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Many environmental models are ‘point’ models 

 Output at some location only depends on inputs at that same 
location 

 Examples: evapotranspiration, crop growth, soil acidification, 
pesticide leaching to groundwater, greenhouse gas emission 



Output y is some function of input u, consider 

case where interest is in the spatial average 
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When input is uncertain, uncertainty will propagate to output: 
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How large is uncertainty about the spatial average? 

Can be solved using Monte Carlo simulation:    

 Repeat n times: 

 Use pseudo-random number generator to draw a realisation from 
the probability distribution of (spatially correlated) input U(x) for all 
x D 

 Run model g for the simulated input, calculate spatial average of 
model output and store result 

 Collection of n spatially averaged model outputs is a 
random sample from its probability distribution, uncertainty 
can be characterised using a measure of spread such as 
the variance 

 Analysis requires n M model runs (M very large, it may 
even be infinite) 



In practice, geographic domain D is represented by a 

(small) sample 

 Kros et al. (Journal of Environmental Quality 1999) 
used m=25 where D was a 5 5 km2 grid cell; 
Heuvelink et al. (Geoderma 2009) used m=258 
where D was the entire Netherlands 

 Nice: number of Monte Carlo runs n can be made 
much larger because computing costs are 
proportional to number of model runs n m instead 
of n M 

 Not so nice: sampling error 
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Can sampling error be quantified, can sampling bias be 

corrected for, can optimum ratio of m and n be 

calculated? 

)]Ŷ(V[E)Ŷ(V)Y(V |pp

Requires probability sampling of the locations: locations 
become stochastic as well 
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In case of simple random sampling in attribute and 
geographic space, variance of spatial mean satisfies 

(  refers to stochasticity in U, p to stochasticity in X) 



Estimating the variance of the spatial mean with n m 

model runs 
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 Repeat n times: 

 draw m locations 

 simulate inputs and 
run model at these 
locations 

 calculate mean of m 
model outputs 

 Calculate variance of n 
model means 

 Repeat n times: 

 draw m locations 

 simulate inputs and 
run model at these 
locations 

 calculate variance of 
sampling error 

 Calculate mean of n 
sampling error variances 



Real-world application: N2O emission from soil in non-

agricultural areas for EU25  

 Consider only uncertainty in Csoil 
and pH (carbon content and pH of 
topsoil) 

 Both soil properties modelled 
geostatistically using European 
soil map and data from 
WISE/SPADE database 
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Numerical experiments 

 Use four values for the total number of model runs 
n m (100, 200, 400, 800) 

 Use seven values for the ratio n:m (10:1, 5:1, 2:1, 
1:1, 1:2, 1:5, 1:10) 

 Estimate variance of spatial mean for all 28 cases 
with n m model runs 

 Do this many times (e.g. 1000 times) and compute 
the standard deviation of the many estimates for each 
of the 28 cases: measure of how accurately the 
variance of the spatial mean is estimated 



Standard deviation of estimated variance   

n x m = 100 
n x m = 200 
n x m = 400 
n x m = 800 



Conclusions (1/3) 

 Propagation of input uncertainty to spatially 
averaged model output is often based on results for 
a (small) spatial sample 

 Sampling error and sampling bias are usually 
ignored but may be substantial 

 Spatial probability sampling must be employed to 
assess sampling error and eliminate sampling bias: 
can be done and does not inflate computation time 

 Educated guess of spatial sample size is risky: too 
small sample yields non-negligible sampling error 
and bias, too large spatial sample is inefficient 



Conclusions (2/3) 

 Calculation of optimum ratio of Monte Carlo and 
spatial sample sizes is computationally demanding 
because it requires an additional loop 

 The optimum ratio is likely case-specific (as yet 
unclear what triggers the optimum ratio) 

 In the case study the optimum ratio was stable for 
different values of n m: if this holds more generally 
then for a given (new) case the ratio need be 
determined only once for moderate size of n m and 
used in the final uncertainty propagation analysis 
with large n m 



Conclusions (3/3) 

 Spatial sampling cannot be used with models that 
involve spatial interactions (e.g. flow, diffusion). For 
such models, the spatial resolution may perhaps be 
decreased, but that is another issue 
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