This is a "Post-Print" accepted manuscript, which has been published in "International Journal of Food Microbiology".

Please cite this publication as follows:

You can download the published version at: http://dx.doi.org/10.1016/j.ijfoodmicro.2010.01.005
Quantitative microbiological risk assessment as a tool to obtain useful information for risk managers – Specific application to *Listeria monocytogenes* and ready-to-eat meat products

M. Mataragas¹*, M.H. Zwietering², P.N. Skandamis¹ & E.H. Drosinos¹

¹Agricultural University of Athens, Department of Food Science and Technology, Laboratory of Food Quality Control and Hygiene, Iera Odos 75, GR-118 55 Athens, Greece

²Wageningen University, Laboratory of Food Microbiology, 6700 EV Wageningen, The Netherlands

Running title: *L. monocytogenes* risk assessment

*Corresponding author: Marios Mataragas, Lecturer, Agricultural University of Athens, Department of Food Science and Technology, Laboratory of Food Quality Control and Hygiene, Iera Odos 75, GR-11855 Athens, Greece, Tel.: +30 210 529 4683, +30 210 529 4704, Fax.: +30 210 529 4683, e-mail: mmat@aua.gr
Quantitative microbiological risk assessment as a tool to obtain useful information for risk managers – Specific application to *Listeria monocytogenes* and ready-to-eat meat products

M. Mataragas\(^1\)*, M.H. Zwietering\(^2\), P.N. Skandamis\(^1\) & E.H. Drosinos\(^1\)

\(^1\)Agricultural University of Athens, Department of Food Science and Technology, Laboratory of Food Quality Control and Hygiene, Iera Odos 75, GR-118 55 Athens, Greece

\(^2\)Wageningen University, Laboratory of Food Microbiology, 6700 EV Wageningen, The Netherlands

Running title: *L. monocytogenes* risk assessment

*Corresponding author: Marios Mataragas, Lecturer, Agricultural University of Athens, Department of Food Science and Technology, Laboratory of Food Quality Control and Hygiene, Iera Odos 75, GR-11855 Athens, Greece, Tel.: +30 210 529 4683, +30 210 529 4704, Fax.: +30 210 529 4683, e-mail: mmat@aua.gr
Abstract

The presence of Listeria monocytogenes in a sliced cooked, cured ham-like meat product was quantitatively assessed. Sliced cooked, cured meat products are considered as high risk products. These ready-to-eat, RTE, products (no special preparation, e.g. thermal treatment, before eating is required), support growth of pathogens (high initial pH=6.2-6.4 and water activity=0.98-0.99) and has a relatively long period of storage at chilled temperatures with a shelf life equal to 60 days based on manufacturer’s instructions. Therefore, in case of post-process contamination, even with low number of cells, the microorganism is able to reach unacceptable levels at the time of consumption. The aim of this study was to conduct a Quantitative Microbiological Risk Assessment (QMRA) on the risk of L. monocytogenes presence in RTE meat products. This may help risk managers to make decisions and apply control measures with ultimate objective the food safety assurance. Examples are given to illustrate the development of practical risk management strategies based on the results obtained from the QMRA model specifically developed for this pathogen/food product combination.

Keywords: Food safety; Listeria monocytogenes; meat products; risk assessment; risk management
1. Introduction

Listeria monocytogenes is a Gram-positive bacterium capable of growing at refrigeration temperatures. The microorganism is difficult to be controlled in foods because of its ubiquity in the environment, tolerance to unfavorable environmental conditions, such as low pH and high sodium chloride levels, and ability to survive on equipment (i.e. biofilm formation) contaminating, in this way, the end-products. Several foods (e.g. dairy, meat and vegetables) have been implicated in food-borne outbreaks associated with this pathogen. *L. monocytogenes* is a significant hazard particularly for elderly, immunocompromised people, infants and pregnant women (ICMSF, 1996; NZFSA, 2008).

The aim of applying the Appropriate Level of Protection (ALOP) is the decrease of the number of food-borne cases per pathogen and per year to a pre-determined level which constitutes the appropriate or acceptable level of protection. For instance, in US the decrease of listeriosis cases by 50% has been set as target [from 0.50 reported cases (number of culture-confirmed cases of illness caused by *L. monocytogenes* reported to CDC) /year/100000 population to 0.25 cases/year/100000 population) by the end of 2010. Based on statistical data, this goal has almost been achieved since the listeriosises cases for 2007 were 0.27 cases/year/100000 population (CDC, 2008). Similar objectives have been set for other pathogens like *Salmonella* spp., *Campylobacter* spp. and *Escherichia coli* O157:H7. Food Safety Objectives (FSOs) determine the maximum frequency and/or concentration of a hazard in a food at the time of consumption that provides or contributes to the ALOP. FSOs constitute the link between the ALOP and food industries (ICMSF, 2002). To achieve the FSOs, Performance Objectives (POs) [maximum frequency of occurrence (%) and/or concentration (cfu/g) of a pathogen] at other stages, Performance Criteria (PC) [change (i.e. reduction or maximally allowed increase) in frequency of occurrence and/or concentration of a pathogen that should be achieved during processing or implementation of control measures], Process and Product Criteria (PrC) (conditions required to achieve the desired PO/PC, e.g. time-temperature combination, or pH) should be established in the process prior to consumption. Governmental risk managers are responsible for establishing ALOP and FSOs whereas industrial risk managers should design production processes to meet the FSOs (Walls, 2006).

Compliance of ALOP, FSO, POs or PC should be based on data and findings originated from scientific resources and/or studies (e.g. Quantitative Microbiological Risk Assessment – QMRA). A QMRA study produces a wealth of information useful for risk assessors and risk managers. It can be used as
tool to collect information regarding the microbiological hazard under study. Afterwards, Food Safety Management Systems (FSMS) executives can benefit from this information in terms of design of production process, application of control measures and risk management in general (Perez-Rodriguez et al., 2007). However, it should be taken in mind that so far no FSOs have been set by food safety managers.

The objective of the present study was not to simply give an additional risk assessment model to already existing ones [e.g. the quantitative risk assessment model for L. monocytogenes and deli meats (FDA/USDA, 2003)] but demonstrate how the QMRA can produce useful information for risk managers. Extracting useful information from a risk assessment model, practical risk management strategies and intervention steps might be developed for reducing listeriosis cases, in this particular example, or any other illness, in general, based each time on the pathogen/food product combination of concern. It is questionable whether it is possible to further reduce listeriosis but it might be that the few cases that do occur are related to infrequent high levels, which could be prevented. The QMRA model developed incorporates factors that influence the final risk estimation such as Jameson effect, food structure, temperature during distribution, storage and retail display as well as during storage in domestic refrigerators.

2. Materials and Methods

Before conducting a quantitative risk assessment, risk profiles may be constructed as a preliminary task in order the QMRA study to be orientated to a specific food product/pathogen combination. By developing risk profiles for the food product of concern all the related possible microbiological hazards are identified and prioritized. The prioritization helps to identify the food product/hazard combination with the higher food safety risk for which a further risk process model may be developed for fully quantitative and accurate estimation of the risk (Ross and Sumner, 2002). Such risk profiles have been developed for pork and poultry industry in a recent review by Mataragas et al. (2008). The authors found that L. monocytogenes/RTE meat products combination constitute high risk for specific groups of the population (elderly, immunocompromised people, infants and pregnant women – high risk population), whereas for the rest of population (healthy adults and children – low risk population) the risk is medium (mild or asymptomatic infection). The present study was concentrated on the high risk
population since these groups are very susceptible to listeriosis and also have been associated with high number of cases (EFSA, 2008).

According to the industry, shelf life of the product studied in this work (i.e. sliced cooked, cured ham-like meat product) at 4°C is 60 days. Consequently, in case of post-process contamination of the product with *L. monocytogenes*, even with low number of cells, the microorganism is capable of reaching high numbers at the time of consumption, because of its ability to grow at common refrigeration temperatures. Furthermore, the intrinsic factors of the product such as pH (6.2-6.4), water activity (0.98-0.99) and sodium chloride content (approximately 2%) are not prohibitive to pathogen growth. More information on product composition can be found in Mataragas et al. (2006a). Outbreaks of listeriosis are predominantly associated with RTE foods and they have been found to be related with listeriosis cases more than any other RTE food (ILSI, 2005; Sofos, 2008).

A QMRA study includes the assessment of the microbiological hazards severity and its likelihood of appearance (i.e. frequency) following the approach from farm to fork. However, this approach has practical difficulties owned to its complexity and the need for an enormous amount of data. Therefore, it is sometimes more effective to focus the exposure assessment to a part of the food supply chain only. For instance, the most common reason of the presence of *L. monocytogenes* in RTE cooked meat products is their post-process (i.e. after the cooking step) contamination (ICMSF, 1996, 2002). In the present study, the quantitative risk assessment was focused on the exposure assessment and risk characterization stages from the manufacturing of the product, especially after the cooking and slicing steps, up to the time of consumption, e.g. retail and consumer (FDA/USDA, 2003). A product pathway-type QMRA study was developed to identify factors that influence the risk and evaluate the effectiveness of potential interventions or mitigation strategies, using the Modular Process Risk Model approach (Nauta et al., 2003; Dennis et al., 2008; Nauta, 2008).

The model developed was a second-order risk process model taking into account, separately, variability and uncertainty of certain parameters of the model (Vose, 2000; Nauta, 2007). The model parameters (input variables) were described by probability distributions. The data for the input variables were collected from literature and interviews with experts (Worsfold and Griffith, 1997; Jay et al., 1999; Nauta et al., 2003; FDA/USDA, 2003; Marklinder et al., 2004; Kennedy et al., 2005; Nauta, 2005; Mataragas et al., 2006a,b; SMAS, 2006; Kim, 2006; Anonymous, 2007b; FAOSTAT, 2007). Factors known to influence the final risk estimation such as data on explicit factors (i.e. temperature during
distribution, storage and retail display, and storage in domestic refrigerators), knowledge of spoilage bacteria (i.e. modeling spoilage microorganisms growth in parallel with pathogen growth), food structure (growth models of both spoilage and pathogen microorganisms developing in the food product and validated under constant and fluctuating temperature conditions) and Jameson effect (when one species reaches its maximum population density other species stop growing as well, at whatever population density they have achieved to that time) (Ross, 2008). The results obtained from the exposure assessment were combined with a dose-response relationship (i.e. exponential dose-response model) to characterize the final risk (Buchanan et al., 1997):

\[P_{ill} = 1 - \exp(-r \times D) \]

where \(P_{ill} \) is the probability of illness; \(r \), the probability of illness after the consumption of one \(L.\ monocytogenes \) cell; and \(D \), the dose consumed (number of cells per serving). The dose is given by the following equation:

\[D = C \times S \]

where \(C \), the concentration of the pathogen (number of cells/g); and \(S \), the serving size consumed during a meal (g).

The model predicted the probability of illness for the high risk population (20-25%) (Buchanan et al., 1997). The percentage of 20% was further considered as the fraction of the total population being at high risk. Afterwards, the risk, expressed as number of listeriosis cases per year, was determined using a probabilistic approach (Perez-Rodriguez et al., 2007):

\[\text{Risk} = P_f \times D \times r \times S_{all} \] \hspace{1cm} (1)

where \(\text{Risk} \), the total number of listeriosis cases per year in high risk population; \(P_f \), the prevalence of \(L.\ monocytogenes \) at the time of consumption (%); and \(S_{all} \), the total annual number of servings consumed by high risk population. The \(P_f \) parameter represents the unspoiled-unsafe fraction at the time of consumption assuming that some contaminated products will be spoiled before their consumption and therefore not all the contaminated products will be consumed. Unspoiled-unsafe products were considered as the products in which Specific Spoilage Organisms (SSOs) were below the spoilage level of \(10^9 \) cfu/g (Mataragas et al., 2006a) and/or purchase day lower than shelf life of 60 days and at the same time \(L.\ monocytogenes \) population was above the microbiological criterion of \(10^2 \) cfu/g (Anonymous, 2005, 2007a). Although, levels below 100 cfu/g may lead to illness the cut-off level of 100 cfu/g was used, according to EC Regulation 2073/2005 and its amendment 1441/2007.
(Anonymous, 2005, 2007a), referring to that \textit{L. monocytogenes} growth should not exceed 100 cfu/g throughout the shelf life in products supporting its growth. People often are exposed to levels lower than 100 cfu/g without getting ill. However, infective dose is influenced by the susceptibility of the high risk individuals and the ability of the microorganism to cause illness but, in general it can be assumed that \textit{L. monocytogenes} levels \geq 100-1000 cfu/g can cause listeriosis in high risk groups (NZFSA 2008). The parameter S_{all} was determined based on the frequency of consumption of RTE meat products by the total population in European Union, approximately 467000000 (Kim, 2006; Anonymous, 2007b; FAOSTAT, 2007). It was further assumed that the frequency of consumption of such products is similar between high risk groups and general population (Buchanan et al., 1997). The predicted listeriosis cases per year were compared with the reported cases (EFSA, 2008) for the reliability of the model. Listeriosis cases occurring in elderly people were considered because of their higher association with this particular group (FDA/USDA, 2003). Finally, the risk factors influencing the output of the model (i.e. listeriosis cases) and their threshold values, above of which a sharp increase of listeriosis cases is observed, were determined by the application of crude and advanced sensitivity analysis (Vose, 2000; Perez-Rodriguez et al., 2007). Crude sensitivity analysis is referred to the correlation coefficients between the model inputs and output as given by the simulation software used. Advanced sensitivity analysis is referred to the construction of the Tornado and sensitivity graphs. These graphs were constructed by testing the following cumulative probabilities (1, 5, 25, 50, 75, 95 and 99%) of the input distributions identified by the crude sensitivity analysis. Each input distribution was replaced by the corresponding percentile at a time allowing the others to vary and the output statistic of interest (i.e. mean of the listeriosis cases per year) was recorded. The model was developed in the Excel program and simulated using the @Risk 4.5 software (Palisade Corp., New York, USA). Ten thousands (10000) repetitions (iterations) in each simulation of the model were conducted whereas the simulation was repeated 100 times (uncertainty realizations) to take into account separately the variability and uncertainty of the model and model inputs.

To simplify the procedure of risk estimation and calculate the pathogen population at the time of consumption as accurate as possible, the food supply chain was divided into 3 sub-modules: the industry, the retail and the consumer (Nauta et al., 2003; Nauta, 2008) (Tables 1-3). In Tables 1-3 only the model for \textit{L. monocytogenes} is presented but a similar model was constructed for SSOs. The Gompertz equation as modified by Zwietering et al. (1994) was used to calculate population changes.
(i.e. increase) at various stages of the food chain. To calculate the kinetic parameters \((\mu_{\text{max}} \text{ and } t_{\text{lag}}) \), the equations of square root for \emph{L. monocytogenes} and Arrhenius for lactic acid bacteria (LAB) were used (Mataragas et al., 2006a,b). Also, only for \emph{L. monocytogenes}, a second order equation was used (the equation was incorporated into the Gompertz equation) to calculate the maximum population density as a function of temperature since it has been found that \emph{L. monocytogenes} population was not the same at all temperatures examined (from 4 to 16°C) during its growth in inoculated samples of a sliced cured cooked meat product (Mataragas et al., 2006b). A detailed demonstration of the use of the kinetic behavior models of both microorganisms can be found in Mataragas and Drosinos (2007).

Initial \emph{L. monocytogenes} population in the sliced product (log cfu/g) (industry sub-module) was described by a Discrete distribution combining initial prevalence and concentration of the pathogen (Table 1). Prevalence in the following sub-modules (i.e. retail and consumer) was assumed to remain unchanged since cross-contamination of the product during its distribution and storage (retail and home) is not likely (vacuum-packaged product). In the consumer sub-module, product shelf life given by the industry (60 days) was combined with purchase day (purchase day = storage time until retail + transportation time from industry to retail + retail storage + transportation time from retail to home) to exclude the products exceeding shelf life at the time of consumption because it is unlikely these products to be consumed or purchased (Nauta et al., 2003).

3. Results and Discussion

The kinetic growth models used in the exposure assessment step predicted the \emph{L. monocytogenes} or LAB growth as function of temperature (Mataragas et al., 2006a,b). Spoilage (SSOs growth) and shelf life duration were considered to estimate risk at the time of consumption based on the unspoiled-unsafe products. This fraction of the products poses a health risk for the consumers. If \emph{L. monocytogenes} is present in the product, assuming \(P \) equal to the mean value of the Beta distribution in Table 1 (1.91%), the fractions considered at the time of consumption were: spoiled-unsafe, 0.38%; unspoiled-safe, 0.95%; spoiled-safe, 0.30%; and unspoiled-unsafe, 0.28%, representing 19.8, 49.8, 15.9 and 14.5%, respectively, of the contaminated products (i.e. 1.91%). Their values were obtained after applying Monte Carlo simulation running in parallel the growth of \emph{L. monocytogenes} and SSOs.

The results showed that the \emph{L. monocytogenes} dose consumed (log cfu/serving size) is described by a distribution with a mean value of 2.42 log cfu/serving size and 95% confidence interval from -0.34 to
6.65 log cfu/serving size (Fig. 1a). Fig. 1a shows that low prevalent high doses were responsible for the highest number of listeriosis cases (the high bars in Fig. 1b was the result of the very low frequent high exposures). Cross-contamination before eating was taken into consideration but sensitivity analysis showed that it had a small contribution to the final risk. Therefore, in terms of simplicity this step was not included in the final model. Besides, simple is not always wrong and complex always right (Zwietering, 2009). Moreover, potential growth of the pathogen during storage of products, which may lead to infectious doses at the time of consumption, is more important than the potential cross-contamination during preparation (Yang et al., 2006). Indeed, the results of this study showed that doses above 10^6-10^7 cfu/serving size at the time of consumption were responsible for 95% of the simulated listeriosis cases (Fig. 1b).

Correlation coefficients, between inputs and output of the model, of the crude sensitivity analysis showed that variables such as pathogen concentration at retail (0.67), storage duration (0.51) and temperature (0.37) at retail, storage temperature (0.30) and duration (0.21) at industry, transport time to home (0.22) and to the retailers (0.20), storage time at home (0.19), ambient temperature during transport to home (0.17), amount of the product consumed (0.16) and temperature of home refrigerators (0.10) had the greatest influence on the number of listeriosis cases per year. The remaining inputs of the model had a correlation coefficient lower than 0.1 and, therefore, were not considered further (Fig. 2a). To have a more extended insight of the variability in parameters on the output of the model, techniques like advanced sensitivity analysis (Fig. 2b) and sensitivity graphs (Figs 3a-f) were used (Vose 2000; Perez-Rodriguez et al., 2007). Home fridge temperature and retail temperature, population at retail, serving size consumed, storage time at home and retail were the most important parameters from the set of those identified by the crude sensitivity analysis (Fig. 2b). Sensitivity graphs (Figs 3a-f) display the changes in the number of listeriosis cases per year as function of the parameters identified by advanced sensitivity analysis. The value at which a sharp increase (or a discrete inflexion point) in the number of listeriosis cases is observed is known as threshold value.

The developed model was validated by comparing the predicted (mean value: 155 cases in high risk population and 90% confidence interval: 0.0004 to 692) with observed (recorded) listeriosis cases (94 total cases in elderly people) (EFSA, 2008). Recorded cases were calculated using the equation:

$$\left(\frac{\text{Cases}_{100000/RTE\ meat\ products} \times C_{65} \times PO_{\text{total}} \times PO_{\text{high}}}{100000} \right)$$

where Cases$_{100000/RTE\ meat\ products}$, the recorded cases per 100000 of total population attributable to RTE meat products (0.18 cases); C_{65}, the recorded
cases occurred in individuals of age above 65 (56%); PO_{total}, the total population considered (467000000); and PO_{high}, the fraction of the high risk population (20%). Listeriosis cases attributable to RTE meat products were calculated according to FSIS (2008). $L. \text{monocytogenes}$ illnesses due to consumption of meat and poultry products were equal to 66%. $L. \text{monocytogenes}$ illnesses from meat and poultry products due to consumption of RTE meat products were equal to 91.2%. Thus, the 66\times0.912 = 60% of $L. \text{monocytogenes}$ illnesses was due to consumption of RTE meat products. Then, recorded cases attributable to RTE meat products: $\text{Cases}_{100000|\text{RTE meat products}} = \text{Cases}_{100000|\text{RTE meat}} \times \text{Cases}_{\text{RTE meat products}} = 0.3 \times 0.60 = 0.18$, where Cases_{100000} the recorded cases per 100000 of total population (0.3 cases) (EFSA, 2008).

An important parameter, other than concentration of the pathogen at the time of consumption, is the prevalence of the pathogen. There are various combinations of concentration and prevalence that lead to similar probability of illness at the time of consumption (Havelaar et al., 2004). In Fig. 4, the P_f–D equivalence curve representing the different combinations of prevalence-dose at the time of consumption that lead to similar risk (i.e. number of listeriosis cases per year) is given according to the developed model. The curve distinguishes the region of tolerable combinations of prevalence – dose from the intolerable region. So, the efficiency of any control measure applied for risk reduction can be evaluated using this graph. The implementation of control measures alters pathogen concentration and/or prevalence. These two parameters can be estimated from the developed model and thereafter to test if the simulated combination of prevalence – dose lies inside the tolerable region.

According to the advanced sensitivity analysis, significant parameters influencing the final risk estimation were mainly related with retail and home storage. Given the fact that cross-contamination of the products during their retail is unlikely, prevention or at least reduction of cross-contamination during their manufacturing becomes extremely important. At temperatures higher than 7-9°C (threshold values according to Fig. 3d and 3f) a sharp increase in listeriosis cases occurs. Therefore, storage of the products at temperatures below this level could contribute to listeriosis cases reduction because the extended growth of the pathogen is inhibited. Consequently, there is the need of training of the people involved in transportation, distribution and storage of the products, including consumers, in the basic measures of food safety [low temperatures (3-4°C), adequate cooking, separation of fresh products from RTE products, adequate/good cleaning of hands, equipment, tools and other utensils] (Sofos, 2008).
The results obtained from the QMRA study could be directly ‘translated’ in POs (Fig. 5). In the present study, a PO could be the prevalence and/or the concentration of the pathogen that should not be exceeded at the time of consumption. For instance, in Fig. 4 the equivalence curve (baseline model) was estimated when \(P = 1.91\% \) (Table 1). Therefore, this value could be considered as the PO that should not be exceeded because higher values could lead to \(P_f - D \) combinations outside the tolerable region. This PO could be also placed in the industry sub-module since cross-contamination of the products during distribution is unlikely or if it happens at consumer level is not as important as the growth of the pathogen (Yang et al., 2006). Furthermore, pathogen concentration should not exceed a specified level (Fig. 5) in order the final \(P_f - D \) combination to be in the tolerable region (Fig. 4). Therefore, final products should be analyzed by the manufacturer to verify or confirm such low values of prevalence and concentration. For this purpose, microbiological criteria (MC) are applied to ensure that POs are not being exceeded. MC is one of the potential control measures to reduce risk (Reij and Zwietering, 2008). When the distribution of the pathogen of concern is known (e.g. from a QMRA study), industry-specific MC, aimed to verify compliance with a PO, could be developed using statistical methods.

Based on the QMRA results obtained in the present study an example is given. Knowledge of pathogen distribution within the lot and its expected standard deviation (s.d.) is important in order to develop a MC. This information could be experimentally determined from the QMRA study (i.e. intermediate output of the industry sub-module). After performing Monte Carlo simulation, the mean and s.d. of the output distribution (\(N_{0,s} \) parameter in Table 1) were -3.08 and 1.02 log cfu/g, respectively. It was further assumed that \(L. \) monocytogenes log counts follow within the lot a normal distribution with these characteristics in order to determine the MC. Log-normal distribution of a pathogen in food is usually assumed and it provides the basis for establishing a mathematical relationship between PO and MC (van Schothorst et al., 2009). The s.d. of 1.02 log cfu/g indicates a rather non-homogeneously distribution of the microorganism within the lot which is usually the case for solid foods. The aim of the MC is to decide whether a food lot is acceptable or unacceptable. This is a two-class attribute test characterized by the number of samples to be analyzed (\(n \)), the number of samples that are allowed to exceed the test criteria (\(c \)) (for pathogens, \(c \) is usually zero), the lower limit of detection for the test (\(m \)) and the confidence level (e.g. 95% or 99%) that the test will identify and reject a non-conforming or unacceptable lot (i.e. consumer Acceptable Level for Safety – consumer ALS) (Whiting et al., 2006).
For this example, a consumer ALS of 95% was assumed. Usually, microbiological testing protocols involve enrichment of 25g of food product (analytical units) and presence/absence testing of the pathogen on selective media. To estimate the number of analytical units (i.e. samples) that need to be tested, a modified procedure (i.e. Poisson-log-normal distribution) for determining the effectiveness of enrichment tests was followed (van Schothorst et al., 2009). The results showed that the probability of acceptance of a lot (with mean -3.08 and s.d. 1.02), based on a single sample, was $1 - 0.1091 = 0.8909$ (the probability that a cell is present in the sample taken and leads to detection of a positive was 0.1091). Consequently, more negative samples are required to reach 95% confidence. Taking 25 or 26 samples, the probability that all samples are acceptable was $(0.8909)^{25} = 0.0557$ and $(0.8909)^{26} = 0.0496$, respectively. Given this calculation scheme, 26 negative samples ($n = 26$ and $c = 0$) are required to reject with more than 95% certainty a lot that has log mean concentration and s.d. greater than the corresponding determined values (i.e. the parameters of normal distribution) because taking 25 samples for analysis the confidence level was still below 95%. Another decision that must be made is to determine the safety level that is required (i.e. maximum frequency and/or concentration of the hazard) and its corresponding relationship to the lot mean. This safety limit comprises the PO. As described above, based on the QMRA results, a PO could be the $L.\ monocytogenes$ prevalence ≤ 1.91%. Given the distribution of $L.\ monocytogenes$ in the lot, the proportion of the allowable defective units (i.e. 1.91%) can be translated into an estimation of the maximum concentration of the pathogen in the lot that should not be exceeded (Fig. 5). The latter was calculated as follows: $L.\ monocytogenes$ mean concentration of -3.08 log cfu/g and prevalence of 1.91% are the maximum values that can be tolerated because this combination is located on the $P_f - D$ equivalence curve (Fig. 4). The PO is determined by adding a certain number of s.d. to the hazard maximum tolerable concentration so that the required percentage of the lot will have concentrations below PO. The required number of s.d. is termed the z score. Therefore, in order 98.09% of the units to be at or below the target PO (or 1.91% of the units to be above the target PO), the number of s.d. that should be added is $2.07 (-3.08 + 2.07*1.02 = -0.97 \ log \ cfu/g)$ (Whiting et al., 2006; van Schothorst et al., 2009). The curve in Fig. 5 with a mean of -3.08 log cfu/g, s.d. of 1.02 log cfu/g and PO at -0.97 log cfu/g was assigned as the ‘just unacceptable lot’ that the MC should reject in 95 times out 100 (Whiting et al., 2006). Distributions with lower mean values will have higher probability of acceptance. Therefore, for this specific example the developed MC, for 95% confidence of lot rejection when it has more than 1.91% of the units above the PO or
contamination is greater than or equal to the lot mean, would be: Lot mean = -3.08 log cfu/g, s.d. = 1.02 log cfu/g, \(m = \text{absence in 25g, } c = 0, n = 26 \) and \(PO = -0.97 \) log cfu/g. Finally, an operating characteristic curve (OC-curve) can be constructed to characterize the performance of the developed MC (Fig. 6a) or relate the OC-curve to the mean pathogen concentration to obtain the consumer and producer ALSs (Fig. 6b) (ICMSF, 2002; van Schothorst et al., 2009).

The QMRA study revealed areas on which to focus efforts to reduce listeriosis: reformulation of products, the product is able to support growth of \(L. \text{monocytogenes} \), thus, industry could reduce the risk by reformulating the product so it no longer supports pathogen growth or through treatment after packaging; review of product shelf life, product shelf life can be reassessed by taking into account \(L. \) \(\text{monocytogenes} \) growth during storage; sufficient sanitation practices in industry to reduce cross-contamination; surveillance of microbiological status of products, microbiological criteria and sampling plans could be established in industry to meet pre-defined pathogen levels (i.e. POs) or to set stringency of a food control system; improved control of temperature during distribution and storage. This can be achieved through training of the people involved in these processes; and risk communication messages/programs to consumers, educational messages/programs for consumers to note the need of keeping refrigerator temperatures at or below 4-5°C. Actually, the consumer should also contribute to the safety of a product. This could also be emphasized via the FSO concept (FSO=at consumption), so growth in last part is in the consumers’ hand.

4. Conclusions

A QMRA study may give valuable information regarding the presence and development of a microbiological hazard in a food product. This information is “translated” in: 1) identification of risk factors contributing to occurrence of clinical manifestations due to consumption of products contaminated with a pathogen, 2) determination of threshold values of the risk factors above which a sharp increase in the number of infection cases is observed and 3) application of control measures to reduce illness (i.e. risk management) (Zwietering and Nauta, 2007) (Fig. 7). The people involved in food safety may use this information to draw conclusions, publish directives relative to risk management or establish POs and/or PC. The QMRA model can be used as baseline to evaluate the effectiveness of different risk management options or control measures (i.e. “what-if” scenarios). Examples of such control measures, for this specific combination of \(L. \text{monocytogenes} \) and RTE meat
products, could be: the likelihood of antimicrobials addition (e.g. lactate, di-acetate, etc.) during product manufacturing or product immersion in a solution containing antimicrobial compounds (Lianou et al., 2007), the suggestion of thermal treatment of the final product with steam or hot water before consumption, the application of high hydrostatic pressure or irradiation (ILSI, 2005). Application of antimicrobial agents or a final process step with antimicrobial activity, have been integrated in regulations specifically published for the control of *L. monocytogenes* in RTE meat products (FSIS, 2003). Another control measure, as indicated by this study, could be the decrease of product shelf life at or close to its threshold value (i.e. 18-20 days) (Fig. 3). This will lead to a lower dose at the time of consumption and the resulting $P_f - D$ combination will be inside the tolerable region (Fig. 4). Product shelf life should be determined taking into account the potential growth of the pathogen during storage. In this manner, safety-based “use-by” date labels for refrigerated RTE foods could be developed (NACMCF, 2005). If shelf life studies indicate that a level of 100 cfu/g is likely to be exceeded before the end of the set shelf life, then shelf life or food safety management procedures should be reviewed (e.g. review of the implemented MC to ensure *L. monocytogenes* presence below a pre-specified level, i.e. the PO). Finally, equal approaches can be used for other deli meats or even other RTE foods. If specific parameters values and specific particularities of the product and process are taken into account equal types of analysis can be helpful in evaluating the risk and potential effects of interventions.

Acknowledgments

The manuscript has been supported by the project FOOD-CT-2005-007081 (PathogenCombat) from the European Commission through the Sixth Framework Programme for Research and Development.
References

Figure Captions

Fig. 1. Relationship a) frequency of doses at the time of consumption and b) dose at the time of consumption with number of listeriosis cases.

Fig. 2. Crude and advanced sensitivity analysis with a) Correlation coefficients (crude) and b) Tornado graph (advanced) displaying the most important factors contributing to model output.

Fig. 3. Sensitivity graphs showing the threshold values of the parameters identified by the advanced sensitivity analysis. Solid square points indicate the 1, 5, 25, 50, 75, 95 and 99% cumulative probabilities of the input distributions.

Fig. 4. Prevalence-dose ($P_f - D$) combinations at the time of consumption that lead to similar risk or same number of listeriosis cases per year (solid line) according to the QMRA model developed. During construction of the $P_f - D$ equivalence curve, consumption patterns and fraction of unspoiled-unsafe products were taken into consideration. The equivalence curve defines the limit between tolerable and intolerable region. The equation (1) was used to determine the equivalence curve [to build the curve, values were drawn from the dose (D) distribution (Fig. 1a), e.g. 100 doses corresponding to the 100 simulations performed, and for each dose value (the mean from 10000 iterations performed at each simulation) the corresponding P_f value was calculated using for the remaining parameters of $Risk$, S_{all} and r the mean values of their distributions]: $Risk$, 157 listeriosis cases per year (the mean of the output distribution in Table 3); S_{all}, 1.4×10^9 servings/year (as calculated in Table 3 using the mean (50g) of the Pert distribution by which the s parameter was described); r, (2.6×10^{10}) (the mean of the Pert distribution in Table 3). (\bullet) $P_f - D$ values estimated by the model at the time of consumption [current situation according to the baseline model developed; $P_f=1.91\%$ (the mean of the Beta distribution in Table 1), $P_{unsp-unsf}=0.28\%$ ($P_f=P \times 14.5\%,$ see Table 3) and $D=2.42$ log cfu], (\triangle) $P_f - D$ values estimated by the model at the time of consumption after the implementation of control measures to reduce prevalence of the pathogen in the industry sub-module (e.g. if GMP and GHP properly and effectively applied it could be $P_f=1.00\%$ then, according to the model, $P_f=0.15\%$ and $D=2.53$ log cfu). (\bullet) $P_f - D$ values estimated by the model at the time of consumption after the implementation of control measures to reduce concentration of the pathogen in the industry sub-module (e.g. application of MC to reject lots with pathogen population above a pre-specified level such as -3.08 log cfu/g. $P_f=1.91\%$ and distribution of $L. monocytogenes$ equal to producer ALS, i.e. Normal(-5.26, 1.02) log cfu/g then, according to the model, $P_f=0.28\%$ and $D=1.39$ log cfu) and (\square/\square) $P_f - D$ values estimated by the model...
at the time of consumption after the reduction of product shelf life from its actual value of 35 days (\square; $P=1.91\%$, $P_f=0.28\%$ and $D=3.35$ log cfu) to 18 days (\diamond; $P=1.91\%$, $P_f=0.28\%$ and $D=2.25$ log cfu).

Shelf life of 35 days is based on industry data (i.e. returns) and studies dealing with shelf life establishment of this particular product (Mataragas et al., 2006a). The shelf life of 60 days given by the industry has been determined at constant temperature conditions (4°C).

Fig. 5. Construction of ‘just unacceptable lot’ that MC should reject with 95% confidence. Distributions with lower mean values will have higher probability of acceptance and distributions with higher mean values will be rejected by the MC (> 95% probability of rejection).

Fig. 6. OC-curve that relates the probability of accepting a lot to a) defective proportion based on the number of samples tested (n) and samples in excess of m (c, m = absence in 25g) and b) mean pathogen population displaying the consumer and producer ALSSs.

Fig. 7. Relationship between risk management and exposure assessment, dose-response and risk characterization. Pathogen final concentration (N_f) is determined by initial contamination of products (N_0), potential cross-contamination during and/or after processing (CC), increase (I), survival (S) and/or reduction due to inactivation (R) during processing. Parameter (N_i) should be lower or at least equal to the FSO. Dose (D) consumed at the time of consumption, which is the final population (N_f) multiplied by the serving size (SS) consumed, combined with a dose-response model provide the risk per serving (RpS). The risk is converted into probability of illness (P_{ill}) or number of cases based on the total number of servings consumed in a year (S_{all}). The final risk is compared to the ALOP. To meet the FSO, establishment of POs [maximum frequency of occurrence ($) and/or concentration (cfu/g) of a pathogen], PC [change (i.e. reduction or tolerated increase) in frequency of occurrence and/or concentration of a pathogen that should be achieved during processing or implementation of control measures] and PrC (conditions required to achieve the desired PO/PC, e.g. time-temperature combination) prior to consumption is necessary. Finally, compliance with PO/PC, and consequently with FSO, is verified by the application of MC (level and/or frequency of occurrence of a pathogen detected by the implementation of specific analytical method and sampling plan) [adapted from Zwietering and Nauta (2007); Whiting and Buchanan (2008)].
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>Notation</th>
<th>Description</th>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence</td>
<td>%</td>
<td>(P)</td>
<td>Beta(645, 33180)(^b)</td>
<td>Uncertainty of (L.) monocytogenes prevalence</td>
</tr>
<tr>
<td>New prevalence</td>
<td>%</td>
<td>(P_{\text{new}})</td>
<td>Sampling from Beta distribution</td>
<td></td>
</tr>
<tr>
<td>Prevalence of samples under detection limit</td>
<td>%</td>
<td>(P_{\text{neg}})</td>
<td>(1 - P_{\text{new}})</td>
<td></td>
</tr>
<tr>
<td>Concentration in positive samples</td>
<td>log cfu/g</td>
<td>(C)</td>
<td>Cumulative(-1.4, 3, {-1.4, -1, 0, 0.7, 1, 1.7, 2, 3}, {0.83, 0.90, 0.93, 0.95, 0.96, 0.98, 0.99, 1})(^b)</td>
<td>Variability of (L.) monocytogenes concentration in positive samples</td>
</tr>
<tr>
<td>New concentration</td>
<td>log cfu/g</td>
<td>(C_{\text{new}})</td>
<td>Sampling from Cumulative distribution</td>
<td></td>
</tr>
<tr>
<td>Concentration of samples under detection limit</td>
<td>log cfu/g</td>
<td>(C_{\text{neg}})</td>
<td>Uniform(-4.83, -1.40)(^c)</td>
<td>Uncertainty associated with the mean value of (L.) monocytogenes concentration in negative samples</td>
</tr>
<tr>
<td>Initial population in finished sliced product</td>
<td>log cfu/g</td>
<td>(N_{0,s})</td>
<td>(\text{Discrete}(C_{\text{new}}; C_{\text{neg}}, P_{\text{new}}; P_{\text{neg}}))</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>°C</td>
<td>(T_{0})</td>
<td>Pert(0, 2, 4)</td>
<td>Uncertainty of storage temperature modeling of experts opinion</td>
</tr>
<tr>
<td>Storage time until retail (sliced product)</td>
<td>days</td>
<td>(t_{0,s})</td>
<td>Pert(0.1, 1, 3)</td>
<td>Uncertainty of storage time until retail modeling of experts opinion</td>
</tr>
<tr>
<td>Population in sliced product after storage</td>
<td>log cfu/g</td>
<td>(N_{1,s})</td>
<td>(\text{modified Gompertz equation})^d</td>
<td></td>
</tr>
<tr>
<td>Transport time to the retailers</td>
<td>days</td>
<td>(t_{1})</td>
<td>Pert(0.05, 0.15, 0.5)</td>
<td>Uncertainty of transport time to the retailers modeling of experts opinion</td>
</tr>
<tr>
<td>Transport temperature</td>
<td>°C</td>
<td>(T_{1})</td>
<td>Pert(5, 7, 12)</td>
<td>Uncertainty of transport temperature modeling of experts opinion</td>
</tr>
<tr>
<td>Population in sliced product after transport</td>
<td>log cfu/g</td>
<td>(N_{2,s})</td>
<td>(\text{modified Gompertz equation})^d</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) After slicing

\(^b\) Values of prevalence (33823 total samples analyzed, 644 positive) and concentration were taken from the FDA/USDA risk assessment study regarding the \(L.\) monocytogenes presence in RTE foods (2003)
To give a mean value equal to -3.11 log cfu/g which was an estimation of the pathogen concentration of samples under detection limit. The mean concentration of samples under detection limit was calculated by the equation (Jarvis, 2000): \(\text{mean} = \left(\frac{2.303}{\text{AUs}} \right) \times \log \left(\frac{S_{\text{neg}}}{S_{\text{total}}} \right) \), where mean, the mean concentration in cfu/g; AUs, the analytical units tested (e.g. 25g); \(S_{\text{neg}} \), the number of samples tested as negative (33179); and \(S_{\text{total}} \), the total number of samples analyzed (33823) (FDA/USDA, 2003).

\(^{\text{a}}\) Kinetic parameters (\(\mu_{\text{max}} \) and \(t_{\text{lag}} \)), were determined using the secondary models of the square root (L. monocytogenes) and Arrhenius (lactic acid bacteria) (Mataragas et al., 2006b). Also, only for L. monocytogenes, a second order polynomial equation was used to calculate the maximum population density (\(N_{\text{max}} \)) (Mataragas et al., 2006b).
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>Notation</th>
<th>Description</th>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population in sliced product after transport</td>
<td>log cfu/g</td>
<td>$N_{2,s}$</td>
<td>From the Industry sub-module</td>
<td></td>
</tr>
<tr>
<td>Retail temperature</td>
<td>°C</td>
<td>T_2</td>
<td>Normal(5.44, 2.32)</td>
<td>Variability of retail temperature</td>
</tr>
<tr>
<td>Storage time at retail</td>
<td>days</td>
<td>$t_{2,95%}$</td>
<td>Uniform(0, 45)</td>
<td>Uncertainty about the mean of storage time at retail from 0 to 45 days</td>
</tr>
<tr>
<td>Storage time at retail</td>
<td>days</td>
<td>$t_{2,5%}$</td>
<td>45+Uniform(0, 15)</td>
<td>Uncertainty about the mean of storage time at retail from 45 to 60 days</td>
</tr>
<tr>
<td>Population in sliced product after retail storage</td>
<td>log cfu/g</td>
<td>$N_{3,s,95%}$</td>
<td>modified Gompertz equation</td>
<td></td>
</tr>
<tr>
<td>Population in sliced product after retail storage</td>
<td>log cfu/g</td>
<td>$N_{3,s,5%}$</td>
<td>modified Gompertz equation</td>
<td></td>
</tr>
<tr>
<td>Population in sliced product after retail storage</td>
<td>log cfu/g</td>
<td>$N_{3,s}$</td>
<td>Discrete($N_{3,s,95%}$: $N_{3,s,5%}$, 0.95:0.05)</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>°C</td>
<td>T_A</td>
<td>Pert(0, 20, 40)</td>
<td>Uncertainty of ambient temperature modeling of experts opinion</td>
</tr>
<tr>
<td>Max change in temperature during transport</td>
<td>°C</td>
<td>ΔT_{max}</td>
<td>T_A-T_2</td>
<td></td>
</tr>
<tr>
<td>Potential change in temperature during transport</td>
<td>°C</td>
<td>T_{pc}</td>
<td>Normal(3.72, 2.82)</td>
<td>Variability of potential change in temperature during transport</td>
</tr>
<tr>
<td>Change in temperature during transport</td>
<td>°C</td>
<td>T_c</td>
<td>IF($\Delta T_{max} \leq 0$, 0, T_{pc})</td>
<td></td>
</tr>
<tr>
<td>Product temperature after transport</td>
<td>°C</td>
<td>T_p</td>
<td>T_2+T_c</td>
<td></td>
</tr>
<tr>
<td>Average transport temperature</td>
<td>°C</td>
<td>T_m</td>
<td>Average(T_2, T_p)</td>
<td></td>
</tr>
<tr>
<td>Transport time to home</td>
<td>days</td>
<td>t_3</td>
<td>Cumulative(15, 225, {15, 37.5, 52.5, 75, 135, 225}, {0.57, 0.77, 0.86, 0.95, 0.99, 1})/1440</td>
<td>Variability of transport time to home</td>
</tr>
<tr>
<td>Population in sliced product after transport</td>
<td>log $N_{s,s}$ modified Gompertz equation b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Storage time at retail was estimated according to Nauta et al. (2003). Shelf life of products, given by industry, equal to 60 days. Percentage of products sold within the first 45 days (95%) and percentage of products sold the last 15 days of their shelf life (5%)

b See Table 1

c Changes in temperature during transport were estimated according to FDA/USDA (2003)

d Transport time in minutes converted to days (1 day = 1440 min)
Table 3. Consumer sub-module

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>Notation</th>
<th>Description</th>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population in sliced product after transport</td>
<td>log cfu/g</td>
<td>$N_{4,t}$</td>
<td>From the Retail sub-module</td>
<td></td>
</tr>
<tr>
<td>Home fridge temperature</td>
<td>°C</td>
<td>T_{3}</td>
<td>BetaGeneral(2.5282, 4.7672, 1.5501, 18.773)</td>
<td>Variability of home fridge temperature</td>
</tr>
<tr>
<td>Storage time at home</td>
<td>days</td>
<td>t_{d}</td>
<td>Cumulative(1, 49, {1, 2, 3.5, 5.5, 7, 14, 21, 35, 49}. {0.02, 0.77, 0.39, 0.50, 0.76, 0.78, 0.84, 0.97, 0.99})</td>
<td>Variability of storage time at home</td>
</tr>
<tr>
<td>Day of purchase a</td>
<td>days</td>
<td>$PD_{95%}$</td>
<td>$t_{0,s}+t_{1}+t_{2.95%}+t_{3}$</td>
<td></td>
</tr>
<tr>
<td>Day of purchase b</td>
<td>days</td>
<td>$PD_{5%}$</td>
<td>$t_{0,s}+t_{1}+t_{2.5%}+t_{3}$</td>
<td></td>
</tr>
<tr>
<td>Day of purchase</td>
<td>days</td>
<td>PD</td>
<td>Discrete($PD_{95%}$: $PD_{5%}$, 0.95:0.05)</td>
<td>Uncertainty associated with day of purchase</td>
</tr>
<tr>
<td>Shelf life indicated by the manufacturer</td>
<td>days</td>
<td>SL</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Population in sliced product after home storage</td>
<td>log cfu/g</td>
<td>$N_{5,t}$</td>
<td>IF(t_{4}+PD_{SI}>SL, 0, modified Gompertza)</td>
<td></td>
</tr>
<tr>
<td>Weight of slice</td>
<td>g</td>
<td>W_{s}</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Serving size consumed</td>
<td>g</td>
<td>S</td>
<td>Pert(0, 50, 100)</td>
<td>Uncertainty of serving size modeling of experts opinion</td>
</tr>
<tr>
<td>Population at the time of consumption (dose)</td>
<td>log cfu</td>
<td>$N_{6,t}$ (D)</td>
<td>log($10^{45.5} \times S$)</td>
<td></td>
</tr>
<tr>
<td>Total population</td>
<td>-</td>
<td>PO_{total}</td>
<td>467000000</td>
<td></td>
</tr>
<tr>
<td>High risk population</td>
<td>%</td>
<td>PO_{high}</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>No. of servings consumed per person</td>
<td>slices</td>
<td>S_{p}</td>
<td>S/W_{s}</td>
<td></td>
</tr>
<tr>
<td>No. of servings consumed by high risk population</td>
<td>slices</td>
<td>S_{high}</td>
<td>$S_{p} \times PO_{total} \times (PO_{high}/100)$</td>
<td></td>
</tr>
<tr>
<td>Frequency of consumption (consumption on monthly basis by half of the population) c</td>
<td>per year</td>
<td>F</td>
<td>0.5×12</td>
<td></td>
</tr>
<tr>
<td>No. of slices consumed/year by high risk population</td>
<td>-</td>
<td>S_{all}</td>
<td>$S_{high} \times F$</td>
<td></td>
</tr>
<tr>
<td>Unspoiled-Unsafe fraction (^d)</td>
<td>%</td>
<td>(P_f)</td>
<td>14.5×(P)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>(r)-parameter (^e)</td>
<td>-</td>
<td>(r)</td>
<td>Pert(1.11×10^{-15}, 4.47×10^{-11}, 1.36×10^{-9}))</td>
<td></td>
</tr>
</tbody>
</table>

| Risk (annual cases) | - | Risk | \(S_{\text{all}}\times r\times10^{15}\times(P/100)\) |

\(^a\) Day of purchase was estimated according to Nauta et al. (2003)

\(^b\) See Table 1

\(^c\) Not all the people consume RTE meat products. Frequency of consumption of RTE meat products was estimated based on FAOSTAT (2007) data (Mataragas et al., 2008)

\(^d\) This was calculated taking also into account SSOs growth. Assuming \(P\) equal to the mean value of the Beta distribution in Table 1 (1.91%) the fractions considered at the time of consumption were: spoiled-unsafe, 0.38%; unspoiled-safe, 0.95%; spoiled-safe, 0.30%; and unspoiled-unsafe, 0.28%, representing 19.8, 49.8, 15.9 and 14.5%, respectively, of the contaminated products (i.e. 1.91%)

\(^e\) Simulation of the \(r\) parameter, using the equation: \(r = -[\ln(1-P_{ill})]/D\), where \(P_{ill}\) the probability of illness for the elderly people (high risk population) according to the QMRA study of \(L.\ monocytogenes\) presence in deli meats conducted by FDA/USDA (2003) (5×10^-9); and \(D\), the dose at the time of consumption, and application of the bootstrap technique to determine the min, most likely and max values of the Pert distribution.
Dose at the time of consumption (log cfu)

Frequency

$X \leq -0.34$ (2.5%) $X \leq 6.65$ (97.5%)

mean = 2.42

Number of listeriosis cases per year

Doses responsible for 95% of the listeriosis
Intolerable region of $P-D$ combinations

Tolerable region of $P-D$ combinations
Defective rate
Probability of acceptance

\(n = 26, c = 0 \)

\(P_{\text{accept}} = 95\% \)
Producer ALS = -5.26

\(P_{\text{accept}} = 5\% \)
Consumer ALS = -3.08
POs
PC and PrC
Consumption
Illness
FSO
Risk
ALOP
Sall
Pill
Raw materials
Processing (e.g. cooking)
Slicing and packaging
Distribution to retail
Storage at retail
Risk management decision (e.g. shelf life duration)
Consumption
Illness

Exposure Assessment
Dose-response
Risk Characterization

I, S and/or R

FSO

N₀

CC

Nᵢ

SS

D

Sᵦᵢ

Pᵦᵢ

Tolerable?

ALOP

Rps

MC