Definition And Use Of Additive Genetic Effects For
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Defining the magnitude of additive genetic effects

The goal of animal breeding is to generate respemsselection. Thus a key question is:
“what are the additive effects that can be usegdetterate response”. Response to selection
follows from regressing the genetic mean of theyteiipn on the selection criterion, giving

AR =ipog, 1)
where i is intensity, p accuracy andog the standard deviation oB-values among

individuals. Beware thag is defined here as the heritable effect deterrgiive population
mean, not to be confused with= A + D + |. Equation [1] applies to any selection strategy
and inheritance model, since it equals the finshtef Price’s Theorem (Price 1970).

The issue here is: what is tleg; in Equation 1? In the classical model, whEre A + E,
response equals the change in mean breeding vaRges AA , so thaiG = A, and 03 = 04.
Moreover, sinceos =oa+0z, 04 also equals the (additive) genetic component of

phenotypic varianceVarg(P) = aé. Thus, withP = A + E, a variance partitioning

perspective and a response to selection perspegitlg the same definition of genetic
variance.

Things become different, however, when trait arteecaéd by multiple individuals, for
example with maternal effects or social interactiorWith maternal effects, where

R =Ap,; +Av gami) + E, I denoting the individual and dain(ts mother, response equals
APy = AA, +AA, . Therefore,G, = Ay + Ay, Which is entirely a heritable property iof
because transmits its own genes, not those of its dam.sTog = 0%, +20, +0%, |

which differs fromVarg (P) = 03 +O,

response to seIectiorUé, differs from the genetic component of phenotypariance,
Varg (P) , while AG =ipog and AG # ipy/Varg(P) (Eaglen and Bijma, 2009). In general,
therefore, the genetic variance determining resparennot be obtained by partitioning
phenotypic variance into a genetic and residual prorant. One consequence is thﬁ

+a,§M . Hence, the genetic variance determining

may exceedan,, at least in theory. (With maternal effects, thé = ipos may not surface

immediately in the next generation. Neverthelesgabse genes mix in the population over
time, Equation 1 represents the ultimate responggnating from the change in allele
frequency due to a cycle of selection.)
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For genetic improvement, the relevant definitiorgehetic variance is “the variance among
individuals of the heritable effect determining thean trait value of a population”. Tha'é

follows from linearizing the population mean traélue into additive genetic effects, and
taking the variance thereof, treating it as a priypef a single individual. (This is an analogy
of the variance in an aggregate genotype). As eesadrat extreme example, consider a sow
line for integrated pork production. Interest igdtal amount of meat produced from a sow,
which is the product of number of offspring andoeas meat yield of those offsprirg,=

nC. Then is a trait of the sow, where& may have both a direct and a maternal genetic

component. Linearization yield® =nC, +Cn, +const. Response due to selection in the
sow line equalsAP; = Ai(}AA, +AA;, ) + CAA,, whereD andM indicate direct and

maternal effects, respectively, and the ¥ indictttas the sow line contributes half of the
genes in the offspring. Thus the genetic term wgievfor response equalss =

A(%Ac, i *Ac, i) + CA,. so that AG =AR;. Taking its variance yieldsog
Yiadvar(Ac,) + A°Cov(A,.A,) + nVar(A,,) + ACCov(Ac ,A)

ZﬁGCov(ACM A) 62Var(A1), where variances and covariances represent thiraoyd

+

additive genetic variances and covariances. Harsppnse equalAP; =i00 , wherep is

the correlation between the selection criterion dhe G-values in the candidates for
selection.
In conclusion, the above approach summarizes ailahée components of a trait, such as

direct, maternal and social, into a singié expressing the overall opportunity for genetic

improvement of the trait. Moreover, it yields aggnaccuracy, expressing the overall quality
of the information recorded. The approach reststhan variance of the additive genetic
components of the trait mean, rather than the wddigenetic component of the trait
variance.

Utilizing social genetic effects
Interest in social genetic effects is on the insegas there is evidence that such effects can

contribute substantially tmé (Craig & Muir, 1996; Cheret al., 2008; reviewed in Muir

2005). When individuals are kept in groupsnofnembers, socially affected traits may be
modeled as a sum of direct and social effeBts; Ay ; +2,_; A5 j +termsin E, where A,

and Ag are direct and social breeding values, and theisuwer then-1 group memberp
of individual i (Griffing, 1967). Thus response equal®; =AA; +(n-1)AAg, so that
G = A, +(n-1)Ag, and genetic variance relevant for response &cseh equals (Bijmat
al., 2007)
2 _ 2 2 2
05 =0p, *2(n-Dops, +(N-D)“0x -
The term (n-1)? shows that, even whea,iS is very small relative too*Fz,, social effects

may contribute substantially tO’é when estimates come from data with large groups. A



number of studies have suggested large contrigiadrsocial effects t(Ué (e.g., Bergsma

et al.,, 2008). Theoretically, one expects genes of safi@ct to harbor more sequence
variation than genes of direct effect, becauserabselection targets social effects to a lesser
extent (Denisonet al., 2003). Indeed, Cruickshank and Wade (2008) obsegreater
sequence variation maternal-effect genes tharré@cideffect genes in Drosophila.

Utilization of social genetic effects requires aljuent of selection strategies. Traditional
selection on individual trait value or EBV targelisect effects only, yielding suboptimal or
even negative response (Griffing, 1967). Betweensgrselection and the use of groups

composed of relatives have been advocated as awdu(iGriffing, 1976 & 1977). The
following investigates the accuracy of those sé&ctmethods.
A selection criterion allowing for a varying degreEbetween-group selection is (Bijnet

al. 2007)

n-1
SCi=R+gXP,
=1

wheren is group size, the sum is over thel group membergof individuali, andg is the
degree of between-group selection, wigtil [0..1]. A g = 0 yields SC, =R, indicating

individual mass selection. Ag = 1 yields SC, = En;P- , the summed phenotypes of all

j=1

group members, indicating full between-group s@ectAccuracy of selection o&C yields

(derivation not shown)

[g+r +(-2gr]o2 + @-g)a-n|od +(n-Do,, |

p(g,r) =

Accuracy

-0.2 -

r and/or g

Figure 1: Accuracy of selection for survival in
cannibalistic laying hens, as a function of
relatedness between group members (r) and /
or the degree of group selection (g). Parametel
taken from Peeterst al., (this congregs Solic
line: r = 0, g varies; dotted lineg = 0, r varies
dashed liner = g varies; crosseg = 1,r varies
boxes: optimum index of own performance
group members.

Oxc0g
where r is relatedness between group
members. The first term in the numerator
shows that relatedness and group selection act

directly on o2, and thus contribute to

positive accuracy. The second term in the
numerator illustrates the risk of negative
accuracy of individual selection when direct
and social genetic effects are negatively
correlated (Griffing, 1967). The numerator is
symmetric ing andr, indicating that they have
similar effects. Figure 1 illustrates the effects
of group selection and relatedness on
accuracy, using genetic parameters for
survival time in cannibalistic laying hens
(Peeters et al., this congress). Accuracy
increases less with group selection than with
relatedness, because greatelyields greater
O« Which limits the increase (solid vs dotted
line).

Often keeping candidates in groups is
undesirable,e.g., when recording individual



feed intake or egg number, and breeding relies fmn@types of relatives. For that case,
Ellenet al. (2007) showed that positive accuracies are gteedrnwhen keeping the relatives

in family groups, and that limiting accuracies #éme same as in classical theory, being 0.5
for HS, 0.71 for FS and 1 for progeny.

When genetic parameters are known, accuracieseéurther improved by using BLUP and

selecting on(§=,3D’i+(n—1)Asyi (Muir, 2005). The use of BLUP, however, does not

remove the benefit of using related group membkhgir(et al., this congress). Moreover,
selection index calculations indicate that, whemgigelated group members, BLUP and
group selection can yield similar accuracy. In Feggd, for example, accuracy of group
selection and of an optimum index are similar wher0.5. Hence, when group members are
related, benefits of BLUP may primarily come fromtter accounting for fixed effects and
selection, rather than from optimum weighting afedt and social effects (Muet al., this
congress). Furthermore, BLUP may be beneficial wibimmon litter covariances among
sibs. Using pseudo-BLUP selection index theory (Wead Hill, 1989), deterministic
prediction of the accuracy of BLUP is feasible, bomplex with social effects (not shown).

Inherited variability

Breeders have long been interested in increasiifgramity. In the classical model, wheRe
= A + E, opportunities for genetic changes in variabiitg very limited. At best, breeders

can approachai =0, which reduces phenotypic standard deviation by 6116% when

h? = 03. There is, however, increasing evidence tb%t is under direct genetic control

(e.g. Roweet al., 2006; Ibanez-Escrichat al. 2008). In the literature, two classes of models
exist. First, models specifying an additive effecdn the residual variance,

— v [2 i ; ; .
E=Xxy0e,, *A,, » WhereX is a standard normal deviate, a®§_, is an additive

breeding value for environmental variance (Hill addang, 2004). Second, exponential
models, whereE=)(exp[}/2(In(a,§ exp) T A exp)] (SanCristobal-Gaudyt al., 1998). The

relationship between both models is thaf ’~‘0’éﬁ\,exp, indicating that the exponential
model specifies a multiplicative effect mﬁ Hence, estimates from both models are easily
interconverted (Muldeet al., 2007). Both models have pros and cons. The exg@at
model is statistically more correct, since it eesusz > 0, whereas|oZ + A, is defined

only for Jé + A, > 0. The additive model, however, fits more easilygirantitative genetic
models of inheritance and response to selection.
Heritability of aé, defined as the regression coefficient@,i_‘ on P?, appears to be low

(~0.03). The genetic coefficient of variation, iontrast, o, /Jé appears to be substantial
(~0.3; Mulderet al., 2007). Thusaé can in principle be changed considerably relativits
current mean, but it is difficult to obtain highcaicacy of selection foaé.



When oZ is heritable, directional mass selection with< 50% tends to increasez,
because individuals with higlh, are more likely to be in the tail of the distrilaut. Hence,

mass selection may unintentionally increase vdiigbiDirectional selection on a family
mean puts much less pressure @y, particularly when families are large. Stabilizing

selection tends to reducneé, but a lower bound ofl for selection intensity limits response.

Disruptive selection, on the other hand, allowsHigh positive selection intensities. Hence,
when selection relies on own performance infornmtinocreasing variability seems feasible,
but decreasing it is difficult (Muldeat al., 2007).

Genetic improvement of uniformity, therefore, raqgithe use of family information. The
key information source fol, is the within-family variance. Muldest al. (2007) show that

accuracy of selection on within-family variance sanilar to classical expressions for
accuracy of selection based on relatives. Hencgtitig accuracies for large numbers of
relatives, may approach ~0.5 for HS, ~0.7 for F8 ai for progeny. Given the low

heritability of Jé, however, very large families are needed to approthose limits.
Nevertheless, meaningful accuracies can be obtab@std on within-family variance,
which, combined with the large estimates fop, /aé, suggest thatr]é can be reduced

considerably relative to its current value wheresthg for lower within-family variance. A
selection experiment for lower variability in bodseight of broilers would be very useful to
test whether realized response agrees approximaitiytheoretical predictions.

The mechanisms underlying inherited variability al&rgely unknown at present.
Theoretically, there exists a relationship betwegmotype&environment-interaction and
inherited variability. This follows from a simpleaction-norm modely|E = ¢ + A +

AE + e, where A and Ag are breeding values for level and slope, &ds the
environmental variable. GreateAs indicates greater environmental sensitivity. With
Cov(A_,As) = 0andE(E) = 0, phenotypic variance of a genotype equas(y | A ,Ag) =

AloZ + g2, which increases withAs . Hence, when sudBxE-interaction is not explicitly

modeled,e.g. becauseE is unknown, then genotypes of greater environnhesgasitivity
appear to have greater residual variance. Thustgtat analysis of inherited variability may
pick up hidderGxE-interaction.

From aGxE-interaction perspective, sensitive genotypes indgenvironments are in the
upper-tail of the distribution, so that directiomadss selection in good environments tends to
increase sensitivity. From an inherited variabiliperspective, variable genotypes are
overrepresented in the tails of the distribution,tlsat directional mass selection tends to
increase variability. Hence, both perspectives egra the consequences of directional
selection; with inherited variability originatingoim hidden GxE-interaction, directional
mass selection favors the sensitive genotypes mireséhe good environments.

There also seems to be a link between inheritedhbitity and social interactions. In
aquaculture, competition for feed inflates sizeiatssn among individuals. To limit size
variation, regular grading of fish is common. Hen@®mmpetition seems to increase
variability. In current models of social genetideets (see above), however, phenotypic
variance is independent of the average social brgedhlue. Hence, in current models, a



reduction in phenotypic variance due to decreasadpetition seems to require a reduction
in social genetic variance. This may largely beapirical, rather than theoretical, issue.

Optimum selection criteria

In the absence of molecular genetic informatiom, dptimum selection procedures are well
known. Breeding value estimation should focus orxim&ing accuracy, and selection
should focus on maximizing the genetic selectidifedintial while restricting the rate of
increase in mean kinshig.¢. Meuwissen, 1997). Given a restriction on the wdt&inship,
minimum coancestry and factorial mating increaspoese, particularly in small schemes.
When restricting the rate of kinship, there appearbe little trade-off between short-term
responsei.e., maximizing today’s genetic selection differentehd long-term response.

This is different with molecular information. Maxinmg today’s genetic selection
differential implies maximizing accuracy. Accuraisymaximized wheng = E[g|data] , ¢

denoting a marker effect, which requires that appidy smaller effects are regressed
stronger (Fernando and Gianola, 1986). Hence, maixigh accuracy of genome wide
evaluation requires putting lower weight on smalleffects, such as with BayesB
(Meuwisseret al., 2001). Moreover, maximizing accuracy requiretipg lower weight on
rare alleles, which occurs implicitly in methodsigg equala priori weight to all loci, such
as genomic-BLUP (Meuwissest al., 2001). (This is analogous to estimating sireetiieg
values from progeny averages; progeny averagesegressed stronger when progeny are
fewer). Hence, maximizing accuracy requires loweights on rare alleles and/or alleles of
small effect.

This is precisely opposite to maximizing long-tene@sponse. First, expressed relative to their
contribution to genetic variance, alleles of snraldfect contribute more to long-term
response. Response is proportional to allelic gffebereas variance is proportional to the
square of allelic effect. Hence, the ratio of resgmover variance due to an additive allele is
inversely proportional to the effect of the alleledicating that most long-term response
comes from alleles of small effect. Second, sirméance due to an allele is maximal when
allele frequency equals 0.5, selection favoringe ralleles increases genetic variance over
time, thereby increasing response in later germrsitiln contrast, selection for alleles
currently explaining most variancee. those at allele frequency of ~0.5, reduces genetic
variance over time.

Hence, with genomic selection, there appears ta tvade-off between short and long-term
response (beyond the classical trade-off of responssus rate of inbreeding). Experience in
dairy cattle suggests that the theoretically exgubshort-term superiority of BayesB/C over
BLUP does not always happen (VanRaeéeal. 2009; S. de Roos, pers. comm.), which may
be related to the true number of g the effective number of chromosome segments
(Daetwyleret al., in press). When both methods are identical indhort term, one expects
BLUP to be superior in the long-term response sinpaits more weight on alleles of small
effect. In addition, to balance short and long-teeaponse, it might be beneficial to put
some more weight on rare alleles. This would beosjtp to current practice, where rare
alleles are sometime omitted because they mayctdilping errors. Stochastic simulations,
including simulation of typing errors, may be udeoi better understand how to weigh
markers depending on their frequency and apparféstteso as to better balance shest
longer term response.



Solutions offered by genome-wide evaluation

Since the introduction of Al, genomic-wide evaloati(GWE) is the most important
development in livestock genetic improvement. Beseff GWE are greatest in species
where phenotypic data becomes available consideraftér reproductive agee.. dairy
cattle, not broilers), and for well-defined traitgat cannot be recorded on the selection
candidates themselves. GWE has become routineigeantdairy cattle, probably because
of the value of the individual and because milkd/ieannot be recorded on males.

GWE provides solutions for a number of problems.eWwhenotypes and phenotypes can be
recorded on breeding goal traits expressed in cawialeproduction environments, then
GWE allows direct selection for breeding goal saiAn obvious application is direct
breeding for crossbred performance recorded in certiad environments. This allows
combining the efficiency of two-tier nucleus schemeth accurate EBVs for breeding goal
traits, rather than relying on information of simsson purebred performance expressed in
good environments.

Benefit of direct selection for breeding goal saibmpared to selection based on correlated
traits is probably greater than apparent from apaomeon of direct and correlated responses.
This is because selection for correlated traitsnupes the organism for the wrong goal,
leading to inefficiency. For example, increasingnianeat yield by selecting for growth rate
will also increase fat in the carcass, which hasis® but carries a cost. In general, selection
for correlated traits will create costly changesthe organism, that have no use for the
breeding goal. Such cost may go unnoticed when thaface only in commercial
environments. Hence, when direct and correlatedoreses for the goal trait are similar,
direct selection is to be preferred by far. Moreowdirect selection is much less sensitive to
estimation errors in genetic parameters. Hence, G@#is to be very useful in cases where
direct selection is not possible in classical biegdschemes, probably more useful than
suggested by selection index calculations. Furtbeem when GWE replaces sib-
information, benefits will be greater than suggddbg the difference in accuracy, because
GWE yields greater response than sib schemes wbempared at the same rate of
inbreeding. Hence, in pig and poultry breeding,géarscale recording of crossbred
phenotypes (an maybe genotypes) seems to be aioarfdr future commercial success of
breeding companies.

GWE extends readily to socially affected traits. chmparison of estimated genetic
parameters for direct and social effects on suhiiv@annibalistic laying hens shows large
differences between purebred parental lines (Edteal. 2008) and their crossbred offspring
(Peeterset al, this congress). The genetic correlation betweiectd and social effects
appears to be considerably negative in crossbvgidle around zero in purebreds. Moreover,
estimated parameters differ between reciprocal seims Those result indicat&xE-
interaction between purebreds and crossbreds. G@4edbon phenotypes recorded on
crossbreds can be used to predict breeding vafusscteus individuals for direct and social
effects referring to crossbred performance. Hermenbining GWE with social-effect
models is promising to reduce mortality due to daalism in commercial herds.

When genotyping becomes cheaper, GWE offers inetepsssibilities for having separate
breeding programs for different environments, sastorganic versus conventional farming
or seasonaks. year-round calving. Compared to traditional sceemelying on nucleus
information, benefits of having separate breedinogmms is greater with GWE because
differences in response between environments wiljteater. GWE combined with the shift



of breeding goals towards more emphasis on furatiaits may accelerate a trend towards
more breeding programs, because functional tréiies show greateGxE-interaction é.g.,
compare longevitys. yield in dairy cattle).
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