chapter that SA, JA, ET and ABA 

pathways are involved differently in the different tomato-PM interactions.  

 

Results 

To monitor changes in JA, SA, ET, and ABA pathways in different tomato-PM 

interactions, we measured the expression level of marker genes (Table 1) for these 

pathways in different tomato NILs and in MM, in a time-course from 1 to 9 days post 

inoculation (dpi) with PM. For NIL-Ol-qtls, the time-points were 1, 5 and 7 dpi. The level 

of marker genes expression was quantified by quantitative RT-PCR. The results showed 

differences in the trend and in the induction magnitude of some of these pathways among 

NILs and MM (Fig.1 and Fig. 2). 

 

Early and late induction in SA pathway 

SA induces expression of a group of pathogenesis-related genes (PR genes) in 

Arabidopsis, among them PR-2 is often used as a marker gene for SA pathway (Uknes et 

al., 1992). Tomato PR2 (TomQ'b) gene (Domingo et al., 1994) was shown to be induced 

in response to BTH, an analog of SA (Beyer et al., 2001). Therefore, we used this PR2 as 

a marker gene for SA pathway in this study. The trend of SA pathway fluctuations, based 

on the changes in the expression of this PR-2, is depicted in Figure 1A and Figure 2A. At 

1 dpi, there was an induction in the PR-2 expression in NIL-Ol-4 and NIL-ol-2. In NIL-

Ol-1 and MM (Fig. 1A) this induction was very low, and in NIL-Ol-qtls it was absent 

(Fig. 2A). At the latest time-point (9 dpi), PR-2 expression increased in MM, NIL-Ol-1 

and NIL-Ol-4, with the highest level in NIL-Ol-1 (Fig. 1A). As to NIL-Ol-qtls, 
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considerable induction in PR-2 expression was observed at 7dpi, which was earlier than 

that in the other lines (Fig. 2A). 

 

 

Fig.1. Expression of PR-2 (A), Chitinase9 (B), LOXD (C), and rd22 (D), in MM, NIL-Ol-1, NIL-ol-2, 

and NIL-Ol-4 in a time-course after inoculation with PM. These genes are the markers for SA, ET, JA, and 

ABA pathways, respectively. Second and third leaves were sampled at 1, 3, 5, 7, and 9 days post 

inoculation (dpi) from powdery mildew-inoculated and -non-inoculated (Mock) plants. RNA extracted 

from these leaf samples were used for monitoring the expression of the marker gene. Error bars show 

standard deviation.  

 

Late induction in ET pathway in NIL-Ol-1 and NIL-Ol-qtls  

The ET pathway was monitored based on the expression of the Chitinase9 (Chi9), which 

has been used as a marker gene for ET pathway in toamto (Barry et al., 2001). As shown 

in Figure 1B, the expression level of Chi9 was rather constant during the time-course in 

all lines except in NIL-Ol-1 and NIL-Ol-qtls. After 5 dpi, the expression level of Chi9 

increased steadily in NIL-Ol-1 and NIL-Ol-qtls (Fig. 2B).  
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Induction of ABA and JA pathways at the late time-points 

The lipoxygenase D (LOXD) has been shown to be induced by jasmonic acid in tomato 

(Heitz et al., 1997), thus we used this gene as a marker for JA pathway. In Arabidopsis, 

rd22 is an ABA-responsive gene (Shinozaki et al., 2003). We found the ortholog of rd22 

in tomato (see M&M) and used it as a marker gene for ABA pathways in our study. 

Results showed that the trends in ABA and JA pathways were similar in all the lines 

(Fig.1C and D). These trends included a steady-state level of expression of rd22 and 

LOXD till 7 dpi, followed by an exponential induction at 9 dpi. The highest level of this 

induction occurred in MM for both rd22 and LOXD. We monitored the marker genes 

expression only till 7 dpi in NIL-Ol-qtls (Fig. 2C, D), thus presence or absence of this late 

exponential induction is not known in NIL-Ol-qtls. 

 

Effect of hormone mutants on the resistance mediated by different Ol genes 

In order to evaluate the effect of phytohormones on different interactions of tomato with 

PM, we tested the effect of impairing the pathways of these hormones on resistance 

mediated by different Ol genes, as well as on basal resistance (represented by the level of 

resistance in MM, the susceptible line). Therefore, we crossed different NILs that carry 

different Ol genes (including Ol-1, ol-2, Ol-4 and Ol-qtls) and MM, with available 

tomato hormone mutants; def1 (JA-deficient) (Howe et al., 1996), not (ABA-deficient) 

(Burbidge et al., 1999), epi (ET overproducer) (Fujino et al., 1988), and Nr (ET-

insensitive) (Wilkinson et al., 1995). Except Nr, all the other mutants are recessive, and 

therefore, we evaluated the F2 generations of these crosses for response to PM. We 

selected F2 plants which were homozygous for each Ol gene (Ol/Ol) based on the 

markers that are closely linked to these genes (see M&M). These selected F2 plants were 

expected to be all resistant to PM if resistance in these NILs was independent of  JA, ET 

and ABA pathways. As we expected that the mutant locus is randomly segregating 

among these selected F2 plants, if the response to PM was also segregating among the 

selected F2 plants, we could conclude that the mutant has influenced the response to PM. 

From each population we selected 16 plants homozygous for the corresponding Ol gene 

and tested them for the response to PM. In the case of epi mutant, it was possible to select 

also for the homozygous mutant (epi/epi) based on the plant morphology; dark-grown 
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epi/epi seedling were shorter and thicker ((Fujino et al., 1988) and Fig. S1). Therefore, 

from the F2 populations derived from crosses with epi mutants, we selected at least three 

plants homozygous for both Ol and epi (Ol/Ol/epi/epi) and tested them for response to 

PM.  

These mutants and their background lines were all susceptible to PM. We did not 

observe discernable effect of these mutants on the level of susceptibility of MM, while 

the resistance mediated by some of the Ol genes was compromised in crosses with some 

of these mutants, as described below.  

 

Table 1. Marker genes used for monitoring different signaling 

pathways in this study.  

Marker gene Pathway Primer sequences (5'- 3') 

PR-2 SA 
GCTACATACTCGGCCCTTGA 

TGTTGTAAGTCCTCGCGTTG 

LOXD JA 
TTGTGCCTGAAAAAGCAGTG 

GTTCTAGCGCGACATTCCTC 

rd22  ABA 
ACGTGGCGTTATTTTTCCTG 

ATCTCCGGCATCTTCTCTGA 

Chitniase9 ET 
GAAATTGCTGCTTTCCTTGC 

AGTAATCGCCAGGGCTACCT 

GAST1 GA 
AGCAGCAGCAACAACAGAGA 

TCTTTGAACACCGGTACGTG 

GH3 Auxin 
GCCAACAACAGAGGAAGAGC 

TACATTCCTTTGCCCGTCTC 

 

JA-deficiency compromises ol-2-mediated resistance 

Segregation of response to PM was observed among 16 selected F2 plants derived from 

the cross between NIL-ol-2 and def1 mutant line. As mentioned in Table 2, the ratio of 

susceptible (S) to resistance (R) was 1: 3 which agrees with a ratio expected for a 

segregating recessive gene. Thus, we concluded that def1 mutation, and thereby JA-

deficiency, compromised resistance mediated by the ol-2 gene. None of the selected F2 

plants from the cross between NIL-Ol-4 and def1 mutant line was susceptible, suggesting 

that JA-deficiency had no obvious effect on the Ol-4-mediated resistance. The F2 plants 

carrying Ol-1 gene and segregating for def1 locus, were all as resistant as NIL-Ol-1, 

suggesting that there is no influence of def1 mutation on Ol-1-mediated resistance. 
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ABA-deficiency compromises ol-2- and Ol-qtls-mediated resistance 

Susceptible plants were found in the selected F2 plants from the crossing of not mutant 

with NIL-ol-2 and NIL-Ol-qtls (Table 2). The ratio of S to R plants agrees with a 1: 3 

ratio (χ
2
= 0.33, P >0.05), suggesting that recessive not mutation compromised resistance 

mediated by Ol-qtls and ol-2. No susceptible plants were observed among the F2 plants 

selected from crossing between not mutant with NIL-Ol-1 and NIL-Ol-4.  

 

 

Fig.2. Expression of PR-2 (A), Chitinase9 (B), LOXD (C), and rd22 (D) in MM, and NIL-Ol-qtls in a time-

course after inoculation with PM. These genes are the markers for SA, ET, JA, and ABA pathways, 

respectively. Second and third leaves were sampled at 1, 3, 5, 7, and 9 days post inoculation (dpi) from 

powdery mildew-inoculated and -non-inoculated (Mock) plants. RNA extracted from these leaf samples 

were used for monitoring the expression of the marker gene. Error bars show standard deviation.  

 

ET mutants influence PM resistance conferred by Ol-1 and Ol-qtls 

For the ET pathway we had two mutants, one was Nr that decreases tomato cell 

sensitivity to ET (Lanahan et al., 1994) and the other one was epi, which has been 
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described as ET-overproducing mutant (Fujino et al., 1988). We found susceptible plants 

among the 16 plants selected from the F2 populations derived from crosses of Nr mutant 

with NIL-Ol-1 and NIL-Ol-qtls. Since Nr is a dominant mutation (Lanahan et al., 1994), 

we expected to observe 75% of the selected F2 plants to be susceptible if ET mutant had 

a negative effect on the response to PM. However as shown in Table 2, this was not the 

case since the number of susceptible plants was less than that was expected. From crosses 

of the Nr mutant and NIL-ol-2 or NIL- Ol-4, no susceptible plants were observed among 

the selected plants.  

In crosses with epi mutant, susceptible plants were also found for NIL-Ol-1 and NIL-

Ol-qtls, but not for NIL-ol-2 or for NIL-Ol-4 (Table 2). Though all the selected F2 plants 

showed epi phenotype, they were not all susceptible. As mentioned in Table 2, out of 

seven plants which were homozygous for the Ol-1 gene and showed epi phenotype, two 

were fully susceptible and the other five showed the same level of resistance as NIL-Ol-1. 

Also, from three plants homozygous for Ol-qtls and showing epi phenotype, two were 

fully susceptible and one was as resistant as NIL-Ol-qtls.  

 

Table 2. Summary of the disease evaluation on the selected F2 plants derived from crosses of hormone 

mutants with different tomato lines. „S‟ stands for susceptible, „R‟ stands for resistant. 

  MM NIL-Ol-1 NIL-ol-2 NIL-Ol4 NIL-Ol-qtls 

def1 16S 16R 4S:12R 16R nd
a
 

 not 16S 16R 3S:13R nd
b
 4S:12R 

 Nr 16S 1S:15R 16R 16R 6S:10R 
 

epi
c
 5S 2S: 5R 1S: 5R 5R 2S:1R   

a
not determined because the F2 population for this cross was not available. 

b
lethality was observed in the F2 population derived from this cross. As the ratio suggested (1/4), 

probably homozygous genotype for not is not tolerated in this population.  
c
in all crosses, 16 plants homozygous for individual Ol gene were selected. In the case of epi mutant, it 

was further possible to select for epi mutant, therefore we selected at least 3 plants which were 

homozygous for epi and also the Ol genes. 

 

The response of plants to pathogens is a continuum of possible responses from 

extreme resistance to extreme susceptibility (Glazebrook, 2005). The tomato–PM 

pathosystem provides an opportunity to investigate such a wide range of different 

responses. We performed a comparative analysis of phytohormone pathways in different 

kinds of response of tomato to PM, from susceptibility in MM to intermediate levels of 

resistance in NIL-Ol-1 and NIL-Ol-qtls, to a high level of resistance in NIL-ol-2 and 



 

88 

 

complete resistance in NIL-Ol-4. On one hand, we compared trends of several 

phytohormone pathways in different NILs based on the appropriate marker genes 

expression (Table 1) during their interaction with PM. On the other hand, we crossed 

these NILs with available tomato hormone mutants and evaluated the effect of the 

mutants on the response to PM.  

A level of resistance which is present in a susceptible plant is called basal resistance 

(Glazebrook, 2005; Jones and Dangl, 2006). MM is the background of the NILs were 

used in this experiment and is susceptible to PM, therefore, the level of resistance in MM 

represents basal resistance in our study. We did not observe any discernable effect of the 

tomato mutants on the basal resistance. However, others reported that for example, ABA-

deficiency (Achuo et al., 2006) or ET-insensitivity (Lund et al., 1998) enhances basal 

resistance in tomato against biotrophes. The susceptibility of MM to PM was not altered 

in our experiments, which is probably due to the low resolution of our disease scoring 

system to reveal minor changes in the susceptibility. 

One of the first physiological responses upon perception of pathogens by the plant 

cell is the occurrence of oxidative burst (OB) (Lamb and Dixon, 1997). A weak and 

transient OB occurs in both resistant and susceptible cells, followed by a stronger phase 

of OB only in resistant cells, which in turn, results in accumulation of SA and reactive 

oxygen species (ROS) (Lamb and Dixon, 1997). We detected an early induction in SA 

pathway in NIL-Ol-4 and NIL-ol-2 (Fig.1A and Fig. 2A). This induction is probably the 

result of massive accumulation of SA upon occurrence of the second OB. Accordingly, 

our previous data showed that at 1 dpi in NIL-Ol-4 and NIL-ol-2, HR and callose 

deposition occur, respectively (Li et al., 2007). Fig. 1A suggests that also in MM and 

NIL-Ol-1, such an induction happens but much weaker. 

Recognition of pathogen effectors by plant R proteins enhances OB (Lamb and 

Dixon, 1997; Nimchuk et al., 2003). As we reported before, Ol-4 encodes an R protein 

(Chapter 2), so the strong OB, reflected in the strong induction of SA pathway in NIL-Ol-

4 is probably the result of the function of this R protein. The other components required 

for OB are heterotrimeric G proteins and calmodulin proteins (Nimchuk et al., 2003). ol-2 

is a truncated protein homologous to the barley MLO protein, which has been shown to 

be binding to calmodulin proteins (Stein and Somerville, 2002) and also interacting with 
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heterotrimeric G proteins (Lorek et al., 2010). It would be interesting to investigate 

wheather loss of function of ol-2 influences its binding activity to calmodulin and 

heterotrimeric G proteins, and thereby influence the quality of OB.  

Apart from the induction in SA pathway at 1 dpi, the remaining changes in hormone 

pathways happened late in the time-course. ET pathway induction culminated from 7dpi 

and reached a maximum level at 9 dpi in NIL-Ol-1 (Fig. 1B). A similar trend was 

observed in NIL-Ol-qtls (Fig. 2B), while the other NILs showed the same pattern as that 

was observed in MM (Fig. 1B). Late induction in SA pathway was also observed in NIL-

Ol-1 and NIL-Ol-qtls (Fig.1A, and Fig. 2A), which is distinguishable from that induction 

in the other lines. We have suggested that Ol-1 is an enhancer of basal defense that 

mediates delayed cell death resembeling autophagic-PCD (Li et al., 2007; Chapter 4) in 

the later stages of PM infection. Ol-qtls also mediates cell death similar to autophagic 

PCD (Li et al., 2007). ET is considered as the hormone which is involved in autophagic 

PCD, probably through synergistic interaction with SA (O'Donnell et al., 2001; Love et 

al., 2008; Trobacher, 2009). Our data suggest that DCD in NIL-Ol-1 and NIL-Ol-qtls is 

probably the output of the late induction in the ET and SA pathways. In agreement with 

the significant induction in ET pathway in NIL-Ol-1 and NIL-Ol-qtls, we showed that 

ET-insensitivity compromises resistance in these two NILs. However, the ratio of the 

identified susceptible plants were not in agreement with what was expected (Table 2), 

which might be due to the fact that Nr mutant is not completely ET-insensitive (Clark et 

al., 1999). If ET plays a positive role in resistance in NIL-Ol-1 and NIL-Ol-qtls, we 

expect that ET overproduction increases the resistance level in these two NILs. However, 

we got contradictory results since epi mutant compromised resistance in these two NILs 

(Table 2). One of the effects of epi mutation is that the epidermal cells of this mutant line 

are different from the wild type by having a more round shape and being swollen (Barry 

et al., 2001). Keeping in mind that epidermal cells are the target of PM, there is a 

possibility that changes in the morphology of the epidermal cells resulted in susceptiblity 

in plants carrying the epi mutation.  
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Fig. 3. A proposed model for different tomato responses to PM. Upon infection of a tomato epidermal cell 

by PM, an oxidative burst (OB) occurs in this cell, regardless of the identity of the cell (resistant or 

susceptible). In the presence of Ol-4 or ol-2, this initial OB is exaggerated and results in a second and 

stronger OB, which accumulates reactive oxygen species (ROS) and triggers SA pathway. The magnitude 

of this OB exaggerated by Ol-4 is strong enough to promote HR. However, OB exaggerate by ol-2 is 

relatively weaker and also this gene, probably in coordination with JA pathway, has the ability to block the 

pathways which would result in HR. Instead, ol-2 triggers recruitment of ROS produced upon OB for 

reinforcement of the cell wall. This pathway probably requires ABA. The second OB probably does not 

occur in the presence of Ol-qtls, Ol-1 and MM (basal defense). Instead, Ol-qtls and Ol-1 lead to DCD by 

triggering ET accumulation, probably by triggering SA pathway or in collaboration with this pathway. Ol-

qtls also triggers callose deposition in an ABA-dependent manner. In the absence of these Ol resistance 

genes, i.e, in the basal defense of Moneymaker, neither strong early induction in SA pathway and ROS 

accumulation, nor late induction of ET pathway occurs, resulting in the establishment of PM. In this picture 

the intensity of the gray color represents the level of resistance, which is highest in the presence of Ol-4 and 

gradually decreases to basal resistance. 

 

ABA and JA pathways (Fig.3 and Fig.4) showed a very similar pattern; a constant 

level in the period of infection followed by an induction in the later stage of infection 

with highest rate in MM. Late accumulation of ABA and JA in susceptible tomato has 

also been reported by others (O'Donnell et al., 2003; De Torres-Zabala et al., 2007; Fan et 
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al., 2009), which suggests that this accumulation might be the result of disease 

establishment and stress rather than a defense response. Surprisingly, ABA-deficiency 

compromised both ol-2- and Ol-qtls-mediated resistance. ABA induces callose deposition 

(Flors et al., 2005; Flors et al., 2008), which is the main mechanism of resistance 

mediated by ol-2 (Bai et al., 2008) and is also triggered by Ol-qtls (Li et al., 2007). Thus 

we conclude that a basal level of ABA pathway is required for the process of callose 

deposition  that contributes to the resistance mediated by ol-2- and Ol-qtls.  

JA, ABA, and ET pathways in NIL-Ol-4 showed the same trend as in the basal 

defense, with the difference in the amplitude of induction (Fig. 1B-D). Accordingly, 

mutants for ET, JA, and ABA had no effect on Ol-4-mediated resistance (Table 2). 

However, there was a high induction in SA pathway in NIL-Ol-4 (Fig. 1A). We expect to 

have the Ol-4-mediated resistance compromised in crosses with SA-deficient lines, which 

needs further experimental confirmation. 

The model presented in Figure 3 illustrates the summary of our results in the context of 

known molecular events happening in plant response to pathogens. This model suggests 

that the same initial events happen in different interactions, compatible or incompatible, 

and the key factor to determine the fate of the interaction is the ability of the cell to 

enhance and amplify this initial event and recruit it in order to prevent pathogen 

penetration and/or development. Our model suggests that the SA pathway is the main 

phytohormone pathway for HR-associated resistance mediated by Ol-4 gene. For the 

resistance associated with DCD, mediated by Ol-1 and Ol-qtls, ethylene is essential. ABA  

and JA are crucial for the resistance mechanism relying on callose deposition, such as ol-

2-mediated resistance. In summary, the interaction between tomato and O. neolycopersici 

provides an interesting pathosystem in which the contribution of different phytohormone 

pathways to different forms of plant defense mechanisms is compared. 

 

 

Materials and Methods 

Plant materials 

Never ripe (Nr), epinastic (epi), and notabilis (not) tomato mutants and their backgrounds 

AC (Ailsa Craig), and VNF8, were received from Tomato Genetic Resource Center 
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(TGRC), University of California, Davis, California. The tomato defenseless1 (def1) 

mutant was obtained from Dr. C.A Ryan, Washington State University. Near-isogneic 

lines (NILs), NIL-Ol-1 (BC3S3), NIL-ol-2 (F4), NIL-Ol-4 (BC3S4), and NIL-Ol-qtls 

(BC2S3) (Bai et al., 2005), and their  background cultivar, Moneymaker (MM), were 

crossed to the mutant lines Nr, def1, not, epi, as well as the mutant backgrounds AC and 

VNF8. The NILs were used as maternal parent. By selfing the F1 progeny, F2 populations 

was produced and used in this study. 

 

Selection for epi mutant and Ol genes 

For crosses with def1, not, and Nr mutants that show no obvious phenotype, we randomly 

selected 16 plants (per F2 population) homozygous for Ol genes and tested them for 

response to PM. Selection of homozygous Ol genes were done based on the markers 

which were reported previously (Bai et al., 2003; Bai et al., 2005; Bai et al., 2008). The 

homozygous epi mutant shows a distinct phenotype which is already distinguishable in 

five days dark-grown seedlings (Fujino et al., 1989). This phenotype was the criteria for 

screening homozygous epi mutants in the F2 populations. Thus, for epi mutant F2 plants 

homozygous for both epi and Ol genes were selected.    

 

Disease assay 

Oidium neolycopersici spores were washed off of the infected tomato leaves and diluted 

to a concentration of 2.5×10
4
 spores per mL. The inoculum was evenly sprayed on one-

month-old plants. After 10, 12, 15, and 20 days, the progress of the pathogen 

development was recorded. If it was possible, the number of the pathogen colonies on the 

leaves was counted; otherwise the severity of pathogen sporulation was scored based on 0 

to 3 scale, 0 was complete resistant and 3 was complete susceptible.  

 

Marker genes for hormone signaling pathways 

Chitinase 9 (Barry et al., 2001) and LOXD (Heitz et al., 1997) and PR-2 (Beyer et al., 

2001) have been reported as marker genes for ET, JA, and SA pathways in tomato, 

respectively. We used the sequence of these genes for primer designing for qRT-PCR 

analysis. The Arabidopsis genes, rd22 is a responsive gene for ABA (Shinozaki et al., 
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2003). By performing TBLASTN in NCBI an orthologue of this gene in tomato 

(EU679376.1) was retrieved and used for primer designing. The primer sequences for 

these marker genes are listed in Table 1.  

 

qRT-PCR 

The same time-series of cDNAs which had been used previously for cDNA-AFLP 

profiling (Li et al., 2007) were used in this experiment. In brief, this time-series included 

cDNAs from MM, NIL-Ol-1, NIL-ol-2, NIL-Ol-4, and NIL-Ol-qtls derived from non-

inoculated (Mock) and PM-inoculated leaves (2
nd

 and 3
rd

) at 1, 3, 5, 7 and 9 dpi (for NIL-

Ol-qtls the time points were 1, 5 and 7 dpi). For each line, the cDNAs from Mock 

samples from different time-points were mixed and used as calibrator for qPCR analysis. 

Quantitative Real-time PCR was done by using iQ SYBR Green Supermix (Bio-Rad). 

The expression level of the marker genes was normalized to the expression level of 

Elongation factor 1-alpha (the internal control gene). The expression level in inoculated 

samples were calculated relative to the expression level in the calibrator (mock sample) 

based on 2
-∆∆Ct

 method (Livak and Schmittgen, 2001). The final results are presented as 

normalized fold change in gene expression. 
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Fig. S1. Phenotypic selection of epi mutant. The F2 populations derived from crossing the epi mutant line 

with different NILs as well as MM, were sown and kept in the dark. After 5 days, plants bearing epi 

mutation (right) were shorter and ticker comparing to the wild type (left).  
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Introduction 

An interdisciplinary field of research is the playground for innovations and exciting 

discoveries. As such, researches on plant-microbe interaction have been contributing 

greatly to our understanding of plant biology as well as to practical resistance breeding in 

minimizing the loss of crop products due to pathogens.  

In this thesis we used the tomato-powdery mildew pathosystem as a model to 

investigate some aspects of the plant response to biotrophic pathogens. Oidium 

neolycopersici is the causal agent of powdery mildew (PM) on tomato. The beauty of this 

pathosystem is that it includes different levels and various forms of resistance to PM. 

Tomato (Solanum lycopersicum) has been a model plant for biotic stress studies, its 

genome is sequenced, and enriched tomato transcriptome and metabolome databases are 

publicly available. More importantly, there are invaluable collections of plant materials in 

tomato such as wild species and different kinds of populations like isogenic lines. The 

bottleneck in this pathosystem is the pathogen, which is an obligate pathogen and 

therefore, it is not easy to perform genetic studies on it. Sequencing of the genome of this 

pathogen may overcome this drawback to some extent.  

In the previous chapters of this thesis, I described different tomato resistance 

mechanisms triggered by different resistance genes in the tomato-PM pathosystem. Here 

I discuss our findings in the context of the consensus knowledge in the field of plant-

microbe interaction which is relevant to this thesis.  

 

Plant resistance based on innate immunity 

Innate immunity responses start with the recognition of pathogens by pattern or pathogen 

recognition receptors (PRRs), which are localized in the plasma membrane or in the 

cytosol (Ausubel, 2005). One group of PRRs, which are called PAMP-receptors, 

perceives PAMPs (pathogen-associated molecular patterns) that are common molecules 

of microbes. The immunity responses triggered upon ligand/receptor recognition is called 

PAMP-triggered immunity (PTI) (Jones and Dangl, 2006). The second group of PRRs, 

which are called resistance proteins (R proteins), recognizes pathogen effectors that, in 

contrast to PAMPs, are more specialized molecules. This kind of recognition triggers 

immunity responses which is called effector-triggered immunity (ETI) (Jones and Dangl, 
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2006). Regardless the kind of PRRs, similar events occur after the perception/recognition 

of the pathogen, and the main difference is the magnitude of these events, which depends 

on the type of PRR (Dodds and Rathjen, 2010). 

 

Ol-4 and Ol-6 trigger ETI in tomato in response to PM 

One of the interesting characteristics of R genes is that they appear in the plant genome as 

gene clusters (Hulbert et al., 2001). The clustered arrangement of these genes may be a 

mechanism to increase the chance of recombination or gene conversion in order to 

generate new recognition specificities (Hulbert et al., 2001). The Mi-1 gene cluster spans 

about 400 Kb of the short arm of tomato chromosome 6, and consists of seven 

homologues encoding NBS-LRR proteins (Seah et al., 2007). It has been shown that the 

Mi-1 gene confers resistance to nematodes, aphids and whiteflies (Kaloshian et al., 1998). 

In Chapter 2 of this thesis we showed that tomato Ol-4 and Ol-6 resistance genes are Mi-

1 homologues. The Mi-1 gene cluster in NIL-Ol-4 and NIL-Ol-6 confers resistance to not 

only PM, but also to nematodes and to some extent, to aphids. Ol-4 and Ol-6 confer race-

specific resistance to PM by triggering hypersensitive response (HR) (Bai et al., 2005). 

Race-specificity and occurrence of HR are two hallmarks of ETI (Jones and Dangl, 

2006). 

There is a possibility that the same Mi-1 homologue confers resistance to PM, 

nematodes, and aphids. If it is true, then an interesting question is: how is the Mi-1 gene 

able to recognize different pathogens? One possibility could be explained based on the 

guard hypothesis (Dangl and Jones, 2001); Mi-1 protein guards the same host target of 

different pathogens‟ effectors. It has been shown that the RRS1 gene in Arabidopsis 

confers resistance to two different pathgoens (Narusaka et al., 2009). Also the Pto gene in 

tomato (Kim et al., 2002) and the Rpm1 gene in Arabidopsis (Bisgrove et al., 1994) can 

recognize multiple effectors from the same pathogen. 

 Alternatively, it is possible that different Mi-1 hmologues in the Mi-1 gene cluster 

confer resistance to different pathogens. It would imply that R gene clusters function as 

haplotype of resistance genes against diferent pahtogens. There are instances supporting 

this possibility. For example, in the Rx/Gpa2 gene cluster in potato, two homologues 

confer resistance to two distinct pathogens, a virus and a nematode (van der Vossen et al., 
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2000). Changes in the LRR domain of R genes has been proposed to modify their 

recognition specificity (Staskawicz et al., 1995); accordingly the main difference in the 

coding sequence of Mi-1 gene homologues is in the LRR domain (Seah et al., 2007).  

Cloning of Ol-4 genes will clarify which one of these two scenarios is true. We have 

made a library of the expressed Mi-1 homologues in NIL-Ol-4 and sequenced a part of 

the LRR domain of these homologues. Result suggested that there are about 16 different 

Mi-1 homologues expressed in NIL-Ol-4 with different abundance (Fig. 1). To pinpoint 

which one is the Ol-4 gene, complementation experiments are required. It would be 

interesting to have individual Mi-1 homologues transformed into Solanum lycopersicum 

cv. Moneymaker (MM) which is susceptible to PM, nematodes and aphids, in order to 

identify the Mi -1 homologue(s) in NIL-Ol-4 conferring resistance to different pathogens.  

 

Molecular events after recognition of the pathogen 

As mentioned above, PTI and ETI trigger similar molecular events including calcium ion 

influx, oxidative burst, activation of mitogen-activated protein kinase cascades, 

reprogramming of gene expression, reinforcing cell wall at pathogen attempt sites, and 

programmed cell death (PCD) (Dodds and Rathjen, 2010). Ion influx and oxidative burst 

are very early responses which occur in seconds to minutes after pathogen perception and 

lead to intermediate responses (minutes to hours, including MAPK/CDPK activation, 

ethylene production, stomatal closure, and transcriptional reprogramming), followed by 

late responses (hours to days; e.g., salicylic acid accumulation, callose deposition) (Zipfel 

and Robatzek, 2010). Here, I discuss several of these molecular events in relation to our 

results presented in other chapters.  

 

 Oxidative burst 

One of the first events occurs upon pathogen attack is the accumulation of reactive 

oxygen species (ROS) which is known as oxidative burst (OB) (Lamb and Dixon, 1997). 

The apoplastic OB occurs rapidly due to the function of membrane enzymes, NADPH 

oxidases, peroxidases, amine oxidases, and oxalate oxidases (Hückelhoven, 2007). 

NADPH oxidases are regulated by calcium ion, and in a positive feedback loop, NADPH 

oxidases increase ROS in outer membrane and thereby induce opening of plasma 
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membrane channels for calcium influx (Hückelhoven, 2007). In the compatible 

interactions there is a weak induction of OB, however, in incompatible interactions a 

second OB with higher magnitude occur (Lamb and Dixon, 1997). What is the function 

of the OB? The ROS produced in OB are antimicrobial agents, and also H2O2 contributes 

to cell wall fortification, induces HR, and acts as a diffusible signal for induction of 

systemic defense response (Lamb and Dixon, 1997; Torres et al., 2006). In Chapter 5 we 

suggested that the magnitude of OB is a determinant factor in tomato response to PM.  

The role of H2O2 in the cell wall fortification is both in cross-linking of the cell wall 

proteins and also in serving as a substrate in cell wall apposition (papillae formation) 

(Hückelhoven, 2007). A very good example of cell wall apposition in our pathosystem 

has been observed in ol-2-mediated resistance (Bai et al., 2008). This gene encode a 

trasmembrane protein, homologous to barley MLO protein, which has been shown to be 

interacting with calmadulin proteins (Stein and Somerville, 2002) as well as 

heterotrimeric G proteins (Lorek et al., 2010). In Chapter 5, we suggested that these 

interactions enable ol-2 protein to trigger the second OB, resulting in higher 

concentration of H2O2 which could be used for cell wall apposition in an ABA-dependent 

manner. We proposed that the role of MLO in limiting PCD in epidermal cells is also 

retained in ol-2, and therefore, this protein can negatively regulate the PCD upon OB.  

 

 Plant hormones in plant immunity 

An important part of downstream pathways in immunity response are plant hormones 

signaling pathways. Recent evidence suggest that SA, JA, ET, ABA, GA, cytokinins, 

auxin and brassinosteroids signaling pathways play a role in plant immunity (Bari and 

Jones, 2009; Grant and Jones, 2009).  

The importance of plant hormones in plant immunity encouraged us to investigate the 

involvement of the pathway of a subset of these hormones in tomato response to PM.  

Plant hormones involvement in tomato response to pathogens has been studied mostly in 

the basal defense in the absence of resistance genes (Diaz et al., 2002) (Thaler et al., 

2004; Achuo et al., 2006). In our study (Chapter 5), we compared the hormonal 
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Fig.1. Different Mi-1 homologues expressed in near-isogenic line carrying Ol-4 (NIL-Ol-4). The full-length 

cDNA of the Mi-1 homologues were amplified and cloned. A fragment (500 bp) of the LRR domain of 92 

clones was sequenced. Based on the sequences, the clones were grouped into 16 groups (G). The height of 

the bars represents the number of clones out of 92 clones; reflecting the transcript abundance of each group 

of Mi-1 homologues.  

 

pathways in different kinds of tomato-PM interactions governed by different resistance 

genes, including HR, delayed cell death (DCD), cell wall apposition. Results showed that 

SA pathway is induced in the presence of Ol-4, which mediates HR-associated response. 

ET promotes DCD in the presence of Ol-1 and Ol-qtls. ABA is required for the resistance 

conferred by ol-2 and Ol-qtls, probably in association with cell wall apposition. JA is also 

required for resistance mediated by ol-2, probably because of its role in regulating PCD. 

However in Arabidopsis it has been sown that JA does not play a role in mlo-based 

resistance (Consonni et al., 2006), which indicates that the molecular mechanism 

underlying the resistance mediated by MLO homologues in tomato and Arabidopsis are 

not completely the same.  

Auxin is considered as a promoting factor for disease establishment (Grant and Jones, 

2009). In Chapter 3 we discussed the possibility of the involvement of auxin in tomato 

response to nematodes. In the Mi-1 gene cluster there are genes similar to transport 

inhibitor 1 (TIR1), which is an auxin receptor and plays pivotal role in triggering auxin 
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signaling pathways (Dharmasiri et al., 2005; Kepinski and Leyser, 2005). It has been 

shown that this gene is important for pathogenecity of gall-producer pathogen 

Pseudomonas syringae in Arabidopsis (Navarro et al., 2006). We showed that in roots of 

the nematode-resistant tomatoes, TIR-like transcript abundance is lower than that in 

nematode-susceptible ones. We proposed that low level of TIR-like proteins probably 

prevent nematodes to produce gall (upon local accumulation of auxin), and therefore, 

plants will be resistant to nematodes. Further experiments, like testing the response of tir1 

Arabidopsis mutant to nematodes, are required to test this possibility.  

 

 Programmed cell death  

PCD is one the common immunity responses, both in PTI and ETI. Two main kinds of 

PCD have been described in plant cells, apoptosis-like PCD (AL-PCD) and autophagic 

PCD (Love et al., 2008). ETI triggers such huge changes in the cell that normally lead to 

HR, a form of apoptosis-like PCD. In Chapter 4 we compared these two forms of PCD 

in our pathosystem. The Ol-4 gene which encodes an NBS-LRR protein, mediates HR in 

response to PM infection, contrasting Ol-1 which triggers a slow-developing PCD 

resembling autophagic PCD. Fine-mapping of the Ol-1 gene narrowed down the 

candidate genes for Ol-1 to about 10 genes, of which, none is an R gene (Chapter 4). 

Among these genes, a homeodomain-lecine zipper (HD-Zip) may play a role in 

regulating the autophagic PCD that is associated with the resistance conferred by the Ol-1 

gene. This HD-zip belongs to the class II of HD-Zip transcription factors which have the 

CPSCE motif, located downstream of the leucine zipper motif and is involved in the 

perception of cellular redox status (Chan et al., 1998; Tron et al., 2002; Ariel et al., 2007). 

Notably, NPR1 protein, which is the pivotal protein in SA signaling pathway, is also 

activated upon changes in the redox status in the cell (Mou et al., 2003) and thereafter 

move to the nucleus to bind to the TGA transcription factors and turn on the expression 

of pathogenesis-related genes (Després et al., 2003). Interestingly, a class II HD-Zip 

transcription factor, NbHB1, was shown to be a positive regulator of pathogen-induced 

cell death in Nicotiana via JA signaling pathway (Yoon et al., 2009). Another HD-Zip 

transcription factor, which is located on the tomato chromosome 4, is involved in limiting 

the PCD in response to pathogen in tomato and its silencing resulted in oxidative burst-
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mediated cell death (Mayda et al., 1999). We speculate that the HD-Zip transcription 

factor in the Ol-1 interval plays a role in regulating the autophagic PCD and thereby, 

conferring resistance to PM. 

   

RNA silencing in plant immunity response 

One of the milestones in the field of plant-microbe interaction was set in 2006, when 

Jones‟ lab demonstrated that a mircoRNA (miRNA) plays an important role in response 

of Arabidopsis to Pseudomonas syringae (Navarro et al., 2006). Since then, more 

evidence has accumulated showing that different groups of small RNAs (sRNAs) are 

involved in Arabidopsis immunity responses (Katiyar-Agarwal et al., 2006; Navarro et 

al., 2006; Pavet et al., 2006; Agorio and Vera, 2007; Katiyar-Agarwal et al., 2007; Li et 

al., 2010). 

In our pathosystem we also found footprints of RNA silencing in response to PM. 

From a microarray dataset (unpublished data), we found an interesting gene which has 

been highly upregulated in the compatible interaction compared to incompatible 

interactions. This gene encodes a putative suppressor of gene silencing. The orthologue 

of this gene in tobaco has been shown to be induced in response to tobacco mosaic virus 

and supppresses the gene silencing machinery of the plant, the resistance mechanism 

against viruses (Anandalakshmi et al., 2000). We verified the expression of this gene in 

NILs carrying different Ol genes as well as in MM. Results clearly showed that this gene 

is induced drastically in MM (compatible interaction) in the early time-points (Fig. 2). 

This suggests that probably PM interrupts the tomato RNA silencing machinery in MM in 

order to establish a compatible interaction. Recent report on the ability of barley to 

silence barley PM genes, likely inside the pathogen (Nowara et al., 2010), strongly 

supports this speculation. It would be interesting to monitor small RNAs populations in 

the epidermal cells of tomato infected with PM. 

 It has been shown that sRNAs originated from the RPM1 gene cluster in 

Arabidopsis, play a role in regulating the transcript level of R genes in this cluster (Yi and 

Richards, 2007). In Chapter 3 also we proposed similar situation for the Mi-1 gene 

cluster. We suggested that TIR-like genes in Mi-1 cluster might have role a in regulating 
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the transcription and/or translation of Mi-1 homologues. A good starting point to test this 

possibility is to search for cleaved mRNA of the Mi-1 homologues. 
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Fig. 2. The expression pattern of a putative gene silencing suppressor in different tomato interactions with 

powdery mildew (PM). Second and third leaves were sampled at 1, 3, 5, 7, and 9 days post inoculation 

(dpi) from PM-inoculated and PM-non-inoculated (Mock sample) plants of MM, NIL-Ol-1, NIL-ol-2, and 

NIL-Ol-4. RNA extracted from these leaf samples were used for monitoring the gene expression. Error bars 

show standard deviation.  

 

Systemic acquired resistance  

After the immune response is triggered, it will be extended to other parts of the plant. 

About half a century ago, it was observed that pathogen infected plants are less 

susceptible to subsequent attacks by a broad spectra of pathogens (Ross, 1961). This form 

of induced resistance is called systemic acquired resistance (SAR). SAR can be activated 

in many plant species by those pathogens that cause necrosis, either as part of HR or as a 

symptom of disease (Durrant and Dong, 2004). The resistance conferred upon SAR 

response is effective against a broad-spectrum of pathogens including viruses, bacteria, 

fungi, and oomycetes (Durrant and Dong, 2004). Plants expressing SAR are „primed‟ to 
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respond to subsequent infections (Hammerschmidt, 2009) resembling a kind of 

immunological memory (Parker, 2009) which may last for the lifetime of the plant 

(Durrant and Dong, 2004).  

 

Bridging the lab to the farm: crop breeding for resistance to pathogens 

Translation of the scientific achievements into useful technology for daily life is state of 

the art. Producing crops with less vulnerability to pathogens is the aim of translating the 

findings in plant-microbe interaction research.  

Different strategies for crop breeding have been summarized in comprehensive 

reviews (Gurr and Rushton, 2005; Stuthman et al., 2007; Gust et al., 2010). In this 

chapter I divide these strategies into two groups: 

 strategies relying on enhancing indirect defense mechanisms 

 strategies based on enhancing direct defense mechanisms; the plant innate 

immune responses 

 

Breeding strategies based on indirect defense 

Phenological traits of the crop could help it to avoid or escape the pathogen. Early 

maturation results in completing the life cycle before the epidemic of the pathogen. A 

good practical example for this kind of resistance was the decline in the wheat stem rust 

damage by using earlier maturing winter wheat cultivars in the 1930s and 1940s 

(Peterson, 2001).  

Some morphological characteristics, like hair or waxes, on the leaf surface change 

the hydrophobicity of the leaf surface, and therefore repel water which is required for 

pathogen to germinate and grow (Stuthman et al., 2007). It has been demonstrated that 

interference with leaf topography results in the reductions in pathogen infection (Walters, 

2006). Also evidence implicated both chemical and topographical signals in appressorium 

induction by wheat stem rust (Collins et al., 2001). Another interesting example is the 

resistance of rice to Magnaporthe grisea, the rice blast pathogen. A high level of silicon 

in the soil leads to increasing the silicon uptake by plant and deposition in the epidermal 

cells, which makes it more difficult for the pathogen to penetrate (Winslow et al., 1997). 
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It would be of interest to develop rice cultivars with higher silicon uptake efficiency to 

increase the resistance level to blast (Stuthman et al., 2007).  

As mentioned in Chapter 1, plants produce a diverse range of secondary metabolites 

with antimicrobial activity (Dixon, 2001). Phytoanticipins are those secondary 

metabolites that are produced independently of the presence of potential pathogens 

(VanEtten et al., 1994). It is expected to have higher level of broad spectrum pathogen 

resistance by selecting for higher amount of secondary metabolites. 

Quantitative disease resistance, which is referred to as partial resistance sometime, is 

controlled by quantitative trait loci (QTLs). It has been hypothesized that the biological 

function of the genes underlying QTLs for disease resistance could be in regulating 

morphology and developmental traits, or in production of components of chemical 

warfare, or in enhancing the basal defense, or encoding weak forms of R genes (Poland et 

al., 2009). There are QTLs for disease resistance which have been mapped on the same 

position on the linkage maps as R genes, leading to the hypothesis that weak form of R 

genes are controlling this QTLs, but up to now none of the cloned QTLs showed 

similarity to any R gene (St Clair, 2010). Therefore, most probably QTLs for disease 

resistance exerting their effect on enhancing resistance to pathogens by controlling the 

traits indirectly influence disease resistance. Accumulation of these QTLs is a marvelous 

strategy for breeding for disease resistance. Breeders, then need to select for other 

favorite traits, such as for morphology and quality, among the plants carrying these 

QTLs.  

 

Breeding strategies based on plant innate immunity 

Plant innate immunity is a process of pathogen recognition and then triggering signaling 

pathways that lead to defense responses. Accordingly, strategies to manipulate both 

recognition and downstream signaling have been suggested for breeding crops for 

resistance to pathogen (Gust et al., 2010).  

Enhancing the pathogen recognition process: PAMP-receptors are the molecules 

to recognize microbes non-specifically, thus it sounds straightforward to think of 

enhancing of the ability of these receptors in recognition toward broad spectrum 

resistance to pathogens. One strategy following this line is to design antibodies against 
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PAMPs and express it in crops (Gust et al., 2010). The effectiveness of such antibodies 

has been demonstrated in Arabidopsis and wheat against Fusarium (Peschen et al., 2004; 

Li et al., 2008). Also Overexpression of OsBAK1, a PTI-associated protein, enhanced 

immunity in rice (Li et al., 2009). Alternatively it has been shown that engineering of the 

PAMP-receptors confer broad spectrum resistance in crops (Lacombe et al., 2010). EFR 

is a PAMP-receptor in the Brassicacae plant family which is not present in solanaceous 

plants, and heterologous expression of this gene in solanaceaous plants, tomato and 

tobacco, enhanced resistance to diverse pathogens (Lacombe et al., 2010). Field trials are 

needed to check if there is any fitness cost for the manipulation of the PAMP-receptors. 

One of the drawbacks of this strategy is that the engineered plants may become host to 

those pathogens that they were nonhost before. For example, there are pathogens for 

Arabidopsis which are able to suppress PTI response by manipulating EFR mediated 

pathways in this plant. Presence of EFR in tomato, for instance, may enable those 

pathogens to interfere with immune system of tomato via manipulation of ERF. There 

might be a risk that tomato expressing ERF from Arabidopsis becomes a host for some of 

pathogens from Arabidopsis, which normally tomato is nonhost for. Lacombe and 

associates (2010) showed that engineered plants are resistant to several pathogens, but 

they the range of susceptibility of those plants also needs to be checked.  

The ability of plant to recognize the pathogen‟s effectors also could be enhanced. 

One might envisage the production of antibodies against pathogen effectors in order to 

block this molecules once they enter the cell. Or even further, one might design catalytic 

antibodies for the effectors to recognize and degrade the effectors.  

More naturally strategy is to use R genes for this aim. Adoption of R gene to increase 

resistance to pathogen was one of the first efforts in crop breeding for disease resistance. 

The problem with this strategy is that R genes are normally race-specific and thus, the 

resistance mediated by these genes is not durable. Pyramiding R genes has been proposed 

as a method for increase durability of R gene mediated resistance; however in practice the 

success rate of this method was low (Pink, 2002). One of the main reason for this failure 

is the fitness cost which is associated with R genes function (Tian et al., 2003). It has 

been shown that defense responses compromise the plant growth (Todesco et al., 2010). 
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Therefore, it is expected that high level of defense response associated with activity of 

several R genes, influence the other aspects of plant life.  

An alternative strategy is to use multiline cultivars; cultivars which are composed of 

individual lines that are phenotypically similar but are different in genes for race-specific 

resistance to an important pathogen (Stuthman et al., 2007).  

Enhancing the post-recognition processes: more efforts have been devoted to 

enhance the events that occurs after recognition of the pathogens. Many different genes 

have been tried. For example for resistance to fungal pathogens genes encoding for toxin 

detoxifiers, PR proteins, chitinase, oxalate oxidase, cell death regulators, antimicrobial 

peptides and metabolites have been used (Collinge et al., 2010). Ol-1 gene (Chapter 4) is 

a good target for this kind of strategies. This gene, as suggested by the function of the 

putative candidate genes for Ol-1, acts in the post-recognition pathway and confer race-

non-specific resistance. Ol-1 enhances basal defense by triggering dell death, therefore, it 

is expected that introgression of this gene into elite lines will enhance the level of field 

resistance. The same holds true for Ol-qtls which molecularly showed similar response to 

Ol-1 (Chapter 5). 

SAR is a natural mechanism for conferring broad spectrum and long–lasting 

resistance. Efforts to enhance SAR in the field by using SA analog chemicals have not 

been successful (Beckers and Conrath, 2007; Gust et al., 2010). However, recent 

discoveries in the mechanisms of SAR induction may provide new opportunities for 

genetic engineering of the crops for enhanced level of SAR (Gust et al., 2010). 

Alternatively, it would be valuable to assess the genetic diversity for SAR response, if 

there are genetic resources could be used in classic crop breeding programs.  

In summary, two general strategies are used for crop breeding for disease resistance, 

breeding for traits which indirectly enhance resistance or breeding for enhanced innate 

immune responses. Breeding strategies based on the accumulating partial resistance are 

probably the best practical strategy from the first group. Methods based on manipulation 

of innate immune system are tricky because of the complexity of this system and fitness 

costs associated with activation of this system. Using of multilines is one of the safest 

strategies from this category which have been used successfully. Enhancing the immune 

response pathways is also promising. What is required here is to find suitable components 
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of these pathways, to enhance their function only at the time and tissue which is needed. 

Enhancing of the plant capacity to recognize pathogens needs deeper understanding of 

the plant immune system which future researches will provide us.  

Both conventional plant breeding and genetic engineering methods are used 

nowadays. In most cases genetic engineering has the  advantage that it is targeted, and 

can be accomplished in a shorter time. But for instance, to introduce QTLs for disease 

resistance, conventional methods based on crossing, is the better strategy. 

The sad story in our world is that while people like Norman Borlauge, who devoted 

his life to fight against food shortage in the world, were shouting out the necessity of 

adoption of genetic engineering in food production, decision makers are some young 

well-dressed law-school graduated people, who never knew what is the meaning of food 

shortage. 
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Summary 

 

Tomato, Solanum lycopersicum, is a host for Oidium neolycopersici, the cause of 

powdery mildew (PM). Though cultivated tomatoes are susceptible to PM, resistance is 

reported in wild Solanum species. By screening wild tomato species, nine loci conferring 

resistance to PM have been identified, namely Ol-1, ol-2, Ol-3, Ol-4, Ol-5, Ol-6, Ol-qtl1, 

Ol-qtl2, and Ol-qtl3. These genes are located on different chromosomes and mediate 

different levels of resistance by different mechanisms. In this thesis we mainly focused 

on the Ol genes located on chromosome 6 (Ol-1, Ol-4, Ol-5 and Ol-6) with the aim to 

fine-map and eventually clone these genes. In addition, we studied the contribution of 

different phytohormone pathways to the resistance mediated by Ol-1, ol-2, Ol-4 and Ol-

qtls.  

 We first focused on the Ol genes on the short arm of tomato chromosome 6, Ol-4 

originating from S. peruvianum LA2172 and Ol-6 with unknown origin (Chapter 2). We 

showed that Ol-4 is a homologue of the Mi-1 gene. Interestingly, Mi-1 homologues, 

which are present in the Mi-1 gene cluster in the near-isogenic line carrying Ol-4 (NIL-

Ol-4), confer resistance to tomato PM (O. neolycopersici), nematodes (Meloidogyne spp.) 

and aphids (Macrosiphum euphorbiae). It is intriguing to investigate whether the 

resistance to different pathogens is conferred by the same Mi-1 homologue or by different 

Mi-1 homologues. Also, we showed that Ol-6  is a homologue of the Mi-1 gene. The 

resistance response to PM, nematodes and aphids is relatively weaker in NIL-Ol-6 

compared to that in NIL-Ol-4, suggesting that Ol-4 and Ol-6 are different homologues of 

Mi-1 genes or different alleles of the same Mi-1 homologue. 

 On the short arm of tomato chromosome 6, the Mi-1 gene cluster is about 400 Kb 

in size and consists of several other genes besides the Mi-1 homologues. There are 

transport inhibitor responses-like (TIR-like) genes embedded in this cluster. Interestingly, 

the copy  number of these TIR-like genes in the nematode-resistant tomatoes is less than 

that in nematode-susceptible ones (Chapter 3). Furthermore, lower expression of these 

TIR-like genes was observed in roots, but not in leaves, of nematode-resistant plants 

compared to nematode-susceptible plants. These observations prompted us to suggest and 

to discuss two different scenarios explaining how TIR-like genes could play a role in the 
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plant response to root-knot nematodes. TIR1 is the pivotal element in auxin signaling and 

it has been shown that nematodes can manipulate auxin efflux in plant root cells to 

accumulate auxin locally. Thus, we speculated that auxin accumulation, in the presence 

of high amounts of TIR-like proteins, triggers auxin signaling pathways and allows the 

nematodes to create feeding sites on the roots of nematode-susceptible tomato plants. The 

other possibility that we discussed is the potential role of TIR-like genes in regulating the 

expression (and translation) of the Mi-1 gene homologues. We proposed that TIR-like 

genes might be a source of small RNAs for regulating the transcript level of Mi-1 

homologues.  

 Then, we studied the Ol-1 and Ol-5, which are located on the long arm of 

chromosome 6, and originated from different S. habrochaites accessions. Ol-1 is closely 

linked to Ol-5. With fine-mapping, we narrowed down this locus to a 73 Kb interval 

which contains at least 10 putative genes. Interestingly we observed an interaction 

between chromosome regions harboring Ol-1 and Ol-5, indicating that the interaction 

between Ol-1 and Ol-5 is needed to confer PM resistance. Both Ol-1 and Ol-5 trigger 

delayed cell death that is distinguishable from hypersensitive response (HR), the hallmark 

of R gene response to biotrophic pathogens. The delayed cell death associated with Ol-1 

and Ol-5 resembles the autophagic PCD. We observed that Ol-1 and Ol-5 were both 

required for on-time and effective cell death to stop PM. If one of these two genes was 

not present, cell deathcould not happen or not be effective enough to stop pathogen 

growth. 

 Finally, we investigated the involvement of phytohormone pathways in PM 

resistance conferred by the Ol genes, including Ol-1, ol-2, Ol-4 and Ol-qtls (Chapter 5). 

There is overwhelming evidence implicating plant hormones in plant responses to 

pathogens. In this experiment we, in addition to Ol-1 and Ol-4, included other resistance 

loci for PM resistance in tomato. The first one is ol-2, a homologue of the barley mlo 

gene and derived from S. lycopersicum var cerasiforme LA1230. This gene confers 

resistance to PM by triggering callose deposition and, thereby, cell wall fortification. The 

other is Ol-qtls, a combination of three QTLs for PM resistance associated with both 

delayed cell deathand callose deposition. NILs carrying Ol-1, ol-2, Ol-4 and Ol-qtls, plus 

the background of these NILs (S. lycopersicum cv Moneymaker, MM), provided us the 
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possibility to compare the involvement of hormonal pathways in different kinds of 

tomato responses. These responses include basal defense, cell wall fortification, delayed 

cell death, and HR. We quantified the expression of marker genes for the pathways of 

salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and ethylene (ET) over a 

time-course after inoculation with PM. As a complementary approach, we crossed our 

NILs with tomato mutants for JA, ET and ABA. Our results suggested that Ol-4-mediated 

resistance probably relies on the SA pathway. Ol-1 and Ol-qtls require ET to promote the 

delayed cell death for PM resistance. JA deficiency can compromise resistance mediated 

by ol-2. Our results also suggested that ABA is required for those interactions demanding 

callose deposition, resistance associated with ol-2 and Ol-qtls. These results present a 

nice example of the involvement of  different phytohormones in different phases of 

resistance against PM in tomato. Altogether, this thesis describes different tomato 

resistance mechanisms triggered by different resistance genes in the same pathosystem, 

underscoring the plant ability to adopt diverse molecular mechanisms to defense itself 

against intruders. 
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Samenvatting 

 
Tomaat, Solanum lycopersicum, is een gastheer voor de schimmel  Oidium 

neolycopersici, de veroorzaker van de ziekte „echte meeldauw‟. Alhoewel al de 

gecultiveerde tomaten gevoelig zijn voor deze ziekte zijn er wilde soorten die resistent 

zijn. Screening van verschillende wilde soorten heeft geleidt tot de identificatie van 

negen loci die resistentie tegen meeldauw geven. Dit zijn zowel hoofdgenen als 

zogenaamde quantitatieve genen (QTL), namelijk Ol-1, ol-2, Ol-3, Ol-4, Ol-5, Ol-6, 

Ol-qtl1, Ol-qtl2 en Ol-qtl3. Deze genen liggen op verschillende chromosomen en 

geven verschillende niveaus van resistentie. In dit proefschrift heeft het onderzoek 

zich vooral gericht op de genen gelegen op chromosoom 6 (Ol-1, Ol-4, Ol-5 en Ol-6) 

met als doel om hun werking te ontrafelen, maar ook om ze op termijn te isoleren. 

Daarnaast zijn er experimenten uitgevoerd om de bijdrage van de verschillende 

planten hormoon routes bij de resistentie veroorzaakt door Ol-1, ol-2, Ol-4 en Ol-qtls 

te bepalen. In hoofdstuk 2 is gekeken naar resistentie Ol-4 afkomstig van S. 

peruvianum LA2172 en Ol-6 met onbekende herkomst. Uit dit onderzoek bleek dat 

Ol-4 een homoloog is van het Mi-1 gen. Dit gen bevindt zich in een cluster van Mi-1 

homologen in de tomatenlijn NIL-Ol-4 die resistentie vertoont tegen meerdere 

pathogenen waaronder meeldauw (O. neolycopersici), nematoden (Meloidogyne spp.) 

en luizen (Macrosiphum euphorbiae). Doel was om aan te tonen of de resistentie 

tegen de verschillende pathogenen wordt veroorzaakt door hetzelfde gen of 

verschillende genen uit het Mi-1 cluster. Ook Ol-6 bleek een homoloog van het Mi-1 

gen te zijn alhoewel het niveau van resistentie minder was in tomatenlijn NIL-Ol-6 

vergeleken met dat van NIL-Ol-4, hetgeen suggereert dat Ol-4 en Ol-6 verschillende  

homologen zijn van het Mi-1 gen of verschillende allelen van hetzelfde Mi-1 

homoloog. 

Het Mi-1 gen cluster, gelegen op de korte arm van chromosoom 6, is ongeveer 400 Kb 

groot en bevat naast de Mi-1 homologen verschillende andere genen. Er bevinden zich 

zogenaamde transport inhibitor responses-like (TIR-like) genen in dit cluster, 

waarvan het interessant is om te zien dat in de nematoden resistente tomatenlijnen het 

aantal kopieën van deze TIR-like genen lager is dan in de nematoden vatbare lijnen 

(Hoofdstuk 3). Daarnaast bleek dat de expressie van deze genen in wortels (het 

weefsel waar nematoden op aangrijpen) lager was dan in bladeren. Deze observaties 

kunnen duiden op een mogelijke rol van deze genen in de resistentie tegen nematoden 
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via auxine signaal transductie. Aangezien het aangetoond is dat nematoden de auxine 

efflux in wortelcellen van planten kunnen beïnvloeden om een hogere lokale auxine 

concentratie te bewerkstelligen zou een auxine verhoging in aanwezigheid van grote 

hoeveelheden TIR-like eiwitten ertoe kunnen leiden dat dit de auxine signaal 

transductie route activeert waardoor de nematoden in staat zijn om zogenaamde 

„feeding sites‟ te creëren op de wortels van nematoden vatbare tomatenlijnen. Het zou 

ook kunnen zijn dat de TIR-like genen een rol spelen in de regulatie van de expressie 

(en de vertaling in eiwit) van Mi-1 gen homologen via siRNAs. In hoofdstuk 4 zijn de 

uitkomsten van experimenten beschreven die tot doel hadden om de resistentie genen 

Ol-1 en Ol-5, gelegen op de lange arm van chromosoom 6, en afkomstig van 

verschillende S. habrochaites herkomsten nader te karakteriseren. Door middel van 

fijnkartering kon het interval waarin dit locus zich bevindt verkleind worden tot een 

gebied van 73 Kb met zeker 10 mogelijke genen. Er bleek een interactie te zijn tussen 

de regio‟s die de Ol-1 en Ol-5 loci bevatten die nodig bleek om een goed niveau van 

resistentie tegen echte meeldauw te geven. Zowel Ol-1 als Ol-5 veroorzaken 

vertraagde celdood hetgeen duidelijk onderscheidbaar is van de „hypersensitive 

response (HR)‟, de snelle dood van één of een beperkt aantal cellen als reactie van de 

resistentiegenen van de plant in antwoord op de aanval door (biotrofe) pathogenen. De 

vertraagde celdood die geassocieerd is met Ol-1 en Ol-5 lijkt heel sterk op de 

zogenaamde „autophagic Programmed Cell Death‟. Het bleek dat Ol-1 en Ol-5 beiden 

nodig zijn voor een tijdige en effectieve celdood om de echte meeldauw infectie te 

voorkomen. Indien één van beide genen niet aanwezig was trad er geen of 

onvoldoende celdood op om de groei van de pathogeen effectief te stoppen.  

Tenslotte is in hoofdstuk 5 de betrokkenheid van verschillende plantenhormoon routes 

bij de resistenties gegeven door Ol-1, ol-2, Ol-4 en Ol-qtls bestudeerd.  Er zijn zeer 

veel aanwijzingen dat plantenhormonen een rol spelen bij resistentie tegen 

pathogenen. ol-2, een homoloog van het gerst mlo gen en afkomstig uit S. 

lycopersicum var cerasiforme LA1230 geeft resistentie tegen echte meeldauw door 

callose vorming hetgeen de celwand extra versterkt waardoor de pathogeen moeilijker 

kan binnendringen in de cel. De Ol-qtls resistentie wordt veroorzaakt door een 

combinatie van drie QTLs voor meeldauw die aanleiding geven tot celdood en callose 

vorming. Tomatenlijnen met Ol-1, ol-2, Ol-4 en Ol-qtls, plus de controle lijn voor 

deze lijnen (S. lycopersicum cv Moneymaker, MM), gaven de mogelijkheid om de 

betrokkenheid van de verschillende hormoon syntheseroutes in de verschillende 
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resistenties met elkaar te vergelijken. De verschillende responses van de tomatenlijnen 

op infectie met de pathogeen vielen uiteen in basale verdediging, celwand versterking, 

vertraagde celdood en HR. De expressie van merker genen voor de verschillende 

hormoon synthese routes werden bepaald [salicyl zuur (SA), jasmonzuur (JA), 

abscisinezuur (ABA), en ethyleen (ET)] in een tijdspad van verschilende uren na 

infectie met echte meeldauw. Daarnaast werden de verschillende tomaten 

resistentielijnen gekruist met mutanten voor de JA, ET en ABA routes. De resultaten 

laten zien dat de op Ol-4-gebaseerde resistentie leunt op de SA signalerings route. Ol-

1 en Ol-qtls hebben ET nodig om de vertraagde celdood te bevorderen om meeldauw 

resistentie te verkrijgen. Gebrek aan JA kan de resistentie veroorzaakt door ol-2 

compromitteren. De resultaten laten ook zien dat ABA nodig is bij die resistentie die 

werken middles callose vorming, zoals bij ol-2 en Ol-qtls. Al deze resultaten tonen de 

grote flexibiliteit die een plantensoort kan hebben  om zich tegen een en dezelfde 

pathogeen (echte meeldauw) op veel verschillende en vooral effectieve manieren te 

wapenen.   
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