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Preface

In 2009, the ”Studiegroep Wiskunde met de Industrie (SWI 2009)” took place in Wa-
geningen, The Netherlands, in the week of January, 26 - 30th, organized by a team
from Wageningen University and Research Centre (WUR). When organizing an SWI,
one stands in a long tradition that started at Oxford University in 1968 and has been
copied all over the world. For an overview of this tradition we refer to the website
http://miis.maths.ox.ac.uk. In Europe the numbering is strictly kept and the present
SWI 2009 was also the 67th ”European Study Group with Industry (ESGI)”. Since 1998,
nearly every year an SWI has been organized in The Netherlands, by different teams
in different places. During an SWI a group of 50 to 80 mathematicians from anywhere
in the Netherlands and abroad come together to tackle industrial problems. Six com-
panies present their problems on Monday. This time the problems came from DSM,
RABOBANK, ALBEMARLE, DHV, MARIN, and KNMI. The group members then de-
vote the entire week aiming for solutions of the problems. By Friday the groups present
their solutions. The main purpose of such an SWI is to show that mathematical modeling
and mathematical techniques are powerful tools to solve real life problems. The motiva-
tion of most participants is also greatly driven by the mere pleasure to apply mathematics
to open problems that still need a lot of modeling and to do this in a team. The enthu-
siasm and commitment to get optimal results given the limitations of such an event is
overwhelming and often the industrial partners are astonished by the results obtained in
a short period of intense, cooperative research. In these proceedings the scientific reports
of the six groups of SWI 2009 are presented. These scientific proceedings are accompanied
by a separate issue in Dutch, written by Bennie Mols. This issue contains descriptions
of the projects and their results in a form that is readable for a broad, non-scientific au-
dience. It is a pleasure to thank the sponsors of SWI 2009 for their donations. Since the
very beginning of the Dutch series of Study Groups, STW and NWO are generous spon-
sors, and their financial contributions are much appreciated. The CWI in Amsterdam
has again sponsored the printing costs of these proceedings. We also thank WUR and
ECMI for sponsoring. We like to acknowledge CAN and AIMMS for providing software
for free during the week.

The organization team of SWI 2009,

Timo Doeswijk
Karel Keesman
Jaap Molenaar
Hanneke van Ommeren
Joost van Opheusden
Dinie Verbeek
Margaret van Wissen
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Chapter 1
Dynamical Models of Extreme
Rolling of Vessels in Head Waves

Claude Archer1 Ed F.G. van Daalen2 Sören Dobberschütz3 Marie-France Godeau1

Johan Grasman4† Michiel Gunsing2 Michael Muskulus5 Alexandr Pischanskyy6 Marnix

Wakker6

Abstract:

Rolling of a ship is a swinging motion around its length axis. In particular vessels trans-
porting containers may show large amplitude roll when sailing in seas with large head
waves. The dynamics of the ship is such that rolling interacts with heave being the mo-
tion of the mass point of the ship in vertical direction. Due to the shape of the hull
of the vessel its heave is influenced considerably by the phase of the wave as it passes
the ship. The interaction of heave and roll can be modeled by a mass-spring-pendulum
system. The effect of waves is then included in the system by a periodic forcing term. In
first instance the damping of the spring can be taken infinitely large making the system
a pendulum with an in vertical direction periodically moving suspension. For a small
angular deflection the roll motion is then described by the Mathieu equation containing
a periodic forcing. If the period of the solution of the equation without forcing is about
twice the period of the forcing then the oscillation gets unstable and the amplitude starts
to grow. After describing this model we turn to situation that the ship is not anymore
statically fixed at the fluctuating water level. It may move up and down showing a motion
modeled by a damped spring. One step further we also allow for pitch, a swinging motion
around a horizontal axis perpendicular to the ship. It is recommended to investigate the
way waves may directly drive this mode and to determine the amount of energy that
flows along this path towards the roll mode. Since at sea waves are a superposition of
waves with different wavelengths, we also pay attention to the properties of such a type
of forcing containing stochastic elements. It is recommended that as a measure for the
occurrence of large deflections of the roll angle one should take the expected time for
which a given large deflection may occur instead of the mean amplitude of the deflection.
Keywords: Mathieu equation, ship dynamics, roll, spring-pendulum systems, stochastic
waves

1Ecole Royale Militaire, Belgium
2MARIN, Wageningen, The Netherlands
3Universität Bremen, Germany
4Wageningen University and Research Centre, The Netherlands
5Leiden University, The Netherlands
6Delft University of Technology, The Netherlands
†corresponding author: johan.grasman@wur.nl
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1.1 Introduction

On October 20th, 1998, a post-Panamax C11 class cargo ship sailed on the Pacific from

Taiwan to Seattle. While traversing a heavy storm, the vessel began an extreme rolling

motion (transversal swinging) with an angle of up to 40 degrees to each side. After the

storm had settled, the crew examined the status of the cargo and found that one third

of the containers were lost and another third heavily damaged, making this incident the

greatest container casualty known so far (cf. France et al. [9] for a detailed account of

the events).

The ship experienced a phenomenon known as “parametric roll” or “parametric res-

onance”: During only a few roll cycles, the roll angle increases far above what would be

considered normal (mostly up to 10 degrees). This behaviour of a ship had been known

from the 1950s, but only considered to be relevant for smaller vessels in following seas

(cf. [26]).

After the October 1998 incident, interest has been renewed. It has been suggested by

Shin et al. [26] that the hull shape of modern container ships might increase the risk of

parametric roll. In order to enlarge the load capacity while keeping the water resistance

small, the length and width of ships increased and a wide, flat stern and pronounced bow

flares appeared. This had an effect on the ship’s stability when encountering waves.

Possible countermeasures to avoid heavy rolling include the attachment of stabilizing

fins to the outer hull of the ship or the installation of active water tanks in the interior of

the ship. However, these actions increase the fuel consumption and lessen the number of

containers which can be carried. That is why these techniques are not used for modern

cargo ships (cf. [26]).

Obviously, the estimation of the risk of parametric resonance for a given ship geometry

and load characteristic is of great importance to ship owners and constructors. Research

centres such as the Marine Research Institute Netherlands (MARIN) therefore try to

predict the probability of the occurrence of parametric roll by using computer simulations

and model tests.

This paper reviews models for describing the excitation of the rolling motion. Methods

for analyzing autoparametric resonance in mechanical systems ([30]) are applied to three

different models: the variable length pendulum model (Section 1.2), the spring-pendulum

model (Section 1.3) and the spring-double pendulum model, see Section 1.4. These models

describe a ship as a force-driven dynamical system of springs and pendulums with one

up to three degrees of freedom. However, these models only consider a single encounter

frequency. To account for the more realistic situation of a superposition of different waves

we add up different waves containing stochastic elements in a way that an appropriate

2
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type of spectrum is composed, see Section 1.5.

1.1.1 Shape of a vessel and its metacentric height

In this part, we discuss the main causes of this sudden large amplitude rolling motion

[26], such as the new design of the hull of container ships influencing the stability under

heavy weather conditions and the phenomenon of parametric resonance as it applies to

roll dynamics.

In the seventies, ships had a payload of about 2000 containers and were able to sail

at about 25 knots. Nowadays, some container ships are built to carry 10000 containers,

or even more, and are still sailing at the same speed. To achieve this without increasing

the fuel consumption, it was necessary to give thinner shapes to hulls. Consequently:

• Ships are longer and their length now approximately corresponds to the length of

waves as they are met in the Pacific and the North Atlantic Ocean.

• The bow and stern shapes are thinner and more extended to the centre of the ship,

the section in the centre with a fixed U-shaped cross-section of the hull is now

forming a much smaller proportion of the ship, see Figure 1.1.

Figure 1.1: Change in waterline surface of a ship at different phases of the passing wave.

These two aspects have as consequence that, when the ship encounters waves, its

changed dynamical characteristics may bring about a critical response (Figure 1.2). Most

important factor is the varying metacentric height of the ship, this is a vector pointing

to the centre of gravity of the vessel with the centre of buoyancy as origin (the centre

of buoyancy is the gravity centre of the displaced body of water). The averaged trans-

verse cross-section of the vessel yields the transverse component (GM) of the metacentric

height, see Figure 1.2. This component determines for a large part the roll amplitude.

If the ship length is about the length of the incoming wave, the ship periodically passes

two extremes with the middle of the ship at a crest or in a trough. From Figure 1.1 it is

seen that this makes for a large difference in buoyancy. Consequently, the restoring force

3
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Figure 1.2: Roll angle in the course of time in the resonant state. Note that the period is
twice the period of the wave. The dotted line denotes the variation of the metracentric
height GM from the waves.

varies a lot. The GM represents indirectly the righting lever GZ = GMsinφ, where φ is

the roll angle, see Figure 1.3.

Figure 1.3: Cross section of a floating container. The line that connects the centre of
buoyancy B with the gravity centre G of the container represents the metacentric height.
(a) The rest state; note that the gravity force is compensated by the upward force of
the displaced body of water. (b) The container is out of balance; the centre of buoyancy
has moved to the left. The two forces are balanced in the vertical direction, but cause a
(clockwise) restoring moment GZ equal to the projection of the metacentric height GM
(line BG) upon the horizontal axis.

When the ship is on the crest of a head wave whose length is about the length of the

ship, the waterline surface of the ship (surface area defined by the intersection of the hull

and the water surface) takes a minimum value. Correspondingly GZ as well as the roll

stability are both at a minimum. Vice versa, GM and the stability are at their maximum

when the ship is in the trough of the wave. These successive variations of stability can

cause large roll motions. Since this phenomenon occurs with waves affecting the restoring
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force with a frequency being about twice the natural roll frequency and results in a large

roll amplitude, it is called parametric resonance. In Figure 1.3 the different stages of the

roll cycle can be discerned. When the ship is away from the vertical (0 degrees angle) and

in a deep trough, the righting lever is larger than in calm water, and the ship comes back

faster to the vertical while accumulating kinetic energy. At the end of the first quarter

of the roll period, the ship crosses the vertical and continues its move to the other side

because of the inertia. During this second quarter of the roll period, the ship is on a crest,

so the righting lever is smaller than in calm water, and the ship continues its movement

to a larger roll angle, due to the accumulated kinetic energy. In the third quarter the

action of the first quarter is repeated at the opposite side and the fourth quarter mirrors

the second quarter.

1.1.2 Extreme rolling

The rolling motion may re-enforce itself so that the amplitude of the roll motion increases

within a couple of roll periods from a few degrees to about 40 degrees. The resonant

dynamics from a periodic change of the GM due to waves coming in with a frequency

being twice the natural frequency is best understood from a pendulum whose length

varies with time. The amplitude of such a pendulum can be increased if its length varied

in such a way that it is smaller when it moves away from the vertical and larger when it

gets close to the vertical. This means that the length must vary with a frequency that

is twice the natural frequency of the pendulum. The GM of the ship can be seen as the

length of the pendulum. This phenomenon is similar to a child sitting on a swing who

tries to get higher by being seated when the swing gets close to the vertical and getting

up when it moves away from the vertical. The centre of gravity of the child then rises

(smaller pendulum length) and falls (larger pendulum length) successively making the

swing a (parametricly) resonant system which we will discuss in Section 1.2.

For getting parametric roll in case of a rolling vessel, some conditions must be fulfilled:

• The length of an incoming wave is about the length of the ship

• The waterline surface of the ship varies considerably during a wave cycle

• The encounter frequency of the waves is about twice the natural roll frequency of

the ship

5
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1.1.3 Models with more than one degree of freedom (DOF)

In spite of these apparently strict conditions, it’s still very difficult to accurately estimate

the risk of occurrence of parametric roll. It is our aim to select mathematical models that

suitably can be used for numerical simulations based on naval architecture data. Eissa

et al. [6] describe a 2-DOF nonlinear spring pendulum model. By multiple time scale

perturbation techniques, approximations of the solutions up to 4th order are obtained,

together with stability regions and solvability conditions.

A 3-DOF nonlinear model was developed by Neves [23], Neves and Rodriguez [24],

using a Taylor-series expansion up to second (and later to third) order of the damping

and restoring forces. The governing equations are found to be a coupled system of Hill

equations ([12]), with the parameters given explicitly by the ship’s characteristics and

geometry. This model has been implemented in Matlab by Holden et al. [13] and is

now a part of the Marine Systems Simulator1.

1.2 The Parametric Pendulum (1-DOF)

The swing analogy leads to the differential equation of a variable length pendulum. The

general 1-DOF equation for the roll angle φ is

(I + A)
d2φ

dt2
+B

dφ

dt
+ C(t)sin(φ) = 0, (1.1)

where C(t) is the restoring force, I the ship inertia, A the added mass and B the damping

in the roll direction ([17], [10]). The restoring force is GZ = GMsin(φ). For small

angle it is linearised as GZ = GMφ. Dunwoody [5] showed that in calm water GM

oscillates around its mean value GMm and also that the amplitude GMa of the oscillation

is proportional to the wave elevation. In the case of a single frequency wave with angular

velocity ω, Dunwoody’s results give

C(t) = ρg∆(GMm +GMacos(ωt)), (1.2)

where ∆ is the displacement of the ship (water equivalent of the immersed volume of the

ship), ρ the water density and g the gravity constant. If the pendulum angle φ is small

Eq.(1.1) can be linearized taking the form of the periodically forced Mathieu equation,

see Tondl [30]:
d2φ

dt2
+ b

dφ

dt
+ (c+ dcos(ωt))φ = 0, (1.3)

1Available under a GNU General Public License, see www.marinecontrol.org.
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where b is the damping coefficient, c the coefficient of the restoring force and d and ω

respectively the amplitude and angular velocity or frequency of the periodic forcing. The

natural frequency (d = 0) is

ω0 =
√

c− b2/4. (1.4)

for which resonance behavior for a forcing at twice the natural frequency is well known.

More general the phenomenon may occur for any periodic forcing term. The corre-

sponding differential equation is then referred to in the literature as a Hill equation, see

Hochstadt [12].

1.2.1 A threshold for parametric roll

In [10] the threshold for parametric roll has been studied for both the original and the

linearized restoring force term. We have seen before that the restoring force of the ship

against rolling is larger when the wave trough is amidships than when a wave crest

arrives at this point. This is due to the variation of GM . Let δGM be the difference of

GM between these two extreme cases and let p = δGM/GMm be the proportion that

represents this variation with respect to the calm water GMm. A large ratio p corresponds

to a high probability of having parametric roll. The threshold for parametric roll is then

expressed as the critical minimal value of p for which a large response (resonance) occurs.

For the Mathieu equation ([30]) this critical value can be estimated for a given ω. For a

ship model it has been predicted in [10] that parametric roll starts when p > 4µ/ω0 with

damping ratio µ = 1
2
Bω0/((I + A)ω0) and ω0 given by (1.4). An accurate determination

of the damping ratio µ is crucial as it will strongly influence the model prediction.

In [17], this threshold has been validated against basin data for a simple hull form

and compared with results from the full non-linear time domain seakeeping code PRETTI

developed for improving the computation of the effect of hull forms (not yet tested in

a basin). The authors conclude that the 1-DOF model can very well be employed in

preliminary hull design with a damping factor µ tuned with the use of empirical data.

It gives an idea of the threshold wave height for which parametric roll occurs. For the

estimation of the amplitude of the actual roll angle a nonlinear model is needed for which

for example the code PRETTI can be used. Of course this requires more computing time.

1.2.2 Further investigations

Most of the literature on parametric roll focusses on two approaches: the derivation and

theoretical analysis of a mathematical point-ship model and/or the numerical implemen-

tation of such a model using the appropriate vessel and wave specifications.
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France et al. [9] and Shin et al. [26] considered a 1 degree-of-freedom (DOF) ship

model. By linearizing the moments of damping and restoring, the authors arrive at a

Mathieu-equation to describe the ship’s behaviour. However, Spyrou [28] pointed out

several disadvantages of linearized models: the linearization is only valid for small roll

angles, whereas parametric roll is characterised by large roll amplitudes. In addition, the

instability regions of Mathieu-type models reflect the behaviour given an infinite number

of roll cycles – but we already mentioned that parametric roll only takes a few of them

to build up.

1.3 A Model for Heave-Roll Motion(2-DOF’s)

The specification of resonance conditions is one of the most important topics in the

prediction of parametric roll. Running large scale models formulated by researchers and

engineers may need hours or even days of computing time so that a quick estimate

of parameters relevant for roll cannot be obtained from it. Therefore, research is also

directed to the formulation of low dimensional models or simple schemes which may

predict heavy rolling given certain operational conditions. In this section one of such

models will be considered, see Figure 4.

    
    
    

!!!!
!!!!
!!!!

          !!!!!!!!!!

c

α ωF =   cos(   t)

z

bk

ϕ

m

M

l

Figure 1.4: Driven spring-pendulum model for heave-roll motion.

It is a two degrees of freedom model formulated by Tondl et al. [30] consisting of a

mass mounted to a periodically moving floor by a linearly damped spring. In addition a

pendulum is connected to this mass. An external periodic force of the form α cos(ωt) is

applied to the floor with α and ω respectively amplitude and frequency of the external
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periodic force. This system satisfies the following two coupled differential equations:

(M +m)(z̈ − αω2cos(ωt)) + bż + kz +ml(φ̈sin(φ) + φ̇2cos(φ)) = 0,

ml2φ̈+ cφ̇+mglsin(φ) +ml(z̈ − αω2cos(ωt))sin(φ) = 0.
(1.5)

After carrying out transformations of the time- and the dependent variables and

making a small perturbation approximation the system is described by the following

dimensionless linear differential equations:

ü+ κu̇+ q2u = 0,

ψ̈ + κ0ψ̇ + ψ − aη2 [(1 + A) cos(ητ) + B sin(ητ)]ψ = 0,
(1.6)

where u and ψ are the vertical and the angular displacements of respectively the mass

and the pendulum, κ0 = c/(ω0ml
2), a = α/l, η = ω/ω0 and

A =
η2(q2 − η2)

∆
, B =

κη3

∆
,

with ∆ = (q2 − η2)2 + (κη)2, q2 = k/(ω2
0(M + m)), κ = b/(ω0(M + m)). Here m

is the mass of the pendulum, M is the mass of the oscillator, l is the length of the

pendulums weightless rod, ω0 is the eigenfrequency of the oscillator, b and c are the

damping coefficients of the linear and angular motions, k is the stiffness coefficient of the

spring, and the dot denotes the derivative with respect to the time variable τ .

The value of the parameter η determines for a large part the stability of the rolling

motion. For a value close to 2 an unstable motion may occur with large angular deflections

of the pendulum. This only happens if the forcing amplitude a is above a threshold. In

[30] it is derived that this threshold depends on η and the other parameters in the following

way:

alin =
2

η2

[

(

1− 1
4
η2
)2
+ 1

4
κ20η

2

(1 + A)2 +B2

]1/2

, (1.7)

Thus, for a ship-wave system Eq.(1.7) represents the value of the amplitude of regular

wave with a fixed frequency above which the equilibrium gets unstable. For a vessel it

means that heavy rolling may build up in a short time.

1.3.1 Computation of the threshold values from experimental
data

This section deals with four experiments with physical models in the form of scaled ships

towed in a basin. In addition at MARIN computations are carried out for these ships

9



Proceedings of the 67th European Study Group Mathematics with Industry

using a potential flow code (PFC). For each case these numerical investigations yield

estimates for parameters occurring in Eq.(1.7). Two of the MARIN experiments are

related to a vessel X with two different input data-sets. Parametric rolling has been

observed during the experiments and was confirmed by the model computations. The

third experiment with vessel Y did not show parametric roll which is in agreement with

the computations using PFC. In the last experiment related to the vessel Z parametric

roll was observed during the tests of the physical scaled model in the basin. However,

in this case it was not predicted by the computations. All experiments were carried out

with head waves acting upon the vessel.

The input data-sets for the models include the following parameters: the frequency of

the external force ω [rad/s], the heave and the roll damping coefficients being respectively

b and c and the stiffness coefficient k. The data-sets have been computed by MARIN

using PFC for a range of frequencies of the excitation force, and were given to us to

analyse them using the results of the linear approximation Eq.(1.6). It is noted that the

threshold amplitude Eq.(1.7) does not explicitly depend on the speed of the waves (or

the vessel). Of course, the speed is implicitly present in the input data (Doppler effect).

Substituting the input data into Eq.(1.7) the threshold amplitude alin we obtain for

each of the four vessels. However, some transformations and additional calculations have

to be made first. The length l of the pendulum can be found using the well-known

equation of the period of small oscillations of the physical pendulum T = 2π
√

l/g, where

T is the roll period of the ship, l is the length of the ‘equivalent’ mathematical pendulum

satisfying l = gT 2/(4π2). Since the rolling does not depend directly on the wave excitation

but on the heave motion of the vessel, a transfer function is needed. Thus the final

threshold amplitude for the waves can be written as

athr =
alinlω

2Mh

S(ω)
, (1.8)

where Mh is the mass of the vessel moved by the heave motion and S(ω) the transfer

function taken from the ‘MARIN’ data.

To simplify the calculations a C-code program has been written in such a way that

the threshold amplitude athr directly can be obtained from the input data-set for each

value of the frequency of the excitation force. The graphs of the threshold amplitude for

each set of data (for each vessel) are presented in Figure 1.5.

Parametric resonance of the vessel for all models can most likely be expected in

the range of small frequencies of the external force up to 0.8 [rad/s], with values for the

amplitude of the waves from around 0.4 to around 30 meters. These threshold amplitudes
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(a) (b)

(c) (d)

Figure 1.5: Logarithm of threshold amplitudes α of a single frequency wave forcing as
a function of the wave frequency ω for different speeds of the vessel. (a) Vessel X for
a large range of wave frequencies. (b) Vessel X for low frequency waves in more detail;
note the low threshold value at ω = 0.4. (c) For vessel Y a similar, but less pronounced,
resonance is found. (d) Result for vessel Z.

11



Proceedings of the 67th European Study Group Mathematics with Industry

can be so small because all energy goes in that wave with a single frequency. In reality

waves consisting of various stochastic components will increase these values considerably.

The parts of the graphs for the higher frequencies are cut out because the values of the

threshold amplitude are very large.

1.4 A Spring with Two Pendulums (3-DOF’s)

For further study of ships, we define our coordinate vectors as ~x pointing from the center

of mass towards the front of the ship while ~y and ~z are pointing towards the right side of

the ship and in the upwards vertical direction, respectively. We know that roll and pitch

(rotation around resp. the x and the y axis) and heave (movement in the z direction) are

strongly coupled. The important question is now: under what conditions is it possible

that pitch and heave motion are rapidly converted into roll motion? As a first observa-

tion we should mention that the moment of inertia for pitch is much larger than the one

for roll. This means that even for small pitch angles a potentially dangerous amount of

angular momentum is stored in pitch.

Figure 1.6: Spring and two-pendulum model for heave-roll-pitch motion. Note that in
this model there is no direct interaction between roll and pitch.

In a spring - pendulum model (SPM) the pendulum accounts for roll and the spring

accounts for heave, see Tondl et al.[30]. In this publication also the double spring -

pendulum model (DSPM) is introduced, so that also pitch is included. The system

consists of two springs connected by a rod that turns freely around its length axis. A

pendulum, connected to this rod, models the roll of the ship, while the two springs capture

12
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heave and pitch. Because in this model heave and pitch are identified by separate state

variables, it is not possible to see the effect of ”pitch energy” being released. Instead of

the DSPM, we prefer to present the spring - double pendulum model (SDPM), see Figure

1.4. It consists of a large mass M (related to the mass of the ship) mounted by a vertical

spring to a fixed point. The spring constant k represents the restoring force component

in the heave mode. The position of the fixed point may change in time denoting forcing

by waves. The pendulums have masses mi attached to the large mass by rods of length

li, see Figure . It is assumed that the pendulums swing independent from each other

(physically in directions perpendicular to each other) and that they only interact via the

heave motion. The product m1(l1)
2 is determined by the moment of inertia around the x

axis (roll), m2(l2)
2 is determined by the moment of inertia around the y axis (pitch). The

three degrees of freedom of this system are z, φ1 and φ2 being the vertical displacement

of massM from the stationary state and the angles with the vertical for both pendulums.

The kinetic energy is given by

T =
1

2
Mż2 +

2
∑

i=1

[

1

2
mi

(

ż + liφ̇i sinφi

)2

+
1

2
mi

(

liφ̇i cosφi

)2
]

, (1.9)

and the potential energy is given by

V =
1

2
kz2 +

2
∑

i=1

migli(1− cosφi). (1.10)

Since the heavy sideway roll in practice appears within a few periods, we assume that

external forcing cannot account for this effect. Therefore we do not include an external

force. Of course the initial heave and pitch are caused by an external pulse or by setting

a far from equilibrium initial state. We investigate the conditions for transfer of heave

and pitch into roll.

1.4.1 Equations of Motion

For the Lagrangian L = T − V , the Euler-Lagrange equation for variable u is given by

d

dt

∂L

∂u̇
− ∂L

∂u
= 0. (1.11)

For the model under consideration, the Lagrange equations are found to be

(M +m1 +m2)z̈ + bż + kz +m1l1(φ̈1 sinφ1 + φ̇2
1 cosφ1)

+m2l2(φ̈2 sinφ2 + φ̇2
2 cosφ2) = 0, (1.12a)

l1φ̈1 + c1φ̇1 + g sinφ1 + z̈ sinφ1 = 0, (1.12b)

13
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l2φ̈2 + c2φ̇2 + g sinφ2 + z̈ sinφ2 = 0, (1.12c)

where b, c1, and c2 are the damping coefficients and g is the gravitation acceleration. A

large amplitude response from a periodic forcing is expected if the damping terms are

small. Therefore, in our model we neglect these terms. Eqs. (1.12) are linearized using

the small angle approximation:

(M +m1 +m2)z̈ + kz +m1l1(φ̈1φ1 + φ̇2
1 −

1

2
φ̇2
1φ

2
1)

+m2l2(φ̈2φ2 + φ̇2
2 −

1

2
φ̇2
2φ

2
2) = 0, (1.13a)

l1φ̈1 + gφ1 + z̈φ1 = 0, (1.13b)

l2φ̈2 + gφ2 + z̈φ2 = 0. (1.13c)

It is noted that only small deflections from equilibrium are correctly approximated. Still

one can study possible strong responses of the nonlinear system to periodic perturbations.

At the moment the deflections grow large only qualitative information is obtained from

this approach. The solutions for the uncoupled equations are given by

z(t) = a0 sin (ω0t) + b0 cos (ω0t) , (1.14a)

φ1(t) = a1 sin (ω1t) + b1 cos (ω1t) , (1.14b)

φ2(t) = a2 sin (ω2t) + b2 cos (ω2t) , (1.14c)

ω0 =

√

k

M +m1 +m2

, ω1 =

√

g

l1
, ω2 =

√

g

l2
. (1.14d)

1.4.2 Series Solutions based on the Mathieu equation

In this section we explore the possible application of a Galerkin type of approximation

of the solution of Eq.(1.13). This approach is widely used and, in the way it applies to

this problem, it is also known as the ”spectral method”, see [2].

Since all equations of motion are invariant under time translations, we have the free-

dom of taking a0 = 0, because later z(t) can be shifted in time, and all solutions of

φ1 and φ2 with it. We insert the harmonic solution z(t) = b0 cos(ω0t) in Eqs.(1.13bc).

Introduction of a new independent variable x ≡ (ω0t)/2 transforms both equations into

the Mathieu equation:

d2y

dx2
+ [a− 2k2 cos(2x)]y = 0, k2 = q. (1.15)
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It has periodic solutions for infinitely many a, depending on the value of q. Four series of

these ’eigenvalues’ a do exist, and correspond to four possible combinations k, l ∈ {0, 1}
in the general series of solutions (Gradshteyn and Ryzhik [14]):

fkl(x) = (cos(x))k
∞
∑

n=0

fkln(sin(x))
2n+l. (1.16)

The derivative (dfkl)/(dx)(x) can be expressed as g(k+1)(l+1)(x) with a series expansion as

given by Eq.(1.16) and with indices taking values modulo 2. In a similar way we handle

(d2fkl)/(dx
2)(x) = hkl(x). For a product pk1l1(x)qk2l2(x) we can derive an expression of

the form r(k1+k2)(l1+l2)(x) with again indices that are taken modulo 2.

Let us ignore the perturbation of the heave motion by the pendulums and replace the

solution z = b0 cos(2x) by

z =
∞
∑

n=0

zn(sin(x))
2n. (1.17)

Then we can express the solutions of the pitch- and roll equations as

φi(x) = (cos(x))ki
∞
∑

n=0

(φi)n(sin(x))
2n+li . (1.18)

For z it is important to take k = l = 0 to have the same ’overall’ k and l for all terms in

Eq.(1.13a) . For φ1 and φ2, k and l are not fixed by Eqs.(1.13bc), mainly because their

first derivatives appear quadratically in Eqs.(1.13). Since products of series do couple

all coefficients, it is not expected that the nonlinear recursion relations give analytical

results. However, taking only the first 5 terms in the series representations, for explicit

values of the constants one can numerically solve the equations for the coefficients. A

stable solution with strong pitch and roll indicates the possibility of parametric roll.

1.4.3 Effect of head waves

If we include forcing from waves coming in with an angular velocity ω0 and if we also

assume that it only acts upon heave being heavily damped, then the system (1.14a)-

(1.12bc) covers separately the 1-DOF model for roll (Section 1.2) as well as for pitch. If

wave forcing is added to DSPM (12), then we arrive at a type of model with periodic

forcing. A new element is brought in if the pitch-pendulum is considered to be directly

forced by the head waves. It is known that heavy roll occurs at wave length of about the

length of the ship. This means that the pitch motion will have a component with the

wave frequency and an additional energy flow is expected from the pitch motion to heave

and roll. Resonant forcing of the pitch motion would even enlarge this energy flow.
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1.5 Stochastic aspects

Up to now we have only considered the response of a ship that encounters a single

frequency wave. In reality, the sea state is a complex mixture of waves with many

different frequencies, and in this section we describe possible approaches to this more

difficult problem.

1.5.1 Stochastic description of ocean waves

Realistic sea states are conveniently described by their spectral properties, see Podgorski

et al. [20]. Let ζ(t) denote the sea surface elevation at time t. It is assumed that this

is a weakly stationary ergodic random process, which is usually satisfied for deep water

waves. More specifically, ζ(t) can usually be assumed to be a Gaussian process (whose

variance characterizes the sea severity) [19]. Its autocorrelation function is defined as

expectation

R(τ) = lim
T→∞

1

2T

∫ T

−T

(ζ(t)− µ)(ζ(t+ τ)− µ) dt, (1.19)

where µ is the mean surface elevation, usually chosen to be zero. By the Wiener-

Khintchine theorem, the power spectral density S(ω) is given as the Fourier transform of

R(τ),

S(ω) =
1

π

∫ ∞

−∞

R(τ)e−iωτ dτ, (1.20)

and represents the average wave energy (density) for a given frequency component.

The sea state is generated by the complex interaction of the local wind field with the

sea surface, and therefore this stochastic description is often adequate. Moreover, the

spectral density S(ω) can be calculated from first principles (see e.g., [18]). In practice,

however, it is more conveniently described by phenomenological models.

The Pierson-Moskowitz spectrum describes a fully-developed sea, i.e., a sea state that

is in equilibrium with the local wind field:

S(ω) =
αg2

ω5
exp

[

−0.74
(ω0

ω

)]

, (1.21)

where α = 8.1 × 10−3, g = 9.81m/s2 is the usual gravitational acceleration, and ω0 ≈
g/(1.026·U10) depends on the wind speed U10 at 10 meter height. An example for different

wind speeds is shown in Figure 1.7a.

The JONSWAP (Joint North Sea Wave Project) spectrum in Figure 1.7b takes into

account that most sea states are rarely fully developed. It features the additional param-

eter F , the so-called fetch, which represents the distance over which the wind blows with

16



Dynamical Models of Extreme Rolling of Vessels in Head Waves

0.00 0.05 0.10 0.15 0.20 0.25

0
2

4
6

8
1
0

Frequency [Hz]

P
o
w

e
r 

s
p
e
c
tr

a
l 
d
e
n
s
it
y
 [
m

2
H

z
]

U10 = 18m s

U10 = 16m s

U10 = 14m s

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

Frequency [Hz]

P
o
w

e
r 

s
p
e
c
tr

a
l 
d
e
n
s
it
y
 [
m

2
H

z
]

U10 = 30m s

F = 20km

F = 10km

F = 5km

Figure 1.7: Widely used wave spectra for stochastic simulation. (a) Pierson-Moskowitz
spectrum for a fully developed sea. (b) JONSWAP spectrum for the North Sea for
different values of the fetch (see text). Note that the JONSWAP spectrum does not
represent a fully developed sea!
different

constant velocity U10. Explicitly, it is given by

S(ω) =
αg2

ω5
exp

[

−5
4

(ωp

ω

)4
]

γr, r = exp

[

−(ω − ωp)
2

2σ2ω2
p

]

, (1.22)

where now α = 0.076(U2
10/(F · g))0.22, ωp = 22(g2/(U10 · F ))1/3, γ = 3.3, and σ = 0.07 for

ω ≤ ωp, and σ = 0.09 otherwise.

Sometimes an additional component is visible in real spectra, the so-called swell. This

is caused by a distant wave field that has travelled into the area and is superimposed on

the locally generated field.

1.5.2 Simulations

Knowledge of S(ω) allows the efficient simulation of the underlying process, by approxi-

mating it by a finite mixture of frequencies. Assuming that the process ζ(t) is bandlim-
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ited2, i.e., S(ω) is zero outside an interval [−∆,∆], let us divide the interval [0,∆] into
N subintervals of length ∆/N . Then we can write

x̃(t) =
N
∑

k=1

Ak cos(ωkt+ ǫk), (1.23)

and the process x̃(t) exhibits (approximately) the same stochastic properties as ζ(t). Here

the phases ǫk are chosen uniformly from the interval [−π, π], and the amplitudes Ak are

given by Ak = 2 (S(ωk)∆k)
1/2. This method goes back to the seminal work of Rice [22],

and has been widely used in applications. It is also the basis for the recently developed

surrogate data methods in nonlinear time series analysis. However, mathematically it is

preferable to use

x(t) =
N
∑

k=1

Rk cos(ωkt+ ǫk), (1.24)

where Rk has a Rayleigh distribution with parameter 2S(ωk)∆k [29].

Instead of using a regular division of the power spectral density, one can also sample

frequency components randomly, according to the probability density

p(ω) =
S(ω)

σ2
, (1.25)

where σ2 =
∫∞

0
S(ω) dω is the variance of ζ(t) [16].

A drawback of both these methods is (i) that the spectrum of the simulated elevations

is discrete, and (ii) that the process ζ(t) is only approximated well for N sufficiently large.

To overcome this limitation, one can consider a disordered periodic process,

y(t) =
N
∑

k=1

Bk cos(ωkt+ νk), (1.26)

where the νk are independent white-noise processes. This leads to a continuous spectrum

and even allows the derivation of analytical results in a few special cases, applying the

theory of stochastic differential equations [1, 16, 21]. However, there is no simple rela-

tion between the spectra of ζ(t) and y(t), and the former therefore needs to be fitted

nonlinearly to S(ω).

Finally, for simulation purposes the most efficient representation is in terms of a time-

discrete ARMA(P,Q) process,

zt =
P
∑

k=1

akzt−k +

Q
∑

l=1

blǫt−l + ǫt, (1.27)

2In practice, the cut-off frequency ∆ is usually chosen to be the Nyquist-frequency with which the
data have been sampled.
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where the ǫt are uncorrelated Gaussian white-noise errors. As before, the coefficients need

to be found by nonlinearly fitting the spectrum of zt to S(ω). These processes have been

popularized by Spanos and Mignolet [27].

Multivariate generalizations of these techniques also exist. In particular, if one is

interested in a specific sea state, from which time series recordings are available, the

nonparametric simulation technique of DelBalzo et al.[4], going back to earlier work of

Scheffner and Borgman [25], can be employed [4]. Thereby, the variables of interest (sea

elevation, wave periods, wave directions, etc.) are transformed to (correlated) Gaussian

variables. Realizations of these with the desired correlation structure can then be easily

obtained from the eigendecomposition of the covariance matrix, and transformed back

into time series.

1.5.3 Nonstationary sea states

In the above, we have still assumed that the sea state is stationary. This assumption is

often warranted for timescales of up to a few hours to days, but in general it is clear that

the properties of the sea change over the course of time.

The standard methods to deal with this issue are so-called sea-state prediction graphs

(e.g., see Table 2.2 in [7]). These are basically discretized probability distributions of wave

spectra that state the probability to find a given wave spectrum in a random observation

interval. From these, a nonstationary time series of surface elevations ζ(t) can be achieved

as a hidden Markov process, where a continuous-time Markov chain allows the process

to switch from one wave spectrum to another regime.

1.5.4 Connection with ship dynamics

How do the above considerations connect with the dynamical evolution of the state of

a ship? We have already seen in Eq.(6) that the equations of motions are uncoupled to

first order in the parameter η with respect to roll motion. Excitation of roll motion is

facilitated through a restoring moment γ(ϕ, t), that is given by the so-called righting lever

curve for the ship under consideration. In calm water, this moment is time-independent,

but in general the righting-lever curves capture the effect of dynamical changes in stability

and depend on wave properties and the ship’s speed. The slopes of these curves in the

upright position correspond to the variation in metacentric height GM that the ship

experiences, and the restoring moment can be modelled by

γ(ϕ, t) = (1 + δ cosωt)ϕ− αϕ3, (1.28)
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where 2δ corresponds to this variation, and ω is the wave encounter frequency [16]. Note

that the latter is related to the wave frequency ω0 by a Doppler shift, ω = ω0 − ω2
0U/g ·

cosµ, where µ is the angle between wave propagation and the ship’s forward direction,

and U is the ship’s speed. The additional parameter α captures the nonlinearity of the

restoring lever curves and can be fitted from available design data.

The effect that a sea state will have upon the motion of a ship is usually expressed in

terms of the so-called response amplitude operator , which is the transfer function for the

linear ship model and readily available for most ship designs. An external forcing by a

frequency component

Ak cos(ωkt+ ǫk) (1.29)

will result in a steady-state response

Ak|H(ωk)| cos(ωkt+ δ(ωk) + ǫk), (1.30)

where |H(ωk)| is the frequency-dependent response per unit wave amplitude and δ(ωk) is

a phase angle [7].

The beauty of linear equations of motion is that the response amplitude operators

corresponding to distinct frequency components can be simply superposed.

1.5.5 Risk quantification

As the dynamical system of the ship is nonlinear and nonautonomous, it is almost im-

possible3 to find analytical results for its stability under random sea states, even if the

stochastic properties of the latter are known.

In practise one is interested in a quantification of the risk of occurence of parametric

roll resonance. Assuming that the loss is total when the roll angle rises above a certain

threshold (e.g., 20 degrees, as then containers are likely to fall off from a container ship),

simplifies the problem enormously. Assuming that such an event is unlikely, it can be

mathematically modelled as a homogeneous Poisson process with intensity λ > 0, whereby

λ represents the expected number of events per unit time. Let N be the number of such

events during a fixed time of operation T of the ship, then

pr(loss) = pr(N ≥ 1) = 1− e−λT (1.31)

is the desired risk of loss.

We can estimate λ from numerical simulations, resetting the simulation to randomly

chosen initial conditions whenever the roll angle exceeds the threshold, and counting

3The work of Farrell et al. on generalized stability theory [8] could offer a possible way to deal with
these problems.
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the occurences of these events. However, it is more advantageous to consider the mean

waiting time τ before such an event occurs. The interarrival times in the Poission process

are exponentally distributed, and the relation between τ and λ is simply τ = 1/λ.

Since expectation is a linear operation, it is clear that one only needs to estimate λ

for each stationary sea state of interest, characterized by a single wave spectrum, and

can use the above-mentioned prediction graphs (or a hidden Markov model, for a more

accurate estimate) to combine risks for different sea states into a global operational risk.

Alternatively, one could use extreme value statistics [3], e.g., by fitting the maxima

of roll angles observed in a simulation to an extreme value distribution. This would be

particularly useful to quantify the operational risk in conditions where resonance might

be expected, but occurs too seldomly to calculate mean waiting times.

1.5.6 Numerical results

Stochastic waves generated by (24) act upon the vessel. Therefore, effective transfer

functions have to be used with the appropriate parameters such as damping constants and

added masses. The values of these constants are weighted averages over 500 frequency

components of a random Pierson-Moskowitz spectrum, weighted according to spectral

power. Figure 1.8 shows an example for wind speed U10 = 21 m/s. The wave time series

has been generated by the method of Rice (Section 1.5.2) from the random spectrum

shown on the right of it. For comparison, also the corresponding analytical Pierson-

Moskowitz spectrum is depicted. Such a wind speed (Beaufort scale 8.3) results in a

rough sea with a significant wave height of 5.9 meters. Although the ship heaves with

a comparable amplitude, there is no parametric rolling. In contrast to that, increasing

the wind speed to U10 = 22 m/s leads to the situation in Figure 1.9. For such wind

conditions (Beaufort scale 8.6) the significant wave height amounts to 7.8 meters and

stochastic resonance occurs.

Finally, Figure 1.9 shows a risk function for the occurrence of parametric roll under

Pierson-Moskowitz spectra. The data is based on 100 simulations that stopped either

when the roll angle exceeded 20 degrees, or after 10 hours simulated time, if no resonance

could be observed during that time. Each simulation is based on a different randomly

generated spectrum, starting from small initial conditions (0.01 meter heave and 1.0 de-

gree roll) and the mean waiting time was recorded. The finite simulation time introduces

a bias, since some waiting times are censored meaning that only a lower bound is known.

For simplicity, this effect was corrected by subtracting the minimal possible rate (one

event per 10 hours) from the corresponding mean rate λ̄ = 1/τ̄ . The minimal observed
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Stochastic wave simulation
U.10 = 20.1 [m/s]   Beaufort = 8.3   Significant wave height Hs = 5.99 [m]

Effective heave damping 7.41e+06 [kg/s]   Effective roll damping 5.03e+08 [kg m^2/s]

Figure 1.8: Example of stochastic simulation. Top left: Time series of wave heights
generated by the method of Rice [22]. Top right: Spectrum of generated wave heights and
the corresponding analytical Pierson-Moskowitz spectrum. Bottom left: Heave motion
of the ship in the pendulum-spring model under this wave forcing. Bottom right: Roll
angle. Results shown are for a wind speed of 8.3 Beaufort. Note that roll resonance does
not occur.

fraction of events (three events, for U10 = 18 m/s) was added to the values obtained from

Eq.(1.31) and the result is the approximate operational risk shown in Figure 1.10.

Note that this example just illustrates the methodology. In particular, the simple

pendulum model is difficult to use with stochastic waves, since the equivalent pendu-

lum length L, and the damping and stiffness constants depend explicitly on the wave

frequency. Using effective values as here is only a rough approximation and serves to

illustrate the procedure; in reality, one would need to use a different dynamical model

that accounts for these frequency-dependent effects.

1.6 Recommendations for Future Investigations

In the study of the rolling motion of a vessel as it is forced by waves we discern two mayor

directions:

• Analysis of the nonlinear dynamical equations stressing the interaction of different
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Stochastic wave simulation
U.10 = 20.5 [m/s]   Beaufort = 8.4   Significant wave height Hs = 6.33 [m]

Effective heave damping 7.08e+06 [kg/s]   Effective roll damping 5.03e+08 [kg m^2/s]

Figure 1.9: Example of a stochastic simulation as in Figure 1.7. Results shown are for a
slightly larger wind speed of 8.4 Beaufort. Now roll resonance does occur.

modes (heave, pitch, and roll) and the possibility of (parametric) resonance.

• The stochastic description of ocean waves and their effect upon the metacentric

height change of the vessel.

Of course also other aspects of the problem play a role such as the computation of

dynamical parameters from the design and loading of a vessel. In our search for causes

of extreme roll in heavy seas these studies play an ancillary role. For each of the two

directions indicated above we bring up ideas for further research which possibly may lead

to a better understanding of the problem of extreme roll resulting in solutions remedying

this unwanted phenomenon.

From the point of view of modeling ship motion by nonlinear differential equations

3-DOF models fully cover the motion of a ship if we consider it as a point mass and ignore

displacement in the horizontal plane. In Section 1.4 we discussed one such a model being

an alternative to a model analyzed in [30]. Of course the number of degrees of freedom can

easily be extended, see Korvin- Kroukovsky [15]. However, we have the idea that for a 3-

DOF system not yet all possible causes of extreme roll have been identified. In particular

the fact that this phenomenon occurs in combination with waves having a wavelength in

the order of the length of the vessel suggests that forcing is not only through the heave
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Figure 1.10: Risk of parametric roll (angle larger than 20 degrees) for waves having a
Pierson-Moskowitz spectrum at different wind speeds.

mode of the system but also through pitch. If this component of the forcing is present,

then in a short time a large amount of energy can be transferred from the waves to the

ship motion, as we already pointed out in Section 1.4. If in addition the forcing frequency

is close to the natural pitch frequency, the roll amplitude may increase even more. It is

worth to have this analyzed. Furthermore in Section 1.4 it is pointed out that the solution

of systems with small DOF’s can be approximated by series expansions based on series

solutions of the Mathieu equation.

In Section 1.5 it is suggested that the most efficient representation of stochastic waves

is that of a linear ARMA-system see Eq.(1.27). This approach can also be used in the

stochastic description of roll forced by waves as presented by Dunwoody [5]. He formulates

the Langevin equations for roll amplitude and phase, see formula’s (5-6) of [5]. Instead

of solving the equation for the corresponding Fokker-Planck equation one can formulate

the exit problem for the amplitude exceeding some large value. It yields the expected

value for the time needed to arrive at this value, see [11]. This exit time quantifies the

risk of extreme roll better than the mean amplitude.
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Chapter 2
An objective method to associate
local weather extremes with
characteristic circulation stuctures
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Abstract:

In this paper we give methods to find characteristic circulation patterns which are con-
nected to local extreme temperature anomalies. Two data reduction techniques are ap-
plied: Legendre polynomial fitting and watershedding. For polynomial fitting a clear
trend is found with respect to local temperatures. However, the trend is not distinc-
tive enough to give clear answers on the type of circulation patterns belonging to local
extremes. The main advantage of watershedding is that the physical properties of the cir-
culation patterns are retained while the dimension of the data is largely reduced. Expert
knowledge, however, is needed to model these main features as predictors.
Keywords: circulation pattern, extreme temperature, watershedding, Legendre poly-
nomial.
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Figure 2.1: Upper panel: time series of maximum daily temperatures of the months july
and august in the years 1958-2000; left panel - circulation pattern that relates to a local
extreme temperature in 1975; right panel - circulation pattern that relates to a local
extreme temperature in 1983

2.1 Introduction

Meteorological events such as severe storms, heavy rains, cold surges or drought which

occur locally are usually connected to circulation structures of much larger scale in the

atmosphere. In this paper we study the relation between local extreme temperatures and

circulation patterns in the atmosphere. In meteorology it can be observed that extreme

temperatures (temperature anomalies) appear for several different states of atmosphere

circulation. For example, in 1975 a high pressure anomaly was located above Scandinavia

leading to advection of warm, dry, continental air into the Netherlands by easterly winds

and local extreme heat. Eight years later, a high pressure anomaly was located right above

the Netherlands with clear skies, no wind, an abundance of sunshine and as a result,

extreme high temperatures. Figure 2.1 shows these two different circulation patterns

which caused local temperature extremes.

The concept of weather regimes was considered by Michelangeli et al. [1]. The authors

compared two different definitions of weather regimes. The first definition treats weather
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regimes as the states of the atmosphere with the highest probability of occurrence. In the

second case weather regimes are defined as the states for which large-scale motion is sta-

tionary in the statistical sense. The authors applied these methods on the same dataset

and they showed that these methods give the same number of weather regimes - four over

the Atlantic sector and three over the Pacific sector. They observed that the patterns

differ significantly and the investigation of the tendency, or drift, of clusters shows that

recurrent flows have a systematic slow evolution, explaining this difference. The patterns

are in agreement with the one obtained from previous studies, but their number differ.

Panja and Selten [2] presented a new method to optimally link local weather extremes

to large scale atmospheric circulation structures. This method objectively identifies, in

a robust manner, the different circulation patterns that favor the occurrence of local

weather extremes and is based on considering linear combinations of the dominant Em-

pirical Orthogonal Functions that maximize a suitable statistical quantity. Moreover,

Salameh and Dobrinski [3] related the occurrence of extreme events (in terms of temper-

ature, precipitation and wind speed) to weather regimes. They evaluated the uncertainty

associated with North Atlantic weather regime clustering with the re-analyses data set

and its impact on the relationship between weather regimes and extreme events over and

around the North Atlantic.

The aim of this paper is to find a method that identifies pressure patterns which lead

to extreme values of temperature in one fixed point and to work out a method to predict

when local temperature extremes occur.

To analyze circulation patterns in relation to extreme temperature anomalies we use

date obtained from the ERA-40 reanalysis dataset. The data of the circulation patterns

contained the pressure field for 1372 grid points which are arranged on 200 N - 900 N

latitude and 600 W - 600 E longitude ( 2.50× 2.50 latitude-longitude grid). A time series

of daily circulation patterns were available for July and August of the years 1958-2000 (all

together 43 years and 2666 time points in total). The local temperature was taken at the

center of the Netherlands (52.5oN, 5oE). The 5 per cent most extreme (positive) anomalies

were taken as extreme values. In this way 133 circulation patterns were connected to local

extreme temperatures. One of the main issues to be dealt with is data reduction. Two

methods are used and explored: 1) Legendre polynomial fitting and 2) watershedding.

2.2 Modelling approaches

The discrete pressure field contains 28 × 49 = 1372 data points. Using this raw data as

an input, the model would have to base its decision (whether the pattern belonged to an

extreme temperature) on a huge amount of data. Directly using these data causes prob-
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lems such as ill-conditioned matrices because of high correlations between grid points and

long computation times. Therefore, first the available data is reduced while retaining the

information before processing it. That can be achieved by fitting Legendre polynomials

to the pressure distribution or by the watershedding technique. As a second step, a con-

nection between the global weather situation and temperature has to be found. In this

work, the method of linking the pressure anomaly patterns with the local temperature

extremes uses empirical data. In order to see whether the method gives correct results,

firstly the patterns belonging to the most extreme temperatures are picked out from the

empirical data. Then this set is split into reference patterns (used for calibrating the

method) and validation patterns (used to check whether the method works correctly).

2.2.1 Data Reduction

We have 133 patterns with extreme temperature in one fixed point. Each circulation

pattern can be described as 28 × 49 pressure table where rows represents latitude and

columns longitude. Mathematically speaking, we are looking for a function from the

set of pressure patterns {Z(ti)} to a set of characteristic parameters {C(ti)}, where ti
indicates the point in time at which the pressure measurement was taken. When choosing

the dimension of the space of characteristic parameters much smaller than the dimension

of the patterns’ space, we can store approximately the same amount of information with

much less data.

Legendre Polynomials

The general idea in this approach is a known result from Linear Algebra: a function f

belonging to a finite dimensional space of functions XN (e.g. all polynomials of order N)

can be represented by a linear combination of basis functions Pl ∈ XN , l = 1, . . . , N, N ∈
N:

f(x) =
N
∑

l=1

αlPl(x) ∀x ∈ Dom(f) (2.1)

where Dom(f) denotes the domain of f , i.e. all x for which f is defined. In this work, the

function f is the pressure anomaly distribution along a line in latitudinal or longitudinal

direction. For the purpose of data reduction, the function is represented by a linear

combination of basis elements Pl. Then only the coefficients αl associated with the basis

elements are kept. In nature, the pressure distribution is smooth in any direction, but

contrary to our assumptions above, it is not belonging to a finite dimensional space of

functions. Consequently, we can only try to approximate it by a function f ∈ XN . The
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Figure 2.2: Discrete pressure map (left). The rectangle indicates the sample line in
latitudinal direction (right), along which the polynomial is fitted.

order of accuracy of such an approximation increases with the number of basis functions

N . In the present situation, the given data contains the pressure only at discrete points

on a grid. For fitting a function along a row or column of the pressure distribution, Eq.

(2.1) has to hold for each of the grid points along that line. This leads to a system of

equations from which the coefficients can be computed as follows: Let Z(t) ∈ R28×49 be

the discrete pressure distribution at time t and let Zi,j(t) indicate the evaluation of the

pressure field at the grid point (xi, yj), with i = 1, . . . , 28 and j = 1, . . . , 49. Then we

can solve for α, β ∈ RN











P1(x1) P2(x1) . . . PN(x1)

P1(x2) P2(x2) . . .
...

...
...

. . .
...

P1(x49) . . . . . . PN(x49)





















αi
1(t)
αi
2(t)
...

αi
N(t)











=











Zi,1(t)
Zi,2(t)
...

Zi,49(t)











or in shorthand

(Pl(xk))kl
(

αi
l

)

l
= (Zi,k)k

⇐⇒: P h~αi = ~Zi (2.2)

for fitting a function to each row i. Likewise, we can set up a linear equation system

for fitting a function to each column j, namely

(Pl(yκ))κl
(

βj
l

)

l
= (Zκ,j)κ

⇐⇒: P v~βj = ~Zj (2.3)
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where k = 1, . . . , 49 and κ = 1, . . . , 28 denote the number of columns or rows, respec-

tively, and l = 1, . . . , N denotes the basis polynomials.

Although it is possible to compute the coefficients with Eqs. (2.2) or (2.3), resp.,

the question of choosing the basis polynomials still remains. As the pressure distribution

along a line is continuous, it can be approximated by polynomials. Consequently, the most

obvious choice would be the monomial basis {1, x, x2, . . . }, i.e. Pl(x) = xl−1, l ∈ N.

The resulting matrix would be the so called Vandermonde matrix. However, it is not

suitable for numerical purposes due to its very bad condition number. Choosing Legendre

polynomials as a basis avoids those difficulties. Legendre polynomials can be obtained by

orthonormalization of the monomial basis on the interval [−1, 1], subject to the condition
that Pl(1) = 1 (cf. Fig. 2.3). We obtain:

L1(x) = 1,

L2(x) = x,

L3(x) =
1

2

(

3x2 − 1
)

,

...

LN−1(x) =
1

2NN !

dN

dxN
[

(x2 − 1)N
]

.

The Legendre polynomials are orthonormal only on the interval [−1, 1]. Thus the

grid is implicitly assumed to be transformed on [−1, 1]2. For data reduction purposes

the number of basis elements has to be chosen much smaller than the number of grid

points. Thus (2.2) and (2.3) are overdetermined systems of equations and there does not

exist an exact solution. This means that the linear combination of basis elements cannot

represent the discrete pressure distribution exactly. However, we want the function to fit

with an error as small as possible. The resulting coefficients can be obtained by solving

(2.2) and (2.3) by linear regression:

(Lh)TLh~αi = (Lh)T ~Zi

(Lv)TLv~βj = (Lv)T ~Zj

Here the matrices Lh, Lv denote the analogues to the matrices P h, P v in Eq. (2.2) or

(2.3), where the polynomials used for the entries are the Legendre polynomials specified
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Figure 2.3: Legendre basis polynomials up to fifth order.

before. In order to classify a given pattern with less data, we then collect all coefficient

vectors of the pattern:

C = {~α1, . . . , ~α28, ~β1, . . . , ~β49} (2.4)

For a further reduction of data, a function was fitted only to each second row and column

of the discrete pressure field. Moreover, the coefficients belonging to the first two Legendre

polynomials were neglected. This implies that neither the bias nor the tilt of the pressure

distribution are taken into consideration. The reasoning behind this is that a pattern

of pressure anomaly is to a greater extent defined by its spatial oscillations than by its

offset or slope.

Two-dimensional polynomials

A further reduction based on polynomials can be established by fitting a two-dimensional

polynomial. Eqn. (2.1) is extended to:

f(x, y) =
N
∑

l=0

N−l
∑

m=0

αlmPlm(x, y) ∀x, y ∈ Dom(f) (2.5)

In this approach the function f is the pressure anomaly distribution of the surface in

which x represents the longitudinal direction and y the latitudinal direction. Following
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Figure 2.4: Pressure field approximation with an ninth order two-dimensional polynomial
function

section 2.2.1 orthonormalization on the domain [-1,1] for both x and y is strongly pre-

ferred. However, because of the restricted amount of time only the monomial basis, i.e.

{1, x, y, x2, xy, y2, x3, . . . } was implemented. In analogy to eqns. (2.3) and (2.2) we can
set up the system:
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Generally, a seventh order polynomial for the two-dimensional case gives a good re-

construction of the surface. The number of parameters to be estimated are in this case

1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. Figure 2.4 shows the approximation for a 9th order

polynomial function.

Watershedding

Watersheds were first used in topography. The main idea consists of geographical regions

that are divided in so-called catchment basins and the division between two regions is
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called the watershed line. Suppose a droplet of water falls down on a surface. This

droplet would run down to the lowest point of the region. Adding more droplets would

immerse the surface to a lake. The lake will continue to fill until this lake start to

flood into a neighbor valley. The line where two valleys, the so-called catchment basins,

come together are called the watershed line. Apart from topography the watershedding

transform is frequently used in image processing. The pressure anomalies considered in

this report can also be viewed as a topographic surface. The watershedding approach is

used as a tool for data reduction by obtaining areas of high and low anomalies.

Many algorithms exist that are based on the watershedding principle. The Matlab R©
implementation which is used in this study is based upon the paper by Vincent and

Soille [4]. The algorithm consist of two steps: sorting and flooding. Let Z(t) ∈ R28×49 be

the discrete pressure distribution at time t and let Zi,j(t) indicate the evaluation of the

pressure field at the grid point (xi, yj), with i = 1, . . . , 28 and j = 1, . . . , 49. Because it is

assumed that high pressure anomalies are equally important as low pressure anomalies,

pressure distribution is transformed such that Z̃(t) = −|Z(t)|. In this way, high pressure
anomalies are regarded as catchment basins. For each time point the watershed transform

is applied to Z̃(t) and result in the watershed matrix W (t). Further details and an exact

description of the algorithm can be found in [4]. An example of a watershed transform is

given in figure 2.5. From the watershed transform W (t) information from the catchment

basins is extracted such as the center and total area. By selecting the p most important

basins, i.e. those with the lowest watershed index or in other words with the largest

pressure anomaly, the number of variables is reduced dramatically.

2.2.2 Data Processing and Evaluation

Legendre Polynomials

First of all, a temperature threshold Text is defined above which a temperature shall

be regarded as being extreme. Throughout the simulations, the topmost five per cent

of temperature observations were regarded as extreme. As mentioned above, the set

of patterns associated to an ‘extreme’ temperature is then arbitrarily divided into two

disjoint subsets: one for calibrating and one for validating the model:

I = {t | T (t) ≥ Text} := Ical ∪̇ Ival.

That is to say: the model is set up with the patterns associated to Ical, and with the

patterns belonging to Ival, the correctness of the results is checked. Subsequently, for a
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Figure 2.5: A pressure anomaly field and its watershed transform. The x and y axis are
the indices are the i and j indices representing the lattitude/longitude of the anomaly
field

specific time point t0 an error ǫ(t0) is assigned to each pattern Z(t0). This error indicates

how ‘far’ that pattern is away from the patterns {Z(t) | t ∈ Ical} :

ǫ(t0) := min
t∈ Ical

‖C(t0)− C(t)‖ (2.6)

where C(s) denotes the set of characteristic parameters for a pattern Z(s). The error

can be measured in any suitable norm, for example the L2 vector norm.

Two-dimensional polynomials

Although the used data reduction reduction technique is based on the same idea as

the Legendre polynomials, a different evaluation technique was performed for the two-

dimensional polynomial. Here, the evaluation is based on linear regression.

As in section 2.2.2 the extremes are divided in a calibration and validation subset. In

addition, the non-extreme patterns are also divided in a calibration and validation subset.

Therefore, the calibration and validation data sets need to contain an equal amount of

the interesting extremes compared to the much larger amount of non-extreme data.

J = {t | T (t) < Text} := Jcal ∪̇ Jval.
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Hence, the calibration and validation data sets are formulated as:

Γcal = Ical ∪ J cal

Γval = Ival ∪ Jval

A linear model to predict the local temperature based on the polynomial parameters

is proposed:

Tlocal(t) = α(t)γ + e(t)

with α the time dependent polynomial parameters that define the circulation pattern,

γ the model parameters and e(t) the error term. Based on the calibration data set the

model parameters γ are estimated by linear regression.

γ = A+Tlocal

with A+ the pseudo-inverse of [α(t0), α(t1), . . . , α(tn]
T . Both calibration and validation

data sets are used to estimate the local temperature by:

T̂local(t) = α(t)γ̂

Watershedding

Before the catchment basins are projected onto local extremes meteorological information

must be incorporated. The local extreme is a nonlinear function of the catchment basin

and perhaps of the interaction between catchment basins. A first approach was done

by constructing a function based on distance, anomaly and area of the catchment basin.

Let ~Bi(t) a vector with the variables of catchment basin i at time t extracted from the

watershed transform W (t). The local temperature anomaly can be modeled by:

Ta(t) =

p
∑

i=1

δif( ~Bi) + e(t) (2.7)

where f( ~Bi) is a nonlinear function with variables from catchment basin i, δ the

parameter vector and e(t) the error term. The model is linear in its parameters and,

hence, these parameters δ are estimated with an ordinary least squares approach, i.e.

minδ ||e(t)||2 ∀t. Because the system now is largely overdetermined, division into a cali-

bration and validation is not needed. Results are evaluated by comparing the estimated

and measured local temperatures of the total data set. Local extremes are part of the

data and verification is possible.
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2.3 Results

2.3.1 Legendre Polynomials

For testing the L2-norm comparison method, the set of patterns belonging to an extreme

temperature was divided into calibration and validation patterns, analogously to the

explanations above. The set of extreme patterns is divided in several fashions:

half: every second pattern is used for calibration, the other half used for testing/validation.

thirds: every third pattern is used for validations, so that 66% of patterns are used for

calibration.

rand: each extreme pattern gets assigned a random number from a uniform distribution

on the interval [0,1]. For validation, only the patterns with a random number higher

than 2/3 are taken.

Concerning the order of the fitted polynomial, an integer value around 4 was chosen.

This is sensible, as the pressure distribution along one direction usually contains n = 2

to n = 4 major high or low pressure areas. As these areas should correspond to the

extremes of the fitted polynomial, we need a polynomial degree of n− 1. The error was

measured in the standard L2 vector norm. As can be seen from any of the plots in Fig.

2.6, there is no clear visible distinction between the two groups ’errors of non-extreme

patterns’ (plotted in red) and ’errors of validation patterns’ (plotted in green). What

can be seen, however, is the (anticipated) tendency of the ’green mean’ to be below the

’red mean’, i.e. that the patterns belonging to an extreme temperature have on average

a lower error than those arbitrary, non-extreme patterns.

Choosing a higher order of polynomial does improve the distinction between the two

groups. Nevertheless, taking a too high order of polynomial increases the danger of

unnatural oscillatory behavior when fitting the polynomial. Concerning the change of

the fashion of partitioning the validation set, the following can be observed: The two

groups are the more distinct the more patterns for calibration are used. This is a result

one would also expect by common sense.

2.3.2 Two-dimensional polynomial

In figure 2.7 a linear trend is clearly observable. However, it can be clearly seen that

the linear trend bends off in the top right corner, just before the crossing horizontal and
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Figure 2.6: Comparison of different polynomial orders (left column – with validation mode
thirds) and comparison of different validation modes (right column – with polynomial
order 4).

vertical lines. These are the lines that distinguish the ordinary values from the extremes.

This is exactly the part in which we are interested. When we look at the histogram (see
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Figure 2.7: Measured vs. Predicted temperature anomalies from the 2-dimensional poly-
nomial with ’o’ calibration data and ’*’ validation data

figure 2.8 of how the local temperatures are distributed) it is clear that it is right tailed.

In this tail the extremes are defined. Unfortunately, this tail seems hard to predict.

Several procedures have been tried to improve the results, such as a log-transformation

of the local temperatures and a neural network approach to account for nonlinearities.

These procedures did not improve the results visibly (results not shown).

2.3.3 Watershedding

In this specific example five watersheds are taken for each circulation pattern. The func-

tion f(B) from eqn. (2.7) is given by:

f(Bi) =
sin(α) · P · A

dist
+
cosα · P · A

dist

with α the angle between the location of the local measurement and the location of the

center of the watershed; dist the distance between the center of the watershed and the

local measurement; P the maximum pressure anomaly in the watershed; and A the total

area of the watershed. In figure 2.9 a slight linear trend is visible but it is clearly not

sufficient. Local extremes cannot be predicted in the current framework.
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Figure 2.8: Histogram of the measured local temperature anomalies

Figure 2.9: Measured vs. Predicted temperature anomalies from the watershed transform
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2.4 Discussion

In the Legendre polynomial the groups of ’errors of non-extreme patterns’ and ’errors of

validation patterns’ are not clearly distinctive, but we can observe the tendency that the

error-mean of the patterns belonging to the validation set is less than the error-mean of

the patterns belonging to the set of non-extremes. Consequently, the method of L2-norm

comparison can only state whether a (new) pattern is similar to a pattern for which an

extreme temperature has been recorded. Our tests show that it is not possible to state

from just the L2-error of that pattern whether there will be an extreme temperature or

not. The method of comparing the norms can only give a tendency, but not lead to a

decision.

Although the evaluation method differed a similar statement can be made about the

2-dimensional polynomial approach. A linear trend is clearly visible in figure 2.7. Only

twelve out of 133 extremes (from the total data set), however, are predicted as extremes

which is less then 10%. A decision cannot be given based on this relationship.

These results indicate that the local temperature is determined by more than just the

pressure distribution on that particular day. A suggestion for further work might be to

take other factors into account like moisture or cloudiness. An initial idea that has not

been worked out is to use the dynamic changes of the patterns, i.e. subtracting pressure

fields of two successive days.

The watershed procedure showed poor results. The possibilities of using the basins,

however, are very large. In the presented approach only the basins with the largest

absolute anomaly were taken into account. Improvements are likely when additional

information is included. For instance, it is likely that the pressure anomaly above the

local temperature is an important feature. Furthermore, interactions between pressure

systems may be good predictors for local extremes. In conclusion, the watershed approach

is interesting because of its simplicity and by retaining physical interpretability. Due

to this physical interpretability expert knowledge is required to implement a sensible

relationship from the basins to the local temperature.

2.5 Concluding remarks

Three methods for data reduction have been presented in order to predict local extremes

from large scale circulation patterns. Although the results show trends that relate pre-

diction of local extremes with measurements, these trends are not sufficient to reliably

predict typical circulation patterns that cause local extremes. The methods, though, were

not fully explored in this report. Further development of the methods with contribution
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of export knowledge of the application area is needed to improve the results.
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Abstract:

In this paper we develop two methods to calculate thermodynamic properties of mixtures.
Starting point are the basic assumptions that also form the basis for the COSMO-RS
model. In this approach, the individual molecules are represented by their geometrical
shape with an electrical charge density on their surfaces. Next, the surface is split up
into surface segments each with its own charge. In COSMO-RS a strong reduction is
introduced by treating the segments as if they are completely independent. In the present
study we take into account that the coupling between two patches is essentially dependent
on the charge distribution on neighboring segments and on the local geometrical structure
of the surface. Two approaches are followed. The first one points out how the model
equations, which comprise the optimization of the entropy and conservation of internal
energy, can efficiently be solved in general, thus also if the dependency between segments
and the local geometry is included in the expression for the coupling energy between
segments. In the second method the configuration with maximal entropy and prescribed
energy is sought via simulation. Successive molecular configurations of the mixture are
simulated and updated via a genetic algorithm to optimize the entropy. The second
method is more time consuming but very general.
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3.1 Introduction

Thermodynamic properties of a mixture, such as the miscibility of the components and

partial vapor pressures, could in principle be calculated by accounting for all the interac-

tions between the constituting molecules. In practice, however, a rigorous approach along

these lines is only tractable for a highly restricted number of molecules. In view of the

huge number of molecules in a fluid, one has to rely on methods from statistical physics,

in which averaging procedures are applied over possible configurations. Even then one

has to introduce severe assumptions in order to make calculations for realistic mixtures

possible.

In 1995, a promising idea to solve this longstanding problem was worked out by

Andreas Klamt [1, 2, 3]. His approach is referred to as COSMO-RS (COnductor like

Screening MOdel for Realistic Solvents) and has proven to be quite powerful in some

cases. One of the strong points is that the computation times are very modest. The

method has its limitations, since it is based on rules that completely ignore the geometry

of the molecules. The aim of the present project is to reconsider the problem of mixing

anew preferably including the geometrical effects.

We decided to maintain a basic principle of COSMO-RS, namely to represent a

molecule via a rigid shell with an electric charge distribution. This will be explained

in §3.2. This approach assures that long-range interactions and screening effects are

taken into account, but in an averaged manner, and will not lead to unacceptably long

computing times.

We followed two lines of research. One line, presented in §3.3 can be looked upon as
a natural extension of COSMO-RS with now the geometrical features of the molecules

taken into account. In this approach, the optimization the entropy of the mixture under

the condition of conserved energy is appropriately done via a fast numerical scheme.

In the second research line, presented in §3.4, the configuration with maximal entropy
and prescribed energy is sought via simulation. A molecular configuration is represented

in the computer by specifying the positions and orientations of a big number of molecules.

An initial configuration is randomly chosen and gradually updated via a genetic optimiza-

tion algorithm to optimize the entropy.

In §3.5 the results and recommendations are summarized.
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3.2 The COSMO-RS model

Basic ingredients

For a clear understanding of the present project it is necessary to first explain the essential

ingredients of the COSMO-RS model. Lots of details can also be found in [6, 7].

The first step in this model is taking into account long range interactions and screening

effects in an averaged way. To that end the molecule is thought to be embedded in a

cavity located in a perfect conductor, that is a material with an infinitely large dielectric

constant. Since the molecule will in general have a charge distribution and therefore

possess an electric field, it will polarize the embedding medium. That will result in

an electric field that can be thought to stem from a charge distribution on the surface

of the molecular cavity. In the method the molecule is replaced by the surface of the

cavity together with the induced electrical charge distribution. In Figure 3.1 a sketch of

such a surface and its charge distribution is given for a water molecule. Such a charge

distribution is the result of a quantum mechanical calculation and is throughout this

project assumed to be given for each type of molecule in the mixture.

Figure 3.1: The surface of the cavity of a water molecule with its charge distribution.

The next step is to divide the surface up into small segments, each with a fixed amount

of charge. This segmental charge is obtained by integrating the local charge distribution

over the segment. So each molecule is now represented by a number of charged segments

on the surface of its cavity. To keep this approach realistic, the size of these segments

should be large enough to make the concept of individual pairing of segments meaningful.

In practice the segment area is chosen in the range 3–25 (Angstrom)2.

The following step is to realize that in a fluid the molecules are nearly space filling.

Each molecule is thus in touch with a number of neighboring molecules. The consequence

is that most of the time a segment of one molecule is in touch with a segment of another
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molecule. This contact implies a certain amount of energy, depending on the signs and

the values of the segment charges. Segments with opposite charge signs attract each other

and segments with equal charge signs will repel each other. The total amount of internal

energy U is the sum of all the local contributions.

If the mixture would have vanishing temperature, all positions and orientations of

the molecules would be fixed. The system would be frozen in and have maximal order.

In reality we are interested in mixtures at positive temperature. In such a system the

molecules move around and perform so-called Brownian motions and the overall molecular

configuration is varying all the time. Macro properties of the system are then calculated

by averaging either over time or over all possible microstates with appropriate weighting

functions. From statistical mechanics we know that the system most frequently attains

those configurations in which the entropy is maximal. In fact, the preference for these

microstates is so high that we may ignore all the other microstates in the averaging

procedure. That’s why in the following we will concentrate on the calculation of maximum

entropy configurations.

Entropy

Since the number of molecules is in the order of the number of Avogadro (in the order

of 1026), it is completely intractable to compute the time evolution of all individual

molecules, the so-called microstate. Instead, COSMO-RS follows a different approach.

To explain this, we first discuss the labeling of segments. For simplicity, let us assume that

the mixture consists of two components X and Y : a molecule X has NX segments and a

molecule Y has NY segments. Since the molecules of type X are mutually indiscernible

and the same holds for type Y , we meet in this system with N = NX + NY essentially

different segments. In a particular microstate one could count the frequency that a

segment n is coupled to a segment m, and use the frequencies to compute probabilities.

However, in the present approach we prefer an alternative scaling based on surface areas

involved, which will be explained underneath. We shall denote the scaled frequencies,

that do not longer correspond to integers, by pn,m. A macrostate of the system is now

characterized by the values pn,m, n = 1 . . . N,m = n . . . N . It is clear that one macrostate

may be realized by very many different microstates, which in statistical mechanics all

together are referred to as an ensemble. Shannon proved that the appropriate expression

for the entropy S, i.e. of the disorder of such a macrostate, reads as [5]

S = −k
N
∑

i=1

N
∑

j=i

pi,j log pi,j (3.1)
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Figure 3.2: Impression of the surface segments being treated as independent.

Here, k is the Boltzmann constant (∼ 1.3806504 JK−1).

Model equations and modeling assumptions

In this subsection we state the model equations and discuss the assumptions introduced

by COSMO-RS.

In a microstate, two segments are considered to be coupled if they are located next to

each other. A highly restrictive assumption of COSMO-RS is that the spatial embedding

of a segment between its neighboring segments is completely ignored. In fact, all segments

are cut free from their molecules and treated as if they are independent. In this view the

mixture consists of a set of segments that move around independently, as illustrated in

Figure 3.2.

As a consequence of this approximation, the energy involved in coupling segments

n and m is take to be dependent on the charges of these segments only. Denoting the

charge of segment n by σn, the coupling energy En,m is assumed to be of the form

En,m = α (σn + σm)
2 (3.2)

for some positive coefficient α. Note that segments with equal but opposite charges have

zero coupling energy, and segments with equal charges have high coupling energy. Steric

hindering and the multipolar nature of the electric field of a molecule are thus not taken

into account. Obviously, coupling segment n to segment m is equivalent to coupling

segment m to segment n, therefore, both En,m and pn,m are symmetric: Em,n = En,m and

pm,n = pn,m.

The normalization of the pn,m is chosen to follow from considering the relative area
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that is involved in such a coupling. For this normalization we take

∀n :
N
∑

j=1

pn,j + pn,n = [Xn]γn, (3.3)

where [Xn] is the molar fraction of the molecule type segment n belongs to, and γn is

the surface area of segment n. The extra term pn,n stems from the fact that coupling of

segment n with itself requires two segments n.

Given these normalizations, the internal energy of the mixture U is easily expressed

in terms of the frequencies pn,m and the energies En,m:

∑

i

∑

j≥i

pi,jEi,j = U. (3.4)

The COSMO-RS model formally involves the optimization of the entropy as a function

of the variables pn,m, n = 1 . . . N,m = n . . . N under the condition that the pn,m are

normalized and that the internal energy equals some prescribed value U . In formulae,

the required macrostate will be the solution of the following constrained optimization

problem:







































max S({pi,j}) = −k
N
∑

i=1

N
∑

j≥i

pi,j log pi,j

under the conditions that ∀n :
∑

j

pn,j + pn,n = [Xn]γn

and the condition
∑

i

∑

j≥i

pi,jEi,j = U

(3.5)

Formally, only pn,m with m ≥ n are part of the problem. If in the following m < n, pn,m

is considered to be shorthand notation for pm,n. Although this might seem artificial at

first, it makes formulas involving sums easier to read and understand.

The value of U is determined by the external conditions of the system. In practice,

one often fixes the temperature T of the mixture. As discussed later on, the value of U

is then an outcome, rather than an input of the system. The roles of U and T are in fact

interchangeable in the procedure.

3.3 Extended COSMO-RS model

The assumption of independency of segments allows for an explicit solution of this prob-

lem along combinatorial lines using the notion of partition function. For this derivation,

see Appendix I in [4]. This reduction is a great advantage from a computational point
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of view. However, this assumption forms a weak point, since it makes the model quite

unrealistic, e.g., to deal with irregularly shaped molecules that give rise to steric hinder-

ing. In the present approach we want to get rid of this assumption. The consequence is

that we have to face the original optimization problem (3.5). It also implies that (3.2)

is no longer applicable. The energy involved in coupling two segments should be made

to depend on the neighboring segments, too. In the next subsection this point will be

touched. For the present procedure we propose for solving (3.5) it is only relevant that

some (nonnegative) expression for the coupling energy En,m is available.

A general method to solve the constrained maximization problem (3.5) is to make use

of Lagrange multipliers. For that purpose we form the Lagrangian

L({pn,m}, {λn}, µ) =− k

N
∑

i=1

N
∑

j≥i

pi,j log pi,j +
N
∑

i=1

λi

(

N
∑

j=1

pi,j + pi,i − [Xi]γi

)

+ µ

(

N
∑

i=1

∑

j≥i

pi,jEi,j − U

)

= −k
N
∑

i=1

N
∑

j=i

pi,j log pi,j +
N
∑

i=1

N
∑

j=i

(λi + λj)pi,j −
N
∑

i=1

λi[Xi]γi

+ µ

(

N
∑

i=1

∑

j≥i

pi,jEi,j − U

)

(3.6)

This Lagrangian has as variables the frequencies pn,m, n = 1 . . . N , m = n . . . N and

the Lagrange multipliers λn, i = n . . . N and µ. For the second identity, the convention

pm,n = pn,m has been used in order to eliminate any pn,m with m < n. All other quantities

such as the internal energy U and the coupling energies Em,n act as parameters. The

term containing λi+λj follows by replacing pi,j with pj,i whenever i < j, and rearranging

the double sum:

N
∑

i=1

λi

i
∑

j=1

pi,j =
N
∑

j=1

N
∑

i=j

λipi,j =
N
∑

i=1

N
∑

j=i

λjpj,i =
N
∑

i=1

N
∑

j=i

λjpi,j (3.7)

Note that the Lagrangian does not include the kinetic energy, since in a fluid the

molecules motions are quite slow, so that the total energy is completely dominated by

the potential (internal) energy.

Standard theory tells us that the solution of (3.5) is also the solution of the set of

equations obtained by setting the derivatives of the Lagrangian with respect to each of
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its variables equal to zero. So, (3.5) is equivalent to solving the system











−k(log pn,m + 1) + (λn + λm) + µEn,m = 0, ∀n, ∀m ≥ n
∑

j pn,j + pn,n = [Xn]γn, ∀n
∑

i

∑

j≥i pi,jEi,j = U.

(3.8)

The term (λn + λm) follows from the second equality in (3.6).

A result from thermodynamics states that the Lagrange multiplier µ is related to the

absolute temperature via

µ = − 1

T
.

Since the temperature of the mixture can be controlled, µ will from now on be considered

as a parameter. This implies that we only need to solve the equations in the first two

lines of (3.8) for the variables pn,m, n = 1 . . . N , m = n . . . N and λn, n = 1 . . . N . The

equation in the third line will be used afterwards to calculate the internal energy U .

Solving the first equation in (3.8) for pn,m and substituting in the second one, we

obtain the following set of equations:

{

pn,m = e−1+
λn+λm+µEn,m

k ∀n, ∀m ≥ n
∑

j e
−1+

λn+λj+µEn,j
k + e−1+

2λn+µEn,n
k = [Xn]γn ∀n

(3.9)

To rewrite these equations in a more tractable form we introduce the vector

Λn := eλn/k, n = 1 . . . N

and the matrix

Fn,m := eµEn,m/k + δn,me
µEn,n/k

with the Kronecker delta as is usual defined as δn,m = 1 if n = m and δn,m = 0 if n 6= m.

The last equation of (3.9) can then be written as

∀n : Λn

∑

j

Fn,jΛj = e[Xn]γn =: αn (3.10)

The right hand sides and the matrix Fn,m are known. So, we arrive upon a set of N

quadratic equations for the unknowns Λn, n = 1 . . . N . This system is not simple to solve

explicitly, but it has a pretty nice form for numerical evaluation. The Jacobian matrix of

the set of equations (3.10) is easy to obtain explicitly. So, we resort to a numerical, and

thus iterative approach and need therefore an initial guess for the Λn. To that end we

observe that the exponentials in Fn,m are expected to be close to one, since the coupling
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energies En,m are small. Setting Fn,m = 1 for all n 6= m and Fn,n = 2 for all n, we obtain

the approximating equation

Λ2
n + Λn

∑

j

Λj = αn.

Neglecting the first term Λ2
n since it is expected to be small compared to the sum in the

second term, we find as initial guess

Λ0
n :=

αn
√

∑

j αj

.

Once the Λn are known, the values of the variables pn,m follow from

pn,m = e−1+
λn+λm+µEn,m

k = ΛnΛme
−1+

µEn,m
k (3.11)

Example

To solve Λn from (3.10), we choose as iterative scheme the Newton-Raphson method. As

a toy model we consider a fluid with only one molecule type with N = 4 segments of

equal size. Furthermore, we use γn = 1 for all n. Taking for the En,m matrix

En,m =









4 0 4 0
0 4 0 4
4 0 4 0
0 4 0 4









,

representing charges of equal size, but opposite sign, we found for the pn,m matrix

pn,m =









0.0945 0.3583 0.0945 0.3583
0.3583 0.0945 0.3583 0.0945
0.0945 0.3583 0.0945 0.3583
0.3583 0.0945 0.3583 0.0945









at T = 300 K. This clearly shows that segments with opposite charges tend to attract

each other, whereas segments with charges of equal signs repel each other. As expected,

the lower the temperature, the stronger the influence of the energy. The convergence

appeared to be very fast, thanks to the system being quadratic.

In Figure 3.3 it is illustrated that some couplings are geometrically impossible. In

a second example we illustrate how to deal with such a situation. In the example we

consider again the fluid in the example above, but now we assume that segments one and
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+ −

Figure 3.3: Sketch of a situation in which a coupling is geometrically impossible, although
the involved charges would favor it.

two cannot touch each other. two. This can be taken into account by a very high entry

in the energy matrix, say E1,2 = 20:

En,m =









4 20 4 0
20 4 0 4
4 0 4 0
0 4 0 4









,

The coupling frequencies now become

pn,m =









0.2073 0.0010 0.1219 0.4625
0.0010 0.2073 0.4625 0.1219
0.1219 0.4625 0.0717 0.2721
0.4625 0.1219 0.2721 0.0717









As expected, the coupling frequency between segments one and two dropped to almost

zero. Note that also the other entries have changed. The highest frequency is now found

between one and four, as was to be expected, since this is energetically speaking the most

favorable coupling.

Choice of coupling energies

Using the above model, the macrostate with the highest entropy can be easily calculated,

provided that the coupling energies En,m are given. It remains to specify them such that

the geometrical effects are accounted for. In the present project we developed some ideas,

which are worth to be worked out. out.

• Include neighboring effects. If two segments couple, also the neighbors come close

together. It depends on the charges on the neighboring segments and their distances

what the effect will be on the energy. A possibility to take this into account is to

choose

En,m = α (σn + σm)
2 + β

∑

in,jm

di,j (σi + σj)
2 ,
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where in runs over all neighbors of segment n and jm runs over all neighbors of

segment m and di,j is some appropriate distance function. The factor β has to be

finetuned in order to get the correct balance between the two terms. In this way

we introduce a penalty if a coupling involves neighbors that repel each other. So

the second term acts as a penalty function. Including higher order neighbor effects

might also be an option.

• An alternative would be to include the local curvatures into En,m, for instance a

term proportional to

(Hn +Hm)
2 ,

where Hn is the (average) mean curvature of the molecule surface around the posi-

tion of segment n. The advantage of this criterion is that it is much less subjective

than defining penalties for individual couplings.

• Forbidden couplings. If illustrated in the example above, if some coupling is physi-

cally infeasible due to the shape of molecules, it can be forbidden simply by assigning

to it a very high energy cost. It is to be expected that this will somewhat reduce

the quality of the initial guess discussed above, which means that the numerical

method will need more time to find the solution.

3.4 Entropy optimization via simulation

In this section we follow an approach that is considerably different from the one presented

in the preceding section. The aim is the same: to find a configuration with maximum

entropy and prescribed energy. The idea is to do perform this via simulation. We focus

on a part of the fluid, a so-called parcel, with a tractable number of molecules. The

rest of the fluid is represented by periodic boundary conditions, as explained below. The

molecular configuration in this fluid parcel is represented in the computer by specifying

the positions and orientations of all molecules in it. An initial configuration is randomly

chosen and gradually updated via a genetic optimization algorithm to optimize the en-

tropy, meanwhile keeping the energy at or close to the prescribed value. This approach

has the complication that randomly placed molecules will in general overlap. So, this

leads to an extra optimization goal: minimization of the overlap.

The present approach has the following features:

• As we already did above in the (extended) COSMO-RS model, we ignore the kinetic

energy. So, our search space is the set of static configurations in the fluid parcel.
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• The surface of the molecule is approximated by segments, each with its own charge.

The geometry of the surface is taken into account, so the segments are connected.

• The state of a molecule consists of is 6 parameters per molecule: 3 coordinates

for the location and 3 angles for the orientation. From these the position of each

segment directly follows.

• In the coupling energy between segments we incorporate the geometry, in the way

discussed in §3.3.

Periodic boundary conditions

In the simulation approach we calculate the properties in a small fluid parcel. this is

based on the assumption that on average the parcel represents the fluid as a whole quite

well. To avoid boundary effects, periodic boundary conditions are applied. This results

in a periodic domain, as illustrated in Figure 3.4. Now, we deal with an infinitely large

domain, but represented with only a finite amount of information because of the repeating

patterns.

Figure 3.4: Left: A small fluid parcel. Right: A periodic domain. A periodic domain has
no boundaries.

Optimization procedure

Let us consider n molecules (maybe of different species) in the fluid parcel. We use the

following noattions:
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state The state x ∈ R6n of the configuration consists of the locations and orientations

of all n molecules;

Energy function The energy function E : R6n → R+ returns the binding energy for

the given state;

Entropy function The entropy function S : R6n → R+ returns the entropy for the

given state;

Overlap function The function V : R6n → R+ returns the amount of space occupied

by two or more molecules at the same time.

For a given target energy Et we have to solve the following optimization problem:

maximize S(x)

under the restrictions that V (x) = 0,

and (E(x)− Et)
2 = 0. (3.12)

3.4.1 Technical details

The optimization problem (3.12) has many local optima. By the way, it is good to realize

that it also has many global optima. For example, if we have an optimal solution and we

shift the whole solution a little bit (and/or rotate it) we again have an optimal solution.

In general, it is typical for many-particles systems that one and the same macro state may

correspond to a huge amount of micro states, all having the same entropy and energy. In

the present approach we need to find only one of the global optima. Since the system has

so many degrees of freedom, optimization may lead to unacceptably long computation

times. The success of the method will therefore heavily depend on how efficiently the

functions E, S and V and their gradients are evaluated. In this section we discuss several

related technical details.

Efficient evaluation of overlap V

Each molecule may be described as a set of tetrahedra. The overlap in a configuration

can therefore be determined by comparing every one of these tetrahedra to every other

tetrahedron, calculating the volume they share and adding all these overlap volumes. Such

a process is quadratic in the number of tetrahedra in the configuration and would become

prohibitive very quickly when many molecules are to be modelled, or when detailed shapes

are to be used to model them.
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The calculation of the overlap can be sped up considerably by keeping track of the

circumscribed spheres of the molecules, as illustrated in Figure 3.5. This is very simple to

do, because the circumscribed sphere of the molecules does not change when the molecule

is rotated and because its radius only depends on the molecule species. If the circum-

scribed spheres do not intersect, the molecules do not intersect and their tetrahedrons

need not be compared. In this way, every molecule is only seriously compared to the

molecules near it. A similar speed-up may be achieved by comparing the circumscribed

spheres of the individual tetrahedra before calculating their overlap.

A further reduction in the calculation can be achieved using a grid, as illustrated in

Figure 3.6. The domain is split up into grid cells. For every grid cell, a list is made of

all molecules in or near it (i.e. whose center of gravity is in the shaded area). Molecules

near a grid cell boundary may be in more than one list.

In this case the calculation of the overlap consists of the following steps:

1: for all molecules do

2: place it in a list of all grid cells in or near which it is located

3: end for

4:

5: for all molecules M1 do

6: for all molecule M2 in or near the grid cell where molecule M1 is located do

7: compare circumscribed spheres:

8: if spheres do not intersect then

9: Overlap V is zero.

10: else

11: compare all tetrahedra of M1 to all tetrahedra of M2:

12: if there is no intersection then

13: Overlap V is zero.

14: else

15: a detailed calculation is needed

16: end if

17: end if

18: end for

19: end for
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Figure 3.5: A molecule and its circumscribed sphere: molecules do not overlap if their
circumscribed spheres do not do.

Efficient evaluation of coupling frequencies

For the evaluation of the energy and the entropy, it is necessary to determine for every

segment of the molecule shell to which segment(s) it is ’coupled’. A simple way to

determine these couplings is by the overlap calculation of slightly enlarged molecules.

This idea is illustrated in Figure 3.7. The molecules M1 and M2 (dark colors) do not

overlap. The enlarged molecules (lighter colors), however, have some overlap. Segment

A1, or rather the tetrahedron that it is a face of, overlaps with B2 and a little bit with

A2. Hence, we say that A1 is coupled mostly to B2 and a bit to A2 and we let both

couplings contribute to the entropy, but in a weighted fashion.

Smoothing the functions

The overlap-function V and the coupling frequencies (and hence the energy E and entropy

S) are continuous and differentiable functions of the state x. Their derivatives, however,

are not continuous, so the Hessian matrices of the functions V , E and S do not exist.

Since many optimization techniques need Hessian matrices, it is useful to smooth these

functions. A simple way to do this is to ’soften’ the tetrahedra. When doing so, the

original overlap Vij between two tetrahedra i and j is modified to V
′
ij according to

V ′ij :=
V 2
ij

ǫmin(Vi, Vj) + Vij
, (3.13)
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Figure 3.6: The grid used to speed up the calculation of the overlap.

M1

B1

C1

D1 E1

F1

A1 B2

C2

D2

E2

F2

A2

M2

Figure 3.7: Example for the calculation of the couplings: segment A1 is mostly coupled
to segment B2, and also a little bit to A2.

where Vi and Vj are the volumes of tetrahedra i and j, and ǫ is a ’small’ parameter.

Larger values for ǫ make ’softer’ overlap functions.

3.4.2 Efficient optimization of the configuration

The original optimization problem (3.12) involves a target function and constraints. The

constraints can be incorporated in the target function by giving a penalty for constraint

violation. The modified optimization method is then

maximize S(x)− cV V (x)− cE(E(x)− Et)
2. (3.14)

with cV and cE weighting factors that determine the relative contributions of the two

penalty functions. This optimization problem is standard problem and may be solved

using steepest descent or variations of Newton’s method. In the present context some

problems might be expected:

62



How to Mix Molecules with Mathematics

• Local optimization methods are very likely to find local optima which are not global

optima.

• Local search techniques may also converge very slowly. This may happen for in-

stance in configurations with regions that are too crowded and regions which are

too empty. A lot of molecules have to move in order to even this out. They will

moreover have to move in complicated patterns because the target function is not

allowed to increase on the way.

To find a global optimum, additional techniques may be needed. When a local opti-

mum is found or when convergence slows down, the solution has to be ’shaken up’ in order

to move away from a local optimum. Sudden changes which may help are for example

• Some (randomly chosen) molecules may be taken from the most crowded regions

and placed in the emptiest regions;

• Some (randomly chosen) molecules are moved and rotated to a random place and

orientation in the domain.

3.4.3 Preliminary results

The simulation approach requires a lot of programming. Due to time limitations it was not

possible to produce a working molecular simulation model in only a few days. A modest

start in 2D was made, which provides us with some understanding of what is involved in

the calculations. The evaluation of overlap turned out to be not too complicated. The

couplings were evaluated only in a simple way: every segment was considered to couple to

the nearest segment of another molecule. Local search was not yet applied. For purpose of

demonstration, optimization was studied via a simple random search algorithm. In that

approach, a configuration x is chosen entirely randomly, after which the target function

(3.14)is evaluated. The first configuration is saved and a new configuration is randomly

produced. If this configuration turns out to have a higher value of the target function,

then the latter replaces the former. This can be repeated many times. Obviously, this

method has very slow convergence. The results of this procedure are shown in Table

3.1 and Figure 3.8. Two types of molecules are mixed: 18 of one type and 7 of another

type. The dimensions of the molecules, the domain and charges were not realistically

chosen, that’s why no units are shown in the results. The coefficients cV and cE were

set at one and for the target energy we use Et = 40. A thousand configurations were

produced, and 8 times a new ’best sofar’ configuration was encountered. Table 3.1 shows

that in this instance the overlap is indeed minimized, but the entropy and energy are still
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Iteration Overlap Energy Entropy

1 40.7 0.30 4.53
2 38.4 0.36 4.50
4 37.5 0.35 4.44
5 30.2 0.34 4.54
10 27.6 0.39 4.46
31 20.2 0.32 4.52
593 18.3 0.39 4.43
939 17.2 0.41 4.41

Table 3.1: Results when maximizing the target function (3.14)during a random search
approach. The overlap indeed reduces in the course of the time

varying much. The initial and final (after 8 improvement steps) configurations are shown

in Figure 3.8

7 x

18 x

Figure 3.8: First (left) and final (right) configurations in the a simple random search
summarized in Table 3.1.

3.5 Conclusions and Recommendations

We have shown that the COSMO-RS procedure to calculate the properties of mixtures

can be extended to incorporate the geometrical effect of constraints that may drastically

influence the chance that two surface segments of the constituting molecules couple. The

general problem concerns the optimization of the entropy under the condition that the

energy has a prescribed value. To perform this task while accounting for the geometrical

effects, we followed two lines.
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In the first approach, we show that the optimization problem can be very efficiently

solved, by putting it in a form that is appropriate for numerical optimization methods.

The geometrical constraints are included via specification of the energy involved in cou-

pling two segments. We discuss suggestions for the effective choice of these coupling

energies, such that the effect of the local geometry and the local charge distribution is

taken into account.

In the second approach, we tackle the optimization problem via simulation. We focus

on a part of the fluid, a so-called parcel, with a tractable number of molecules. The rest of

the fluid is represented by periodic boundary conditions. The molecular configuration in

this fluid parcel is represented in the computer by specifying the positions and orientations

of all molecules in it. The idea is to start from a randomly chosen configuration, that

is gradually updated via a genetic optimization algorithm. The object function consists

of the entropy together with penalty functions that have to assure that the procedure

converges to a configuration with the correct energy and without overlapping molecules.

A fairly complete image of the computational aspects was obtained from developing a

simple piece of software, that is restricted to 2D.

Our conclusion is that the first approach answers the original specific question quite

efficiently, while the second approach is highly general and could also be applied to answer

many other questions concerning mixtures.
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analysis perspective. The merit of the paper is twofold: On one hand, we find boundary
conditions for the deterministic non-linear degenerate parabolic partial differential equa-
tion for the evolution of the stock price. On the other hand, we combine two-scales
regular- and singular-perturbation techniques to find an approximate solution to the
pricing PDE. The aim is to produce an expression that can be evaluated numerically
very fast.
Keywords: Stochastic volatility, European options, singular-perturbation analysis

1Technical University of Eindhoven, Eindhoven, The Netherlands
2Delft University, of Technology, Delft, The Netherlands
3Radboud University of Nijmegen, Nijmegen, The Netherlands
4Free University of Amsterdam, Amsterdam, The Netherlands
5Leiden University, Leiden, The Netherlands
†corresponding author: mvdschan@math.leidenuniv.nl

67



Proceedings of the 67th European Study Group Mathematics with Industry

4.1 Introduction

Although the famous Black-Scholes model has been widely applied to price plain vanilla

options, comparisons with data analysis of real markets show that some of the assump-

tions beyond the Black-Scholes equations are unrealistic. It seems that one of the major

reasons why this inconsistency happens is the use of the constant volatility modeling

assumption. Recently, a lot of attention is paid to more general volatility models - in

particular for cases where the volatility is governed by a stochastic differential equation;

compare [8] for a brief discussion of these aspects. Very popular in this class of models

is the Schöbel-Zhu scenario, where the volatility is driven by a mean-reverting Ornstein-

Uhlenbeck process [9, 10]. We refer the reader to [17] for an accessible introduction to

the topic of options pricing and to [4, 14], e.g., for a presentation of concepts related to

the involved stochastic differential equations.

The problem posed by Rabobank to the 64th European Study Group Mathematics

With Industry was the following:

(A) Assuming non-zero-correlation between the processes, develop a hybrid model that

can handle the stochastic behavior of both the volatility for the equity product and

the interest rates.

(B) Use singular-perturbation methods, construct an approximate solution to the linear

degenerate partial-differential equation arising in the context of pricing European-

style options when the governing asset process is defined by a Schöbel-Zhu-Hull-

White hybrid model, which satisfies the requirements mentioned in (A).

This paper is organized in the following fashion: In Section 4.2 we concisely describe

the so-called Schöbel-Zhu-Hull-White hybrid model and indicate the form of the partial

differential equation (PDE) for pricing an European option. We also mention at this point

some of the main theoretical difficulties that this PDE involves. The derivation of the

PDE is reported in Section 4.3. Partly based on our ”physical” intuition and partly based

on the Black-Scholes methodology, we propose boundary conditions for the pricing PDE.

The bulk of the paper, that is Section 4.4, contains our singular-perturbation solution

strategy. Section 4.5 contains our main result, i.e the approximate expression for the

price given by (4.21). We discuss here a few aspects that we consider as relevant when

using perturbation approaches to pricing plain-vanilla claims under multi-asset models.
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4.2 Problem description

In this note we study the following Schöbel-Zhu-Hull-White hybrid model, viz.














dSt = rtStdt+ σtStdW
S
t

dσt = κ(σ − σt)dt+ ηdW σ
t

drt = λ(r̄ − rt)dt+ γdW r
t

. (4.1)

Here W S
t , W

σ
t and W r

t denote standard Brownian motions with quadratic covariation

processes dW S
t dW

σ
t = ρSσdt and likewise for ρSr and ρσr. Furthermore, ρSS = ρσσ =

ρrr = 1. We mention that W S
t , W

σ
t and W r

t are standard Brownian motions under the

risk neutral measure Q. Note that the model given by the first two equations and with

constant interest rate, is investigated in [16]. In what follows, we refer to (4.1) as SZHW.

A European call option is a contract that gives the buyer of the contract the right

to buy a number of shares from the writer of the contract at a specified time T in the

future, the expiry date, for a fixed price K, the strike price of the option. Because, the

writer possibly has to sell shares to the option holder for a price less than their value on

the stock market the buyer pays a premium to the writer, this is the price of the option

at t = 0. At expiry the value of the option is max(S(T ) −K, 0) where S is the price of

the underlying stock at expiry. The central question in pricing of derivatives is: What is

the price of the option at time 0 < t < T , which is calculated by determining its price at

all times between t = 0 and expiry?

In Section 4.3, we derive the pricing PDE for an European option

0 =
∂V

∂t
+
∂V

∂S
rS +

∂V

∂σ
κ(σ − σ) +

∂V

∂r
λ(r̄ − r) + (4.2)

1

2

∂2V

∂S2
σ2S2 +

1

2

∂2V

∂σ2
η2 +

1

2

∂2V

∂r2
γ2 +

∂2V

∂S∂σ
σSηρSσ +

∂2V

∂S∂r
σSγρSr +

∂2V

∂σ∂r
ηγρσr − rV.

The SZHW model allows σ and r to become negative. When σ is negative, it should

be noted that the correlation between changes in time of S and changes in σ reverses in

sign. We remark that this causes degeneracies at several places in the pricing PDE. To

be more precise, for σ = 0 the determinant of the diffusion matrix vanishes. We do not

treat these difficulties here (see also Remark 4.1), but we suggest three possible solutions:

The first one is the introduction of a positive function f(σ). The stochastic differential

equation for S is then replaced by dSt = rtStdt + f(σt)StdW
S
t . This approach has been

adopted in [5], e.g.

The second solution is the Heston-Cox-Ingersoll-Ross model, see for example [8]. In

the SZHW St cannot become negative because of the SdW in the equation. In the
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Heston-Cox-Ingersoll-Ross model the potential negativity of σ is removed in a similar

way.

A third solution is to take κ large. If κ is large then if σt becomes negative it is pushed

back very fast towards the value σ̄. Thus, we might still produce realistic results if we

only allow for positive σ in the pricing PDE. We adopt here the third approach.

4.3 Derivation of a deterministic PDE

Consider the SZHW, see (4.1). We define

V (t, St, σt, rt) = B(t)EQ

(

max(ST −K, 0)

B(T )

∣

∣

∣
Ft

)

= EQ

(

max(ST −K, 0)

B(T )/B(t)

∣

∣

∣
Ft

)

. Here B(t) = exp
(

∫ t

0
rsds

)

and Ft = σ(Ss, σs, rs; s ≤ t). In particular B(t) satisfies the

”ordinary” differential equation

dB(t) = rtB(t)dt.

We are very well aware of the fact that the coefficients in (4.1), in particular the coefficient

σtSt, do not satisfy the usual Lipschitz condition for an Itô diffusion. This might cause

difficulties, for example in ensuring the existence of solutions of SZHW model in the

precise time interval of interest for the financial situation, cf. [13], for a solution see [8, 9].

In this paper, we waive these complications and assume that there exists a differentiable

function Π = Π(t, S, σ, r) such that

EQ

(

max(ST −K, 0)

B(T )

∣

∣

∣
Ft

)

=
V (t, St, σt, rt)

B(t)
= Π(t, St, σt, rt).

We postpone the investigation of the existence of Π for a later stage. It is clear from the

definition that Πt = Π(t, St, σt, rt) is a martingale. Since B(t) is such a simple process,

Itô formula leads to

dΠt = d

(

Vt
B(t)

)

=
1

B(t)
dVt − rt

Vt
B(t)

dt. (4.3)
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Now, we derive the Itô differential equation for V . Using Itô formula Theorem 4.2.1 from

[14], we obtain

dVt =
∂V

∂t
dt+

∂V

∂S
dSt +

∂V

∂σ
dσt +

∂V

∂r
drt +

1

2

∂2V

∂S2
dStdSt +

1

2

∂2V

∂σ2
dσtdσt +

1

2

∂2V

∂r2
drtdrt +

∂2V

∂S∂σ
dStdσt +

∂2V

∂S∂r
dStdrt +

∂2V

∂σ∂r
dσtdrt

=
∂V

∂t
dt+

∂V

∂S
dSt +

∂V

∂σ
dσt +

∂V

∂r
drt +

1

2

∂2V

∂S2
σ2
tS

2
t dt+

1

2

∂2V

∂σ2
η2dt+

1

2

∂2V

∂r2
γ2dt+

∂2V

∂S∂σ
σtStηρSσdt+

∂2V

∂S∂r
σtStγρSrdt+

∂2V

∂σ∂r
ηγρσrdt.

Eventually, by the martingale representation theorem Theorem 4.3.4 of [14], the dt term

in the full expansion of Eqn. (4.3) in dt, dW S
t , dW

σ
t and dW r

t has to vanish. After

multiplication with B(t) it leads to a pricing PDE Eqn. (4.2)

0 =
∂V

∂t
+
∂V

∂S
rS +

∂V

∂σ
κ(σ − σ) +

∂V

∂r
λ(r̄ − r) +

1

2

∂2V

∂S2
σ2S2 +

1

2

∂2V

∂σ2
η2 +

1

2

∂2V

∂r2
γ2 +

∂2V

∂S∂σ
σSηρSσ +

∂2V

∂S∂r
σSγρSr +

∂2V

∂σ∂r
ηγρσr − rV.

We look for a solution V which is bounded by a polynomial in (S, σ, r). The final condi-

tion, given at t = T , is

V (T, S, σ, r) = B(T )
max(S −K, 0)

B(T )
= max(S −K, 0), (4.4)

where K is the strike price of the call option. It is worth noting that the above procedure

provides a deterministic PDE for the price evolution but does not specify the boundary

conditions needed to close the formulation of the problem. The solution being bounded

by a polynomial in its variables may be enough as boundary condition. Based upon the

solution and boundary conditions typically used for the Black-Scholes equation as well

as by the “physics” of the problem, we suggest the following boundary conditions:

V → 0 as r → −∞, (4.5)

V ∼ S as S →∞, σ →∞ or r →∞,

V → 0 as S → 0

V ∼ S −Ke−r(T−t) as σ → −∞.
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This is one of the important results of this paper. Note that depending on the financial

scenario in question, other boundary conditions might be employed. The fundamental

question which needs to be addressed is: To which extent such choices of boundary

conditions lead to well-posed PDEs? We refer the reader to [17] Section 3.7 for a nice

and inspiring discussion of the boundary conditions to the Black-Scholes equation.

4.4 Our solution strategy

Our basic idea is to combine regular and singular perturbation techniques to analyze

the parabolic PDE for V (arising when pricing the options in the presence of stochastic

volatility) for a non-degenerate scenario in the presence of couple of characteristic time

scales. The forthcoming sections have the following structure. In Section 4.4.1 we discuss

a slightly different model and a reference in which perturbation methods are applied to

this model. We believe these results can be extended to the SZHW model. Unfortunately,

a full extension of these results is not feasible within the scope of the study group. In the

remaining sections we make a step towards extending these results to the SZHW model.

4.4.1 Perturbation methods applied to a slightly different model

In [5] the authors discuss the following model


















dXt = µXtdt+ f (Yt, Zt)XtdW
X
t

dYt =
1

ǫ
(m− Yt)dt+

ν
√
2√
ǫ
dW Y

t

dZt = δc (Zt) dt+
√
δg (Zt) dW

r
t ,

(4.6)

where both ǫ, δ ≪ 1 and the three stochastic processes are correlated. In this model the

stochastic processes for Y and Z should be interpreted as a fast and a slow volatility. This

model differs from the SZHW model in the first equation. In this model the first equation

depends on Z (the third equation) through the function f in front of the stochastic term

dWX
t . In the SZHW model the dependence on the third equation appears in front of the

deterministic term dt. Apart from only suggesting an asymptotic expansion, the authors

of [5] also discuss the error analysis making use of higher order terms in their expansion.

Additionally, they also perform a calibration of their solution to existing data. Here we

concentrate on finding the asymptotic expansion. To this end, we apply a perturbation

method involving two scales to approximate SZHW model in some limiting situations.

In Section 4.4.2 we describe the basic setup, in Section 4.4.3 we discuss the limit ǫ→ 0,

while in Section 4.4.4 we discuss the second limit δ → 0. In Section 4.5 we list our

expansion.
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Note that Section 2.6.2 of the PhD thesis [18] contains a summary of the multiscale

expansion developed in [5]. Both [11] and [12] report on a detailed perturbation analysis

for the fast mean reverting model (consisting of only the first two equations).

4.4.2 Set-up

Consider the SZHW model (4.1). Analogously to the approach in [5], we look to the

scales

κ =
κ̄

ǫ
, η =

η̄√
ǫ
, λ = δλ̄, γ =

√
δγ̄. (4.7)

In terms of these scales, the SZHW model becomes



















dSt = rtStdt+ σtStdW
S
t

dσt =
κ̄

ǫ
(σ − σt)dt+

η̄√
ǫ
dW σ

t

drt = δλ̄(r̄ − rt)dt+
√
δγ̄dW r

t .

(4.8)

We note that the second equation can be obtained from the second equation in (4.1) by

scaling time with a factor 1
ǫ
and that the third can be obtained from the third equation

in (4.1) by scaling time with a factor δ. Intuitively the choice of these scales implies that

the volatility σ is pushed very fast towards the average value σ̄. Furthermore, we expect

that the interest rate r evolves very slowly in time, and thus is approximately constant

on short time scales.

If we set S = ex and choose only one of the correlations ρσr to vanish, then according

to the derivation in Section 4.3 the corresponding PDE becomes

Vt +
σ2

2
Vxx +

η̄2

2ǫ
Vσσ +

γ̄2δ

2
Vrr + σ

η̄√
ǫ
ρSσVxσ + σγ̄

√
δρSrVxr (4.9)

+
κ̄

ǫ
(σ̄ − σ)Vσ + λ̄δ (r̄ − r)Vr +

(

r − σ2

2

)

Vx − rV = 0.

The correlation ρσr is the instantaneous correlation between the short rate process rt

and the volatility process σt. In practice this additional parameter could be used as

an additional degree of freedom in the calibration. However, for simplicity we set this

correlation equal to zero while assuming non-zero correlation between: the stock process

St and the interest rate process rt, ρSr, and the stock process St and the volatility process

σt, ρSσ.

Remark 4.1. Note that if σ vanishes, then some of the ”diffusivities” vanish as well,
and hence, (4.9) becomes a degenerate parabolic equation. Trusting the analysis work by
Achdou et al. (see, for instance, [1, 2]) we expect that a variational analysis involving
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weighted Sobolev spaces and the theory of semigroups may enable us to prove the exis-
tence and uniqueness of weak solutions as well as a maximum principle. From a practical
point of view, the role of such an analysis is to yield a unique positive and polynomially
bounded price V . It is worth noting that the PDE (4.9) might be also viewed as a dif-
fusion equation for infinite fissured media (somehow in the spirit of [3]). As far as we
know, this perspective is rich in new ideas and we think that it deserves further analytical
investigation.

To solve this PDE we are going to use both singular and regular perturbation methods

for two different small parameters, namely ǫ and δ. We take for granted that the price

V can be approximated by an asymptotic expansion in terms of ǫ and δ as

V = V0 +
√
ǫV1 +

√
δV2 +O(δ, ǫ).

In the next two sections we look at the limits ǫ→ 0 and δ → 0 separately.

4.4.3 The limit ǫ→ 0

We wish now to treat the case ǫ small and compute the terms V0 and V2 of the formal

expansion of V. In this case the volatility is fluctuating very fast with a fixed variance,

and we deduce from [5] Definition 3.3 and [12] equation (22) that the effect of this for

the PDE is that we can take constant volatility σ̄. Thus, using these references we obtain

that in the limit ǫ→ 0 the PDE simplifies and takes the form

Vt +
σ̄2

2
Vxx +

γ̄2δ

2
Vrr + σ̄γ̄

√
δρSrVxr + λ̄δ (r̄ − r)Vr +

(

r − σ̄2

2

)

Vx − rV = 0. (4.10)

Note that V0 does not depend on σ but only on σ̄. In this way it is intuitively clear that

that O (ǫ−1) terms in (4.9) vanish, see [12] equation (22) for a detailed discussion of this

argument.

Since in the PDE the coefficients in front of the second order derivatives are constant,

we can apply the transformation

v(x, r, t) = eAx+Br+CtV (x, r, t, ǫ = 0)

where A,B,C are functions of (x, r). By means of an appropriate choice of A, B, and C
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we obtain an equation without first-order terms. Choosing

A = −1
2

2δ3/2ρSrλ̄rσ̄ − 2δ3/2ρSrλ̄r̄σ̄ + 2γr − γσ̄2

σ̄2γ(δρ2Sr − 1)
,

B =
1

2

2λδrσ̄ + 2γ
√
δρSrr − γ

√
δρSrσ̄

2 − 2λδr̄σ̄

γ2(δρ2Sr − 1)σ̄
,

C = −1
4

1

σ̄2γ2(δρ2Sr − 1)2
(4γ2rσ̄2δ2ρ4Sr − 8δρ2Srγ

2rσ̄2 − 12δ3/2ρSrγrλr̄σ̄ + 4λδ5/2r̄σ̄γρ3Srr

− 6γσ̄3δ3/2ρSrλr + 6γσ̄3δ(3/2)ρSrλr̄ + 4γ2r2 + γ2σ̄4 + 2γσ̄3δ5/2ρ3Srλr − 4γr2δ5/2ρ3Srλσ̄

− 2λδ5/2r̄σ̄3γρ3Sr + 12δ3/2ρSrγr
2λσ̄ + 4λ2δ2r2σ̄2 + 4λ2δ2r̄2σ̄2 − 8λ2δ2r̄σ̄2r),

we obtain

vt +
1

2
σ2vxx +

1

2
γ2vrr + σγρSrvxr = 0. (4.11)

We eliminate the cross terms with a rotation of the axes given by the transformation























































X =
1
2
σρSrγ

√

( 1
2
σρSrγ)

2
+
(

1
2
σ2−

(

1
4
γ2+ 1

4
σ2+ 1

4

√
(γ2+σ2)2+4σ2γ2ρ2

Sr

))2
x

−
1
2
σρSrγ

√

( 1
2
σρSrγ)

2
+
(

1
2
σ2−

(

1
4
γ2+ 1

4
σ2− 1

4

√
(γ2+σ2)+4σ2γ2ρ2

Sr

))2
r

R = −
1
2
σ2−

(

1
4
γ2+ 1

4
σ2+ 1

4

√
(γ2+σ2)2+4σ2γ2ρ2

Sr

)

√

( 1
2
σρSrγ)

2
+
(

1
2
σ2−

(

1
4
γ2+ 1

4
σ2+ 1

4

√
(γ2+σ2)2+4σ2γ2ρ2

Sr

))2
x

+
1
2
σ2−

(

1
4
γ2+ 1

4
σ2− 1

4

√
(γ2+σ2)2+4σ2γ2ρ2

Sr

)

√

( 1
2
σρSrγ)

2
+
(

1
2
σ2−

(

1
4
γ2+ 1

4
σ2− 1

4

√
(γ2+σ2)2+4σ2γ2ρ2

Sr

))2
r.

(4.12)

Thus we arrive at an equation of the form

vt +
1

2

(

1

2
γ2 +

1

2
σ2 +

1

2

√

(γ2 − σ2)2 + 4σ2γ2ρ2Sr

)

vXX (4.13)

+
1

2

(

1

2
γ2 +

1

2
σ2 − 1

2

√

(γ2 − σ2)2 + 4σ2γ2ρ2Sr

)

vRR = 0,

that is

vt +
1

2
α2vXX +

1

2
β2vRR = 0, (4.14)

where

α =

√

1
2
γ2 + 1

2
σ2 + 1

2

√

(γ2 − σ2)2 + 4σ2γ2ρ2Sr,

β =

√

1
2
γ2 + 1

2
σ2 − 1

2

√

(γ2 − σ2)2 + 4σ2γ2ρ2Sr.

After performing all these transformations we derived the backward heat equation from

equation (4.10). By introducing a new change of variables
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τ = T − t, x̂ =
X

α
, r̂ =

R

β
(4.15)

we finally obtain











vτ =
1

2
(vx̂x̂ + vr̂r̂)

v(x̂, r̂, 0) = v0(x̂, r̂) = e−AF1(x̂,r̂)−BF2(x̂,r̂)(eF1(x̂,r̂) −K)+,

(4.16)

where the function F1 is such that x = F1(x̂, r̂). Furthermore, let F2 be such that

r = F2(x̂, r̂). The solution of (4.16) is given by

v(x̂, r̂, τ) =

∫

R

∫

R

e
(x̂−x1)

2+(r̂−r1)
2

−2τ v0(x̂, r̂) dx1 dr1.

This allows us to compute

V (x, r, t, ǫ = 0) = eAx+Br+Ctv
(

F−11 (x, r), F−12 (x, r), T − t
)

.

The 0th and the 2nd term of the asymptotic expansion are given by

V0 = V (x, r, t, ǫ = 0)|δ=0 (4.17)

and

V2 = lim
δ→0

V (ǫ = 0)− V0√
δ

. (4.18)

We do not derive more explicit formulae for V0 and V2. We only mention that V0 satisfies

the normal Black-Scholes equation with volatility σ = σ̄ and interest rate equal to the

initial interest rate r(t = 0) = r0.

4.4.4 The limit δ → 0

This section deals with the case 0 < δ ≪ ǫ≪ 1. We first let δ tend to 0 in (4.9) and then

analyse the resulting PDE for small ǫ via singular perturbation techniques. As δ tends

to 0, (4.9) reduces to

Vt +
σ2

2
Vxx +

η̄2

2ǫ
Vσσ + σ

η̄√
ǫ
ρSσVxσ +

κ̄

ǫ
(σ̄ − σ)Vσ +

(

r0 −
σ2

2

)

Vx − r0V = 0, (4.19)

where r0 = r(t = 0) is the initial condition of the interest rate. As mentioned before,

δ = 0 means that the interest rate is constant at leading order on short timescales.

Therefore, we take r equal to its initial value r0.

We can now use known results that can be found, for instance, in [5], Section 5 of [11]

and Section 4.4.2 of [12]. The authors apply singular perturbation techniques to a PDE
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nearly identical to (4.19). It is worth mentioning that the analysis in Section 5 of [11]

is very clear and a brief summary of the general perturbation procedure can be found in

Section 2.6.2 of [18]. For simplicity, we assume that there is no market price of volatility

risk. Hence, we conclude that

V1 = −(T − t)
( η̄ρSσ

2
〈σ∂σφ〉S∂S

(

S2∂2S
)

)

V0, (4.20)

where φ solves
(

η̄2

2
∂2σ + (σ̄ − σ)∂σ

)

φ = σ2 − σ̄2

and is chosen in such a way that V1 satisfies the boundary conditions. Notice that < . >

is defined by

< f >=

∫ ∞

−∞

f
1√
πη̄
e−(σ̄−σ)

2/η̄2dσ.

In (4.20), V0 is the solution to the normal Black-Scholes equation with average volatility

σ̄ and interest rate r = r0. This results from arguments similar to those mentioned in

the previous section.

4.5 Main result. Discussion

The main result of our paper is the expansion given by

V = V0 +
√
ǫV1 +

√
δV2 +O (δ, ǫ) , (4.21)

where V0 solves the normal Black-Scholes equation with average volatility σ̄ and the

interest rate r = r(t = 0) = r0, V2 is given by (4.18) and V1 is given by (4.20).

We have set a first step in applying existing perturbation methods to equation (4.2).

Clearly more work has to be done especially concerning the calibration of the approximate

solution (4.21) to real market data. If the approximation turns out to be not accurate

enough, then one can look at some of the higher order terms (hoping to come closer

to what happens in reality). We expect that the analysis of [5] can be extended in

this direction. It is expected that evaluation of the approximate solution is much faster

than solving the PDE, however there is a tradeoff between speed and accuracy. Once

calibration with market data has been performed more can be said about improvements

in the speed of computation.

In [5], the authors interpret the corrections to the leading order Black-Scholes approx-

imation in terms of the Greeks (sensitivities). We expect that an intuitive interpretation

of the correction factors can give further insight.
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Using two small parameters instead of a single one offers flexibility. Instead of having

two small parameters δ and ǫ one may be tempted to deal with a single one, i.e. δ = O(ǫ).
However, we expect this later choice to essentially complicate the perturbation analysis.

We want to stress the fact that the validity of the formal perturbation approach is

restricted by the conditions under which the pricing PDE with the imposed initial and

boundary conditions is well-posed. It would be particularly interesting to study the effect

of the degeneracy in the coefficients of the 2nd order derivatives on the solution of the

PDE. Another open question is: What happens with the well-posedness of the model,

and hence, with the approximate solution (4.21) if other boundary conditions are chosen

instead of (4.5).

A completely different modeling approach is the so called random field approach. Let

us sketch a very simple version of this idea. Consider the SDE dSt = rStdt + σStdW
S
t

and, for the moment, let σ and r be given constants. The Fokker-Planck equation for the

probability distribution p of variables S and t is given by

∂p

∂t
=
σ2

2

∂2Sp

∂S2
− µ

∂Sp

∂S
.

If we now take µ and σ random in the above Fokker-Planck equation, then we are imme-

diately led to random fields. Perturbation methods can also be applied to the resulting

PDE; see, for instance, [6, 7, 15] and references therein.

We have been surprised that the seemingly straightforward problem that we addressed

happened to be a box of Pandora, leaving open a lot of relevant mathematical problems

of which this project is not the right framework to elaborate on. Particularly, we would

like to stress that the proposed methods have not been tested at all and large deviations

from reality may have been neglected.
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Chapter 5
Stiffening while drying
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Abstract:

We present two models for the drying of waterborne paints, which consist of non-volatile
latex particles suspended in water. One model considers the water and latex density
in a layer as a function of time. Water evaporation at the surface represents the
drying. This model results in a one-dimensional free boundary problem, which is solved
numerically. Extensions to the model are given that describe the stiffening of the paint.
A second model is a particle based dynamical simulation where latex particles form a
network through which water particles move. A thin slab of the suspension in a three-
dimensional box is studied. Water particles escaping the slab at the surface represent
the drying, progressing network formation the stiffening of the paint. Both models al-
low for validation with material properties as determined experimentally on real coatings.
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5.1 Introduction

Waterborne coatings (WBC’s) are increasingly replacing traditional organic solvent-borne

coatings (SBC’s) due to stricter legislation originating from an ever-growing awareness

in society about environmental issues and safety at work. One of the few disadvantages

of WBC’s is that they generally require longer drying times as compared to SBC’s.

For that reason the drying process of WBC’s has received considerable attention from

researchers in both industry and academia. From an industrial and applicational point

of view, most interest lies in the understanding and control of the simultaneous drying

and stiffening of the coating or film. If a coating needs to be handled or post-processed it

should have adequate mechanical integrity, such as a sufficient shear stiffness (resistance

to shearing), to prevent it from incurring damage. The formation of film at the surface,

that is relatively solid, while the paint layer below is still relatively liquid is a common

way to realize this in practice. On the other hand such a film can prevent further drying of

the liquid paint layer below, which could compromise the required integrity again. Insight

in how the detailed balance can be found is of prime importance. Modern waterborne

Figure 5.1: Four stages of latex film formation (cf. [4])

paints can be considered as a stabilized suspension of (latex) polymer particles in water.

It is usually applied as homogeneous thin layers on a hard substrates. The drying process

can be seen to consist of four stages (see figure 5.1). When the paint layer is applied, it

is still the original suspension (stage 1). Due to disappearance of the water as a result of

evaporation a concentrated latex mass is formed, in which the polymer particles come into
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close contact (stage 2). Polymer particles are then subsequently deformed by the contact

forces, while further water is removed by capillary forces, until most water has gone

and particles start coalescing (stage 3). In the final stage particle boundaries disappear

when they coalesce further to form a continuous polymer melt that further develops its

mechanical integrity (stage 4). All four stages (in particular the second) have already

been addressed in the literature (cf. [4]), but the development of the mechanical integrity

of the layer (transition from liquid to solid) has hardly been touched upon.

The goal of this study is to develop mathematical models for the drying of waterborne

coatings.

5.2 Derivation of the model

Waterborne paints consist of a stabilized suspension of particles in water. It is usually

applied as a homogeneous film on a hard substrate. We will first develop a model in

which we describe the drying and stiffening of this paint layer in terms of concentrations

of water and latex.

5.2.1 One-dimensional model

Figure 5.2: Sketch of the two-dimensional paint domain (cf. [6])

Our first model describes the shrinkage of the wet paint layer due to water evaporation

as a one-dimensional process. All variation parallel to layer is ignored, we consider only

variations in the perpendicular (x) direction. The impermeable substrate is at x = 0,

the layer surface is at x = h(t) (see figure 5.2). Evaporation causes the layer to shrink,

hence we have a moving surface. The paint consists of latex particles and water, with

volume fractions p(x, t) and w(x, t), respectively. We assume there are no air bubbles in

the paint, so the relation

w(x, t) + p(x, t) = 1 (5.1)
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holds for all time and position. This will allow us to formulate the problem in terms of

h and w only, eliminating p from the equations. The particles move by diffusion in the

water, with diffusion constant D > 0:

pt(x, t) = (Dpx(x, t))x for 0 < x < h(t), t > 0. (5.2)

In this model the diffusion coefficient D can be state-dependent, i.e. , D can be a function

of the particle fraction p (or equivalently, through (5.1), of w). We come back to this later.

By taking into account equation (5.1) within our model the water phase satisfies a similar

diffusion equation :

wt(x, t) = (Dwx(x, t))x for 0 < x < h(t), t > 0. (5.3)

Note that this does not imply we assume the water itself moves diffusively, which would

be physically incorrect. As long as the motion of the latex particles is mainly diffusional,

our model applies. At the substrate there is no flux of water or latex:

wx(0, t) = 0, px(0, t) = 0. (5.4)

The free and moving upper surface takes into account the water evaporating from the

layer, while the total amount of liquid remains the same. Analogous to Newtons law of

cooling, we assume the evaporation rate is proportional to w(h(t), t)−Hwamb, where wamb

is some ambient water concentration and H is a Henry coefficient. As the total volume

of water is given by
∫ h(t)

0
w(x, t) dx, we use that the change in this volume is given by the

evaporation

−α(w(h(t), t)−Hwamb) =
d

dt

∫ h(t)

0

w(x, t) dx (5.5)

= h′(t)w(h(t), t) +

∫ h(t)

0

wt(x, t) dx (5.6)

= h′(t)w(h(t), t) +

∫ h(t)

0

(Dwx(x, t))x dx (5.7)

= h′(t)w(h(t), t) + [Dwx(x, t)]
x=h(t)
x=0 (5.8)

= h′(t)w(h(t), t) +Dwx(h(t), t), (5.9)

where α is a positive constant. From the assumption that the volume of the latex fraction

in the drying layer is conserved, similarly, one finds for the polymer particles:

0 =
d

dt

∫ h(t)

0

p(x, t) dx (5.10)

= h′(t)(1− w(h(t), t))−
∫ h(t)

0

wt(x, t) dx (5.11)

= h′(t)(1− w(h(t), t))−Dwx(h(t), t). (5.12)
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Combining these equations, one finds

h′(t) = −α(w(h(t), t)−Hwamb), (5.13)

which establishes a constituting equation for the thickness h of the paint layer, and

− α(w(h(t), t)−Hwamb)(1− w(h(t), t)) = Dwx(h(t), t), (5.14)

which establishes a boundary condition for w at the moving surface. Finally we choose

for our one-dimensional model an initial thickness of the paint layer, and an initial water

(and latex particle) distribution, which will typically be uniform. Thus, the system of

equations for the volume fraction w with layer thickness h is given by:

wt(x, t) = (Dwx(x, t))x, (5.15)

wx(0, t) = 0, (5.16)

wx(h(t), t) = −
α

D
(w(h(t), t)−Hwamb)(1− w(h(t), t)), (5.17)

w(x, 0) = w0(x), (5.18)

h′(t) = −α(w(h(t), t)−Hwamb), (5.19)

h(0) = h0 (5.20)

for 0 < x < h(t) and t > 0.

Note that equation (5.1) allows us to find the associated volume fraction profile of the

latex, which is in practice the more relevant physical property. So far we have not speci-

fied the diffusion coefficient D of the latex particles. In the dilute, and possibly also the

semi-dilute regime it could well be taken constant, but at higher densities that would

not be a very realistic approximation. One possible choice is a Heaviside function to ac-

count for the transition from a liquid to a solid phase. In the computations later the

approximation D = Ds + dww with Ds, dw > 0 was used, to avoid problems with the

discontinuity. Typically this choice describes a low diffusivity at low water content, and

a high one for more dilute situations. Note that w is a volume fraction, so its value can

not be larger than unity. Note that we have left the equations in a dimensional form,

which hopefully makes them easier to interpret for non-mathematically oriented readers.

A simple dimension analysis shows that there two important time scales involved in the

process; α/h0 is the rate at which the thickness of the layer is decreasing (initially) due to

the evaporation of the water. A second time scale is given by the D/h20, the rate at which

the diffusion is able to transport the water over the full layer. Important is their ratio

ǫ = D/αh0. If ǫ is small, the diffusive rate is not able to compensate the water loss at
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the surface quickly enough to keep the layer homogeneous. Close to the surface the water

content w will drop, and we have a dry surface layer. The drying is then predominantly

governed by the rate at which the water from the lower part of the layer permeates this

dry film. If on the other hand ǫ is large, the diffusion will keep the water concentration

throughout the layer the same, and the evaporation is the limiting process.

We note that this derivation of the mathematical model for drying of a paint layer is

similar to [2, 3, 4, 6, 9]. Furthermore, in [8] stress-driven diffusion was incorporated in

such a model. We also refer the interested reader to the existence and uniqueness results

obtained in [7].

5.2.2 Clustering and stiffening

The above model can describe the drying of the paint layer, but neglects all detail of the

latex phase. Already at moderate volume fractions one may expect particles to cluster

and possibly even coalesce, thus adding to the mechanical stability of the material. In

this section we discuss an extension to the basic model, in which cluster formation is

taken into account by not considering a single particle volume fraction, but a series of

volume fractions, one for each cluster size. The silent assumption here is that there is

something like a primary latex particle, a monomer, that can be identified as such. In

reality the particles in the original suspension, already before application of the paint

and the initiation of the drying process, have a range of sizes (polydispersity), and there

will be clusters, maybe small and reversible.

In the next stage of model development, we incorporate the effect that latex particles

may form clusters. Let n be the cluster size, i.e. the number of particles in the cluster.

Then P (n, x, t) is defined as the number of clusters of size n, multiplied by the volume

of one particle, divided by unit volume. Thus nP (n, x, t) is the joint volume fraction of

the clusters of size n, and since the total volume fraction of all components, including

the water, is unity, we have

1− w(x, t) =
N
∑

n=1

nP (n, x, t), 0 < x < h(t), t > 0, (5.21)

where N denotes the upper bound to the cluster size. In principle this N can be infinite,

in practice we must choose some finite value of course; the model does not include gel

formation. The diffusion rate D = Dn now depends also on the cluster size. The larger

clusters tend to have a smaller diffusion coefficient than the smaller ones. Coagulation

takes place with a certain probability when two smaller clusters meet, resulting in a

86



Stiffening while drying

reaction-diffusion equation for each separate cluster size

Pt(n, x, t) = (DnPx(n, x, t))x − A(n, x, t) + B(n, x, t). (5.22)

Here

A(n, x, t) =
N−n
∑

m=1

Cn,mP (n, x, t)P (m, x, t) (5.23)

denotes the loss of clusters of size n (dissipation rate) due to further aggregation, while

B(n, x, t) =
1

2

n−1
∑

m=1

Cn,n−mP (m, x, t)P (n−m, x, t) (5.24)

stands for the gain in clusters of that size by aggregation of smaller ones. The factor 1
2
is

present to take care of “double counting”. It is reasonable to assume that the coefficients

Cn,m increase as function of m and n since the chance of hitting a large particle is larger

than the chance of hitting a small particle. When the form of a cluster is a chain, its

surface is about proportional to n. The same applies to planar clusters. However, for a

spherical cluster, the surface is proportional to n
2
3 . Thus, a sensible model for probability

would be an exponential law Cn,m
∼= (nm)b where b is between 2

3
and 1.

Similar choices have to be made in modelling the diffusion rate. Among others, the dif-

fusion rate is affected by the size of a cluster and its affinity to water. It seems natural

to assume that the diffusion rate decreases with the cluster size. In the numerical com-

putations the model Dn = ncD with c = −1 is used. The full set of equations now

reads

Pt(n, x, t) = (DnPx(n, x, t))x − A(n, x, t) + B(n, x, t) (5.25)

Px(n, 0, t) = 0 (5.26)

DnPx(n, h(t), t) = −h′(t)P (n, h(t), t) (5.27)

w(x, t) = 1−
N
∑

n=1

nP (n, x, t) (5.28)

h′(t) = −α(w(h(t), t)−Hwamb) (5.29)

for 0 ≤ x ≤ h(t) and t > 0.

Stiffness is modelled using the assumption that it increases with cluster size. More pre-

cisely, the full sample stiffness is determined as a harmonic mean of local stiffnesses, that
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in turn are determined by the local cluster size distributions:

1

S(t)
=

1

h(t)

∫ h(t)

0

1

Slocal(x, t)
dx, t > 0 (5.30)

Slocal(x, t) =
N
∑

n=1

a(n)P (n, x, t), 0 < x < h(t), t > 0 (5.31)

where a should be a convex function of n satisfying a(n +m) > a(n) + a(m), otherwise

clustering would not enhance stiffness. Without detailed physio-chemical information on

the composition of the paint and the nature of the aggregation process, this function

cannot be specified further. In the numerical computations a(n) = n2 is chosen.

5.3 Numerical implementation

A transformation to a fixed domain makes the problem numerically treatable. Using the

method of lines (spatial semi-discretization), the system of partial differential equations

(PDE’s) is approximated by a system of ordinary differential equations. A numerical

solution can be obtained with standard procedures in MATLABTM(cf. [1, 5]). The moving

boundary is transformed into a fixed one by introducing the new variables ξ = x
h(t)

and

(somewhat formally) τ = t. Hence

∂

∂x
=

1

h(t)

∂

∂ξ
, (5.32)

∂

∂t
= −ξh

′(t)

h(t)

∂

∂ξ
+

∂

∂τ
. (5.33)

Let us make all this explicit for the non-clustering model. A similar,more elaborate system

of equations was used to study the development of the cluster distribution in the layer.

Writing t = τ , equation (5.15) reads:

wt(ξ, t)−
ξh′(t)

h(t)
wξ(ξ, t) =

1

h(t)

(

D

h(t)
wξ(ξ, t)

)

ξ

. (5.34)

This is a diffusion equation with a pseudo convection term:

wt(ξ, t) =
ξh′(t)

h(t)
wξ(ξ, t) +

(

D

h2(t)
wξ(ξ, t)

)

ξ

, 0 < ξ < 1, t > 0 (5.35)
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Thus we have as physical transport model

wt(ξ, t) =
ξh′(t)

h(t)
wξ(ξ, t) +

(

D

h2(t)
wξ(ξ, t)

)

ξ

, 0 < ξ < 1, t > 0 (5.36)

wξ(0, t) = 0 (5.37)

wξ(1, t) = −
αh(t)

D
(w(1, t)−Hwamb)(1− w(1, t)) (5.38)

w(ξ, 0) = w0(ξ) (5.39)

h′(t) = −α(w(1, t)−Hwamb) (5.40)

h(0) = h0 (5.41)

for 0 < ξ < 1 and t > 0.

Figures 5.3 and 5.5 show the joint volume fraction P (n, x, t) of the clusters of size n,

divided by the number of latex particles in the cluster. In the upper left plot, the volume

fraction of the latex particles is presented as a function of the space variable for different

time steps. Initially (t = 0), the volume fractions of the latex particles and the water

are taken the same p0 = w0 = 0.5, no clusters are present (above size one). The volume

fraction of single latex particles decreases with time because of cluster formation. This

process is faster at the upper boundary (x = 1) because the evaporation takes place at the

surface of the paint layer, hence the drying process there is more rapid than at the lower

boundary (x = 0). The water near the substrate must first be transported through the

layer before it can escape to the air. According to our choice of parameter values, the rate

of the diffusional transport of water is rather small compared to that of the evaporation

rate, so we should expect the formation of a film. The other plots show similar results

for the clusters of size 2, 3 and 4.

Figures 5.4 and 5.6 show the volume fraction of water w(x, t) (left) as a function of x for

certain values of t and the thickness of the paint layer h(t) (mid) as well as the stiffness

S(t) as a function of time. As the initial thickness is h0 = 1 and the initial water fraction

is chosen w0 = 0.5, the paint layer shrinks to a thickness h = 0.5 with the evaporation of

the water. The stiffness increases with time because of progressing cluster growth.
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Figure 5.3: The joint volume fraction P (n, x, t) of the clusters of size n, divided by the
number of particles with initial data α = 0.5, Hwamb = 0, w0 = 0.5, h0 = 1, C1 = 0.5,
Ds = dw = 0.1.

Figure 5.4: The volume fraction of water w(x, t) (left), the thickness of the paint layer
h(t) (mid) and the stiffness S(t) (right) as a function of time with parameter values
α = 0.5, Hwamb = 0, w0 = 0.5, h0 = 1, C1 = 0.5, Ds = dw = 0.1.
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Figure 5.5: The joint volume fraction P (n, x, t) of the clusters of size n, divided by the
number of particles with parameter values α = 0.2, Hwamb = 0.2, w0 = 0.5, h0 = 1,
C1 = 0.2, Ds = dw = 0.01.

Figure 5.6: The volume fraction of water w(x, t) (left), the thickness of the paint layer
h(t) (mid) and the stiffness S(t) (right) as a function of time with parameter values
α = 0.2, Hwamb = 0.2, w0 = 0.5, h0 = 1, C1 = 0.2, Ds = dw = 0.01.

5.4 Particle simulation

A completely different approach is chosen in the model we call the particle simulation.

Here both the water and the latex phase are described as soft particles, moving diffusively
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due to the effect of thermal fluctuations. The interaction between the particles belonging

to the two different phases is described by a potential force. Moreover the latex particles

can form bonds when they come into close contact and form clusters. When the bonds

are stretched, for instance by cluster reorganization due to stresses in other parts of

the cluster, external forcing, or collisions with other clusters or water particles, these

bonds may break. The forces as generated by the potentials can be directly calculated,

averaged over the sample and related to material properties of the sample as a whole. The

thermal fluctuations are represented by a random force. Mathematically the motion of

the individual particles is described by a Langevin equation of motion, that is integrated

numerically. The generic term for these type of simulation is Brownian Dynamics (BD),

with the random force generating the Brownian (diffusive) motion of the particles. The

latex particles in the model are indeed supposed to be like those in the actual system,

and the water particles stand for relatively large volumes of water, about the same size as

the latex particles (the order of micrometers), many length scales above the size of water

molecules (less than a nanometer). Hence the appropriate term of the particle model

scale would be mesoscopic. By calculating densities of particles, a relation could be made

with the previously describe continuous model. Note that the particle simulation is fully

three-dimensional. Most of the techniques we use are quite common, and are described in

detail in many standard textbooks on molecular and mesoscopic simulation techniques.

5.4.1 Model description

Figure 5.7: The elements of the particle simulation model.

In the BD model we have latex particles (yellow) and water particles (cyan) (cf. figure

5.7). The latex particles form clusters, and the largest cluster in the system is shown in

orange. The interactions between the particles are a constant force with a finite range,
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attractive for the latex particles and repulsive for the water particles. Also the interaction

between latex and water particles is repulsive. When latex particles come close, a bond

may be formed. When that occurs the length of the bond is subject to a simple Hookean

potential, a linear spring, that breaks again above a certain extension. Overlap between

particles is removed by a repulsive force with the same Hookean potential. The whole

system is contained in an image box, and we use periodical boundary conditions in all

directions. The equations of motion for the particles are integrated numerically in time

using an Euler Forward method. The time step is physically restricted by the oscillation

period of the linear springs, higher order methods would not allow for substantially larger

time steps.

5.4.2 Results

Figure 5.8: Series of snapshots from the BD simulation, as time increases water evaporates
from the layer and the latex particles form a single cluster.

As the implementation of such a model is quite elaborate, we used existing private

code that we modified for our purpose of the drying of a paint layer. The initial config-

uration consists of 200 latex and 100 water particles randomly positioned in a thin slab

in the xz-plane of the image box. As the box is elongated in the vertical y-direction,

and periodic in the other two directions, the system actually describes an infinite paint

layer freely floating in space. The water particles may escape from the layer, describing

the drying, the latex particles will form bonds and stay within the layer, describing the

stiffening. There is no actual substrate present, though the model as such would allow it,

unfortunately the available code does not.

Figure 5.8 depicts what happens as a function of time by providing a series of snapshots of

the model system. One observes indeed the blue particles escaping the layer, be it slowly.

In the current realization they still stay close to the layer, indicating that diffusion even
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outside the layer is slow. A relatively large number of water particles is still inside the

layer, even when all the latex particles have joined into a single cluster, forming a solid

slab. Some water will be trapped inside holes in that solid, other may still escape later

through channels as the slab continues contracting. Apart from evaporation and coagu-

lation, the particle simulation also describes the compactification of the partially dried

paint layer.

Since the detailed motions of all individual particles and all the forces in the system

Figure 5.9: Growth of the largest cluster of latex particles in the system.

that influence that motion, are readily available, a host of numerical data is available

in this model system, even for relatively small system size and short simulation times.

In practice one would calculate from these data observables that can be compared with

actual experimental data on real samples. For the current feasibility study we present as

an example the largest cluster size in the system. In fact such a parameter is not at all

readily accessible in real systems, but the pronounced S-shape of the curve depicted in

figure 5.9 agrees very well with results from particle gelation models. At early times there

are many small clusters, which move relatively fast. When larger clusters form, which dif-

fuse more slowly, the cluster-cluster aggregation leads to a rapid growth of large clusters

when they come into contact not because of their diffusion, but rather of their growth.

Once a fraction of the particles has formed the gel, that gel grows by the addition of

smaller clusters joining it. Slowing down of the diffusion of larger clusters is incorporated

in the model directly through the random force acting on the individual particles. The

larger the cluster, the more these random forces will average out.

To calculate material properties of the sample, like surface tension of the drying layer, it

suffices to sample the data from the simulation as described above. Such parameters are
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Figure 5.10: Affine deformation of the sample with the image box under shear.

said to be calculated in equilibrium, using the fluctuations generated by the random force,

and relations from equilibrium statistical physics, like the virial theorem, to relate those

to macroscopic observables. Because the random forces are small, and consequently so are

the fluctuations, only material properties for small deformations can be determined. To

investigate how such a sample would behave under larger deformations, non-equilibrium

techniques are used. One example that is depicted in figure 5.10 is shear deformation,

in this case shearing of the whole layer in the parallel direction. All particles are moved

affinely under this deformation, while the image box is changed accordingly using the so

called Lees-Edwards boundary conditions. This induced shearing motion leads to increas-

ing stresses in the material that can only partially be relaxed by internal reorganization.

In figure 5.11 we give the sample stress as a function of shear strain parallel to the layer.

The simulation was performed on a sample that had fully gelated, all latex particles form

a single cluster. Since the deformation is rather small the system response is quite linear,

apart from a small effect at very low deformation. Bonds are not stretched to the point

where they start breaking, and the sample reacts as an elastic solid. A soft solid for that

matter, since a strain of 0.25 for a stiff solid would be far in the non-linear regime. Stiff-

ness is readily calculated within this model simulation, directly from the forces in the

cluster network.

5.5 Conclusions and discussion

We have presented two different modelling approaches for the understanding of the dry-

ing and stiffening process of a paint layer. The first approach was a PDE model where

we combined a moving boundary value problem, with a model for the stiffening of the
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Figure 5.11: Stress in the sample as a function of imposed shear strain. Bonds do not
break here and the response is quite linear.

paint. For the latter a coagulation process of the latex particles has been incorporated.

The numerical studies of this PDE model show that it leads to reasonable results, which

at this stage can not be be compared with those of actual samples. One reason is that

we did not have access to actual data, more important is that the model contains a

large number of parameters, such as diffusion constants and aggregation probabilities.

Moreover we can only expect the model to be applicable in the range where the motion

of the latex particles is largely diffusional (stage 1 of the process as described in the

introduction). The aggregation model finally does not take into account a sol and a gel

phase. In fact that relates directly to the proviso we mention about the diffusion, a gel

is actually not much more than a very large cluster that has ceased diffusing, but within

an open gel still diffusion of the sol phase might take place. If, as again suggested by the

intuitive model from the introduction, large rearrangements in the clusters and the gel,

and actual coagulation and deformation of the latex particles plays a large role in the

development of the system, a gelation model would not provide much additional insight.

In principle it would be possible within the model we present to include ageing effects

of the clusters by making the parameters depend on the time passed since the forma-

tion of the cluster, like in structured population models developed in biology. Whether

the addition of yet another set of model parameters will add to the predictability of the

model for actual paint samples is obviously quite questionable. Possible extensions of this

work could be the investigation of stress-driven water flow, the cracking of the paint film,

two- and three-dimensional flow and the physics of the film formation process. One main

shortcoming of the model as presented is that it does not allow for external disturbances.
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Forced drying could be taken into account by changing the parameter α, but mechanical

properties are restricted to the rather phenomenological description of the stiffness. The

numerical calculations did show the feasibility of the application of the model, with mod-

est requirements as to calculational equipment, and using quite straightforward simple

implementation techniques.

Direct particle simulations provide an alternative approach for modelling. The advan-

tage is that most real system observables can be directly compared to model results, no

additional modelling is needed once the potential force parameters are specified. The dis-

advantage is that such potentials often present a too much simplified physical picture of

reality. The model we used does not allow for deformation of the latex particles, though

the effect is taken into account somewhat by the flexible bonds between the particles. The

diffusional motion of the water particles in the early stage may adequately describe the

dynamics of such samples, once the water has evaporated it certainly is an awkward car-

icature at best. Maybe it would better if such particles, when they have actually escaped

from the layer, are removed in full. The rate at which that happens could then for instance

stand for a form of forced drying by ventilation. Still the large size of the water particles

limits the applicability of this model. Smaller sizes can be included straightforwardly, but

at the price of an considerable increase in computational effort. Much more promising

seems a hybrid approach, where the latex particles are described by a Brownian Dynam-

ics type of model, while for the water phase for instance a coupled Lattice Boltzmann

type of model is used. Similar hybrid models are used extensively in CFD techniques to

describe the hydrodynamics of particle laden flows. Without significant material flow, as

is the case for the drying paint layer, simplified versions of such models may well apply.
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Chapter 6
DHV water pumping optimization
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Abstract:

This contribution investigates the possibilities for optimizing a drinking water network
over a horizon of 48 hours, given variable water demands, energy prices and constraints
on the pumping strategy and water levels in the reservoirs. Both the dynamic model and
goal function are non-linear in the control inputs, the pump flow rates. Since each pump
can be switched on or off every 15 minutes and since there are 15 pumps in the system, for
a horizon of 48 hours there are 2(4×48×15) switching possibilities. Obviously, this problem
is too big to solve it in real-time by enumeration. Hence, a decomposition of the problem
is needed. Relaxing the constraints and assuming a continuous-time flow rate, allows a
(semi)-analytical solution using Lagrangian theory. Furthermore, a numerical solution of
the constrained optimization problem is found by using the TomLab PROMPT toolbox.
The conversion from a continuous-time pump flow rate to a strategy with on/off switching
is also investigated, as well as the possibility of linear feedback control. The resulting
trajectories of the pump flow rates and water levels in the reservoirs are realistic and can
be physically interpreted.
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6.1 Introduction

For the 67th Studygroup Mathematics with Industry held at the University of Wagenin-

gen, we worked on a question posed by DHV which is an international group of consulting

engineers located in Amersfoort. The question concerned water pump optimization. We

were asked to optimize the distribution of drinking water in a region with towns (which

require drinking water), reservoirs and pumps (which pump drinking water from one part

of the region to another part).

The specific setting we studied, the Grimsby drinking water supply region in Canada,

is shown in Figure 6.1. It consists of three towns Smithville, Beamsville and Grimsby.

The drinking water demand of each town has a typical pattern that is more or less known

in advance. Typical demand curves are given in Figure 6.2 where the demand is known

per 15 minute sections per day.

Figure 6.1: A sketch of the Grimsby drinking water supply region with the three towns
Smithville, Beamsville and Grimsby, and the pump stations and the reservoirs.

Drinking water is pumped into this supply region through the Grimsby High lift

pumping station, located at a certain height HGp above sea level. With the use of water

reservoirs and pumping stations, the drinking water is stored in the region and distributed

over the three towns.

The pumping stations at Smithville, Park road and Beamsville are located at different
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Figure 6.2: The drinking water demand for each of the three towns.

heights, HSp, HPp and HBp, respectively. The pumping stations each contain a certain

number of pumps, see Figure 6.1, which have different capacities and which can either

be turned on or off every 15 minutes. Also, the pressure difference before and behind the

pumps, the so-called head loss, determines the operation of the pump. When switching

on a pump, this head loss first has to be overcome before the water starts flowing through

the pump.

The reservoirs have different capacities as denoted in Figure 6.1. Moreover, there are

restrictions on the minimum level, 75 %, and maximum level, 95 %, that the reservoirs

are allowed to contain.

Finally, operating the pumps costs energy which in turn costs money. The cost of

energy is known; it varies through the day and is different on weekends, see Figure 6.3.

Under the given restrictions and water demand, we were asked for an optimal solution

such that the cost of energy is minimal. In other words, DHV would like to know, for

a period of 48 hours in advance, at which moment the pumps should be turned on or

off. Each pump can be switched on or off every 15 minutes. Since there are 15 pumps in

the system, there are within the time-frame of 48 hours, 2(4×48×15) switching possibilities.

Obviously, studying this complete system with all of these possibilities is not possible, so

other approaches need to be taken.

One of the pumping strategies, for example, is to fill the reservoirs during the night

when the energy is cheapest. In this way, there is sufficient water supply to satisfy the

peak in the drinking water demand of the towns in the morning. In this way the pumps
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Figure 6.3: The energy prices.

are operated less during the times when the energy is most expensive. However, it is not

at all clear that this is the optimal solution since the energy price varies through the day

and several other constraints need to be satisfied. Also, filling the reservoirs up to the

maximum level could result in a surplus of water stored in the reservoirs. Moreover, how

to operate the pumps such that this strategy is fulfilled, is also not known.

We use several analytic and computer aided approaches to tackle the problem. First,

we use the fact that the Grimsby drinking water supply region can be split up into several

independent modules (OPIRS in Figure 6.1). In section 2, we study one such a module

analytically. For this module, a set of algebraic-differential equations is derived which is

then optimized by using a Lagrange multiplier. In section 3, we analyze optimal pump

rates for the pump stations. Then, in section 4, we develop a method that, given a certain

flow rate going to a pump station, determines the combination of which pumps should

be switched on and which ones off to give this flow rate. Finally, using this result, a

feedback controller is proposed in section 5.

6.2 Analytic approach to flow control

6.2.1 Modular approach to water pump optimization

In a network of water pumps, reservoirs, and supply regions, it is possible to identify a

general module. The entire network can then be interpreted as a network of such modules.

The general module is displayed in Figure 6.4.

The module consists of n water pumps that can be switched either on or off, with
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Figure 6.4: A module consisting of a set of n water pumps, a pipe with resistance R and
a reservoir.

no intermediate states. The flow through pump i is given by Fi ≥ 0 in m3/h. The sum

of these flows is necessarily equal to Fin. Behind each pump, the water flows through a

pipe which has a characteristic resistance R (h2/m5). The flow is then split into the flow

demand by the supply region (or to another module), Fout (≥ 0), and a flow Fres into the

reservoir. The reservoir flow Fres can be negative, representing a flow from the reservoir

to Fout. We have the following continuity equation

Fin =
n

∑

i=1

Fi = Fout + Fres. (6.1)

The water height above sea level in the reservoir is denoted by Lres in m. It can thus

be compared to the water level just before the pumps, Lin, also absolute above sea level.

The water level satisfies the differential equation

A
dLres

dt
= Fres, (6.2)

where A is the surface area of the reservoir. The head H in m (a measure for pressure)

103



Proceedings of the 67th European Study Group Mathematics with Industry

required to transfer the water from Lin to Lres is given by

H = Lres − Lin +R
(

n
∑

i=1

Fi

)2

= Lres − Lin +RF 2
in. (6.3)

For all the pumps that are switched on, a nonlinear relation holds between the head over

the pump and flow Fi through the pump. This relation is given by

H = −αiF
2
i + γi, i = 1, . . . , n. (6.4)

Here (αi, γi) are positive constants that characterize pump i for i = 1, . . . , n. The pressure

over all pumps is equal, which explains why H is independent of i. If a pump i is switched

off it gives rise to the flow Fi = 0.

The requested flow Fout and the water level Lin are assumed to be given functions

of time. If we decide which pumps are turned on, equations (6.1), (6.3) and (6.4) give

m + 2 relations in the m + 2 unknowns Fres, (Fi), H, where m is the number of pumps

that are switched on. Roughly speaking, by the implicit function theorem this determines

Fres locally as a function of Lin, Lres and Fout. The dynamics of Lres are then described

by (6.2), and from Lres all the other dynamics follow.

6.2.2 Analytic approach to flow control

The energy price is given by c(t) as a function of time (in ct/Kwh). We have P =

P (Fin, H) which expresses the power consumed by the pumps in kW . An approximation

for P is

P (Fin, H) = kFinH, (6.5)

where k > 0 is a constant that relates to the efficiency of the pumps. In practice k

depends on Fin. Altogether, this enables us to express the pumping power in monetary

units as a function of time. Our goal is to minimize the total monetary costs over a time

span T . To make analysis possible, we make the following simplifying assumptions.

Assumption 6.1. We can obtain any flow Fin by switching pumps on or off.

Assumption 6.2. There are no constraints on allowed reservoir levels.

There are some objections. Since pumps are only switched on/off at discrete times

(e.g. at most every 15 minutes), and since pumps have their limits, Assumption 6.1 does

not hold in practice. Furthermore, water levels should be kept in a [75 %, 95%] range

of the reservoir capacity, so Assumption 6.2 can not hold in practice. We discuss these

objections later.
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For any given Fin, we can in principle compute the resulting head through either

equation (6.3) or, in case we switch only one pump on, (6.4). It makes more sense to

use (6.3) since the required head is expressed through this equation, which is of crucial

importance. Equation (6.4) actually looses its meaning when we use assumption 6.1: we

assume that the given head/flow combination can be delivered by a certain combination

of pumps and are thus indifferent about the specific pump characteristics.

Next we derive an optimization problem to minimize the required energy. We treat

Fin as the control variable and use the notation u = Fin, x = Lres.

The total energy used over time span T is given by

E[x, u] =

∫ t0+T

t0

c(t)P (Fin, H) dt =

∫ t0+T

t0

c(t)ku(t)
(

x(t)− Lin(t) +Ru(t)2
)

dt, (6.6)

where we used (6.3) to express H as a function of (u, x), and (6.5) to calculate the power

used by the pumps. Equation (6.2) translates into the constraint

ẋ(t) =
(

u(t)− Fout(t)
)

/A, t ∈ [t0, t0 + T ]. (6.7)

We require that, after time T , the reservoir level x is equal to its starting value at t0,

that is

x(t0) = x(t0 + T ). (6.8)

Using Lagrangian multiplier λ(·) to include the constraint (6.7) we obtain the following
Lagrangian,

L(x, u, λ, µ) = E(x, u) +

∫ t0+T

t0

λ(t)
(

(u(t)− Fout(t))/A− ẋ(t)
)

dt+ µ(x(t0 + T )− x(t0))

=

∫ t0+T

t0

c(t)ku(t)
(

x(t)− Lin(t) +Ru(t)2
)

+ λ(t)
(

(u(t)− Fout(t))/A− ẋ(t)
)

dt

+ µ(x(t0 + T )− x(t0))

=

∫ t0+T

t0

c(t)ku(t)
(

x(t)− Lin(t) +Ru(t)2
)

+ λ(t)
(

u(t)− Fout(t)
)

/A

+λ̇(t)x(t) dt + (µ− λ(t0 + T ))x(t0 + T )− (µ− λ(t0))x(t0),

where we used partial integration in the last step. At an extremum, small variations of x

(with fixed boundary values x(t0) = x(t0 + T )), u, λ and µ should have no influence on

the value of the Lagrangian. By formally differentiating with respect to x we obtain the

condition

c(t)ku(t) + λ̇(t) = 0, t ∈ [t0, t0 + T ]. (6.9)
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Differentiating with respect to u gives

c(t)k
(

x(t)− Lin(t) + 3Ru(t)2
)

+ λ(t) = 0, t ∈ [t0, t0 + T ]. (6.10)

From (6.10) we derive that, for t ∈ [t0, t0 + T ],

u(t) =







√

1
3R

(

Lin(t)− x(t)− λ(t)
c(t)k

)

, if c(t)k(Lin(t)− x(t))− λ(t) ≥ 0,

0, otherwise.
(6.11)

Recall the differential equation (6.7) for x. We have now obtained the coupled set of

differential equations

λ̇(t) = −c(t)ku(t),
ẋ(t) = (u(t)− Fout)/A, t ∈ [t0, t0 + T ],

subject to boundary condition (6.8).

As an example we solved these equations numerically for the Smithville reservoir,

starting from t0 = 0 over a time period T = 24 h and assuming a fixed water level Lin.

The solutions are depicted in Figure 6.5.

We see that there is no flow when energy is most expensive. Unfortunately the reser-

voir limits [230, 240] are significantly exceeded. So Assumption 6.2 is strong. Otherwise

the results seem realistic, which gives confidence in our methods. It is interesting that

the flow rate is not periodic. Furthermore it is of interest why the function of flow rate

with respect to time has (at certain time intervals) the form of the square root function.

The violation of assumption 2, required for a global optimum, implies that the water

level constraint reduces optimality of the controlled system. This conclusion can help for

future design considerations.

In future research, reservoir limits can be included in the optimization either by using

slack variables or by using a penalty function. The same can be done to include maximum

flow rates, in order to relax assumption 6.1. Another interesting topic of further research

is to optimize a coupled set of modules, so that an entire network of pumps, pipes and

reservoirs can be controlled optimally.

6.3 Optimal Pump Rates for Four Stations

6.3.1 A simple model

In this section we calculate optimal pump rates for the four pump stations at Park Road,

Grimsby High, Smithville, and Beamsville. First, a model is defined for the dynamic
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Figure 6.5: Upper left: Water demand Fout in Smithville. Upper right: Energy costs
c(t) per kWh. Bottom left: Optimal water flow u = Fin through pumps. Bottom right:
Reservoir level x = Lres in case of optimal flow.

behavior of the water levels in the four corresponding reservoirs. This model can easily

be obtained by performing a mass-balance equation for each reservoir. Denote with xi(t)

the water level in each of the reservoirs so that the following 4-state model can be defined:

ẋ1(t) =
u1(t)− dGr(t)− u2(t)− u4(t)

APRdRes

ẋ2(t) =
u2(t)− u3(t)

ASmRes

ẋ3(t) =
u3(t)− dSmV (t)

ASmTow

ẋ4(t) =
u4(t)− dBV (t)

AHxRes

(6.12)

where dGr(t), dSmV (t), dBV (t) are the demand curves for Grimsby, Smithville, and

Beamsville, respectively (these are assumed known and given) [m3/hr]; APRdRes, ASmRes,AHxRes,ASmTow

are the local surface areas of the three reservoirs and Smithville Tower [m2]; u1(t), u2(t), u3(t), u4(t)

are the pump rates at Grimsby High Pumping station, Park Road, Smitville Pump-
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ing Station, and Beamsville pumping station, respectively [m3/hr]. Finally, the states

x1(t), x2(t), x3(t), x4(t) are the water levels in the three reservoirs and at Smithville

tower.

An important note on the required pump rates (to be solved for) is the assumption of

a continuous variable ui(t) for all four pumping stations. This is a simplification which

could be relaxed at a later stage of the project, but for now it is very convenient to allow

a continuous variable since the optimal control algorithm at our disposal can directly be

applied. A realization of the optimal pump rates is deferred to section 6.4. In addition

to the above dynamic constraints we also introduce four state constraints on the water

levels. After some discussion with the problem owner we decided to maintain the water

levels in a bandwidth of 25% to 95% of the maximum levels allowed. With regard to the

pump rates it should be noted that we assume only positive values of the inputs ui(t) for

a simple reason: the pump rates are not allowed to pump in reverse direction.

6.3.2 The goal function

The provided problem description included a clear goal, namely to minimize on the elec-

tricity price for operation of the four pumping stations. The following table of electricity

prices was included:

Electricity Price [ct/kWh] Time Slot

3.0 22:00 – 7:00 hr (next day)
7.0 7:00 – 11:00 and 17:00 – 22:00 hr
8.7 11:00 – 17:00 hr

The trade-off that needs to be optimized in this case is storage of water in the reservoirs

that can be stocked at cheap electricity time-slots, whilst not increasing the water levels

too much since additional head builds up when the reservoirs are filled with water and

this hampers the pumps in their task (thereby reducing the flow rates). For each pump

station the consumed power is

P (t) = C H(t) u(t)

where P (t) is the power [kW], C is a constant characterizing the pump efficiency, and

u(t) is the flow rate [m3/hr]. The hydrologic head as experienced by a pump is given by

H(t) = ∆L+ x(t) +Ru2(t)

where ∆L is the elevation difference between two pump stations, x(t) is the water level in

the reservoir, and R is the hydrologic resistance of the piping network. Let pE(t) denote
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the pricing of electricity [ct/kW]. Then our problem is to minimize the total monetary

costs over 24 hours:
24
∫

0

pE(τ)P (τ)dτ

6.3.3 Results

To obtain some first results the above problem was programmed in Matlab, making use

of the so-called TomLab PROPT toolbox for optimal control. The software allowed all

constraints (both input and state constraints) to be included. To force a cyclic solution,

and not to obtain so-called ‘greedy control’, terminal constraints were included so that

the final water levels in the reservoirs are exactly the same as the initial water levels. In

Figure 6.6 the optimization results are presented in three graphs. In the first graph we

see the water-levels in the reservoirs. It is immediately clear that Smith Tower with a

relatively small capacity is used as a storage during off-peak hours and this clearly pays

off in terms of electricity use.

Grimsby High lifting station has the highest pump rates which can be expected since

it has such a central position as a gateway to the three communities. It is clear from

the results that our calculated strategy anticipates on low electricity prices by pumping

intensively during the off-peak hours. Also, the pumps do not switch off completely in

the most expensive hours, indicating that hydrologic head buildup is circumvented.

Of course, the above results are just a starting point that should be elaborated upon

at a later stage. More refinement in, for example, the hydrologic resistance R for the

piping networks could be taken into account and, also, the on-off switching nature of the

controls.

6.4 Conversion of continuous flow rates into pump-

ing combinations

6.4.1 Introduction

In the previous sections, continuous-time methods are used to control drinking-water

supply systems. These methods assume that the flow rates for each pumping station is a

continuous control input that can be controlled directly. However, the on- and off switch-

ing of the pumps make it a discrete quantity. In this section, a method is developed that

computes for any given continuous-time flow rate a combination of switched on pumps,

109



Proceedings of the 67th European Study Group Mathematics with Industry

Figure 6.6: Optimization results for pump-stations

that results in a flow rate that is most similar to the one that was given. Throughout

this section, we assume that there are no transient effects, i.e. when a pump is switched

on or off, the resulting flow is immediately in steady state.

110



DHV water pumping optimization

6.4.2 Modular flow model for given pump states

First, a single pump is considered. The pumping pressure can be represented by a quantity

in meter. The head H is

H =
p

ρg
, (6.13)

with p the pressure , ρ the density and g the acceleration of gravity. The sum of the

head and the physical height difference (generalized head) determines the flow rate. This

relation can be inverted: if the flow rate is given, then the generalized head can be

calculated via a Bernoulli equation.

A pump P is considered as an object with two member functions: P .head2flow(H)

calculates the flow rate for a given generalized head H, and P .flow2head(F ) calculates

the generalized head for a given flow rate. The same analysis applies to pipes. Pumps

and pipes are examples of a network. Each network object N has member functions

N .head2flow(H) and N .flow2head(F ).

Networks can be build recursively from parallel connections and serial connections,

and we treat them separately.

• For a parallel connection N with subnetworks S[1], . . . , S[n], the flow resulting from

a given head is calculated by adding the flows through the subnetworks:

N.head2flow(H) =
n

∑

i=1

S[i].head2flow(H) (6.14)

The function H = N .flow2head(F ) is now evaluated by iteratively searching H

such that N .head2flow(H) = F . For this, we used an algorithm that solves one

nonlinear equation with one unknown.

• For a serial connection N with subnetworks S[1], . . . , S[n], the head over network

N is calculated by adding the heads over the subnetworks:

N.flow2head(F ) =
n

∑

i=1

S[i].flow2head(F ) (6.15)

The function F = N .head2flow(H) is evaluated by iteratively searching a flow F

such that N .flow2head(F ) = H. Note that the generalized head over a network N

between two reservoirs is known, because it equals the height difference ∆L (m)

between the reservoir levels.

Now, for any given pump state, the resulting flow rates and the pumping pressures

can be found by evaluating N .head2flow(∆L). This gives a table with all possible flow

realizations and their corresponding pump states.
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max. max.
α γ head flow

pump 1 −1/2 2 2 2
pump 2 −1/3 3 3 3

Table 6.1: Characteristics of pumps in calculation example

Pump states head of head of
flow pump 1 pump 2 pumps pipe
0 off off 0 0
1 on off 1.5 -0.5
1.5 off on 2.2 -1.2
– on on – –

Table 6.2: Possible flows in calculation example; if both pumps are on, there is no
solution for the head and the flow rate

6.4.3 Model application

As an example, we investigate a pumping station with two unequal pumps. Assume that

the pumps both satisfy flow2head(F ) = −αF 2 + γ, but with different characteristics α

and γ, listed in Table 6.1. These pumps are connected in parallel, and the pumping

station is connected in series with a pipe satisfying flow2head(F ) = −0.5F 2. Assume

that this network is connected with two reservoirs having a water level difference of 1.

The flow rates that can be realized are shown in Table 6.2. There are two pumps that

can be either on or off, resulting in four possibilities. It is interesting that there is no

solution if both pumps are turned on. The reason is that the largest pump would produce

a larger head than the maximum allowed for the smallest pump (Table 6.1).

The drinking water supply system for Smithville, Beamsville and Grimsby is shown

in Figure 6.7. To apply our algorithm, the system is divided in five subsystems. If

the dynamics of the reservoir levels is considered small compared to the static height

differences between the reservoirs, then subsystem 4 and subsystem 5 in Figure 6.7 are

driven by a fixed height difference. These systems are independent on the subsystems 1 –

3 (provided that shared reservoirs are not empty). Subsystems 1 – 3 are not independent,

because they depend on the generalized head in connection point C. To solve this, we

make use of an extra equation that expresses mass conservation

F1 − F2 − F3 = 0. (6.16)
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Figure 6.7: Network representation of supply to Smithville, Beamsville and Grimsby,
with subsystems 1 – 5

6.4.4 Discussion

By applying recursion, the multivariate problem can be solved using a numerical method

that solves scalar equations. The recursive algorithm applies to a general class of drinking

water supply systems, including the Smithville, Beamsville and Grimsby situation. The

algorithm was applied to a calculation example with unequal pumps. In this example,

one pump state combination was impossible, because it resulted in a larger head than

possible for the one pump. This boundary indicates that the algorithm should be used

with caution.

The result is a table that contains all possible steady states for the flow rates in the

system. This table can be used to approximate a continuous-time control input (flow

rate) by a discrete one (pump combination).

6.5 Local linear feedback control

6.5.1 Problem definition

The starting point of this section is the optimal state and input trajectories that were

derived in 6.3. An optimal control method is called open loop, which means that it

113



Proceedings of the 67th European Study Group Mathematics with Industry

computes the trajectories beforehand. This provides an ideal choice of input for the

undisturbed system, but in general the robustness with respect to model errors and

disturbances, such as deviations from the predicted water demand, is hard to guarantee.

For example, although the optimal input trajectories are refreshed each 15 minutes, which

can be seen as state feedback control, there is no ’integrating action’. This means that

the for a model error or disturbance that generates an output error that is constant in

time, the controller keeps responding in the same way and thus keeps making the same

error. More concrete, if the optimal controller keeps predicting an input that results in a

too low water level in the basins, there is no mechanism that adjusts the input for that

constant output error.

6.5.2 Approach

A feedback controller is proposed to make the optimally controlled system more robust

against the above mentioned perturbations. The purpose of this controller is to drive the

system output (water height in the basins) to the output trajectory that was predicted by

the optimal controller by using a feedback mechanism that adjusts the input (pumping

power). There are many ways to design a feedback controller, and they come from

different fields. We choose model based linear feedback control, since this is a widely

successfully applied approach that has a strong mathematical foundation. Further, it is

a textbook subject and design tools are widely available.

The approach is the following. First, since linear control design is mathematically only

possible for linear systems, the system is linearized around the optimal state and input

trajectories. The new variables are the deviations from the optimal variables, and they

are defined as

x̃(t) = x(t)− xopt(t)

ũ(t) = u(t)− uopt(t)

ỹ(t) = y(t)− yopt(t), (6.17)

where x is the water height in the basins, y the measured output (for example the water

height in some of the basins), and u the pump rates. The subscript ”opt” refers to the

optimal trajectories derived in section 6.3. Inserting (6.17) in the model equations (6.12)

gives a system of the form

dx(t)

dt
= Ax(t) + Bu(t) + Ee(t)

y(t) = Cx(t), (6.18)
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with e the disturbances in the water demand curves d(t), and A, B, C and E system

matrices. The system (6.18) is in a form that allows the design of a feedback controller,

e.g. via H∞ theory.

6.5.3 Discussion

It is shown that given an optimal input and state trajectory, a robust linear feedback

control design is possible. The design itself is omitted, but as mentioned before this

is a textbook subject. The controller acts locally in time, as opposed to the optimal

controller, so it does not look ahead to save energy costs. For example, it does not shift

pumping duties to the night time because the power is then cheaper. In theory, each

time that the optimal trajectory is refreshed, the trajectories that the state and input

are linearized around changes, resulting in a different controller each 15 minutes. So A,

B, C and E change. However, since the controller will be robust against model errors,

this is not necessary as long as the differences stay reasonably small.

6.6 Conclusions

Given the fluctuating energy prices and the drinking water consumption in the Grimsby

area, where each of the 15 pumps are either switch on or off, in total 24×48×15 possible

trajectories result. Hence, a solution via enumeration is infeasible and thus there is a

need for approximations.

At first, we consider smooth (continuous-time) pump functions and one head-flow

relationship per pumping station. Hence, a set of algebraic-differential equations with

constraints result. This allows us to use Lagrangian theory for dynamic systems, also

known as the minimum principle of Pontryagin. After all, a two-point boundary value

problem (TPBVP) in terms of the states and co-states results. Recall that in this problem,

the flow generated by a pumping station is the control input and the height in a reservoir

is the state of the system. Given the energy-related goal function, together with the input

and state constraints, numerical solutions to the TPBVP have been found. If, however,

we consider the unconstrained problem for a single pumping station configuration, (semi-

)analytical solutions result.

In a second step and given a required head-flow combination as a function of time, as

found after solving the TPBVP, an optimal pump configuration can be selected. Careful

analysis of the Grimsby region, under quasi-steady state assumptions, also shows four

archetypical modeling problems, which can be solved in a modular approach.

The direct link between energy costs and the flow signals allow a direct physical
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interpretation. The unconstrained problem for Beamsville, while considering only the

running costs, clearly shows that enlarging the Hixon reservoir and pumping capacity is

profitable.

Further research is needed to analyze the problem with respect to the sub-optimal

solutions found in this work, to set-up a generic framework for the dynamic optimization

of any drinking water network and to come up with real-time solutions.

116


