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Abstract

The frequency and severity of shallow landslideble@w Zealand threatens life and property,
on- and off-site. The physically-based shallow Eia# model LAPSUS-LS is tested for its
performance in simulating shallow landslide locasionduced by a high intensity rain event.
Furthermore the effect of DEM resolution on thefpenance was tested. The performance of
the model was optimized by calibrating differentgraeter values. A satisfactory result was
achieved at 1 m resolution. Landslides were gelyem@kdicted lower on the slope than
mapped erosion scars. This discrepancy could beéaduraccuracies in the DEM or in model
input data such as soil strength properties; ortduelevant processes for this environmental
context that are not included in the model. Thelearaff between a correct prediction of
landslides versus stable cells becomes increaswagige with coarser resolutions; and model
performance decreases mainly due to altering stbyaeacteristics. The optimal parameter
combinations differ per resolution. In this envinoental context the 1 m resolution
topography seems to resembles reality most closely landslide locations are better
distinguished from stables areas than for coaesamlutions. More gain in model performance
could be achieved by adding complexities and pataniheterogeneity in the catchment.
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1. Introduction

Landsliding triggered by rainstorms present a dl@mwironmental and economical hazard,

especially on steep hillslopes. In mountainous tes) such as New Zealand, shallow

landsliding is one of the most important erosioogesses (Crozier, 1986). The frequency and
severity of shallow landslides threaten life andparty, on- and off-site (Brooks et al., 2002;

Reid and Page, 2002). A long-term consequencesifois of soil nutrients, and as a result a
decline in soil productivity. Pasture production 2d-year old landslides can be as low as
20% compared to unaffected areas (Trustrum e1@84, in Brooks et al., 2002). In order to

effectively battle the on- and off-site effectslafidsliding, more information is needed on the
spatial distribution of landslide risk in the lacdpe and the potential contribution to the

sediment load.

The East coast of North Island in New Zealand aprto landsliding due to the combination
of steep slopes, soft bedrock and episodic rainstewents. The geography of this region
consists of soft sedimentary bedrock with highefedind steep slopes due to fluvial dissection
following a rapid uplift during the Pleistocene (ack et al., 1991). The regolith mantle, of
about 1-2m depth, is weak and highly permeable e@vetpto the underlying bedrock (Brooks
et al., 2002). The conversion from indigenous fotepasture, started by European settlers in
the 1830s, further undermined the stability of tlegolith mantle. Together with the
occurrence of tropical cyclones, this frequentlgiuoes wide-spread landslide events, which
involve hundreds of shallow, rapid flows affectingndreds of square kilometers (Brooks et
al., 2002).

During a high intensity rainfall event in August (@) flooding and shallow landsliding
occurred in many parts of the East Coast and nortiawke’s Bay in the Waipaoa
catchment. Field estimates of off-slope sedimerively to channels were done in three
different locations immediately after the eventedton, 2008). Within the small (-9 ha)
Hinenui catchment there were 71 rainfall triggergthllow earthflows (Fig.1) causing
widespread damage (Preston, 2008; Jones, 2009).

Figure 1: The Hinenui catcmnt after the 2002 st vent (Photo: N. Prton, 2002; Source: Jones,04)

In this study the multi-dimensional landscape etrotumodel LAPSUS-LS (Claessens et al.,
2007a) will be used to get more insight into thieriaction between precipitation, landslides



and catchment characteristics. This model congtradandslide hazard map, using a critical
rainfall threshold, above which landsliding is gaged. Subsequently, the downslope
trajectory of the landslide is modeled. When thpad@tional pathway of a landslide intersects
with the transporting stream network, the remainsggdiment budget is added to the
catchment sediment yield (Claessens et al., 2007b).

This research aims to:
test the LAPSUS-LS model for its ability to predsttallow landslide locations in a
small catchment during a single storm event.
test the effect of different spatial resolutionstba performance of the LAPSUS-LS
model.

2. Methodology

2.1 Modeling framework

This thesis used the LAPSUS (LandscApe ProcesS Iimgds mUIti dimensions and scaleS)
modeling framework, developed by Schoorl et al.0O®0 LAPSUS is a multi-dimensional
landscape evolution model addressing on-site afdgitef effects of current and possible
water and soil redistribution by water run-off ahliage erosion (Schoorl et al., 2000).
Claessens et al. (2007a) extended the model wigndslide component (LAPSUS - LS),
which is able to model the triggering of shallomdalides and their subsequent trajectory
downwards. First the amount of rain that will tregga landslide (the critical rainfall, is
calculated on a cell by cell basis in a grid st Then, after a landslide is triggered for a
certain rainfall scenario, the downslope traject@ycalculated for both the erosion and
deposition phases of the landslide.

2.1.1 Critical rainfall

The calculation of critical rainfall is based on steady state hydrological model in
combination with a deterministic infinite slope latdy model to delineate areas prone to
landsliding due to surface topographic effects gudrblogic response (Montgomery and
Dietrich, 1994; Pack et al. 2001; Claessens e@Dya). In an infinite slope stability model,
the stability of a slope is usually expressed asfélctor of safety (FS), which can be written
as (Pack et al., 2001; Claessens et al., 2007a):

C+cos 1-W Y tanf

FS= —° 1)
Sin

where

C combined cohesion [-]

local slope angle [°]

relative wetness index [-]

density of water [g ¢

wet soil bulk density [g cfi

the angle of internal friction of the soil [°]

“Sns =

If FS is larger than 1 the slope is stable, if E®eélow 1, the slope becomes unstable and a
landslide will be triggered at that position. Trembined cohesion can be interpreted as the



relative contribution to slope stability of the eslive forces, which consist of root cohesion
and soil cohesion (Claessens et al., 2007a). Vétivelwetness) is the ratio of local flux at a
given steady state rainfall to that at soil profiéuation. Claessens et al. (2007a) used a
steady state hydrological response model basedook Iy O’Loughlin (1986) and Moore et
al. (1988) for the calculation of W:

Ra

bTsing @)
where
R = steady state rainfall recharge [m day
a = the upslope contributing drainage area [m?]
b =the grid size [m]
T = soil transmissivity when saturated [m? dpy

= the local slope angle [°]

The upslope contributing area is calculated ushey doncept of multiple downslope flow
(Quinn et al, 1991). Wetness ranges between 0 asitide any excess of water is assumed to
form overland flow.

By substituting Eq. (2) in Eq. (1), equating thetBS. since this is the threshold for instability,
and solving for R, the minimum steady state rdindacause slope failure ( = critical rainfall)
can be determined (Claessens et al., 2007a). Tiheakrainfall Q. [m d*] can be written as
(Claessens et al., 2007a):

Q, =Tsing b rs 4 (Sing-€)
a

r (cosgtanf

w

®3)

With the boundary condition for W (between 0 andthe upper and lower thresholds for
slopes that can fail can be calculated with Eg. (B)conditionally stable areas are always
predicted to be stable, even when saturated amsfystite following condition (Claessens et
al., 2007a):

+1- Lw tanf 4)
cosq r

tang £

S

Unconditionally unstable areas, consisting mostiybedrock outcrops, are unstable even
when dry and satisfy the following condition (Clsess et al., 2007a):

C
cosg

tang > tanf +

(5)

2.1.2 Trajectories of failed slope material

When the amount of rainfall exceeds the criticaifedl in a grid cell, the landslides starts and
debris begins moving downslope. The amount of edasiaterial S [m] is calculated based
on works by Johnson and Rodine (1984, as in Classseal., 2007a) and e.g. Burton and
Bathurst (1998) as:



_ rocodtang - tana)a

S 6
c. (6)
where
= the minimum local slope for debris flow moverhgr
a = correction factor for dimensionsjm

Erosion stops where the gradient falls below aagerslope angle and the transported
material will be deposited over a number of dowpslgridcells, defined as ‘cell distance’
D [-]:

D=— 7
0 (7

where

r = runout distance [m]

b = gridsize [m]

The runout distance r [m] of the depositional phdsines the distance over which material
will be deposited and is calculated using the felig equation from Burton and Bathurst
(1998):

r=/ Dy (8)

where
y = the elevation difference between the heati®ftide and the point where
deposition begins [m]
= an empirically derived fraction set at 0.4 [-]

The accumulated soil material is then further rdwméth ‘double’ multiple flow methodology

( Quinn et al. 1991) to downslope neighbours ubtit 1, when all the remaining sediment is
deposited and the landslide halts (Claessens,Qfl7a). The sediment which is effectively
delivered to grid cell n (, is expressed as:

5= o, ©
Dn—l

The term (B1 /D 1) is the amount of sediment deposited in grid celbmginating from
erosion upslope, divided by the cell-distance (&). The fraction allocated to each lower
neighbour is represented Hy and determined by the multiple flow concept déxdi by

Quinn et al. (1991). The remaining sediment buadejrid cell n which is not deposited but
‘passed through’ to grid cell n+1, can be writtsn a

B,=B,;, 1-— f (20)



2.1.3 Sediment yield and delivery ratio

The sediment yield can be determined from the alppéttern of soil redistribution modeled
with LAPSUS-LS and the interaction with a topography delineated stream network. In
LAPSUS-LS the stream network is determined by $pg a minimum contributing area
threshold. All grid cells draining more than a #ireld drainage area are defined as part of the
stream network and capable to transport landslideenal to the catchment outlet. When a
grid cell, which is part of the depositional patlywa a landslide, intersects with a grid cell
from the transporting stream network, the remaingggliment budget of that grid cell,
according to Eq. (10), is added to the total camhinsediment yield (Claessens, 2007b).

2.1.4 Bug

In one of the first test runs of the model, the dslepe trajectories of the erosion appeared to
be wrong. The erosion trajectory often followedtiaight line instead of recalculating the
steepest descent (Fig. 2A). Apparently there isigib the script in calculating the steepest
descent for the erosion trajectory. It was fourat #ome values are not reset when calculating
the erosion trajectory after the first cell begsfiding. Hence, the flow direction triggered by
the first cell is followed, unless there is a seregescent. When the values for “direct” en
“dz_max” are reset to respectively 20 and -1.0pteethe steepdesc(xrow, xcol) function is
called (in calc_slide), the erosion trajectories/riollow the steepest descent route (Fig 2B).

F|gure 2: Erosion trajectories W|th steepest descerh)ug (A) and without (B)

2.2 Study area

The study area is situated in the coastal hillshseast of the Te Ari valley on the eastern side
of North Island, New Zealand (Fig. 3). It is paftaohill country property “Hinenui” which
forms the catchment for the second main tributathé Pakowhai stream (Jones, 2009).
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Figure 3: Distribution of storm rainfall in the Aug ust 2002 event. The Hinenui study site is indicatedith
a red arrow. Rivers shown are the Waipaoa and itgibutary the Te Arai which runs through the study
area (Source: Preston, 2008).

The geology of the area predominantly consists adckhe undifferentiated massive and
bedded, slightly calcareous mudstone (Jones, 200#).Hinenui catchment has two small
valleys which merge into a common floodplain (Fi). The catchment contains no
permanent channels but evidence of ephemeral clsam@resent during intense rainfall
events (Jones, 2009). The elevation ranges fro® 22to 178,7 m, while having a average
slope of 23,3°. Most of the watershed is coverét pasture, with some scattered trees.

Meters
200

Figure 4: Study area Hinenui

Average annual rainfall in the region ranges frdmow 1000 mm on the coast near Gisborne
to 2500 mm further inland. A large part, about 45%6the annual precipitation falls during
the winter months (May - August). The winter storame usually of low intensity and long



duration. From March to May, tropical cyclones aoaally cause high-intensity, short-
duration storms. In addition localized, brief higlhensity convective storms can occur in the
area. All these types of storms are able to triggeasliding in the area (Reid and Page, 2002).

2.3 Storm event August 2002

From August & to 7", the East Coast and northern Hawke's bay waskstoyca high
intensity rainfall storm. Near Gisborne, the highagnfall recorded was over 300 mm for the
entire event. Local landowners reported that méshe landsliding occurred toward the end
of the storm following 12 hours of high intensitgepipitation (Preston, 2008). Rainfall data
for the August 2002 event was obtained through Nlagional Climate Database of New
Zealand. Daily rainfall data from 4 virtual climagtations in the vicinity of the Hinenui
catchment show an average rainfall of 104,4 mméathe &' of August (Table 1).

Table 1: 24-hour rainfall total from 9am local day(mm), Virtual Climate Station data

Date Station number  Rain (mrit)d
2002-08-06 28027 80

29601 94,9

30100 131,6

30637 111,1

Source: http://cliflo.niwa.co.nz

For modeling purposes a maximum 24 hour rainfall@ mm/day was chosen as the critical
rainfall threshold. This represents the rainfat@itions of this particular storm event.

2.4 Input data for LAPSUS - LS

2.4.1 DEM

In April 2008, Jones (2009) carried out a fieldvayrto determine the digital elevation model
(DEM) for the small hillslope catchment at Hinentihe site was surveyed using a Trimble
S6 Servo-driven Total Station (S6) with reflectesd (terrain scanning) capability. The
Trimble R8 Real Time Kinematic (RTK) GPS was useddllect base station data for the S6
and was used in areas where the S6 was limitedeleg,ttopography or distance. The RTK
was also useful in identifying clumping of treesefdit distorted points from the S6 and along
the ridge line to define the extent of the sitee Tioints collected from both the S6 and RTK
were input into Trimble Geomatics Office to readl grocess data. These data points were
screened and translated into ASCIl and a digitealation model (DEM) was constructed
using ESRI Arc/Info GIS software with grid interpagon of elevation. Each pixel in the
DEM of the catchment represents 1 m by 1 m, rexgyltn a high resolution representation.
More details can be found in Jones (2009).

The DEM still contained some high elevation peadksd it was confirmed by an aerial
photograph that this was due to the presence e$.trfEhese peaks were smoothed out using
the focal mean function (5 x 5 window) in ArcGidhélsinks in the DEM (Fig. 5) were filled,
after which flats and pseudo-flats were removeensure that LAPSUS-LS worked properly.



Figure 5: Digital elevation model of study area

Unfortunately, the high resolution DEM was madeiathe storm event of August 2002. So,
the landslides generated during the 2002 stornadyrescarred the catchment and will thus
have influenced the elevation data of the catchmiris may influence the model prediction
of landslide location since elevation data is omghe main drivers for the LAPSUS-LS
model. For this reason, the landslide areas wheel fbn the 2008 DEM to simulate pre-storm
elevation data. This was done in ArcGis, with theal mean function (5 x 5 window).

To investigate the influence of modeling resolutam the model performance, both DEMs
were resampled with the nearest neighbour fundiioBm, 5m and 10m resolution DEMS.
Table 2 gives an overview of the different scergrigith different DEMs, that will be used
throughout this thesis.

Table 2: Overview of different scenarios

Scenario DEM Resolution (m)
Al 2008 DEM with trees1
A2 removed, without sinks and?
A5 flats 5
A10 10
Bl 2008 DEM (without trees,1
B2 sinks and flats) with filled 2
B5 landslide scars 5
B10 10

2.4.2 Landslide map

A vector polygon map (Jones, 2009), identifying luedslide scars, was used in this study.
Preston (2008) identified 71 earthflow failuresHahenui in 2002. The 71 scars at Hinenui



were identifiable on a low resolution 2002 aeriabf taken immediately after the storm
event which clearly shows scars and debris tarlsmRhis aerial photograph a vector polygon
layer of the landslide scars (Fig. 6) was creatkmh€s, 2009). The polygon layer was also
rectified against a high resolution ortho-rectif@@d7 photo.

Figure 6: Identification of landslide sites

2.4.3 Model parameters

No field data was available for the various modmigmeters, so some assumptions had to be
made. The default settings for the empirical patamseused in the soil redistribution
equations (Eq. 6 to 10) were taken from Claesseat €007a). The run-out fraction(Eq.

8) was set to 0.4 and the minimum slope angle faintaining flow was set to 10°. These
settings are based on field evidence and litergBueton and Bathurst, 1998; Claessens et al.,
2006; Claessen et al., 2007a). Furthermore, Classseal. (2007a) measured various soll
properties for three different parent materialdNamth Island, New Zealand. Similar values or
ranges for the different parameters were used starting point in this research. Regolith
depth (h) and soil cohesion (Cs) were set to ataohsalue, respectively 1m and 10kPa. The
values for wet soil bulk density dj, combined cohesion (C), the angle of internaition (7 )

and transmissivity (T) were used to optimize thedeloTable 3 gives an overview of the
value range, and increments, that were consideregtimize the model.

Table 3: Range and increments of soil physical modaput values

Parameter Range Increment
Bulk density s (g cni®) 1.40 — 1.90 0.1
Combined cohesion (C) 0.1-05 0.1
Angle of internal frictionf (°) 28.4-40.4 3°
Transmissivity T (fid?) 10 — 18 1




The sediment transporting stream network was détexanby specifying a minimum
contributing area threshold. For calculating seditnygeld ratios of scenario Al, the threshold
contributing area was set to 5000 (# cells) becd#isebest represented the stream network
determined by Jones (2009).

2.5 Model Performance

To asses model performance it is important to exelduhe prediction of stable as well as
unstable cells. If model performance is only basedthe ratio of successfully predicted
landslide sites over total actual landslide siter-prediction of landslides is not accounted
for. Therefore, one value that indicates the mg@eeformance in prediction of stable as well
as unstable cells is preferred. Keijsers (2009)dude Modified Success Rate (MSR),
proposed by Huang and Kao (2006), to asses LAPS®$skrformance in predicting
landslide locations in Taiwan. In this research M@R is used as well, and is calculated as
follows:

MSR= 05" 2+05% (11)
b d

with

a = number of landslide polygons that are corrgutédicted

b = total number of landslide polygons

c = number of correctly predicted stable cells

d = total number of actual stable cells

A landslide polygon is counted as correctly prestictf one or more cells with predicted
erosion occur within its boundary. A stable celt@sidered correctly predicted if it is a cell
without erosion or deposition and is not contaimed mapped landslide polygon.

MSR can range from O to 1. If all cells are classifas stable or all cells are classified as
landslides the MSR yields a value of 0.5. The hsglseore of 1 is achieved when both the
landslide polygons and stable cells are perfectgdisted. The MSR was calculated for a
range of different parameter values and combinat{sae Table 2) to find the best model fit.
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3. Results and discussion

3.1 Performance of 1 m resolution DEMs

3.1.1 Comparison of scenario A1 and B1
The model performance for the entire range of Cf Bnd s values, is plotted for scenario

Al (Fig. 7) en B1 (Fig. 8). Both figures displaygap in the data for a success rate between
0.6 to 0.8 for landslide prediction and 0.5 andffr/stable cell prediction.

1

0.8

o
o

Stable cell prediction
o
N

0.2

O T T T
0 0.2 0.4 0.6 0.8 1
Landslide prediction

T 1

Figure 7: Model performance for scenario A1, MSR iulicated as diagonals

0.8 7

o
(o]
I

Stable cell prediction
o°
SN

0.2 7

O T T T
0 0.2 0.4 0.6 0.8 1
Landslide prediction

Figure 8: Model performance for scenario B1, MSR idicated as diagonals
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This was attributable to the large increment fa@ #mgle of internal frictionA). The model
performance improved (Fig. 9 and 10) when increseftl® were used instead of 3°. This
suggest that the model is sensitive to the inteimaion angle for the calculation of critical
rainfall values, which is confirmed by a sensitinagtnalysis of LAPSUS-LS by Claessens et al.
(2005). Further decrease of the increment to G@hdt yield a higher MSR.

Stable cell prediction

0 ‘ ‘
0 0.2 0.4 0.6 0.8 1
Landslide prediction

Figure 9: Model performance for scenario A1 (with 2 increment for ), MSR indicated as diagonals

Stable cell prediction

O T T T T 1
0 0.2 0.4 0.6 0.8 1
Landslide prediction

Figure 10: Model performance for scenario B1 (withl® increment for 7 ), MSR indicated as diagonals
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The model yields a higher MSR for Al in comparisath B1 (Table 4). For both scenarios

there is a trade-off between a good predictioran@itlide sites and a good prediction of stable
cells, as can be seen from the dome-shape of thtéeglsuccess rates (Fig. 9 and 10).
Furthermore these plots show that this trade-offn@e severe for scenario B1 than Al,

resulting in a lower MSR for B1. Table 4 also shothst for a suboptimal parameter

combination (Alb), scenario Al is able to predemdslide as well as stable cell locations
with more success then scenario B1.

Table 4: MSR for Al en B1

Landslide Stable cell 0 2 1 3
DEM ~ MSR Prediction prediction C 7)) T (m d) s (g cm’)
Ala 0.739 0.704 0.773 0.4 29.4 10 1.6
Alb 0.720 0.761 0.679 0.3 30.2 18 1.6
Bl 0.693 0.732 0.654 0.3 28.4 17 1.9

The difference in the MSR can be explained by tltergnces in elevation data of the
landslide scars as this is the only input dateedgifice for the 2 scenarios. By filling the scars
in B1, maximum slope gradients within the identfiandslide scars were decreased (Table
5). As slope gradient is a primary driver of thed®lp this can explain the difference in
performance. To compensate for the decrease ire gjpadient, parameter values for the
optimal run are different than those for the optinna of scenario Al.

Table 5: slope statistics for landslide scars forcgnario A1 and B1

DEM Min (°) Max (°) Mean (°) SD
Al 1.22 57.08 31.17 7.62
Bl 2.82 51.33 30.57 6.67

It is difficult to say which DEM is the best repeegation of pre-storm elevation. The used
methodology to construct B1 might not be suitalolecteate a pre-storm DEM. The zonal
mean function smoothes the DEM at the landslidatlons. This might make the DEM less
representable (e.g. more stepwise elevation dath)ess hydrologically sound. It also does
not take into account that the current landslideghirhave been triggered on older landslide
scars which are smoothed out in this scenario.H@rother hand, the presence of high slope
gradients on the landslide scars in scenario Alhtrbg caused by those same landslides and
will make these locations more susceptible for easive landslide triggering. Scenario Al
was used to further analyze model performancet has the highest MSR, and it performs
better in predicting landslides and stable celatams.

3.1.2 Model performance of scenario Al

The model is able to correctly predict 70,4 % ofdslide locations and 77.3% of stable cell
areas, with optimized parameter values (Table 4jsud analysis of erosion and
sedimentation patterns (Fig. 11) shows that predit¢andslides are generally located lower
on the hillslope than actual landslide scars. Tfaduracy in predicting landslide locations
could be due to incorrect or incomplete input detah as inaccuracies in the DEM and
spatial variability in soil related parameters. #rer reason could be the exclusion of relevant
processes causing landslides in this specific gbiiBorga et al., 1998).

13
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Figure 11: Erosion and sedimentation for scenario A

Exclusion of relevant processes

Landslides in this watershed are found quite hightlee hillslope (Fig. 6). Most of the
hillslopes in this region are convexo-concave, widrrow, rounded ridge crests; straight,
landslide-scarred midslopes; and concave, colldei@islopes (Reid and Page, 2002). Critical
rainfall (Eq. 3) increases with a decrease in l®tape and decreases with an increase in
contributing area. Because of this trade-off betwaecreasing slope and increasing drainage
area in downslope direction landslides usually o@ruthe transition between steep upslope
positions, with a convex profile, and more concpusitions, where slope is decreasing and
water accumulates (Borga et al., 1998; Claessenk,2007b). Although slopes are steeper
uphill, the contributing area is usually too sntalltrigger landslides on these locations. The
fact that landslides do occur at uphill positiomshis catchment, suggests that other processes
causing landslides might be at work.

Landslides could be triggered on the lower edgéhefscars but removal of failed landslide
material could potentially increase the local sldgyetaking away initial support and may
trigger subsequent upslope failure. This means tthattrigger locations of landslides were
correctly predicted by the model but as it doesinciude the above mentioned process, the
more upslope failures are not correctly prediclidte prediction of landslide locations might
improve by modeling the storm in multiple time step

Brooks et al. (2002) describe three significantgaisaof regolith stripping (based on Crozier
and Preston, 1999) for the Hawke’s Bay region:
1. Completelyundisturbed regolithand little evidence of any past landslide acfivit
immediately after forest clearance;
2. Intermediate stagevhere slopes have had about 50% (by area) of tiegolith
stripped, usually after several decades under ggstu

14



3. Advanced stagen which landslide debris has begun to accumuksecolluvial
footslopes.
The three stages cause three different slope gees\@ig.12). The stripping of the regolith
layer progressively moves upslope with subsequemddlide events and landslide debris is
deposited at the base of the slope (Crozier anstdtrel999; Brooks et al., 2002).

Figure 12: Geometric representations for the phasesf regolith evolution. (a) Undisturbed regolith prase.
(b) 50% stripped regolith phase. (¢) Redeposited golith phase (Source: Brooks et al., 2002)

Model parameterization becomes increasingly comfide>each consecutive phase. Stage 3
involves undisturbed regolith uphill, followed dostape by exposed bedrock and deposited
landslide debris. Landslide debris deposited doapesifrequently shows an increase in bulk
density, internal friction angle and cohesion, @aging the resistance to failure (Preston,1996;
Crozier and Preston,1999 in Brooks et al., 2002)cdntrast, the increase in regolith depths
downslope may decrease resistance to failure, byd#wvelopment of higher pore water
pressures. The overall result for the colluvialtgbape is likely one of higher stability. More
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uphill, the creation of crown scarps removes latsupport to regolith immediately upslope
which will likely result in lower stability. Brookst al. (2002) argues that the different slopes
described in Fig. 12 may have different rainfaltedholds for failure and that different
hydrological mechanisms might govern slope insiigbifo, not only slope geometry changes
over time. Changes in the both the hydrological gedtechnical conditions of the slope add
more complexity to the calculation of critical r&h values as they change thresholds for
slope failure. Preston (2008) describes the spegdiometry of the Hinenui catchment as a
mosaic of old failure scars and associated colludéposits on middle and lower slopes,
while remnant undisturbed regolith can mainly benid on the spurs and crests of slopes. The
undisturbed regolith material has minimal latengbort as a result of earlier failures lower
on the slope. Therefore, landslide predictions inigh more accurate when changes in both
the hydrological and geotechnical properties a®litgdevelops on slopes are taken into
account. This concept of different phases of reélgdtripping introduces the importance of
the legacy effect of landsliding on the landscagrel especially the DEM. As stated before,
the prediction of landslide locations might imprdwe modeling the storm in multiple time
steps and by introducing spatial heterogeneitydfssrength parameters in the model .

Preston (2008) stated that in some cases sub-suttae in pipes was a factor in triggering
landslides in the Hinenui catchment. Natural pipesther macropores can carry significant
downslope flows and act as a bypass to soil floar@B et al., 1998). These processes are not
included in the model framework, but will likely flaence the triggering of landslides.
However, there are at present many difficulties amckertainties in pipeflow modeling.

The assumption of steady-state hydrology as wedleedy-state rainfall characteristics might
lead to inaccurate prediction of landslides fos tsiudy area. The assumption of steady state
hydrology implies that the relative potential fohaiow landslides is determined by
convergence of shallow subsurface flow, followinge tsurface topography; and is
proportional to the upslope contributing area (Mmhery and Dietrich, 1994; Claessens et
al., 2007a). The small velocity of subsurface flonght indicate that most areas in the
catchment do not receive subsurface flow from tkaiire upslope contributing area (Borga
et al., 2002a). Furthermore, the steady-state hgglycassumption might not be valid for high
intensity rains (Iverson, 2000; Chiang and Char§)9. Chiang and Chang (2009) reported
that the steady-state assumption results in lessrae prediction of landslides with a small
contributing area.

Several studies introduce a quasi-dynamic wetnedexi as an alternative approach (e.g.
Barling et al., 1994; Borga et al., 2002b). Thagjtdynamic wetness index predicts spatial
distribution of soil saturation in response to mfial event of specific duration (Borga et al.,
2002b). Brooks et al (2002, p.175 and p.176) steE ‘the dependence of slope stability on
regolith development requires a model that includasaturated as well as saturated zone
hydrological responsésand ‘the thresholds for instability are related to theeyailing storm
types, with the relative stability of the stagepeataling on storm propertiésAdditionally,
landslide initiation might be influenced by soiltbéegeneity, variations in vegetation density,
aspect, and spatial distribution of rainfall whiente presently not accounted for in the model.
While extending the model with this more detaileppr@aches might improve model
performance, they demand more information on ramnss and soil properties than is usually
available.

Incorrect or incomplete input data

A second type of error is incomplete or incorregiut data. Given that topography is on of
the main drivers for slope failure, the qualitytboé DEM is quite important. Elevation values
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are used to calculate surface derivatives suchlage,saspect, flow direction, catchment
boundaries and upstream contributing area. As &rezntioned before the DEM was made
after the modeled rainfall event which might algsenface derivatives. The multiple flow
pattern (Fig.13) was used to analyze the DEM ohade Al. Cells that don’'t have a
contributing area are usually located at a ridge® depict a local water divide. In the multiple
flow map some irregular patches can be seen thouighe catchment that don’t receive any
water from surrounding areas and some flows dailoWw expected flow routes. This does
not seem to be hydrologically sound and can beethily the effect of slightly elevated
patches in the DEM caused by the presence of vemetar non-relevant microtopography
(Fig.13C). Preprocessing of the DEM (e.g. removdiers) also caused some inaccuracies in
the flow pattern (Fig.13B). The water divide of ttetchment is not clearly delineated for the
whole catchment (Fig.13A). This could be the resfiithe methodology for the DEM were
measuring stations are mostly located in the valley the catchment and might miss
important elevation data on the ridges that detméae catchment boundaries.

Contributing area
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Figure 13: Multiple flow map for scenario A1l with A) inaccurate delineation of the water divide, B) thw
patterns due to preprocessing of data and C) flowaiterns due to micro-topography.

The multiple flow algorithm is important for caleting the contributing area and flow
routing. So, inaccurate elevation data that does pootray a realistic hydrology of the
catchment will have an influence on the calculattdriandslide initiation. Also the surface
topography might be less representative of undeglipedrock topography at this resolution.
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In the calculation of MSR a stable cell or landslakll is defined by respectively the absence
or the occurrence of erosion as well as depositidhat cell. In the landslide polygon layer
only the visible landslide scar was included. Tadiment debris path was often not mapped.
This will likely influence the calculation of the $R.

Spatial heterogeneity of soil and vegetation charestics were not taken into account.
Lumping of soil and vegetation parameters coultlarice model performance by ignoring
important spatial variability in the landscape. tharmore it might exclude important
processes from the model as stated before. Finalyield data was available for estimation
of soil parameters. The parameter values used &mteling where chosen because they best
fit the model equations, but it is not clear ifgHeave a valid link with the physical reality.

3.2 Effect of Modeling resolution

There is a clear decrease in model performance eadrser DEM resolutions. The model
performance for the entire range of C,/T(with 1° increments!) ands values, was plotted
for scenario A2 (Fig. 13), A5 (Fig. 14) and A10gFL5). Not only the DEM resolution is of
influence but also the algorithm used for resanmgplof the landslide scars to a coarser
resolution is important. When the majority algamithwith priority to landslide scars is used
(LS2 in Fig.14 and 15), performance is better thndren nearest neighbour algorithm is
applied (LS1 in Fig.14 and 15). The nearest neighkagorithm makes some landslides
disappear at coarser resolutions, or displaces.tmdome-shape of the plotted predictions
is increasingly flattened with coarsening resolutémd even inversed for the 10 m resolution
runs. This inversion indicates that the model is algle to accurately predict landslide nor
stable cell location at this resolution. A gooddicdion of one will always be traded of with a
bad prediction of the other.
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Figure 14: Model performance of scenario A2, MSR idicated as diagonals
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Figure 15: Model performance of scenario A5 for LSIand LS2, MSR indicated as diagonals
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Figure 16: Model performance of scenario A10 fro L$ and LS2, MSR indicated as diagonals

The MSRs for the different scenarios reflect thmesarend (Table 6). For scenario A5 en A10
two alternative runs are given to illustrate tha highest MSR is only achieved by over-
prediction of either landslides or stable cells: @ alternative runs a more equal distribution
of the success rate of landslide and stable cetliption was chosen, at the cost of the overall
MSR.
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Table 6: MSR and parameter values for different scearios
Scenario Landslide Stable cell o 2 1 3
e . f
MSR prediction prediction ¢ ¢y T(md?) s (g cnt)

A2 0.630 0.732 0.527 0.2 33.4 11 1.8
Aba 0.595 0.817 0.373 0.1 30.4 17 1.8
A5b 0.545  0.507 0.583 0.2 31.4 15 1.7
AlOa 0.589  0.943 0.235 0.1 28.4 10 1.4
A10b 0.453 0471 0.435 0.2 30.4 10 1.7

In scenario A2 the success rate of landslide ptiedids similar as in scenario Al, but the

success rate of stable cell prediction has deadeafkis means the landslide area is
overpredicted (Fig. 17).

Erosion/sedimentation
ton hat

I > 1500
B -1500 - -150
P -150--15
[ -15-15
[ ]-15-015
[ ]-015--0.015
o

[ Jois-0015
[ Ji5-015
[ ]i5-15
[ 150-15
I 1500 - 150
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Figure 17: Erosion and sedimentation for scenario 2a
Comparing the two different runs of scenarios A8 Al0, the alternative runs seem to give a

more conservative prediction of landslide siteshBszenario’s however illustrate the fact that
it is increasingly difficult for the model to predliaccurate landslide patterns in the landscape.

20



Erosion (ton ha)

B > 1500
I 1500 - -150
P -150--15

Figure 18: Erosion AS5aenb [ a5-a5
[ ]-15--015
[ ]-015--0.015
[ Jo

Figure 19: Erosion Al0aenb

Resampling to coarser resolutions filters out hglbpe gradients and smoothens the
landscape (Table 7). As high slope gradients arengiortant factor in triggering landslides,

this will influence the landslide locations becayms®ssible initiation locations are lost and
landslide routing becomes less accurate.

Table 7: Slope statistics watershed for different@solutions

Resolution (m) Min (°) Max (°) Mean (°) SD

1 0.00 61.77 23.31 10.18
2 0.00 51.77 22.92 9.82
5 0.13 43.27 22.09 9.19
10 0.55 38.34 21.03 8.51

Furthermore the total watershed area might beealtby the resampling (Table 8). Claessens
et al. (2005) showed that coarser resolutions ggkldigher specific catchment areas
(contributing area per unit contour length). Effectf resolution on distribution of slope
gradient and specific catchment area have a dinepact on critical rainfall calculations
(Claessens et al., 2005). Analysis of the multifde map for the 10 m resolution DEM (Fig.
20), indicates that important flow routing detail® lost, resulting in inaccurate prediction of
landslide locations. Additionally the locations Rout a contributing area on the ridges
increased so that some current landslide locatiawe mo drainage area, and can not be
accurately predicted anymore.
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Table 8: watershed surface area for different resoitions

Resolution (m) Area (m°)
1 99746
2 99736
5 99875
10 99700

Contributing area
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Figure 20: Multiple flow map for 10m resolution

In contrast to these findings, Zhang and Montgon{@8®4) suggest that a 10 m grid would
suffice to model geomorphic and hydrological preess Keijser (2009) showed that the
LAPSUS-LS model performed satisfactory with 9 motegon. In this study the 10m
resolution itself might not be the cause of the kwecess in predicting landslides, but rather
the effects on slope characteristics and contrigutarea that the aggregation method
introduced. Also, Claessens et al. (2005) streshas topographical and hydrological
properties can vary for different landscapes. OgaktiEM resolution is thus context
dependent. Taking into consideration earlier argusméhat more complex and localized
processes play a role in this catchment, finerlodi®ms might capture those processes better.

3.3 Input parameters

The MSR method was used to calculate the most #®mparameter combinations for each
scenario. Changes in input parameter influencesribeel outcome but also influences the
optimum value of other parameters. The best 10 fonscenario Al, A2, A5 and A10 were
analyzed to see if there was a difference in optinparameter values (or ranges) between the
different scenarios. Only for the parameters C Armbvious patterns were observed (Table

9).
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Table 9: evolution of C and values with coarser resolutions

Scenario C f ()
Al 0.4 28.4
A2 0.2 32.4-35.4
A5 0.1-0.2 304
A10 0.1-0.2 284

The combined cohesion is the ratio between foressting failure and promoting failure. It
determines stability and thus influences critiahfall values. If DEM resolution increases,
combined cohesion must decrease to make more aedi$able for landslide initiating to
compensate for lower slope gradients. The treralrefjuired higher stability, and thus higher
C, for finer resolutions is in correspondence wilie findings of Keijser (2009). The
relatively high angle of internal friction for A2 ight be necessary to limit the landslide
initiation and keep a good prediction of stabldscdfor scenario A5 and A10 the angle of
internal friction needs to decrease again to makesnoells available for landsliding as the
slope gradients are decreasing. This, off coussat the cost of stable cell prediction and the
overall MSR. The optimal parameter combinationggio indication that these are the most
realistic values or have a clear link with physigedperties.

Preston (2009) found an average off-slope sedimelntery ratio of 27,4 % for the Hinenui
catchment. This data can be used to calibrate sdtudhe run-out length and the minimum
slope angle for maintaining flow. Scenario Ala (Table 4) yields a sediment delivatio
(SDR) of 21,3 %. Note that LAPSUS-LS calculates skdiment delivery ratio to the stream
network, while Preston (2009) estimated off-slopévery ratios. The two values can not be
compared as such, but it gives an indication thae@dment delivery ratio of 21,3 % is a
realistic value. A SDR scenario run was done witl optimal parameter combinations of
scenario Ala as constants, and the run-out fraei@hminimal slope angle for maintaining
flow as variable parameters (Table 10).

Table 10: Range and increments for SDR scenario

Parameter Range Increment
Min. slope angle (°) 1-18 1

Run-out fraction (-) 0.2-1.0 0.1

Bulk density s (g cni®) 1.6 -
Combined cohesion (C) 0.4 -

Angle of internal friction/ (°) 29.4 -
Transmissivity T (id?) 10 -

The highest MSR for the SDR scenario was 0.796h witSDR of 22.7 % (Table 11).
Especially the stable cell prediction was improvAddecrease in the minimum angle for
maintaining flow gives a better MSR as it shortens the erosion gathlowers the amount
of cells active in landsliding. So, the model can farther improved by using sediment
delivery ratios to calibrate parameter values.

Table 11: MSR and parameter values for SDR scenario

Landslide Stable cell . .
MSR prediction prediction (°)  SDR (%)

0.796  0.718 0.873 0.2 7 22.7
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Finally, the critical rainfall threshold was set @l mm/day for the modeled storm event.
However, not all precipitation actually contributés sub-surface flow e.g. because of
interception by vegetation. As such, this parameser be seen as a relative hazard indicator
for landslides. This means that this value can bBlsased to optimize model performance.
Table 12 shows used parameter values for the aritainfall scenario (based on scenario

Ala).

Parameter Range Increment
Critical rainfall threshold (mm day 20 - 100 10

Min. slope angle (°) 10 -

Run-out fraction (-) 0.4 -

Bulk density s (g cni®) 1.6 -
Combined cohesion (C) 0.4 -

Angle of internal frictionf (°) 28.4-31.4 1
Transmissivity T (fid?) 10 - 18 1

Within this range of parameter combinations the ehqubrformance for the critical rainfall
scenario is unsatisfactory. Especially landslidedmtion performs poorly, which indicates
that a relatively high critical rainfall thresholsf 100 mm day is necessary to generate

sufficient landslides.
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4. Conclusion

LAPSUS-LS, a multi-dimensional landscape evolutioodel, combines a steady-state
hydrological model with an infinite slope model poedict the triggering of landslides and
their subsequent movement downslope. The perforenahthe model has been studied with
an existing dataset of 71 mapped shallow landslidebe Hinenui catchment on the East
coast of North island, New Zealand. The performantehe model was optimized by
calibrating different parameter values. A MSR of3® was achieved at 1 m resolution.
Landslides were generally predicted lower thanrttapped erosion scars. This discrepancy
could be due to inaccuracies in the DEM or otheufrdata, lumping of soil and vegetation
parameters, or due to the possibility that releyaiatesses for this environmental context are
not included in the model. Landslides could begeigd on the lower edge of the scars but
removal of failed landslide material could potelhiancrease the local slope by taking away
initial support and may trigger subsequent upsliapere. Brooks et al. (2002) and Crozier
and Preston (1999) argue that different stagesgilith stripping in this region change both
the hydrological and geotechnical conditions ofopsks and add more complexity to the
calculation of critical rainfall values. Solutiomsuld be to introduce a legacy effect in the
model by using multiple time steps, and to intraglgpatial variability in soil and vegetation
parameters. The specific characteristics of theldaales in the area might make the model
performance vulnerable for simplifications regaglisteady-state hydrology and rainfall
characteristics.

Furthermore, the effect of DEM resolution was stddiThe MSR decreased with increasing
DEM resolution to 0.630 at 2 m, 0.595 at 5 m, arsB9 at 10 m resolution. The trade-off
between a correct prediction of landslides versaisles cells becomes increasingly worse with
coarser resolutions. Resampling to coarser resaolsitiilters out high slope gradients and
smoothens the landscape. As high slope gradiemtsaarimportant factor in triggering
landslides, this will influence the landslide Idoats because possible initiation locations are
lost and landslide routing becomes less accurateerQariables like total watershed surface
area and specific catchment area change with agagseesolution.

The optimal parameter combinations differ per nesoh. Combined cohesion values are
generally lower for coarser resolutions to makeem®lls available for landslide initiating to

compensate for lower slope gradients. The sammigsfor the internal angle of friction. For

the 2 m resolution however a relatively high valees found for this parameter. This might
indicate that the higher angle is necessary tot liamdslide initiation and thus keep a good
prediction of stable cells. The other parameterd bt show clear patterns. The model
performance can be improved by calibrating pararseter calculation of trajectories of

failed slope material with available SDR data.

In this environmental context the 1 m resolutiopagraphy seems to resembles reality most
closely and landslide locations are better distisiged from stables areas than for coarser
resolutions. More gain in model performance cowdabhieved by adding complexities and
parameter variations in the catchment. This is rereésting topic for further research.
However, at the moment the model performs satisfgcit the 1 m resolution in the sense
that it can give a good indication of spatial digition of landslides and can be used in the
prevention and potential hazard prediction of ldddsevents.
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