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Abstract

Background: The movement patterns of wild animals depend crucially on the spatial and temporal availability of resources
in their habitat. To date, most attempts to model this relationship were forced to rely on simplified assumptions about the
spatiotemporal distribution of food resources. Here we demonstrate how advances in statistics permit the combination of
sparse ground sampling with remote sensing imagery to generate biological relevant, spatially and temporally explicit
distributions of food resources. We illustrate our procedure by creating a detailed simulation model of fruit production
patterns for Dipteryx oleifera, a keystone tree species, on Barro Colorado Island (BCI), Panama.

Methodology and Principal Findings: Aerial photographs providing GPS positions for large, canopy trees, the complete
census of a 50-ha and 25-ha area, diameter at breast height data from haphazardly sampled trees and long-term phenology
data from six trees were used to fit 1) a point process model of tree spatial distribution and 2) a generalized linear mixed-
effect model of temporal variation of fruit production. The fitted parameters from these models are then used to create a
stochastic simulation model which incorporates spatio-temporal variations of D. oleifera fruit availability on BCI.

Conclusions and Significance: We present a framework that can provide a statistical characterization of the habitat that can
be included in agent-based models of animal movements. When environmental heterogeneity cannot be exhaustively
mapped, this approach can be a powerful alternative. The results of our model on the spatio-temporal variation in D. oleifera
fruit availability will be used to understand behavioral and movement patterns of several species on BCI.
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Introduction

How animals use their habitat has important consequences for their

resilience to anthropogenic perturbations [1,2,3,4,5], susceptibility to

diseases and ability to provide critical ecosystem services (e.g. pollination

and seed dispersal—see refs [6,7,8,9,10]). Although many factors

impact patterns of animal movement, variation in the spatiotemporal

distribution of food resources plays a critical role [11,12,13,14]. As a

result, a growing body of research has focused on linking animal

movement patterns and ecological variables (e.g., refs [15,16]).

Obtaining fine-scale movement data has become possible

thanks to recent advances in automated radio telemetry and

GPS tracking technology (e.g., refs [17,18]). The large datasets

produced by these methods, with their high temporal and spatial

resolution, provide an unprecedented opportunity for understand-

ing the psychological or physiological states and decision

mechanisms that govern animal movement. A critical component

of these models is a representation of the spatial and temporal

distribution of key ecological variables. In some cases, as for

species living in open habitats where the scale of environmental

heterogeneity is relatively coarse, researchers have been able to

build powerful inferential movement models [4,9,19,20]. Howev-

er, it remains a challenge to model the ecological component when

the spatial and temporal distributions of resources are finer
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grained, or temporally variable. This is true for animals relying on

marine food resource, like seabirds [1,21] or marine fish [13], but

is also the case for animals that move on a large scale but exploit

relatively fine-grained habitat variation, such as tropical forest-

dwelling frugivores. In tropical forests with hundreds of tree

species, it is rarely feasible to directly map all possible food sources,

and remote sensing imagery is generally unable to identify

individual fruit tree species or to score whether each tree is in

fruit (but see ref [22]). In these cases, the traditional statistical

inference approach, which models movement data as a function of

resource abundance at each spatial location of an animal’s range,

fails. Stochastic, agent-based modeling may provide a solution to

this puzzle.

Agent-based models attempt to reproduce the statistical proper-

ties of observed movement data. As a result the simulated habitat

maps which serve as the background for such models need not

perfectly match the actual distribution of resources; they must

simply reproduce the inherent statistical properties of the real

system. Thus, the challenge when using an agent-based modeling

approach is not how to exhaustively map a study animal’s habitat

but, instead, how to statistically characterize the inherent

properties of that habitat and incorporate them into a model that

generates realistic resource distributions. Importantly, such a

model can be created using various sources of information, such as

satellite or aerial imagery, ground cartographic surveys and

phenological surveys. These data do not need to be collected at

the same time or place, nor do they necessarily need to be

collected in the range of the monitored animals. The only

requirement is that they should be collected in a habitat with a

similar pattern of resource spatial distribution.

Here we use data from Barro Colorado Island (BCI), Panama,

to demonstrate how a variety of ground surveys and remote

sensing data can be combined to create the kind of robust habitat

model necessary for agent-based simulations of animal movement.

We first combine systematic plot data and aerial survey data to

estimate density, size distribution, and spatial autocorrelation for

Dipteryx oleifera Benth (Fabaceae), a fruit tree species that acts as an

important food resource for several large mammals on BCI [23].

We then use 22 years of phenological data from fallen fruit traps to

estimate the fruiting pattern of D. oleifera. These two approaches

were merged to create a spatially and temporally-explicit model of

D. oleifera fruit distribution of BCI.

Analysis

1. Data collected
Study Site and Species. Barro Colorado Island (BCI),

Panama (9u99 N, 79u519 W) is a 15.6-km2 island of semi-

deciduous lowland tropical forest that was isolated from mainland

Panama in 1914 when the Chagres River was dammed to form

Lake Gatun and the Panama Canal. Designated a reserve in 1923,

BCI has been administered by the Smithsonian Institute since

1948. Half of BCI is covered by relatively young forest (at least 100

years old) that is still growing back from clearing that occurred

during the French attempt to build the canal in the late-1800s.

The remainder of the forest is older, and is not thought to have

undergone substantial anthropogenic disturbance in the last 200–

400 years [24]. This older forest is quite diverse, containing 299

tree species in a 50-ha plot [24].

Patterns of rainfall on BCI are distinctly seasonal; the island

receives an average of 2600 mm of rainfall a year, 90% of which

falls between May and December [25]. Food availability for

primary consumers roughly tracks these changes in rainfall. Fruit

and leaf production are highest during the late dry season and

early wet season, while the late wet season (October and

November) is a period of food scarcity [26,27]. Few trees fruit

or flush leaves during these months and, in extreme years, this lack

of food resources can lead to mass starvation among the

vertebrates [24]. This period of scarcity is broken by the fruiting

of D. oleifera at the start of the dry season (mid-December).

Dipteryx oleifera, formerly Dipteryx panamensis, is a large emergent

tree (40–50 m), ranging from Costa Rica to Colombia. D. oleifera

produces large (average length = 5 cm; average fresh weight

= 21.75 g, Crofoot unpublished data), sugar-rich drupes contain-

ing a single 4-cm-long seed surrounded by a hard endocarp [23].

Fruiting phenology is variable between years and individuals, and

typically lasts from late December until early April [23,27]. Seeds

are primarily dispersed by frugivorous bats and secondarily

dispersed by scatter-hoarding rodents, and heavily predated upon

by terrestrial mammals [28,29,30]. In Central Panama, D. oleifera

is the focus of frugivore activity for up to 2.5 months [31] and

attracts a wide range of animals including bats (Artibeus jamaicensis),

kinkajous (Poto flavus), squirrels (Sciurus granatensis), spiny rats

(Proechimys semispinosus), monkeys (Cebus capucinus, Ateles geoffroyi),

coatis (Nasua narica), agoutis (Dasyprocta punctata), pacas (Agouti paca),

peccaries (Tayassu tajacu), deer (Odocoileus virginianus) and tapir

(Tapirus bairdii).

Spatial data. Four spatial datasets were used to estimate the

tree size distribution of Dipteryx oleifera on BCI and to model the

spatial distribution of individual trees. (1) Mapped stem positions

and diameters in a 50-ha forest dynamics plot, established in old-

growth forest on the central plateau in 1980 (see Fig. 1), in which

every stem over 10 mm DBH (Diameter at Breast Height) was

mapped, measured and identified [32,33,34]. This plot is censused

every five years, and the resulting dataset has been made freely

available (http://ctfs.arnarb.harvard.edu/webatlas/datasets/bci/).

(2) Mapped stem positions and diameters in an additional 25-ha

plot established in 2004, where all trees .20 cm DBH and all

reproductive individuals from large-seeded species (seed weight

.1 gram) were mapped, measured and identified. The 25-ha plot

is located in secondary forest, estimated to be 100–120 years old

[22]. (3) Mapped stem positions of 102 individuals .30 cm DBH

across the home ranges of 11 agoutis (Dasyprocta punctata), surveyed

in 2009. Trees were mapped using a handheld GPS (Garmin

GPSMap 60CSX, Garmin International, Inc., Olathe, KS). This

sampling area does not have a clearly defined border (4) Mapped

positions and area of crowns of canopy-statured individuals across

the entire BCI, obtained from aerial surveys in April 2005 and

April 2006. High-resolution (0.085–0.114 meters/pixel) aerial

photographs were taken with a 12.3 megapixel digital SLR

camera (Fuji FinePix S3 Pro with a 35 mm lens, f-stop 4.5–4.8,

shutter speed 1/700–1/1000 s, and ISO speed 400) from an

airplane flying at either 400 meters (2005) or 700 meters (2006)

above the canopy [22]. In 2005, each photo on average covered

8.6 ha (3586241 m) with a spatial resolution of 0.085 m/pixel. In

2006, coverage and resolution averaged 15.9 ha (4836329 m) and

0.114 m/pixel. [22]. Two different analysts visually surveyed the

georeferenced aerial photographs for D. oleifera, which they

identified based on canopy structure (C.X. Garzon-Lopez,

unpubl. data).

Phenology data. Fruits fall from trees following a consistent

vertical trajectory [35], allowing researchers to estimate fruit

productivity by counting the fruits found below focal trees. Within

the 50-ha forest plot, three hundred 0.5-m2 fruit fall traps have

been arrayed since 1987 [36,37]. Traps are checked weekly, and

all reproductive plant parts found are counted and identified to

species. A total of 22 years of data (1987–2008) were kindly made

available to us by Dr. S. Joseph Wright (http://striweb.si.edu/
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esp/meta_data/index_metadata_terr.htm). Ten of the phenology

traps within the 50-ha forest dynamics plot are located underneath

the crowns of 6 different D. oleifera trees. The number of fruits

collected under a single tree during a visit varied between 0 and

15. In a given fruiting season, up to 52 fruits were collected under

a tree (mean = 7.14, sd = 10.45). A total of 943 fruits were trapped

during this study.

2. Model design and fitting procedure
To build a spatiotemporal model of D. oleifera fruiting we split

the problem in to two parts: first, modeling the spatial distribution

of D. oleifera and second modeling its fruiting pattern. These two

models could then be combined and used to simulate data with

spatial and temporal distribution of fruit matching those observed

on Barro Colorado Island.

Analysis of tree spatial distribution. In our model of

spatial distribution, trees are discrete entities represented as points

distributed in a two-dimensional space following a random

process, a type of graphical representation know as a spatial

point pattern [38,39,40]. A variety of point process models exist

that can be fit to point patterns. These models include parameters

that account for environmental covariates and interactions

between neighboring points. Outputs of fitted models can

subsequently be used to perform Monte Carlo simulations of

spatial point distributions.

The basic reference model of a point process is the

homogeneous Poisson process, which assumes that the points are

distributed randomly and independently in the environment. The

number of points falling in any given area A thus follows a Poisson

distribution with parameter l.A, in which l is the intensity of the

process (i.e., the point density). Such a model can be fit using a

maximum likelihood method [41].

We fitted this model to the two datasets corresponding to areas

that were large enough and clearly delimited: the aerial survey and

a subset of the 50-ha plot including all D. oleifera with

DBH.200mm. The model provided a poor fit to the data in

both cases (see fig. 2a–b). We relaxed the homogeneity assumption

of the model by fitting the 50-ha plot data to an inhomogeneous

Poisson point process model in which l co-varies with a spatial

variable. After comparing the aerial survey and the data collected

on the ground, it was apparent that only a subset of the total trees

were visible in the aerial survey data (14.7% of the trees with

DBH.200 mm). The probability Pvisible of a ground-surveyed tree

being visible in the aerial survey was found to be positively

correlated with DBH (logistic generalized linear model, log-

likelihood ratio test,x2
1~13:07, P,1023) and can be described by

the following equation:

Pvisible~
1

1ze {0:002411 dbhz3:737ð Þ ð1Þ

The density of aerial-surveyed trees may then be a good proxy

for the overall tree density and was chosen as a spatial covariate.

The density of trees for the whole island was thus computed by

applying an isotropic Gaussian smoothing kernel function to the

aerial survey data augmented with the probability statement in

equation (1) (fig. 3). The standard deviation, s, of the kernel

function was chosen in order to optimize the fit of the model

(fig. 2c). The best model, obtained for s = 172 m, displays a

satisfying goodness-of-fit (fig. 2d).

Subsequently, the fitted values of our inhomogeneous Poisson

model were used in conjunction with the values of the tree density

covariate to simulate tree distributions for the entire island (see

Figure 1. Location of individual Dipteryx oleifera included in this study. The additional DBH data include the 50-ha plot, the 25-ha plot and
the home-range based D. oleifera plots.
doi:10.1371/journal.pone.0015002.g001
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examples on fig. 4). The DBH’s of these trees were drawn from a

distribution matching closely the real distribution of the DBH’s of

the ground-surveyed trees (50-ha plot, 25-ha plot, agouti home-

range based plot) using a rank-transformation to normality.

The point process models were fit using the packages spatstat and

maptools, run on R 2.10.1.

Analysis of tree fruiting patterns. To construct a model of

D. oleifera fruiting patterns that captures the relevant statistical

properties of the system, we needed to consider the variation in

fruit production pattern observed within and between both seasons

and trees. In particular, we focused on the variation of three

phenological traits: the fruit production, defined as total number of

fruits trapped; the fruiting peak, defined as the mean of the time

(expressed in days since previous July 1st) at which the fruits were

trapped; and the duration of the fruiting period, defined as four

times the standard deviation of the time at which the fruits were

trapped. Values of these three metrics were computed for each of

the 6|22~132 tree-season combinations.

We considered the fruiting seasons and the individual trees as

sampled at random from the very large population of possible

seasons and tree individuals. This consideration permitted us to

treat the season and the tree as two random effects variables

(‘‘season id’’ and ‘‘tree id’’, respectively) in a mixed-effects model.

As opposed to fixed-effects models, mixed-effects models do not

Figure 2. Goodness-of-fit of the Poisson point process models. A, B) Quantile-quantile plots (qq-plot) of the residuals of the homogeneous
Poisson models for both datasets in relation to the mean quantiles of 100 simulations of the fitted models (solid line), with 95% critical envelopes
(dashed red line). C) Optimization of the s parameter of the kernel isotropic Gaussian function (minimum value indicated by the dashed red line). D)
qq-plot of the inhomogeneous Poisson model including kernel-estimated aerial-surveyed-trees density as a covariate, fitted to the 50-ha plot data.
The solid line lies within the 95% critical envelope, indicating a satisfying goodness-of fit of the model.
doi:10.1371/journal.pone.0015002.g002
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PLoS ONE | www.plosone.org 4 November 2010 | Volume 5 | Issue 11 | e15002



estimate average deviations observed for each level of random

effect variables, but instead estimate the variance of these

deviations. For example, if one considers a model with a single

random variable containing n = 10 levels, then n21 = 9 param-

eters (i.e., the nine deviations) are estimated with a fixed-effects

model, while only one parameter (i.e., the variance) is estimated

with a mixed-effects model. This has two main advantages. First, it

saves degrees of freedom, and hence generally reduces the

variance of the estimators of the fixed effects, and second, some

variance parameters can be estimated, which in the case of our

Figure 3. Density of the Dipteryx oleifera from the aerial survey data (in trees/m2). Only an estimated 14.7% of all trees are visible on this
survey.
doi:10.1371/journal.pone.0015002.g003

Figure 4. Monte-Carlo simulation of spatial distributions of Dipteryx oleifera. Note that none of the real, sampled trees are included.
doi:10.1371/journal.pone.0015002.g004
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model are more relevant descriptors of the biological phenomena.

Indeed, we are interested in understanding between-tree and

between-season variability in fruiting patterns, rather than the

deviations associated with particular trees or seasons. The box

plots in figure 5 display the variation of the distribution for the

three metrics described above, as they occur between trees and

between season.

Three linear mixed-effects models (LMEM) with tree identity

and season identity as crossed random effects were fit to the

datasets corresponding to each of the three metrics described

above (see fig. 5). No fixed-effect variables were included in the

fruiting-peak and fruiting-period models, while the fruit-produc-

tion model included the tree diameter at breast height (DBH, in

millimeters) as a quantitative, fixed-effect variable. Since fruit

amounts are counts, the LMEM used for this dependent variable

was a generalized LMEM with Poisson error and Log link-

function. The two other LMEM’s had Gaussian errors and

identity link-functions. All LMEM’s were fit using the restricted

maximum likelihood method implemented in the lme4 package of

R 2.10.1.

The random effect associated to ‘‘tree id’’ was significant in the

fruit-production and fruiting-peak models (fruit-production,

sd = 0.49, p,1023; fruiting-peak: sd = 15.49, p,1023; fruiting-

period: sd = , 1.74, p = 0.40), while the random effect associated to

‘‘season id’’ was significant only for the fruit production model

(fruit-production : sd = 0.87, p,1023; fruiting-peak: sd = 5.04,

p = 0.12; fruiting-period: sd = 1.94, p = 0.44). As expected, the

DBH had a significant, positive effect on fruit production

(intercept c1 = 2.12, coefficient c2 = 1.50 1023, p = 0.033, see

fig. 6). Intercepts for the fruiting-peak and fruiting–period models

were estimated to 209.3 days and 59.3 days, respectively. All p-

values were based on 1000 bootstraps.

Within fruiting seasons, the production of fruit trees follows a

symmetric bell shape-curve (fig. 7). This observation suggests

fitting the amount of fruit trapped each week under a given tree

using a generalized non-linear mixed-effects model with Poisson

error as an intuitive approach. For example, a possible non-linear

function of fruit per unit time would be the Gaussian function:

f (t)~a e
{

t{peakð Þ2
2 d2 ,

with a: height of the peak of the fruit production, peak: fruiting peak

and d: measure of the duration of the fruiting period. In this

example, a and peak would vary randomly (and independently)

with tree and season identity (crossed-random effects). Unfortu-

nately, the non-linearity of this model renders its computational

fitting process prohibitively intensive and prone to estimation

errors (Caillaud and Scarpino, unpublished results).

Therefore, we propose an alternative procedure combining two

mixed-effect models, which allows achieving exactly the same task

much more rapidly and reliably. It is important to consider that

this procedure follows naturally from the intuition in the

aforementioned Gaussian model. The first model (model I) aims

to explain the total number of fruit trapped under each tree during

an entire fruiting season. It corresponds to the fruit-production

generalized LMEM described above. The second model (model II)

aims to explain the date when each fruit was trapped. It is a linear

mixed-effects model with normal error distribution and identity

link function and includes tree identity and season identity as

crossed random effects. It estimates three variance parameters: the

between-tree variance, the between-season variance, and the

within-tree, within-season variance. The key feature of this

approach is that the latter variance (e.g., the residual variance)

quantifies the duration of the fruiting season, in lieu of the

parameter d of the above equation. Therefore these two models

provide results that are equivalent to the non-linear model

presented above, but since they are linear models they can be

fitted more rapidly and with higher reliability.

The between-seasons, between-trees and within-season standard

deviations were estimated to be 8.51, 13.31 and 19.62,

respectively, with intercept c3 = 209.3. These parameter estimates

were then used to generate fruiting patterns of simulated sets of n

trees during s seasons. We proceeded in two steps.

1. We simulated two vectors u and v of respective size n and s

corresponding to the respective tree identity and season

identity effects on the fruit production. These values were

drawn from normal distributions with mean 0 and variances

identical to the estimates of the random effects from model I.

The expected number of fruits produced and trapped for each

of the n|s tree-season combinations were then simply

computed as:

li,j~e c1zc2dbhizuizvj

� �

with i and j denoting the respective indices of the tree and the

season, and c1 and c2 denoting the fixed effect of the variable

dbh and the associated intercept, as estimated in model I (see

values given above). The exponential function accounts for the

Log-link function used in model I.

2. We simulated the two vectors w and z of size n and s

corresponding to the respective tree identity and season

identity effects on the mean day of fruit fall (i.e., the peak of

the fruiting season). These values were drawn from normal

distributions with mean 0 and variances identical to the

estimates of the random effects from model II. The expected

amount of fruits produced at time t by tree i during season j was

then computed as:

Qi,j~li,j
e

t{c3zwizzj

� �2

2s2

s

with c3: intercept (value given above) and s: residual standard

deviation estimated by model II. Note that the unit of Qi,j is

arbitrary. The simulations were performed using R 2.10.1.

In the supplemental materials available online, we display a

realization of the simulation model, run for 6 years on the same

tree spatial distribution (Video S1).

Discussion

Food resources are an important driver of animal foraging

behavior and range-use patterns. Here, we show how empirical

data on the spatio-temporal variation in the availability of D.

oleifera fruit collected at a relatively small spatial scale can be

combined with incomplete but larger-scale data on the spatial

distribution of this species to create a habitat-wide resource

availability model. We demonstrate that the distribution of this key

resource is highly heterogeneous, at both spatial and temporal

scales.

Our model revealed that D. oleifera density varied by a factor of

about five across the island (fig. 3), with important clusters of trees

in the northeast and northwest sectors. During the fruiting season,

this heterogeneity in resources likely has an influence on the

Spatial Modelling of Fruit Tree Production
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Figure 5. Distributions of the fruit production, fruiting peak and fruiting duration among trees (left, N = 6) and seasons (right,
N = 22). See definitions in main text.
doi:10.1371/journal.pone.0015002.g005
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movement patterns of not only frugivorous species but those that

rely on them, e.g. predators. Theoretical models of food searching

behaviors predict that the distribution of step lengths and the

distribution of the turning angles observed between steps should

vary in relation to the density of food items. When a resource is

scarce and patchy, distributed on spatial scale beyond the animal’s

sensory range, the best search strategy consists in moving

according to a Levy process with step lengths following an inverse

square power law distribution, while when the density of targets

increases, a less skewed path length distribution (e.g., Brownian

motion) increases foraging efficiency [21,42,43].

Figure 6. Relationship between tree DBH and fruit production. Left: raw data. Right: Row data corrected for the best predictors of the
random effects.
doi:10.1371/journal.pone.0015002.g006

Figure 7. Distribution of the fruit production during the course of the year. Barplot: All data pooled together. The red dashed lines are
density functions obtained for the six trees (using Gaussian kernels with sd = 10). The x variable is corrected for the tree and season effects on the
fruiting peak.
doi:10.1371/journal.pone.0015002.g007

Spatial Modelling of Fruit Tree Production
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At a temporal scale, the model shows, that fruit production

reaches a maximum in January–February and lasts around 100

days. More interestingly, our model reveals that even after

controlling for DBH there is still significant inter-tree variation

in total fruit production and peak fruiting date. In recent

theoretical work, Boyer et al. [44] and Boyer & Walsh [45] have

shown that when tree distribution is random, between tree

variation in fruit production can have a strong influence on the

movement patterns of animals using memory of the location and

size of visited trees. Therefore, we might expect animals feeding on

D. oleifera fruit to display temporal variation in their movement

patterns, both within and between years.

The impact of resource driven, temporal variation on animal

movement patterns also has potential implications for disease

transmission. Recent work has shown that heterogeneous

resources, either in space or time, can be a major driver of

inter-group contacts, often resulting in non-Euclidean distance

being a better predictor of inter-group contact rates than

Euclidean distance [46,47]. These intergroup interactions, even

if rare, can be important determinants in the spread of parasites

and pathogens. The results of our model not only suggest that the

heterogeneity of D. oleifera fruiting, a keystone resource on BCI,

could generate the type of inter-group contacts shown to be

important for disease transmission, but also provides a mechanistic

explanation for their existence. The ability to understand the

drivers of resource heterogeneity provides the intriguing possibility

of utilizing mechanistic explanations of resource heterogeneity to

design intervention strategies, e.g. targeted vaccination.

Our work demonstrates how several aspects of fruit production

patterns that should be considered when studying the movements

of frugivorous species can be integrated into a computationally

efficient resource distribution model. Spatial distribution of trees

can be investigated using spatial point pattern analyses, while

inter-seasonal and inter-tree variation in fruit amounts, fruiting

peak time and fruiting duration can be analyzed using mixed-effect

models. These methods can also be used to generate stochastically

resource distribution data using parameter values fixed a priori.

Note that this framework could be easily extended to any kind of

resource other than fruit, provided it has a discrete spatial

distribution. Because they are not limited by the complexity of the

spatial distribution of resources, agent-based simulation models

appear particularly adapted to investigate animal movement using

this framework. A key challenge remains however to fit these

agent-based models to actual movement data. We suggest to use a

set of recently developed Bayesian methods termed as Approxi-

mate Bayesian Computation (e.g., refs [48,49,50]). They allow

circumventing the difficulty of calculating a likelihood function

inherent to the more traditional maximum-likelihood or Bayesian

approaches, which make them particularly appealing in our case.

Supporting Information

Video S1 This video shows outputs of the simulation model.

Fruit patterns of Dipteryx oleifera on Barro Colorado were

simulated for 6 entire years (365 days), starting on July 1 . The sixst

simulations use the same tree spatial distribution. Note the clear

among-tree and among-season variation in fruit production. 
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