Supporting Change in Farming Systems Research

Peter deVoil
Daniel Rodriguez
Walter Rossing
Brendan Power

APSRU
APSRU
WUR
APSRU

AGRO2010, Montpellier.
Supporting Change in Farming Systems Research

- Apsim & farm scale management
- Component based design
- Samples of WFM applications
- Informed Change
Supporting Change in Farming Systems Research
Supporting Change in Farming Systems Research

Case studies:

Long growing season(s),
High rainfall variability

Irrigation
Broadacre Dryland
Mixed Grain & Grazing
Supporting Change in Farming Systems Research

Climate variability \rightarrow Dynamic (responsive) management.
Supporting Change in Farming Systems Research

Dynamic (responsive) management:

www.tcl.tk
Supporting Change in Farming Systems Research

Dynamic (responsive) management:

www.microsoft.com
Supporting Change in Farming Systems Research

Software Architecture

- Component based design based around 4 simple entry points (get, set, publish, subscribe)
- Separation of functionality (via components) essential for re-use
- Modern byte-compiled languages support rapid prototyping of new components in the existing systems framework
Supporting Change in Farming Systems Research

Case studies
- Participatory approach to describe change and adaptation to change

1. “What do you do”
2. What would change “what you do”
3. What adaptations are possible in “what you do”
Supporting Change in Farming Systems Research

Case 1: Mixed grain & graze in Southern Queensland

- 4000ha farm
- 5 cropping fields 220ha = 1100ha
- Buffel (pasture) fields = 2000ha
- Leucaena/grass = 400ha
- Oats = 400ha
- Forage sorghum = 100ha
- 1 Forage legume in cropping rotation
Supporting Change in Farming Systems Research

Case 1: Mixed grain & graze in Southern Queensland

“…What adaptations are possible”

- Large change in proportion of crop and pasture
- Integrating summer legume into cropping area
- Integrating winter legume into cropping area
Supporting Change in Farming Systems Research

Case 2: Irrigated cotton & grain

- ~800 ha cropping area
- 3 storages with combined capacity of 1350ML
- 600ML annual bore allocation
- Captured overland flow ranges between 0 – 1450 ML.
Supporting Change in Farming Systems Research

Case 2: Irrigated cotton & grain

What is the additional income from reverse osmosis treated water (a coal seam gas extraction byproduct).

Farm profitability increases until system capacity is reached at 4 ML/day

Whole farm gm increases by approx. $60,000 / (ML*day) (ie $164/ML) up to 4ML/day
Supporting Change in Farming Systems Research

Case 2: Irrigated cotton

“…What adaptations are possible”

- What will be the likely impact of reduced bore allocations on long term profitability?

- Compare the profitability of a cotton monoculture with a cotton and maize and/or sorghum and/or soybeans and/or wheat rotation.

- Compare storing “out of season” water for use on cotton (high losses due to evaporation and seepage) against using the water immediately on a current (non-cotton) crop.
In Summary

• APSIM model framework has been successfully applied to several WFM problems
• Each time is easier than the last
• Participatory nature of these adaptation case studies produces diverse study areas – interdisciplinary approach is unavoidable.

www.apsim.info
APSIM - Functional issues

- 2 broad areas: development and maintenance
- New developments overseen by a reference panel composed of science and software specialists
- Maintenance the task of SEG:
 - Regular indoctrination sessions-training workshops
 - Continuous integration cycle
 - Regular “point” releases

- WWW (ie accessible) tools for source code, data repositories, tracking bugs, helpdesk and user groups
Models and frameworks

• Why reuse or share models? To avoid hard work!
• Adaptation is easier than starting over

How:
• Keep it simple – your conceptualisation, and your tools
• Adaptive means reuse – and the framework changes too

Open Source
• Openness begins with open source
• Scientific legitimacy – no more “black boxes”
• Wish to form genuine, 2-way relationships

• Earlier experiences are confidence building on our part as well
• Rigorous control ➔ openness
Figure 1.9 Variability of Australian rainfall, for September-November (spring), December-February (summer), March-May (autumn) and June-August (winter)

Source: Bureau of Meteorology
©Commonwealth of Australia 2001
Supporting Change in Farming Systems Research

Case 2: Irrigated cotton

Historical

2030 Projection

Return ($100,000) vs Risk