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Abstract— Spatial uncertainty propagation analysis (UPA)
aims at analysing how uncertainties in model inputpropagate
through spatial models. Monte Carlo methods are oéin used,
which estimate the output uncertainty by repeatedlyrunning
the model with inputs that are sampled from their pobability
distribution. Regional application of UPA usually means that
the model output must be aggregated to a larger spal
support. For instance, decision makers may want t&now the
uncertainty about the annual nitrate leaching averged over an
entire region, whereas a model typically predictshe leaching
for small plots. For models without spatial interadions there is
no need to run the model at all points within the egion of
interest. A sufficiently large sample of locationsnay represent
the region sufficiently well. The reduction in comptational
load can then be used to increase the number of Mt Carlo
runs, which decreases the Monte Carlo sampling erroln this
paper we analyse how a combination of analytical ah
numerical methods can be used to evaluate the error
introduced by Monte Carlo and spatial sampling. Thisis
important to be able to correct for the bias inflided by the
spatial sampling, to determine how many model runsare
needed to reach sufficiently accurate results andbtdetermine
the optimum ratio of the Monte Carlo and spatial sanple sizes.
Results are briefly illustrated with an UPA of a Inear
regression model that predicts the terrestrial nitous-oxide
emission for Europe.
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l. INTRODUCTION

When spatial data are inaccurate, the results afiadp
analyses that use these data as input will be umat too.
The awareness that uncertainty propagates thropgtiak
analyses and can lead to wrong decisions has teggauch
research on spatial accuracy assessment (e.g. lidwive
1998; Mowrer and Congalton, 2000; Heuvelink and
Burrough, 2002; Shi et al., 2002; Saltelli et 2004; Zhang
and Goodchild, 2008). The often used Monte Carlthoe
estimates the propagation of uncertainty by repdate
running the model with inputs that are sampled frieir
probability distribution. The method has many afipga
properties, among others that it can be easily @mphted
and can deal with any type of model. It can alsachean
arbitrary level of accuracy, by using a sufficigntarge
number of Monte Carlo runs. The main disadvantdgihe
method is that it is computationally demanding.titalarly

for complex spatial models, for which a single nada is
computationally expensive, a Monte Carlo uncerjaint
propagation analysis (UPA) may become prohibitive.
Efficiency can be improved by clever sampling frahe
input probability distribution using efficient salingy
techniques, such as Latin hypercube sampling (LHS).
However, the spatial extension of LHS involves
approximation errors (Pebesma and Heuvelink, 126%)
the computational load remains large even withcieffit
implementations.

Many environmental models involve spatial inter@asi.
Examples are erosion, groundwater flow and plaspetisal
models. However, there are also many environmemtalels
that are essentially point-based. For instance, etsothat
predict crop growth, greenhouse gas emission, soil
acidification or evapotranspiration at some loaatigpically
use soil, landuse, management and climate inpat atathat
same location only (e.g. Kros et al., 1999; Eanld Bixon,
2008; Li etal, 2009; Qiu etal., 2009). In regbn
applications of point models, where the intereshispatial
averages of the model output, the computational fathe
Monte Carlo method may be substantially reduced by
applying the method to only a (small) sample oftams in
the study area. This saves tremendously on conipoight
resources, at the expense of introducing a samp@ingr.
The aims of this paper are to assess the sampling, e
correct for the associated sampling bias, and debinlv
large the spatial and Monte Carlo samples shouldobe
obtain sufficiently accurate UPA results.

II.  MONTE CARLO UNCERTAINTY PROPAGATION AND
SPATIAL AGGREGATION

Regional application of an UPA typically includes a
spatial aggregation step. This step is needed whedels
produce output at a spatial support that is sméfian the
support at which the final result is required. Hastance,
decision makers may want to know the uncertainguathe
annual greenhouse gas emission averaged over entire
countries, whereas a model may predict the emissiol
daily basis for plots that are smaller than onddrecIn such
a case the model outputs of the individual MontddCains
are aggregated to the target support before thertaimaty
analysis continues. The example above involves bpdiial
and temporal aggregation, but in this paper we goon
spatial aggregation only. Thus, we address the icashich



the model produces output at ‘points’ (i.e., ardad have
negligible support compared to the extent of thestarea),
while results are needed at the much larger ‘blscigport.
The block might be a grid cell or region within teudy
area, or the study area itself. Let the ratio ef tiock and
point support be given b, whereM can be extremely
large. In fact,M will be infinite when the point support is
infinitesimally small.

The Monte Carlo method estimates the uncertainthién
block-averaged model output as follows (Heuvelinid a
Pebesma, 1999):

* Repeah times:

1. Use a (pseudo-)random number generator to
generate a realization of the uncertain model mput
for all points in the block, while taking spatiaich
cross-correlations into account.

2. Run the model with the simulated inputs for all
points, average the output over the block, andestor
the result.

* Analyse then block-support outputs by computing
summary statistics, such as the mean, standard
deviation, percentiles and a histogram..

Note that the procedure above requires that theehied
run nxM times. Heren is the number of Monte Carlo runs,
which must be chosen sufficiently large to readfigantly
accurate results. However, there will be a MontddCearror
becausen is finite. The variance of the Monte Carlo error
typically decreases proportional to the number ainié
Carlo runs (Heuvelink, 1998). In practiae,must often be
chosen at least as large as 200, but in specifiesca may
need to be much greater than that.

M equals the number of points within the block. To
reduce computation time, it may be sensible tatheriMonte
Carlo analysis for only a subset (sample) rof points
(m<<M). Indeed, when the point support is effectivelyoze
and M is infinite, a sample (such as the nodes of aalens
spatial grid) must be used. Running the UPA foryoal
subset ofm points will substantially reduce computing time
and storage requirements, so that the number otéviGarlo
runsn may be increased. The price paid is a samplingy.err
The net result of introducing a sampling error dedreasing
the Monte Carlo error may well be that a more aateur
assessment of output uncertainty is achieved. Tidesg]ly
one chooses and m such that the combined error is the
smallest for a given maximum number of model roxs.

Kros et al. (1999) analysed uncertainty propagaiioa
soil acidification model and usea=25 (5x 5 knt blocks
represented by 25 points located on >alknf grid) in
combination withn=625 Monte Carlo runs. Heuvelink et al.
(2010) represented the whole of the Netherlands mit258
points, and executed a UPA for a pesticide leachioglel
using n=1,000 Monte Carlo runs. In neither of these two
studies was a thorough assessment made of the-affade
between the sampling and Monte Carlo errors. I, fde
sampling error was not calculated and thus effeltiv
ignored. In order to judge whether the samplingpreis

indeed small and has negligible bias, it must fipst
calculated. This will be done in the next section.

I1l.  EVALUATION OF THE AGGREGATED OUTPUT
VARIANCE

A. Analytical expression for the output variance

Let the model input be denoted byx) (x(OB), wherex
refers to location and whekReis the block. Note that(x) is
a vector in case the model has multiple inputs.thetoutput
be given byY(x), which is computed from the inpU(x) by
running the modeg:

Y(x) =9(U(x) 1)

To acknowledge that the model input is uncertaendie
stochastic) we write it in upper case. As a residt,output is
also stochastic. Next the output is aggregated ®védry
defining its mean:

_ 1M
Y == gl (%)) 03
M3
The goal of the UPA is to quantify the uncertaiabout

Y . For this we take the variance as a measure:
V(Y) = E[(Y - 1y) ] ®)
where g = HY] is the mean of/ .

Both the mean and variance ¥f can only be estimated
because we use a finite number of Monte Carlo antsa
sample sizan out of the total oM locations inB. Let us
assume that the sample wf point locations in blockB is
chosen with simple random sampling. Thus, the sampl

mean is an unbiased predictor\of

EplY]=Y (4)
where E,,, the p-expectation, means averaging over a large
number of spatial samples drawn according to theplsi

random spatial sampling design (De Gruijter et 2006,
chapter 2), and where:

Y =

3

29U (X)) (5)
i=L

Note that the locations are now random too and dnenc
written in upper case.

With these results, Eqg. (3) can be written as:
V(Y) =Vg (EplY]) (6)

where we have introduced subscriptto clarify that the
variance is taken over a large (infinite) number of
realizations of the random functiovi (De Gruijter etal.,
2006, chapter 2). It is important to distinguishveen the
stochasticity introduced by the uncertain modelutnpnd
that introduced by the spatial sampling.



Using a well-known decomposition result (Cochran,
1977, Eq. (10.2)), we can now derive:

V(Y) =Vep () ~ E¢[Vp (V)] )

This expression is useful because it transforms the

variance of the unknowlY into means and variances ¥f,
which can be numerically evaluated. Note also it
second term on the right-hand side of Eq. (7) ésethpected
sampling variance, which quantifies the spatial [Hamg

error. Ideally it is small relative to the variancgY . This
can be achieved by choosingsufficiently large.

B. Numerical evaluation of the output variance

The variance ofY can now be estimated by numerical
evaluation of the two terms on the right-hand sifleq. (7).
The first term can be estimated as follows:

1. Selectm sampling locations with simple random
sampling.

2. Draw a realizationu from the inputU at them
locations (taking spatial and cross-correlatiors in
account).

3. Compute the model
locations.

outputs at the sampling

4. Take the average of te model outputs, yielding an
estimatey .

5. Repeat steps 1 tordtimes, yieldingg‘/i ,i=1.n.

6. Compute the variance of tlmeestimatesili .

The second term on the right-hand side of Eq. &n) le
estimated as follows:

1. Selectm sampling locations with simple random
sampling.

2. Draw a realizationu from the inputU at them
locations (taking spatial and cross-correlatiors in
account).

3. Compute the model
locations.

outputs at the sampling

4. Compute the variance of the spatial sampling error
by dividing the variance of then model outputs by
the sample sizm.

5. Repeat steps 1 tordtimes.
6. Compute the mean of tlesampling error variances.

The algorithms can partly be integrated to improve
efficiency. It is important to note that the totmimber of
model runs required is indeed reduced frorM to nxm.
However, note also that the procedure only yields a
estimate of the variance (i.e., uncertainty) of thedel
output Y . This is usually the aim of an UPA and hence an

UPA would stop after the estimate ¥{Y) is obtained, but

the main aim of this work is to quantify the asated
estimation error. Therefore, another iteration li®meeded

to estimate the accuracy of the estimat&/¢Y) .

C. Quantifying the accuracy of the estimated output
variance

In order to assess the Monte Carlo and spatiapkiagn
errors, the procedure presented above must betegh@any

times. The variance of the so-obtained estimated/(f)

characterizes the accuracy of the estimated variafiche
model output. Clearly, the accuracy depends andm. The
largern, the smaller the Monte Carlo estimation error. The
larger m, the smaller the spatial sampling error. Given a
restriction on the total number of model rungn, there will

be a trade-off betweemandm. For some combination of
and m the smallest variance will be obtained. The next
section calculates the optimum ratiorodndm for different
values ofnxm for a simple case study.

IV.  UNCERTAINTY PROPAGATION WITH A NITROUSOXIDE
EMISSION MODEL

Nitrous-oxide emission from soils in natural ectsyss
in Europe was modelled by a multiple linear regmss
model (Bloemerts, 2007). Among others, the regoessi
model uses the carbon content and pH of the topmil
inputs. Both soil properties were considered uagert
Geostatistical models were built and applied ta&reanaps
of these soil properties from point observationd auxiliary
information (Truong, 2009). Interpolation errors ree
quantified and realizations of the soil propertypsiavere
generated using conditional sequential Gaussianlation
(Goovaerts, 1997).

The propagation of uncertainties was analysed usiag
Monte Carlo method, whereby the regression modelnwa
n times atm randomly selected locations within the study
area (i.e. the natural ecosystem areas within E)rophis
was done for four values okm and for seven combinations
of n andm for each value afixm. In addition, for each of the
resulting 28 combinations the Monte Carlo analysiess
done 1,000 times, in order to compute the accucddpe
estimated variance of the model output.

Results are presented in Figs. 1 and 2. Fig. 1 shbw
means of the estimated output variances over tBe01,
repetitions. The estimated mean is centred around
0.0057 (kg N hayeaf')? and is not systematically affected
by the ratio ofn andm. As expected, results are more stable
for larger values ofixm. Deviations from the mean are small
in all cases, which is also as expected because thee
averages of 1,000 estimated variances.

Fig. 2 shows the standard deviations of the estichat
output variance. Three main observations can beenfarkt,
standard deviations are smaller when the total munab
model runs increases. Second, the standard densagi@ of
the same order of magnitude as the mean when thé to
number of model runs equals 100 or 200 (i.e. compar
Fig. 1), indicating that these are too small nurskierobtain
reliable estimates of the output variance. Accdptab



estimates are obtained wherm=800. Third, the ratio of
andm has a substantial effect on the accuracy obtaired.
instance, takingixm=200 andh:m=1:1 yields more accurate
results than takingxm=400 andn:m=10:1. Optimum ratios
are obtained when andm are equal, and accuracy steadily

decreases as one moves away from the optimum.

Interestingly, the optimum seems not to be infleehby the
total number of model rurmsm.
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Figure 1. Mean of estimated output variance for the nitroxisi®
emission case for different values of the ratithef number of Monte Carlo
runsn and number of sampling locatioms Solid line:nxm=100; long-
dashed linenxm=200; dashed linexxm=400; dotted linenxm=800.
Measurement units are (kg N-hgear)%
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Figure 2. Standard deviation of estimated output variancéiemitrous-
oxide emission case for different values of theoraf the number of Monte
Carlo runsn and number of sampling locatioms Solid line:nxm=100;
long-dashed lineaxm=200; dashed lineixxm=400; dotted linenxm=800.
Measurement units are (kg N-hgear*)2

V. CONCLUSIONS

This paper presented a method to analyse the patipag
of input uncertainty to the spatial average of dlgput of a
point model by running a Monte Carlo analysis &itrated
sample of locations only. Unlike previous studies( Kros
etal.,, 1999; Heuvelink et al., 2010), the methagldg an
unbiased estimate of the output variance becauserrigcts
for the spatial sampling error. The sampling biaasy rbe
small in cases where the study area is represégtedarge

sample (e.g. a dense grid), but verification is dntgnt and
can fairly easily be achieved with numerical evtbra of

the expression given in Eqg. (7). Moreover, the métiogy

presented here can help choose the optimum ratitheof
Monte Carlo and spatial sample sizes and thus aedyd

that a too large, inefficient spatial sample isduse

Theoretical results were illustrated with a simpkese
study. Many more case studies are needed to anhtyse
results vary in different cases.
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