Aanvullend onderzoek mineralen concentraten 2009-2010 op bouwland en grasland

Onderzoek Mineralen concentraten in consumptie aardappelen en snijmaïs in ZO – NL 2010

Ing. H. Verstegen
Dit projectrapport geeft de resultaten weer van het onderzoek dat het Praktijkonderzoek Plant & Omgeving heeft uitgevoerd in opdracht van:

Ministerie van Economische Zaken, Landbouw en Innovatie

Projectnummer: 32 501 793 00

Praktijkonderzoek Plant & Omgeving, onderdeel van Wageningen UR
Business Unit AGV

Adres : Vredeweg 1c
 5816 AJ Vredepeel
Tel. : 0478 – 538 240
Fax : 0478 – 538 249
E-mail : harry.verstegen@wur.nl
Internet : www.ppo.wur.nl
Inhoudsopgave

SAMENVATTING... 7

1 INLEIDING .. 9

2 OPZET EN UITVOERING ... 11
 2.1 Onderzoeksvraag ... 11
 2.1.1 Consumptieaardappel ... 11
 2.1.2 Snijmaïs ... 11
 2.2 Objecten .. 11
 2.2.1 Algemeen ... 11
 2.2.2 Consumptieaardappel ... 11
 2.2.3 Snijmaïs ... 14

3 PROEVELDGEVEENS EN UITVOERING ... 16
 3.1 Perceels- en teeltgegevens ... 16
 3.1.1 Consumptieaardappel ... 16
 3.1.2 Snijmaïs ... 16
 3.2 Bemesting .. 16
 3.2.1 Consumptieaardappel ... 16
 3.2.2 Snijmaïs ... 19
 3.3 Het weer in 2010 ... 21

4 RESULTATEN ... 23
 4.1 Consumptieaardappel ... 23
 4.1.1 Gewaswaarnemingen gedurende het seizoen .. 23
 4.1.2 Opbrengst, kwaliteit en N-opname door de aardappelknollen ... 25
 4.2 Snijmaïs ... 28
 4.2.1 Gewaswaarnemingen gedurende het seizoen .. 28
 4.2.2 Opbrengst, kwaliteit en N-opname door de maïs .. 30

5 CONCLUSIES ... 33
 5.1 Consumptieaardappel ... 33
 5.2 Snijmaïs ... 33

BIJLAGE 1 PROEFVELDSCHEMA CONSUMPTIEAARDAPPELEN .. 35
BIJLAGE 2 PROEFVELDSCHEMA SNIJMAÏS ... 37
BIJLAGE 2 PROEFVELDSCHEMA SNIJMAÏS ... 37
BIJLAGE 3 ANALYSE MINERALENCENTRATAAT ... 39
BIJLAGE 4 NEERSLAGOVERZICHT TE VREDEPEEL IN 2010 ... 41
BIJLAGE 5 MINIMUM TEMPERATUROVERZICHT TE VREDEPEEL IN 2010 43
BIJLAGE 6 MAXIMUM TEMPERATUROVERZICHT TE VREDEPEEL IN 2010. 45
Samenvatting

In 2010 is in zuidoost Nederland in de teelt van consumptieaardappelen en snijmaïs onderzoek uitgevoerd naar de landbouwkundige en milieukundige effecten van het gebruik van mineralenconcentraat (MC) die ontstaan na mestbewerking via ultrafiltratie en omgekeerde osmose.

In de aardappelproef is het mineralenconcentraat toegediend als basisbemesting vóór poten met een bouwlandinjecteur. Later in het seizoen is mineralenconcentraat bijbemest met een slangenmachine. Met deze machine wordt het mineralenconcentraat met slangen oppervlakkig tussen de ruggen gebracht. Hiervoor is in 2010 een ontheffing verleend.

Om de stikstofwerking van het mineralenconcentraat bij de verschillende toepassingen te kunnen afleiden, is een stikstoftrappenreeks met KAS (als basisbemesting) aangelegd. Dit is uitgevoerd in de aardappel- en snijmaïsproef.

De N-werking is in de meeste gevallen afgeleid op basis van de N-opname in het oogstproduct, omdat hiermee de N-respons het beste c.q. nauwkeurigste kon worden beschreven.

In de snijmaïsproef is geen N-trappenreeks aangelegd en lag het accent vooral op verschillende toepassingmomenten van het mineralenconcentraat volvelds (bouwlandinjectie) vóór zaai, rijenbemesting (met een kouter) bij zaai en rijenbemesting na zaai. Het mineralenconcentraat is vergeleken met KAS (beide op een niveau van 100 kg N/ha), toegediend op dezelfde momenten en overeenkomstige wijze. Bij de rijentoepassing na opkomst is een variant aangebracht met een startgift KAS in de rij bij zaai en zonder startgift.

De toegediende hoeveelheid stikstof met het mineralenconcentraat was in alle gevallen een suboptimale gift om een verschil ten opzichte van KAS zo duidelijk mogelijk tot uiting te kunnen laten komen. De kaligift is bij alle objecten gelijk gehouden door middel van kunstmestkali. De fosfaataanvoer met mineralenconcentraat is verwaarloosbaar. De opbrengst en de productkwaliteit bij aardappelen, de drogestofopbrengst en de stikstofopname in het geoogste product is aan het eind van het seizoen bepaald.

In de aardappel- en maisproef was de stikstofwerking van het mineralenconcentraat gelijkwaardig aan KAS (met uitzondering van mineralenconcentraat in mais na opkomst in combinatie met een startgift KAS bij zaai). Ook waren opbrengst en kwaliteit vergelijkbaar met de vergelijkbare stikstofhoeveelheden KAS. Bij de rijentoepassing in mais heeft mogelijk de toediening van kali in de rij met het mineralenconcentraat de opbrengst extra verhoogd.
1 Inleiding

Op dit moment wordt in het kader van de LNV-pilot onderzoek uitgevoerd naar de landbouwkundige en milieukundige effecten van het gebruik van mineralenconcentraten (MC) die ontstaan na mestbewerking via ultrafiltratie en omgekeerde osmose. Dit onderzoek omvat o.a. veldproeven (aardappelen en grasland) waarin de N-werking wordt vastgesteld en een aantal demonstratieproeven waarbij het MC op praktijkschaal wordt toegepast (2 melkveehouderijbedrijven en 1 akkerbouwbedrijf).

De belangrijkste factoren voor een brede toepassing van MC in de landbouwpraktijk zijn de kosten voor het product en de bemestende waarde (stikstof en kali). Wat betreft het laatste is een goede toedieningstechniek vereist. Vanuit de hoek van de producenten is de wens geuit aanvullend op de LNV-pilot onderzoek uit te voeren om het draagvlak in de praktijk te verhogen en daarbij vooral te kijken naar de toedieningstechniek. Speciale aandacht gaat daarbij uit naar de toediening van MC in staande akkerbouwgewassen met de ‘slangenmachine’. Hiermee wordt het MC met slangetjes bovengronds toegediend (i.p.v. injectiekouters). Deze techniek wordt op dit moment echter niet aangemerkt als emissie-arm. Voor 2010 is er een ontheffing voor deze slangenmachine voor de toepassing van MC in aardappel en in granen. Voor 2011 is een dergelijke ontheffing afhankelijk van het emissie-onderzoek dat naar deze toedieningstechniek plaatsvindt.

In 2010 zijn veldproeven uitgevoerd bij de gewassen consumptieaardappel (klei en zand), zetmeelaardappel (dalgrond), wintertarwe (klei), zomergerst (zand) en snijmaïs (zand). Dit rapport geeft de resultaten weer van de proef in consumptieaardappelen en snijmaïs op zandgrond in Zuidoost-Nederland.

In dit verslag worden soms afkortingen gebruikt:
VDM = varkensdrijfmest
RO = RO-concentraat = Reversed Osmose concentrata = Mineralenconcentraat = MC
2 Opzet en uitvoering

2.1 Onderzoeks vraag

2.1.1 Consumptieaardappel
In de teelt van consumptieaardappel wordt in Zuidoost-Nederland aan de basis veelal dierlijke mest ingezet. In dit onderzoek wordt gekeken naar de toepassing van het RO concentraat aan de basis en als bijbemesting. Een derde mogelijkheid is een basisbemesting dierlijke mest, aangevuld met RO concentrata aan de basis. Belangrijke vraag hierbij is hoe het resultaat is, wanneer RO concentrat wordt gemengd met dierlijke mest.

Bij de bijbemesting is de toedieningstechniek een punt van aandacht. Met de gangbare apparatuur is het niet mogelijk om, in het gewas tussen de ruggen, het RO concentraat emissiearm toe te dienen. Wel is er een machine beschikbaar waarbij het RO concentrat, met slangetjes die over de grond slepen tussen de ruggen, wordt toegediend (slangenmachine). Hiermee wordt echter niet voldaan aan de wettelijke regels voor emissie-arme toediening. Voor 2010 is er ontheffing om deze machine in de praktijk in te zetten voor RO concentrat in aardappelen en granen. Onderzoeks vraag is of met toediening van RO met deze machine eenzelfde N-werking wordt bereikt als met kunstmest.

2.1.2 Snijmaïs
In Zuidoost-Nederland wordt in de snijmaïs teelt aan de basis veelal dierlijke mest ingezet. Meestal is dit rundveedrijfmest. In dit onderzoek wordt gekeken naar de toepassing van het RO concentrat aan de basis, voor zaai met een bouwlandinjecteur en als bijbemesting, door emissie-arme rijenbemesting vlak na zaai en enkele weken na opkomst. Bij de bijbemesting kan de slangenmachine (zoals die in de aardappelteelt wordt gebruikt) niet worden ingezet, omdat er geen ontheffing is voor toepassing in deze teelt. Hier dient het RO concentrat emissie-arm te worden ingezet. Onderzoeks vraag is het vaststellen van de N-werking van mineralenconcentrat bij verschillende toedieningsmomenten en toedieningswijzen.

2.2 Objecten

2.2.1 Algemeen
In dit onderzoek wordt de N-werking van RO-concentrat vastgesteld. Om dit mogelijk te maken, is geen rekening gehouden met het percentage werkzame stikstof in het RO concentrat. Het concentrat wordt vergeleken met een hoeveelheid stikstof die gegeven is als kunstmest; in dit onderzoek kalkammonsalpeter.

2.2.2 Consumptieaardappel
- Vergelijking RO concentrat met KAS als basisbemesting voor het poten
 Om de N-werking van het RO concentrat te kunnen vaststellen, zijn als basisbemesting een aantal N-trappen aangelegd met kalkammonsalpeter (KAS); 0, 50, 100, 150 en 200 kg N/ha. KAS is hierbij volvelds met de kunstmeststrooier (KM-strooier) toegediend. Het RO concentrat is volvelds voor de hoofdgrondbewerking (ploegen) geinjecteerd met een bouwlandinjecteur. Als basisgift is hier een hoeveelheid stikstof gehanteerd van 100 kg N/ha.
- Vergelijking tussen RO concentrat en KAS als bijbemesting
 De basisbemesting is volvelds met de kunstmeststrooier gegeven in de vorm van KAS en de bijbemesting is een vergelijking tussen RO concentrat en KAS. Het RO concentrat is bij 80% bodembedekking toegediend met een slangenmachine; figuur 1. KAS is volvelds met de
kunstmeststrooier eveneens op dit tijdstip toegediend.
Tabel 1. Objecten consumptieaardappelen onderzoek mineralenconcentraten Zuidoost-Nederland

<table>
<thead>
<tr>
<th>Object-code</th>
<th>Omschrijving</th>
<th>Basis</th>
<th>Bijbemesting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KAS</td>
<td>RO</td>
</tr>
<tr>
<td>Basisbemesting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>KAS</td>
<td>KM-strooier, voor poten</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>KAS</td>
<td>KM-strooier, voor poten</td>
<td>50</td>
</tr>
<tr>
<td>C</td>
<td>KAS</td>
<td>KM-strooier, voor poten</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>KAS</td>
<td>KM-strooier, voor poten</td>
<td>150</td>
</tr>
<tr>
<td>E</td>
<td>KAS</td>
<td>KM-strooier, voor poten</td>
<td>200</td>
</tr>
<tr>
<td>F</td>
<td>RO</td>
<td>Bouwlandinj., voor poten</td>
<td>100</td>
</tr>
<tr>
<td>Bijbemesting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>KAS</td>
<td>KM-strooier, 80% bodembedekking</td>
<td>100</td>
</tr>
<tr>
<td>H</td>
<td>RO</td>
<td>Slangenmach., 80% bodembedekking</td>
<td>100</td>
</tr>
</tbody>
</table>

1) KAS = K = kalkammonsalpeter 27% N; RO = RO-concentraat

Figuur 1. Foto’s (overzicht en detail) van de toediening van het RO concentraat met de slangmachine
2.2.3 Snijmaïs
In dit onderzoek wordt gekeken naar de toepassing van het RO concentraat aan de basis, voor zaai met een bouwlandinjecteur en als bijbemesting, door emissie-arme rijenbemesting vlak na zaai en enkele weken na opkomst. Bij de bijbemesting kan de slangenmachine (zoals die in de aardappelteelt wordt gebruikt) niet worden ingezet, omdat er geen ontheffing is voor toepassing in deze teelt. Hier dient het RO concentraat emissie-arm te worden ingezet.

Onderzoeksvraag is het vaststellen van de N-werking van mineralenconcentraat bij verschillende toedieningsmomenten en toedieningswijzen.

Vergelijking RO concentraat met KAS bij verschillende toedieningsmomenten en –wijzen. Om de N-werking van het mineralenconcentraat vast te stellen is een suboptimale N-bemesting gehanteerd.

- Het RO concentraat als basisgift volvelds voor de hoofdgrondbewerking (ploegen) geïnjecteerd met een bouwlandinjecteur. Dit in vergelijking met een basisgift KAS, volvelds met de kunstmeststrooier.
- Het RO concentraat als basisgift vlak naast de rij, na zaai. Dit in vergelijking met een basisgift KAS, in de rij bij zaai.
- Het RO concentraat naast de rij, enkele weken na opkomst van de snijmaïs. Dit in vergelijking met KAS, naast de rij eveneens op dit tijdstip.

Figuur 2. Foto’s (overzicht en detail) van de emissie-arme rijenbemesting van het RO concentraat vlak na zaai
Tabel 2. Objecten snijmaïs onderzoek mineralenconcentraten Zuidoost-Nederland

<table>
<thead>
<tr>
<th>Object-code</th>
<th>Bemestingsniveau (kg N/ha)(^1)</th>
<th>Volvelds, voor ploegen en zaaien</th>
<th>In de rij bij zaai</th>
<th>Naast de rij, enkele weken na opkomst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RO</td>
<td>KAS</td>
<td>RO</td>
<td>KAS</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>30</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>30</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) KAS = KAS = kalkammonsalpeter 27% N; RO = RO-concentraat
3 Proefveldgegevens en uitvoering

3.1 Perceels- en teeltgegevens

3.1.1 Consumptieaardappel
In tabel 3 zijn perceels- en teeltgegevens van de consumptieaardappelen weergegeven.

<table>
<thead>
<tr>
<th>Grondsoort</th>
<th>zandgrond</th>
<th>Voorvrucht</th>
<th>Snijmaïs</th>
</tr>
</thead>
<tbody>
<tr>
<td>% organische stof (%)</td>
<td>3,3</td>
<td>Ras</td>
<td>Fontane</td>
</tr>
<tr>
<td>Zuurgraad (pH)</td>
<td>5,3</td>
<td>Hoofdgrondbewerking</td>
<td>14 april</td>
</tr>
<tr>
<td>Pw-getal (mg P2O5/)</td>
<td>93</td>
<td>Datum poten</td>
<td>20 april</td>
</tr>
<tr>
<td>K-getal</td>
<td>8</td>
<td>Pootafstand</td>
<td>34 cm</td>
</tr>
<tr>
<td>Magnesium</td>
<td>74</td>
<td>Datum rugopbouw</td>
<td>8 mei</td>
</tr>
<tr>
<td>Natrium</td>
<td>6</td>
<td>Datum loof doodspuiten</td>
<td>13 september: 2,5 l/ha Reglone</td>
</tr>
<tr>
<td>Datum oogst</td>
<td>30 september</td>
<td>Veldgrootte bruto</td>
<td>6 x 20m</td>
</tr>
<tr>
<td>Veldgrootte netto</td>
<td>1,5 x 14m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De gewasbescherming is uitgevoerd als in de praktijk.

3.1.2 Snijmaïs
In tabel 4 zijn perceels- en teeltgegevens van de snijmaïs weergegeven.

<table>
<thead>
<tr>
<th>Grondsoort</th>
<th>zandgrond</th>
<th>Voorvrucht</th>
<th>Waspeen</th>
</tr>
</thead>
<tbody>
<tr>
<td>% organische stof (%)</td>
<td>3,9</td>
<td>Ras</td>
<td>Torres</td>
</tr>
<tr>
<td>Zuurgraad (pH)</td>
<td>5,1</td>
<td>Hoofdgrondbewerking</td>
<td>28 april</td>
</tr>
<tr>
<td>Pw-getal (mg P2O5/)</td>
<td>94</td>
<td>Datum zaaien</td>
<td>3 mei</td>
</tr>
<tr>
<td>K-getal</td>
<td>14</td>
<td>Zaaiafstand</td>
<td>13,4 cm</td>
</tr>
<tr>
<td>Magnesium</td>
<td>83</td>
<td>Datum oogst</td>
<td>30 september</td>
</tr>
<tr>
<td>Natrium</td>
<td>6</td>
<td>Veldgrootte bruto</td>
<td>6 x 20m</td>
</tr>
<tr>
<td>Veldgrootte netto</td>
<td>1,5 x 15,5m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De gewasbescherming is uitgevoerd als in de praktijk.

3.2 Bemesting

3.2.1 Consumptieaardappel
Op 22 februari is een N-mineraal grondmonster genomen. De bodemvoorraad stikstof in de laag 0-30 en 30-60cm was op dat moment 11 respectievelijk 10 kg N/ha.

Als basisbemesting zijn op 12 april een aantal N-trappen aangelegd met kalkammonsalpeter (KAS); 0, 50,
100, 150 en 200 kg N/ha. De KAS is hierbij volvelds met de pneumatische kunstmeststrooier toegediend. De basisgift met mineralenconcentraat is op 7 april, voor de hoofdgrondbewerking en het poten, geïnjecteerd met een bouwlandinjecteur; 12,2 ton MC /ha (=11,8m³ MC /ha = 100 kg N /ha).
Er is geen fosfaatkunstmest gegeven, omdat fosfaattoestand in de bodem voldoende was. Met het mineralenconcentraat als basisgift (object F) is een verwaarloosbare kleine gift fosfaat gegeven, namelijk 1,1 kg P2O5 /ha. Bij de bijbemesting (14 juni) met mineralenconcentraat (object H) is 0,55 kg P2O5 /ha gegeven.
De hoeveelheid kali is in de proef op gelijk niveau gehouden. De totale kali gift is in alle objecten 300 kg K2O /ha.
Op 14 april is geploegd en zijn alle meststoffen goed door de bouwvoor gemengd.
Later in het seizoen is in een tweetal objecten nog bijbemest met stikstof. Op 14 juni is mineralenconcentraat bijbemest in object H. De bodem was toen voor ongeveer 80% bedekt met groen loof. Het mineralenconcentraat is toegediend met een slangenmachine; 6,1 ton /ha (=5,9m³ MC /ha = 50 kg N /ha). In object G is op 14 juni volvelds met de pneumatische kunstmeststrooier bijbemest met KAS; 50 kg N /ha.

De datum waarop de meststoffen zijn uitgereden, de hoogte van de gift en de gehaltes en de totale gift aan stikstof, fosfaat en kali zijn weergegeven in tabel 5, 6 en 7.

Tabel 5. Stikstofgift per object in onderzoek consumptieaardappelen mineralenconcentraten Zuidoost-Nederland

<table>
<thead>
<tr>
<th>Object</th>
<th>Mestsoort</th>
<th>Datum toediening</th>
<th>RO Gift (kg N/ha)</th>
<th>N-totaal (kg/ton)</th>
<th>N-totaal uit RO (kg/ha)</th>
<th>Kunstmest Gift (kg N/ha)</th>
<th>Per mestsoort</th>
<th>Per object</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Kunstmest</td>
<td>12 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>Kunstmest</td>
<td>12 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>C</td>
<td>Kunstmest</td>
<td>12 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>Kunstmest</td>
<td>12 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>E</td>
<td>Kunstmest</td>
<td>12 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>F</td>
<td>RO</td>
<td>12 april</td>
<td>12,20</td>
<td>8,21</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>G</td>
<td>Kunstmest</td>
<td>14 juni</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>H</td>
<td>Kunstmest</td>
<td>14 juni</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Object</td>
<td>Mestsoort</td>
<td>Datum toediening</td>
<td>RO</td>
<td>Kunstmest</td>
<td>Totale P₂O₅ gift (kg/ha)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-----------------</td>
<td>----</td>
<td>-----------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gift (ton/ha)</td>
<td>P₂O₅ (kg/ton)</td>
<td>P₂O₅ uit RO (kg/ha)</td>
<td>Gift (kg P₂O₅ /ha)</td>
<td>Per mestsoort</td>
<td>Per object</td>
</tr>
<tr>
<td>A</td>
<td>Kunstmest</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>Kunstmest</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>Kunstmest</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>Kunstmest</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>Kunstmest</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>RO</td>
<td>7 april</td>
<td>12,20</td>
<td>0,09</td>
<td>1,1</td>
<td>0</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>G</td>
<td>Kunstmest</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>RO</td>
<td>14 juni</td>
<td>6,1</td>
<td>0,09</td>
<td>0,55</td>
<td>0</td>
<td>0,55</td>
<td>0,55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Object</th>
<th>Mestsoort</th>
<th>Datum toediening</th>
<th>RO</th>
<th>Kunstmest</th>
<th>Totale K₂O gift (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gift (ton/ha)</td>
<td>K₂O (kg/ton)</td>
<td>K₂O uit RO (kg/ha)</td>
</tr>
<tr>
<td>A</td>
<td>Kunstmest</td>
<td>24 feb. + 8 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>Kunstmest</td>
<td>24 feb. + 8 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>Kunstmest</td>
<td>24 feb. + 8 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>Kunstmest</td>
<td>24 feb. + 8 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>Kunstmest</td>
<td>24 feb. + 8 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>RO</td>
<td>24 feb. + 7 + 8 april</td>
<td>12,20</td>
<td>7</td>
<td>85</td>
</tr>
<tr>
<td>G</td>
<td>Kunstmest</td>
<td>24 feb. + 8 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>RO</td>
<td>24 feb. + 8 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
De kaligift is aan de basis gegeven. Op 24 februari is kali-60 gestrooid; gehele proefveld 120 kg K2O/ha. En op 8 april zijn alle objecten naar een gelijk niveau bemest met Patentkali; zie tabel 7.

3.2.2 Snijmaïs
Op 22 februari is een N-mineraal grondmonster genomen. De bodemvoorraad stikstof in de laag 0-30 en 30-60 cm was op dat moment 30 respectievelijk 17 kg N/ha.

De bemesting met 12,2 ton MC/ha (=11,8 m³ MC/ha = 100 kg N/ha) mineralenconcentraat is op 3 verschillende toedieningsmomenten en -wijzen uitgevoerd;
 - 7 april, voor de hoofdgrondbewerking, geïnjecteerd met een bouwlandinjecteur
 - 10 mei, direct na zaai, geïnjecteerd op 10 cm naast de rij
 - 7 juni, enkele weken na opkomst, geïnjecteerd op 10 cm naast de rij

Er is geen fosfaatkunstmest gegeven, omdat fosfaattoestand in de bodem voldoende was. Met het mineralenconcentraat (objecten C, E, G en I) is een kleine verwaarloosbare gift fosfaat gegeven, namelijk 1,1 kg P2O5/ha.

De hoeveelheid kali is in de proef op gelijk niveau gehouden. De totale kali gift is in alle objecten 85 kg K2O/ha.

Op 28 april is geploegd en zijn alle meststoffen goed door de bouwvoor gemengd.

De datum waarop de meststoffen zijn uitgereden, de hoogte van de gift en de gehaltes en de totale gift aan stikstof, fosfaat en kali zijn weergegeven in tabel 8, 9 en 10.

Tabel 8. Stikstofgift per object in onderzoek snijmaïs mineralenconcentraten Zuidoost-Nederland

<table>
<thead>
<tr>
<th>Object</th>
<th>Mestsoort</th>
<th>Datum toediening</th>
<th>RO Gift (ton/ha)</th>
<th>N-totaal (kg/ton)</th>
<th>N-totaal uit RO (kg/ha)</th>
<th>Kunstmest Gift (kg N/ha)</th>
<th>Per mestsoort</th>
<th>Per object</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Kunstmest</td>
<td>7 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>Kunstmest</td>
<td>3 mei</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>RO</td>
<td>7 april</td>
<td>12,20</td>
<td>8,21</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>Kunstmest</td>
<td>12 april</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>E</td>
<td>RO</td>
<td>10 mei</td>
<td>12,20</td>
<td>8,21</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>F</td>
<td>Kunstmest</td>
<td>3 mei</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>G</td>
<td>RO</td>
<td>7 juni</td>
<td>12,20</td>
<td>8,21</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>H</td>
<td>Kunstmest</td>
<td>7 juni</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>I</td>
<td>Kunstmest</td>
<td>3 mei</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>J</td>
<td>Kunstmest</td>
<td>3 mei</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

© Praktijkonderzoek Plant & Omgeving

19
Tabel 9. Fosfaatbemesting per object in onderzoek snijmaïs mineralenconcentraten Zuidoost-Nederland

<table>
<thead>
<tr>
<th>Object</th>
<th>Mestsoort</th>
<th>Datum toediening</th>
<th>RO</th>
<th>Kunstmest</th>
<th>Totale P$_2$O$_5$ gift (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Kunstmest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Kunstmest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>RO</td>
<td>7 april</td>
<td>12,20</td>
<td>0,09</td>
<td>1,1</td>
</tr>
<tr>
<td>D</td>
<td>Kunstmest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>RO</td>
<td>10 mei</td>
<td>12,20</td>
<td>0,09</td>
<td>1,1</td>
</tr>
<tr>
<td>F</td>
<td>Kunstmest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>RO</td>
<td>7 juni</td>
<td>12,20</td>
<td>0,09</td>
<td>1,1</td>
</tr>
<tr>
<td>H</td>
<td>Kunstmest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Kunstmest</td>
<td>7 juni</td>
<td>12,20</td>
<td>0,09</td>
<td>1,1</td>
</tr>
<tr>
<td>J</td>
<td>Kunstmest</td>
<td>Kunstmest</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De kaligift is in de objecten met mineralenconcentraat met het concentrat gegeven en in de overige objecten naar een gelijk niveau bemest met Patentkali; zie tabel 10.

Tabel 10. Kalibemesting per object in onderzoek snijmaïs mineralenconcentraten Zuidoost-Nederland

<table>
<thead>
<tr>
<th>Object</th>
<th>Mestsoort</th>
<th>Datum toediening</th>
<th>RO</th>
<th>Kunstmest</th>
<th>Totale K$_2$O gift (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Kunstmest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Kunstmest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>RO</td>
<td>7 april</td>
<td>12,20</td>
<td>7</td>
<td>85</td>
</tr>
<tr>
<td>D</td>
<td>Kunstmest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>RO</td>
<td>10 mei</td>
<td>12,20</td>
<td>7</td>
<td>85</td>
</tr>
<tr>
<td>F</td>
<td>Kunstmest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>RO</td>
<td>7 juni</td>
<td>12,20</td>
<td>7</td>
<td>85</td>
</tr>
<tr>
<td>H</td>
<td>Kunstmest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Kunstmest</td>
<td>7 juni</td>
<td>12,20</td>
<td>7</td>
<td>85</td>
</tr>
<tr>
<td>J</td>
<td>Kunstmest</td>
<td>Kunstmest</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Praktijonderzoek Plant & Omgeving
3.3 Het weer in 2010

In 2010 hebben we een koud voorjaar gehad. Tot en met mei lagen de temperaturen onder het dertig jarig gemiddelde. De maanden april en juni kenmerken zich door de droogte. Augustus daarentegen was zeer nat.

De beginontwikkeling van de aardappelen en maïs was met de lage temperaturen traag. Door de temperatuursverhoging vanaf juni en kunstmatige en natuurlijke neerslag, ontwikkelen de gewassen zich vervolgens snel. We zien toch een begin groeiachterstand ten opzichte van een 'gemiddeld jaar'.

De dagelijkse temperatuur- en neerslaggegevens zijn weergegeven in bijlage 4, 5 en 6.
4 Resultaten

4.1 Consumptieaardappel

4.1.1 Gewaswaarnemingen gedurende het seizoen
In het groeiseizoen is het gewas op verschillende momenten visueel beoordeeld op percentage bodembedekking, kleur en algehele gewasstand. De aardappelen kwamen 21 mei op. In de maand mei zagen we nog geen verschillen tussen de objecten. In de basisbemesting met KAS zien we bij giften vanaf 100 kg N/ha geen significante verschillen op de verschillende waarnemingsmomenten in het seizoen. Ook de basisbemesting met mineralenconcentraat (object F) verschillt hiervan niet. Eind juni was de bodembedekking van de bijbemesting met mineralenconcentraat (object H) iets hoger (n.s.) ten opzichte van bijbemesting met KAS (object G). Eind juli daarentegen was de bodembedekking van de bijbemesting met mineralenconcentraat iets lager (n.s.).

Figuur 3. Snijmaïs op 31 mei en 25 juni in onderzoek snijmaïs mineralenconcentraten Zuidoost-Nederland 2010
Tabel 11. Gewaswaarneming; percentage bodembedekking onderzoek consumptieaardappelen mineralenconcentraten Zuidoost-Nederland 2010

<table>
<thead>
<tr>
<th>Object-code</th>
<th>Omschrijving</th>
<th>Percentage bodembedekking (%)</th>
<th>21 mei</th>
<th>28 mei</th>
<th>8 juni</th>
<th>16 juni</th>
<th>25 juni</th>
<th>23 juli</th>
<th>13 aug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basisbemesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A KAS 0</td>
<td></td>
<td></td>
<td>1,0</td>
<td>5</td>
<td>25,0 a</td>
<td>52,5 a</td>
<td>61,3 a</td>
<td>67,5 a</td>
<td>70,0 a</td>
</tr>
<tr>
<td>B KAS 50</td>
<td></td>
<td></td>
<td>1,0</td>
<td>5</td>
<td>27,5 ab</td>
<td>61,3 b</td>
<td>68,8 b</td>
<td>78,8 b</td>
<td>72,5 ab</td>
</tr>
<tr>
<td>C KAS 100</td>
<td></td>
<td></td>
<td>1,0</td>
<td>5</td>
<td>30,0 b</td>
<td>71,3 c</td>
<td>75,0 bc</td>
<td>86,3 bc</td>
<td>77,5 ab</td>
</tr>
<tr>
<td>D KAS 150</td>
<td></td>
<td></td>
<td>1,0</td>
<td>5</td>
<td>31,3 b</td>
<td>72,5 c</td>
<td>80,0 cd</td>
<td>80,0 b</td>
<td>75,0 ab</td>
</tr>
<tr>
<td>E KAS 200</td>
<td></td>
<td></td>
<td>1,0</td>
<td>5</td>
<td>30,0 b</td>
<td>76,3 c</td>
<td>83,8 d</td>
<td>90,0 c</td>
<td>82,5 ab</td>
</tr>
<tr>
<td>F RO 100</td>
<td></td>
<td></td>
<td>1,0</td>
<td>5</td>
<td>28,8 ab</td>
<td>71,3 c</td>
<td>78,8 cd</td>
<td>90,0 c</td>
<td>82,5 ab</td>
</tr>
<tr>
<td>Basis + Bijbemesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G KAS 100+50</td>
<td></td>
<td></td>
<td>1,0</td>
<td>5</td>
<td>30,0 b</td>
<td>70,0 c</td>
<td>77,5 cd</td>
<td>91,3 c</td>
<td>86,2 b</td>
</tr>
<tr>
<td>H RO 100+50</td>
<td></td>
<td></td>
<td>1,0</td>
<td>5</td>
<td>31,3 b</td>
<td>77,5 c</td>
<td>83,8 d</td>
<td>86,3 bc</td>
<td>81,2 ab</td>
</tr>
<tr>
<td>gemiddeld 100 =</td>
<td></td>
<td></td>
<td>1,0</td>
<td>5</td>
<td>29,2</td>
<td>69,1</td>
<td>76,1</td>
<td>83,8</td>
<td>78,4</td>
</tr>
<tr>
<td>LSD 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) KAS = KAS = kalkammonsalpeter 27% N; RO = RO-concentraat
2) LSD = kleinste, statistisch betrouwbaar verschil
3) n.s. = statistisch niet significant

In het groeiseizoen zien we weinig significante kleurvisschillen tussen de objecten. Het onbemeste object (object A), wijkt duidelijk negatief af ten opzichte van de overige objecten. Eind juli leek de gewaskleur van de bijbemesting met mineralenconcentraat (object H) iets donkerder groen (n.s.) ten opzichte van bijbemesting met KAS (object G). Eind augustus zien we dat de gewaskleur van de bijbemesting met mineralenconcentraat iets lichter groen (n.s.) is. De basisbemesting met mineralenconcentraat (object F) verschilt niet significant met de bijbemesting met mineralenconcentraat (object H) en de bijbemesting met KAS (object G).

In het groeiseizoen zien we weinig significante kleurverschillen tussen de objecten. Het onbemeste object (object A), wijkt duidelijk negatief af ten opzichte van de overige objecten. Eind juli leek de gewaskleur van de bijbemesting met mineralenconcentraat (object H) iets donkerder groen (n.s.) ten opzichte van bijbemesting met KAS (object G). Eind augustus zien we dat de gewaskleur van de bijbemesting met mineralenconcentraat iets lichter groen (n.s.) is. De basisbemesting met mineralenconcentraat (object F) verschilt niet significant met de bijbemesting met mineralenconcentraat (object H) en de bijbemesting met KAS (object G).

Tabel 12. Gewaswaarneming; kleur gewas onderzoek consumptieaardappelen mineralenconcentraten Zuidoost-Nederland 2010

<table>
<thead>
<tr>
<th>Object-code</th>
<th>Omschrijving 1)</th>
<th>Kleur gewas 2)</th>
<th>21 mei</th>
<th>28 mei</th>
<th>8 juni</th>
<th>16 juni</th>
<th>25 juni</th>
<th>23 juli</th>
<th>13 aug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basisbemesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A KAS 0</td>
<td></td>
<td></td>
<td>*</td>
<td>7,0</td>
<td>7,0 a</td>
<td>6,0 a</td>
<td>6,0 a</td>
<td>5,5 a</td>
<td>5,3 a</td>
</tr>
<tr>
<td>B KAS 50</td>
<td></td>
<td></td>
<td>*</td>
<td>7,0</td>
<td>7,8 b</td>
<td>6,8 b</td>
<td>6,8 a</td>
<td>6,3 ab</td>
<td>6,3 ab</td>
</tr>
<tr>
<td>C KAS 100</td>
<td></td>
<td></td>
<td>*</td>
<td>7,0</td>
<td>8,0 b</td>
<td>8,0 c</td>
<td>8,0 b</td>
<td>7,0 bc</td>
<td>6,5 b</td>
</tr>
<tr>
<td>D KAS 150</td>
<td></td>
<td></td>
<td>*</td>
<td>7,0</td>
<td>8,0 b</td>
<td>8,0 c</td>
<td>8,8 bc</td>
<td>7,0 bc</td>
<td>6,8 b</td>
</tr>
<tr>
<td>E KAS 200</td>
<td></td>
<td></td>
<td>*</td>
<td>7,0</td>
<td>8,0 b</td>
<td>8,0 c</td>
<td>9,0 c</td>
<td>8,0 c</td>
<td>8,0 c</td>
</tr>
<tr>
<td>F RO 100</td>
<td></td>
<td></td>
<td>*</td>
<td>7,0</td>
<td>8,0 b</td>
<td>8,0 c</td>
<td>8,3 bc</td>
<td>7,3 bc</td>
<td>6,8 b</td>
</tr>
<tr>
<td>Basis + Bijbemesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G KAS 100+50</td>
<td></td>
<td></td>
<td>*</td>
<td>7,0</td>
<td>8,0 b</td>
<td>8,0 c</td>
<td>8,5 bc</td>
<td>7,8 c</td>
<td>7,3 bc</td>
</tr>
<tr>
<td>H RO 100+50</td>
<td></td>
<td></td>
<td>*</td>
<td>7,0</td>
<td>8,0 b</td>
<td>8,0 c</td>
<td>8,8 bc</td>
<td>7,3 bc</td>
<td>7,0 bc</td>
</tr>
<tr>
<td>gemiddeld 100 =</td>
<td></td>
<td></td>
<td>*</td>
<td>7,0</td>
<td>7,8</td>
<td>7,6</td>
<td>8,0</td>
<td>7,0</td>
<td>6,7</td>
</tr>
<tr>
<td>LSD 3)</td>
<td></td>
<td></td>
<td>n.s.</td>
<td>0,3</td>
<td>0,3</td>
<td>0,6</td>
<td>0,9</td>
<td>0,7</td>
<td>0,7</td>
</tr>
</tbody>
</table>

1) KAS = KAS = kalkammonsalpeter 27% N; RO = RO-concentraat
2) LSD = kleinste, statistisch betrouwbaar verschil
3) n.s. = statistisch niet significant
De gewasstand van het onbemeste object bleef duidelijk achter ten opzichte van de bemeste objecten. De gewasstand van de basisbemesting met mineralenconcentraat (object F) was min of meer gelijk aan de bij een vergelijkbare N-gift met KAS (object C). Na de bijbemesting met mineralenconcentraat (object H) was de gewasstand ook gelijk aan de na bijbemesting met KAS (object G).

Tabel 13. Gewaswaarneming; gewasstand onderzoek consumptieaardappelen mineralenconcentraten Zuidoost-Nederland 2010

<table>
<thead>
<tr>
<th>Object-code</th>
<th>Omschrijving 1)</th>
<th>Stand gewas 2)</th>
<th>21 mei</th>
<th>28 mei</th>
<th>8 juni</th>
<th>16 juni</th>
<th>25 juni</th>
<th>23 juli</th>
<th>13 aug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basisbemesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>KAS 0</td>
<td>*</td>
<td>7,0</td>
<td>7,0 a</td>
<td>6,0 a</td>
<td>6,0 a</td>
<td>6,0 a</td>
<td>5,8 a</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>KAS 50</td>
<td>*</td>
<td>7,0</td>
<td>7,3 ab</td>
<td>6,8 b</td>
<td>6,5 a</td>
<td>7,0 b</td>
<td>7,5 b</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>KAS 100</td>
<td>*</td>
<td>7,0</td>
<td>7,5 ab</td>
<td>8,0 c</td>
<td>7,5 b</td>
<td>7,8 bc</td>
<td>7,5 b</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>KAS 150</td>
<td>*</td>
<td>7,0</td>
<td>7,8 ab</td>
<td>8,0 c</td>
<td>8,0 b</td>
<td>7,8 bc</td>
<td>7,8 b</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>KAS 200</td>
<td>*</td>
<td>7,0</td>
<td>8,0 b</td>
<td>8,0 c</td>
<td>8,0 b</td>
<td>7,8 bc</td>
<td>7,8 b</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>RO 100</td>
<td>*</td>
<td>7,0</td>
<td>8,0 b</td>
<td>7,8 c</td>
<td>8,0 b</td>
<td>7,5 bc</td>
<td>7,8 b</td>
<td></td>
</tr>
<tr>
<td>Basis + Bijbemesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>KAS 100+50</td>
<td>*</td>
<td>7,0</td>
<td>7,8 ab</td>
<td>8,0 c</td>
<td>7,8 b</td>
<td>8,0 c</td>
<td>8,0 b</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>RO 100+50</td>
<td>*</td>
<td>7,0</td>
<td>8,0 b</td>
<td>7,8 c</td>
<td>8,0 b</td>
<td>8,0 c</td>
<td>7,8 b</td>
<td></td>
</tr>
<tr>
<td>gemiddeld</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RO 100</td>
<td>*</td>
<td>7,0</td>
<td>7,7</td>
<td>7,5</td>
<td>7,5</td>
<td>7,5</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>LSD 3)</td>
<td></td>
<td></td>
<td>n.s.</td>
<td>0,6</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,8</td>
<td></td>
</tr>
</tbody>
</table>

1) **KAS** = KAS = kalkammonsalpeter 27% N; **RO** = RO-concentraat
2) Stand = rapportcijfer, waarbij 1=slecht; 9=goed
3) LSD = kleinste, statistisch betrouwbare verschil
4) n.s. = statistisch niet significant

4.1.2 Opbrengst kwaliteit en N-opname door de aardappelknollen

De hoogste bruto en netto veldopbrengst zien we bij een basisbemesting KAS van 200 kg N/ha (object E) en een basis- en bijbemesting met KAS (object G). Deze waren niet significant hoger dan van de overige bemeste objecten.

Het onderwatergewicht van de hoogste trap basisbemesting met KAS (object E) was lager dan de overige objecten.

De bruto en netto knolopbrengsten, het onderwatergewicht (OWG), de drogestofopbrengst en de N-opname in de knollen waren na bijbemesting met mineralenconcentraat (object H) lager dan na bijbemesting met KAS (object G). De verschillen waren echter niet significant.
Tabel 14. Opbrengst en kwaliteit onderzoek consumptieaardappelen mineralenconcentraten Zuidoost-Nederland 2010

<table>
<thead>
<tr>
<th>Object-code</th>
<th>Omschrijving¹</th>
<th>Bruto opbrengst (ton/ha)</th>
<th>Sortering 0-30mm (ton/ha)</th>
<th>Sortering 30-50mm (ton/ha)</th>
<th>Sortering 50+mm (ton/ha)</th>
<th>OWG (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basisbemesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>KAS 0</td>
<td>43,4 a</td>
<td>1,8 c</td>
<td>50,4 b</td>
<td>48,0 a</td>
<td>428 b</td>
</tr>
<tr>
<td>B</td>
<td>KAS 50</td>
<td>60,7 b</td>
<td>1,2 b</td>
<td>29,8 a</td>
<td>69,0 b</td>
<td>430 b</td>
</tr>
<tr>
<td>C</td>
<td>KAS 100</td>
<td>67,6 b</td>
<td>0,6 a</td>
<td>25,1 a</td>
<td>74,3 bc</td>
<td>425 ab</td>
</tr>
<tr>
<td>D</td>
<td>KAS 150</td>
<td>66,2 b</td>
<td>0,6 a</td>
<td>25,7 a</td>
<td>73,7 bc</td>
<td>430 b</td>
</tr>
<tr>
<td>E</td>
<td>KAS 200</td>
<td>71,3 b</td>
<td>0,5 a</td>
<td>17,7 a</td>
<td>81,9 c</td>
<td>411 a</td>
</tr>
<tr>
<td>F</td>
<td>RO 100</td>
<td>68,1 b</td>
<td>0,7 a</td>
<td>22,8 a</td>
<td>76,5 bc</td>
<td>422 ab</td>
</tr>
<tr>
<td>Basis + Bijbemesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>KAS 100+50</td>
<td>71,7 b</td>
<td>0,5 a</td>
<td>20,3 a</td>
<td>79,2 bc</td>
<td>423 ab</td>
</tr>
<tr>
<td>H</td>
<td>RO 100+50</td>
<td>67,4 b</td>
<td>0,6 a</td>
<td>19,7 a</td>
<td>79,7 bc</td>
<td>415 ab</td>
</tr>
<tr>
<td>gemiddeld</td>
<td>100</td>
<td>64,5 b</td>
<td>0,8</td>
<td>26,4 a</td>
<td>72,8 ab</td>
<td>423</td>
</tr>
</tbody>
</table>

1) KAS = KAS = kalkammonsalpeter 27% N; RO = RO-concentraat
2) LSD = kleinste, statistisch betrouwbaar verschil

Figuur 4. Versopbrengst en kwaliteit onderzoek consumptieaardappelen mineralenconcentraten Zuidoost-Nederland 2010
Tabel 15. Opbrengst en N-opname onderzoek consumptieaardappelen mineralenconcentraten Zuidoost-Nederland 2010

<table>
<thead>
<tr>
<th>Object-code</th>
<th>Omschrijving1</th>
<th>Bruto opbrengst (ton/ha)</th>
<th>Netto opbrengst >30mm (ton/ha)</th>
<th>OWG (gram)</th>
<th>Droge stof opbrengst (ton/ha)</th>
<th>N-opname knollen (kg N/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basisbemesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>KAS 0</td>
<td>43,4 a</td>
<td>42,8</td>
<td>428 b</td>
<td>9,6 a</td>
<td>78 a</td>
</tr>
<tr>
<td>B</td>
<td>KAS 50</td>
<td>60,7 b</td>
<td>60,0</td>
<td>430 b</td>
<td>13,4 b</td>
<td>121 b</td>
</tr>
<tr>
<td>C</td>
<td>KAS 100</td>
<td>67,6 b</td>
<td>67,2</td>
<td>425 ab</td>
<td>14,6 b</td>
<td>154 bc</td>
</tr>
<tr>
<td>D</td>
<td>KAS 150</td>
<td>66,2 b</td>
<td>65,8</td>
<td>430 b</td>
<td>14,7 b</td>
<td>163 c</td>
</tr>
<tr>
<td>E</td>
<td>KAS 200</td>
<td>71,3 b</td>
<td>70,9</td>
<td>411 a</td>
<td>14,9 b</td>
<td>202 d</td>
</tr>
<tr>
<td>F</td>
<td>RO 100</td>
<td>68,1 b</td>
<td>67,6</td>
<td>422 ab</td>
<td>14,9 b</td>
<td>157 bc</td>
</tr>
<tr>
<td>Basis + Bijbemesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>KAS 100+50</td>
<td>71,7 b</td>
<td>71,3</td>
<td>423 ab</td>
<td>15,7 b</td>
<td>182 cd</td>
</tr>
<tr>
<td>H</td>
<td>RO 100+50</td>
<td>67,4 b</td>
<td>67,0</td>
<td>415 ab</td>
<td>14,5 b</td>
<td>175 cd</td>
</tr>
<tr>
<td>gemiddeld 100 =</td>
<td></td>
<td>64,5</td>
<td>64,1</td>
<td>423</td>
<td>14,0</td>
<td>154</td>
</tr>
<tr>
<td>LSD3</td>
<td></td>
<td>9,7</td>
<td>9,7</td>
<td>10,3</td>
<td>2,0</td>
<td>25,9</td>
</tr>
</tbody>
</table>

1 KAS = KAS = kalkammonsalpeter 27% N; RO = RO-concentraat

2 Netto = netto opbrengst >30mm = bruto opbrengst minus knollen ≤30 mm (uitval is niet gemeten)

3 LSD = kleinste, statistisch betrouwbaar verschil

Figuur 5. Opbrengst en N-opname onderzoek consumptieaardappelen mineralenconcentraten Zuidoost-Nederland 2010
4.2 Snijmaïs

4.2.1 Gewaswaarnemingen gedurende het seizoen
In het groeiseizoen is het gewas op verschillende momenten visueel beoordeeld op percentage bodembedekking, kleur en algehele gewasstand. De mais kwam 24 mei op. In de maanden mei en juni zagen we nog geen verschillen tussen de objecten. Vanaf medio juni had de snijmaïs bij de toepassingen van mineralenconcentraat in de rij bij zaai (object E) en in de rij na opkomst (object G) een wat hogere bodembedekking dan bij dezelfde toepassingen met KAS (object F respectievelijk H). Eind juni zagen we geen verschil meer in de rijbemesting na opkomsten (objecten G en H). Bij de volvelds bemesting vóór zaai was er geen verschil in bodembedekking tussen het mineralenconcentraat (object C) en KAS (object D). Dit was eveneens zo bij de rijbemesting bij zaai + rijenbemesting na opkomst tussen het mineralenconcentraat (object I) en KAS (object J).

<table>
<thead>
<tr>
<th>Object-code</th>
<th>Omschrijving</th>
<th>meststof</th>
<th>Percentage bodembedekking (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>geen bemesting</td>
<td>geen</td>
<td>5,0 10,0 22,5 35,0</td>
</tr>
<tr>
<td>B</td>
<td>rijen bemesting bij zaai</td>
<td>KAS 5,0 10,0 25,0 45,0</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>volvelds, vóór ploegen & zaaien</td>
<td>MC 5,0 10,0 25,0 41,3</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>volvelds, vóór ploegen & zaaien</td>
<td>KAS 5,0 10,0 25,0 40,0</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>rijenbemesting bij zaai</td>
<td>MC 5,0 10,0 28,8 45,0</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>rijenbemesting bij zaai</td>
<td>KAS 5,0 10,0 22,5 42,5</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>rijenbemesting na opkomst</td>
<td>MC 5,0 10,0 25,0 40,0</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>rijenbemesting na opkomst</td>
<td>KAS 5,0 10,0 23,8 40,0</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>rijenbem bij zaai + rijenbem. na opkomst</td>
<td>KAS + MC 5,0 10,0 27,5 45,0</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>rijenbem bij zaai + rijenbem. na opkomst</td>
<td>KAS + KAS 5,0 10,0 25,0 45,0</td>
<td></td>
</tr>
</tbody>
</table>
In het groeiseizoen zien we geen significante kleurverschillen tussen de objecten. De rijenbemesting bij zaai (objecten E en F) leek begin juni iets donkerder van kleur te staan. Rijenbemesting na opkomst met mineralenconcentraat (object G) leek eind juni ook iets donkerder van kleur ten opzichte van rijenbemesting met KAS na opkomst (object H).

Tabel 17. Gewaswaarneming; kleur gewas onderzoek snijmaïs mineralenconcentraten Zuidoost-Nederland 2010

<table>
<thead>
<tr>
<th>Object-code</th>
<th>Omschrijving</th>
<th>mest-stof</th>
<th>Kleur gewas (^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>28 mei</td>
</tr>
<tr>
<td>A</td>
<td>geen bemesting</td>
<td>geen</td>
<td>6,0</td>
</tr>
<tr>
<td>B</td>
<td>rijen bemesting bij zaai</td>
<td>KAS</td>
<td>6,0</td>
</tr>
<tr>
<td>C</td>
<td>volvelds, vóór ploegen & zaaien</td>
<td>MC</td>
<td>6,0</td>
</tr>
<tr>
<td>D</td>
<td>volvelds, vóór ploegen & zaaien</td>
<td>KAS</td>
<td>6,0</td>
</tr>
<tr>
<td>E</td>
<td>rijenbemesting bij zaai</td>
<td>MC</td>
<td>6,0</td>
</tr>
<tr>
<td>F</td>
<td>rijenbemesting bij zaai</td>
<td>KAS</td>
<td>6,0</td>
</tr>
<tr>
<td>G</td>
<td>rijenbemesting na opkomst</td>
<td>MC</td>
<td>6,0</td>
</tr>
<tr>
<td>H</td>
<td>rijenbemesting na opkomst</td>
<td>KAS</td>
<td>6,0</td>
</tr>
<tr>
<td>I</td>
<td>rijenbem.bij zaai + rijenbem. na opkomst</td>
<td>KAS(^1)+MC(^2)</td>
<td>6,0</td>
</tr>
<tr>
<td>J</td>
<td>rijenbem.bij zaai + rijenbem. na opkomst</td>
<td>KAS(^1)+KAS(^2)</td>
<td>6,0</td>
</tr>
<tr>
<td>gemiddeld</td>
<td></td>
<td></td>
<td>6,0</td>
</tr>
<tr>
<td>LSD(^4)</td>
<td></td>
<td></td>
<td>n.s.</td>
</tr>
</tbody>
</table>

\(^{1}\) bij zaai
\(^{2}\) na opkomst
\(^{3}\) kleur = rapportcijfer, waarbij 1=geel; 9=groen
\(^{4}\) LSD = kleinste, statistisch betrouwbaar verschil
\(^{5}\) n.s. = statistisch niet significant

De gewasstand van het onbemeste object bleef medio juni duidelijk achter ten opzichte van de bemeste objecten.
Half juni was de gewasstand bij de toepassing van mineralenconcentraat in de rij bij zaai (object E) beter dan bij KAS in de rij bij zaai (object F). Dit verschil zien we eind juni niet meer terug. De gewasstand bij de toepassing van KAS volvelds vóór zaai (object D) was eind juni beter dan bij mineralenconcentraat vóór zaai (object C).
Bij de rijenbemesting na opkomst (objecten G en H) en bij rijenbemesting bij zaai + rijenbemesting na opkomst zagen we geen duidelijke verschillen in gewasstand tussen toepassing van mineralenconcentraat en KAS.
Tabel 18. Gewaswaarneming; gewasstand onderzoek snijmaïs mineralenconcentraat
Zuidoost-Nederland 2010

<table>
<thead>
<tr>
<th>Object-code</th>
<th>Omschrijving</th>
<th>mest-stof</th>
<th>28 mei</th>
<th>8 juni</th>
<th>16 juni</th>
<th>25 juni</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>geen bemesting</td>
<td>geen</td>
<td>6,0</td>
<td>7,5</td>
<td>6,5</td>
<td>7,0</td>
</tr>
<tr>
<td>B</td>
<td>rijen bemesting bij zaai</td>
<td>KAS</td>
<td>6,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td>C</td>
<td>volvelds, vóór ploegen & zaaien</td>
<td>KAS</td>
<td>6,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td>D</td>
<td>volvelds, vóór ploegen & zaaien</td>
<td>KAS</td>
<td>6,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td>E</td>
<td>rijenbemesting bij zaai</td>
<td>MC</td>
<td>6,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td>F</td>
<td>rijenbemesting bij zaai</td>
<td>KAS</td>
<td>6,0</td>
<td>7,8</td>
<td>7,0</td>
<td>7,5</td>
</tr>
<tr>
<td>G</td>
<td>rijenbemesting na opkomst</td>
<td>MC</td>
<td>6,0</td>
<td>7,8</td>
<td>7,5</td>
<td>7,5</td>
</tr>
<tr>
<td>H</td>
<td>rijenbemesting na opkomst</td>
<td>KAS</td>
<td>6,0</td>
<td>7,5</td>
<td>7,8</td>
<td>7,5</td>
</tr>
<tr>
<td>I</td>
<td>rijenbem bij zaai + rijenb. na opkomst</td>
<td>KAS(^1)+MC(^2)</td>
<td>6,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td>J</td>
<td>rijenbem bij zaai + rijenb. na opkomst</td>
<td>KAS(^1)+KAS(^2)</td>
<td>6,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td>gemiddeld</td>
<td></td>
<td></td>
<td>6,0</td>
<td>7,9</td>
<td>7,7</td>
<td>7,7</td>
</tr>
<tr>
<td>LSD(^4)</td>
<td></td>
<td></td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

1) bij zaai
2) na opkomst
3) Stand = rapportcijfer, waarbij 1=slecht; 9=goed
4) LSD = kleinste, statistisch betrouwbaar verschil
5) n.s. = statistisch niet significant

4.2.2 Opbrengst, kwaliteit en N-opname door de maïs
De drogestofopbrengst bij volvelds toediening vóór zaai van mineralenconcentraat (object C) was hoger (niet significant) dan de volvelds toediening van KAS (object D). Dit zagen we bij deze toepassing ook terug in de N-opname.
Toepassing van mineralenconcentraat als rijenbemesting bij zaai (object E) gaf ook een hogere drogestofopbrengst dan rijenbemesting met KAS (object F). De N-opname was bij deze toedieningsvariant met het mineralenconcentraat lager.
De rijenbemesting van mineralenconcentraat na opkomst (object G) gaf ook een hogere drogestofopbrengst dan de rijentoeidening van KAS (object H) en een vrijwel gelijke N-opname.
Mineralenconcentraat rijenbemesting na opkomst met de startgift KAS (object I) had een lagere opbrengst (niet significant) ten opzichte van KAS rijenbemesting bij zaai met rijenbemesting na opkomst (object J). De N-opname was bij deze toedieningsvariant met het mineralenconcentraat lager.
Tabel 19. Opbrengst en kwaliteit onderzoek snijmaïs mineralenconcentraten Zuidoost-Nederland 2010

<table>
<thead>
<tr>
<th>Object-code</th>
<th>Omschrijving</th>
<th>mest-stof</th>
<th>Vers-opbrengst (ton/ha)</th>
<th>DS (g/kg ds)</th>
<th>DS-opbrengst (ton/ha)</th>
<th>N (g/kg ds)</th>
<th>N-opname (kg N/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>geen bemesting</td>
<td>geen</td>
<td>45,2</td>
<td>347,5</td>
<td>15,7</td>
<td>8,2</td>
<td>128</td>
</tr>
<tr>
<td>B</td>
<td>rijen bemesting bij zaai</td>
<td>KAS</td>
<td>49,4</td>
<td>342,8</td>
<td>16,9</td>
<td>8,7</td>
<td>148</td>
</tr>
<tr>
<td>C</td>
<td>volvelds, vóór ploegen & zaaien</td>
<td>MC</td>
<td>55,0</td>
<td>364,5</td>
<td>20,0</td>
<td>11,6</td>
<td>231</td>
</tr>
<tr>
<td>D</td>
<td>volvelds, vóór ploegen & zaaien</td>
<td>KAS</td>
<td>52,1</td>
<td>362,8</td>
<td>18,9</td>
<td>11,0</td>
<td>208</td>
</tr>
<tr>
<td>E</td>
<td>rijenbemesting bij zaai</td>
<td>MC</td>
<td>55,2</td>
<td>358,5</td>
<td>19,8</td>
<td>10,2</td>
<td>201</td>
</tr>
<tr>
<td>F</td>
<td>rijenbemesting bij zaai</td>
<td>KAS</td>
<td>52,5</td>
<td>349,5</td>
<td>18,3</td>
<td>11,3</td>
<td>206</td>
</tr>
<tr>
<td>G</td>
<td>rijenbemesting na opkomst</td>
<td>MC</td>
<td>53,3</td>
<td>360,8</td>
<td>19,3</td>
<td>10,4</td>
<td>200</td>
</tr>
<tr>
<td>H</td>
<td>rijenbemesting na opkomst</td>
<td>KAS</td>
<td>51,3</td>
<td>353,5</td>
<td>18,1</td>
<td>11,2</td>
<td>203</td>
</tr>
<tr>
<td>I</td>
<td>rijenbem.bij zaai + rijenbem. na opkomst</td>
<td>KAS¹+MC²</td>
<td>54,4</td>
<td>349,5</td>
<td>19,0</td>
<td>11,1</td>
<td>212</td>
</tr>
<tr>
<td>J</td>
<td>rijenbem.bij zaai + rijenbem. na opkomst</td>
<td>KAS¹+KAS³</td>
<td>54,9</td>
<td>366,8</td>
<td>20,1</td>
<td>11,9</td>
<td>239</td>
</tr>
<tr>
<td>gemiddeld</td>
<td></td>
<td></td>
<td>52,3</td>
<td>355,6</td>
<td>18,6</td>
<td>10,5</td>
<td>198</td>
</tr>
</tbody>
</table>

LSD³) 1,5 24

1) bij zaai
2) na opkomst
3) LSD = kleinste, statistisch betrouwbaar verschil

Figuur 7. Drogestofopbrengst onderzoek csnijmaïs mineralenconcentraten Zuidoost-
Figuur 8. N-opname onderzoek snijmaïs mineralenconcentraten Zuidoost-Nederland 2010
5 Conclusies

5.1 Consumptieaardappel

In het groeiseizoen zien we bij de visuele waarnemingen dat bij een gelijke N-bemesting uit KAS en mineralenconcentraat geen duidelijke verschillen optreden. Het object met mineralenconcentraat bedekt eerder de bodem dan eenzelfde stikstofgift met KAS. We zien het gewas waarbij mineralenconcentraat is toegediend eerder op z’n retour gaan ten opzichte van gebruik van allen KAS in dezelfde hoeveelheid en hetzelfde toedieningsmoment.

De opbrengst, het onderwatergewicht (OWG), de drogestofopbrengst en de N-opname in de knollen waren na bijbemesting met mineralenconcentraat lager dan na bijbemesting met KAS. De verschillen waren echter niet significant.

Vergelijking van de basisbemesting met gelijke hoeveelheden stikstof uit mineralenconcentraat of uit KAS geeft een vrijwel gelijk resultaat.

5.2 Snijmaïs

Bij de visuele waarnemingen in de mais zien we bij toepassing van mineralenconcentraat bij zaai en na opkomst een wat hogere bodembedekking medio juni. De gewasstand reageert ook positief bij toepassing van mineralenconcentraat bij zaai en na opkomst ten opzichte van toepassing van KAS bij zaai en na opkomst.

In combinatie met een startgift KAS in de rij bij zaai gaf de rijtoediening van MC na opkomst een lagere drogestofopbrengst dan rijtoediening van KAS (n.s.) en een significant lagere N-opname. Mogelijk trad er teveel grondverstoring op doordat twee keer een kouter (op dezelfde plaats) door de grond is getrokken: bij zaai op en na opkomst. Dit kan de N-opname door het gewas enigszins hebben belemmerd, daar de lokale bewortelingsmogelijkheden op de plaats van grondverstoring mogelijk wat minder goed zijn geweest en precies op deze plaats ook de stikstof is toegediend. De KAS werd na opkomst niet met een kouter in de grond gebracht, maar naast de rij gestrooid en licht ingewerkt.
Bijlage 1 Proefveldschema consumptieaardappelen

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>H</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>C</td>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>15</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>III</td>
<td>E</td>
<td>A</td>
<td>D</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>14</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>B</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>13</td>
<td>21</td>
<td>29</td>
</tr>
<tr>
<td>II</td>
<td>H</td>
<td>E</td>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>12</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>F</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>G</td>
<td>H</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9</td>
<td>17</td>
<td>25</td>
</tr>
</tbody>
</table>

20m.

6m.
Bijlage 2 Proefveldschema snijmaïs

<table>
<thead>
<tr>
<th>I</th>
<th>J</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>17</td>
<td>25</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>18</td>
<td>26</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>19</td>
<td>27</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>20</td>
<td>28</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>21</td>
<td>29</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>22</td>
<td>30</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>23</td>
<td>31</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II</th>
<th>A</th>
<th>H</th>
<th>J</th>
<th>B</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III</th>
<th>I</th>
<th>J</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV</th>
<th>G</th>
<th>I</th>
<th>C</th>
<th>J</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>G</th>
<th>I</th>
<th>C</th>
<th>J</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>

20m. 6m.
Bijlage 3 Analyse mineralenconcentraat

<table>
<thead>
<tr>
<th></th>
<th>RO-concentraat (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>droge stof</td>
<td>33</td>
</tr>
<tr>
<td>ruw as</td>
<td>23</td>
</tr>
<tr>
<td>org stof</td>
<td>10</td>
</tr>
<tr>
<td>stikstof</td>
<td>8,21</td>
</tr>
<tr>
<td>C/N-ratio</td>
<td>1</td>
</tr>
<tr>
<td>Stikstof-ammoniak</td>
<td>8,2</td>
</tr>
<tr>
<td>Stikstof-organisch</td>
<td>0</td>
</tr>
<tr>
<td>Fosfor</td>
<td>0,04</td>
</tr>
<tr>
<td>Fosfaat</td>
<td>0,09</td>
</tr>
<tr>
<td>Kalium</td>
<td>5,8</td>
</tr>
<tr>
<td>Kali</td>
<td>7,0</td>
</tr>
<tr>
<td>Magnesium</td>
<td>< 0,4</td>
</tr>
<tr>
<td>Magnesia</td>
<td>< 0,7</td>
</tr>
<tr>
<td>Natrium</td>
<td>1,4</td>
</tr>
<tr>
<td>Natron</td>
<td>1,9</td>
</tr>
<tr>
<td>Volumegewicht (kg/m)</td>
<td>1010</td>
</tr>
</tbody>
</table>
Bijlage 4 Neerslagoverzicht te Vredepeel in 2010

<table>
<thead>
<tr>
<th>Dagen</th>
<th>JAN</th>
<th>FEBR</th>
<th>MRT</th>
<th>APR</th>
<th>MEI</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OKT</th>
<th>NOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>2,6</td>
<td>0,0</td>
<td>16,4</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,5</td>
<td>11,4</td>
<td>0,1</td>
<td>3,0</td>
<td>14,3</td>
<td>0,0</td>
<td>0,0</td>
<td>2,0</td>
<td>0,0</td>
<td>1,8</td>
<td>0,6</td>
</tr>
<tr>
<td>3</td>
<td>6,0</td>
<td>2,8</td>
<td>0,0</td>
<td>6,4</td>
<td>1,4</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>2,7</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>5</td>
<td>0,0</td>
<td>1,0</td>
<td>8,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,3</td>
<td>3,1</td>
<td>0,0</td>
<td>0,0</td>
<td>16,2</td>
</tr>
<tr>
<td>6</td>
<td>0,3</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,4</td>
<td>3,4</td>
<td>0,0</td>
<td>0,0</td>
<td>11,2</td>
<td>0,0</td>
<td>1,0</td>
</tr>
<tr>
<td>7</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,1</td>
<td>4,5</td>
<td>0,0</td>
<td>0,0</td>
<td>7,0</td>
<td>5,4</td>
<td>0,0</td>
<td>0,8</td>
</tr>
<tr>
<td>8</td>
<td>0,0</td>
<td>0,4</td>
<td>1,0</td>
<td>0,9</td>
<td>0,0</td>
<td>1,4</td>
<td>0,0</td>
<td>3,8</td>
<td>4,5</td>
<td>0,0</td>
<td>3,6</td>
</tr>
<tr>
<td>9</td>
<td>0,6</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,1</td>
<td>0,0</td>
<td>13,1</td>
</tr>
<tr>
<td>10</td>
<td>0,2</td>
<td>0,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,6</td>
<td>5,2</td>
<td>4,9</td>
<td>1,6</td>
<td>0,0</td>
<td>24,0</td>
</tr>
<tr>
<td>11</td>
<td>0,0</td>
<td>0,0</td>
<td>0,6</td>
<td>0,0</td>
<td>26,7</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>15,5</td>
</tr>
<tr>
<td>12</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>21,2</td>
<td>0,2</td>
<td>10,6</td>
<td>0,0</td>
<td>0,0</td>
<td>35,5</td>
</tr>
<tr>
<td>13</td>
<td>0,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,2</td>
<td>0,0</td>
<td>1,5</td>
<td>0,4</td>
<td>0,2</td>
<td>0,0</td>
<td>16,0</td>
</tr>
<tr>
<td>14</td>
<td>0,0</td>
<td>1,1</td>
<td>0,1</td>
<td>0,0</td>
<td>0,0</td>
<td>12,3</td>
<td>0,0</td>
<td>7,5</td>
<td>0,1</td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,0</td>
<td>1,2</td>
<td>8,6</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>24,2</td>
<td>7,0</td>
<td>8,8</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,8</td>
<td>3,8</td>
<td>5,2</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>17</td>
<td>7,5</td>
<td>1,8</td>
<td>0,0</td>
<td>0,0</td>
<td>4,2</td>
<td>0,0</td>
<td>0,0</td>
<td>1,0</td>
<td>3,2</td>
<td>7,5</td>
<td>0,0</td>
</tr>
<tr>
<td>18</td>
<td>2,1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,2</td>
<td>0,0</td>
<td>0,6</td>
<td>0,0</td>
<td>5,0</td>
<td>1,3</td>
</tr>
<tr>
<td>19</td>
<td>0,2</td>
<td>0,0</td>
<td>3,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>7,5</td>
<td>0,0</td>
</tr>
<tr>
<td>20</td>
<td>0,0</td>
<td>0,0</td>
<td>19,3</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>4,0</td>
<td>0,2</td>
</tr>
<tr>
<td>21</td>
<td>0,2</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,3</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>22</td>
<td>0,0</td>
<td>13,6</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,1</td>
<td>26,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0,9</td>
<td>5,4</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>6,2</td>
<td>8,9</td>
<td>4,8</td>
<td>1,5</td>
</tr>
<tr>
<td>24</td>
<td>0,0</td>
<td>4,1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,0</td>
<td>1,2</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0,0</td>
<td>1,6</td>
<td>2,3</td>
<td>4,0</td>
<td>0,4</td>
<td>0,0</td>
<td>7,2</td>
<td>8,6</td>
<td>0,0</td>
<td>0,0</td>
<td>0,4</td>
</tr>
<tr>
<td>26</td>
<td>0,0</td>
<td>4,3</td>
<td>4,5</td>
<td>0,0</td>
<td>7,2</td>
<td>0,0</td>
<td>11,2</td>
<td>25,0</td>
<td>0,0</td>
<td>5,8</td>
<td>0,0</td>
</tr>
<tr>
<td>27</td>
<td>0,6</td>
<td>5,2</td>
<td>5,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,6</td>
<td>0,0</td>
<td>12,4</td>
<td>3,0</td>
<td>0,0</td>
</tr>
<tr>
<td>28</td>
<td>4,5</td>
<td>10,2</td>
<td>1,1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,7</td>
<td>4,0</td>
<td>1,2</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>29</td>
<td>6,6</td>
<td>5,5</td>
<td>3,6</td>
<td>5,0</td>
<td>0,0</td>
<td>0,1</td>
<td>27,6</td>
<td>0,0</td>
<td>0,0</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1,8</td>
<td>0,7</td>
<td>0,0</td>
<td>4,2</td>
<td>0,0</td>
<td>0,0</td>
<td>5,6</td>
<td>2,9</td>
<td>2,2</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1,8</td>
<td>2,1</td>
<td>0,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| TOTAAL| 36,5| 67,3| 63,6| 19,5| 72,7| 8,6| 73,5| 159,3| 84,9| 69,7| 145,1|

Hoeveelheid neerslag in mm per dag
Bijlage 5 Minimum temperatuuroverzicht
te Vredepeel in 2010

<table>
<thead>
<tr>
<th>Dagen</th>
<th>JAN</th>
<th>FEBR</th>
<th>MRT</th>
<th>APR</th>
<th>MEI</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OKT</th>
<th>NOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-5</td>
<td>-2</td>
<td>-1</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>22</td>
<td>15</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>-5</td>
<td>0</td>
<td>-4</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>18</td>
<td>13</td>
<td>8</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>-10</td>
<td>0</td>
<td>-3</td>
<td>3</td>
<td>6</td>
<td>11</td>
<td>15</td>
<td>13</td>
<td>7</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>-7</td>
<td>3</td>
<td>-4</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>15</td>
<td>13</td>
<td>6</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>-7</td>
<td>0</td>
<td>-4</td>
<td>5</td>
<td>4</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>-6</td>
<td>-1</td>
<td>-4</td>
<td>5</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>-10</td>
<td>0</td>
<td>-5</td>
<td>10</td>
<td>5</td>
<td>12</td>
<td>15</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>-5</td>
<td>-5</td>
<td>-5</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>16</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>-4</td>
<td>-7</td>
<td>-3</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>17</td>
<td>13</td>
<td>13</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>-3</td>
<td>-6</td>
<td>-1</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>17</td>
<td>14</td>
<td>14</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>-2</td>
<td>-5</td>
<td>-1</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>16</td>
<td>10</td>
<td>14</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>-4</td>
<td>-5</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>-4</td>
<td>-4</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>18</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>-4</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>17</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>-5</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>15</td>
<td>14</td>
<td>9</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>-5</td>
<td>4</td>
<td>-1</td>
<td>7</td>
<td>11</td>
<td>14</td>
<td>15</td>
<td>9</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>14</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>15</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-1</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>19</td>
<td>12</td>
<td>11</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>15</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>16</td>
<td>10</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>-1</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>13</td>
<td>11</td>
<td>12</td>
<td>9</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>-7</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>12</td>
<td>9</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>26</td>
<td>-10</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>6</td>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>27</td>
<td>-8</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>13</td>
<td>16</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>7</td>
<td>15</td>
<td>14</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>29</td>
<td>-1</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>15</td>
<td>13</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-2</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>16</td>
<td>14</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>-1</td>
<td>3</td>
<td>8</td>
<td>15</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimum temperatuur in graden Celsius per dag
Bijlage 6 Maximum temperatuuroverzicht te Vredepeel in 2010

<table>
<thead>
<tr>
<th>Dagen</th>
<th>JAN</th>
<th>FEBR</th>
<th>MRT</th>
<th>APR</th>
<th>MEI</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OKT</th>
<th>NOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>18</td>
<td>31</td>
<td>24</td>
<td>17</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>13</td>
<td>22</td>
<td>34</td>
<td>22</td>
<td>18</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
<td>6</td>
<td>6</td>
<td>11</td>
<td>10</td>
<td>22</td>
<td>31</td>
<td>22</td>
<td>18</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>25</td>
<td>27</td>
<td>22</td>
<td>20</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>18</td>
<td>14</td>
<td>29</td>
<td>22</td>
<td>18</td>
<td>20</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>-2</td>
<td>5</td>
<td>4</td>
<td>18</td>
<td>14</td>
<td>28</td>
<td>22</td>
<td>23</td>
<td>22</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>-2</td>
<td>3</td>
<td>5</td>
<td>18</td>
<td>9</td>
<td>22</td>
<td>26</td>
<td>25</td>
<td>17</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>14</td>
<td>13</td>
<td>22</td>
<td>33</td>
<td>21</td>
<td>22</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-2</td>
<td>5</td>
<td>16</td>
<td>12</td>
<td>20</td>
<td>37</td>
<td>27</td>
<td>20</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>-2</td>
<td>6</td>
<td>14</td>
<td>13</td>
<td>22</td>
<td>36</td>
<td>25</td>
<td>18</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-2</td>
<td>6</td>
<td>13</td>
<td>9</td>
<td>26</td>
<td>32</td>
<td>22</td>
<td>22</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-1</td>
<td>7</td>
<td>14</td>
<td>8</td>
<td>21</td>
<td>28</td>
<td>22</td>
<td>16</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>-2</td>
<td>6</td>
<td>18</td>
<td>10</td>
<td>17</td>
<td>26</td>
<td>21</td>
<td>19</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>-2</td>
<td>7</td>
<td>15</td>
<td>12</td>
<td>22</td>
<td>33</td>
<td>25</td>
<td>18</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>17</td>
<td>15</td>
<td>18</td>
<td>24</td>
<td>21</td>
<td>17</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>17</td>
<td>18</td>
<td>25</td>
<td>26</td>
<td>22</td>
<td>15</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>3</td>
<td>14</td>
<td>17</td>
<td>14</td>
<td>26</td>
<td>22</td>
<td>17</td>
<td>15</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>6</td>
<td>17</td>
<td>22</td>
<td>16</td>
<td>18</td>
<td>25</td>
<td>20</td>
<td>16</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>6</td>
<td>16</td>
<td>14</td>
<td>18</td>
<td>17</td>
<td>29</td>
<td>21</td>
<td>17</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>5</td>
<td>17</td>
<td>14</td>
<td>22</td>
<td>16</td>
<td>31</td>
<td>28</td>
<td>18</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>21</td>
<td>18</td>
<td>28</td>
<td>27</td>
<td>22</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>10</td>
<td>14</td>
<td>13</td>
<td>24</td>
<td>22</td>
<td>22</td>
<td>25</td>
<td>22</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>6</td>
<td>14</td>
<td>15</td>
<td>26</td>
<td>26</td>
<td>22</td>
<td>23</td>
<td>25</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>26</td>
<td>28</td>
<td>21</td>
<td>20</td>
<td>18</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>10</td>
<td>21</td>
<td>25</td>
<td>21</td>
<td>27</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>-2</td>
<td>9</td>
<td>12</td>
<td>18</td>
<td>11</td>
<td>27</td>
<td>21</td>
<td>23</td>
<td>14</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>10</td>
<td>13</td>
<td>18</td>
<td>17</td>
<td>30</td>
<td>22</td>
<td>16</td>
<td>11</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>5</td>
<td>11</td>
<td>13</td>
<td>22</td>
<td>18</td>
<td>30</td>
<td>22</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>14</td>
<td>26</td>
<td>21</td>
<td>30</td>
<td>21</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>29</td>
<td>24</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

Maximum temperatuur in graden Celcius per dag