Praktijkonderzoek naar de ammoniakemissie van stallen X

Potstal voor melkvee

C.M. Groenestein
B. Reitsma

dlo

Rapport 93-1005
Praktijkonderzoek
naar de ammoniak-
emissie van stallen X

Potstal voor melkvee

C.M. Groenestein
B. Reitsma

Rapport 93-1005

© 1993
Dienst Landbouwkundig Onderzoek
Postbus 59, 6700 AB Wageningen

Alle informatie beschikbaar bij
IMAG-DLO
Postbus 43, 6700 AA Wageningen
Telefoon: 08370-76300
Telefax: 08370-25670

Alle rechten voorbehouden. Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een
geauteuriseerd gegevensbestand, of openbaar gemaakt, in enige vorm of op enige wijze, hetzij
elektronisch, mechanisch, door fotokopiën, opnemen, of enig andere manier zonder
vooraagande schriftelijke toestemming van de uitgever.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of
any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission of the publisher.
Inhoud

Samenvatting 2

1 Inleiding 3

2 Materiaal en methode 4
 2.1 Bedrijf en bedrijfsvoering 4
 2.2 Metingen 5
 2.3 Ventilatie 6
 2.4 Microbiologische aspeken 8

3 Resultaten en diskussie 9
 3.1 Ammoniak 9
 3.2 Stikstofmonoxide en distikstofoxide 12
 3.3 Methaan 12

4 Conclusie 14

Literatuur 15

Bijlagen
Samenvatting

Ammoniak is naast NO\textsubscript{x} en SO\textsubscript{x} een van de meest belangrijke verzurende componenten in ons milieu. De Nederlandse overheid heeft tot doel gesteld dat de emissie van ammoniak in het jaar 2000 ten opzichte van 1980 met 50-70% afgenomen moet zijn. In dit kader werd onderzoek verricht naar de ammoniakemissie van een ingestrooide potstal (pot) voor melkvee. Gezien de microbiologische processen die zich in het stro-bed kunnen afspelen zijn ook de emissies van NO, N\textsubscript{2}O en CH\textsubscript{4} gemeten.

De potstal had een ingestrooide ligruimte (pot). Voor het voerhek lag een betonnen plaat. Gedurende de meetperiode van 25 november 1992 tot 27 maart 1993 waren er gemiddeld 40 stuks zwartbont melkvee (FH/HF) en 18 stuks jongvee (Blonde d’Aquitaine) aanwezig. Van het melkvee waren er 10 droogstaand. Omgerekend naar graasdiereenheden (gde) was dit 49,2.

Iedere dag werd bij het melkvee gemiddeld 10 kg stro per dier toegevoegd; bij het jongvee en het droogstaande vee werd gemiddeld 7 kg stro per dier toegevoegd. Bij het melkvee bedroeg het ingestrooide oppervlak 7,9 m2 per dier en het plaatoppervlak 1,9 m2 per dier. Voor het jongvee en het droogstaande vee was dit respectievelijk 8,4 m2 en 1,3 m2 per dier.

De potstal werd mechanisch geventileerd. De maximum ventilatiecapaciteit was 1023 m3 per gde. Dit was ruim 2 maal de benodigde ventilatiecapaciteit, zoals die in het Handboek voor de Rundveehouderij (1993) is aangegeven.

In de Richtlijn Ammoniak en Veehouderij 1991 is voor melk- en kalfkoelk een emissiefaktor opgenomen van 8,8 kg per dierplaats per stalseizoen van 190 dagen. In onderhavig onderzoek is de emissiefaktor voor één gde (één melkkoe met een jaarlijkse melkproductie van 6000 kg) op 8,8 kg gesteld. De cumulatieve emissie gedurende de meetperiode (122 dagen) bedroeg 215 kg. Voor een veronderstelde stalperiode van 190 dagen betekende dat 335 kg. Per gde werd 6,8 kg geëmitteerd, zijnde een reductie van 23% t.o.v. de emissiefaktor.

De gemiddelde temperatuur van het bed op 10 cm diepte was altijd hoger dan de staltemperatuur. Dit gaf aan dat er sprake was van microbiële activiteit in het stro-bed. Op plaatsen die veel belopen waren gemiddeld 36,4°C gemeten en op nauwelijks belopen plaatsen 39,5°C.

De N\textsubscript{2}O-concentratie in de stallucht was tijdens dit onderzoek meestal niet detectioneerbaar en nooit hoger dan 0,1 μmol/l. De NO-concentratie was laag en gedeeltelijk toe te schrijven aan de uitlaatgassen van een tractor. De gemiddelde concentratie van CH\textsubscript{4} was 5 μmol/l. Dit komt neer op een emissie van ruim 1 kg CH\textsubscript{4} per dag per gde. Dit is een factor 3 tot 4 maal hoger dan de in de literatuur berekende emissie. Deze berekende emissie is gebaseerd op methaanproductie als gevolg van vergisting in pens en darm, waarbij de methaanproductie uit de mestkelder verwaarloosbaar werd verondersteld. Het verschil tussen de berekende en de in onderhavig onderzoek gemeten methaanproductie kan verklard worden door microbiologische afbraak van organische stof in het stro.
1 Inleiding

De meest belangrijke verzurende componenten van ons milieu zijn SO_2, NOx (NO en NO_2) en NH₃, samen met hun reaktieprodukten, in het kort SO_2, NOx en NH₃ genoemd. In 1989 was 81% van de verzuring door NH₃ uit eigen land afkomstig en kwam 94% daarvan uit de landbouw. De bijdrage van NH₃ aan de totale verzuring in Nederland bedroeg in 1989 46% (Heij & Schneider, 1991). De overheid heeft tot doel gesteld dat de emissie van ammoniak in 2000 ten opzichte van 1980 met 50-70% afgenomen moet zijn (Nationale Milieubeleidsplan, 1989). Om dit te kunnen realiseren wordt momenteel veel onderzoek verricht naar emissie-arme huisvestingsystemen voor landbouwhuisdieren.

Behalve via onderzoek komen er ook vanuit de praktijk vele ideeën en initiatieven om de ammoniakemissie terug te dringen. Om deze op waarde te schatten dient aan, in potentie emissie-arme huisvestingsystemen, onder normale bedrijfsomstandigheden, te worden gemeten. De aanvragen hiervoor komen binnen bij de Begeleidingscommissie Ammoniak-emissiemetingen, die hieruit de aanvragen selekteert die wat betreft de NH₃-emissievermindering perspectief bieden. Deze begeleidingscommissie bestaat uit vertegenwoordigers van de overheid en het landbouwbedrijfsleven. Het onderzoek wordt vervolgens uitgevoerd door de DLO-meetploeg.

In bovenstaand kader werd de ammoniakemissie gemeten van een potstal voor melkvee. De potstal had een ingestrooide ligruimte (pot). Voor het voerhek lag een betonnen plaat. Dagelijks werd stro toegevoegd. De vraagstelling voor dit onderzoek was of dit stalsysteem een reducerende invloed zouden hebben op de emissie van NH₃. Vanwege de mogelijke microbiële activiteit in de pot zijn andere ongewenste reaktieprodukten van deze processen ook gemeten, te weten NO, N_2O en CH_4. NO is net als NH₃ verzurend voor het milieu. N_2O (lachgas) is schadelijk voor de ozonlaag en draagt net als CH_4 bij aan het broelkaseffect.
2 Materiaal en methode

2.1 Bedrijf en bedrijfsvoering

Van 25 november 1992 tot 27 maart 1993 is de ammoniakemissie gemeten in een ingestrooide loopstal (potstal) voor melkvee. Gedurende de meetperiode waren er gemiddeld 40 stuks zwartbont melkvee (FH/HP) en 18 stuks jongvee (Blonde d’Aquitaine) aanwezig. Van het melkvee waren er 10 droogstaand. Omgerekend naar graasdierenheden (gde), waarbij melkvee 1,00 gde is en jongvee 0,51 gde, waren 49,20 gde aanwezig.

In Bijlage 1 is de plattegrond van de stal weergegeven. De ingestrooide ligruimte (pot) was 30,8 m lang en 15,3 m breed. Voor het voerhek lag een betonnen plaat. Deze plaat was 39,6 m lang, voor de pot 2,0 m breed en voor het melklokaal 3,3 m breed. Het melkvee was gescheiden van het overige vee en had 50% van de pot en 60% van de betonnen plaat ter beschikking. Het ingestrooide oppervlak per melkkoedroeg 7,85 m²; voor het jongvee en droogstaand vee was dit 8,42 m² per dier. Bij het melkvee droeg het plaatoppervlak per dier 1,85 m²; bij het overige vee was dit 1,26 m² per dier.

Van 6:30-7:30 en 17:00-18:00 uur werden de koeien gemolken. De gemiddelde melkproduktie was 18,4 kg melk per dag per dier (meetmelk met 4,00% vet en 3,32% eiwit). Gemiddeld waren de koeien in de tweede helft van de laktatie. Omdat de melkproduktie in de eerste helft van de laktatie hoger ligt zal het gemiddelde melkproductieniveau ruim 6000 kg per koe per laktatie periode zijn geweest. Dagelijks werd na het melken bij het melkvee de mest handmatig van de pla in de pot geschoven. Bij het jongvee en droogstaand vee werd dit één maal per 2 dagen gedaan. Iedere dag werd om ca. 10:00 uur bij het melkvee gemiddeld 10 kg strooisel per dier toegevoegd; bij het jongvee en droogstaand vee was dat gemiddeld 7 kg strooisel per dier. Tot 25 februari werd rouggestrooiel toegevoegd; in de periode daarna werd tarwestrooial gebruikt.

Bij de overgang van de pot naar de pla lag een grote hoeveelheid mest, die dagelijks van de pla in de pot geschoven werd. De pot bij het melkvee steeg bovendien sneller dan bij het overige vee, omdat hier meer mest terecht kwam en meer stro werd toegevoegd. Tijdens de meetperiode werd de mest 3 maal met behulp van een traktor gelijkmatig over de pot verdeeld. Hierbij werd een gedeelte van de pot bij het melkvee weggehaald en verspreid bij het jongvee en droogstaand vee.

De VEM (voedereenheid melk), DVE (darmverterbaar eiwit) en OEB (onbestendig eiwit balans) van de graskui waren laag. Dit is te verklaren uit het feit dat het gras afkomstig was van onbemest land. De opname aan eiwit per kg voer was echter niet zo laag door het hoge drogestofgehalte. De eiwitgehalte van de snijmaais waren iets hoger dan gemiddeld, het drogestofgehalte lager. De kwaliteit van de kuil was zeer goed gezien de lage NH₃-fraktie.
Tabel 1. Voergiften in kg aan melkvee, jongvee en droogstaand vee (dagelijks rantsoen per dier) met ds (%) en VEM, DVE (g) en OEB (g) per kg droge stof en NH₃-fraktie.

<table>
<thead>
<tr>
<th>Voersoort</th>
<th>Hoeveelheid</th>
<th>melkvee</th>
<th>jongvee en droogstaand vee</th>
<th>ds</th>
<th>VEM</th>
<th>DVE</th>
<th>OEB</th>
<th>NH₃-fraktie¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>snijmaiskuil</td>
<td></td>
<td>12</td>
<td>10</td>
<td>27</td>
<td>889</td>
<td>51</td>
<td>+5</td>
<td>5</td>
</tr>
<tr>
<td>graskuil</td>
<td></td>
<td>9,5</td>
<td>8</td>
<td>72</td>
<td>685</td>
<td>46</td>
<td>-25</td>
<td>3</td>
</tr>
<tr>
<td>A-brok</td>
<td></td>
<td>6</td>
<td>0</td>
<td>90</td>
<td>940</td>
<td>90</td>
<td>+25</td>
<td>-</td>
</tr>
<tr>
<td>grassbrok</td>
<td></td>
<td>1</td>
<td>2</td>
<td>92</td>
<td>771</td>
<td>74</td>
<td>+18</td>
<td>-</td>
</tr>
<tr>
<td>sojaschroot</td>
<td></td>
<td>1</td>
<td>0</td>
<td>88</td>
<td>1000</td>
<td>230</td>
<td>+174</td>
<td>-</td>
</tr>
</tbody>
</table>

¹: percentage van het ruw eiwit wat is afgebroken

2.2 Metingen

Gedurende de meetperiode zijn de volgende variabelen continu gemeten:
- NH₃-concentratie van de uitgaande lucht (mg/m³);
- concentratie van (NH₃+NO) van de buitenlucht (mg/m³);
- NO-concentratie van de uitgaande lucht (mg/m³);
- ventilatiedebiet (m³/uur);
- relatieve luchtvochtigheid (RH) midden en achter in de stal, bij ventilator 2 en 6, alsmede buiten (%);
- temperatuur (T) midden en achter in de stal, bij ventilator 2 en 6, alsmede buiten (°C).

In Bijlage 1 zijn de ventilatoren aangegeven. Voor in de stal is ter hoogte van de ventilatoren, achter in de stal is ter hoogte van de drinkbakken. De NH₃-concentratie werd continu gemeten met behulp van een NO₂-monitor (monitor labs nitrogen oxides analyzer model 8840). De meting is gebaseerd op de chemiluminescentie-reaktie tussen O₂ en NO:

\[\text{NO} + \text{O}_2 \rightarrow \text{NO}_2 + \text{O}_2 + \text{licht (1.100 nm = rood licht)} \]

Deze methode is uitgebreid beschreven door Scholtens (1993). Hier wordt volstaan met een korte beschrijving van het systeem en de meetopstelling.

De maximaal meetbare concentratie was 50 ppm. Om NH₃ te kunnen meten moet het eerst omgezet worden met een convertor tot NO. In de convertor passeert de luchtstroom een filter waarna het verhit wordt tot 775 °C. Bij deze temperatuur wordt NH₃ geoxideerd tot NO. De convertor is zo dicht mogelijk bij het monsternampeunt gemonteeerd om het transport van NH₃ tot een minimum te beperken. NH₃ adsorbeert makkelijk aan allerlei materialen en lost makkelijk op in water, waardoor bij een te grote afstand tussen monsternampeunt en convertor, metingen verstoord kunnen worden. De stallucht werd continu aangezogen via teflonslangen. Om kondensvorming in de slangen te voorkomen werden alle slangen met een verwarmingslint en isolatie omwikkeld. De monsternampeunten bevonden zich in de ventilatiekokers 2, 4 en 6 tussen de meet- en stalventilator. Het in de convertors gevormde stabiele NO werd door verwarmde en geïsoleerde teflonslangen naar de monitor geleid en gemeten.

In ventilatiekoker 4 werd een extra monsternampeunt geplaatst voor NO-meting. Deze lucht werd in plaats van via de convertor rechtstreeks naar de NO₂-monitor geleid. Wanneer de gemeten NO-concentratie hoger was dan 0,5 mg/m³ werd de
NH₃-concentratie berekend uit het verschil tussen de meting met (NH₃ + NO) en zonder convertor (NO).

Om het ventilatiedebiet te meten werden in de ventilatiekokers onder de stalventilator meetventilatoren geplaatst. Per omwenteling van de meetventilator werden vier pulsen afgegeven welke werden geregistreerd. De relatie tussen het aantal pulsen en het debiet werd bepaald met behulp van een volgens de voormalige NEN-norm 1048-11 gebouwde windtunnel. De relatie tussen het ventilatiedebiet (m³/uur) en het geregistreerde aantal pulsen was:

\[V = 15,72 \times (\text{aantal pulsen} / 10 \text{ sec}) + 122,72 \]

De temperatuur en de relatieve vochtigheid werden continu gemeten met temperatuur- en vochtsensoren (Pt 100, 1/3 DIN; C80 Hygrometer van Rotronic) met een nauwkeurigheid van respectievelijk 0,5°C en 1,5%. De sensoren hingen voor in de stal (bij ventilator 2 en 6), in het midden en achter in de stal en buiten aan de noord-oost zijde van de stal.

De meetapparatuur werd bestuurd door een programmeerbare datalogger. Alle verzamelde gegevens werden hierin opgeslagen. Eén keer in de drie minuten werden de NH₃-concentratie, het ventilatiedebiet, de RH en T gemeten. Na een uur werden de waarden gemiddeld en weggeschreven. De NO-concentratie werd één maal per uur gemeten.

Elke week werd de apparatuur gekontroleerd en de monitor geïjk met 42,2 ppm NO gas. De absolute afwijking tijdens de ijk was gemiddeld 4%. Bij meer dan 5% afwijking van de monitor werden de waarden gecorrigeerd. Bij de ijk van de convertors bleek dat voor aanvang van de metingen gemiddeld 96% van de aangeboden NH₃ als NO₃ werd gemeten; na de metingen was dat 93%.

Door technische storingen waren er dagen waarop sommige of alle waarnemingen ontbraken. Bovendien werd tijdens het melken het elektriciteitsnet overbelast waardoor de hoofdzekering uitviel. Om dit te voorkomen werd in de periode van 28 november tot 22 december tijdens het melken de ventilatie uitgezet. Vanaf 23 december waren de problemen verholpen.

De NH₃-emissie is het produkt van de NH₃-concentratie en het ventilatiedebiet. De totale emissie van NH₃ werd berekend door cumulatie van de uurgemiddelden. Bij ontbreken van meetgegevens werd ten behoeve van de cumulatie geïnterpoleerd.

2.3 Ventilatie

De emissie van ammoniak is het produkt van de concentratie van ammoniak in de stalling en de hoeveelheid lucht die de stal verlaat (ventilatiedebiet). Om dit laatste te kunnen meten was het noodzakelijk de stal mechanisch te ventileren, terwijl gewoonlijk natuurlijk werd geventileerd. Er werden 6 ventilatoren geïnstalleerd met ieder een maximale capaciteit van 8000 m³/uur (diameter 50 cm). Dit betekende dat per gde maximaal 1023 m³/uur geventileerd kon worden. Dit dekte ruim op de behoefte van 434 m³/uur per gde (= koe met een jaarlijkse melkproductie van 6000 kg), zoals dat in het Handboek voor de Rundveehouderij (1993) is weergegeven.

De ventilatieregeling kende twee standen. Bij minimum-ventilatie draaiden drie van de ventilatoren (nr. 2, 4 en 6; zie Bijlage 1) continu op 80-90% van de maximale capaciteit. De andere drie waren zodanig afgesteld dat ze bij een staltemperatuur van 10°C tegelijk op 100% ventileerden (maximum-ventilatie). Deze ventilatoren waren voorzien van vlinderkleppen, zodat de kokers waren afgesloten wanneer de ventilatoren niet draaiden. De luchtdaling vond plaats over de gehele lengte van de
voorgevel en was voorzien van een winddrukkap om lekken van lucht door dwarsventilatie te voorkomen. De lucht werd via een ventilatieschacht ongeveer 5 m parallel aan het dak de stal ingeleid (Bijlage 1). De ventilatieschacht diende om een goede luchtdeling in de stal te krijgen. De lengte van de schacht was nodig vanwege de uitzonderlijke helling van het dak (45°) en de hoogte van de stal. Wanneer de lucht niet ver genoeg de stal ingebracht zou worden, bestond het risico dat de lucht achter in de stal niet ververst zou worden.

In Bijlage 3 is het ventilatiedebiet weergegeven. Gemiddeld werd tijdens de meetperiode 480 m³/uur per gde geventileerd. Bij aanvang van de metingen waren de ventilatiekokers nieuw. Doordat de kokers vervuild raakten met stof werd de luchtweerstand groter en werd op het eind van de meetperiode een lagere maximale capaciteit gehaald dan aan het begin.

Op 9 februari is een lichte stijging van het minimum-ventilatie niveau zichtbaar. Op die dag werden de meetventilatoren schoongemaakt die vervuild waren geraakt met stof waardoor het debiet iets onderschat werd. Vanaf 9 februari werden de meetventilatoren regelmatig schoongemaakt.

Tijdens het onderzoek werd de luchtbeweging in de stal gekontroleerd met rookproeven. Wanneer de lucht via de ventilatieschacht de stal in kwam waren de temperatuur en de snelheid van deze lucht niet hoog genoeg om via het dak achter in de stal te komen. Na de schacht kwam de lucht naar beneden. Ter hoogte van de dieren bewoog de lucht alsnog naar achteren. Een indruk van de luchtdeling werd ook verkregen door de temperatuur op verschillende locaties in de stal met elkaar te vergelijken. Onderstaande tabel geeft de temperatuur voor (gemiddelde temperatuur bij ventilator 2 en 6), midden, achter in de stal en buitens. Op dezelfde plaatsen is tevens de relatieve luchtvochtigheid gemeten.

<table>
<thead>
<tr>
<th>Tabel 2. Gemiddelde temperatuur (°C) en relatieve luchtvochtigheid (%) buiten, voor, midden en achter in de stal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatuur</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>3,2</td>
</tr>
<tr>
<td>Relatieve luchtvochtigheid</td>
</tr>
</tbody>
</table>

De temperatuur achter in de stal was hoger dan voor in de stal. Het verschil was niet groot, zeker gezien het feit dat de isolatie van de voorkant (lichtdoorlatende golfplaten) slechter was dan achter (dubbelwandig, metselwerk en hout). Uitgaande van deze gegevens kan niet geconcludeerd worden dat de lucht achter in de stal niet voldoende ververst werd.

De relatieve luchtvochtigheid was hoog. De lage temperatuur speelt hier een belangrijke rol. Een zelfde hoeveelheid vocht per m³ lucht bij een hoge temperatuur heeft een lagere relatieve vochtigheid dan bij een lage temperatuur.

Als de lucht voornamelijk zoals zojuist beschreven bewoog betekende dit, dat de lucht in de nok van de stal niet voldoende ververst werd ondanks de lange ventilatieschacht. Het dak was niet geïsoleerd. Hier kan de relatieve luchtvochtigheid oplopen en vocht kondenseren. Bij lage buitentemperaturen is dit effekt het grootst en kan druppelvorming in de stal optreden. Dit werd regelmatig in de eerste helft van de stalperiode waargenomen.

Tijdens het voeren stonden van 08:30 tot 09:15 en van 16:15 tot 16:30 uur de deuren open. Wanneer de ondertrek in de stal niet hoog genoeg zou zijn, zou lucht naar buiten kunnen lekken, wat de metingen zou verstoren. Een rookproef bij de open deuren toonde aan dat de luchtbeweging inwaarts was gericht tot achter in de stal. De windrichting was toen parallel ten opzichte van de openstaande
deuren. Een tweede controle op het lekken van de lucht tijdens het openstaan van de deuren was het meten van de ammoniakconcentratie van de buitenlucht net boven een van de deuren vanaf 23 februari. Voorheen werd deze gemeten boven een zijdeur aan de oostkant van de stal. Er was geen of een verwaarloosbare stijging zichtbaar van de concentratie bij het openen van de deuren.

2.4 Microbiologische aspecten

De temperatuur van de pot is een maat voor aërobe microbiële activiteit. Iedere week werd op een droge en natte, veel of weinig belopen plaats in de pot de temperatuur op ca. 10 cm diepte gemeten met een NiCr-Ni thermokoppel (Bijlage 1). Wekelijks werden in ventilator 2 en 6 en buiten luchtmonsters genomen waarvan met een gaschromatograaf de N₂O- en CH₄-concentraties werden gemeten. Vorming van N₂O kan plaatsvinden bij een onvolledige nitrificatie of denitrificatie door micro-organismen in het strooisel (Groenestein et al., 1993). Vorming van CH₄ duidt op anaërobe afbraak van organische stof in de pot. Door een storing bij de analyse van CH₄ ontbraken tot half februari de CH₄-concentraties. De N₂O-concentratie werd bepaald op een gaschromatograaf met een Electron Capture Detector (ECD) die speciaal gevoelig is voor N₂O. De nauwkeurigheid van deze momentopnames is niet voldoende voor het berekenen van een betrouwbare uitstoot tijdens de stalperiode, maar dient ter indikatie. Het doel van deze bepaling was een meer kwalitatieve dan kwantitatieve uitspraak te doen t.a.v. de emissie van N₂O en CH₄. Om aan te tonen dat de NOx-monitor geen kruisgevoeligheid voor N₂O vertoonde werd een overmaat van 8000 ppm aangeboden. Dit gaf geen signaal.
3 Resultaten en diskussie

3.1 Ammoniak

Figuur 1 geeft de gemiddelde ammoniakemissie per dag weer gedurende de hele meetperiode. Na de eerste maand steeg de emissie waarna het de gehele periode op een konstant niveau bleef. Op 19 januari en 17 februari zijn hogere emissies zichtbaar. Dit werd veroorzaakt door het verdelen van de mest over de gehele pot. Door het omwoelen werd de vervluchtiging van reeds gevormde ammoniak gestimuleerd. Het verdelen werd 12 maart ook uitgevoerd. Door een technische storing ontbreken de resultaten van de concentratiemeting van die dag. Verwacht mag worden dat toen ook een stijging van de emissie heeft plaatsgevonden.

![Graph 1](image)

Figuur 1. Ammoniakemissie per dag op stalinivo gedurende de gehele meetperiode.

In Figuur 2 is het verloop van de ammoniakemissie per uur gedurende enkele dagen weergegeven. De dagelijkse dalingen van de ammoniakemissie rond 10:00 uur corresponderen met het dagelijks toevoegen van ca. 500 kg stro.

![Graph 2](image)

Figuur 2. Ammoniakemissie per uur gedurende enkele dagen op stalinivo, de vertikale lijnen geven het tijdstip van stro toevoegen aan.

Gedurende de meetperiode waren twee situaties te onderscheiden, nl. de omstandigheid waarin drie ventilatoren draaiden (minimum ventilatie: situatie 1) en de omstandigheid waarin gedurende een bepaalde tijd drie ventilatoren bijsprongen.
vanwege een hogere staltemperatuur (afwisselend minimum en maximum ventilatie: situatie 2). Dit had konsequenties voor het verloop van de emissie. Figuur 3 en Figuur 4 maken dit zichtbaar. Tijdens de eerste situatie was de ventilatie konstant. Het meest opvallende effect wat zichtbaar was, was het eerder besproken toevoegen van stro (Figuur 2). In Figuur 3 zijn tijdens dezelfde periode de melktijden aangegeven. Groenestein en Montsma (1991) veronderstelde een verband tussen melken en een verhoogde emissie. In Figuur 3 is zichtbaar dat direct na het melken in de ochtend de emissie steg, om kort daarna te dalen door het toevoegen van stro. De stijging die inzette na het toevoegen van stro, zette door na het melken in de vooravond. 's Nachts bleef de emissie hoog, ondanks de over het algemeen dalende staltemperatuur. Evenals in het onderzoek in een grupstal (Groenestein en Montsma, 1991) en in een ligboxenstal (Kroodsma et al., 1993) werd in de potstal 's nachts een hoge emissie waargenomen.

Figuur 3. Ammoniakemissie en ventilatie (stippellijn) per uur gedurende enkele dagen op stalinivo (situatie 1), de vertikale lijnen geven tijdstip van melken aan.

Figuur 4. Ammoniakemissie en ventilatie (stippellijn) per uur gedurende enkele dagen op stalinivo (situatie 2), de vertikale lijnen geven tijdstip van melken aan.

Tijdens de tweede situatie varieerde de ventilatie door de in hoofdstuk 2 vermelde regeling sprongsgewijs tussen twee nivo's (Figuur 4). De stijging van de ventilatie rond 09:00 uur ging gepaard met een stijging van de emissie. Eén à twee uur later volgde een dalging door het toevoegen van stro, zoals tijdens de eerste periode. De dalging rond 18:00 uur was weer toe te schrijven aan de afname van de ventilatie door de afname van de staltemperatuur. Een stijging van de emissie na melken zoals dat in situatie 1 zichtbaar was werd overtroffen door het effect van de ventilatie en was niet structureel zichtbaar meer. 's Nachts was door de lage
ventilatie de emissie niet meer maximaal, maar er werd ook geen absoluut minimum bereikt.

In Figuur 5 is de cumulatieve NH₃-emissie weergegeven. In de Richtlijn Ammoniak en Veehouderij 1991 is voor melk- en kalfskoeien een emissiefactor opgenomen van 8,8 kg per dierplaats per stalsseizoen van 190 dagen. Een melkkoe met een melkproductie van 6000 kg is gedefinieerd als 1,00 gde. De emissiefactor voor 1 gde is dan 8,8 kg. De cumulatieve emissie gedurende de gemeten periode (122 dagen) bedroeg 215 kg. Voor een veronderstelde stalperiode van 190 dagen betekent dat 335 kg. Per gde werd 6,8 kg geëmmiteerd (335/49,2), dat betekent een redutie van 23% t.o.v. de emissiefactor.

![Graph](image)

Figuur 5. Cumulatieve ammoniakemissie op stalnivo gedurende de gehele meetperiode.

Het effect van stro op emissies is op te splitsen in twee aspecten. Ten eerste het dagelijks toevoegen van vers stro zoals hierboven is genoemd, wat werkte als afdekking van het emitterend oppervlak. Ten tweede de aanwezigheid van het strobekbed met de microbiologische processen die zich daarin afspeelden. Eerder onderzoek bij mestvarkens op een strooiselbed toonde reeds de invloeden van beide aspecten op de ammoniakemissie (Groenestein & Reitsma, 1992). De invloed van het toevoegen van stro is direct zichtbaar (Figuur 2). Wanneer het emissieverhogende effect na het melken niet zou overlappen, zou de daling nog groter zijn geweest.

Om een inschatting te kunnen maken van de microbiële invloed van het strobekbed op de emissie moeten andere factoren meegenomen worden. Aërobe (zuurstofvragen- de) microbiologische activiteit verhoogt de temperatuur van het bed (broel). De gemiddelde temperatuur op veel belopen plaatsen was 36,4°C en op nauwelijks belopen plaatsen 39,5°C. Bij de drinkbak, een natte en zeer veel belopen plaats was de gemiddelde temperatuur gedurende de stalperiode 25,9°C. De temperaturen van het bed waren altijd hoger dan de staltemperatuur. Dit geeft aan dat overal sprake was van aërobe microbiële activiteit. Het belopen door het vee drukte het bed samen. Dit had tot gevolg dat zuurstof minder makkelijk het bed kon binnendringen. Dit verklaart waarom de temperatuur van het bed op plaatsen die veel belopen zijn lager was dan op nauwelijks belopen plaatsen. Aërobe processen produceren nl. veel meer energie (warmte) dan anaërobe processen. Water in het bed verdringt zuurstof. Bovendien heeft water een verlagend effect op de temperatuur van het bed waardoor microbiële activiteit afneemt. Dit verklaart waarom de laagste temperaturen bij de drinkbak werden waargenomen.
3.2 Stikstofmonoxide en distikstofoxide

In strooiselsystemen voor mestvarkens is sprake van nitrifikatie, een aërobe proces, en denitrifikatie, een anaërobe proces. Deze microbiële activiteit kan tot gevolg hebben dat NH₄⁺ wordt omgezet in het onschadelijke N₂, waardoor emissie van NH₃ voorkomen wordt. Groenestein et al. (1993) toonden aan dat wanneer omstandigheden in het strooiselbed niet optimaal waren, de processen niet volledig ten einde liepen. De NH₃-emissie werd weliswaar gereduceerd maar NO en N₂O, tussenprodukten van deze processen, kwamen vrij. NO is net als NH₃ verzurend voor het milieu. N₂O (lachgas) is schadelijk voor de ozonlaag (vergelijkaar met CFC’s) en draagt 5% bij aan het broeikaseffect (Van der Gon & Swart, 1990). De achtergrondconcentratie van NO is ongeveer 2,10 ppm, die van N₂O 0,3 ppm. De N₂O was tijdens dit onderzoek meestal niet detekteerbaar (detektiesgrens was 0,05 μmol/l = 1,2 ppm) en nooit groter dan 0,1 μmol/l (2,4 ppm). Ook de NO-concentratie was laag (Blijlage 2). De pieken van de NO-concentratie op 19 januari en 17 februari corresponderen met het omwerken van het bed. Dit kan het gevolg zijn van reeds in de pot gevormde NO die nog niet vervluchtigd was, maar het werd ook veroorzaakt door de uitlaatgassen van de traktor die voor deze handeling gebruikt werd. De lage concentraties NO en N₂O die hier gevonden werden kunnen erop duiden dat omstandigheden optimaal waren voor nitrifikatie en denitrifikatie en dat NH₄⁺ volledig omgezet werd in N₂. Gezien de geringe reductie van de ammoniakemissie en de complexiteit van deze processen is dit de vraag (Groenestein et al., 1993). De aanwezigheid van N₂O en NO gaf aan dat deze processen zich weliswaar in het bed afspeelden, maar waarschijnlijk zal een andere microbiële populatie een hoofdrol spelen.

3.3 Methaan

De bijdrage van methaan aan het broeikaseffect bedraagt 18%. Mondiaal zijn herkauwers verantwoordelijk voor ca. 20% hiervan (Goossens & Meeuwissen, 1990). De achtergrondconcentratie van CH₄ is ongeveer 1,7 ppm. Gemiddeld werd (van half februari tot eind maart) 5 μmol/l (121 ppm) CH₄ gemeten (detektiesgrens is 0,1 μmol/l = 2,4 ppm). De laagste concentratie was 3,2, de hoogste 7,5 μmol/l (77 en 181 ppm). De emissie op moment van monstersname kon berekend worden als het produkt van de gemeten concentratie en het op dat moment heersende ventilatie-debit. Deze emissie werd beschouwd als de gemiddelde emissie van de betreffende week. Er kan dan uitgedragen worden dat van half februari tot eind maart ruim 1 kg CH₄ per dag per gde geëmitteerd werd. Van der Hoek (1984) berekende voor de rundveehouderij afhankelijk van de rantsosensamentelling een CH₄-produktie van 230-370 g per dag. Cruzen et al. (1986) berekende 150-260 g per dag. Deze produkties zijn het gevolg van vergisting in pens en darm. Methaanproduktie uit mestkelder werd verwaarloosbaar verondersteld vanwege relatief lage mesttemperaturen en korte opslagtijden. Het verschil tussen deze berekeningen en de metingen in de potstal (een factor 3 à 4) moet dus gezocht worden in anaërobe microbiële afbraak van organische stof in het stro-bed.

Uitgaande van de opgenomen hoeveelheid bruto-energie in het voer is uit te rekenen hoeveel CH₄ in het huidige onderzoek door de dieren door vergisting in de pens is geëmitteerd. Hierbij wordt verondersteld dat bij hoog produktieve dieren 5% van de bruto-energie omgezet wordt in CH₄ en bij droogstaande dieren en jongvee 7%. De hoeveelheid stro die de dieren opgenomen zouden kunnen hebben werd verwaarloosd. Per gde kwam dit op 257 g CH₄ per dag. Dit komt goed overeen met de in de literatuur vermeldde gegevens. De resterende 3/4 kg die per dag per gde emiteerde moet dus uit de pot afkomstig geweest zijn. Deze orde grootte komt overeen met wat is gevonden door Derkx et al. (1989), die aantoonden dat tijdens compostering van stro en mest CH₄-vorming optrad. Het is ongeveer drie maal zoveel als ontstaat tijdens vergisting van 20 dagen bij een temperatuur van 30°C in een biogasinstallatie (Zeeman, 1991). Het verschil tussen Zeeman en huidig onderzoek ligt voor een deel aan de verschillende duur en temperatuur van
de processen. Een belangrijk deel zal echter veroorzaakt worden door de degraad-
tie van cellulose en hemicellulose in het stro.
4 Conclusie

De gemeten potstal emitteerde op basis van een stalperiode van 190 dagen 6,8 kg NH₃ per gde (koe met 6000 kg melkproductie). Dat is een reductie van 23% ten opzichte van de in de Richtlijn Ammoniak en Veehouderij opgenomen emissiefaktor.

Uit dit onderzoek werden relaties zichtbaar tussen NH₃-emissie enerzijds en strotoevoegen, ventilatie en melktijden anderzijds.

De gemiddelde temperaturen van het bed op 10 cm diepte waren altijd hoger dan de staltemperatuur. Dit geeft aan dat er sprake was van aërobe microbiële activiteit in het stro-bed.

De bijdrage van nitrificatie en denitrificatie aan de microbiële activiteit in het stro-bed zal, gezien de lage NO- en N₂O-concentraties, niet groot zijn.

De hoge emissie van CH₄ (ruim 1 kg per gde per dag) duidt op een anaërobe afbraak van organische stof in het stro-bed.
Literatuur

Figuur 1. Doorsnede en plattegrond van de potstal, de monsternamenspunten van de strooiseltemperatuur worden weergegeven met een "v".
Figuur 1. NH₃-concentratie in ventilerator 4 (bovenste lijn) en buitenlucht (onderste lijn). De concentraties in ventilatorkoker 2 en 6 zijn vergelijkbaar met die van 4.

Figuur 2. NO-concentratie in ventilerator 4.
Figuur 1. Totale ventilatiedebiet.
Figuur 1. Relatieve luchtvochtigheid (stippellijn) en temperatuur, van boven naar beneden, achter in de stal, voor in de stal en buiten (daggemiddelden).
Praktijkonderzoek naar de ammoniakemissie van stallen
publikatieoverzicht

Groenestein, C.M. en H. Montsma, 1991 - Praktijkonderzoek naar de
ammoniakemissie van stallen I: slachtkuikenstal met vloerventilatie.
Wageningen, DLO, rapport 91-1001, 14 pp. excl. bijlage.

Groenestein, C.M. en H. Montsma, 1991 - Praktijkonderzoek naar de
ammoniakemissie van stallen II: grupstal voor melkvee.
Wageningen, DLO, rapport 91-1002, 14 pp. excl. bijlage.

Montsma, H. en C.M. Groenestein, 1992 - Praktijkonderzoek naar de
ammoniakemissie van stallen III: biggenopfokstal met frequente en
restloze mestverwijdering.
Wageningen, DLO, rapport 92-1001, 12 pp. excl. bijlage.

Groenestein, C.M. en H. Montsma, 1993 - Praktijkonderzoek naar de
ammoniakemissie van stallen IIIa: aanvullend onderzoek aan een
biggenopfokstal met frequente en restloze mestverwijdering.
Wageningen, DLO rapport 93-1001, 9 pp excl. bijlage.

Groenestein, C.M. en B. Reitsma, 1992 - Praktijkonderzoek naar de
ammoniakemissie van stallen IV: kraamopfokstal met gladde hellende
vloer, giergoot en metschuiwen.
Wageningen, DLO, Rapport 92-1002, 14 pp. excl. bijlage.

Reitsma, B. en C.M. Groenestein, 1994 - Praktijkonderzoek naar de
ammoniakemissie van stallen IVa: aanvullend onderzoek aan een kraamopfokstal met gladde
hellende vloer, giergoot en metschuiwen.
Wageningen, DLO, Rapport 94-1003, 13 pp. excl. bijlage.

Groenestein, C.M. en B. Reitsma, 1992 - Praktijkonderzoek naar de
ammoniakemissie van stallen V: vleesvarkensstal met dikstrooiselsysteem.
Wageningen, DLO, Rapport 92-1003, 18 pp. excl. bijlage.

Groenestein, C.M. en H. Montsma, 1992 - Praktijkonderzoek naar de
ammoniak uit stallen VI: vleesvarkensstal met diepstrooiselsysteem.
Wageningen, DLO, Rapport 92-1004, 20 pp. excl. bijlage.

Montsma, H. en C.M. Groenestein, 1993 - Praktijkonderzoek naar de
ammoniakemissie van stallen VII: konijnenstal met metscheiding,
frequente mestverwijdering en luchtafzuiging boven de giergoot.
Wageningen, DLO rapport 93-1002, 14 pp. excl. bijlage.

Reitsma, B. en C.M. Groenestein, 1993 - Praktijkonderzoek naar de
ammoniakemissie van stallen VIII: vleesvarkensstal met overdrukventilatie en
luchtverdeling via slangen.
Wageningen, DLO rapport 93-1003, 14 pp. excl. bijlage.

Groenestein, C.M. en H. Montsma, 1993 - Praktijkonderzoek naar de
ammoniakemissie van stallen IX: kraamzeugenstal met mestverwijdering
door spoelen met dunne mestfraktie via spoelgoten.
Wageningen, DLO rapport 93-1004, 13 pp.

Groenestein, C.M. en B. Reitsma, 1993 - Praktijkonderzoek naar de
ammoniakemissie van stallen X: potstal voor melkvee.
Wageningen, DLO, Rapport 93-1005, 15 pp. excl. bijlage.

Groenestein, C.M. en J.M.G. Hol, 1994 - Praktijkonderzoek naar de
ammoniakemissie van stallen XI: zeugenstal met gereduceerd roostervervlak.
Wageningen, DLO, Rapport 94-1001, 12 pp. excl. bijlage.
Reitsma, B., J.M.G. Hol en C.M. Groenestein, 1994 - Praktijkonderzoek naar de ammoniakemissie van stallen XII: kraamzeugenstal met mestverwijdering door schuiven over een gecoate putvloer.
Wageningen, DLO, Rapport 94-1002, 11 pp. excl. bijlage.

Groenestein, C.M., 1994 - Praktijkonderzoek naar de ammoniakemissie van stallen XIII: zeugenstal met mestverwijdering door schuiven over een gecoate putvloer.
Wageningen, DLO, Rapport 94-1004, 11 pp. excl. bijlage.

Hol, J.M.G. en C.M. Groenestein, 1994 - Praktijkonderzoek naar de ammoniakemissie van stallen XIV: biggenopfokstal met mestverwijdering door spoelen met dunne mestfractie via spoelgoten.
Wageningen, DLO rapport 94-1005, 12 pp. excl. bijlage.

Wageningen, DLO, Rapport 94-1006, 14 pp. excl. bijlage.

Wageningen, DLO, Rapport 94-1007, 19 pp. excl. bijlage.

Wageningen, DLO rapport 94-1008, 11 pp. excl. bijlage.

Hol, J.M.G. en C.M. Groenestein, 1995 - Praktijkonderzoek naar de ammoniakemissie van stallen XVIII: compactbatterij voor leghennen met tweemaal daags verwijderen van natte mest.
Wageningen, DLO rapport 95-1001, 11 pp. excl. bijlage.

Reitsma, B. en C.M. Groenestein, 1995 - Praktijkonderzoek naar de ammoniakemissie van stallen XIX: hellingsstal voor vleesvarkens.
Wageningen, DLO, Rapport 95-1002, 13 pp. excl. bijlage.

Hol, J.M.G. en C.M. Groenestein, 1995 - Praktijkonderzoek naar de ammoniakemissie van stallen XX: stall voor guste en dragende zeugen met meststopslag onder betonroosters.
Wageningen, DLO rapport 95-1003, 10 pp. excl. bijlage.

Groenestein, C.M. en B. Reitsma, 1995 - Praktijkonderzoek naar de ammoniakemissie van stallen XXI: zeugenstal met mestverwijdering door spoelen met dunne mestfractie via spoelgoten.
Wageningen, DLO, Rapport 95-1004, 14 pp. excl. bijlage.

Wageningen, DLO, Rapport 95-1005, 23 pp. excl. bijlage.

Wageningen, DLO rapport 95-1006, 12 pp. excl. bijlage.

Wageningen, DLO, Rapport 95-1007, 15 pp. excl. bijlage.

Wageningen, DLO, Rapport 96-1001, 26 pp. excl. bijlage.