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1.1 Introduction 
This thesis describes the improvement of electricity production in the Microbial Fuel Cell 

(MFC). The Microbial Fuel Cell is a new technology, in which microorganisms produce 

electricity from a renewable energy source in the form of biomass. In this introduction, we 

describe the need for production of electricity from renewable sources. Furthermore, we 

explain that Microbial Fuel Cells are a promising technology because of their high efficiency, 

and finally, we discuss four basic concepts for describing performance of a Microbial Fuel Cell. 

1.1.1 Energy use is linked to income 

There is a huge and increasing energy demand in the world. Worldwide, total final energy 

consumption has increased from 4675 Mtoe in 1973 to 8286 Mtoe in 2007, and is expected to 

further increase to 11405 Mtoe in 2030 (IEA, 2009).  The increasing energy consumption is a 

result of the increasing wealth: there is a clear relationship between income and energy use. In 

countries where >95% of the people live above the poverty line of $2 per day, the energy 

consumption per capita is four times higher than in countries where >75% of the people is 

poor (IEA, 2008). At the same time, access to affordable and reliable energy is essential for 

improving quality of life and for economic development. Figure 1 shows the relationship 

between income and energy use per capita. Increase in energy use is accompanied with an 

increase in income. Rapidly industrializing countries like China and India are still at the start of 

their climb onto the energy ladder, and their energy consumption will rise as incomes increase. 
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Figure 1. Energy use per capita increases with increasing income, data for 2008 (Gapminder, 2010). 
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Figure 2. Energy poverty: household fuel transition (source: IEA, 2002). 

 

Besides the relationship between income and total energy use, there is also a link between 

income and type of energy used. Energy is available in many different sources and forms.  The 

energy sources (e.g. coal, gas, biomass, hydropower) can be either directly used or converted 

before use. For example, biomass, coal, and gas can be directly used for heating and cooking, 

while oil is converted into liquid fuel before use, and part of the coal, gas, and biomass is 

converted into electricity before being used. The energy source and the form in which energy is 

used are mainly dependent on income (Figure 2). Whereas low incomes depend on the use of 

biomass for cooking and heating, higher incomes move their energy use from biomass to gas, 

coal, oil, and finally electricity as the most modern and advanced form of energy.  

While modern energy services, and electricity in particular, are a key enabler of economic 

and social development, it is estimated that today, 1.6 billion people have no access to 

electricity (IEA, 2008). Furthermore, worldwide electricity consumption is expected to rise 

from 15665 TWh in 2006 to 28141 TWh in 2030. Therefore, an increase in electricity 

production capacity is needed. 
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1.1.2 Energy sources for electricity production 

Energy sources can be divided into fossil sources (oil, coal and gas) and renewable sources 

(for example sun, biomass, wind and hydropower). This distinction between fossil and 

renewable sources is made based on the time scale during which the energy has been stored. 

Most energy originates from the sun, which drives the uptake of CO2 via photosynthesis, in 

this way storing energy in the form of carbohydrates. In fossil sources, the sun‟s energy has 

been fixed millions of years ago, while the sun‟s energy in renewable sources has been fixed on 

a much shorter time-scale in the order of decades (for biomass). Besides being fixed in 

biomass, the sun‟s energy can also be used indirectly as wind and hydropower, or directly as 

solar power. 

When considering the energy sources used for electricity, we see that 68% of the electricity is 

produced from the fossil sources coal, oil, and gas together, whereas biomass currently 

contributes to only 2.6% of the electricity production (Figure 3). For production of electricity, 

efficiency is an issue of major interest, as it indicates which part of the energy present in the 

source ends up as electricity. While most electricity is derived from fossil fuels, the conversion 

into electricity via combustion has the drawback of low efficiency. During combustion of 

particularly coal, large part of the energy is lost as unused heat. The average efficiency of coal-

fired electricity production is 36%, while conversion of gas into electricity reaches higher 

efficiencies of on average 48% (data for 2008, IEA, 2010).  

hydropower (3084 TWh)

biomass (514 TWh)

nuclear (2728 TWh)

gas (4132 TWh)

oil (1107 TWh)

coal (8204 TWh) 

 
Figure 3. Contribution of the different energy sources to electricity production in 2007. The total 

electricity generation was 19771 TWh, of which 68% originated from fossil sources. Based on IEA 

(2008). 
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1.1.3 Extraction and use of fossil energy sources have major drawbacks 

Although fossil sources can still comply with the current need, their extraction and use can 

have serious negative social and environmental impacts. Easily accessible sources of oil and gas 

are being, or have already been, exploited. As a result, extraction will become increasingly 

difficult, giving higher costs and leading to environmental and social risks.   

Two recent catastrophes related to gas and oil extraction are the Sidoarjo mud volcano and 

the oil leak in the Gulf of Mexico. The mud volcano in Sidoarjo (East Java, Indonesia) has 

started on May 29, 2006, and was caused by the blow-out of a natural gas drill. The mud flow 

increased from 5,000 m3 a day to 50,000 m3 per day by the end of 2006, and during 2007 

further increased to 100,000-120,000 m3 per day (Wibowo and Williams, 2009), destroying the 

homes of many people in the surroundings of Sidoarjo. Mud flowing from the volcano has 

displaced over 35,000 people in more than a dozen villages (McMichael, 2009). Although dikes 

have been built to contain the mud, there are still regular floodings. Attempts to stop the 

outbreak have not been successful until now, and the mud will continue to flow possibly for 

years to come (McMichael, 2009). The recent oil leak in the Gulf of Mexico is another example 

of the large environmental risks related to deep well oil drilling. Started as a result of an 

explosion after a blowout at the Deepwater Horizon oil rig on April 20, 2010, vast amounts of 

oil have been flowing into the sea, having dramatic effects on the ecosystems: birds, sea 

animals, and coral reefs have been damaged. Scientific teams have estimated that the amount 

of oil that has leaked into the sea started at 10,000 m3 per day immediately after the explosion 

to 8,400 m3 per day just before the well has was closed (Deepwater horizon response, 2010). 

Overall, it has been estimated that 780,000 m3 of oil have been released from the well. It is 

assumed to be the largest offshore oil spill in history.  

As the accessible amount of fossil sources become more limited, it will become more 

difficult to exploit these sources, and this may lead to more catastrophes in the near future. 

Besides accessibility, three other arguments that plead for restriction of the use of fossil fuels 

are climate change, air pollution, and political instability.  

Climate is changing as a result of increased greenhouse gas concentrations in the 

atmosphere. One of the main constituents of greenhouse gases is CO2. The increased 

concentration of CO2 in the atmosphere comes, to a great extent, from human activities and 

their use of fossil fuels. Because the carbon present in fossil sources has been sequestered 

millions of years ago, the CO2 released during combustion results in an increase in CO2 

concentration in the atmosphere. During the last two centuries, CO2 concentrations in the 

atmosphere have risen from 275 ppm to 375 ppm (IPCC, 2007) as a result of the use of fossil 
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fuels. The Intergovernmental Panel of Climate Change predicts that the emission of 

greenhouse gases will result in worldwide temperature increases and sea level rises during the 

coming centuries. 

Combustion of fossil fuels not only emits CO2 into the atmosphere, but also leads to air 

pollution with SO2 and fine particulates. Increased levels of both air pollutants have adverse 

affects for humans as they may lead to heart disease, breathing problems and lung cancer. SO2 

in the air is a main precursor of acid rain, which damages the environment by acidification.  

Finally, countries that have major reserves of fossil fuels can use this advantage to exercise 

power. Alternative energy sources would empower less advantageous countries and enable 

them to develop according to their own insights. 

Because all of the above mentioned reasons, it is of major importance that alternatives for 

fossil fuels are developed.  

1.1.4 Renewable energy sources 

Renewable sources are the alternative for fossil sources. These renewable energy sources are 

solar energy, wind energy, biomass, geothermal, wave-tidal, hydropower, and blue energy: the 

energy from the salinity gradient between fresh water (river mouths) and the receiving saline 

reservoirs (seas and oceans) that can be used to generate renewable electrical power (Post et al., 

2008). The energy derived from renewable sources is referred to as renewable energy.  

Renewable energy is abundant: it can supply >3000 times the worldwide energy consumption 

(Figure 4).  
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Figure 4. Abundancy of renewable energy sources in the world according to Greenpeace (2010). The 

numbers between brackets indicate the number of times that this source can provide the current global 

energy need. All renewable sources together can provide 3078 times the global energy need. 
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When comparing renewable sources to fossil sources, their major advantage is that, ideally, 

they do not emit greenhouse gasses (CO2), which makes them carbon neutral. For wind and 

water this may be evident, but also biomass, where CO2 is released when the energy is used, is 

considered carbon neutral. The reason for this is that the CO2 they emit has been taken up 

only recently (via photosynthesis), and thus has a short recycle time compared to fossil fuels, 

where the CO2 was taken up millions of years ago. This carbon neutrality however, does not 

make renewable sources directly more advantageous or environmentally sustainable than fossil 

sources. To assess if the use of renewable sources is more environmentally sustainable than the 

use of fossil sources, each source should be judged separately based on their adverse effects.  

1.1.5 Biomass is the most important renewable energy source 

Biomass is currently the mostly used renewable energy source, contributing to 9.8% of the 

total primary energy supply in 2007 (IEA, 2008). Moreover, it is expected to stay the most 

important primary source of renewable energy for the decades to come (IEA, 2008).  

When we compare biomass to fossil sources, the sustainability of its use strongly depends on 

the type of biomass feedstock (Tilman et al., 2009). It has been argued that some of these 

biomass feedstocks might even be less sustainable than fossil fuels because of the competition 

with food production and the CO2 emissions as a result of land clearing for crop growth 

(Fargione et al., 2008).  

It is estimated that as much as 61% of the total global biomass is used in the traditional way 

(IEA, 2008), mostly in developing countries. This traditional use of biomass, i.e. burning of 

wood, dung and harvest residues for cooking and heating, has serious negative effects on 

health and the environment. More people die prematurely in poor countries from the health 

impacts related to indoor air quality as a result of burning of biomass, than from malaria (IEA, 

2008). It is thus important to convert biomass as efficiently and as clean as possible. More 

efficient conversion of biomass will reduce the amount of biomass that is required, so that 

energy accessibility is improved, and at the same time reduces health risks. Modern energy in 

the form of electricity is a desired form of energy, as access to electricity is a key driver for 

social and economical development. Therefore, simple and cost-effective technologies are 

needed for efficient conversion of biomass into modern energy in developing countries. 

Whereas in developing countries, the conversion of biomass into electricity can contribute to 

social and economical development, in industrialized countries, production of electricity from 

biomass will be more oriented towards climate change mitigation. In this sense, replacing coal 

with biomass for electricity production is an effective strategy for greenhouse gas reduction, as 

coal has the highest specific CO2 emissions of all fossil energy carriers (WBGU, 2009). 
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The potential of biomass is enormous: the estimated global biomass consumption in 2006 

was 1186 Mtoe (IEA, 2008). When assuming that this total amount of biomass can be 

converted into electricity at an efficiency of 50%, this would result in 593 Mtoe (6879 TWh) of 

electricity. This means that biomass has the potential to replace 85% of all coal that is currently 

used for electricity production (Figure 3).  

1.1.6 Efficient conversion of biomass into electricity by Microbial Fuel 

Cells 

It is generally accepted that the biomass that is considered to be waste, like municipal and 

industrial organic wastes, are an attractive and sustainable biomass feedstock, because these 

can not be used for any food or feed production. Municipal and industrial organic wastes are 

water containing waste streams consisting of a mixture of proteins, lipids, carbohydrates and 

organic acids. These organic materials can be broken down by microorganisms under 

anaerobic conditions into smaller organic components. Acetate, being the end product in this 

conversion, has the lowest energy content. Nevertheless, it still contains sufficient energy to be 

converted into methane or electricity. Therefore, acetate is the biomass source used in this 

thesis. 

The challenge is to convert these wet organic waste streams in an efficient manner into 

electricity. Wet waste streams need a low temperature conversion if they are to be efficiently 

converted, as heating the water would lead to major energy losses. Currently, the only available 

technology for converting these wet streams into electricity is anaerobic digestion. Anaerobic 

digestion is a process that uses microorganisms to convert biomass under anaerobic conditions 

in several steps into methane gas, which can be used to produce electricity in a gas motor. This 

gas motor is a major limitation in the efficiency of the process, as the combustion of methane 

to produce electricity has a maximum efficiency of 43%, even when part of the heat is reused 

(Weiland, 2010). Overall, the conversion from biomass into electricity via anaerobic digestion 

occurs in several steps: first the biomass is biochemically converted into methane gas, secondly 

the formed gas needs to be cleaned from H2S before being combusted. This makes the overall 

conversion from biomass to electricity via anaerobic digestion complex and expensive. 

In the search for efficient conversion technologies of biomass into electricity, the new 

Microbial Fuel Cell technology has recently drawn much attention. Research on Microbial Fuel 

Cells is still in an early stage, however, Microbial Fuel Cells have already shown to offer 

potential advantages: (i) they can convert biomass to electricity at high efficiency in one step, 

(ii) they operate at ambient temperatures, and (iii) they are robust, as they can operate in a 

stable way for extended time, and (iv) they are environmentally sustainable, because they do 
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not contain heavy metals. Therefore, the expectations for Microbial Fuel Cells as a future 

electricity producing technology from biomass are high, and there is a need to further 

investigate and develop this technology. 

It should be noted, that biomass is present in many forms, like wood, crop residues, animal 

manure, and municipal waste. Not all of these sources have the same suitability for electricity 

production in a Microbial Fuel Cell. While wet organic waste streams (municipal organic 

wastes, animal slurries) are particularly interesting, they likely need pretreatment before being 

used for electricity generation. At the same time, pretreatment may also enable the use of other 

forms of biomass for conversion into electricity. 

1.1.7 Aim of this thesis 

This thesis aims at efficient electricity production in Microbial Fuel Cells. Focus lies on 

improving the reduction reaction at the cathode, because the cathode is the main limiting 

factor in the power production in Microbial Fuel Cells (Logan, 2009). 

 

1.2 Microbial Fuel Cells for renewable electricity production 

In Microbial Fuel Cells, electrons are generated from biomass by microorganisms. A 

Microbial Fuel Cell consists of an anode and a cathode, often separated by a membrane (Figure 

5). At the bio-anode, microorganisms catalyze the oxidation of organic materials and produce 

CO2, protons, and electrons. This reaction only happens under anaerobic conditions: if oxygen 

is present in the system, oxygen is used as an electron acceptor instead of the electrode as this 

is energetically more favorable. The produced electrons flow from anode to cathode, where a 

reduction reaction takes place, usually the reduction of oxygen to water. At the same time, 

positively charged ions, for example K+ or Na+, migrate through the membrane from anode to 

cathode to maintain electroneutrality in the solutions. On their way from anode to cathode, the 

electrons release their energy (for example at a light bulb) so that useful energy can be gained. 

An additional advantage is that this electron transfer takes place as a result of the breakdown 

of organic material at the anode, and when wastewater is used, this means that the wastewater 

is purified at the same time. 
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Figure 5. Principle of the Microbial Fuel Cell, where biomass (in the form of acetate) is oxidized into 

CO2, protons and electrons at the anode. The electrons flow from bio-anode to the cathode where 

oxygen is reduced to water. To maintain electroneutrality, positively charged ions, for example K+, flow 

from anode to cathode. 

 

Bioelectrochemical system (BES) is the general term for this type of system consisting of 

two electrodes, where one or both electrode reactions are catalyzed by microorganisms. A 

bioelectrochemical system is called a Microbial Fuel Cell (MFC) if electrical energy (electricity) 

is harvested and is called a Microbial Electrolysis Cell (MEC) if electrical energy is supplied to 

drive an otherwise non-spontaneous reduction reaction at the cathode. Historical 

breakthroughs towards the current bioelectrochemical systems are the first discovery of 

electricity generation by the microorganism Escherichia coli (Potter, 1912), mediatorless direct 

electron transfer and oxidation of lactate by Shewanella putrefaciens (Kim et al., 2002), and 

mediatorless carbohydrate oxidation by Rhodoferrax ferrireducens in an Microbial Fuel Cell 

(Chaudhuri and Lovley, 2003). These results provide the fundamental groundwork of 

numerous applications for bioelectrochemical systems, like wastewater treatment and electricity 

generation by microorganisms, since toxic soluble mediators were not needed anymore (Logan, 

2005).  

The popularity of research on bioelectrochemical systems is increasing rapidly as illustrated 

by the amount of peer reviewed papers on bioelectrochemical systems like the Microbial Fuel 

Cells which doubled over the year 2007 to 2008 (Scopus, 2009). Currently, it is estimated that 

world wide over 100 research groups are working on bioelectrochemical systems, investigating 
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systems from fundamentals towards new applications (Proceedings of the 2nd international 

Microbial Fuel Cell Conference 2009).  

To facilitate operation of bioelectrochemical systems, a primary electron donor must be 

supplied to the anode and a final electron acceptor must be supplied to the cathode. The 

advantage of bioelectrochemical systems when using two compartments is that they not solely 

convert compounds, but also separate oxidation and reduction processes, which makes it 

possible to extract useful products out of wastes. Nowadays, bioelectrochemical systems with 

bio-anodes use electron donors that are derived from wastes (e.g. wastewaters) (Logan, 2005), 

sediments (Reimers et al., 2001), processed energy crops (as cellulose) (Niessen et al., 2005; 

Ren et al., 2007; Rezaei et al., 2009) photosynthetic microorganisms (Strik et al., 2008a; Chiao 

et al., 2006; Fu et al., 2009) or in-situ photosynthesized plant rhizodeposits (Strik et al., 2008b; 

De Schamphelaire et al., 2008).  

BESs with microorganisms at the bio-anode or biocathode generally may be combined with 

any other known bio- or chemical half-reaction at the other electrode. Recently, Microbial Fuel 

Cells were developed with mediatorless biocathodes using various final electron acceptors like 

oxygen (Bergel et al., 2005), and nitrate (Clauwaert et al., 2007). The last years 

bioelectrochemical systems research has also moved in the direction from producing electricity 

in Microbial Fuel Cells to Microbial Electrolysis Cell applications using microorganisms as 

novel biocatalysts that produce all kinds value added products like H2 (Rozendal et al., 2006), 

CH4 (Cheng et al., 2009), H2O2 (Rozendal et al., 2009) or ethanol (Steinbusch et al., 2009), 

while using final electron acceptors like protons, CO2 and acetate.  

1.3 Energy efficiency as a key parameter for Microbial Fuel 
Cells 

To make Microbial Fuel Cells an attractive electricity producing technology, its efficiency in 

converting the energy available in biomass into the energy available as electricity (i.e. its energy 

efficiency), is of utmost importance and should be maximized. In this chapter, four basic 

concepts that are used to be able to define energy efficiency in Microbial Fuel Cells will be 

discussed. These concepts are: (1) electrode potentials, (2) polarization curves, (3) 

overpotentials, and (4) coulombic and voltage efficiency. These four concepts will be used 

throughout this thesis to determine and compare performance of Microbial Fuel Cells and 

cathodes. 
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1.3.1 Electrode potentials 

Electrode potentials express the energy level of the electrons. Anode and cathode potentials 

are determined by thermodynamics of the anode and cathode reactions.  

Because a potential has no meaning by itself and should be expressed compared to another 

potential, a reference electrode is needed, for example an Ag/AgCl reference electrode. This 

reference electrode has a fixed value, which enables us to express anode and cathode potentials 

versus a constant value. The lower the electrode potential (versus the reference electrode), the 

more energy the electrons contain. Electrons will spontaneously flow from high to low energy 

level, i.e. from low to high electrode.  

Figure 6A shows the theoretical electrode potentials for the Microbial Fuel Cell with acetate 

oxidation in the anode and oxygen reduction in the cathode. These electrode potentials are 

calculated from thermodynamic laws. The energy difference between anode and cathode is 

+0.62 - -0.47=1.09 V. This is the maximum theoretic voltage that can be extracted from the 

Microbial Fuel Cell. When a current is produced, the measured voltage is considerably lower 

than 1.09 V; cell voltages of <0.5 V are generally observed.  The reason that the measured cell 

voltage is lower than the theoretical voltage is that energy losses occur in several parts of the 

system (Figure 6B), especially at the cathode. These energy losses will be further discussed in 

chapter 2.1.2. 
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Figure 6. Energy gain from the microbial fuel cell, in theory (A) and practice (B). 
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Electrode potentials can be calculated based on the Gibb‟s free energy (kJ/mol) of the 

reaction. This Gibb‟s free energy is a measure of the maximal work that can be derived from 

the reaction. For example for oxidation of acetate at the anode, we have the reaction: 

CH3COO- + 4 H2O  9 H+ + 8 e- + 2 HCO3
- 

The standard Gibb‟s free energy ( G 0 ) for this anodic reaction can be calculated from 

tabulated energies of formation for the different compounds in the reaction and can be for 

example taken from Amend and Shock (2001). This is done by subtracting the formation 

energies of the oxidized components from the formation energies of the reduced components, 

taking into account the stoichiometry. The standard procedure is to write the reaction as a 

reduction reaction: 9 H+ + 8 e- + 2 HCO3
-  CH3COO- + 4 H2O 

The standard Gibb‟s free energy (ΔG0) is then calculated as: 

)29(4 3203

0

HCOHHCOOCHreactprod GGGGGGG  

The standard Gibb‟s free energy reflects the reaction energy under standard conditions, i.e. 

pH=0, all concentrations are 1 M and all gas pressures are 1 atm). To assess the reaction 

energy under actual conditions, the standard Gibb‟s free energy can be converted to the actual 

Gibb‟s free energy (ΔGa) using the equation: 

ln0

nF

RT
GGa ,  

Where  

R = gas constant (8,314 kJ/mol.K) 

T = temperature (K) 

n = mol of electrons in reaction 

F = Faraday constant (96485 C eq-1) 

Π = the reaction quotient, taking into account the activity of the species. In case of acetate 

oxidation for example, 
2

3

9

3

][][

][

HCOH

COOCH
 

The actual Gibb‟s free energy can then be converted to an electrode potential E according 

to: 
nF

G
E . This electrode potential is then expressed vs Normal Hydrogen Electrode 

(NHE). Similarly, the standard potential of a reaction E0 can be calculated from the standard 

Gibb‟s free energy and can be converted to the actual potential using the Nernst equation: 

ln0

nF

RT
EE . 
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Table 1. Overview of typical reactions in bioelectrochemical systems with their standard potential (E0) 

and actual potential (E) 

 

Anodic Oxidation Reaction E0                 

(V vs NHE) 

E                  

(V vs NHE) 

Acetate C2H3O2
- + 4 H2O  2 HCO3

- + 9 H+ + 8 e- 0.187 -0.289 

Glucose C6H12O6 + 12 H2O  6 HCO3
- + 30 H+ + 24 e- 0.104 -0.429 

Cathodic Reduction Reaction E0                 

(V vs NHE) 

E                  

(V vs NHE) 

Oxygen to water O2 + 4 H+ + 4 e-  2 H2O 1.229 0.805 

Oxygen to hydrogen peroxide O2 + 2 H+ + 2 e-  H2O2 0.694 0.269 

Protons to hydrogen 2 H+ + 2 e-  H2 0 -0.414 

Actual conditions: [HCO3
-]=0.05 M, Acetate, glucose = 0 .05 M, [H2O] = 1 M, [H+]: 10-7 M, pO2 = 0.2 

atm, pH2 = 1 atm, T=298 K 

 

This calculation can be done for both the oxidation and the reduction reactions. Some 

typical anode and cathode reactions and their potentials are listed in Table 1 (Hamelers et al, 

2010). For example, the potential of acetate oxidation is -0.289 V vs NHE under actual 

conditions. When combining this with oxygen reduction (+0.805 V vs NHE), there is a driving 

force for electrons to flow from anode to cathode and electricity is produced. When 

combining acetate oxidation with reduction of protons to hydrogen however, we see that the 

reduction potential is lower than the oxidation potential, which means that energy input is 

needed to drive the reactions. 

1.3.2 Polarization curves 

Performance of Microbial Fuel Cells is usually presented in polarization curves. Polarization 

curves express the cell voltage and power density as a function of the current density. They can 

be produced in two ways: using an external resistance, of which the value is changed in several 

steps and measuring the cell voltage, or using a potentiostat, which can control the cell voltage 

or potentials at a desired level and measures the current. While a potentiostat measures the 

current directly, the use of an external resistance requires conversion of the measured cell 

voltage V (V) to current I (A) by I=V/R, where R = resistance (Ω). 
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Figure 7. A typical polarization curve for a Microbial Fuel Cell. The open circuit voltage (OCV) is the 

maximum cell voltage, found when no current flows. Cell voltage decreases with increasing current 

density as a result of increasing losses. Power density shows a maximum at a certain current density. The 

internal resistance can be determined from the slope of the cell voltage curve. 

 

Figure 7 shows a typical polarization curve for a Microbial Fuel Cell.  When no current flows 

(intersect with x-axis), no losses occur and we find the maximum cell voltage, which is called 

the open cell voltage (OCV). As current increases, we see a decrease in cell voltage. This 

decrease in cell voltage is a result of increasing losses with increasing current. For example, if 

the solution has low conductivity, the ions that migrate from anode to cathode meet a certain 

resistance. This resistance leads to a voltage loss that is dependent on the current I (V=I*R), 

and is called an ohmic loss. Besides ohmic losses, other examples of energy losses are 

activation losses, and concentration losses. Where ohmic losses represent the energy loss as a 

result of resistance in all conductive parts of the cell (electrodes, solution, electrical 

connections), activation losses are caused by activation energy that is needed to start the 

reaction, and concentration losses are caused by concentration gradients close to the electrode 

as a result of the reactions occurring. All these losses are a result of resistances that exists in 

several parts of the Microbial Fuel Cell. The higher the current density, the higher the voltage 

loss in the system. Therefore, we find a decrease in cell voltage with increasing current density.  

Rint 

OCV 
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A useful way to compare different systems is by calculating the slope of the polarization 

curve, we find the internal resistance Rint of the system. When the current is expressed as 

current density (A/m2 or A/m3) the resistance is calculated in Ω.m2 or Ω.m3. This resistance is 

a useful metric to compare performance of systems that have different surface area or volume 

(Clauwaert et al., 2008; Sleutels et al., 2009). 

Power is defined as P=VI. The different combinations of V and I are characteristic for each 

Microbial Fuel Cell and determine at which point the maximum power of the system is 

produced. 

1.3.3 Overpotentials 

The performance of an electrode is determined by its overpotential as a function of the 

current density. The overpotential indicates the amount of energy lost at the electrode. Energy 

losses at the electrode can occur as a result of ohmic losses, activation losses, and 

concentration losses. While polarization curves generally only show the relationship between 

current density and cell voltage, it is also useful to express the current density versus the 

electrode potentials. In this way, the contribution of anode and cathode to the total resistance 

can be quantified. For this, overpotentials are an important measure. As an example, we will 

discuss the cathode overpotential here.  

The cathode overpotential is defined as the difference between the cathode potential and the 

theoretical cathode potential. The theoretical cathode potentials as calculated above via the 

Gibb‟s free energy of the reaction, describes a situation in which the cathode is in equilibrium 

with the electron acceptor, i.e. the energy level of the electrons in the cathode equals that of 

the electron acceptor (for example oxygen). This theoretical cathode potential is in practice 

comparable to the open cell potential (OCP). The OCP is the potential of an electrode when 

no current is produced. In that case, no load is applied to the system and the energy losses at 

the electrodes should be zero. When the cathode potential is decreased from the equilibrium 

situation, a current may flow from the cathode to the electron acceptor due to the potential 

difference. This electron flow will occur only in the presence of a suitable catalyst. The 

overpotential is then both a measure of the energy lost in the electron transfer reaction and a 

measure of the driving force of the reaction. The amount of energy lost at the electrode, i.e. 

the overpotential, is dependent on the current density and the charge transfer resistance: the 

higher the current density, the more energy is lost and the higher the overpotential is.  

Similar to total internal resistance in Ωm2 or Ωm3, anode and cathode resistance can also be 

expressed in order to compare different systems. This is done by dividing anode or cathode 

overpotential by the current density. 
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1.3.4 Coulombic efficiency and voltage efficiency 

The energy efficiency of Microbial Fuel Cells describes which part of the energy present in 

the substrate ends up as electrical energy. The overall energy efficiency is a combination of two 

efficiencies in the Microbial Fuel Cell: Coulombic efficiency and voltage efficiency. 

Coulombic efficiency indicates the extent to which the produced electrons end up in the 

desired product. At the anode for example, the Coulombic efficiency indicates which part of 

the electrons present in the biomass end up as electrons in the electrical circuit. Coulombic 

efficiency decreases when other electron acceptors than the electrode are present, e.g. oxygen, 

nitrate, or sulphate, or when there is competition with other microorganisms for the substrate, 

e.g. with methanogens that convert acetate into methane instead of electricity. 

Voltage efficiency represents the actual measured voltage compared to the theoretical 

maximum voltage and thus compares the energy produced as cell voltage relative to the 

maximum energy that can be produced in the Microbial Fuel Cell. Voltage efficiency decreases 

as a result of increasing losses due to internal resistances. 

Finally, energy efficiency is defined as the product of Coulombic efficiency and voltage 

efficiency, as the combination of both determines which part of the energy present in the 

substrate ends up as electrical energy. 

 

1.4 Thesis outline 

The aim of this thesis is to increase power density in the Microbial Fuel Cell by means of 

improving the cathode reaction.  

Chapter 2 starts with investigation of bio-anodes. It describes the performance of bio-

anodes using different electrode materials and characterized the different bio-anodes using 

polarization curves and electrochemical impedance spectroscopy. It was shown that bio-

anodes were capable of producing considerable current densities up to 4.6 A/m2 at a flat 

electrode. Because bio-anodes need to be combined with a suitable cathode that can accept 

electrons at a similar rate, we show how the reaction rate at the cathode can be improved in 

Chapter 3.  

The mostly used catalyst for oxygen reduction is Pt, however, its high cost requires 

development of other cheap and renewable catalysts. As an alternative for oxygen reduction, 

we studied the reduction of Fe3+ to Fe2+ at low pH on a graphite electrode. To enable this 

process, a bipolar membrane was used to separate anode and cathode compartment. This 

bipolar membrane could maintain a pH difference between both compartments, needed to 

sustain current production as neutral pH is required at the anode, and low pH is required at the 
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cathode to keep Fe3+ soluble. Because the formed Fe2+ needs to be regenerated to Fe3+ to 

make the cathode renewable.  

As chemical Fe2+ oxidation at low pH proceeds only at low rate,  Chapter 4 studies the 

performance of the Microbial Fuel Cell, in which the formed Fe2+ was regenerated to Fe3+ by 

the microorganism Acidithiobacillus ferrooxidans using oxygen as the final electron acceptor. A 

maximum power density of 1.2 W/m2 was reached. It was found however, that the membrane 

was not 100% efficient which resulted in the need to supply the cathode with sulphuric acid to 

maintain the required low pH.  

Another alternative for the cathode was investigated in Chapter 5, where we studied 

whether microorganisms could catalyze oxygen reduction when directly attached to the 

cathode (biocathode). It was found that indeed, oxygen reduction was catalyzed compared to 

the plain graphite electrode. The current density produced however, was one order of 

magnitude lower compared to the reduction of Fe3+, and it was found that both charge 

transfer and mass transfer limited biocathode performance.  

In Chapter 6, we studied a completely new process in the cathode of the Microbial Fuel 

Cell, namely the reduction of Cu2+ to metallic Cu. We found that electricity was produced 

while copper was recovered in its pure form. When oxygen was added to the cathode, copper 

seemed to act as a catalyst, because electricity production increased compared to the anaerobic 

situation.  

In Chapter 7, we continued the study on the first reported scaled-up Microbial Fuel Cell in 

the world with a total volume of 5 L and a surface area of 0.5 m2, in order to gain more insight 

in the factors affecting Microbial Fuel Cell performance on a larger scale. To improve the 

cathode reaction, we used the system with a bipolar membrane and a cathode with reduction 

of Fe3+ and biological oxidation of the formed Fe2+. The maximum power was 2.0 W/m2 (200 

W/m3) and we demonstrated that better or similar performance can be reached in scaled-up 

systems compared to lab-scale systems. 

Finally, in Chapter 8 we discuss the factors limiting Microbial Fuel Cell performance as 

encountered in this thesis. We estimate the maximum power and energy efficiency that can be 

produced in Microbial Fuel Cells and compare current and estimated performance to anaerobic 

digestion. 
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Abstract 

Four non-porous materials were compared for their suitability as bio-anode in microbial fuel 

cells (MFCs). These materials were flat graphite, roughened graphite, Pt-coated titanium, and 

uncoated titanium. The materials were placed in four identical MFCs, of which the anode 

compartments were hydraulically connected in series, as well as the cathode compartments. 

The MFCs were operated with four resistors. The anode kinetics at these electrode materials 

were studied by means of dc-voltammetry and electrochemical impedance spectroscopy (EIS). 

Both techniques were compared and showed that the bio-anode performance decreased in the 

order roughened graphite > Pt-coated titanium > flat graphite > uncoated titanium. Uncoated 

titanium was unsuitable as anode material. For the other three materials, specific surface area 

was not the single variable explaining the differences in current density for the different 

materials. All polarization curves showed a clear limiting current. This limit could not be 

attributed to mass transfer of the substrate and reflected the maximum biomass activity. The 

current density of the non-porous bio-anodes, except for the uncoated titanium anode, was 

comparable to the reported current densities of porous materials when normalized to the 

projected surface area. The high current densities that were recorded by dc-voltammetry 

however, could not be maintained in a stable way for a longer period. This shows that 

polarization curves of MFCs should be evaluated critically.  
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2.1 Introduction 

The microbial fuel cell (MFC) is a promising technology to convert biodegradable materials, 

e.g. organic materials present in wastewater, into electricity. The technology is based on 

electrochemically active microorganisms that grow by oxidizing the biodegradable material to 

CO2 and protons while transferring the electrons to a solid electrode (Logan et al., 2006). 

Electron transfer from the microorganisms to the electrode can occur via several mechanisms 

(Lovley, 2006; Schröder, 2007). When using a mixed culture in a system with continuous flow, 

it is likely that the current is produced by a thin biofilm attached to the surface of the 

electrode, as the electrochemically active microorganisms close to the electrode have a 

competitive advantage.  

The power output of the MFC is amongst others influenced by the electrochemical 

performance of the bio-anode. The bio-anode is defined here as the assembly of the biofilm 

and the solid electrode to which it is attached. The electrochemical performance of the bio-

anode can be expressed in a polarization curve, i.e. the relationship between the current density 

and the anode potential. Two main processes can be distinguished that influence the 

polarization curve of the bio-anode: (i) the microbial kinetics of substrate oxidation and the 

associated electron transfer and (ii) the mass transfer of substrate and products. To study the 

microbial kinetics of the bio-anode, a polarization curve can only be useful if mass transfer is 

not determining the current density. The effect of mass transfer on the current density can be 

eliminated or decreased by proper design of the MFC, such that the bio-anode has a thin 

diffusion layer.  

Until now, mainly porous carbon-based materials, like graphite felt, graphite granules, 

carbon cloth, and reticulated vitreous carbon (RVC, porous glassy carbon) have been used as 

anodes (Ter Heijne et al., 2006; Rabaey et al., 2005; Cheng and Logan, 2007; He et al., 2005). 

Carbon-based materials are attractive because they are relatively cheap. Porous materials are of 

major practical importance because they have a high specific surface area which is expected to 

lead to high volumetric activity. To study specific materials however, a non-porous electrode is 

beneficial because mass transfer can be quantified. For porous materials on the other hand, 

mass transfer is difficult to quantify, because of the unknown thickness of the diffusion layer. 

This unknown mass transfer makes interpretation of measurement data for porous materials 

more difficult. Platinum has been tested as anode material in MFCs because of its catalytic 

activity for hydrogen oxidation (Niessen et al., 2004; Schröder et al., 2003). 

An electrode material needs to have certain properties to be suitable as a bio-anode: it 

should (i) have good bio-compatibility to support microbial growth, (ii) have high electrical 
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conductivity, and (iii) be electrochemically inert (Rosenbaum et al., 2007). Based on the 

properties mentioned above, four electrode materials were selected: flat graphite, roughened 

graphite, Pt-coated titanium, and uncoated titanium. The objective of this study was to study 

the bio-anode kinetics at these non-porous electrode materials. The materials were placed in 

four identical MFCs, of which the anode compartments were hydraulically connected in series 

to ensure an equal anolyte composition, including dispersed biomass. The microbial kinetics 

were studied by means of dc-voltammetry and electrochemical impedance spectroscopy (EIS).  

 

2.2 Materials and methods 

2.2.1 Microbial fuel cell design and setup 

The experimental setup consisted of four identical MFCs. All four anode compartments 

were hydraulically connected in series, as well as all four cathode compartments. Each MFC 

consisted of two plexiglass plates with a single flow channel, two electrodes, and two plexiglass 

support plates (Figure 1). The two plates with a flow channel were separated by a cation 

exchange membrane (Fumasep FKB, Fumatech, St. Ingbert, Germany). The other side of the 

flow channel faced the electrode.  

The anodes were made of four different materials: flat graphite, Al2O3-blasted graphite 

(further called: roughened graphite) (both MR200, gas tight impregnated, from Müller & 

Rössner GmbH & Co., Troisdorf, Germany), Pt-coated titanium, and uncoated titanium (both 

from Magneto Special Anodes BV, Schiedam, the Netherlands).  

 

 
Figure 1. MFC design: the assembly of flow channel, flat graphite electrode, and support plate of one 

side of the MFC. 
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Although Pt-coated titanium has electrochemical catalytic activity for e.g. oxidation of 

hydrogen gas to protons, initial experiments showed that Pt-coated titanium had no catalytic 

activity for oxidation of Ac-. All four cathodes were flat graphite plates (Müller & Rössner 

GmbH & Co., Troisdorf, Germany). The surface area of the flow channel, and thus the 

projected surface area of the electrodes in contact with solution, was 22 cm2, and the volume 

of the flow channel was 33 mL (11.2 cm length x 2 cm width x 1.5 cm height).  

2.2.2 Microbial fuel cell operation  

The anolyte was inoculated with the effluent of another MFC run on acetate (Ter Heijne et 

al., 2007). Both anode and cathode compartments were equipped with Ag/AgCl, 3 M KCl 

reference electrodes (+205 mV vs NHE). Potentials of anode vs. reference electrode and cell 

voltages of each MFC were collected every 60 seconds via a Fieldpoint FP-AI-110 module 

connected to a PC. The MFCs were operated in a temperature controlled chamber at 30 °C. 

The MFCs were each started with a resistance of 1000 Ω and with a 0.020 M phosphate 

buffer at pH=7 in the cathode. After two weeks of operation, the catholyte was replaced with a 

Fe(III)[CN]6
3- solution (0.050 M) in 0.020 M buffer (pH=7) for a fast cathode reaction 

(reduction of Fe(III)[CN]6
3- to Fe(II)[CN]6

4-). Four resistors with a range of 0 – 1000 Ω were 

used. Fresh anolyte, consisting of 0.020 M potassium acetate solution in 0.020 M phosphate 

buffer at pH 7, was fed at a rate of 0.15 L/d. Anolyte pH was controlled at 7. Anolyte and 

catholyte were recirculated at a flow rate of 10 L/h. 

The MFCs were operated at three different resistances with Fe(III)[CN]6
3- in the cathode: 

first R=1000 Ω during 9 days, second R=250 Ω during 5 days, and third R=100 Ω during 6 

days, except for the MFC with the uncoated titanium anode, which was operated with a 

resistance of 500 Ω instead of 250 Ω for 5 days, and was changed back to R=1000 Ω due to its 

bad performance (anode potential > +100 mV vs Ag/AgCl). At the end of each period, when 

anode potential was stable (difference in anode potential between two days < 10 mV, and daily  

standard deviations < 10 mV), each MFC was characterized with a potentiostat (IVIUMStat, 

Ivium Technologies, Eindhoven, the Netherlands) by EIS and dc-voltammetry. After the third 

resistance (R=100 Ω), anode potential did not become stable. To be able to measure at a stable 

situation, the resistor was increased to R=250 Ω for 16 hours before EIS and dc-voltammetry 

measurements, was kept at 250 Ω during the following 7 days, and was finally increased to 

R=1000 Ω during 6 days. 

The anolyte was supplied with nutrients and vitamins in batch. At the start, and after each 

change in resistance, the following solutions were supplied to the anolyte: 10 mL/L of a 

macronutrient solution containing 28 g/L NH4Cl, 10 g/L MgSO4.7H2O, and 0.57 g/L 
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CaCl2.2H2O, 2 mL/L of a micronutrient solution containing 2 g/L FeCl2.4H2O, 1 g/L 

CoCl2.6H2O, 0.5 g/L MnCl2.4H2O, 0.05 g/L ZnCl2, 0.05 g/L H3BO3, 0.04 g/L CuCl2.2H2O, 

0.07 g/L (NH4)6Mo7O24.5H2O, 1 g/L NiCl2.6H2O, 0.16 g/L Na2SeO3.5H2O and 2 mL/L 37% 

HCl (adapted from (Van der Zee et al. 2001)), and 2 mL/L of a vitamin solution as described 

in (Ter Heijne et al., 2007).  

Samples were taken from the anode each time that a measurement was performed and were 

analyzed for their acetate concentrations. 

2.2.3 Measurements and data analysis 

Current density I (A/m2) was calculated from the cell voltage E (V), the resistance R (Ω) and 

the projected electrode surface area Ael (m2) according to 
elAR

E
I . Average current 

density, average anode potential, and their standard deviations were calculated over 24 hours 

from data obtained every 60 seconds. Polarization curves were obtained by dc-voltammetry, 

using the method chronoamperometry. The cell voltage was decreased stepwise and was kept 

at each voltage for 120 seconds in order to let the dc-current stabilize. The MFCs were 

measured in the range of 0.65 V – 0.30 V (cell voltage) in steps of 0.050 V, except for MFC 

with the uncoated titanium anode, which was measured in the range of 0.3 V – 0.1 V (cell 

voltage). The last data point at each voltage, after 120 seconds, was selected for data 

presentation. Anode potential was measured every 30 seconds during these measurements on a 

PC via the Fieldpoint module.  

Impedance was measured at 22 frequencies between 40 – 0.003 Hz. The cell voltage at 

which the impedance measurement was performed was the cell voltage of the MFC when 

operated with the resistor, for both R=1000 Ω and R=250 Ω. As anode potential did not 

become stable at R=100 Ω, impedance was measured at the same cell voltage as before with 

R=250 Ω. Each MFC was pretreated for 300 seconds at this cell voltage before impedance 

measurement was started, so the MFC was stable at the start of the measurement.  

The equivalent circuit to which the data were fitted consisted of a constant phase element 

(CPE) (He et al., 2007) and a charge transfer resistance (Rct) in parallel (representing the 

anode), placed in series with a solution resistance Rs. The impedance of the CPE was described 

by 
CPE

Z
1

 where Z = magnitude of the impedance (Ω), and α = roughness factor (-). 

The equivalent circuit fitting was done by a program written in Mathcad. Four parameters were 

fitted: CPE, α, charge transfer resistance, solution resistance. The capacitance was calculated 
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from the CPE and α according to (Hsu and Mansfeld, 2001): 
)1(

max )(CPEC  where 

C = capacitance (F), and ωmax = frequency at which the maximum RIm is obtained (rad/s). 

Acetate concentrations were  determined using a Gas Chromatograph (GC). The GC (HP 5890 

series II, Agilent Technologies, Amstelveen, the Netherlands) was equipped with an AT-Aquawax-

DA column (Alltech) and a flame ionization detector (FID). Temperature was raised from 80 °C 

to 210°C, with 25°C/min. Nitrogen was used as carrier gas. 

Biomass density could not be determined, because we performed consecutive runs in 

between which the MFCs could not be disassembled. We report the dependence of current on 

anode potential to show the microbial kinetics at different anode materials. 

The use of Fe(III)[CN]6
3- as an electron acceptor is convenient when studying the anode 

kinetics, however Fe(III) [CN]6
3- is not suitable for practical application because it cannot be 

regenerated without external energy input. Cell voltage and power density are therefore not 

shown. 

2.2.4 Mass transfer calculations 

As non-porous electrodes are used, it may be safely assumed that the mass transfer is 

determined by the stagnant water layer attached to the electrode. This stagnant water layer is 

the result of the biofilm that holds water, and the hydrodynamic boundary layer. Biofilms 

observed so far in MFCs are thin, ranging from a monolayer (Bond and Lovley, 2003) to 

maximally about 40 μm (Reguera et al., 2006). The thickness of the hydrodynamic boundary 

layer was calculated to be 155 μm (see below), and therefore we assume that this hydrodynamic 

boundary layer, and not the biofilm, mainly determined the effect of mass transfer on the 

current density. The average mass transfer rate in the reactor for laminar flow can be calculated 

using (Hayes and Kolaczkowski, 1994): 
45.0
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where Sh = Sherwood number (-),DT = hydraulic diameter (m) = 
HW

HW2
 (with W = 

width = 2.0 cm, H = height = 1.5 cm), L = channel length = 12 cm, Pe = Peclet number (-),v 

= flow velocity = 1.0 cm/s, D = diffusion coefficient for acetate = 1.2 x 10-9 m2/s (Wanner 

and Gujer 1986), k = mass transfer coefficient (m/s), and δ = thickness of the hydrodynamic 

boundary layer (m).  

The flow was calculated to be laminar using the Reynolds number: 
vDTRe =193, 

where ρ = density = 1 x 103 kg/m3, and μ = viscosity = 8.9 x 10-4 Pa.s.  

The mass transfer coefficient was calculated to be k = 7.7 x 10-6 m/s, and thus the thickness of 

the hydrodynamic boundary layer was 155 μm. 

When the substrate at the electrode surface is depleted, the maximum mass transfer rate is 

observed. Under these conditions a limiting current density, (Il, A/m2)  is observed, which can 

be calculated as: *ckFnIl  (Bard and Faulkner, 2001), where n = 8 (number of 

electrons per acetate), F = Faraday‟s constant (96485 C/mol), and c* = bulk acetate 

concentration (mol/m3). The resulting limiting current density is for example 39 A/m2 at an 

acetate concentration of 6.5 x 10-3 M.  

2.2.5 Specific surface area (Atomic Force Microscopy) 

The specific surface area of the electrode materials was determined with an Atomic Force 

Microscope (NanoScope IIIa, Veeco, Santa Barbara, California). To determine the specific 

surface area on relevant scales, we have studied the surfaces on the scale of the biofilm (20 x 

20 μm) and on the scale of a microorganism (2 x 2 μm). The resolution used was between 512 

x 256 and 512 x 512, depending on the roughness of the sample. The specific surface area was 

calculated as the actual surface area (μm2) divided by the projected surface area (μm2), and was 

thereafter normalized to the surface area of the flat graphite electrode. 

 

2.3 Results and discussion 

2.3.1 Overall performance of the bio-anodes 

The average daily current densities with standard deviations of the four anodes in time are 

shown in Figure 2A.  
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Figure 2. (A) Average daily current production (A/m2, normalized to the projected surface area) of the 

four anodes. (B) Average daily anode potential (mV) vs Ag/AgCl of the roughened graphite, Pt-coated 

titanium, and flat graphite electrode. 

 

The average daily anode potential and the standard deviations of flat graphite, roughened 

graphite, and Pt-coated titanium are shown in Figure 2B. The anodes based on flat graphite, 

roughened graphite, and Pt-coated titanium operated steady at 1000 Ω (day 0-8) and at 250 Ω 

(day 9-13), however, they did not reach a stable potential and current when operated at 100 Ω 

(day 14-19). At this resistance, we observed high variations in the daily current density and 

anode potential, and the performance decreased considerably during the last two days of 

operation at this resistance.  

The Pt-coated titanium, roughened graphite, and flat graphite anodes changed to steady 

operation again after the resistors were increased to 250 Ω (day 20-26), and to 1000 Ω (day 27-

32), and the produced current was similar to the current at that same resistance before. The 

anode potential was similar to the anode potential at the same resistance before as well. The 
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uncoated titanium anode had the lowest current. This current did not increase as a result of the 

change in resistance.  

Current production on uncoated titanium was far lower than on the other materials, and the 

anode potential was considerably higher (>-150 mV vs Ag/AgCl at R=1000 Ω). This may be 

caused by anodic passivation, which is the formation of a thin metal oxide layer (Schmuki, 

2002). These titanium oxides are formed when uncoated titanium is in contact with air and 

they significantly decrease the reaction rate at the electrode. Therefore, uncoated titanium is 

unsuitable as anode material. 

The current density during operation at 100 Ω  (Figure 2A) reached a limit between 2 and 

2.5 A/m2 at which the anode potential and current density did not become stable. This limit 

and the instability might be caused by the locally low pH as a result of the accumulation of 

protons produced by the electrochemically active microorganisms. For each electron, they 

produce one proton, and when the diffusion of protons to the bulk solution is slow, this can 

result in a locally low pH, which inhibits the microorganisms. This hypothesis is supported by 

other research in which it was found that using a concentrated buffer solution, as well as using 

a buffer solution at high pH, considerably improved MFC performance (Cheng and Logan, 

2007; Fan et al., 2007). 

2.3.2 Bio-anode polarization curves (dc-voltammetry) 

After operation at each resistance, polarization curves were made for the bio-anodes using 

chronoamperometry, allowing the current and anode potential to stabilize for 2 minutes for 

each data point. The result is shown in Figure 3A – 3E. The best performance –highest current 

densities in combination the lowest anode potentials – were found for the roughened graphite 

anode in all situations. After operation at a lower resistance (R=250 Ω), all anodes, except for 

the uncoated titanium anode, were able to maintain substantially higher current densities 

during the chronoamperometry measurement (Figure 3B) compared to before (R=1000 Ω, 

Figure 3A). Figure 3C, which was made after the unstable operation at 100 Ω, shows that the 

performance of the anodes decreased compared to Figure 3B. During the second operation at 

250 Ω, the anode potentials were stable, and the polarization curves showed higher current 

densities again (Figure 3D). These current densities however, were lower than obtained before 

at 250 Ω. After the second operation at 1000 Ω, the current densities showed a further 

increase (Figure 3E). The maximum current density decreased in the order roughened graphite 

> Pt-coated titanium > flat graphite in all situations.  
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Figure 3A-E. Polarization curves after operation at A: 1000 Ω (1st), B: 250 Ω (1st), C: 100 Ω, D: 250 Ω 

(2nd), and E: 1000 Ω (2nd). 
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To determine the specific surface area of flat graphite, roughened graphite, and Pt-coated 

titanium on relevant scales, we have studied the surfaces on the scale of the biofilm (20 x 20 

μm) and on the scale of a microorganism (2 x 2 μm). On the scale of the biofilm, the specific 

surface area normalized to flat graphite (1.1 μm2/μm2)  decreased in the order Pt-coated 

titanium (1.9) > roughened graphite (1.2) > Flat graphite (1.0). On the scale of a 

microorganism, the specific surface area normalized to flat graphite (1.1 μm2/μm2) decreased 

in the same order: Pt-coated titanium (1.2) > roughened graphite (1.0) = flat graphite (1.0). 

As the current density decreased in a different order (roughened graphite > Pt-coated 

titanium > flat graphite), the surface area is not the single variable explaining the differences in 

current density for the different materials. Other specific surface properties might have an 

effect on bacterial attachment and electron transfer and influence the current density in this 

way. One should also consider that mixed cultures as used in this research have variability by 

nature, making it more difficult to see the effect of surface area, which differed only a factor 2.  

The higher current densities in Figure 3B as compared to Figure 3A show that operation at 

lower resistance improves MFC performance. A lower resistance results in an increased anode 

potential. At higher anode potentials, the electrochemically active microorganisms can gain 

more energy from the substrate, as the potential difference between the electron donor 

(acetate) and the electron acceptor (the anode) is larger. As a consequence, the microorganisms 

can theoretically gain more energy for growth and higher current can be produced. 

2.3.3 Limiting current density was not caused by mass transfer of the 

substrate and reflects the maximum biomass activity 

A limiting current density was established in the polarization curves, which may indicate 

mass transfer limitations for the substrate or for the products. Mass transfer limitations for 

acetate however, were not likely for two reasons: (i) there was no relationship between the 

acetate concentration and the observed limiting current density (R2 = -2.89 for linear fit, which 

indicates that the average is a better representation than the linear fit), and (ii) the observed 

limiting current density was several times lower than the expected calculated limiting current 

density (see materials and methods), e.g. 4.6 A/m2 vs. 39 A/m2 at acetate concentration = 6.5 

x 10-3 M. The limiting current density was therefore not caused by mass transfer of the 

substrate and reflected the maximum biomass activity.  

Accumulation of product (protons) can also be considered as a mass transfer limitation. 

Accumulation of products results in a lower overpotential. This mass transfer limitation can be 

overcome by increasing the overpotential, and does not inhibit or decrease the activity (current 

density) unless the product is toxic to the microorganisms. Because protons can be toxic to 
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microorganisms, mass transfer limitation of protons could be a reason for the occurrence of a 

limiting current density. Then however, the limiting current density in all polarization curves 

would be the same as the current density determines the rate of proton production. The 

limiting current was not the same, but different in all situations. So, mass transfer of protons as 

an explanation for the limiting current density cannot be ruled out for the polarization curve in 

Figure 3B which had the highest current density, but is unlikely in the other polarization 

curves.  

We hypothesize that the decrease in current density at higher anode potentials could be 

caused by damage of enzymes. A higher anode potential might induce damage of the enzymes 

that are used for electron transfer, as enzymes have a maximum activity at a particular potential 

(Vincent and Armstrong, 2005). After operation at 100 Ω however, the polarization curves did 

show a limiting current, but no maximum (Figure 3C). At this resistance, the microorganisms 

were already accustomed to a higher anode potential during the week before the recording of 

the polarization curves. As a result, the enzymes for electron transfer might not have been 

damaged at these higher potentials. 

2.3.4 Polarization curves showed high performance, but should be 

evaluated critically 

Most surprisingly, the current densities obtained in these polarization curves with a flat, non-

porous electrode were of the same order of magnitude as the current densities normalized to 

the projected surface area of porous electrode materials in other studies like graphite felt and 

graphite cloth, with maximum current densities of e.g. 4.5 and 8 A/m2 (Ter Heijne et al., 2007; 

Cheng and Logan, 2007). This implies that a large part of the surface area of these porous 

electrode materials was less active, as the same current density can be reached with non-porous 

electrodes.  

Polarization curves are a powerful tool to rapidly evaluate MFC behavior and the 

development of activity of electrochemically active microorganisms in time (Logan et al., 2006; 

Aelterman et al., 2006). Although polarization curves are useful for rapid investigation of MFC 

behavior, the drawback of polarization curves is that they do not provide information about 

stable operation in MFCs, and MFC performance is easily overestimated. The maximum 

current density that was reached in the polarization curve (Figure 3C) could not be reached 

when operated for a longer time period (at lower resistances). Apparently, current densities as 

high as 4.6 A/m2 can be reached on the roughened graphite anode, but due to a limitation in 

biomass activity it was not possible to sustain higher currents for a longer time period. Besides, 

large differences were seen in the polarization curves at different times and after operation at 
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different resistances, while the operational condition like temperature, pH, and sufficiently high 

acetate concentration, were similar in all experiments. The polarization curves that were made 

after the MFCs were operated for the second time at 250 Ω and 1000 Ω (Figure 3D and E), 

were very different from the polarization curves in Figure 3B (250 Ω, 1st) and A (1000 Ω, 1st), 

while the current density at these resistances during stable operation (Figure 2) was the same as 

before. The lack of stability of the anode potential at higher current densities, and the 

differences between polarization curves under seemingly similar conditions in this study show 

that polarization curves of MFCs should be evaluated critically, as was also noted in (Menicucci 

et al., 2006). 

2.3.5 Impedance spectroscopy 

The standard geometry of the MFCs enabled reproducible impedance measurements. 

Nyquist plots for the Pt-coated titanium at the end of each period are shown in Figure 4A.  

 

 
Figure 4. (A) Nyquist plots for the Pt-coated titanium anode, corrected for the solution resistance. 

Symbols represent the experimental data, lines represent the fit of these data to the equivalent circuit. (B) 

Charge transfer resistances as determined from the width of the semicircle in the Nyquist plot.  
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These Nyquist plots were corrected for the solution resistance to enable comparison. The 

solution resistances were all in the same range (12.6 ± 1.7 Ω), which is in accordance with our 

expectations, as the same MFC configurations with the same electrolytes are used. The absence 

of a Warburg impedance in the Nyquist plots is another indication of the absence of mass 

transfer for acetate. 

The charge transfer resistance for the anode materials, as determined from the width of the 

semicircle, was obtained by fitting with the equivalent circuit. The result is shown in Figure 4B, 

and supported the difference in performance of the bio-anodes that was found in the 

polarization curves. The charge transfer resistance for the uncoated titanium anode was 1.8 x 

103 Ω (data not shown), which was three orders of magnitude higher than for the other 

anodes. The roughened graphite anode had the best performance, which is supported by the 

lowest charge transfer resistance in all measurements. The charge transfer resistance decreased 

after operation at 250 Ω as compared to operation at 1000 Ω, which might be the result of 

increased biomass activity. The charge transfer resistance increased considerably after 

operation at 100 Ω, which is in accordance with the lower current density in the polarization 

curves (Figure 3B). The charge transfer resistance decreased again after operation at 250 Ω, 

which is in accordance with the higher current density in the polarization curves (Figure 3D). 

The differences in charge transfer resistance between the materials – like the differences in 

current density – could not be explained by the differences in specific surface area. 

The capacitance, as calculated from the CPE, of the Pt-coated titanium anode was 

significantly higher (11.7 ± 1.1 mF/cm2, average of the measurements at the 5 resistances) 

compared to the capacitance of the graphite anodes (0.72 ± 0.22 mF/cm2 for the roughened 

graphite anode, and 0.23 ± 0.14 mF/cm2 for the flat graphite anode). A high capacitance 

corresponds with a rough electrode surface (He et al., 2006) and thus a high surface area, 

which is one of the reasons why Pt-coatings are used in fuel cells (Thompsett, 2003). This 

higher capacitance however, makes the Pt-coated titanium anode less suited for impedance 

measurements than flat and roughened graphite, as low frequencies are needed to obtain a 

complete impedance picture. Impedance measurements at low frequencies have a practical 

drawback: they require a long measurement time, and it is more difficult to keep the MFC 

stable during the measurement. 

2.4 Conclusions 

With the new experimental setup used in this study, four different anode materials were 

compared in MFCs under the same conditions. Polarization curves and impedance 

spectroscopy showed that bio-anode performance normalized to the projected surface area 



 

  40 

2 

decreased in the order roughened graphite > Pt-coated titanium > flat graphite > uncoated 

titanium. Uncoated titanium was found to be unsuitable as anode material. For the other three 

materials, specific surface area was not the single variable explaining the differences in current 

density for the different materials. All polarization curves showed a clear limiting current. This 

limit could not be attributed to mass transfer of the substrate and reflected the maximum 

biomass activity. The high current densities that were recorded by dc-voltammetry however, 

could not be maintained in a stable way for a longer period. This shows that polarization 

curves of MFCs should be evaluated critically.  
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Abstract 
There is a need for alternative catalysts for oxygen reduction in the cathodic compartment of a 

microbial fuel cell (MFC). In this study, we show that a bipolar membrane combined with 

ferric iron reduction on a graphite electrode is an efficient cathode system in MFCs. A flat 

plate MFC with graphite felt electrodes, a volume of 1.2 L and a projected surface area of 290 

cm2 was operated in continuous mode. Ferric iron was reduced to ferrous iron in the cathodic 

compartment according to Fe3+ + e- → Fe2+ (E0 = +0.77 V vs NHE, normal hydrogen 

electrode). This reversible electron transfer reaction considerably reduced the cathode 

overpotential. The low catholyte pH required to keep ferric iron soluble was maintained by 

using a bipolar membrane instead of the commonly used cation exchange membrane. For the 

MFC with cathodic ferric iron reduction, the maximum power density was 0.86 W/m2 at a 

current density of 4.5 A/m2. The Coulombic efficiency and energy recovery were 80-95% and 

18-29% respectively.  
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3.1 Introduction 

The microbial fuel cell (MFC) is a device in which microorganisms produce electricity from 

biodegradable material. In this way, chemical energy is converted directly into electrical energy 

(Rabaey and Verstraete, 2005; Bond and Lovley, 2003; Chaudhuri and Lovley, 2003). The MFC 

consists of two compartments: an anoxic compartment with an anode and an aerobic 

compartment with a cathode. At the anode, bacteria oxidize organic material to carbon 

dioxide, protons and electrons. Electrons are released to the anode and go through an electrical 

circuit to the cathode. There the electrons reduce oxygen, together with protons, to water. 

Protons migrate from anode to cathode through a cation exchange membrane, which separates 

both compartments. In the overall reaction, organic material and oxygen are converted into 

carbon dioxide, water and electricity. 

Overall MFC performance is among others limited by the unfavorable reaction kinetics of 

oxygen reduction (Palmore and Kim, 1999; Zhao et al., 2006). To drive the oxygen reduction 

at the desired rate, a large part of the available energy is needed to establish the necessary 

overpotential. This problem has already been recognized earlier in the field of chemical fuel 

cells (Yeager, 1983; Taylor and Humffray, 1973).  

Different approaches are currently explored to improve the performance of the cathode in 

MFCs. Aeration into the cathodic compartment and lowering the catholyte pH have been 

shown to increase cathode performance (Gil et al., 2003; Jang et al., 2004; Oh et al., 2004), but 

are insufficiently effective to take away the limitation. The use of hexacyanoferrate as an 

electron acceptor improves cathode perform ance considerably (Rabaey and Verstraete, 2005; 

Oh et al., 2004; Rabaey et al., 2003), but this compound is not suitable for application in 

practice because of its toxicity and its inability to be regenerated with oxygen (Rabaey et al., 

2005a). The use of platinum as a catalyst on carbon electrodes clearly improves cathode 

performance (Jang et al., 2004; Oh et al., 2004). Air cathodes, covered with platinum, give good 

results because of the improved oxygen transfer (Liu and Logan, 2004).  

Although platinum is a good catalyst, it is expensive and there is a need for alternatives 

(Zhao et al., 2005). One alternative is to replace platinum by chemical catalysts which are based 

on cheaper metals. Fe(II)- and Cobalt-based cathodes for example, show similar performance 

as compared to platinum (Zhao et al., 2005; Cheng et al., 2006). Besides chemical catalysts, 

biological catalysts combined with redox mediators, can also facilitate oxygen reduction. 

Biological catalysts are attractive as they are active at ambient temperatures and are renewable 

(Palmore and Kim,1999). Biological catalysts can be applied in the form of enzymes (Palmore 
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and Kim, 1999; Topcagic and Minteer, 2006), or using microorganisms. Microorganisms have 

the additional benefit that they produce the desired enzymes in situ.  

Bergel et al. (2005) found that a seawater biofilm on a stainless steel cathode increased 

cathode performance. They suggested that the biofilm directly reduced oxygen, although the 

mechanism was not elucidated. Rhoads et al. (2005) used biomineralized manganese oxides as 

cathodic reactants. Manganese dioxide (MnO2) was reduced to soluble Mn2+ at the cathode. 

Mn2+ was subsequently reoxidized with oxygen to manganese dioxide and deposited on the 

electrode by microorganisms. The redox couple Mn2+/MnO2 thus acted as a mediator for 

electron transport from the electrode to the oxygen reducing (Mn2+-oxidizing) 

microorganisms.  

The objective of this study was to investigate the feasibility of using the redox couple 

Fe3+/Fe2+ as a cathodic electron mediator for oxygen reduction. The redox couple Fe3+/Fe2+ 

was selected for three reasons: (i) it is known for its fast reaction at carbon electrodes (Taylor 

and Humffray, 1973), (ii) it has a high standard potential (+0.77 V vs NHE for equal 

concentrations of Fe3+ and Fe2+ at low pH), and (iii) ferrous iron can be biologically oxidized 

to ferric iron with oxygen as the electron acceptor up to high potentials of +850 to +950 mV 

vs NHE (Rohwerder et al., 2003).  

Earlier tests in our laboratory with ferric iron had indicated that a cation exchange 

membrane could not maintain the low catholyte pH required to keep ferric iron soluble. Cation 

exchange membranes transport other cations than protons as well, which can cause a pH rise 

in the cathodic compartment (Rozendal et al., 2006). This pH rise caused extensive iron 

precipitation that damaged the membrane. The focus of this study was to devise an MFC with 

sufficiently low catholyte pH (<2.5) to keep ferric iron soluble without external acid dosing. To 

achieve this, a bipolar membrane was used instead of the commonly used cation exchange 

membrane. A bipolar membrane has, to our knowledge, never been applied in MFCs before.  

It consists of cation and anion exchange sections joined together in series (Simons and 

Khanarian, 1978; Hurwitz and Dibiani, 2001). A phenomenon that occurs in a bipolar 

membrane is water dissociation via electrodialysis. When applying an electric field, water 

dissociates into H+ and OH- at the membrane junction, followed by proton migration through 

the cation exchange membrane (facing the cathode) and hydroxide migration through the 

anion exchange membrane (facing the anode). This study investigates the performance of the 

MFC with the bipolar membrane combined with ferric iron reduction on the graphite cathode. 

As ferrous iron oxidation has been studied extensively and has been shown to operate 

efficiently at a high rate (e.g. Ebrahimi et al. 2005; Boon et al., 1999; Mazuelos et al., 2000; 

Karamanev and Nikolov, 1988), the performance of the MFC was investigated without 
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regeneration of ferric iron. This enabled us to quantify ferric iron reduction and its effect on 

pH and to analyze the behavior of the membrane. 

 

3.2 Materials and methods 

3.2.1 Microbial fuel cell setup 

The flat plate MFC, comparable to the one previously used by Min and Logan (2004), 

consisted of 6 plexiglas plates sized 28.0 x 28.0 cm bolted together (Figure 1).  

The four middle plates contained channels for solution transport. The membrane (fumasep 

FBM, FuMA-tech GmbH, St. Ingbert, Germany) was placed between the two middle plates 

(thickness and channel depth: 1.2 cm). Against these plates, the electrodes were placed. The 

electrodes were kept in position by the electrode supporting plates with a thickness of 1.5 cm 

and a channel depth of 1.2 cm. The two outer plates (thickness 1.5 cm) were massive and 

served as a physical support. Cathode and anode both had a channel volume of 0.62 L. 

 

electrode 

electrode 

membrane 

electrode 
supporting plate 

outer plate  

 

 

Figure 1. The flat plate microbial fuel cell 
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The electrodes consisted of graphite felt sized 19.0 cm x 19.0 cm (thickness: 3 mm – FMI 

Composites Ltd., Galashiels, Scotland), having – following Min et al. (2004) – an effective 

geometric channel surface of 290 cm2, which is 80% of the total surface area. 

A gold wire was pressed on the electrode and served as current collector. The cathode and 

anode electrodes were connected via the gold wire to a resistor with a range of 0 - 100 Ω. The 

reference electrodes were Ag/AgCl, 3 M KCl electrodes (+205 mV vs NHE, ProSense QiS, 

Oosterhout, The Netherlands). The catholyte was recirculated continuously via an open bottle 

for passive oxygen supply. This was done to be able to compare the results from the 

Coulombic efficiency tests with other studies. The oxygen level was continuously measured. 

The oxygen concentration was always around 20%, the concentration in ambient air. The 

anolyte was recirculated at a rate of 10 L/h to prevent diffusion limitations for acetate, buffer 

and nutrients to the bacteria. Both anode and cathode potential were constantly logged, as well 

as catholyte pH, conductivity and temperature. Data were collected on a PC via a FieldPoint 

FP-AI-110 module. Anolyte pH was constantly monitored without logging. The program 

LabVIEW was used for data acquisition. 

3.2.2 Microorganisms and medium  

The anodic compartment was inoculated with effluent from another operating MFC run on 

acetate. The feeding to the anodic compartment contained a potassium acetate solution which 

was fed at a rate of 250 mL/d (HRT = 2.5 days), with varying acetate concentrations in the 

range of 8 to 40 mM, based on the expected current. Every 4 days, 1 mL of a macronutrient 

solution (consisting of 4.31 g/L NH4Cl, 5.39 g/L CaCl2.2H2O, 4.31 g/L MgSO4.7H2O and 54 

mg/L FeCl3) and 10 mmol potassium phosphate buffer at pH = 7 was supplied to the anodic 

compartment (concentration =10 mM). 

3.2.3 Microbial fuel cell operation  

The MFC was operated in a temperature-controlled room at T = 303 K. It was operated in 

continuous mode, except during start-up and when performing Coulombic efficiency tests.  

The MFC was started in batch mode with a fumasep FKB cation exchange membrane and 

deionized water in the cathodic compartment. After stable operation in continuous mode, the 

cation exchange membrane was replaced by a fumasep FBM bipolar membrane. At this point, 

the power production was 22 mW/m2. The bipolar membrane was placed in the MFC with the 

cation exchange side facing the cathodic compartment and the anion exchange side facing the 

anodic compartment. The catholyte was first a 0.017 M ferric iron chloride (Fe(III)Cl3) 

solution. Thereafter, the catholyte was replaced with a 0.017 M ferric iron sulfate hydrate 
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(Fe(III)2(SO4)3.xH2O) solution and the MFC was operated with anolyte pH 7 and 6. For 

experiments with a longer duration, the catholyte was recirculated via a storage vessel, resulting 

in a total catholyte volume of around 17 liters. 

The open circuit voltage (OCV) and open circuit potential (OCP) were measured by 

disconnecting the electrodes so that there was no current. Power density curves were generated 

by varying the circuit load of the resistor between 5 and 100 Ω. Coulombic efficiency was 

determined in batch mode by addition of potassium acetate after all acetate was removed from 

the anodic compartment. This was assumed to be the case after the cell voltage decreased 

below 5% of the maximum voltage, following Gil et al (2003). 

3.2.4 Analyses  

Anode and cathode potential were measured versus Ag/AgCl reference electrodes (+205 

mV vs NHE). The voltage across the membrane was defined as the potential difference 

between the cathode reference electrode and the anode reference electrode. All potentials are 

reported versus Ag/AgCl reference electrodes. 

Power density P (W/m2) and current density j (A/m2) were calculated from cell voltage E 

(V), circuit load R (Ω) and anode electrode surface area A (m2) according to:  

AR

E
P

2

         (1) 

and 
AR

E
j         (2) 

The internal resistance Ri (Ω) was calculated from the slope of the polarization curves (Liu et 

al. 2005a). 

Coulombic efficiency ηC (%) was calculated from the charge in the produced current relative 

to the charge of the electrons present in the substrate:  

%100
,

0

inAc

t

C
mFn

dtI

      (3) 

where I = current (A), n = number of electrons involved per reaction (n = 8), F = Faraday‟s 

constant (96,485 C/mol) and mAc,in = amount of acetate added (Bergel et al.).  

Energy recovery ηE (%) was calculated from the measured cell voltage as compared to the 

maximum voltage from Gibb‟s free energy change ΔG (kJ/mol) for the overall reaction, 

multiplied with the Coulombic efficiency:  
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CE
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 with 
Fn
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Emax       (4) 

The overall reaction in the MFC is CH3COO- + 2 O2 → 2 HCO3
- + H+ with Emax = 1.09 V, 

standard conditions (Amend and Shock, 2001).  

Total iron concentrations were measured using Hach Lange tests LCK 320. 

A concept used in bipolar membrane studies is the water-splitting efficiency or the proton 

transport number tw (Hurwitz and Dibiani, 2001). At 100% water splitting efficiency (proton 

transport number = 1) one mol of water is split into protons and hydroxides inside the 

membrane per mol of electrons traveling from anode to cathode, followed by migration into 

the adjacent solutions. The proton transport number is defined as the current carried by 

protons relative to the total current: 

total

protons

w
I

I
t          (5) 

where Iprotons is the current carried by protons. The current carried by protons was calculated 

from the increase in proton concentration in time, multiplied with Faraday‟s constant.  

 

3.3 Results 

3.3.1 Power density and internal resistance 

Power density curves are shown in Figure 2. The maximum power density was 341 mW/m2 

(E = 0.39 V, R = 15 Ω) for the MFC with cathodic ferric iron reduction using ferric iron 

chloride. A similar result was obtained using ferric iron sulfate, which gave a maximum power 

density of 298 mW/m2 (E = 0.30 V, R = 10 Ω). The maximum power density increased to 539 

mW/m2 (E = 0.40 V, R = 10 Ω) after lowering the anolyte pH to 6.  

The internal resistance was 10.3 Ω  for the MFC with the cathodic ferric iron reduction 

using ferric iron chloride and 7.1 Ω and 8.4 Ω using ferric iron sulfate with anolyte pH=7 and 

6, respectively.  
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Figure 2. Power density curves for the MFC with cathodic ferric iron reduction using ferric iron chloride 

(o) and ferric iron sulfate with anolyte pH = 7 (●) and anolyte pH = 6 (■). Catholyte pH was between 2.0 

and 2.5 in all experiments 

3.3.2 Electrode potentials  

The performance of the anode, cathode, cell and membrane were analyzed by E-j curves. 

The voltages and potentials in an open circuit (j = 0 A/m2) indicate the maximum voltage or 

potential which is feasible under the existing experimental conditions. After connecting the 

resistor, thus allowing an electrical current through the system, it can be seen to what extent 

this maximum voltage or potential is reached.  

For the MFC with cathodic ferric iron reduction using ferric iron sulfate, the anode and 

cathode potential as well as cell voltage and voltage across the membrane are shown in Figure 

3. The OCV was 679 ± 5 mV using ferric iron chloride and 698 ± 9 mV using ferric iron 

sulfate. The open circuit cathode potential was +456 ± 4 mV using ferric iron chloride and 

+469 ± 9 mV using ferric iron sulfate. The cathode potential decreased slightly with increasing 

current density at a rate of 0.04 mV/(mA/m2). The anode potential showed similar behavior. 

Cell voltage decreased with increasing current density as the voltage loss across the membrane 

increased.  
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Figure 3. Anode potential (●), cathode potential (o), cell voltage () and voltage across the membrane 

(∆) as a function of current density (circuit load was varied between 5 Ω and 40 Ω) for the MFC with 

cathodic ferric iron reduction using ferric iron sulfate. Anolyte pH = 6. Anode and cathode showed low 

overpotential, whereas the voltage loss across the membrane increased with increasing current density. 

3.3.3 Coulombic efficiency and energy recovery 

Coulombic efficiency and energy recovery were determined at the circuit load at which the 

maximum power density was found.  

The Coulombic efficiency for the MFC with cathodic ferric iron reduction using ferric iron 

chloride was 80% (j = 920 mA/m2, addition of 1 mmol acetate). The energy recovery was 

29%. The Coulombic efficiency for the MFC with cathodic ferric iron reduction using ferric 

iron sulfate was 85% (j = 1,028 mA/m2, addition of 1 mmol acetate). The energy recovery was 

21%. The Coulombic efficiency increased to 95% after lowering the circuit load to 5 Ω and 

addition of both 1 and 5 mmol acetate (j = 1,383 mA/m2 and j = 1,744 mA/m2 respectively) 

using ferric iron sulfate. The energy recovery was 18 and 23% respectively. 

3.3.4 Continuous low load power production  

The MFC with cathodic ferric iron reduction was operated for a period of almost 3 months 

at varying circuit loads, while the ferric iron solution was regularly refreshed. Finally, we 

investigated electricity production at constant low circuit load (1.5 Ω) to confirm that not only 

instantaneous power was measured (Menicucci et al., 2006). During an operation period of 

over 50 h, power density increased from 0.5 to 0.86 W/m2, which  
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Figure 4. Stable power production and cell voltage at constant low circuit load (R=1.5 Ω) for the MFC 

with cathodic ferric iron reduction using ferric iron sulfate. 

 

was the highest power density found in this study. This latter value corresponds to a 

volumetric power production of 42 W/m3, normalized to the channel volume of the anodic 

compartment. Current density increased from 3.4 to 4.5 A/m2. Cell voltage was stable at 190 

mV (Figure 4).  

The total iron concentration was measured at regular intervals during the experiment and 

was found to be always between 16.3 and 16.4 mM. This concentration was 3.5% lower than 

the expected concentration, but within accuracy of the measurement method and the purity of 

the iron sulfate. 

 

3.4 Discussion 

3.4.1 Bipolar membrane  

The design for the MFC with cathodic ferric iron reduction and regeneration of ferric iron 

by the microorganism Acidithiobacillus ferrooxidans is shown in Figure 5. The low catholyte pH 

(<2.5) required to keep ferric iron soluble was maintained by using a bipolar membrane. The 

bipolar membrane provides the cathodic compartment with protons and the anodic 

compartment with hydroxides as a result of water dissociation.  



 

  54 

3 
acetate

CO2

H+

Fe3+

Fe2+

bacteria

anode cathode

O2

H2O
Acidithiobacillus

ferrooxidans

H+

OH-

H+

OH-

H+

electrons

acetate

CO2

H+

Fe3+

Fe2+

bacteria

anode cathode

O2

H2O
Acidithiobacillus

ferrooxidans

H+

OH-

H+

OH-

H+

electrons

 

Figure 5. Design for the MFC with the iron-mediated cathode. Anodic and cathodic compartment are 

separated by a bipolar membrane with the cation exchange side facing the cathode and the anion 

exchange side facing the anode. The bipolar membrane maintains the low catholyte pH required to keep 

ferric iron soluble by means of water dissociation into H+ and OH-. The redox couple Fe3+/Fe2+ acts as a 

mediator for electron transport from the electrode to the oxygen reducing (ferrous iron oxidizing) 

microorganism A. ferrooxidans. 

 

The low catholyte pH can be maintained in this way without the need of acid dosage. The 

bipolar membrane showed no detectable loss of iron. A cation exchange membrane, as 

normally used in an MFC, would fail in this respect as had been observed in earlier 

experiments with Nafion 117. These experiments show that the cathode performed well for 

only several hours. Catholyte pH increased rapidly, while anolyte pH decreased. Due to low 

solubility of ferric iron at pH>2.5, ferric iron hydroxide precipitates were found inside the 

membrane as a result of ferric iron migration. The pH drop in the anodic compartment and 

the pH increase in the cathodic compartment were due to migration of protons and other 

cations through the cation exchange membrane. Not only protons but also other cations are 

likely to migrate through cation exchange membranes when present in higher concentrations 

(Rozendal et al., 2006).  
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Figure 6. Voltage across the membrane () corrected for the ohmic voltage drop (■) for the MFC with 

cathodic ferric iron reduction using ferric iron sulfate. The ohmic voltage drop increased with increasing 

current density, whereas the voltage across the membrane was between -200 and -250 mV, independent 

of current density. Ohmic losses limited MFC performance. 

3.4.2 Voltage across the bipolar membrane  

The voltage across the membrane was defined as the potential difference between the cathode 

reference electrode and the anode reference electrode. Ohmic losses can be expected as a 

result of the distance between the membrane and the electrodes. The measured voltage across 

the membrane thus consists of both ohmic losses and a true voltage across the membrane. The 

ohmic voltage drop ΔVΩ (V) was calculated at both sides of the membrane, according to:  

jd
V          (6)  

where d = distance between membrane and reference electrode (cm), j = current density 

(A/cm2) and σ = conductivity (S/cm).  

The measured voltage across the membrane was corrected for the ohmic voltage drop using 

d = 2.1 cm, σanolyte = 2.5 mS/cm and the logged value for σcatholyte. The result is shown in Figure 

6 for the MFC with cathodic ferric iron reduction using ferric iron sulfate and anolyte pH=6. 

The corrected (true) voltage across the membrane was between -200 and -250 mV.  

A voltage drop across the bipolar membrane is required to start the water splitting reaction. 

This voltage drop was calculated to be 0.83 V for a 100% selective bipolar membrane for the 

generation of a one molar acid and base solution at 298 K (Hurwitz and Dibiani, 2001) using: 
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pH
F

TR
V

3.2
       (7) 

The pH difference between the anodic and the cathodic compartment in our MFC was 3.5. 

According to eq (7), this results in a voltage drop of -0.21 V. The observed voltage across the 

membrane was thus sufficient to allow water splitting. The occurrence of water splitting was 

confirmed by the decrease in catholyte pH during ferric iron reduction. Bipolar membranes 

have never been characterized under the specific conditions in our MFC: low current densities, 

different anolyte and catholyte, low conductivity, and a small pH gradient across the 

membrane. Further research is necessary.  

From our findings it turns out that that the ohmic losses make up a substantial part of the 

energy losses. MFC performance can be considerably improved by reducing the ohmic losses. 

This can be done by placing the electrodes and the membrane in close contact.  

3.4.3 Ferric iron reduction  

The measured cathode potential turned out to be proportional to the natural logarithm of 

the ratio [Fe3+]/[Fe2+], as would be expected from the Nernst equation: 

][

][
ln),(

2

3
032

Fe

Fe

F

TR
EFeFeE cathodecathode  with 

0

cathodeE  = 0.77 V vs NHE 

The measured cathode potential was corrected for the conductivity as the conductivity 

increased proportionally with increasing Fe2+ concentration. The ferric and ferrous iron 

concentrations at each point were calculated from the initial amount of ferric iron and the 

produced current. The measured cathode potential was found to be 

][

][
ln4.18424

2

3

Fe

Fe
Ecathode  (R2 = 0.9953). Analysis of other experimental data 

showed similar behavior. The slope, being 18.4 mV, is lower than the theoretical value of 

F

TR
 = 26.1 mV. This could be an effect of diffusion limitation. 

The formal (measured) potential is influenced by other substances in the solution and by the 

ionic strength of the solution (Bard and Faulkner, 2001). As a result, the measured E0 value 

(424 mV) can be lower than the theoretical value (565 mV vs Ag/AgCl).  

3.4.4 Proton transport number 

For the MFC with cathodic ferric iron reduction, a decrease in catholyte pH was observed. 

The increase in proton concentration was in the order of magnitude of 2 mM/h. Two 
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processes that would lead to a pH decrease in the cathodic compartment are (i) proton supply 

by the bipolar membrane as a result of water dissociation in the membrane and (ii) transport of 

alkalinity from the cathodic to the anodic compartment.  

The water-splitting efficiency or proton transport number indicates the current carried by 

protons compared to the total current (Hurwitz and Dibiani, 2001). The proton production by 

the bipolar membrane was calculated from the pH drop in the cathodic compartment. 

Preliminary calculations showed a proton transport number of 0.6–0.7. This transport number 

however should be considered as an indication only, as the decrease in pH was small. This 

subject needs further investigation. 

3.4.5 Perspectives for practical application 

Ferric iron should be regenerated from ferrous iron to make the MFC with cathodic ferric 

iron reduction suitable for practical application. Chemical ferrous iron oxidation at low pH is 

very slow, as it is proportional to the squared OH- concentration (Stumm and Morgan, 1981). 

Microorganisms such as A. ferrooxidans are capable of oxidizing ferrous iron to ferric iron at 

low pH, using oxygen as the terminal electron acceptor. Biological ferrous iron oxidation at 

low pH has been studied extensively and has been shown to operate efficiently at a high rate, 

e.g. (Ebrahimi et al., 2005; Karamanev and Nikolov, 1988). Ebrahimi et al. (2005) studied 

ferrous iron oxidation by the chemolithoautotrophic microorganisms Acidithiobacillus 

ferrooxidans and Leptospirillum ferrooxidans. In their biofilm airlift reactor, ferrous iron was 

reoxidized by A. ferrooxidans and L. ferrooxidans to ferric iron at a rate of 145 mol Fe2+/m3h. 

The optimal performance was obtained at 100 mol Fe2+/m3h with 98% conversion efficiency. 

If a similar setup is used for the MFC, assuming a current density of 4.5 A/m2 and a ferrous 

iron conversion rate of 100 mol/m3h with 98% efficiency, the reactor size required to ensure 

complete regeneration of ferric iron would be 50 mL, which is only 4% of the reactor volume. 

The most suitable way in which ferric iron can be regenerated in this system will be 

investigated in further study. 

The energetic efficiency of acetate conversion to electricity via combustion of methane gas 

after anaerobic treatment is up to 35% (Rabaey and Verstraete, 2005). To make the MFC a 

good alternative for conventional wastewater treatment techniques, its energy recovery should 

be comparable. The energy recovery in the MFC with cathodic ferric iron reduction was 18-

29% at the maximum power density. In studies that used platinum-based cathodes with similar 

power densities, the energy recovery was 2-15% (Liu et al., 2005a; Liu et al., 2005b). For a 

continuous system, energy recovery was 2-26% as found by Rabaey et al. (2005b) with the use 

of hexacyanoferrate in the cathodic compartment.  
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The Coulombic efficiency in this study was considerably higher than that found in other 

studies: 80-95% in comparison to 40-75% at similar power densities (Rabaey et al., 2005b; Liu 

and Logan, 2004; Min and Logan, 2004; Liu et al., 2005a). 

The MFC with a bipolar membrane combined with ferric iron reduction on a graphite 

cathode is shown to have a high Coulombic efficiency and energy recovery. Further research 

into the reactor design for ferric iron regeneration and into reduction of the internal resistance 

of the MFC is needed to further improve MFC performance.  
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Abstract 
The oxygen reduction rate at the cathode is a limiting factor in microbial fuel cell (MFC) 

performance. In our previous study, we showed the performance of an MFC with ferric iron 

(Fe3+) reduction at the cathode. Instead of oxygen, ferric iron was reduced to ferrous iron 

(Fe2+) at the cathode with a bipolar membrane between the anode and the cathode 

compartment. This resulted in a higher cathode potential than usually obtained with oxygen on 

metal-based chemical catalysts in MFCs. In this study, we investigated the operation of the 

same MFC with ferric iron reduction at the cathode and simultaneous biological ferrous iron 

oxidation of the catholyte. We show that the immobilized microorganism Acidithiobacillus 

ferrooxidans is capable of oxidizing ferrous iron to ferric iron at a rate high enough to ensure an 

MFC power output of 1.2 W/m2 and a current of 4.4 A/m2. This power output was 38% 

higher than in our previous study at a similar current density without ferrous iron oxidation. 

The bipolar membrane is shown to split water into 65 - 76% of the needed protons and 

hydroxides. The other part of the protons was supplied as H2SO4 to the cathode compartment. 

The remaining charge was transported by K+ and HSO4
-/SO4

2- from the one compartment to 

the other. This resulted in increased salt concentrations in the cathode. The increased salt 

concentrations reduced the ohmic losses and enabled the improved MFC power output. Iron 

could be reversibly removed from the bipolar membrane by exchange with protons. 
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4.1 Introduction 

The increasing threat of global warming by greenhouse gases requires further development 

of renewable energy sources. The microbial fuel cell (MFC) is a new energy technology in 

which microorganisms produce electricity directly from renewable biodegradable material 

(Chaudhuri and Lovley, 2003; Rabaey and Verstraete, 2005;  Logan et al., 2006). The MFC 

consists of an anode and a cathode, separated by a membrane. At the anode, microorganisms 

convert organic material under anoxic conditions. These microorganisms use the electrode as 

the electron acceptor (Bond and Lovley, 2003). The electrons flow through an external circuit 

to the cathode, where oxygen is reduced to water. Oxygen is superior to other electron 

acceptors for its unlimited availability and its high redox potential (Zhao et al., 2006). 

Oxygen reduction at the cathode, however, is kinetically limited, especially on carbon or 

graphite electrodes, and therefore needs a catalyst or electron mediator (Shukla et al., 2004). 

Platinum is a chemical catalyst that is often used in MFCs, but it has several disadvantages like 

its cost and its instability for oxygen reduction (Zhang et al., 2007). Biologically catalyzed 

cathodes have the advantage that of being cheaper and more renewable (He and Angenent, 

2006). 

In our previous study (Ter Heijne et al., 2006) we have investigated an alternative cathode 

reaction, namely the reduction of ferric iron (Fe3+) to ferrous iron (Fe2+) with a bipolar 

membrane between the anode and the cathode compartment. This bipolar membrane was 

needed to maintain the low catholyte pH (<2.5) required to keep ferric iron soluble, whereas 

the conventionally used cation exchange membrane failed to maintain the pH difference 

between the anolyte and the catholyte. A bipolar membrane consists of a cation and an anion 

exchange layer. At the junction, water is split into protons and hydroxides when a certain 

voltage is applied (Nagasubramanian et al., 1977). The protons migrate to the cathode, while 

the hydroxides move to the anode. The reduction of ferric iron results in a higher cathode 

potential than is obtained with oxygen on a metal-based catalyst in MFCs (Zhao et al., 2006; 

Cheng et al. 2006).  

In this study, we investigate the performance of the MFC with a bipolar membrane and 

continuous ferrous iron oxidation of the catholyte by an acidophilic chemolithoautotrophic 

microorganism (Figure 1).  
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Figure 1. Microbial fuel cell with continuous ferrous iron oxidation. 

 

We used the microorganism Acidithiobacillus ferrooxidans, which can be found in acid mine 

drainage and is a dominant organism in the process of ore bioleaching (Jensen and Webb, 

1995). These microorganisms derive their energy from the oxidation of Fe2+, using CO2 as a 

carbon source and O2 as the electron acceptor. 

The following reactions occur in the MFC with continuous ferrous iron oxidation: 

Anode:  CH3COO- + 4 H2O  2 HCO3
- + 9 H+ + 8 e- (biological) (1) 

Cathode: 8 Fe3+ + 8 e-  8 Fe2+ (chemical)    (2) 

8 Fe2+ + 8 H+ + 2 O2  8 Fe3+ + 4 H2O (biological)  (3) 

Overall: CH3COO- + 2 O2  2 HCO3
- + H+   (4) 

The oxidation of ferrous iron using oxygen as an electron acceptor yields only a relatively 

small amount of energy for microbial growth. The Gibb‟s free energy of iron oxidation has 

been estimated to be between -42 and -27 kJ/mol (Leduc and Ferroni, 1994; Rohwerder et al., 

2003). The biomass yield of iron oxidizing microorganisms is consequently low: approximately 

20 mol of ferrous iron is needed to produce 1 mole of biomass-C (Jensen and Webb, 1995; 

Leduc and Ferroni, 1994). The low energy consumption and low excess biomass production 

makes the couple ferric/ferrous iron an attractive electron mediator for oxygen reduction. 
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Our objective was to study the performance of the MFC with continuous ferrous iron 

oxidation. The MFC was operated with low iron concentrations in the catholyte, as these lower 

the chance of precipitation (Stumm and Morgan, 1981). At the same time, the initial ferrous 

iron oxidation rate should be sufficiently high for the investigation of MFC performance. 

Because of the low biomass yield of the iron oxidizing microorganisms, however, it takes time 

before a high conversion rate is obtained in a solution with low iron concentrations. The iron 

oxidizing microorganisms were therefore first grown on biomass support particles (BSPs) in a 

medium with a high ferrous iron concentration. Thereafter, we have placed this immobilized 

culture of A. ferrooxidans in a separate reactor and combined it with a ferric iron reducing 

cathode in an MFC.  

In this study, we investigate the performance of the MFC with ferric iron reduction at the 

cathode and simultaneous biological ferrous iron oxidation. 

 

4.2 Materials and methods 

4.2.1 Microbial fuel cell setup  

The flat plate MFC used for the experiments is described in more detail in (Ter Heijne et al., 

2006). The effective projected surface area of both anode and cathode was 290 cm2, and each 

compartment had a liquid volume of 0.62 L. The electrodes were made of graphite felt 

(thickness: 3 mm, FMI Composites Ltd., Galashiels, Scotland). Both the cathode and the 

anode compartment contained reference electrodes (Ag/AgCl, 3 M KCl, +205 mV vs NHE, 

ProSense QiS, Oosterhout, The Netherlands). The anode and the cathode compartment were 

separated by a bipolar membrane (fumasep FBM, FuMa-tech GmbH, St. Ingbert, Germany) 

with the cation exchange side facing the cathode and the anion exchange side facing the anode. 

The anode and the cathode were connected via a resistor with a range of 0 – 50 Ω. Both 

anolyte and catholyte were recirculated at a rate of approximately 10 L/h (Figure 2). 
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Figure 2. Process scheme of the MFC with continuous ferrous iron oxidation 

4.2.2 Anode microorganisms and medium 

The anode compartment was inoculated with effluent from another MFC running on 

acetate. The anode was continuously supplied with medium, containing potassium acetate and 

a 20-30 mM potassium phosphate buffer (pH = 7) at a rate of 0.4 L/day. The acetate 

concentration was different for each current density and was at a level so that no acetate 

depletion occurred. Every fifth day, the anode was provided with macronutrients (10 mL of a 

solution containing 4.31 g/L NH4Cl, 5.39 g/L CaCl2.2H2O and 4.31 g/L MgSO4.4H2O, 

micronutrients (1 mL of a solution containing 0.72 g/L FeCl2.4H2O, 0.30 g/L CoCl2.6H2O, 

0.18 g/L MnCl2.4H2O, 0.18 g/L ZnCl2, 0.034 g/L H3BO3, 0.18 g/L Na2MoO4.2H2O and 0.50 

g/L EDTA) and vitamins (1 mL of a solution containing 1 g/L pyridoxine.HCl, 0.5 g/L 

nicotinic acid, 0.25 g/L riboflavin, 0.25 g/L thiamine.HCl, 0.2 g/L biotin, 0.2 g/L folic acid 

and 0.01 g/L vitamin B12). 

4.2.3 Ferrous iron oxidizing microorganisms and medium 

A. ferrooxidans strain 583 (DSMZ, Braunschweig, Germany) was first grown in ferrous sulfate 

medium (33.3 g/L FeSO4.5H2O and standard nutrients: 0.4 g/L (NH4)2SO4, 0.4 g/L KH2PO4 

and 0.4 g/L MgSO4 in H2SO4 at pH=2) and thereafter immobilized on 1 cm3 polyurethane 

foam biomass support particles (BSPs) each to ensure a high volumetric ferrous iron oxidation 

rate from the start of the experiments. The immobilization procedure was based on Nemati 

and Webb (1996). The first immobilization step consisted of inoculating 10% (v/v) of the 

culture into Erlenmeyer flasks containing 200 mL of ferrous sulfate medium and 25 BSPs each. 
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The flasks were incubated on a rotary shaker at 175 rpm at 30 °C. Before complete conversion 

of the ferrous iron, determined from the dark yellowish/brownish color of the solution, the 

medium was refreshed. After repeating this procedure 5 times, 75 BSPs were placed in the 

ferrous iron oxidation reactor together with 475 mL of medium. The ferrous iron oxidation 

reactor was operated first batch-wise with the same medium, but with a lower ferrous iron 

concentration equal to our previous study (0.95 g/L). The medium was recirculated and 

aerated with compressed air. Before all ferrous iron was converted, the medium was replaced. 

After this procedure was repeated 8 times, the ferrous iron oxidation reactor was connected to 

the MFC.  

4.2.4 Microbial fuel cell operation 

The MFC was operated in a constant temperature chamber at 30 °C. The anode and the 

cathode potential were logged every 60 s on a PC via a FieldPoint FP-AI-110 module. Data 

were collected using LabVIEW. 

The MFC was first characterized without ferrous iron oxidation with 0.95 g/L ferric iron 

(sulfate) at pH 2 as the catholyte by decreasing the external resistance from 50 to 5 Ω. 

Thereafter, the MFC was connected to the ferrous iron oxidation reactor containing BSPs with 

immobilized cells of A. ferrooxidans. The standard nutrients were supplied to the cathode 

compartment only at the beginning of the experiment. The total catholyte volume was kept at 

1.35 L. The catholyte pH was controlled at 2.5 with 1.8 M H2SO4, and the amount of acid 

dosed was monitored. The current density of the MFC was increased stepwise by decreasing 

the external resistance from 20 to 2.1 Ω. The MFC was operated for at least 1 week at each 

current density. Four resistances were tested (run 1: 20 Ω; run 2: 8.2 Ω; run 3: 4.0 Ω; and run 

4: 2.1 Ω), resulting in current densities similar to our previous study. Samples from the anode 

and cathode compartments were taken at least 5 times at each current density. 

When the anolyte pH decreased below 6, it was manually adjusted to 6.6 with 2 M KOH. 

The acetate concentration in the anode was measured regularly to ensure that no depletion 

of acetate occurred.  

 

4.2.4 Activity tests 

To determine the activity of A. ferrooxidans, activity tests were performed at the end of each 

run. Three BSPs were randomly taken from the ferrous iron oxidation reactor, and each BSP 

was placed in an Erlenmeyer flask containing 25 mL of medium (0.95 g/L ferrous sulfate, and 

standard nutrients). The same was done with 1 mL of catholyte (n=3). Blanks with BSPs 
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without A. ferrooxidans in medium and blanks with medium alone were also tested (n=2). 

Samples were taken twice within 10 h and analyzed for their ferric and total iron concentration 

according to the method described by Karamanev et al. (2002). The maximum activity was 

determined from the steepest part of the curves. After the activity test, the BSPs were placed 

back in the ferrous iron oxidation reactor. 

4.2.5 Analyses 

Anode and cathode potential were measured versus their reference electrodes. The cell 

voltage was measured as the difference between anode and cathode. The difference between 

the cathode and the anode reference electrode was defined as the voltage across the 

membrane. 

Current density j (A/m2) and power density P (W/m2) were calculated from the cell voltage 

E (V), the circuit load R (Ω), and the electrode surface area Ael (m2) according to: j = E / RAel 

and P = E2 / RAel. 

Ferric iron and total iron concentrations were measured according to (Karamanev et al. 

2002). K+, total S, total P and total Fe concentrations were measured using inductively coupled 

plasma – optical emission spectrometer (ICP-OES; Vista-MPX, Varian, Inc.). 

The transport number t was calculated for H+, K+, and S. This transport number indicates 

the charge carried by this species (Q+) as compared to the charge carried by the electrons in 

the electrical current (Q-). The equations for calculation of transport numbers for H, K+ and S 

and their derivation can be found in the appendix. 

The bipolar membrane was stored in demineralized water after the MFC was stopped. For 

24 h before elemental analysis, one sample of the membrane was stored in 1 M NaCl, and one 

sample was stored in 1 M HCl to test whether iron could be reversibly removed from the 

bipolar membrane. The membrane samples were washed with MilliQ water and then analyzed 

with energy dispersive X-ray spectrometry (EDX) to determine the element content of the 

outside layers (1 – 2 µm). For the EDX analysis, a JEOL JSM-6480LV scanning electron 

microscope (SEM) equipped with a NORAN System SIX model 300 X-ray microanalysis 

system (Thermo Electron Corporation) was used. Measurements were done at an acceleration 

voltage of 20 kV.  



 

 69 

4 

4.3 Results and discussion 

4.3.1 The MFC with continuous ferrous iron oxidation showed a 38% 

higher power output than obtained in our previous study 

The polarization curve of the MFC directly after ferric iron addition without ferrous iron 

oxidation showed power and current densities in the same range as in our previous study (Ter 

Heijne et al., 2006).  

When connecting the MFC to the ferrous iron oxidation reactor, the circuit load was set at a 

fixed resistance (R = 20.2 Ω). This resulted in a current density of 0.96 ± 0.02 A/m2. After 1 

week, the external resistance was decreased stepwise to yield 2.0 ± 0.05 A/m2 (R = 8.2 Ω), 3.0 

± 0.95 A/m2 (R = 4.0 Ω) and 4.4 ± 0.15 A/m2 (R = 2.1 Ω). The MFC was operated at each 

current density for at least 7 days. The average values and standard deviations were calculated 

over the full period. Figure 3 shows the performance of the MFC with continuous ferrous iron 

oxidation.  

The average power density increased to 1.2 W/m2 (55 W/m3) at a current density of 4.4 

A/m2, which is 38% higher than the power density found in the previous study (Ter Heijne et 

al., 2006) at a similar current density. The cathode potential decreased upon increased current 

density, but was nearly constant during each run (run 1: 0.448 ± 0.004 V; run 2: 0.396 ± 0.005 

V; run 3: 0.372 ± 0.007 V; and run 4: 0.333 ± 0.007 V, all values vs. Ag/AgCl). This indicates a 

constant ratio of ferric/ferrous iron.  

 
Figure 3. Performance of the MFC with continuous ferrous iron oxidation by A. ferrooxidans: Power 

density (), cell voltage (o) and cathode potential (∆). Average values and standard deviations were 

calculated over a period of at least 7 days (except for open circuit conditions). 
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The decrease in cathode potential upon increased current was 1.6 times higher than in our 

previous study (Ter Heijne et al., 2006) in the current density range of 0.96 – 2 A/m2. Part of 

the electrode might have been blocked by precipitates on the electrode and deposition of 

extracellular polymeric substances (EPS) produced by A. ferrooxidans on the electrode (Gehrke 

et al., 1998). A decreased surface area results in a higher current density at the electrode as 

compared to a situation where no precipitates were formed. As the cathode potential decreases 

with increasing current density, a lower cathode potential would occur in case part of the 

electrode is blocked. 

In all runs, the ferrous iron concentration was below 6% of the total iron concentration, 

which indicates that the system‟s microbial ferrous iron oxidation capability was large enough 

for the MFC current in all runs. From this we can conclude that the ferrous iron oxidation 

reactor had an overcapacity. The activity tests showed that the microbial ferrous iron oxidation 

activity was mainly in the BSPs at the start of run 1: the fraction of the activity in the BSPs was 

0.95 ± 0.03 of the total activity, versus 0.05 ± 0.03 in the catholyte. After run 4, the microbial 

ferrous iron oxidation activity in the catholyte turned out to be considerable as well: the 

fraction of the activity in the BSPs was 0.62 ± 0.06 of the total activity, versus 0.38 ± 0.06 in 

the catholyte. No ferric iron was found in the blanks of the activity tests, indicating the absence 

of chemical ferrous iron oxidation. 

4.3.2 Ion transport through the bipolar membrane 

Rozendal et al. (2006) showed that a cation exchange membrane in an MFC does not only 

transport protons, but also other cations are transported that are present in higher 

concentrations. We show that this bipolar membrane in an MFC, similarly, allows transport of 

both positively and negatively charged species other than protons and hydroxides. The 

migration of charged species through the membrane was analyzed by their transport numbers, 

indicating the charge carried by a species (Q+) as compared to the charge carried by electrons 

(Q-) in the electrical current. Electroneutrality requires that these charges should be equal. The 

proton transport number tH+ is defined as the charge carried by protons relative to the total 

charge and is equal to the hydroxide transport number tOH-.  

For each mole of electrons arriving at the cathode, 1 mole of ferric iron is reduced and 1 

mole of protons is consumed by the microorganisms for ferrous iron oxidation (reactions (2) 

and (3); introduction). The catholyte pH would increase for a proton transport number lower 

than 1, as the protons produced by the water splitting reaction in the membrane would be less 

than the protons consumed by the ferrous iron oxidizing microorganisms. We indeed observed 
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a pH increase in the catholyte. The amount of acid (H2SO4) dosed for pH control was used to 

calculate the proton transport number.  

The dominant species present in the MFC, besides H+ and OH- are K+, Stotal (SO4
2-/HSO4

-), 

Fetotal (Fe2+/Fe3+), and Ptotal (HPO4
2-/H2PO4

-). Other positive ions, supplied to the anode 

compartment through the nutrient solutions, were present in concentrations less than 1% of 

the K+ concentration. K+ was therefore assumed to be responsible for the charge transport 

from the anode compartment to the cathode compartment. The direction of the current 

mainly determines the transport of these species: a positive charge migrates from the anode to 

the cathode compartment and/or a negative charge migrates from the cathode to the anode 

compartment (all contributing to Q+). We measured an increase in K+ concentration in the 

catholyte, from which the K+ transport number was calculated. With the dosage of H2SO4 for 

pH control, S was added to the system as well. We measured an increase in S concentration in 

the catholyte, but this increase was lower than the increase we expected from the amount of 

acid dosed. Therefore, we concluded that S (in the form of SO4
2- and HSO4

-) was transported 

from the cathode to the anode compartment. The concentrations of P and Fe in the catholyte 

were fairly constant, which is in accordance with the direction of the current. The calculated 

transport numbers for H+, K+, and S for each run are shown in Table 1.  

The proton transport number, varying between 0.65 in run 2 and 0.76 in run 3, is in the 

same range as found in our previous study (Ter Heijne et al., 2006): 0.6-0.7. This proton 

transport number not only had an effect on catholyte pH, but also on anolyte pH. Per mole of 

electrons (and protons) produced at the anode, only 0.65 – 0.76 mole hydroxide migrated from 

the membrane to the anode. Despite the buffer capacity in the influent, the anolyte pH 

decreased considerably especially at high current densities and a higher base dosage was 

required. There was a considerable transport of K+ from the anode to the cathode 

compartment (tK+ = 0.15 – 0.31).  

 

Table 1. Transport numbers for H+ , K+ and S (n.a. = not analyzed). 

Average current 

density (A/m2) 

Transport number 

H+ 

Transport number 

K+ 

Transport 

number S 

0.96 0.74 0.15 n.a. 

2.0 0.65 0.31 0.08 

3.0 0.76 0.17 0.13 

4.4 0.71 0.19 0.08 
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The transport of species other than protons and hydroxides thus resulted in a pH increase in 

the catholyte and a pH decrease in the anolyte, and increased salt concentrations in the 

catholyte. The occurrence of salt ion transport through bipolar membranes has previously 

been studied in, for example, Elmoussaoui et al. (1994) and Wilhelm et al. (2001). The 

experimental setup and conditions however, were different from our MFC (high current 

densities, a six-compartment setup with several membranes, and high salt concentrations), and 

therefore no quantitative comparison can be made with these studies. 

The bipolar membrane should have a water splitting effectiveness of >98% at a current 

density of 1000 A/m2 according to the supplier FuMa-tech GmbH. A proton transport 

number below 1 can be a result of the relatively low current densities in an MFC as compared 

to industrial applications. Although no trend can be seen from Figure 3, with current densities 

considerably lower than 1000 A/m2, we expect that increased current densities could reduce 

the problem of pH changes in the catholyte and anolyte, and the problem of increasing salt 

concentrations in the catholyte. 

4.3.3 Low iron concentrations in the catholyte still enabled a high power 

output, while high salt concentrations positively influenced power 

output  

Most iron was in the ferric form as observed by measurements and the stable cathode 

potential. After 2 weeks of operation, a sudden decrease in total iron concentration from 0.95 

g/L to 0.5 g/L was observed. This concentration decrease occurred at the moment that pH = 

2.5 was reached, the point where the pH control began. Iron is indeed subjected to 

precipitation at pH values around 2.5 (Stumm and Morgan, 1981). Furthermore, the decrease 

in iron concentration was not likely to be a result of iron migration through the membrane. On 

average, the iron concentration in the anolyte effluent was lower than or equal to the iron 

concentration in the micronutrient solution, and the transport of iron from the cathode to the 

anode compartment would be against the direction of the current. No decrease in MFC 

performance was found with a lower iron concentration down to 0.5 g/L. Low iron 

concentrations are beneficial, as these lower the chance of iron precipitation (Stumm and 

Morgan, 1981). 

The power density of the MFC with continuous ferrous iron oxidation was found to be 38% 

higher than the power output of the same MFC in our previous study (Ter Heijne et al., 2006) 

at a similar current density. This increase in power density is a result of a higher cell voltage at 

the same current density. The higher cell voltage (0.271 V vs 0.186 V at j = 4.4 A/m2 and 4.5 

A/m2 respectively) could be explained by the higher salt concentrations in the catholyte 
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(conductivity up to 44 mS/cm vs 10 mS/cm) and the resulting decreased ohmic losses. The 

ohmic losses were calculated using the equation 
dj

Eohmic   (Ter Heijne et al., 2006), where 

d = distance between membrane and electrode (cm), j = current density (A/cm2) and σ = 

conductivity (S/cm). The higher conductivity was calculated to contribute to decreased ohmic 

losses of 0.074 V, which is 86% of the difference in the cell voltage. 

4.3.4 Iron could be reversibly removed from the membrane by protons  

Although no decrease in membrane performance was observed, we found that the 

membrane had an orange-brown color at the end of operation. Irreversible bounding of iron 

to the bipolar membrane could lead to decreased membrane and MFC performance. The 

outside layer of the bipolar membrane was exposed to the catholyte and was therefore 

expected to contain the highest iron concentrations. Therefore, the outside layers of the 

membrane samples were analyzed on the cation exchange side for their elements. For 24 h 

before analysis, one sample was stored in 1 M NaCl and one sample was stored in 1 M HCl to 

test whether iron could be reversibly removed from the membrane. A quantitative analysis of 

the spectrum identified 2.0% and 1.7% of the atoms as S for the cation exchange side of the 

samples stored in NaCl and HCl, respectively. These S groups represent the negatively charged 

sulfonate groups in the cation exchange side of the bipolar membrane. No iron was detected 

on the membrane stored in HCl (Figure 4A). Iron was detected on the cation exchange side of 

the membrane stored in NaCl (0.59 atom %) and occupied 30% of the S-groups (Figure 4B). 

The other S-groups were mainly occupied by Na+ (69%) for the membrane stored in NaCl. 

The sample stored in demineralized water showed a similar spectrum to the one stored in 

NaCl, except that it contained K+ instead of Na+ (72% of the S-groups contained K+ and 20% 

contained iron, data not shown). These findings show that iron can be reversibly removed 

from the membrane by exchange with protons. 
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Figure 4. EDX spectrum for the cation exchange side of the bipolar membrane stored in 1 M HCl (A) 

and in 1 M NaCl (B)  

4.3.5 Future perspectives  

Continuous ferrous iron oxidation in the catholyte by A. ferrooxidans was successfully 

achieved. Ferrous iron was oxidized at a rate high enough to ensure an MFC power output of 

1.2 W/m2 throughout more than a week. The ferrous iron oxidation reactor had an 

overcapacity, as less than 6% of the iron was found to be in the ferrous form during all runs. 

The MFC current density of 4.4 A/m2 requires a ferrous iron oxidation rate of 13.4 g 

Fe2+/L/day, normalized to the liquid volume of the ferrous iron oxidation reactor. This is 

indeed considerably lower than the conversion rate in other research (e.g., 194 g/L/day 

(Ebrahimi et al., 2005) and 521 g/L/day (Park et al. ,2005)). It is therefore likely that a 10-fold 

higher current can still be achieved in the MFC with the same ferrous iron oxidation reactor 

size as used in our study (0.475 L vs 0.62 L MFC cathode compartment). 

For an MFC to be competitive with existing technologies, it should have a high power 

density as well as little or no use of chemicals and a low-cost, renewable catalyst for oxygen 

reduction. The power and current densities obtained in this study for the MFC with 

continuous ferrous iron oxidation are promising. To achieve higher power densities, a new 
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MFC design is required. A new reactor design with decreased ohmic losses and consequentially 

higher power and current densities could increase the proton transport number in the MFC, 

but further tests are necessary to verify this. As a result, relatively less acid and base will be 

needed. The performance of A. ferrooxidans and/or other iron oxidizing microorganisms in the 

catholyte of a newly designed MFC will be further studied. Thereafter, the MFC power output 

should be balanced with the power needed for aeration so that optimizing strategies can be 

investigated in more detail. 
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Appendix 
Transport numbers (t) for H+, K+ and S were calculated. Several phenomena were taken into 

account: 

 

1) Equilibrium reactions for sulfuric acid 

H2SO4 <-> H+ + HSO4
- <-> 2 H+ + SO4

2- 

The first equilibrium H2SO4 <-> H+ + HSO4
- is not relevant, as pKa = -3 

The second equilibrium HSO4
- <-> H+ + SO4

2- is relevant, as pKa = 1.92 (T = 298 K) 

With a constant pH (controlled at 2.5), the ratio [SO4
2-]/[HSO4

-] is constant, and 79% of total 

S ([ST] in M) is present as SO4
2- (fSO42- [-] = fraction of S present as SO4

2-) while 21% of total S 

is present as HSO4
- (fHSO4- [-]) = fraction of S present as HSO4

-. We can define: 

[HSO4
-] (in M) = ][

4
THSO

Sf  and [SO4
2-] (in M) = ][2

4
TSO

Sf  

The subscripts „end‟ and „start‟ in the mass balances on the next page refer to the end and start 

concentrations respectively. V stands for volume (L) 

 

2) Addition of H through H2SO4 

The pH was controlled at 2.5 by addition H2SO4. For every mole of H2SO4 that is added for 

pH control, 2 moles of H+ are added to the system. The amount of H+ that is supplied to the 

system via H2SO4 in the considered time period will be referred to as 2∆ST. After addition to 

the catholyte, part of this H+ ends up in HSO4
- as a result of the dissociation equilibrium. 

 

3) Addition of S through H2SO4 

The amount of S that is supplied to the system via H2SO4 in the considered time period will be 

referred to as ∆ST [mol]. 

 

4) Total current in MFC 

The charge transport through the electrical circuit is expressed as the current I integrated over 

time t, divided by Faraday‟s constant = dtI

t

0

/ F = C [mol]. The proton consumption by A. 

ferrooxidans in the cathode is equal to C, because 1 mole of protons is consumed for every mol 

of electrons 

 

5) Further assumptions 

 HSO4
- and SO4

2- have the same chance to migrate through the membrane 
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 No H2S diffuses through the membrane from the anode compartment to the cathode 

compartment, or all the S2- is readily oxidized in the cathode compartment 

 No precipitation of sulfates occurs 

 HCO3
- produced in the anode compartment does not diffuse through the membrane 

to the cathode compartment (against the direction of the current) 

 

Mass balance for H+ in cathode (in mol) 

Total change in H (present as H+ and HSO4
-) =  

Hadded via H2SO4 – Hconsumed for ferrous iron oxidation + Hsupplied by the membrane  

CtCSHSOHSOVHHV
HTstartendstartend 2)][]([)][]([ 44  

)][]([ startend HHV  =0 (pH=constant) and  

)][]([ 44 startend HSOHSOV  )][]([
4

startTendTHSO
SSVf  

Then:  

)][]([2
4

startTendTHSOTH
SSVfSCCt  

C

SSf
V

C

S
t

startTendTHSOT

H

)][]([2
1 4

 

Mass balance for K+ in cathode (in moles) 

Total change in K = Ktransported through membrane 

CtKKV
KstartTendT )][]([  

C

KKV
t startTendT

K

)][]([
 

Mass balance for S in cathode (in moles) 

Total change in S = Sadded via H2SO4 - Stransported through membrane  

2
44 ,, SOSHSOSS ttt  

)79.0221.0()][]([ 2
44 ,,

CtCtSCtSSSV
SOSHSOSTSTstartTendT   

C

SSVS
t startTendTT
S

79.1

)][]([
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determine performance of 

oxygen reducing biocathodes in 
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Abstract 

The main limiting factor in Microbial Fuel Cell (MFC) power output is the cathode, because of 

the high overpotential for oxygen reduction. Oxygen reducing biocathodes can decrease this 

overpotential by the use of microorganisms as a catalyst. In this study, we investigated the 

factors limiting biocathode performance. Three biocathodes were started up at different 

cathode potentials and their performance and catalytic behaviour was tested by means of 

polarization curves and cyclic voltammetry. The biocathodes controlled at +0.05 V and +0.15 

V vs Ag/AgCl produced current almost immediately after inoculation, while the biocathode 

controlled at +0.25 V vs Ag/AgCl produced no current until day 15. The biocathode 

controlled at +0.15 V vs Ag/AgCl reached the highest current density of 313 mA/m2. Cyclic 

voltammetry showed clear catalysis for all three biocathodes. The biocathodes were limited by 

both mass transfer of oxygen and by charge transfer. Mass transfer calculations show that the 

transfer of oxygen poses a serious limitation for the use of dissolved oxygen as an electron 

acceptor in MFCs. 
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5.1 Introduction 

The Microbial Fuel Cell (MFC) is an emerging technology to produce electricity from 

biodegradable waste materials. An MFC consists of an anode and a cathode, usually separated 

by a membrane. At the anode, microorganisms oxidize biodegradable materials into CO2, 

protons and electrons. At the cathode, usually oxygen is reduced to water (Logan et al., 2006), 

but also many other reactions are possible (Hamelers et al., 2010). 

MFC technology at this moment is not cost effective enough for practical application.  

The main factor limiting MFC performance is the cathode. Oxygen has a high overpotential 

when uncatalyzed electrodes are used, but at the same time oxygen is the most practical 

electron accepter because of its unlimited availability. Biological catalysts are an attractive 

alternative to chemical catalysts to decrease the overpotential for oxygen reduction, because of 

their low cost and sustainability (He et al., 2006). Until now, different biological catalysts have 

been tested for oxygen reduction, both in the form of enzymes (Schaetzle et al., 2009) and in 

the form of microorganisms. Microorganisms were shown to catalyze the oxygen reduction 

reaction via mediating compounds like manganese (Rhoads et al., 2005) and Fe2+/Fe3+ (Ter 

Heijne et al., 2007), but also directly in seawater (Bergel et al., 2005) and freshwater (Clauwaert 

et al., 2007; Freguia et al., 2008; Freguia et al., 2010). These biocathodes show better 

performance than uncatalyzed materials, however, they are still limiting MFC performance. At 

this point, it has not been investigated what are the main factors limiting biocathode 

performance. 

The objective of this study was to investigate the factors that are limiting biocathode 

performance. Performance of biocathodes is reflected in the combination of cathode potential 

and current density. Cathode potential regulates the energy that the microorganisms can gain 

from transferring the electrons from the electrode to oxygen, because it determines the energy 

level at which the electrons are released. Electrode potential can also have effects on microbial 

cell surface properties and enzyme activity (Liang et al., 2009) and therefore affects activity of 

the biofilm. The measured current reflects the rate of oxygen reduction. It is important to 

study cathode polarization curves, showing the relationship between current density and 

cathode potential, because the combination of cathode potential and current density 

determines the maximum power that can be gained from the cathodic part of the 

bioelectrochemical system. 

 In this study, three biocathodes were started up at three different cathode potentials. 

Performance of these biocathodes was investigated via polarization curves, and catalytic 
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behavior was analyzed using cyclic voltammetry. The biocathodes were studied on flat (2D) 

electrodes, enabling us to calculate mass transfer rates and limiting current density. 

5.2 Materials and methods 

5.2.1 Electrochemical cell setup 

The experimental setup consisted of three electrochemical cells. The electrochemical cells 

contained two flow channels with a projected surface area of 22 cm2 and a channel depth of 

1.5 cm as described in (Ter Heijne et al., 2008). The flow channels were separated by a cation 

exchange membrane (Fumasep FTCM-E, Fumatech, Braunschweig, Germany). The cathodes 

were rough graphite plates (AlO2 blasted) (Müller & Rössner GmbH & Co, Troisdorf, 

Germany), while the anodes were flat graphite plates (Müller & Rössner GmbH & Co, 

Troisdorf, Germany). 

5.2.2 Electrochemical cell operation  

The catholyte was inoculated with nitrifying biomass from the wastewater treatment plant in 

Ede, the Netherlands. Nytrifying biomass was chosen because of the presence of autotrophic 

microorganisms. Each of the three cells was inoculated on day 1 with 100 mL nitrifying 

biomass. The catholyte had a total volume of 1 L and consisted of phosphate buffer (pH 7, 

0.02 M), and macro- and micronutrients (10 mL/L and 1 mL/L) as described in (Ter Heijne et 

al., 2008). The anolyte also had a total volume of 1 L and was a 0.05 M potassium ferrocyanide 

solution in 0.02 M phosphate buffer at pH 7.  

Biocathodes were started up at three different potentials: +0.05 V vs Ag/AgCl, +0.15 V vs 

Ag/AgCl, and +0.25 V vs Ag/AgCl with a multi-channel potentiostat (Bank Electronik – 

Intelligent Controls GmbH, Pohlheim, Germany). To control cathode potential, a cell voltage 

was applied between anode and cathode, and this cell voltage was manually adjusted until the 

desired cathode potential was reached. This was checked every two or three days, and the 

deviation from the desired potential was <0.01 V during >95% of the experiment. 

During all experiments, the catholyte was aerated with ambient air, resulting in an oxygen 

concentration of 6.5 mg/L. Oxygen concentration was measured with a hand-held oxygen 

meter (Hach Lange NV, Mechelen, Belgium). Catholyte pH was manually controlled at pH 7. 

A maximum deviation in pH of 0.5 was allowed; pH was adjusted back to 7.0 with NaOH or 

HCl. Anolyte and catholyte were recirculated at a rate of 12 L/h. Both anode and cathode 

compartments were equipped with Ag/AgCl, 3 M KCl reference electrodes (+0.205 V vs 

NHE). Potentials of anode and cathode were measured versus their reference electrodes and 



 

 83 

5 

collected every 60 seconds via a Fieldpoint FP-AI-110 module connected to a PC. All 

experiments were performed in a temperature controlled chamber at 30 °C. 

5.2.3 Electrochemical (bio)cathode characterization  

Before inoculation with nitrifying sludge, all electrodes were characterized for chemical 

oxygen reduction as an abiotic control, using the catholyte (medium with buffer and nutrients) 

as described above, aerated with ambient air. Polarization curves were recorded using a 

potentiostat (Iviumstat, IVIUM Technologies, Eindhoven, The Netherlands) using dc-

voltammetry (chronoamperometry). Cathode potential was set at 9 levels decreasing from 0.3 

V to -0.2 V vs Ag/AgCl in steps of 0.05 V. Each potential was set for 300 seconds to allow the 

current to stabilize. The last data point for each potential is shown in the polarization curve.  

The polarization behavior of the biocathodes was regularly examined using dc-voltammetry 

(chronoamperometry). The circuit was opened and open circuit potential was measured after at 

least 600 seconds so that the potential had stabilized. After this, the measurement was started. 

The cathode potential was set at the open circuit cathode potential (cathode OCP) and 

decreased in steps of 0.05 V to the lowest value of 0 V vs Ag/AgCl. Each potential was set for 

600 seconds to allow the current to stabilize. The last data point for each potential is shown in 

the polarization curve. It should be noted that the currents obtained during the polarization 

tests do not represent real steady-state currents, because only 300-600 s were given for each 

potential step. This time is too short to reach steady-state, but is valid for comparative tests. 

The biocathodes were characterized using cyclic voltammetry to investigate catalytic 

behavior of the biocathodes. Besides, a cyclic voltammogram was recorded as an abiotic 

control (chemical oxygen reduction). Cyclic voltammograms were made in the range from 

cathode OCP down to 0 V vs Ag/AgCl and back to cathode OCP. For the abiotic control, a 

larger range was needed to produce a current, and the chosen range was from +0.25 V v 

Ag/AgCl to -0.3 V vs Ag/AgCl. Scanrate was 1 mV/s and at least 2 cycles were performed. 

Second and third cycles always looked similar to the first, except for the current density 

measured at start which appeared different in the first cycle and the same in later cycles. 

Therefore the last cycle is shown. Cyclic voltammograms were first made under aerobic 

conditions, and then under nitrogen flushing, after flushing for at least 15 minutes.  

Finally, the effect of flow rate and oxygen concentration on performance of biocathodes 

were studied. This experiment was done in the cell where cathode potential was originally 

controlled at +0.15 V vs Ag/AgCl. The cathode potential was controlled with the potentiostat 

at a fixed potential for 300 seconds to allow the current to stabilize. The last data point for 

each dataset is presented. Three different potentials were chosen: +0.2V, +0.28V, and +0.35 V 
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vs Ag/AgCl. Only potentials higher than +0.15 V vs Ag/AgCl were tested, because high 

cathode potential is desired when maximizing the performance of the MFC. First, the effect of 

flow rate on the current was tested by increasing the pump recirculation rate from 0 L/h up to 

21 L/h in several steps. This resulted in a linear flow velocity between 0 and 2.4 cm/s as the 

flow diameter was 2.4 cm2. The effect of flow rate was tested at the three different cathode 

potentials. Finally, three different oxygen concentrations were tested at fixed cathode potential 

of +0.2 V vs Ag/AgCl and a fixed recirculation rate of 12 L/h. This was done by increasing 

the nitrogen supply, which resulted in oxygen concentrations of 7.3 mg/L, 4.7 mg/L, and 0.06 

mg/L.  

5.2.4 Analyses 

Average current density and average cathode potential were calculated daily from the data 

obtained every 60 seconds.  

Limiting current density (A/m2) was calculated as described in (12) by bOkFni ,2lim , 

where n=4 (number of electrons per oxygen molecule), F=Faraday constant, k=mass transfer 

coefficient (m/s), and O2,b = bulk oxygen concentration (mol/m3). The mass transfer 

coefficient is a function of both oxygen diffusion coefficient and linear flow velocity (Ter 

Heijne et al., 2008) as 
D

k , where D is the oxygen diffusion coefficient (assumed to be 

2*10-9 m2/s (Picioreanu et al., 1997)) and δ = thickness of the boundary layer. This thickness 

of the boundary layer was calculated as a function of recirculation rate via the Peclet number 

(Ter Heijne et al., 2008). As shown in Williamson and McCarty (1976), there is an additional 

boundary layer attached to the biofilm that cannot be influenced by recirculation rate. As a 

result, we have an increase in boundary layer of 56 µm (Williamson and McCarty, 1976).  

 

5.3 Results and discussion 

5.3.1 Start-up potential influenced start-up time of biocathodes  

Three bioelectrochemical cells were started at three different potentials. The current density 

produced during the first 21 days is shown in Figure 1. Before inoculation, all cells produced 

negligible current, similar to or lower than the control experiments at the same potential. 
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Figure 1. Current production of the three biocathodes controlled at different potentials. Highest current 

density was reached by the cathode controlled at +0.15 V vs Ag/AgCl, and the cathode controlled at 

+0.25 V vs Ag/AgCl did not produce any current until day 15. 

 

The biocathodes controlled at +0.05 V and +0.15 V vs Ag/AgCl produced a current almost 

immediately after inoculation. The third biocathode produced no current until day 15. The 

biocathode controlled at +0.15 V vs Ag/AgCl reached the highest current density of 313 

mA/m2 on day 18. The biocathode controlled at +0.05 V vs Ag/AgCl reached a maximum 

current density of 164 mA/m2 on day 21. The biocathode controlled at +0.25 V vs Ag/AgCl 

reached a maximum current density of 68 mA/m2 on day 76. 

All three biocathodes needed several weeks before maximum current was reached, ranging 

from 18 days to 76 days. Also other studies report start-up times in this range (Clauwaert et al., 

2007; Freguia et al., 2008). while start-up times for bio-anodes are usually much shorter, 

ranging between 5-8 days before maximum current was produced (Aelterman et al., 2008; 

Cheng et al., 2007). Apparently, the microorganisms catalyzing oxygen reduction are slowly 

growing organisms, which makes us believe they are autotrophs, as they were not fed any 

organic carbon source after inoculation, and were grown from nitrifying sludge.  

The cathode controlled at +0.25 V vs Ag/AgCl had the longest start-up time. This may be 

explained by the fact that cathode potential regulates the amount of energy to be gained by the 

cathodic microorganisms. 
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Table 1. Effect of control strategy on energy available for microorganisms and energy available for 

electricity production, expressed as ΔG and voltage. For comparison, the energy available for 

microorganisms in aerobic wastewater treatment (activated sludge) is included. 

 

Control strategy ΔG available for 

cathodic 

microorganisms 

(kJ/mol e) 

Potential 

available for 

cathodic 

microorganisms 

(V) 

ΔG available 

for current 

production* 

(kJ/mol e) 

Potential 

available for 

current 

production* 

(V) 

MFC with Ecat = 

+0.05 V vs Ag/AgCl 

-53 0.55 -52 0.54 

MFC with Ecat = 

+0.15 V vs Ag/AgCl 

-43 0.45 -62 0.64 

MFC with Ecat = 

+0.25 V vs Ag/AgCl 

-33 0.35 -72 0.74 

Aerobic wastewater 

treatment in activated 

sludge using acetate 

as electron donor 

 

-105 

 

1.09 

 

0 

 

0 

* It is assumed that acetate is used as electron donor. Acetate oxidation at pH=7, 50 mM acetate, and 50 

mM bicarbonate results in an anode potential of -0.494 V vs Ag/AgCl (2). Gibb‟s free energy (ΔG), 

expressed per mole of electrons, and potential (E) are related via E=-ΔG/nF, where n is 1. 

 

Oxygen reduction theoretically occurs at a potential of +0.60 V vs Ag/AgCl at pH=7 and 

pO2=0.2 bar (Hamelers et al., 2010). This potential is the maximum cathode potential at which 

oxygen reduction can occur. The difference between this thermodynamic potential and the 

controlled cathode potential represents the maximum potential to be gained by the cathodic 

microorganisms. When cathode potential is controlled at +0.25 V vs Ag/AgCl, maximally 0.35 

V is to be gained by the microorganisms, while at a cathode potential of +0.05 V vs Ag/AgCl, 

0.55 V is to be gained by the microorganisms (Table 1).  

At the same time, cathode potential regulates the potential to be gained when applied in an 

MFC. So, when cathode is controlled at a higher potential, less energy is to be gained by the 

microorganisms, which may result in slower growth and longer start-up time. The potential 

available for electricity production however, is higher at higher cathode potential. From Table 

1, it becomes clear that in aerobic wastewater treatment, at least twice as much energy is 

available to the microorganisms compared to the biocathodes, however, no electricity can be 

gained. 
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Besides differences in start-up time, there were also differences in the current produced at 

the different potentials. The biocathode controlled at +0.15 V vs Ag/AgCl had the highest 

current, while the biocathode with the highest overpotential, the one controlled at +0.05 V vs 

Ag/AgCl had considerably lower current. We hypothesize that this lower current may be 

caused by possible production of H2O2 at the electrode. The thermodynamic potential at 

which H2O2 is produced is +0.269 V vs NHE at pH=7 and pO2=0.2 bar (Hamelers et al., 

2010), which corresponds to a cathode potential of +0.064 V vs Ag/AgCl. Only at potentials 

lower than this thermodynamic potential, H2O2 can be formed. So, the biocathode controlled 

at +0.05 V vs A/gAgCl may have been negatively affected by H2O2 and therefore produced a 

lower current. No H2O2 measurements have been done in this study, however, these would be 

useful to study if H2O2 negatively affects biocathode performance. 

 

5.3.2 Biocathode performance increased with time  

Performance of the biocathodes during and after start-up was analyzed with time by 

polarization curves. The result for each cell is shown in Figure 2A-C, where the first two 

biocathodes were studied from day 0 to day 23, and the third biocathode was studied from day 

0 to day 76. Performance of all three biocathodes improved with time: the maximum current 

density that is reached in the polarization curves increases with time, and also cathode potential 

increases with time at the same current density. The increase in performance with time was 

most pronounced for the cell with the biocathode controlled at +0.15 V vs Ag/AgCl, and less 

pronounced for the cell with the biocathode controlled at +0.25 V vs Ag/AgCl, when 

considering the same time frame from 0 until 23 days. This supports the observed differences 

in start-up time. The biocathode controlled at +0.25 V vs Ag/AgCl was tested and 

characterized during a longer time period, which resulted in a similar polarization curve as the 

biocathode at +0.05 V vs Ag/AgCl, only after 76 days instead of 23 days. Especially the 

polarization curve for the biocathodes controlled at +0.15 V vs Ag/AgCl shows a limiting 

current: below a cathode potential of +0.2 V vs Ag/AgCl, a further decrease in potential does 

not result in an increase in current density. This may indicate that maximum activity of the 

biofilm is reached, or that mass transfer of oxygen is limiting biocathode performance. 
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Figure 2. Development of the biocathodes can be seen in the polarization curves of the three cathodes. 

The three cells show an increase in performance with time, showing activity of the biofilm. The cathodes 

were controlled at (A) +0.05 V vs Ag/AgCl, (B) +0.15 V vs Ag/AgCl, and (C) +0.25 V vs Ag/AgCl. 

Note that Figure A and B show the development from day 0 to day 23, while Figure C shows the 

development from day 0 to day 76. 

 

5.3.3 Cyclic voltammetry showed catalytic behavior for oxygen reduction 

At the end of the experiment, the catalytic behavior of the biocathodes was tested using cyclic 

voltammetry. The biocathodes were tested under aerobic and anaerobic conditions. The result 

for the biocathode controlled at +0.15 V vs Ag/AgCl is shown in Figure 3. It can be seen that 

the maximum current density of 295 mA/m2 was reached at a cathode potential of +0.2 V vs 

Ag/AgCl. At lower cathode potential, this current density was constant. Under constant 

nitrogen flushing, the current density was considerably decreased to 45 mA/m2, indicating that  

A B 

C 

time time 

time 
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Figure 3. Biocathode controlled at +0.15 V vs Ag/AgCl shows catalytic behavior for oxygen reduction, 

at an oxygen concentration of 6.5 mg/L (O2) and <0.1 mg/L (N2). The abiotic control produced a 

current only below a cathode potential of +0.1 V vs Ag/AgCl at an oxygen concentration of 7.5 mg/L 

(O2) and 0.2 mg/L (N2).  

 

indeed oxygen reduction is the reaction that is catalyzed. When comparing these results with 

the cyclic voltammograms obtained for chemical oxygen reduction, it can be seen that indeed 

the oxygen reduction reaction is catalyzed by the microorganisms: the abiotic control does not 

produce a current before the cathode potential decreased below +0.1 V vs Ag/AgCl, while the 

biocathode produced 295 mA/m2 at this same potential. Under constant nitrogen flushing, 

current production decreased as a result of low oxygen concentration.  

The other two biocathodes showed similar catalytic behaviour to the biocathode controlled 

at +0.15 V vs Ag/AgCl, the main difference being a lower maximum current density for both 

cells compared to the biocathode controlled at +0.15 V vs Ag/AgCl. The solution alone was 

also tested for catalytic behaviour by means of cyclic voltammetry. No calalytic behavior was 

found, and there was no distinct difference between anaerobic and aerobic cyclic voltammetry 

scans of the solution, meaning that the catalytic activity was caused by the biofilm on the 

electrode. 
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5.3.4 Biocathodes were both mass transfer and charge transfer limited  

To investigate the limiting factors in biocathode performance, the current density of the 

biocathode was studied at different oxygen concentrations, different recirculation rates, and 

different potentials. This experiment was done in the cell where cathode potential was 

originally controlled at +0.15 V vs Ag/AgCl. Current was limited by mass transfer of oxygen, 

as a decrease in oxygen concentration from 100% to 65% to 0.8% resulted in a decrease in 

current density of 241 to 194 to 15 mA/m2. This mass transfer effect was further studied by 

changing the recirculation rate, hereby changing oxygen transfer.  

Figure 4 shows the current density at different recirculation rates when cathode potential 

was controlled at +0.2 V, +0.28 V, and +0.35 V vs Ag/AgCl. Two effects can be seen here: 

current density increases with increasing recirculation rate, and with decreasing cathode 

potential. This shows that the biocathode was both limited by mass transfer of oxygen and by 

potential (charge transfer of the electrons from the electrode to oxygen). When cathode 

potential is lower, current density increases because the driving force increases, and charge 

transfer increases. The limitations in charge and mass transfer can also been seen in the cyclic 

voltammogram (Figure 3). In Figure 3, we can see that for the biocathode controlled at +0.15 

V vs Ag/AgCl, the performance at 0.28 V and 0.35 V vs Ag/AgCl is limited. This limited 

performance may be caused by the fact that these potentials are too positive for the active 

catalytic enzymatic component that interacts with the electrode. At potentials lower than +0.2 

V vs Ag/AgCl, oxygen mass transfer becomes limiting, while at the other two potentials charge 

transfer is more dominant (Figure 4).  

Increase in current density or decrease in flow velocity may lead to local pH increase at the 

electrode, resulting in higher cathode overpotential (Jeremiasse et al., 2009). It was shown by 

Jeremiasse et al. (2009) that cathode overpotential did not change at current densities up to 2 

A/m2 when using a buffer of 20 mM, which indicates that proton supply from bulk to the 

electrode was sufficient to keep constant pH at the electrode surface. It is therefore likely that 

under the circumstances in our biocathode with the same buffer concentration and a lower 

current density, proton transport was sufficiently high, and thus mass transfer can be attributed 

to oxygen only and not to protons.   
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Figure 4. Increasing recirculation rate and decreasing cathode potential result in an increase in current 

density. This means that both mass transfer and charge transfer are limiting biocathode performance. 

 

Limiting current density was calculated to investigate if mass transfer limitations could be 

expected. The calculations were based on the assumption that the boundary layer is composed 

of a stagnant layer attached to the biofilm, that cannot be influenced by flow rate, and a 

diffusion layer that can be influenced by flow rate. These calculations do not take into account 

oxygen diffusion inside the biofilm itself. Furthermore, it is assumed that all oxygen at the 

electrode surface is consumed. This limiting current density was calculated to be 848 mA/m2 at 

a recirculation rate of 21 L/h (linear flow velocity of 2.4 cm/s, resulting in k=1.6*10-5 m/s and 

a total boundary layer thickness of 182 µm). This is a factor 3 higher than the measured current 

density. This difference can be explained by several factors: (i) charge transfer is limited by 

cathode potential, (ii) slower effective diffusion of oxygen in the biofilm compared to the 

theoretical diffusion coefficient in water, as the biofilm was not taken into account in the 

calculation, and (iii) coverage and activity of biofilm was not at its maximum, i.e., in the 

calculations it is assumed that the full electrode is covered and that biofilm activity is not 

limited by factors other than potential and oxygen. It is clear that mass transfer of oxygen 

strongly affects biocathode performance as the increase in recirculation rate results in an 

increase in current density. More insight in the contribution of mass and charge transfer to 

biocathode performance may be gained by the use of electrochemical methods like 

Electrochemical Impedance Spectroscopy (EIS), which will be the subject of further study. 
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5.3.5 Implications 

The maximum current density produced by the best performing biocathode was 313 mA/m2 

at a cathode potential of +0.15 V vs Ag/AgCl. Bio-anodes tested on the same flat electrodes 

reached a maximum current density of 4,630 mA/m2 (Ter Heijne et al., 2008). So, the current 

density of the best performing biocathode was still a factor 15 lower than bio-anodes on the 

same rough graphite electrode. Our results show, that biocathodes are already close to reach 

the limit of mass transfer of oxygen. In this respect, the rate of oxygen transfer can be well 

compared to other nitrifying biofilms. The oxygen transfer rate of the biocathode rO2 (g 

O2/m2.d) can be calculated according to 
Fn

Mi
r

O

O
2

2

360024
, where i=current density 

(A/m2), MO2 = 32 g/mol, n=number of electrons involved (=4 in case of oxygen), and 

F=Faraday constant (C/mol). The maximum current density of 313 mA/m2 gives an oxygen 

transfer rate of 2.2 g O2/m2.d. This rate is comparable to the oxygen transfer rate for 

autotrophic microorganisms during nitrification, for example 1.0 g O2/m2.d in a biological 

rotating contactor (Metcalf&Eddy, 2003), or 5.1 g O2/m2.d in a trickling filter (Siegrist and 

Gujer, 1987).  

Oxygen diffusion from bulk to the microorganisms takes place through three adjacent layers: 

the diffusion layer facing the bulk solution, the stagnant water layer attached to the biofilm, 

and the biofilm itself. By increasing the linear flow rate, only the thickness of the layer facing 

the bulk solution can be decreased and in this way, oxygen transfer through this layer can be 

improved. Besides, air cathodes with a biofilm, to which a thin water layer is attached, may be 

developed for better oxygen transfer. Oxygen diffusion inside the biofilm and the stagnant 

water layer however, cannot be influenced by flow rate. To improve oxygen transfer into the 

biofilm, several directions are possible: use of pure oxygen (Dekker et al., 2009), pressurized air 

(Fornero et al., 2008), or photosynthetic microorganisms that can create oxygen concentrations 

up to 20 mg/L (Strik et al., 2010). Care should be taken, however, with too high oxygen 

concentrations, as these may be toxic to the microorganisms. Furthermore, increased thickness 

of the biofilm leads to improved oxygen transfer in homogeneous nitrifying biofilms (Siegrist 

and Gujer, 1987), possibly because of a lower biofilm density and easier diffusion of oxygen as 

a result. This may be a direction for improvement of oxygen transfer in biocathodes as well. 

Another direction to increase volumetric productivity is the use of 3D electrodes with a high 

specific surface area, like graphite felt or carbon granules (Logan et al., 2007; Sleutels et al., 

2010). When the flow is well-directed through the porous electrode (Sleutels et al., 2010), this 

can also further increase the volumetric current production of biocathodes.  
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Oxygen mass transfer was, besides cathode potential, the main factor limiting biocathode 

performance, while oxygen transfer rates were reached that were comparable to the rates in 

other nitrifying biofilms. As discussed above, several directions can be followed to improve 

oxygen mass transfer. When mass transfer and volumetric current production of biocathodes 

are further improved, there is great potential for biocathodes to increase electricity production 

in MFCs.   
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Abstract 

A metallurgical Microbial Fuel Cell (MFC) is an attractive alternative for recovery of copper 

from copper containing waste streams, as the metal is recovered in its metallic form at the 

cathode, while the energy for metal reduction can be obtained from oxidation of organic 

materials at the anode with possible additional production of electricity. We studied the 

recovery of copper in an MFC using a bipolar membrane as a pH separator. Under anaerobic 

conditions, the maximum power density was 0.43 W/m2 at a current density of 1.7 A/m2. In 

the presence of oxygen, MFC performance improved considerably to a maximum power 

density of 0.80 W/m2 at a current density of 3.2 A/m2. Pure copper crystals were formed on 

the cathode, and no CuO or Cu2O was detected. Removal efficiencies of >99.88% were 

obtained. The cathodic recovery of copper compared to the produced electricity was 84% 

(anaerobic) and 43% (aerobic). The metallurgy MFC with the Cu2+ reducing cathode further 

enlarges the application range of MFCs. 
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6.1 Introduction 

Microbial Fuel Cells (MFCs) are a novel technology to convert biodegradable materials 

directly into electricity (Logan et al., 2006). During the last years, applications of Microbial Fuel 

Cells expanded from wastewater purification combined with electricity production to 

production of added-value components in the cathode, like H2 and H2O2 (Hamelers et al., 

2010).  

A new potential application of MFCs is the removal and recovery of metals from mining and 

metallurgical wastewaters and leachates. Depending on the origin of these streams, they 

contain heavy metals such as copper, nickel, cobalt and zinc (Johanson and Hallberg, 2005; 

Johnson, 2000; Heikkinen et al., 2009). The mining and  metallurgical industries are main 

contributors of anthropogenic copper emissions to the environment (Flemming and Trevors, 

1989). At low concentrations, copper is a micronutrient and is essential to virtually all plants 

and animals. At higher concentrations, copper can become toxic to all life forms, although 

toxicity levels vary widely. Due to its effects on plants, copper is a serious threat to agriculture 

(Flemming and Trevors, 1989). Therefore, it is important that copper is removed from waste 

streams. Current methods for copper removal are, amongst others, cementation (Hor and 

Mohamed, 2003) co-precipitation with calcium carbonate (Khosravi and Alamdari, 2009), and 

adsorption (Alkan et al., 2008; Kazemipour et al., 2008). In addition to removal, treatment of 

these waste streams should preferably result in the recovery of copper for (re-)use in industry.  

To achieve this combination of copper removal and recovery, we propose the metallurgical 

MFC. In the metallurgical MFC, oxidation of organic material is coupled to reduction of 

copper, according to: 

 

Anode:  CH3COO- + 4 H2O  2 HCO3
- + 9 H+ + 8 e-   (1) 

Ean = -0.289 V vs NHE (pH = 7, [CH3COO-] and [HCO3
-] = 0.05 M)     

Cathode: 4 Cu2+ + 8 e-  4 Cu (s)      (2) 

Ecat = +0.286 V vs NHE   ([Cu2+] = 1g/L) 

Overall: CH3COO- + 4 Cu2+  2 HCO3
- + 9 H+ + 4 Cu (s)   (3) 

Ecell = 0.575 V  

 

The overall process is shown in Figure 1.  
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Figure 1. Principle of the MFC with copper reduction and a bipolar membrane as a pH separator 

 

At the anode, organic material is oxidized to CO2, protons and electrons. At the cathode, 

Cu2+ is reduced to Cu. This principle is applied for a typical acidic (pH 3) waste stream 

containing considerable amounts of copper (1 g/L). Such a low pH is necessary for the 

performance of the metal reducing cathode, as at a pH > ~4.5, Cu2+ may precipitate as CuO 

or Cu2O and may not be available for reduction. Besides, no pH adjustment of the copper 

containing waste stream is necessary when the cathode is operated at low pH. A bio-anode 

however, can not be operated at such a low pH, and is preferably operated at near neutral pH 

to achieve higher current densities. A barrier is thus needed between the anode and cathode to 

keep the pH difference intact. This barrier prevents the pH in the catholyte to increase and the 

anolyte pH to drop.  

For this purpose, a bipolar membrane was used, which has been shown to be an effective 

pH separator in previous studies (Ter Heijne et al., 2006; Ter Heijne et al., 2007), although part 

of the energy was lost for maintaining the pH difference. The bipolar membrane produces acid 

and base via the water splitting reaction that occurs between the anion exchange layer and the 

cation exchange layer (Figure 1). Protons migrate through the cation exchange layer to the 

cathode compartment, while hydroxyl ions migrate through the anion exchange layer to the 

anode compartment. In this way, the pH difference between both compartments can be 

maintained.  
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Application of MFCs in metal removal has until now only been studied for the reduction of 

Cr(VI) to Cr(III) at the cathode for detoxification purposes (Wang et al., 2009; Li et al., 2009), 

but Cr(III) reuse is not feasible. In addition to its potential as environmental remediation 

technology, MFCs could also be used to produce metals from low grade ores in 

hydrometallurgical processes (Dreisinger, 2009).  

By applying biodegradable organic compounds in a metallurgical MFC, electricity is 

produced, copper is recovered on electrodes, and acid is generated. This has several advantages 

compared to the currently applied methods for copper recovery, like electrowinning 

(Jergensen, 1999) and precipitation with sulfide, which is produced via sulphate reduction 

(Bijmans et al., 2009). Compared to electrochemical processes, electricity is produced instead 

of used. Compared to sulphate reduction, the metallurgical MFC is more efficient both in 

organic carbon and energy use. Only two moles of electrons are needed to recover one mole of 

copper, instead of the eight moles of electrons that are needed to reduce the sulphate to sulfide 

(Bijmans et al., 2009). Therefore, the metallurgical MFC is four times as efficient in organic 

carbon use. Besides, electricity is produced, elemental copper is produced instead of copper 

sulfide, and the sulfuric acid remains available, which can be used for the bioleaching 

operation.  

MFC performance was studied through batch performance, polarization curves, and copper 

removal with ICP. Oxygen is the preferred electron acceptor in MFCs because of its 

availability and high redox potential. Presence of oxygen could affect MFC performance, also 

in case of Cu2+ reduction, and therefore, the process was studied under both anaerobic and 

aerobic conditions. The recovered copper product was examined using scanning electron 

microscopy and X-ray powder diffraction. We show that MFCs can recover pure copper with 

an efficiency of >99.88% with simultaneous electricity production. 

6.2 Materials and methods 

6.2.1 Research setup  

The electrochemical cell used in this study has been previously described in (Ter Heijne et 

al., 2008). The setup contained two flow channels sized 10cm x 2cm x 1.5cm (w x h x d), 

which were separated by a bipolar membrane (Fumasep FBM, Fumatech, Germany). The 

membrane  and electrode surface area was 22 cm2. The anode was a rough (sandpapered) 

graphite plate (Müller&Rössner GmbH, Troisdorf, Germany), while the cathode was a piece of 

graphite foil, 1.0 g/cc density, 99% purity (Coidan Graphite Products Ltd, York, UK), pressed 

on a mixed metal oxide coated titanium plate that functioned as a current collector (Magneto 
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Special Anodes BV, Schiedam, The Netherlands). Anode and cathode potentials were 

measured versus reference electrodes (Ag/AgCl, 3M KCl, ProSense QiS, Oosterhout, The 

Netherlands). The potential of these reference electrodes was regularly checked versus a 

Standard Calomel Electrode (SCE, +0.241 V vs NHE) and showed a negligible drift (<2 mV). 

6.2.2 Start-up and operation  

The anode was inoculated with a mixed culture anolyte from operating MFCs running on 

acetate. Anode medium was continuously fed to the system at a rate of 12 mL h-1. The anode 

medium consisted of acetate (20 mM), phosphate buffer (pH 7, 20 mM), and nutrients and 

vitamins as described in (Ter Heijne et al., 2008). The actual acetate concentration in the MFC 

during the whole experiment was measured with Gas Chromatography and was always higher 

than 5 mM. The catholyte was prepared with copper chloride dihydrate (analytical grade) 

obtained from Merck (Darmstadt, Germany). The pH was lowered to 3 by addition of HCl. 

Both anode and cathode compartments had a flow rate of ~10 L h-1. The total catholyte 

volume was 800 mL. Anolyte was controlled at pH=7, while catholyte was controlled at pH=3. 

All experiments were performed in a temperature controlled chamber at 30 °C.  

The cathode was operated in batch and continuously recirculated over a recirculation bottle. 

The total catholyte volume was 800 mL. Copper reduction in the cathode was first tested 

under anaerobic conditions (catholyte recirculation bottle was continuously flushed with 

nitrogen gas), and secondly under aerobic conditions (catholyte recirculation bottle was open 

to air). The bio-anode was started up with a catholyte consisting of 20 mM phosphate buffer at 

pH=7, via a recirculation bottle which was open to air.  

Anode and cathode were connected via a resistance of 1000 Ω which was stepwise 

decreased. The MFC was considered to be started up when current density was stable at a 

value higher than 0.3 A/m2 for at least 10 hours, and the anode potential was lower than -0.5 V 

vs Ag/AgCl. When these criteria were met, the catholyte was replaced with Cu2+ solution (1 

g/L) at pH=3 under anaerobic conditions. Resistance was decreased stepwise in the first 24 

hours from 100 to 50, 30, 15, 10 and finally 4.7 Ω for the anaerobic experiment. During the 

remainder of the experiment, resistance was kept constant at 4.7 Ω. At the end of the 

experiment, the MFC was opened and directly re-assembled with the same bio-anode and a 

new bipolar membrane and a new cathode graphite paper. Cu2+ solution was added directly 

under aerobic conditions. The  resistance was decreased stepwise in the first 20 hours from 50 

to 20, 10, and finally 5.0 Ω. During the remainder of the experiment, resistance was kept 

constant at 5.0 Ω. 
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6.2.3 Analyses 

Polarization curves were recorded using dc-voltammetry (chronoamperometry). For the 

CuCl2 cathode, cell voltage was decreased in 17 steps from open circuit voltage (OCV) down 

to 0 V. For the blank (oxygen reduction at pH=7), cell voltage was decreased in 10 steps from 

0.4 to 0 V. At each voltage, current was stabilized for at least 15 minutes. The last data point is 

shown in the polarization curve. 

Samples of anolyte and catholyte were analyzed once or twice every day for their copper 

concentration. It was assumed that all copper in solution was present as Cu2+, and copper was 

determined with an Inductively Coupled Plasma – Optical Emission Spectrometer (ICP-OES; 

Vista-MPX, Varian, Inc.).  

When all copper was depleted, the MFC was opened and the graphite paper with visible 

precipitation was washed with demineralized water and air-dried. The morphology of 

precipitates on the electrode were examined with SEM and crystal structure with XRPD. 

Measurements with the Scanning Electron Microscope (SEM, NORAN System SIX model 

300 X-ray microanalysis system, Thermo Electron Corporation) were done at an acceleration 

voltage of 10 kV. X-ray powder diffraction (XRPD) patterns were recorded in a Bragg-

Brentano geometry in a Bruker D5005 diffractometer equipped with Huber incident-beam 

monochromator and Braun PSD detector. Data collection was carried out at room 

temperature using monochromatic Cu Kα1 radiation (λ = 0.154056 nm) in the 2θ region 

between 5° and 90°, step size 0.038 degrees 2θ. Both samples were measured under identical 

conditions The samples of about 20 milligrams were deposited on a Si <510> wafer and were 

rotated during measurement. Data evaluation was done with the Bruker program EVA.  

Cathodic efficiency ηcat, the amount of copper reduced compared to the current produced, 

was calculated as F

dtI

VCuCu
t

t
Cat 2

)][]([

0

2

0

2

 where [Cu2+]t = Cu2+ 

concentration at time t (mol/L), [Cu2+]0 = Cu2+ concentration at time 0 (mol/L), V = 

catholyte volume (L), I = current (A), and F=Faraday constant (96485 C/mol). 
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6.3 Results and discussion 

6.3.1 Anaerobic cathodic copper reduction resulted in high MFC 

performance  

The first run was performed under anaerobic conditions with the catholyte consisting of 1 

g/L of Cu2+ as CuCl2 at pH 3. The catholyte was continuously flushed with nitrogen gas to 

maintain anaerobic conditions. Current density increased instantaneously from 0.34  

A/m2 (MFC at the end of start-up period with oxygen reduction) to 1.5 A/m2 at a cell voltage 

of 0.31 V. At a resistance of 4.7 Ω, a current density of 4.5 A/m2 was found. In the course of 

time, as copper concentration decreased, current density decreased to <0.1 A/m2 after 7 days. 

The second run was performed in the same MFC but now the catholyte was open to air, 

resulting in an oxygen concentration of 6.5 mg/L. After addition of copper chloride, current 

density increased to a maximum of 6.2 A/m2 at a resistance of 5.0 Ω. Similarly to the anaerobic 

experiment, in course of time, cell voltage and current density decreased, to <0.7 A/m2 after 8 

days. 

A polarization curve was made under anaerobic and aerobic condtions when Cu2+ 

concentration was 0.93 g/L and 0.94 g/L and was compared to the blank experiment with 

oxygen reduction at pH 3 (Figure 2A).  
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Figure 2A. Polarization curves for copper reduction under aerobic conditions showed a maximum 

power density (closed symbols) of 0.80 W/m2. This was almost two-fold higher than the power density 

for copper reduction under anaerobic conditions, and more than 30-fold higher than the power produced 

in the blank experiment with oxygen reduction at pH 3. Open symbols represent cell voltage. 



 

 103 

6 

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.0 2.0 4.0 6.0

Current density (A/m
2
)

P
o

te
n

ti
a

l 
(V

 v
s
 S

C
E

)

anaerobic

aerobic

cathode

membrane

anode

 
Figure 2B. Analysis of the potentials in both polarization curves shows that under aerobic conditions, 

cathode potential was higher than under anaerobic conditions. Combined with an improvement in anode 

performance (lower anode potential at same current density), overall MFC performance clearly improved.  

 

Under anaerobic conditions, the maximum power density was 0.43 W/m2 at a current 

density of 1.7 A/m2.  Under aerobic conditions, the maximum power density was almost two-

fold higher: 0.80 W/m2 at a current density of 3.2 A/m2. A further increase in  

oxygen concentration to 7.5 mg/L had no influence on MFC performance meaning that 

oxygen transfer was not limiting MFC performance. Performance of the MFC with copper in 

the catholyte was considerably higher than in the blank experiment without copper, where the 

maximum power density was a factor 35 lower compared to aerobic copper reduction: 0.023 

W/m2 at a current density of 0.12 A/m2.  

6.3.2 Aerobic copper reduction resulted in improved performance  

The power density of the MFC with Cu2+ reduction was improved by almost a factor two 

under aerobic conditions compared to anaerobic conditions. Figure 2B shows the anode and 

cathode potentials and the voltage across the membrane in both the anaerobic and the aerobic 

situation.  From Figure 2B it can be seen that under aerobic conditions, cathode potential was 

between 0.05 and 0.1 V higher than under anaerobic conditions. In combination with better 

anode performance (lower anode potential at the same current density), the overall MFC 

performance was twice as high under aerobic conditions as under anaerobic conditions. The 

presence of oxygen in the catholyte apparently leads to combined reduction of oxygen and 
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copper, resulting in higher performance. The performance of the anode may have been better 

because the aerobic experiment was performed as the second run, and therefore the anode 

microorganisms had been accustomed for a longer time to produce electricity.  

Visual inspection of the membrane after disassembling the MFC showed no precipitates on 

the membrane after both the anaerobic and the aerobic experiment. No copper was detected in 

the anolyte, indicating that there was no copper leakage through the bipolar membrane from 

cathode to anode. 

6.3.3 Pure copper crystals were formed on the cathode  

XRPD measurements showed that pure copper crystals were formed on the cathode for 

both the anaerobic and aerobic experiment. No trace of other copper crystals (CuO, Cu2O) 

were detected with XRPD.  

The SEM pictures (Figure 3) suggest that copper grows from units with a rounded or more 

octahedral habit that eventually connect to form a dense layer (Figure 3A and 3B).  

  

 
Figure 3 (A) Copper deposited under anaerobic conditions on graphite electrode.  (B) Copper deposited 

under aerobic conditions on graphite electrode (C) Growth of copper on graphite electrode 

imperfections (picture taken under aerobic conditions).  

A B 
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These units seem to be rather evenly spread over the cathode surface. Under both anaerobic 

and aerobic conditions, the copper growth units appear to be dominant close to the light gray 

lines in the background (Figure 3C). This means that copper growth starts at the edges where 

graphite surface elevation changes. The copper deposited under aerobic conditions displays 

more octahedral habit features and a less cauliflower-like overall structure than does the copper 

precipitated under anaerobic conditions (Figure 3A and 3B). This may be attributed to a 

somewhat slower growth of copper under aerobic conditions (8 days vs 7 days under anaerobic 

conditions), which leads to larger and more pronounced crystal faces. The denseness of the 

copper product allowed for strips of copper to be peeled off the electrode for recovery.   

6.3.4 MFC performance decreased with decreasing copper concentration  

The polarization curves were made at Cu2+ concentrations of 0.93 g/L (aerobic), and 0.94 

g/L (anaerobic). As the copper concentration decreased with time as a result of the reduction 

reaction, the cathode potential decreased with time as well. This resulted in a decrease in MFC 

cell voltage and current density.  

The effect of Cu2+ concentration on MFC performance was further investigated. Cu2+ 

concentrations with time for both the anaerobic and the aerobic experiment are shown in 

Figure 4A.  
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Figure 4A. Cu2+ concentration decreased with time for both the anaerobic and the aerobic experiment. 
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In both experiments, a slower decrease in copper concentration was observed during the 

first 2 days, when current density was still low as the result of the high resistance used. After 

this, a constant resistance of 4.7 Ω (anaerobic) and 5.0 Ω (aerobic) was used, and copper 

concentration decreased quite linearly until low copper concentrations were reached. The last 

measured copper concentration was 1.2 mg/L for the anaerobic experiment, and 0.5 mg/L for 

the aerobic experiment. As no copper was detected in the anolyte, and no precipitates were 

visible in other parts of the system, it can be assumed that all copper was precipitated on the 

cathode. The maximum copper removal efficiency was calculated to be 99.88% in the 

anaerobic experiment, and 99.95% in the aerobic experiment. 

The effect of copper concentration on current density at constant resistance of 4.7 Ω  

(anaerobic) and 5.0 Ω (aerobic) is shown in Figure 4B.  

A decrease in copper concentration resulted in a decrease in cathode potential. As a result, cell 

voltage and current density decreased as well. At copper concentrations below 0.2 g/L, we see 

a steep drop in current density in both experiments. Thus, when high current densities are 

required, a copper concentration above this level is required. The current densities in the 

aerobic experiment were higher than in the anaerobic experiment.  

 

0

1

2

3

4

5

6

7

0.0 0.2 0.4 0.6 0.8 1.0

Cu
2+

 concentration (g/L)

C
u

rr
e

n
t 
d

e
n

s
it
y
 (

A
/m

2
)

anaerobic

aerobic

 
Figure 4B. Cu2+ concentration at a constant resistance had a pronounced effect on the produced current 

density. Especially at low Cu2+ concentrations (<0.2 g/L), current density decreased. 
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Also when all copper was removed, we still measured a current density of 0.7 A/m2, 

compared to 0.1 A/m2 in the anaerobic experiment. The presence of oxygen in the system may 

produce a background current as a result of oxygen reduction. The combination of oxygen 

reduction and copper reduction resulted in higher current densities. 

Cathodic efficiency was calculated from the decrease in copper concentration and the 

produced current. In the anaerobic experiment, the cathodic efficiency was 84%. This means, 

that more electrons were recorded as current than electrons were consumed for copper 

reduction. Apparently, there was another electron sink present in the catholyte. Even though 

the catholyte was continuously flushed with nitrogen gas, there may have been some trace 

concentrations of oxygen in the system, which could take up part of the electrons. The 

cathodic efficiency of the aerobic experiment was significantly lower: 43%. This lower 

efficiency under aerobic conditions compared to anaerobic conditions further indicates that 

besides copper, also oxygen was reduced at the cathode.  

Open circuit cathode potential was +0.08 V vs SCE at a copper concentration of 0.93 g/L, 

corresponding to a value of +0.321 V vs NHE. At open circuit, no losses occur at the 

electrode and the measured potential should be equal to the theoretical potential. The 

theoretical potential of the reaction Cu2+ + 2 e-  Cu is +0.34 V vs NHE. A copper 

concentration of 0.93 g/L would then result in a cathode potential of +0.285 V vs NHE. So, 

the measured open circuit potential was somewhat higher than the theoretical cathode 

potential. This may be an indication of some oxygen present even though the catholyte was 

continuously flushed with nitrogen gas. Under aerobic conditions, open circuit cathode 

potential was even higher: +0.12 V vs SCE (+0.361 V vs NHE). As the open circuit potential 

for oxygen reduction at pH=3 is and pO2=0.2 bar is +1.04 V vs NHE, oxygen is a more 

preferred electron acceptor. The higher measured open circuit cathode potential may thus be 

the result of a mixed potential of both copper and oxygen reduction. 

6.3.5 Implications  

A high removal efficiency of 99.88% combined with high energy production makes this new 

process of interest for copper recovery. The obtained power densities are comparable to 

results achieved with other well-performing cathode systems using oxygen (Ter Heijne et al., 

2007; Cheng et al., 2006; Freguia et al., 2008). This is surprising, considering that the standard 

potential of Cu2+/Cu is considerably lower than that of oxygen reduction: +0.286 V vs NHE 

for Cu2+ reduction compared to +0.805 V vs NHE for oxygen reduction. Besides, the use of 

the bipolar membrane leads to an additional potential loss. Despite these drawbacks, the 

system achieved a cell voltage of 0.25 V at the maximum power density under aerobic 
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conditions, which corresponds to a voltage efficiency of 43% using the maximum cell voltage 

based on the thermodynamic cathode potential for copper (Ecell=0.585 V), or 23% using the 

maximum cell voltage based on the thermodynamic cathode potential for oxygen reduction 

(Ecell=1.09 V).  

The high performance of the MFC with Cu2+ reducing cathode could be a result from a 

number of factors: (i)  mass transfer of Cu2+ is faster as copper has high solubility at acidic 

conditions (we used 16 mM), while mass transfer limitations of oxygen occur as a result of low 

oxygen solubility of only 0.20 mM when catholyte was saturated with air. We see that only 

below 0.2 g/L of Cu2+ (Figure 4B) that there is a limitation that might be attributed to mass 

transfer limitations, (ii) the oxygen reduction reaction has a high overpotential, while the 

overpotential for Cu2+ reduction is much lower, and (iii) copper might function as a catalyst for 

the oxygen reduction reaction. Considering the low cathodic efficiency under aerobic 

conditions, the increased current under aerobic conditions was clearly a result of additional 

oxygen reduction. This additional current was however much higher than expected from the 

performance of the blank experiment.  

Expressing the cathode overpotential in terms of the current at which cathode potential was 

zero, we find for the blank, anaerobic, and aerobic experiment a current density of 0, 1.5, and 

3.8 A/m2. This difference between the current produced by the anaerobic and aerobic Cu2+ 

reduction reaction cannot be explained by the catalytic activity of the carbon cathode for 

oxygen reduction, as the blank produced no current at a cathode potential of 0 V vs SCE. This 

would be an indication that copper is somehow involved as a catalyst. 

This new metallurgical MFC combines electricity production with copper recovery. As the 

metallurgical MFC is still in early stage of development, it cannot be directly compared to the 

current recovery methods like electrowinning (Jergensen, 1999) and precipitation with sulfides 

(Bijmans et al., 2009), however, some main points of attention will be addressed here to 

position the metallurgical MFC within the field of copper recovery.  

First, compared to electrowinning, the metallurgical MFC has the advantage of electricity 

production instead of electricity consumption, and the high removal efficiency leading to final 

copper concentrations <1.2 mg/L. It should be noted however, that electrowinning occurs at 

current densities of several orders of magnitudes higher than reported in this study, and it 

should be investigated to what extent the energy losses in the metallurgical MFC increase when 

operating at similar current densities as electrowinning.  

Secondly, an organic source is needed to provide the anodic microorganisms with the 

necessary energy. These organics are not always available on sites where mining and 

metallurgical streams and leachates, or waste streams from industry are present. So, application 
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of the metallurgical MFC is limited to locations where both organics and copper streams can 

be found in proximity.  

Thirdly, the metallurgical MFC has a high carbon efficiency compared to precipitation with 

sulfides, because only 2 electrons are needed for copper reduction instead of 8 electrons for 

sulphate reduction. The key parameter to determine carbon efficiency in the metallurgical MFC 

is the Coulombic efficiency, which indicates how many electrons from the organic carbon 

source and up as electric current. Previous studies have shown that Coulombic efficiencies up 

to 95-100% have been achieved (Ter Heijne et al., 2006; Aelterman et al., 2008). Besides 

Coulombic efficiency, also cathodic efficiency is important in this respect, because the product 

of both determines which part of the electrons present in the organic source end up in the final 

copper product. In this study, we reached a maximum cathodic efficiency of 84% in the 

anaerobic experiment. Combined with a Coulombic efficiency of 95%, 80% of the electrons in 

the carbon source end up in copper. At 100% efficiency, the organic carbon use in the 

metallurgical MFC is 0.25 kg COD/kg Cu, and 80% efficiency thus results in an organic 

carbon use of 0.31 kg COD/kg Cu. This makes the metallurgical MFC more than 3 times as 

efficient as sulphate reduction, where at 100% efficiency, 0.99 kg COD/kg Cu is needed. In 

case of copper recovery in the metallurgical MFC, it would be an advantage if the system can 

be operated anaerobically, because this results in increased (cathodic) efficiency.  

Fourthly, another option for the use of MFCs for copper recovery would be to use the 

„green‟ electricity produced in the MFC to supply power for electrowinning. The metallurgical 

MFC then has the advantage that the reactions take place in only one system, which reduces 

the overall energy losses. 

Besides a technology for copper recovery, Cu2+ reduction as a cathodic reaction is thus an 

interesting option to consider for the improvement of MFC performance, as we have shown 

that it can compete with oxygen reduction as an efficient cathode option. In this case, further 

study of the catalytic behavior of copper for oxygen reduction is important. Of course, 

application is limited to situations were Cu2+ solutions are available. As we have shown that the 

formed copper is pure and can thus be reused, while electricity is produced, this makes the 

metallurgy MFC an attractive option for copper recovery. The Cu2+ reducing cathode thus 

enlarges the application range of MFCs even further and illustrates once more the flexibility of 

MFC applications. 
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Abstract 

Scale-up studies of MFCs are required before practical application comes into sight. We 

studied an MFC, which consisted of a single cell with a surface area of 0.5 m2 and a total 

volume of 5 L. Ferric iron (Fe3+) was used as the electron acceptor to improve cathode 

performance. MFC performance continuously increased in time as a combined effect of 

growth of the electrochemically active microorganisms at the bio-anode, stepwise increase in 

iron concentration from 1 g/L to 6 g/L, and increased activity of the iron oxidizers to 

regenerate the ferric iron. Finally, a power density of 2.0 W/m2 (200 W/m3) was obtained at a 

current density of 4.2 A/m2. Analysis of internal resistances showed that the anode resistance 

decreased from 109 to 7 mΩ.m2 in the course of the experiment, while cathode resistance 

decreased from 939 to 85 mΩ.m2. The cathode was still the main limiting factor, as it 

contributed to 58% of the total internal resistance. For practical application of MFCs, further 

study on cathodes, stacking, and scaling up is needed. 
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7.1 Introduction 

Wastewaters are being recognized as a renewable energy source in the form of biodegradable 

organic matter. Extracting energy from wastewaters is a valuable contribution to the 

production of renewable energy and the reduction of greenhouse gas emissions. Microbial Fuel 

Cells (MFCs), using microorganisms as the catalyst, are regarded as a promising technology for 

the production of electricity from wastewater (Logan et al., 2006).  

Advantage of the MFC compared to current technologies like anaerobic digestion, is the 

potentially high energy efficiency, as electricity is produced directly without an energy 

inefficient combustion step. Unlike anaerobic digestion however, the feasibility of MFC 

technology has not been proven on a commercial scale yet (Rozendal et al., 2008). This has 

both economic and technological reasons. From an economic point of view, MFC installations 

at this point require higher capital costs. From a technological and energetic point of view, the 

maximum power production is limited by ohmic losses in the solution and electrochemical 

losses at the electrodes, and bacterial metabolic losses (Logan et al., 2006; Rozendal et al., 2008; 

Hamelers et al., 2010). Essential measures to overcome losses in the MFC are to maintain short 

internal distances to reduce the ohmic resistance, and to choose highly conductive electrodes 

(Clauwaert et al., 2008), and to improve the cathode as the oxygen reduction reaction requires 

high overpotentials. 

Small-scale MFCs with volumes ranging between 10 mL and 1 L and projected surface areas 

between 1 cm2 and 400 cm2 have been tested worldwide for many years now. However, larger-

scale MFC research has been lagging behind. The first successful attempt for scaling-up the 

MFC was published by Dekker et al. (2009). It was shown that a scaled-up system consisting of 

four stacked cells and with a total volume of 20 L, achieved 144 W/m3. The major bottlenecks 

were cathode performance, cell reversal, and flow characteristics.  

We continued the study on scaling up MFCs to gain more insight in its operation. Our 

approach was to replace oxygen as the electron acceptor by ferric iron (Fe3+) to improve 

cathode performance (Ter Heijne et al., 2006; 2007), and to operate the MFC under improved 

flow characteristics compared to previous study. We operated a single scaled-up cell instead of 

four cells, so that scaling up could be studied without the effect of cell reversal. In this setup, 

the MFC was operated during 37 days, and performance was analyzed by development of 

current and power production with time and by polarization curves. 
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7.2 Materials and methods 

7.2.1 Reactor configuration 

The scaled-up MFC was previously described in Dekker et al. (2009). The two electrodes 

were made of two layers of titanium mesh coated with platinum and iridium (330 mm × 1500 

mm) on a flat plate, resulting in a projected surface area of 0.5 m2. The Pt-Ir coating was used 

to reduce the internal resistance and overpotentials of the cell (Dekker et al., 2009). Ferric iron 

was used as electron acceptor at the cathode, combined with biological ferrous iron oxidation 

(Ter Heijne et al., 2007) to regenerate the ferric iron. In order to maintain the low catholyte pH 

required to keep ferric iron soluble, a bipolar membrane (Fumasep FBM, Fumatech, Germany) 

was used to separate anolyte and catholyte.  

The thickness of the anode and cathode compartment was 5 mm, which led to a total cell 

volume of 5 L and a volumetric surface area of 100 m2/m3. The flow in both anode and 

cathode side was directed from three inlets on the bottom to three outlets on the top. This was 

done to improve the flow characteristics compared to previous study, where an S shape flow 

path from the inlet at the bottom to the outlet at the top was used (Dekker et al., 2009). Both 

anode and cathode compartment contained Ag/AgCl reference electrodes connected to the 

top of the cell (PreSense QiS, Oosterhout, the Netherlands).  The potential of these reference 

electrodes were regularly checked versus an SCE reference electrode (+0.241 V vs NHE). The 

potentials of anodes and cathodes were converted and expressed vs. SCE throughout. 

7.2.2 Start-up and operation 

Sludge from an anaerobic digester was used to inoculate the anode. Acetate was used as a 

carbon and energy source in a nutrient solution containing 10 mM macro-nutrients, 1 mM 

micro-nutrients, 1 mM vitamins and 20 mM phosphate buffer as previously described (Dekker 

et al. 2009). Acetate concentration in the medium was calculated from the produced current, 

and the resulting minimum acetate concentration in the MFC was 20 mM so that no acetate 

depletion would occur. This synthetic medium was continuously fed into the anode 

recirculation vessel with a feeding rate of 54 mL/h. The system was operated at 30 oC in a 

constant temperature chamber.  

Both anolyte and catholyte were recirculated at a flow rate of 70 L/h. The anode 

recirculation vessel had a volume of 1 L, whereas the cathode recirculation vessel had a volume 

of 30 L. The anolyte was controlled at pH 7 with 3 M KOH, and the catholyte was controlled 

at pH 1.6 with 1.8 M H2SO4. The catholyte consisted of ferric iron sulfate solution (1 g/L), 

and was inoculated with biomass support particles (BSPs) containing ferrous iron oxidizing 
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bacteria. Before inoculation, these iron oxidizers were grown from Rio Tinto sludge following 

the procedure described in (Ter Heijne et al., 2007): the biomass support particles were placed 

in a Fe2+ containing medium (3.3 g/L Fe2+), and incubated on a rotary shaker at 175 RPM. 

After several replacements of the medium, the BSPs were placed in the recirculation vessel of 

the cathode. The standard nutrients for the iron oxidizers (0.4 g/L (NH4)2SO4, 0.4 g/L 

KH2PO4 and 0.4 g/L MgSO4) were supplied to the cathode compartment only at the 

beginning of the experiment. Air was continuously sparged in the cathode recirculation vessel 

through four porous Teflon cylinders.  

The strategy for MFC operation was the following. The first 7 days were used for start-up, 

until anode potential became stable at a value of -0.47 V vs SCE. During these 7 days, the 

external resistance was decreased from 50 Ω to 2 Ω in several steps. From day 7 on, the cell 

voltage of the MFC was potentiostatically controlled in a 2-electrode setup using a HP 96-20 

potentiostat (Bank Elektronik – Intelligent Controls GmbH, Pohlheim, Germany). The 

operating mode was changed from using an external resistance (load) to potentiostatic control 

to enable an increase in current density. At this point, the load was 2 Ω. In scaled-up systems, a 

low external resistance is needed to produce considerable current and power, because of the 

large size of the electrode: an increase in electrode size results in a decrease in internal 

resistance of the electrode. At a certain point however, the external resistance cannot be 

further decreased without creating large inaccuracies in determining the current. These 

inaccuracies are caused by the fact that the resistance of the electrodes, wires, and contacts 

together is unknown and can reach several tenths of ohms or even reach several ohms. The 

actual resistance is then the sum of the external resistance and the resistances of electrode, 

wires, and contacts. Thus, the actual resistance is higher than the value of the external 

resistance alone. When the measured cell voltage is converted into current by using the value 

of the load, the current density is thus largely overestimated. To enable accurate estimation of 

the current and to enable further improvement of MFC performance, the control strategy was 

thus changed from operation with an external resistance to potentiostatic control.  

From day 7-12, the current density was increased by decreasing the controlled cell voltage 

from 0.575 V to 0.47 V. From day 12-37, MFC performance was further improved by 

increasing the iron concentration in the catholyte in 5 steps from 1 g/L to measured 

concentrations of 2 g/L, 3 g/L, 5 g/L, 5.5 g/L, and 6 g/L. This was done at constant 

controlled cell voltage of 0.475 V until day 28, where cell voltage was decreased to 0.45 V until 

the end of the experiment.  
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7.2.3 Measurements and analyses 

During the experiment, cell voltage, electrode potentials, and the voltage across the 

membrane (potential difference between the reference electrodes) were collected every 60 

seconds via a Fieldpoint data acquisition system, connected to a PC. Current density and 

power density were normalized to the projected surface area of 0.5 m2
 or to the total cell 

volume of 5 L. 

Anolyte and catholyte were sampled every two or three days and analyzed for their iron 

concentration. The ratio of ferrous and ferric iron was measured using Dr. Lange test LCK 

320 (Hach Lange GmbH, Düsseldorf, Germany). 

Acetate concentrations were measured with gas chromatography as described in (Ter Heijne et 

al., 2008) 

Polarization curves were recorded using dc-voltammetry with the HP 96-20 potentiostat. 

For this, cell voltage was decreased stepwise from open circuit voltage down to 0 V in steps of 

0.025 to 0.1 V. At each voltage, current was stabilized for at least 10 minutes.  

The volumetric resistance was calculated from the anode and cathode overpotentials (V) 

divided by the current density (A/m2). Anode overpotential was calculated as the measured 

anode potential minus the thermodynamic anode potential of -0.535 V vs SCE (at 20 mM 

acetate, 50 mM bicarbonate, pH=7). Cathode overpotential was calculated as the 

thermodynamic cathode potential of +0.581 V vs SCE (at Fe3+/Fe2+=90%) minus the 

measured cathode potential. Resistances were expressed in Ωm2, and can be converted into 

volumetric resistance (Ωm2) by dividing by the specific surface area of 100 m2/m3. 

 

7.3 Results and discussion 

7.3.1 MFC performance in time 

The performance of the scaled-up MFC during the 37 days of operation is shown in Figure 1. 

Figure 1A shows the cell voltage, potentials of anode and cathode, and the membrane potential 

as a function of time. Figure 1B shows the related development in current density and power 

density. Anode potential became stable at -0.47 V vs SCE after 7 days. At this point, current 

density was 0.36 A/m2. During the rest of the experiment, the bio-anode was able to maintain 

a low and stable anode potential around -0.5 V vs SCE. This anode potential stayed stable, 

while current density continuously increased, which means that the performance of the bio-

anode improved with time.  
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Figure 1. Performance of the MFC using acetate as electron donor and ferric iron (Fe3+) was reduced at 

the cathode. Anode and cathode were separated by a bipolar membrane. Anolyte pH was 7, while 

catholyte pH was 1.6. The MFC was operated for 37 days, and its performance is shown in terms of cell 

voltage, cathode potential, anode potential, and voltage across the membrane (A), and in terms of current 

and power density (B). Additions of iron to the catholyte are indicated with arrows. 
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Not only the bio-anode performance improved, also the cathode performance improved in 

time. During the whole experiment, we observed an increase in current and power density, 

while additional sudden increases in current density were found when the iron concentration 

was increased, as indicated by arrows in Figure 1. This jump in current density after each 

addition of iron, means that the iron concentration was one of the factors limiting MFC 

performance. The continuous increase in current density in time is probably a combined effect 

of the growth and development of the bio-anode with time, higher iron concentrations, and 

increased activity of the iron oxidizers with time, resulting in more available Fe3+, which is 

favorable for the reduction reaction. While the first three additions of iron were done in the 

form of Fe3+, the last two additions of iron were done in the form of Fe2+ (sulphate). Whereas 

addition of Fe3+ resulted in a positive peak in current density, the addition of Fe2+ resulted first 

in a decrease in current density, but as soon as the iron oxidizers had oxidized the added Fe2+ 

into Fe3+, current density started increasing. The voltage across the membrane stayed constant 

throughout the experiment, although current density increased. This is in accordance with 

previous findings (Ter Heijne et al., 2006) and can be explained by the fact that the voltage loss 

over the bipolar membrane is a function of the pH difference between both compartments, 

and this pH difference was constant throughout the experiment.  

During the last 5 days of the experiment, at an iron concentration of 6 g/L, the maximum 

power density of 2.0 W/m2 was found, corresponding with 200 W/m3, at a current density of 

4.2 A/m2, while cell voltage was controlled at 0.475 V.  

7.3.2 Polarization curves 

The increasing performance of the scaled-up MFC with time is also reflected in the 

polarization curves, which were recorded on day 18, 29, and 34 (Figure 2A and B). On day 18, 

the iron concentration in the catholyte was 1.7 g/L. The maximum power density was 40 

W/m3 at a current density of 1.3 A/m2. On day 29, after the third increase in iron 

concentration, the maximum power density in the polarization test reached 157 W/m3 at a 

current density of 2.1 A/m2 and an iron concentration was 5.2 g/L. On day 34, the iron 

concentration was 5.7 g/L, and this resulted in a maximum power density of 185 W/m3 at a 

current density of 4.6 A/m2. Whereas the anode overpotential was stable with increasing 

current density, reflecting the ability of the bio-anode to adapt to higher current densities 

without additional energy losses, both the cathode and the membrane showed considerable 

overpotentials. With time, performance of the cathode improved as a result of the higher Fe3+ 

concentration.  
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Figure 2. Polarization curves of scaled-up MFC with time, for anode, cathode, and membrane (A) and 

cell voltage (open symbols) and power density (closed symbols) (B). 

 

The maximum power density in the polarization curves was lower than the power produced 

during stable operation. This seems to be caused by the time chosen for each step of the 

polarization curve. We used a time of 10 minutes for each potential step. This was not enough 

for the current to stabilize, as cell voltage and current density still gradually increased after 10 
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minutes. Therefore, MFC performance was underestimated in the polarization curve. This may 

be a result of the large electrodes used in this study compared to other studies, that may need 

longer time to reach equilibrium. In smaller systems, on the other hand, usually performance is 

overestimated when recording polarization curves (Menicucci et al., 2006; Ter Heijne et al., 

2008). Still, polarization curves provide essential information on the response of electrode 

potentials and cell voltage to a change in current density. For characterization of MFCs, it is 

therefore important to combine results of long-term operation with polarization curves.  

7.3.3 Iron concentration decreased with time 

The iron concentrations in the catholyte are shown in Figure 3. Overall, most iron was in the 

form of Fe3+, and thus the biological ferrous iron oxidation rate was high enough to sustain 

the produced current. In the first half of the experiment, the ratio Fe3+/Fe2+ was always 

>90%, while the ratio slightly decreased in the second half of the experiment, with ratios 

between 80% and 90%. The lower ratio Fe3+/Fe2+ during the second half of the experiments 

may be caused by (i) the higher current density, for which a higher oxidation rate of Fe2+ is 

needed, and this may lead to limitations in oxygen transfer, 
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Figure 3. Iron concentration in the catholyte, at pH=1.6. The ratio Fe3+/Fe2+ was always >80%, 

showing enough capacity of the iron oxidizing microorganisms. 
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or (ii) limited activity of the iron oxidizers as a result of higher Fe2+ concentrations, which can 

have an inhibitory effect on growth and oxidizing capacity at concentrations in the range of 2 

to 5.6 g/L (Nemati, 1998).  

After each addition of iron, the iron concentration did not stay constant but decreased with 

time. It is unlikely that iron diffused through the membrane to the anolyte, as samples of the 

anolyte showed no iron, as also observed in previous study (Ter Heijne et al., 2007). 

Precipitation of iron seems the most reasonable explanation for the decrease in iron 

concentration, as it was observed on the cathode when disassembling the MFC. Inspection of 

these precipitates under the microscope showed that they consisted of yellow/orange rod-

shaped microorganisms in combination with salt structures. These yellow precipitates were 

probably a combination of the iron oxidizers with iron salts. The risk of iron precipitation is an 

important point of attention for further development of scaled-up systems using Fe3+. 

7.3.4 Analysis of internal resistances 

When looking at the performance of the MFC during the operation time in Figure 1A, on 

first sight it seems that no considerable changes occur; all potentials are more or less constant 

and the highest peaks correspond with a potential change of about 0.1 V. Only when 

combining the potentials in Figure 1A with the current density in Figure 1B, it can be seen that 

big changes occur with time. The reason that this change is not seen in Figure 1A is partly a 

result of the potentiostatic operation mode, where the cell voltage is kept constant. In this way, 

there is not much room for the potentials to change; instead, current density changes. To 

visualize the changes in performance, it is useful to express the energy losses in the system in 

terms of their internal resistances or resistance (in Ωm2 or Ωm3). This resistance is calculated 

as the overpotential (difference between theoretical potential and measured potential) divided 

by current density. In this way, the effect of current density is taken into account, and it makes 

comparison with other systems with different electrode sizes possible (Clauwaert et al., 2008; 

Sleutels et al., 2009).  

The three parts of the MFC where we measured the energy losses were anode, cathode, and 

membrane. The resistance for anode and cathode at each iron concentration was averaged 

during the most stable 24 hours (Figure 4).  
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Figure 4. Resistance of anode and cathode throughout the operation period. Total resistance decreased a 

factor 10, while cathode resistance was considerably higher than anode resistance. 

 

As the voltage loss over the membrane was independent of current density, its resistance is 

not shown. Anode resistance decreased from 109 to 7 mΩ.m2 in the course of the experiment, 

reflecting the increase in activity of the electro-active biofilm. Cathode resistance decreased 

from 939 to 85 mΩ.m2 as a result of the increase in Fe3+ concentration. So, both anode and 

cathode resistance decreased almost a factor 10 within the operating period, resulting in the 

increase in MFC performance with time. Total cell resistance (anode, cathode, and membrane) 

decreased from 1,756 mΩ.m2 in the beginning of the experiment to 146 mΩ.m2 in the final 

stage of the experiment. At maximum performance, the cathode contributed to 58% of the 

total resistance, which shows that the cathode was still the main factor limiting MFC 

performance. At the same time, the membrane contributed to 37% of the total internal 

resistance. 

7.3.5 Outlook 

The obtained power density of 200 W/m3 (2.0 W/m2) is a next achievement in scaling-up 

MFCs. It is a factor 1.4 higher than the 140 W/m3 previously obtained in the same scaled-up 

MFC (Dekker et al., 2009), and illustrates again that it is possible to reach power densities 

similar to those obtained in lab experiments. While the anode had a low resistance of 7.5 

mΩ.m2 (0.075 mΩ.m3), the cathode resistance was 84 mΩ.m2 (0.84 mΩ.m3) and made up 58% 

of the total resistance caused by anode, cathode and membrane together. The replacement of 
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oxygen reduction by ferric iron reduction resulted in a decrease in cathode resistance from (on 

average) 1.3 mΩ.m3 (Dekker et al., 2009) to 0.85 mΩ.m3. This demonstrates the superior 

performance of ferric iron reduction compared to oxygen reduction, even when oxygen 

reduction takes place on a Pt-coated electrode at pH 4, with pure oxygen. 

An important parameter to consider besides power density, and resistances, is the energy 

efficiency. The energy efficiency reflects which part of the energy in the carbon source is 

converted into electrical energy, and is the product of Coulombic efficiency and voltage 

efficiency. The Coulombic efficiency was determined between day 20 and 30 and was found to 

be 65%. The theoretical maximum cell voltage of acetate oxidation in combination with iron 

reduction, assuming that 90% of the iron is present in the form of Fe3+, is 1.12 V. The applied 

cell voltage of 0.475 V then results in a voltage efficiency of 43%. This combination of 

coulombic efficiency and voltage efficiency results in an energy efficiency of 28%. In the 

polarization curve on day 34, voltage efficiency was considerably higher. This polarization 

curve (Figure 2B) showed a maximum power density of 180 W/m3, at a current density of 2.6 

A/m2. At this point, the cell voltage was 0.7 V, resulting in a voltage efficiency of 63%. 

Combined with a coulombic efficiency of 65%, this results in an energy efficiency of 41%.  

In terms of power production and energy efficiency, it is interesting to compare the MFC 

with anaerobic digestion, the only other technology in which similar wet organic waste streams 

are converted into electricity. For comparison, we assume that all COD in the anaerobic 

digester is present in the form of acetate. The energy content of the acetate can be calculated 

similarly to the MFC: with oxygen as the final electron acceptor (in combustion), the Gibb‟s 

free energy is -844 kJ/mol. The energy content of the formed CH4 can then be calculated from 

the reaction CH4 + 2 O2  CO2 + 2 H2O, and is -810 kJ/mol. This means, that of the energy 

in acetate, 34 kJ/mol is lost in the conversion to CH4. This corresponds with an energy loss of 

roughly 5%. Furthermore, if we assume that 5% of the energy in acetate is incorporated in 

biomass (Van Lier et al., 2008), so that the efficiency of conversion of acetate into methane is 

90%, and an average combustion efficiency of CH4 of 33% (Weiland et al., 2006), we find an 

overall energy efficiency of acetate into electricity of 30%. The power that can be produced in 

the anaerobic digestion, based on a conversion rate of 25 kg COD/m3d, a lower heating value 

of 50.1 MJ/kg CH4, and an overall energy efficiency of 30%, is 1,087 W/m3. So, while the 

performance of this scaled-up MFC in terms of power production is still a factor 5 away from 

anaerobic digestion, its energy efficiency is already comparable or higher. When comparing 

MFCs with anaerobic digestion with respect to power production, it should be noted, that the 

conversion rate in the MFC at a current density of 4.2 A/m2 was only 3 kg COD/m3d, while 

the power produced in the anaerobic digester was based on a conversion rate of 25 kg 
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COD/m3d. While in anaerobic digesters an increase in conversion rate results in an increase in 

power, this does not hold for MFCs, in which the balance between voltage and current 

determines at which conversion rate maximum power is reached.  

Which issues need to be further addressed to bring application of MFCs closer?  

First of all, there is need for a well-functioning cathode if MFC performance is to be further 

improved. This study again showed that the cathode resistance was considerably higher than 

the anode resistance, and until today, the limit of the bio-anode has not been reached. For this 

to happen, we need a strong cathode that can accept the electrons from the anode at a similar 

rate, or we need to increase the cathode surface area several times compared to the anode 

surface area. We showed that reduction of ferric iron resulted in superior performance 

compared to oxygen reduction. The scaled-up MFC with ferric iron reduction was operated 

during 37 days with continuous increase in performance. A further increase in iron 

concentration may result in higher cathode potential and improved MFC performance. On the 

other hand, higher iron concentrations may inhibit the iron oxidizers. Another limitation to 

ferric iron reduction may be the risk of precipitation. These issues need to be further studied 

and addressed. Besides the use of iron as electron acceptor, several other routes are possible to 

improve the cathode, for example the application of oxygen reducing biocathodes (Clauwaert 

et al., 2006; Freguia et al., 2009; Ter Heijne et al., 2010). Testing these alternatives in a scaled-

up system will show their feasibility for practical application. 

Secondly, this study aimed at characterization and improvement of a single cell, whereas 

as part of scaling-up, also stacking is an important point of attention to achieve high voltages. 

Still little research has been done on stacking. When stacking cells in series, cell reversal, which 

happens when one cell is not strong enough to maintain the current produced by the other 

cells, has been shown to be a major bottleneck (Dekker et al., 2009; Oh and Logan, 2007). 

Ways to overcome cell reversal need to be further studied, for example by analyzing flow 

characteristics and by testing strategies to keep an MFC running when cell reversal occurs.  

Thirdly, it is important that these phenomena are studied in scaled-up systems, as these may 

reveal other limiting factors not encountered in lab-scale systems. These scaled-up MFCs 

should further demonstrate the applicability of MFCs in practice.  

Finally, new challenges arise when using real wastewater as the substrate instead of acetate. 

These new challenges are related to the presence of particulate matter, hydrolysis of more 

complex substrates than acetate, fluctuating concentrations of organics, and the need for 

sufficient buffer capacity to reach the desired activity at the bio-anode. 
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7.4 Conclusions 

In this continued study on scaling-up MFCs, the cathode reaction was improved by 

replacing oxygen reduction with ferric iron reduction. This resulted in a maximum power 

density of 200 W/m3 at a current density of 4.5 A/m2. Analysis of anode and cathode 

resistances revealed that MFC performance increased as a result of development of the 

electroactive biofilm on the anode, and increase in Fe 3+ concentration in the cathode.  
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8.1 Introduction 

This chapter will give an overview of the status of Microbial Fuel Cells (MFCs) and 

addresses the main limitations in MFC performance. As basis for the discussion, we will first 

summarize the findings of this thesis.  

We started with investigation of the bioanode (Chapter 2). It was shown that bioanodes 

could produce considerable current densities up to 4.6 A/m2. This maximum current density 

was limited by bioanode activity. Then, several routes were followed to improve cathode 

performance.  

First, a cathode where oxygen reduction was replaced by reduction of ferric iron (Fe3+) was 

tested (Chapter 3 and 4). This resulted in improved cathode performance and in higher MFC 

performance compared to uncatalyzed oxygen reduction at graphite. The bipolar membrane 

however, led to new limitations related to water splitting efficiency and energy losses.  

Secondly, microorganisms were used as the catalyst for oxygen at the cathode (Chapter 5). 

This showed to be another successful approach for improving cathode performance compared 

to uncatalyzed oxygen reduction. In this case, it was shown that limitations arose as a result of 

both charge transfer and mass transfer of oxygen.  

Thirdly, replacing oxygen reduction with reduction of Cu2+ (Chapter 6) at pH=3 and with 

the use of a bipolar membrane, resulted in recovery of pure metallic copper while 

simultaneously, power was produced comparable to the power produced in other well-

performing MFCs with catalyzed oxygen reduction. Here, cathode and MFC performance 

decreased in time as a result of depletion of Cu2+.  

Finally, a scaled-up MFC was tested with a bipolar membrane and ferric iron reduction 

(Chapter 7). This scaled-up MFC produced 200 W/m2 and showed that power densities in 

scaled-up systems can be similar to lab-scale systems. Still, the cathode was the most important 

factor limiting MFC performance.  

In this final chapter, we will discuss the limitations that were encountered in this thesis. The 

maximum power production that is feasible in MFCs is estimated. Power density in 

combination with energy efficiency is used to compare MFCs to anaerobic digestion to discuss 

the future for MFCs for production of electricity from biomass. 
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8.2 Power production in MFCs 

In the early stage of development of MFCs, just after the first mediator-less MFC was 

reported by Kim et al. (2002), power densities between 1 and 10 mW/m2 were reported 

(Logan, 2009). Power density in MFCs has increased several orders of magnitude during the 

following years of research (Figure 1) and has reached values above 1 W/m2 in 2005. This 

increase in power density resulted from improvements in system architecture and from 

improved understanding of how to extract power using bacteria more effectively (Logan, 

2009). Whereas in the first years of MFC research, power density increased almost an order of 

magnitude per year, from 2005 on, the maximum power density reported in literature increased 

at lower pace. The highest power density reported until now, which is not included in Figure 1, 

is 6.86 W/m2 (Fan et al., 2008). The reason that this value is not included in Figure 1, is that 

this power density was normalized to the anode surface area, and was reached with a cathode 

area 14 times larger than the anode surface area to overcome cathode limitations. When 

normalized to the cathode surface area, this power density would be only 0.49 W/m2. For 

comparison, the results of this thesis are included in the figure, as indicated by the filled circles. 
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Figure 1. Development of power density in MFCs (based on Logan, 2009). Since 2005, the maximum 

power density achieved in MFCs has not increased considerably. The filled circles represent the results 

obtained in this thesis. 
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The question is if the power density in MFCs has already reached its limit, or if further 

reduction of energy losses will result in a further increase in power density. To discuss this, the 

limiting factors that have arisen in this thesis, being the cathode, bipolar membrane, mass 

transfer, and scaling up, will be addressed in the following paragraphs.  

8.2.1 Energy losses for oxygen reduction at the cathode of MFCs 

The oxygen reduction reaction is the most commonly used cathodic reaction in MFCs. 

Oxygen is an attractive oxidant because of its availability, its thermodynamic high redox 

potential of +0.805 V vs NHE at actual MFC conditions, and because the cathodic reaction 

product is pure water. The oxygen reduction reaction can follow two overall pathways: (i) the 

direct 4-electron pathway in which oxygen is reduced to water or hydroxide, and (ii) the 

peroxide pathway (Yeager, 1984).  

The oxygen reduction reactions via the two pathways are: 

(i) O2 + 4 H+ + 4 e-  2 H2O    E0 = 1.23 V vs NHE 

(ii) O2 + 2 H+ + 2 e-  H2O2     E0 = 0.69 V vs NHE 

Note that in both cases, the oxygen reduction rate and the potential at which oxygen is reduced 

is strongly dependent on the solution pH. This is important, because in MFCs, the catholyte 

pH generally increases in time as a result of cation transport through the cation exchange 

membrane (Rozendal et al., 2006).  

In practice, the reduction of oxygen in MFCs turns out to be slow (irreversible) and to occur 

at much lower potentials than the thermodynamic potential, because a large part of the energy 

at the cathode is lost to drive the oxygen reduction at the desired rate. Open circuit potentials 

for uncatalyzed carbon materials are typically around 0 V vs Ag/AgCl (Logan et al., 2006). This 

potential is close to the theoretical potential for hydrogen peroxide instead of oxygen reduction 

to water. Because carbon materials are good catalysts for the reduction of oxygen to hydrogen 

peroxide (Rozendal et al., 2009), hydrogen peroxide may be produced as a product of oxygen 

reduction, instead of water. Because the electrode potential for reduction of oxygen to 

hydrogen peroxide is lower than for reduction of oxygen to water, the formation of hydrogen 

peroxide results in lower power densities and should thus be avoided when aiming at 

improving MFC performance. 

To improve the reaction rate for oxygen reduction, many studies have been devoted to the 

development of metal- and non-metal catalysts to reduce overpotentials for oxygen reduction. 

Because Pt is an expensive catalyst, metal catalysts other than platinum have been examined, 

for example Fe(II) and Co-based catalysts (Lefebvre et al., 2009; Yu et al., 2009), and a possible 

catalytic action of copper for oxygen reduction was found (Ter Heijne et al., 2010).  
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Recently, increased attention is paid to the development of biological catalysts for the 

reduction of oxygen to water at the cathode. The advantages of biological catalysts are their 

ability to regenerate and their activity at ambient temperatures. These biocathodes can either 

operate indirectly via a mediating compound, or direct. Examples of indirect biocathodes are 

(i) the use of A. ferrooxidans, which oxidizes Fe2+ to Fe3+ while reducing oxygen. The formed 

Fe3+ is reduced at the (non-catalyzed) cathode at higher rate than oxygen (Ter Heijne et al., 

2007), and (ii) the reduction of MnO2 to Mn2+ at the electrode, with simultaneous oxidation of 

Mn2+ to MnO2 by manganese oxidizing bacteria (Rhoads et al., 2005). Direct biocathodes can 

be based on enzymes (Topcagic and Minteer, 2006; Schaetzle et al., 2009) or contain 

microorganisms that are attached to the cathode and that accept electrons from the electrode 

while reducing oxygen. This last type of biocathodes has been studied in salt water as well as in 

freshwater (Bergel et al., 2005; Clauwaert et al., 2007). Although (bio-)catalyzed cathodes have 

been shown to catalyze oxygen reduction compared to the plain material, the open circuit 

potentials are still low: in the range of +0.2-0.3 V vs Ag/AgCl or sometimes higher: +0.42 V 

vs Ag/AgCl (Clauwaert et al., 2007). A detailed overview of open circuit cathode potentials for 

different cathode catalysts are reported in literature is given in Table 1. Open circuit cathode 

potentials range from -0.05 to +0.75 V vs Ag/AgCl. While open circuit potentials can be 

compared to the thermodynamic potential, the cathode potential decreases (i.e. cathode 

overpotential increases) when a current is flowing. The increase in overpotential with changing 

current density provides information on the performance of the cathode.  

To be able to compare different systems, it is important to analyze cathode overpotential in 

combination with current density. The cathode overpotential divided by current density results 

in cathode resistance (Ωm2) (Sleutels et al., 2009a). An overview of cathode resistances 

reported in literature is shown in Table 1. In this table, the cathode resistance was determined 

from the slope of the polarization curves. It can be seen that internal resistances of this small 

selection of cathodes vary between 22 and  630 mΩm2. For comparison, if a cathode energy 

loss of 10% of the maximum cell voltage would be acceptable (0.11 V) at a current density of 

20 A/m2, the maximum cathode resistance should be as low as 5.5 mΩm2.  

Table 1 furthermore shows, that in many studies, the cathode contributes considerably to 

the total internal resistance. It must be noted, that many studies that aim at improving the 

cathode do not report cathode potential vs current density. This makes elaborate comparison 

of cathode performance difficult.  
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Table 1. Performance of MFCs and cathodes reported in literature. Performance was analyzed in terms 

of current and power density, open circuit cathode potential, cathode resistance, and cell resistance. 

Power density and current density was normalized to the membrane surface area. Resistances were 

calculated from the slope of the polarization curve. 

Cathode material and catalyst Open circuit 
cathode 
potential 
(V vs 

Ag/AgCl) 

Cathode 
resistance 
(mΩ.m2) 

Cell 
resistance 
(mΩ.m2) 

Contribution of 
cathode to 
internal 

resistance (%) 

Maximum 
power density 

(W/m2) 

Current 
density at 

Pmax 
(A/m2) 

Reference 

Cu2+ and oxygen on 
graphite, pH=3 

0.18 37 105 35 
 

0.8 3.2 Ter Heijne et al., 2010a 

Graphite with biocathode  0.38 481 n.a. n.a. n.a. n.a. Ter Heijne et al., 2010b 

Pt-coated titanium with 
Fe3+/Fe2+, pH=1.6 

0.5 85 125 69 2.0 4.2 Ter Heijne et al., 2010c 

Pt coated carbon cloth 0.5 557 724 77 0.26 0.68 Fornero et al., 2010 

Polypyrrole/carbon black 
composite 

-0.05 56 n.a. n.a. 0.4 1.8 Yuan et al., 2010 

Graphite with Fe-EDTA 0.1 86 n.a. n.a. 0.36 n.a. Aelterman et al., 2009 

Graphite fibre brush with 
biocathode 

0.3 513 653 79 0.53 1.3 You et al., 2009 

Graphite granules with 
HNO3 activation 

0.6 36 942 3.8 0.32 0.48 Erable et al., 2009a 

Pt-coated titanium, pH=4 0.55 110 130 86 1.4 2.8 Dekker et al., 2009 

Pt-coated carbon air 
cathode, pH=1 

0.75 22 n.a. n.a. 5.0 11 Erable et al., 2009b 

Pt coated carbon fibre n.a. 28 1,306 22 0.98 3.6 Fan et al., 2008 

Carbon with CoTMPP 0.25 193 256 75 0.73 2.1 Zuo et al., 2008 

Carbon felt pretreated 
MnO2 +microorganisms 

0.32 n.a. 193 n.a. 1.7 3.7 Clauwaert et al., 2007 

Graphite with soluble 
Fe3+/Fe2+ +iron oxidizers, 
pH=2.5 

0.57 55 122 45 1.2 4.5 Ter Heijne et al., 2007 

Graphite with soluble 
Fe3+/Fe2+, pH=2.5 

0.45 40 221 18 0.86 4.5 Ter Heijne et al., 2006 

Pyrolyzed FePc modified 
graphite foil 

0.3 185 457 40 0.061 0.16 Zhao et al., 2006 

Pt coated carbon cloth + 
PTFE 

0.3 45 n.a. n.a. 0.76 1.9 Cheng et al., 2006 

Reticulated Vitreous 
Carbon + MnO2 

0.55 n.a. n.a. n.a. 0.131 n.a. Rhoads et al., 2005 

CoTMPP coated carbon 
cloth, pH=3.3 

0.5 37 85 44 2.35 3.8 Zhao et al., 2005 

Stainless steel + biocathode 0.25 630 n.a. n.a. 0.322 1.342 Bergel et al., 2005 

Pt coated carbon cloth + 
PEM 

0.2 180 n.a. n.a. 0.49 1.22 Liu et al., 2004 

n.a. = not analyzed 
1 no polarization curve was made to determine maximum performance 
2 anode oxidation reaction was hydrogen oxidation instead of a bio-anode 
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8.2.2 Bipolar membrane 

In this thesis, we used a bipolar membrane in cases where neutral pH at the anode and low 

pH at the cathode was required. This was a Fumasep FBM bipolar membrane, produced by 

FuMA-tech GmbH, St. Ingbert, Germany. The suitability of a bipolar membrane for 

application in MFCs, was questioned by Harnisch et al. (2008). Their main arguments against 

use of a bipolar membrane were, that the bipolar membrane needs high current densities for 

water splitting to occur, and that the energy loss (polarization) as a result of water splitting is 

substantial. Here, we would like to challenge their arguments and to discuss arguments in favor 

of the use of bipolar membranes in MFCs. For this, first the general principle of the bipolar 

membrane will be explained. Then, the three main factors determining its applicability will be 

discussed: the energy required for water splitting, the limiting current density, and the proton 

transport number. 

The bipolar membrane consists of an anion exchange layer (AEM) and a cation exchange 

layer (AEM) mounted together (Figure 2). When placed into a solution containing salts, the 

positively charged ions from the cathode  (M+) and the negatively charged ions from the anode 

(X-) will diffuse into the membrane. 
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Figure 2. Principle of the bipolar membrane. The limiting current density represents the current density 

at which salt transport out of the membrane exceeds salt diffusion into the membrane so that water 

splitting occurs. 
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When an electric field is applied and a current flows, these salt ions will be transported out 

of the membrane. Water splitting will occur only when the current density increases to such a 

level that the rate of diffusion of salt ions out of the membrane exceeds the transport of salt 

ions into the membrane. In this case, no salt can be transported out of the membrane and in 

the transition region between anion and cation exchange membrane, water is split to produce 

protons and hydroxide anions. The protons will migrate through the cation exchange layer and 

the hydroxide anions will migrate through the anion exchange layer. In this way, the protons 

produced at the anode will be neutralized by the hydroxide anions, and the protons consumed 

at the cathode will be replenished by the protons produced in the membrane. 

The energy needed for the water splitting reaction to occur is determined by the pH 

difference between the compartments. The voltage drop needed for water splittingis 0.83 V for 

a 100% selective bipolar membrane for the generation of a one molar acid and base solution at 

298 K (Hurwitz et al., 2001) using: pH
F

TR
V

3.2
. This equation shows that the 

pH difference between anolyte and catholyte determine the voltage drop across the membrane 

and indicates the energy required for water splitting to occur.  

At the same time, a certain current density is needed to start water splitting. This current 

density is called the limiting current density, i.e. the current density where salt transport out of 

the membrane exceeds salt diffusion into the membrane. This limiting current density is thus 

dependent on the salt concentration in the electrolytes, and is the prerequisite for water 

splitting to occur. The following equation has been derived for the limiting current density 

(Wilhelm et al., 2001):

fix

s

m

sc

cD
Fi

2

lim 2  

This equation shows that the limiting current density is directly dependent on the square of 

the solution concentration (cs in mol/m3) and the average ion diffusion coefficient in the 

membrane (Dm in m2/s). They are inversely dependent on the thickness of the membrane (s in 

m) and the fixed charge density of the membrane (cfix in mol/m3). Thus, the higher the 

solution concentration, the higher the current density required to exceed the rate of salt 

diffusion into the membrane in order to start water splitting. 

Figure 3 shows the calculated limiting currents at different low solution concentrations, 

assuming a fixed charge density of 1.5 mol/L (Krol et al., 1998) and an ion diffusion 

coefficient of 1.8*10-9 m2/s (for K+, Krol, 1997), and a measured thickness of the bipolar 

membrane of 180 μm.  
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Figure 3. The current densities obtained in MFC studies up to 5 A/m2 are sufficient to allow water 

splitting to occur, if solution concentrations are below 60 mM. 

 

As MFCs usually operate under conditions of low salt concentration, this is actually 

advantageous for the use of a bipolar membrane in MFC, as the limiting current density 

needed to let the water splitting reaction occur is lower. Figure 3 shows that the current 

densities obtained in MFC studies in the range of 0-5 A/m2 is indeed enough to start water 

splitting when the solution concentration is lower than 60 mM. At the same time, if a pH 

difference of 5 units is to be maintained, this will result in an energy loss of 300 mV. The 

question is if this energy loss is acceptable, and depends mainly on the extent to which cathode 

performance is improved. 

Besides energy losses and limiting current density, the third factor determining the 

applicability of (bipolar) membranes is the proton transport number. The proton transport 

number indicates which part of the ions that are transported through the membrane consists 

of protons. Besides protons, other positively charged ions are present in the anolyte, and 

because these are often present in higher concentration, the other ions contribute to a large 

extent to the ion transport through the membrane (Rozendal et al., 2006). This is a problem, 

because it leads to pH gradients between anolyte and catholyte, as not all protons formed at 

the anode are transported to the cathode. As a result, the anolyte pH decreases and the 

catholyte pH increases. It is thus important that the proton transport number of a membrane 

is close to 1, meaning that all transport takes place in the form of protons. Especially in case of 

the bipolar membrane, that is used to maintain low pH in the cathode and neutral pH in the 
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anode, it is of major importance that the proton transport number is close to 1. Analysis of the 

proton transport number of a bipolar membrane from FuMA-tech (Chapter 4) showed that it 

was 0.65-0.76, and the other charge was transported mainly via K+ from anolyte to catholyte 

and via HSO4
-/SO4

2- from catholyte to anolyte. The other 24%-35% of the protons and 

hydroxides was externally supplied via addition of KOH and H2SO4. Two other studies 

determined the proton transport number of the same bipolar membrane under comparable 

conditions. Rozendal et al (2007) found a similar value of 0.72, whereas Harnisch et al. (2008) 

observed a decrease in proton transport number from 1 to 0.1 with increasing current density.  

Methods need to be found to increase the proton transport number. Directions could be to 

operate MFCs at higher current densities, or to add CO2 to the system. Recent experiments in 

our lab indicated that addition of CO2 decreased the voltage loss across the bipolar membrane 

and resulted in an increase in MFC performance. Therefore, we hypothesize that the bipolar 

membrane may be able to produce protons not only from water splitting, but also from 

dissociation of H2CO3, as previously suggested for improvement of performance of anion 

exchange membranes (Torres et al., 2008a; Fornero et al., 2010). Replacing water splitting with 

dissociation of H2CO3 may reduce the energy required for proton production, because H2CO3 

is a stronger acid than water (pKa of H2CO3 is 6.73, vs 14 for H2O). Furthermore, CO2 

addition might positively influence the proton transport number. Further study is needed to 

optimize the experimental conditions in such a way, that the bipolar membrane has a low 

energy loss in combination with a high proton transport number. 

8.2.3 Scaling-up 

In MFC research, most studies are performed on lab-scale in systems varying in size from 20 

mL to 2 L, with electrode surface areas ranging from 1 cm2 to 300 cm2. Study on scaled-up 

systems has been lagging behind, despite its necessity for application of MFCs. Only recently, 

performance of a scaled-up system with 4 stacked cells, each with a projected surface area of 

0.5 m2 and a total volume of 20 L has been reported (Dekker et al., 2009). Dekker et al. (2009) 

found a maximum power density of 144 W/m3 or 1.4 W/m2, which is comparable to the 

power obtained in small lab-scale systems. This in contrary to the observation that volumetric 

power density decreases with increasing system size (Dewan et al., 2008).  

When scaling up, new challenges arise that are not observed in lab-scale systems. The most 

important issues as observed by Dekker et al. (2009) were, that flow characteristics are 

important to ensure good contact between electrolyte and electrode, that cell reversal is 

difficult to prevent especially in a bipolar stacked system, and that oxygen reduction at the 
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cathode even at low pH of 4 was contributing to more than 80% of the total internal resistance 

(Dekker et al., 2009). 

Further study on this scaled-up system (Chapter 7 of this thesis) aimed at improvement of 

MFC performance. The approach was to improve the cathode by replacing oxygen reduction 

by reduction of Fe3+ to Fe2+. Furthermore, flow characteristics were improved by a change in 

flow path. This resulted in a maximum power density of 200 W/m3 or 2.0 W/m2 for a single 

cell with an electrode size of 0.5 m2. In this case, the cathode resistance was reduced compared 

to oxygen reduction. Still, the cathode contributed to 53% of the total internal resistance, while 

the anode contributed to only 5% of the internal resistance. This showed, that the cathode was 

still the main limiting factor in MFC performance. 

Cell reversal is a factor that needs further research. In Dekker et al. (2009), the four cells 

were stacked in series by bipolar stacking, which means that the first cathode and the second 

anode are using the same bipolar plate. This was done to minimize internal losses by keeping 

short distances and having optimal contact. The disadvantage of bipolar stacking is that when 

one cell cannot produce the current of the other cells, and reverses polarity, it cannot simply be 

taken out: the current will still flow through this cell at the expense of cell voltage. Two 

possible routes can be followed. Firstly, flow characteristics should be good to ensure that 

oxidants (substrate) and reductants (oxygen or iron) are well-distributed over the electrodes 

and that they are present in high enough concentrations not to pose a limit on current 

production (Dekker et al., 2009). Secondly, stacking should be done in such a way, that a cell 

can be disconnected when cell reversal occurs, so that this cell does not use the energy 

produced by the other cells. Thus, a suitable operating strategy should be found. More 

operating experience will probably make it possible to ensure that all cells become reliable. 

8.2.4 Mass transfer of oxygen 

When considering the cathode, mass transfer of oxygen is the main limiting factor in MFC 

performance. In this thesis, three routes were followed to improve the cathode reaction with 

oxygen as the final electron acceptor. Each of these routes will finally run into similar 

limitations of mass transfer of oxygen, especially when dissolved oxygen is used as the electron 

acceptor. 

Reduction of Fe3+ to Fe2+ instead of oxygen reduction resulted in better cathode 

performance, because of the higher solubility of ferric iron compared to oxygen: a 

concentration of 17 mM (1 g/L) of ferric iron was tested, while the maximum oxygen 

solubility in water at 30 °C is only 0.24 mM (7.6 mg/L). This is also one of the reasons for the 

superior performance of Fe3+ reduction compared to oxygen reduction, the other reason being 
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the faster reaction of iron using a faster one electron transfer reaction than the four electron-

four proton oxygen reduction reaction. However, as the produced Fe2+ needs to be re-oxidized 

to Fe3+ using oxygen, eventually, oxygen transfer will limit the amount of Fe3+ available. 

Similarly, oxygen transfer may become limiting for the possible catalytic action of Cu2+/Cu for 

oxygen reduction. While performance is increased in the presence of oxygen, oxygen transfer 

will finally determine the rate of electron transfer.  

In case of direct biocathodes, where the biofilm attached to the electrode catalyzes the 

reduction of oxygen, the situation is more complicated. Oxygen diffusion from bulk to the 

microorganisms takes place through three adjacent layers: the diffusion layer facing the bulk 

solution, the stagnant water layer attached to the biofilm, and the biofilm itself. In this case, 

oxygen transfer from bulk to biofilm needs to take place. Ways to improve oxygen transfer are 

increasing the linear flow rate, which improves oxygen transfer only through the outer 

diffusion layer. Besides, air cathodes with a biofilm combined with a thin water layer attached 

may be developed for better oxygen transfer. Oxygen diffusion inside the biofilm and the 

stagnant water layer however, cannot be influenced by flow rate. To improve oxygen transfer 

into the biofilm, several approaches are possible: use of pure oxygen (Dekker et al., 2009), 

pressurized air (Fornero et al., 2008), or photosynthetic microorganisms that can create oxygen 

concentrations up to 20 mg/L (Strik et al., 2010). Another direction to increase volumetric 

productivity is the use of 3D electrodes with a high specific surface area, like graphite felt or 

carbon granules (Logan et al., 2007). If the flow is well-directed through the porous electrode 

(Sleutels et al., 2009b), this can also further increase the oxygen transfer and thus the 

volumetric current production of biocathodes. 

8.2.5 Factors limiting bioanode activity and MFC performance  

Until now, the discussion on factors limiting MFC performance in this chapter focused on 

the cathode. Here, we would like to discuss three other limitations that may become more 

prominent when the cathode bottleneck is overcome, and that were observed in Chapter 2. 

These limitations are related to maximum bioanode performance as a result of limited buffer 

capacity and solution conductivity, and the use of membranes. 

An important issue that arises when the anode and cathode are connected is the conductivity 

of the electrolytes. Often waste streams are used as substrate, while these typically have a low 

conductivity of 1-2 mS/cm (Rozendal et al., 2008). It has been shown that at these low 

conductivities, a limited anode compartment thickness is allowed to achieve high current 

densities (Rozendal et al., 2008). In lab-scale set-ups, often large amounts of salts and buffer 

are added to increase the conductivity and improve performance. In full-scale MFCs in a water 
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purification setting however, this is not possible, because of economical issues and discharge 

regulations. The fact that no buffer can be added on a larger scale, results in another limitation 

related to acidification. The electrochemically active microorganisms at the bio-anode produce 

considerable amounts of protons when oxidizing the organic materials. For each mol of 

acetate, 8 moles of electrons are produced. When protons cannot diffuse from anode to 

anolyte at high enough rate, the low local pH seriously limits bio-anode activity (Torres et al., 

2008b). Examples of possible routes to prevent low local pH without external supply of buffer 

are enhancement of mass transport, for example by forced flow through porous electrodes 

(Sleutels et al., 2010a), or addition of caustic produced in the cathode (Rabaey et al., 2010). 

Other challenges arise at the bioanode when real wastewater are used as the substrate instead 

of acetate. These new challenges are related to the presence of particulate matter, hydrolysis of 

more complex substrates than acetate, and fluctuating concentrations of organics. 

The advantage of using a membrane in an MFC is that the anode compartment and cathode 

compartment do not readily mix. For an MFC, this has the advantage that the coulombic 

efficiency is higher, as less oxidant can pass from the cathodic to the anodic compartment. The 

disadvantage of for example oxygen passing to the anode is, that it leads to unwanted oxidation 

of the substrate and thus lowers coulombic efficiency. A major disadvantage of using a 

membrane is that a pH gradient develops between the anode and cathode compartment 

(Rozendal et al., 2006). This pH gradient gives an additional overpotential at the electrodes as 

can be calculated using the Nernst equation. A way to prevent this pH gradient is either to take 

out the membrane (Call and Logan, 2008; Liu and Logan, 2004), to pump the anolyte to the 

cathode to guarantee mixing (Freguia et al., 2008), to use CO2 in the catholyte (Fornero et al., 

2010), or to use a bipolar membrane (Ter Heijne et al., 2006). Although it has been shown that 

these methods prevent the pH gradient to develop, some of the strategies may also cause 

substrate/product crossover giving unwanted side reactions and products. Another effect of 

use of a membrane is, that it will increase the resistance of the system (Sleutels et al., 2009a) 

resulting in a lower cell voltage. Depending on membrane properties like charge (negative or 

positive) and charge density, different species of ions and amounts of ions will be transported 

and this will have effects on voltage losses. 

8.3 Production of electricity from wastewater by MFCs: 
perspectives 

All the above mentioned factors should be taken into account for further improvement of 

MFCs. If the major bottlenecks are overcome, what is then the maximum power that can be 

achieved in MFCs? In this chapter, we compare the currently achieved MFC performance with 
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the estimated maximum performance, and with the established technology of anaerobic 

digestion.  

In this thesis, the maximum achieved performance was found in the scaled-up MFC with 

Fe3+ reduction at the cathode (Chapter 7). The power density was 2.0 W/m2 (200 W/m3) at an 

overall energy efficiency of 28%.  

Few attempts have been made to estimate the maximum possible power production of 

MFCs. In this respect, values of 17 W/m2 (Logan, 2009). and 19 W/m2 (Fan et al., 2008) have 

been proposed based on limitations in substrate diffusion and based on minimizing losses in 

system design. Based on the current density measured by Jeremiasse et al. (2010) by a bio-

anode in a hydrogen producing Microbial Electrolysis Cell, we find a similar estimation for the 

maximum power density.  

Jeremiasse et al. (2010) measured a maximum current density of 22.8 A/m2 at an anode 

potential of -0.36 V vs Ag/AgCl. At this anode potential, overpotential was 0.1 V (pH=6.54, 

acetate=4 mM, HCO3
-=10 mM results in a thermodynamic anode potential of -0.46 V vs 

Ag/AgCl). This means that the energy losses at the anode would be almost 10% of the 

maximum theoretical cell voltage of 1.09 V. If we now assume that the cathode can perform 

equally well at this current density, so that cathode energy losses are 10%, and other internal 

losses (membrane and solution) contribute to another 10%, this would result in a cell voltage 

of 0.7*1.09=0.76 V. In this case, power density would be 17.3 W/m2, similar to the other two 

estimations. Besides power density normalized to surface area, the volumetric power density 

(W/m3) is an important measure, and this volumetric power density is dependent on the 

volumetric surface area. In our scaled-up MFC, we demonstrated that 100 m2/m3 is feasible. 

Because there is still room for a further increase in surface area, we assume that an 

improvement to 200 m2/m3 should be feasible. This would result in a maximum volumetric 

power density of 3,460 W/m3. This of course is an estimated situation with low internal losses: 

a voltage loss of 0.33 V in combination with a current density of 22.8 A/m2 allows for a 

maximum total internal resistance of 14 mΩm2, while for example the total internal resistance 

in the scaled-up MFC with iron reduction (Chapter 7) was still 146 mΩm2, of which 85 mΩm2 

was caused by the cathode. Thus, internal resistance should be further reduced with a factor 10 

in order to achieve these results.  

How does this power production relate to the electricity production of comparable biomass-

to-electricity conversion technologies? The best candidate for comparison is anaerobic 

digestion, because both technologies have similar characteristics, as they both convert wet 

organic waste streams at ambient temperature. For comparison, we assume that all COD in the 

anaerobic digester is present in the form of acetate and that the desired product is electricity. 
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The energy content of the acetate can be calculated similarly to the MFC: with oxygen as the 

final electron acceptor (in combustion), the Gibb‟s free energy is -844 kJ/mol. The energy 

content of the formed CH4 can then be calculated from the reaction CH4 + 2 O2  CO2 + 2 

H2O, and is -810 kJ/mol. This means, that of the energy in acetate, -34 kJ/mol is lost in the 

conversion to CH4. This corresponds with an energy loss of roughly 5%. Furthermore, if we 

assume that 5% of the energy in acetate is incorporated in biomass (Van Lier et al., 2008), so 

that the efficiency of conversion of acetate into methane is 90%, and an average combustion 

efficiency of CH4 of 33% (Weiland et al., 2006), we find an overall energy efficiency of acetate 

into electricity of 30%. The volumetric power density that can be produced in the anaerobic 

digestion, based on an organic loading rate of 25 kg COD/m3d, a lower heating value of 50.1 

MJ/kg CH4, and an overall energy efficiency of 30%, is 1,087 W/m3.  

The predicted maximum volumetric power density in an MFC is 3,460 W/m3: a factor 3 

higher than achieved with anaerobic digestion at similar loading rate. From Table 2, it becomes 

clear that energy efficiency of the MFC is already comparable to anaerobic digestion. When 

maximum estimated performance is reached, the energetic efficiency will be as high as 63% 

compared to only 30% overall energy efficiency of anaerobic digestion. 

Practical feasibility of the MFC will not only be determined by the maximum power 

produced and the energy efficiency, but also on the capital and operational costs of the final 

system. As operational costs are related to productivity, and thus to conversion rate, it is 

important to investigate the relationship between conversion rate (current density) and energy 

efficiency. Energy efficiency shows the combined Coulombic efficiency and voltage efficiency. 

Whereas voltage efficiency decreases with increasing current density as a result of increasing 

energy losses, Coulombic efficiency is likely to increase with higher anode potential, and thus 

increasing current density (Sleutels et al., 2010b). The balance between Coulombic efficiency 

and voltage efficiency determines if energy efficiency increases or decreases with increasing 

current density in an MFC. At the same time, increasing current density increases the 

productivity of the MFC, which is preferred from an application perspective, as it decreases 

capital cost and reduces the footprint of the MFC.  
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Table 2. Comparison of maximum volumetric power density produced by MFCs and via anaerobic 

digestion 

1 Using the measured 65% Coulombic efficiency (Chapter 7) 

2 Assuming 90% Coulombic efficiency and assuming a specific surface area of 200 m2/m3 

3 Assuming 30% overall energy efficiency from acetate to electricity 

 

The only way to combine these demands of high efficiency and high productivity is to lower 

losses of BESs. Therefore, a thorough analysis of the internal losses is a prerequisite (Sleutels 

et al. 2009a). Based on this analysis, further efforts should be done to design an energy efficient 

MFC. It should be kept in mind that besides efficient design, the use of cheap and renewable 

materials is required for further development of MFCs.  

8.4 Concluding remarks 

This final chapter described the development in performance of MFCs since 2002, based on 

their power density, and cathode performance. With further study and development of MFCs, 

it should be possible to improve MFC performance with a factor 10 to approach the estimated 

maximum power density of 17.3 W/m2 at an efficiency of 63%. This estimated maximum 

power density and energy efficiency would make MFCs more attractive than anaerobic 

digestion for electricity production from biomass.  

For reaching this estimated power density, further studies should focus on the cathode as it 

remains the main limiting factor, leading to largest part of the energy losses in the MFC. 

Finally, MFCs should prove their feasibility when converting real wastewaters at larger scale. 

 Loading rate   

(kg 

COD/m3/d) 

Current 

density 

(A/m2) 

Volumetric 

power density 

(W/m3) 

Energetic 

efficiency 

(%) 

Scaled-up Microbial Fuel 

Cell (Chapter 7) at maximum 

power density 

8.11 

 

4.2 

 

200 

 

28 

 

Scaled-up Microbial Fuel 

Cell (Chapter 7) at maximum 

energy efficiency 

5.01 2.6 180 41 

Microbial Fuel Cell, 

estimated maximum 

31.92 22.8 3,4602 632 

Anaerobic digestion 25 - 1,0873 303 
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Summary 
 

Microbial Fuel Cells are a promising technology for efficient conversion 

of biomass into electricity 

There is a huge and increasing energy demand in the world. As described in Chapter 1, 

production of energy from fossil sources has major drawbacks related to accessibility of 

sources, climate change, air pollution, and political instability. Renewable sources are the 

alternative for fossil sources, as they can offer advantages regarding social and environmental 

impacts. Of the renewable energy sources, biomass is most important, contributing to 9.8% of 

the total primary energy supply in 2007. Electricity is a desired form of energy, as access to 

electricity is a key driver for social and economical development. In developing countries, it 

would thus be beneficial if biomass can be used for electricity production to improve energy 

accessibility, whereas in industrialized countries, production of electricity from biomass will be 

more oriented towards climate change mitigation. There is thus a need for simple and cost-

effective technologies to efficiently convert biomass into electricity.  

Microbial Fuel Cells are a promising technology for conversion of wet organic waste streams 

into electricity, because they can produce electricity from biomass in one efficient step, they 

operate at ambient temperatures, they are robust, and they are environmentally sustainable. 

This thesis aims at efficient electricity production in Microbial Fuel Cells by improving the 

reduction reaction at the cathode, because the cathode is the main limiting factor in power 

production in Microbial Fuel Cells.  

 

First crucial part: the electron producing bioanode  

Microbial Fuel Cells are a new technology in which microorganisms convert biomass into 

electricity. The Microbial Fuel Cell consists of two electrodes: an anode and a cathode. At the 

anode, microorganisms convert organic material (biomass) into electrons, protons, and CO2. 

The produced electrons flow via an electrical circuit to the other electrode, the cathode, 

meanwhile releasing their energy. The anode with microorganisms attached is called the 

bioanode. The bioanode is the first crucial part of the Microbial Fuel Cell as it is the location 

where electrons are produced. In Chapter 2, performance of bioanodes on different electrode 

materials was studied using different characterization techniques. Bioanode performance was 

different for each material, which could not be explained solely by differences in specific 

surface area. The microorganisms were capable of producing considerable current densities up 
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to 4.6 A/m2 on a flat graphite electrode. This limiting current density reflected the maximum 

biomass activity.  

 

Second crucial part: the electron accepting cathode 

In order to produce electricity, the electrons must flow from the bioanode to the cathode, 

where a reduction reaction takes place. Oxygen is the most desired electron acceptor because 

of its unlimited availability and its high potential. To drive the oxygen reduction reaction at the 

desired rate however, a catalyst is needed. The mostly used catalyst for oxygen reduction is Pt, 

however, its high cost requires development of other cost-effective and renewable catalysts. 

We followed three strategies to improve cathode performance. 

In the first strategy, the oxygen reduction was replaced by reduction of Fe3+ to Fe2+ as 

described in Chapter 3 and 4. The formed Fe2+ was simultaneously reoxidized to Fe3+ by the 

microorganism Acidithiobacillus ferrooxidans, using oxygen as the final electron acceptor. Because 

Fe3+ is only soluble at low pH (<2.5), and the bioanode operates at near neutral pH, a bipolar 

membrane was used to maintain this pH difference. Inside this bipolar membrane, water is 

split into H+ and OH-. The formed H+ can migrate to the low pH cathode compartment, while 

the formed OH- can migrate to the neutral pH anode compartment to neutralize the formed 

protons. The maximum power density was 1.2 W/m2 at a current density of 4.5 A/m2. 

Replacing oxygen with Fe3+ improved cathode performance considerably. Challenges related to 

the bipolar membrane were the energy required for water splitting and the transport of other 

ions than H+ and OH-. 

In the second strategy, described in Chapter 5, microorganisms were grown on the cathode 

to catalyze the reduction of oxygen. These microorganisms originated from nitrifying sludge 

and were grown at three different potentials. In all cases, an oxygen reducing biofilm 

developed, while the produced current density was different for each potential. The current 

density produced by the biofilm was considerably higher than on the control bare graphite 

electrode. Limitations rose as a result of the cathode potential (charge transfer), and mass 

transfer of oxygen. 

In the third strategy, described in Chapter 6, we studied the reduction of Cu2+ to metallic 

Cu. The advantages were twofold: Cu was recovered in its pure form, which makes this a 

process of possible interest for recovery of copper from waste streams, and Cu2+/Cu seemed 

to act as a catalyst for oxygen reduction, as cathode performance increased in presence of 

oxygen. The bipolar membrane was used to maintain low pH at the cathode to prevent 

precipitation of Cu2+. The maximum power achieved was 0.8 W/m2, comparable to other well-

performing MFCs. 
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First step towards application: scaling-up 

While most Microbial Fuel Cell studies are performed in small-scale lab setups, it is of 

utmost importance that experience is obtained with Microbial Fuel Cells on a larger scale, as 

new limitations may arise that are not encountered on a small scale. We continued the study on 

the first reported scaled-up MFC in the world in Chapter 7. This MFC had a membrane 

surface area of 0.5 m2 and a total volume of 5 L. To overcome the previously encountered 

cathode limitations, we replaced oxygen reduction by reduction of Fe3+ to Fe2+ and 

simultaneous biological iron oxidation. In order to maintain the low pH to keep Fe3+ soluble, a 

bipolar membrane was used. The scaled-up MFC was operated during 37 days and reached a 

maximum power density of 2.0 W/m2, which is a factor 1.4 higher than obtained with oxygen 

in previous study. Analysis of the internal resistance revealed that both anode and cathode 

resistance decreased with a factor 10 during the 37 days operation period. Despite the 

improvement in cathode performance by replacing oxygen reduction with reduction of Fe3+, 

the cathode remained the limiting factor, contributing to 58% of the total internal resistance. 

 

Maximum estimated power production in Microbial Fuel Cells 

In the beginning of Microbial Fuel Cell research in 2002, the reported power densities 

increased from 1 to 10 mW/m2 roughly by a factor 10 each year. Since 2005, however, the 

reported maximum power densities have stabilized at a level of about 2 W/m2, although the 

number of groups studying Microbial Fuel Cells has increased. The question that is raised in 

Chapter 8 is, if the power density in Microbial Fuel Cells has reached its limit, or if further 

reduction of energy losses will result in a further increase in power density. We show that there 

is still a factor 10 to gain in power density, as the estimated maximum power density that can 

be achieved in Microbial Fuel Cells is 17.3 W/m2 or 3,460 W/m3. This is a factor 3 higher than 

produced in an anaerobic digester at a similar loading rate of 25 kg COD/m3/d. At this 

estimated maximum performance, the energy efficiency in a Microbial Fuel Cell will be 63%, 

whereas the energy efficiency in anaerobic digestion is 30%. For reaching this estimated power 

density, further studies should focus on the cathode as it remains the main limiting factor, 

leading to largest part of the energy losses in the MFC. Finally, MFCs should prove their 

feasibility when converting real wastewaters at larger scale.  



 

 153 

S 

Samenvatting 
 

De biobrandstofcel is een veelbelovende technologie voor efficiente 

omzetting van biomassa in elektriciteit 

De wereldwijde vraag naar energie is enorm en neemt toe. Zoals beschreven in Hoofdstuk 

1, heeft de energieproductie uit fossiele brandstoffen grote nadelen met betrekking tot winning, 

klimaatsverandering, luchtvervuiling, en politieke instabiliteit. Hernieuwbare bronnen zijn het 

alternatief voor fossiele bronnen, omdat zij voordelen bieden op maatschappelijk en 

milieugebied. Van de hernieuwbare bronnen is biomassa de meest belangrijke. In 2007 maakte 

biomassa 9.8% uit van de totale energievoorziening. Electriciteit is een aantrekkelijke vorm van 

energie, omdat elektriciteit een belangrijke drijfveer is voor sociale en economische 

ontwikkeling. In ontwikkelingslanden heeft gebruik van biomassa voor elektriciteitsproductie 

het voordeel dat de toegang tot elektriciteit verbeterd wordt, terwijl elektriciteitsproductie uit 

biomassa in geïndustrialiseerde landen meer gericht zal zijn op vermindering van 

klimaatsverandering. Er zijn dus simpele, goedkope technologieën nodig om biomassa met 

hoge efficiëntie om te zetten in elektriciteit. 

De biobrandstofcel is een veelbelovende technologie voor de omzetting van natte 

organische reststromen in elektriciteit, omdat de omzetting naar elektriciteit plaatsvindt in één 

efficiënte stap, de reactie plaatsvindt bij omgevingstemperatuur, en de technologie robuust en 

milieuvriendelijk is. Dit proefschrift richt zich op efficiënte elektriciteitsproductie in de 

biobrandstofcel door het verbeteren van de reductiereactie aan de kathode, omdat de kathode 

op het moment de belangrijkste limiterende factor is in de energieproductie. 

 

Eerste cruciale onderdeel: de elektronenproducerende anode 

De biobrandstofcel is een nieuwe technologie waarin microorganismen biomassa omzetten 

in elektriciteit. De biobrandstofcel bestaat uit twee elektrodes: een anode en een kathode. Aan 

de anode zetten microorganismen organisch materiaal (biomassa) om in elektronen, protonen 

en CO2. De geproduceerde elektronen stromen via een elektrisch circuit naar de andere 

elektrode, de kathode, terwijl zij hun energie afgeven. De anode met daarop de 

microorganismen heet de bio-anode en is het eerste cruciale onderdeel van de biobrandstofcel 

omdat daar de elektronen geproduceerd worden. In Hoofdstuk 2 werd de stroomproductie 

van bioanodes op verschillende elektrodematerialen bestudeerd met verschillende 

karakterisatietechnieken. Elk materiaal resulteerde in een andere stroomdichtheid, die niet 

alleen verklaard kon worden door verschillen in specifiek oppervlak. De microorganismen 
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produceerden aanzienlijke stroomdichtheden tot 4.6 A/m2 op een vlakke grafietelektrode. 

Deze limietstroom gaf de maximale biomassa-activiteit weer. 

 

Tweede cruciale onderdeel: de elektronenaccepterende kathode 

Om elektriciteit te produceren, moeten de elektroden van de bioanode naar de kathode 

stromen. Aan de kathode vindt een reductiereactie plaats. Zuurstof is de meest aantrekkelijke 

elektronenacceptor vanwege de beschikbaarheid en de hoge potentiaal. Om de 

zuurstofreductiereactie op aanvaardbare snelheid te laten plaatsvinden, is echter een katalysator 

nodig. De meest gebruikte katalysator voor zuurstofreductie is Pt, maar vanwege de hoge 

kosten zijn er andere goedkope en duurzame katalysatoren nodig. Om het functioneren van de 

kathode te verbeteren, hebben we drie strategieën gevolgd. 

De eerste strategie was het vervangen van zuurstofreductie door de reductie van Fe3+ naar 

Fe2+, zoals beschreven in Hoofdstuk 3 en 4. Het gevormde Fe2+ werd tegelijkertijd 

geoxideerd naar Fe3+ door de bacterie Acidithiobacillus ferroxidans, met zuurstof als 

elektronenacceptor. Omdat Fe3+ alleen oplosbaar is bij lage pH (<2.5) en de bioanode bij 

neutrale pH werkt, was een bipolair membraan gebruikt om het pH verschil in stand te 

houden. In dit bipolair membraan wordt water gesplitst in H+ en OH-. De gevormde H+ 

migreert naar de kathode zodat de lage pH gehandhaafd wordt, terwijl het gevormde OH- naar 

de anode bij neutrale pH migreert om de daar gevormde protonen te neutraliseren. De 

maximale vermogensdichtheid was 1.2 W/m2 bij een stroomdichtheid van 4.5 A/m2. Het 

vervangen van zuurstof door Fe2+ verbeterde de prestaties van de kathode aanzienlijk. 

Uitdagingen met betrekking tot het bipolair membraan waren de energie die nodig is om water 

te splitsen en het transport van andere ionen dan H+ en OH-. 

De tweede strategie, zoals beschreven in Hoofdstuk 5, was het groeien van 

microorganismen op de kathode om zuurstofreductie te katalyseren. Deze microorganismen 

kwamen uit nitrificerend slib en groeiden bij drie potentialen. In alle gevallen ontwikkelde zich 

een zuurstofreducerende biofilm, terwijl de stroomproductie verschillend was bij iedere 

potentiaal. De stroomdichtheid geproduceerd door de biofilm was aanzielijk hogern dan op 

een grafietelektrode zonder biofilm. Limitaties onstonden ten gevolge van de 

kathodepotentiaal (ladingsoverdracht) en massatransport van zuurstof. 

De derde strategie, zoals beschreven in Hoofdstuk 6, bestudeerde de reductie van Cu2+ naar 

metallisch Cu. De voordelen waren tweeledig: puur Cu werd herwonnen, wat dit een mogelijk 

aantrekkelijk proces maakt voor winning van koper uit afvalstromen, en Cu2+/Cu leek als een 

katalysator te fungeren voor zuurstofreductie, omdat de kathode beter functioneerde in de 

aanwezigheid van zuurstof. Het bipolair membraan werd gebruikt om de lage pH aan de 
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kathode te handhaven en neerslag van Cu2+ te voorkomen. De maximale vermogensdichtheid 

was 0.8 W/m2, vergelijkbaar met andere goed functionerende biobrandstofcellen. 

 

Eerste stap naar praktische toepassing: opschalen 

Terwijl de meeste studies naar de biobrandstofcel gedaan worden in kleine lab-schaal 

reactoren, is het uitermate belangrijk dat ervaringen worden opgedaan op grotere schaal, omdat 

nieuwe limitaties kunnen ontstaan die op kleine schaal niet naar voren komen. We hebben de 

studie naar de eerste opgeschaalde biobrandstofcel in de wereld voortgezet in Hoofdstuk 7. 

Deze biobrandstofcel had een membraanoppervlak van 0.5 m2 en een totaal volume van 5 L. 

Om de eerder gevonden kathodelimitaties te verminderen, gebruikten we de reductie van Fe3+ 

naar Fe2+ met tegelijkertijd biologisch oxidatie van Fe2+. Het bipolair membraan werd gebruikt 

om de lage pH aan de kathode te handhaven zodat Fe3+ in oplossing zou blijven. De 

opgeschaalde biobrandstofcel werd 37 dagen getest en bereikte een maximale 

vermogensdichtheid van 2.0 W/m2, een factor 1.4 hoger dan met zuurstof in vorige studie. 

Analyse van de interne weerstand liet zien dat zowel anode als kathodeweerstand met een 

factor 10 afnam gedurende de 27 dagen dat de biobrandstofcel bedreven werd. Ondanks de 

verbetering van de kathode door het vervangen van zuurstof met Fe3+, bleef de kathode de 

limiterende factor, en droeg bij aan 58% van de totale interne weerstand. 

 

Maximale geschatte vermogensproductie in de biobrandstofcel 

In het begin van het onderzoek naar de biobrandstofcel, in 2002, namen de gerapporteerde 

vermogensdichtheden toe vanaf 1-10 mW/m2 met ruwweg een factor 10 per jaar. Sinds 2005 

lijken de vermogensdichtheden te stabiliseren op een niveau van ongeveer 2 W/m2, terwijl het 

aantal groepen dat onderzoek doet naar de biobrandstofcel enorm is gestegen. De vraag die in 

Hoofdstuk 8 gesteld wordt is of de vermogensdichtheid in de biobrandstofcel de limiet 

bereikt heeft, of dat verdere vermindering van energieverliezen nog kan resulteren in een 

toename in vermogensdichtheid. We laten zien dat er nog een factor 10 in vermogen te winnen 

is, en dat de geschatte maximum vermogensdichtheid in de biobrandstofcel 17.3 W/m2 of 

3,460 W/m3 is. Dit is een factor 3 hoger dan geproduceerd in een anaerobe vergister bij 

vergelijkbare belasting van 25 kg COD/m3/d. Bij deze geschatte maximale prestatie is de 

energie-efficiëntie 63%, terwijl de energie-efficiëntie van anaerobe vergisting 30% is. Om deze 

geschatte vermogensdichtheid te bereiken, moet verder onderzoek zich richten op de kathode 

omdat dit nog steeds de limiterende factor is voor het grootste deel van de energieverliezen 

zorgt. Uiteindelijk moet de haalbaarheid van de biobrandstofcel bewezen worden bij het 

omzetten van echte afvalwaters op grotere schaal.
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