
 I 

 

 

Modeling landslide locations in North Island, New Z ealand 

Veronique De Sy 

 

 

 

LAD 80424 

Land Dynamics group 
 
August 2010 
 

 

 
 



 I 

 
 
 

 
 

Modeling landslide locations in North Island, New Z ealand 

Veronique De Sy 
 
 
 
 
Master’s minor thesis LAD 80424 submitted to Wageningen University in partial fulfillment of the 
Master of Science degree in International Land and Water Management, specialization Land 
Degradation and Development.  

�������������	
�
��������

�

 
 
 
 
 
 
 
 
 
 
 
 
 
Supervisors 
Dr. J.M. Schoorl, Land Dynamics Group  
Wageningen University, Netherlands  
 
Dr. L.F.G.  Claessens, Land dynamics Group 
Wageningen University, Netherlands  
International Potato Center (CIP) 
Sub-Saharan Africa Regional Office, Kenya 
 
 



 II  

Acknowledgements 

I would like to thank my supervisors Jeroen Schoorl and Lieven Claessens for giving me the 
opportunity to work on this subject, and for their guidance. 
 
Thanks to Katie Jones and Nick Preston for making their data available. Katie also thank you 
for answering my question so quickly. 
 
Thanks to family and friends for their support! 
 



 III  

Abstract  

The frequency and severity of shallow landslides in New Zealand threatens life and property, 
on- and off-site. The physically-based shallow landslide model LAPSUS-LS is tested for its 
performance in simulating shallow landslide locations induced by a high intensity rain event. 
Furthermore the effect of DEM resolution on the performance was tested. The performance of 
the model was optimized by calibrating different parameter values. A satisfactory result was 
achieved at 1 m resolution. Landslides were generally predicted lower on the slope than 
mapped erosion scars. This discrepancy could be due to inaccuracies in the DEM or in model 
input data such as soil strength properties; or due to relevant processes for this environmental 
context that are not included in the model. The trade-off between a correct prediction of 
landslides versus stable cells becomes increasingly worse with coarser resolutions; and model 
performance decreases mainly due to altering slope characteristics. The optimal parameter 
combinations differ per resolution. In this environmental context the 1 m resolution 
topography seems to resembles reality most closely and landslide locations are better 
distinguished from stables areas than for coarser resolutions. More gain in model performance 
could be achieved by adding complexities and parameter heterogeneity in the catchment.  
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1. Introduction 
Landsliding triggered by rainstorms present a global environmental and economical hazard, 
especially on steep hillslopes. In mountainous countries, such as New Zealand, shallow 
landsliding is one of the most important erosion processes (Crozier, 1986). The frequency and 
severity of shallow landslides threaten life and property, on- and off-site (Brooks et al., 2002; 
Reid and Page, 2002). A long-term consequence is the loss of soil nutrients, and as a result a 
decline in soil productivity. Pasture production on 20-year old landslides can be as low as 
20% compared to unaffected areas (Trustrum et al., 1984, in Brooks et al., 2002).  In order to 
effectively battle the on- and off-site effects of landsliding, more information is needed on the 
spatial distribution of landslide risk in the landscape and the potential contribution to the 
sediment load.  
 
The East coast of North Island in New Zealand is prone to landsliding due to the combination 
of steep slopes, soft bedrock and episodic rainstorm events. The geography of this region 
consists of soft sedimentary bedrock with high relief and steep slopes due to fluvial dissection 
following a rapid uplift during the Pleistocene (Haywick et al., 1991). The regolith mantle, of 
about 1-2m depth, is weak and highly permeable compared to the underlying bedrock (Brooks 
et al., 2002). The conversion from indigenous forest to pasture, started by European settlers in 
the 1830s, further undermined the stability of the regolith mantle. Together with the 
occurrence of tropical cyclones, this frequently induces wide-spread landslide events, which 
involve hundreds of shallow, rapid flows affecting hundreds of square kilometers (Brooks et 
al., 2002).  
 
During a high intensity rainfall event in August 2002, flooding and shallow landsliding 
occurred in many parts of the East Coast and northern Hawke’s Bay in the Waipaoa 
catchment. Field estimates of off-slope sediment delivery to channels were done in three 
different locations immediately after the event (Preston, 2008). Within the small (~9 ha) 
Hinenui catchment there were 71 rainfall triggered shallow earthflows (Fig.1) causing 
widespread damage (Preston, 2008; Jones, 2009).  
 

 
Figure 1: The Hinenui catchment after the 2002 storm event (Photo: N. Preston, 2002; Source: Jones, 2009) 
 
In this study the multi-dimensional landscape evolution model LAPSUS-LS (Claessens et al., 
2007a) will be used to get more insight into the interaction between precipitation, landslides 
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and catchment characteristics. This model constructs a landslide hazard map, using a critical 
rainfall threshold, above which landsliding is triggered. Subsequently, the downslope 
trajectory of the landslide is modeled. When the depositional pathway of a landslide intersects 
with the transporting stream network, the remaining sediment budget is added to the 
catchment sediment yield (Claessens et al., 2007b).  
 
This research aims to: 

·  test the LAPSUS-LS model for its ability to predict shallow landslide locations in a 
small catchment during a single storm event. 

·  test the effect of different spatial resolutions on the performance of the LAPSUS-LS 
model. 

 

2. Methodology 

2.1 Modeling framework 
This thesis used the LAPSUS (LandscApe ProcesS modeling at mUlti dimensions and scaleS) 
modeling framework, developed by Schoorl et al. (2000). LAPSUS is a multi-dimensional 
landscape evolution model addressing on-site and off-site effects of current and possible 
water and soil redistribution by water run-off and tillage erosion (Schoorl et al., 2000). 
Claessens et al. (2007a) extended the model with a landslide component (LAPSUS – LS), 
which is able to model the triggering of shallow landslides and their subsequent trajectory 
downwards. First the amount of rain that will trigger a landslide (the critical rainfall, Qcr) is 
calculated on a cell by cell basis in a grid structure. Then, after a landslide is triggered for a 
certain rainfall scenario, the downslope trajectory is calculated for both the erosion and 
deposition phases of the landslide. 

2.1.1 Critical rainfall  
The calculation of critical rainfall is based on a steady state hydrological model in 
combination with a deterministic infinite slope stability model to delineate areas prone to 
landsliding due to surface topographic effects on hydrologic response (Montgomery and 
Dietrich, 1994; Pack et al. 2001; Claessens et al., 2007a). In an infinite slope stability model, 
the stability of a slope is usually expressed as the factor of safety (FS), which can be written 
as (Pack et al., 2001; Claessens et al., 2007a):  
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where 
C  = combined cohesion [-] 
�   =  local slope angle [°] 
W  = relative wetness index [-] 
� w = density of water [g cm-3] 
� s  = wet soil bulk density [g cm-3] 
f  = the angle of internal friction of the soil [°] 
 
If FS is larger than 1 the slope is stable, if FS is below 1, the slope becomes unstable and a 
landslide will be triggered at that position. The combined cohesion can be interpreted as the 
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relative contribution to slope stability of the cohesive forces, which consist of root cohesion 
and soil cohesion (Claessens et al., 2007a). W (relative wetness) is the ratio of local flux at a 
given steady state rainfall to that at soil profile situation. Claessens et al. (2007a) used a 
steady state hydrological response model based on work by O’Loughlin (1986) and Moore et 
al. (1988) for the calculation of W:  
 

qsinbT
Ra

W =         (2) 

 
where 
R  = steady state rainfall recharge [m day-1]  
a  = the upslope contributing drainage area [m²] 
b  =the grid size [m]  
T  = soil transmissivity when saturated [m² day-1]  
�   = the local slope angle [°]  
 
The upslope contributing area is calculated using the concept of multiple downslope flow 
(Quinn et al, 1991). Wetness ranges between 0 and 1, since any excess of water is assumed to 
form overland flow.  
 
By substituting Eq. (2) in Eq. (1), equating the FS to 1 since this is the threshold for instability, 
and solving for R, the  minimum steady state rainfall to cause slope failure ( = critical rainfall) 
can be determined (Claessens et al., 2007a). The critical rainfall Qcr [m d-1] can be written as  
(Claessens et al., 2007a):  
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With the boundary condition for W (between 0 and 1), the upper and lower thresholds for 
slopes that can fail can be calculated with Eq. (3). Unconditionally stable areas are always 
predicted to be stable, even when saturated and satisfy the following condition (Claessens et 
al., 2007a):  
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Unconditionally unstable areas, consisting mostly of bedrock outcrops, are unstable even 
when dry and satisfy the following condition (Claessens et al., 2007a):  
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2.1.2 Trajectories of failed slope material  
When the amount of rainfall exceeds the critical rainfall in a grid cell, the landslides starts and 
debris begins moving downslope.  The amount of eroded material S [m] is calculated based 
on works by Johnson and Rodine (1984, as in Claessens et al., 2007a) and e.g. Burton and 
Bathurst (1998) as: 
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where  
�   = the minimum local slope for debris flow movement  [°] 
a  = correction factor for dimensions [m2] 
 
Erosion stops where the gradient falls below a certain slope angle �  and the transported 
material will be deposited over a number of downslope gridcells, defined as ‘cell distance’  
D [-]: 
 

b
r
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where 
r  = runout distance [m] 
b = gridsize [m] 
 
The runout distance r [m] of the depositional phase defines the distance over which material 
will be deposited and is calculated using the following equation from Burton and Bathurst 
(1998): 
 

yr D= j        (8) 
 
where 
� y  = the elevation difference between the head of the slide and the point where 

   deposition begins [m] 
�  = an empirically derived fraction set at 0.4 [-]  
 
The accumulated soil material is then further routed with ‘double’ multiple flow methodology 
( Quinn et al. 1991) to downslope neighbours until D < 1, when all the remaining sediment is 
deposited and the landslide halts (Claessens et al., 2007a). The sediment which is effectively 
delivered to grid cell n (Sn), is expressed as: 
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The term (Bn�1 /D n�1 )  is the amount of sediment deposited in grid cell n, originating from 
erosion upslope, divided by the cell-distance (Eq. (7)). The fraction allocated to each lower 
neighbour is represented by nf  and determined by the multiple flow concept described by 
Quinn et al. (1991). The remaining sediment budget of grid cell n which is not deposited but 
‘passed through’ to grid cell n+1, can be written as: 
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2.1.3 Sediment yield and delivery ratio 
The sediment yield can be determined from the spatial pattern of soil redistribution modeled 
with LAPSUS-LS and the interaction with a topographically delineated stream network. In 
LAPSUS-LS the stream network is determined by specifying a minimum contributing area 
threshold. All grid cells draining more than a threshold drainage area are defined as part of the 
stream network and capable to transport landslide material to the catchment outlet. When a 
grid cell, which is part of the depositional pathway of a landslide, intersects with a grid cell 
from the transporting stream network, the remaining sediment budget of that grid cell, 
according to Eq. (10), is added to the total catchment sediment yield (Claessens, 2007b). 

2.1.4 Bug 
In one of the first test runs of the model, the downslope trajectories of the erosion appeared to 
be wrong. The erosion trajectory often followed a straight line instead of recalculating the 
steepest descent (Fig. 2A). Apparently there is a bug in the script in calculating the steepest 
descent for the erosion trajectory. It was found that some values are not reset when calculating 
the erosion trajectory  after the first cell begins sliding. Hence, the flow direction triggered by 
the first cell is followed, unless there is a steeper descent. When the values for “direct” en 
“dz_max” are reset to respectively 20 and -1.0, before the steepdesc(xrow, xcol) function is 
called (in calc_slide), the erosion trajectories now follow the steepest descent route (Fig 2B). 
 

 
Figure 2: Erosion trajectories with steepest descent bug (A) and without (B) 

 

2.2 Study area  

The study area is situated in the coastal hills south-east of the Te Ari valley on the eastern side 
of North Island, New Zealand (Fig. 3). It is part of a hill country property “Hinenui” which 
forms the catchment for the second main tributary to the Pakowhai stream (Jones, 2009).  

A B 
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Figure 3: Distribution of storm rainfall in the Aug ust 2002 event. The Hinenui study site is indicated with 
a red arrow. Rivers shown are the Waipaoa and its tributary the Te Arai which runs through the study 

area (Source: Preston, 2008). 
 
The geology of the area predominantly consists of Miocene undifferentiated massive and 
bedded, slightly calcareous mudstone (Jones, 2009). The Hinenui catchment has two small 
valleys which merge into a common floodplain (Fig. 4). The catchment contains no 
permanent channels but evidence of ephemeral channels is present during intense rainfall 
events (Jones, 2009). The elevation ranges from 22,9 m to 178,7 m, while having a average 
slope of 23,3°.  Most of the watershed is covered with pasture, with some scattered trees.  

 
Figure 4: Study area Hinenui  
 
Average annual rainfall in the region ranges from about 1000 mm on the coast near Gisborne 
to 2500 mm further inland. A large part, about 45%, of the annual precipitation falls during 
the winter months (May - August). The winter storms are usually of low intensity and long 

Hinenui catchment 
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duration. From March to May, tropical cyclones occasionally cause high-intensity, short-
duration storms. In addition localized, brief high-intensity convective storms can occur in the 
area. All these types of storms are able to trigger landsliding in the area (Reid and Page, 2002).  

2.3 Storm event August 2002 
From August 5th to 7th, the East Coast and northern Hawke´s bay was struck by a high 
intensity rainfall storm. Near Gisborne, the highest rainfall recorded was over 300 mm for the 
entire event. Local landowners reported that most of the landsliding occurred toward the end 
of the storm following 12 hours of high intensity precipitation (Preston, 2008). Rainfall data 
for the August 2002 event was obtained through the National Climate Database of New 
Zealand. Daily rainfall data from 4 virtual climate stations in the vicinity of the Hinenui 
catchment show an average rainfall of 104,4 mm/day on the 6th of August (Table 1). 
 
Table 1: 24-hour rainfall total from 9am local day (mm), Virtual Climate Station data  
Date  Station number Rain (mm d-1) 

28027 80 
29601 94,9 
30100 131,6 

2002-08-06 

30637 111,1 
Source: http://cliflo.niwa.co.nz 
 
For modeling purposes a maximum 24 hour rainfall of 100 mm/day was chosen as the critical 
rainfall threshold. This represents the rainfall conditions of this particular storm event. 

2.4 Input data for LAPSUS - LS 

2.4.1 DEM 
In April 2008, Jones (2009) carried out a field survey to determine the digital elevation model 
(DEM) for the small hillslope catchment at Hinenui. The site was surveyed using a Trimble 
S6 Servo-driven Total Station (S6) with reflector-less (terrain scanning) capability. The 
Trimble R8 Real Time Kinematic (RTK) GPS was used to collect base station data for the S6 
and was used in areas where the S6 was limited by trees, topography or distance. The RTK 
was also useful in identifying clumping of trees to edit distorted points from the S6 and along 
the ridge line to define the extent of the site. The points collected from both the S6 and RTK 
were input into Trimble Geomatics Office to read and process data. These data points were 
screened and translated into ASCII and a digital elevation model (DEM) was constructed 
using ESRI Arc/Info GIS software with grid interpretation of elevation. Each pixel in the 
DEM of the catchment represents 1 m by 1 m, resulting in a high resolution representation. 
More details can be found in Jones (2009).  
 
The DEM still contained some high elevation peaks, and it was confirmed by an aerial 
photograph that this was due to the presence of trees. These peaks were smoothed out using 
the focal mean function (5 x 5 window) in ArcGis. The sinks in the DEM (Fig. 5) were filled, 
after which flats and pseudo-flats were removed to ensure that LAPSUS-LS worked properly.  
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Figure 5: Digital elevation model of study area 
 
Unfortunately, the high resolution DEM was made after the storm event of August 2002. So, 
the landslides generated during the 2002 storm already scarred the catchment and will thus 
have influenced the elevation data of the catchment. This may influence the model prediction 
of landslide location since elevation data is one of the main drivers for the LAPSUS-LS 
model. For this reason, the landslide areas were filled on the 2008 DEM to simulate pre-storm 
elevation data. This was done in ArcGis, with the focal mean function (5 x 5 window).  
 
To investigate the influence of modeling resolution on the model performance, both DEMs 
were resampled with the nearest neighbour function to 2m, 5m and 10m resolution DEMs. 
Table 2 gives an overview of the different scenarios, with different DEMs, that will be used 
throughout this thesis. 
 
Table 2:  Overview of different scenarios  
Scenario  DEM  Resolution (m) 
A1 1 
A2 2 
A5 5 
A10 

2008 DEM with trees 
removed, without sinks and 
flats 

10 
B1 1 
B2 2 
B5 5 
B10 

2008 DEM (without trees, 
sinks and flats) with filled 
landslide scars 

10 

2.4.2 Landslide map 
A vector polygon map (Jones, 2009), identifying the landslide scars, was used in this study. 
Preston (2008) identified 71 earthflow failures at Hinenui in 2002. The 71 scars at Hinenui 
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were identifiable on a low resolution 2002 aerial photo taken immediately after the storm 
event which clearly shows scars and debris tails. From this aerial photograph a vector polygon 
layer of the landslide scars (Fig. 6) was created (Jones, 2009). The polygon layer was also 
rectified against a high resolution ortho-rectified 2007 photo. 
 

 
Figure 6: Identification of landslide sites 

2.4.3 Model parameters 
No field data was available for the various model parameters, so some assumptions had to be 
made. The default settings for the empirical parameters used in the soil redistribution 
equations (Eq. 6 to 10) were taken from Claessens et al. (2007a). The run-out fraction �  (Eq. 
8) was set to 0.4 and the minimum slope angle for maintaining flow �  was set to 10°. These 
settings are based on field evidence and literature (Burton and Bathurst, 1998; Claessens et al., 
2006; Claessen et al., 2007a). Furthermore, Claessens et al. (2007a) measured various soil 
properties for three different parent materials on North Island, New Zealand. Similar values or 
ranges for the different parameters were used as a starting point in this research. Regolith 
depth (h) and soil cohesion (Cs) were set to a constant value, respectively 1m and 10kPa. The 
values for wet soil bulk density (� s), combined cohesion (C), the angle of internal friction (f ) 
and transmissivity (T) were used to optimize the model. Table 3 gives an overview of the 
value range, and increments, that were considered to optimize the model.  
 
Table 3: Range and increments of soil physical model input values 
Parameter Range Increment 
Bulk density � s (g cm-3) 1.40 – 1.90 0.1 
Combined cohesion (C)   0.1 – 0.5 0.1 
Angle of internal friction f  (°) 28.4 – 40.4 3° 
Transmissivity T (m2 d-1)   10  – 18 1 
 

Hinenui catchment 
 
Landslides 
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The sediment transporting stream network was determined by specifying a minimum 
contributing area threshold. For calculating sediment yield ratios of scenario A1, the threshold 
contributing area was set to 5000 (# cells) because this best represented the stream network 
determined by Jones (2009). 

2.5 Model Performance  
To asses model performance it is important to evaluate the prediction of stable as well as 
unstable cells. If model performance is only based on the ratio of successfully predicted 
landslide sites over total actual landslide sites, over-prediction of landslides is not accounted 
for. Therefore, one value that indicates the model performance in prediction of stable as well 
as unstable cells is preferred. Keijsers (2009) used the Modified Success Rate (MSR), 
proposed by Huang and Kao (2006), to asses LAPSUS-LS performance in predicting 
landslide locations in Taiwan. In this research the MSR is used as well, and is calculated as 
follows: 

d
c

b
a

MSR 5.05.0 +´=        (11) 

with 
a = number of landslide polygons that are correctly predicted 
b = total number of landslide polygons 
c = number of correctly predicted stable cells 
d = total number of actual stable cells 
 
A landslide polygon is counted as correctly predicted if one or more cells with predicted 
erosion occur within its boundary. A stable cell is considered correctly predicted if it is a cell 
without erosion or deposition and is not contained in a mapped landslide polygon.  
 
MSR can range from 0 to 1. If all cells are classified as stable or all cells are classified as 
landslides the MSR yields a value of 0.5. The highest score of 1 is achieved when both the 
landslide polygons and stable cells are perfectly predicted. The MSR was calculated for a 
range of different parameter values and combinations (see Table 2) to find the best model fit. 
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3. Results and discussion 

3.1 Performance  of  1 m resolution DEMs 

3.1.1 Comparison of scenario A1 and B1  
The model performance for the entire range of C, T, f  and � s values, is plotted for scenario 
A1 (Fig. 7) en B1 (Fig. 8). Both figures display a gap in the data for a success rate between 
0.6 to 0.8 for landslide prediction and 0.5 and 0.7 for stable cell prediction.  
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Figure 7: Model performance for scenario A1, MSR indicated as diagonals 
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Figure 8: Model performance for scenario B1, MSR indicated as diagonals 
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This was attributable to the large increment for the angle of internal friction (f ). The model 
performance improved (Fig. 9 and 10) when increments of 1° were used instead of 3°. This 
suggest that the model is sensitive to the internal friction angle for the calculation of critical 
rainfall values, which is confirmed by a sensitivity analysis of LAPSUS-LS by Claessens et al. 
(2005). Further decrease of the increment to 0,2° did not yield a higher MSR.  
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Figure 9: Model performance for scenario A1 (with 1° increment for f ), MSR indicated as diagonals 
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Figure 10: Model performance for scenario B1 (with 1° increment for f ), MSR indicated as diagonals 
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The model yields a higher MSR for A1 in comparison with B1 (Table 4). For both scenarios 
there is a trade-off between a good prediction of landslide sites and a good prediction of stable 
cells, as can be seen from the dome-shape of the plotted success rates (Fig. 9 and 10). 
Furthermore these plots show that this trade-off is more severe for scenario B1 than A1, 
resulting in a lower MSR for B1. Table 4 also shows that for a suboptimal parameter 
combination (A1b), scenario A1 is able to predict landslide as well as stable cell locations 
with more success then scenario B1.  
 
Table 4: MSR for A1 en B1 

 
The difference in the MSR can be explained by the differences in elevation data of the 
landslide scars as this is the only input data difference for the 2 scenarios. By filling the scars 
in B1, maximum slope gradients within the identified landslide scars were decreased (Table 
5). As slope gradient is a primary driver of the model, this can explain the difference in 
performance. To compensate for the decrease in slope gradient, parameter values for the 
optimal run are different than those for the optimal run of scenario A1. 
 
Table 5: slope statistics for landslide scars for scenario A1 and B1 
DEM Min (°) Max (°) Mean (°) SD 
A1 1.22 57.08 31.17 7.62 
B1 2.82 51.33 30.57 6.67 
 
It is difficult to say which DEM is the best representation of pre-storm elevation. The used 
methodology to construct B1 might not be suitable to create a pre-storm DEM. The zonal 
mean function smoothes the DEM at the landslide locations. This might make the DEM less 
representable (e.g. more stepwise elevation data) and less hydrologically sound. It also does 
not take into account that the current landslides might have been triggered on older landslide 
scars which are smoothed out in this scenario. On the other hand, the presence of high slope 
gradients on the landslide scars in scenario A1 might be caused by those same landslides and 
will make these locations more susceptible for successive landslide triggering. Scenario A1 
was used to further analyze model performance, as it has the highest MSR, and it performs 
better in predicting landslides and stable cell locations.   

3.1.2 Model performance of  scenario A1 
The model is able to correctly predict 70,4 % of landslide locations and 77.3% of stable cell 
areas, with optimized parameter values (Table 4). Visual analysis of erosion and 
sedimentation patterns (Fig. 11) shows that predicted landslides are generally located lower 
on the hillslope than actual landslide scars. The inaccuracy in predicting landslide locations 
could be due to incorrect or incomplete input data such as inaccuracies in the DEM and 
spatial variability in soil related parameters. Another reason could be the exclusion of relevant 
processes causing landslides in this specific context (Borga et al., 1998).  
 
  
 
 

DEM MSR Landslide 
Prediction 

Stable cell 
prediction 

C f  (°) T (m2 d-1) � s (g cm-3) 

A1a 0.739 0.704 0.773 0.4 29.4 10 1.6 
A1b 0.720 0.761 0.679 0.3 30.2 18 1.6 
B1 0.693 0.732 0.654 0.3 28.4 17 1.9 
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Figure 11: Erosion and sedimentation for scenario A1 
 
Exclusion of relevant processes 
Landslides in this watershed are found quite high on the hillslope (Fig. 6). Most of the 
hillslopes in this region are convexo-concave, with narrow, rounded ridge crests; straight, 
landslide-scarred midslopes; and concave, colluvial footslopes (Reid and Page, 2002). Critical 
rainfall (Eq. 3) increases with a decrease in local slope and decreases with an increase in 
contributing area. Because of this trade-off between decreasing slope and increasing drainage 
area in downslope direction landslides usually occur on the transition between steep upslope 
positions, with a convex profile, and more concave positions, where slope is decreasing and 
water accumulates (Borga et al., 1998; Claessens et al., 2007b). Although slopes are steeper 
uphill, the contributing area is usually too small to trigger landslides on these locations. The 
fact that landslides do occur at uphill positions in this catchment, suggests that other processes 
causing landslides might be at work. 
 
Landslides could be triggered on the lower edge of the scars but removal of failed landslide 
material could potentially increase the local slope by taking away initial support and may 
trigger subsequent upslope failure. This means that the trigger locations of landslides were 
correctly predicted by the model but as it does not include the above mentioned process, the  
more upslope failures are not correctly predicted. The prediction of landslide locations might 
improve by modeling the storm in multiple time steps.  
 
Brooks et al. (2002) describe three significant phases of regolith stripping (based on Crozier 
and Preston, 1999) for the  Hawke’s Bay region: 

1. Completely undisturbed regolith, and little evidence of any past landslide activity, 
immediately after forest clearance; 

2. Intermediate stage where slopes have had about 50% (by area) of their regolith 
stripped, usually after several decades under pasture; 

Erosion/sedimentation 
Ton ha-1 
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3. Advanced stage in which landslide debris has begun to accumulate as colluvial 
footslopes. 

The three stages cause three different slope geometries (Fig.12). The stripping of the regolith 
layer progressively moves upslope with subsequent landslide events and landslide debris is 
deposited at the base of the slope (Crozier and Preston, 1999; Brooks et al., 2002). 
 

 
Figure 12: Geometric representations for the phases of regolith evolution. (a) Undisturbed regolith phase. 
(b) 50% stripped regolith phase. (c) Redeposited regolith phase (Source: Brooks et al., 2002) 
 
Model parameterization becomes increasingly complex for each consecutive phase. Stage 3 
involves undisturbed regolith uphill, followed downslope by exposed bedrock and deposited 
landslide debris. Landslide debris deposited downslope frequently shows an increase in bulk 
density, internal friction angle and cohesion, increasing the resistance to failure (Preston,1996; 
Crozier and Preston,1999 in Brooks et al., 2002). In contrast, the increase in regolith depths 
downslope may decrease resistance to failure, by the development of higher pore water 
pressures. The overall result for the colluvial footslope is likely one of higher stability. More 
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uphill, the creation of crown scarps removes lateral support to regolith immediately upslope 
which will likely result in lower stability. Brooks et al. (2002) argues that the different slopes 
described in Fig. 12 may have different rainfall thresholds for failure and that different 
hydrological mechanisms might govern slope instability. So, not only slope geometry changes 
over time. Changes in the both the hydrological and geotechnical conditions of  the slope add 
more complexity to the calculation of critical rainfall values as they change thresholds for 
slope failure. Preston (2008) describes the specific geometry of the Hinenui catchment as a 
mosaic of old failure scars and associated colluvial deposits on middle and lower slopes, 
while remnant undisturbed regolith can mainly be found on the spurs and crests of slopes. The 
undisturbed regolith material has minimal lateral support as a result of earlier failures lower 
on the slope. Therefore, landslide predictions might be more accurate when changes in both 
the hydrological and geotechnical properties as regolith develops on slopes are taken into 
account. This concept of different phases of regolith stripping introduces the importance of 
the legacy effect of landsliding on the landscape, and especially the DEM. As stated before, 
the prediction of landslide locations might improve by modeling the storm in multiple time 
steps and by introducing spatial heterogeneity of soil strength parameters in the model .  
 
Preston (2008) stated that in some cases sub-surface flow in pipes was a factor in triggering 
landslides in the Hinenui catchment. Natural pipes or other macropores can carry significant 
downslope flows and act as a bypass to soil flow (Borga et al., 1998). These processes are not 
included in the model framework, but will likely influence the triggering of landslides. 
However, there are at present many difficulties and uncertainties in pipeflow modeling.  
 
The assumption of steady-state hydrology as well as steady-state rainfall characteristics might 
lead to inaccurate prediction of landslides for this study area. The assumption of steady state 
hydrology implies that the relative potential for shallow landslides is determined by 
convergence of shallow subsurface flow, following the surface topography; and is 
proportional to the upslope contributing area (Montgomery and Dietrich, 1994; Claessens et 
al., 2007a). The small velocity of subsurface flow might indicate that most areas in the 
catchment do not receive subsurface flow from their entire upslope contributing area (Borga 
et al., 2002a). Furthermore, the steady-state hydrology assumption might not be valid for high 
intensity rains (Iverson, 2000; Chiang and Chang, 2009). Chiang and Chang (2009) reported 
that the steady-state assumption results in less accurate prediction of landslides with a small 
contributing area. 
Several studies introduce a quasi-dynamic wetness index as an alternative approach (e.g. 
Barling et al., 1994; Borga et al., 2002b).  The quasi-dynamic wetness index predicts spatial 
distribution of soil saturation in response to a rainfall event of specific duration (Borga et al., 
2002b). Brooks et al (2002, p.175 and p.176) state that: “the dependence of slope stability on 
regolith development requires a model that includes unsaturated as well as saturated zone 
hydrological responses” and “the thresholds for instability are related to the prevailing storm 
types, with the relative stability of the stages depending on storm properties”. Additionally, 
landslide initiation might be influenced by soil heterogeneity, variations in vegetation density, 
aspect, and spatial distribution of rainfall which are presently not accounted for in the model. 
While extending the model with this more detailed approaches might improve model 
performance, they demand more information on rainstorms and soil properties than is usually 
available.    
 
Incorrect or incomplete input data 
A second type of error is incomplete or incorrect input data. Given that topography is on of 
the main drivers for slope failure, the quality of the DEM is quite important. Elevation values 
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are used to calculate surface derivatives such as slope, aspect, flow direction, catchment 
boundaries and upstream contributing area. As already mentioned before the DEM was made 
after the modeled rainfall event which might alter surface derivatives. The multiple flow 
pattern (Fig.13) was used to analyze the DEM of scenario A1. Cells that don’t have a 
contributing area are usually located at a ridge and depict a local water divide. In the multiple 
flow map some irregular patches can be seen throughout the catchment that don’t receive any 
water from surrounding areas and some flows don’t follow expected flow routes. This does 
not seem to be hydrologically sound and can be caused by the effect of slightly elevated 
patches in the DEM caused by the presence of vegetation or non-relevant microtopography 
(Fig.13C). Preprocessing of the DEM (e.g. removal of trees) also caused some inaccuracies in 
the flow pattern (Fig.13B). The water divide of the catchment is not clearly delineated for the 
whole catchment (Fig.13A). This could be the result of the methodology for the DEM were 
measuring stations are mostly located in the valleys of the catchment and might miss 
important elevation data on the ridges that delineate the catchment boundaries. 
 

 
 

 
 
Figure 13: Multiple flow map for scenario A1 with A) inaccurate delineation of the water divide, B) flow 
patterns due to preprocessing of data and C) flow patterns due to micro-topography.  
 
The multiple flow algorithm is important for calculating the contributing area and flow 
routing. So, inaccurate elevation data that does not portray a realistic hydrology of the 
catchment will have an influence on the calculation of landslide initiation. Also the surface 
topography might be less representative of underlying bedrock topography at this resolution.  
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In the calculation of MSR a stable cell or landslide cell is defined by respectively the absence 
or the occurrence of erosion as well as deposition in that cell.  In the landslide polygon layer 
only the visible landslide scar was included. The sediment debris path was often not mapped. 
This will likely influence the calculation of the MSR.  
 
Spatial heterogeneity of soil and vegetation characteristics were not taken into account. 
Lumping of soil and vegetation parameters could influence model performance by ignoring 
important spatial variability in the landscape. Furthermore it might exclude important 
processes from the model as stated before. Finally, no field data was available for estimation 
of soil parameters. The parameter values used for modeling where chosen because they best 
fit the model equations, but it is not clear if they have a valid link with the physical reality.   

3.2 Effect of Modeling resolution 
There is a clear decrease in model performance with coarser DEM resolutions. The model 
performance for the entire range of C, T, f  (with 1° increments!) and � s values, was plotted 
for scenario A2 (Fig. 13), A5 (Fig. 14)  and A10 (Fig. 15). Not only the DEM resolution is of 
influence but also the algorithm used for resampling of the landslide scars to a coarser 
resolution is important. When the majority algorithm with priority to landslide scars is used 
(LS2 in Fig.14 and 15), performance is better than when nearest neighbour algorithm is 
applied (LS1 in Fig.14 and 15). The nearest neighbour algorithm makes some landslides 
disappear at coarser resolutions, or displaces them. The dome-shape of the plotted predictions 
is increasingly flattened with coarsening resolution and even inversed for the 10 m resolution 
runs. This inversion indicates that the model is not able to accurately predict landslide nor 
stable cell location at this resolution. A good prediction of one will always be traded of with a 
bad prediction of the other.  
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Figure 14: Model performance of scenario A2, MSR indicated as diagonals 
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Figure 15: Model performance of scenario A5 for LS1 and LS2, MSR indicated as diagonals 
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Figure 16: Model performance of scenario A10 fro LS1 and LS2, MSR indicated as diagonals 
 
The MSRs for the different scenarios reflect the same trend (Table 6). For scenario A5 en A10 
two alternative runs are given to illustrate that the highest MSR is only achieved by over-
prediction of either landslides or stable cells. For the alternative runs a more equal distribution 
of  the success rate of landslide and stable cell prediction was chosen, at the cost of the overall 
MSR.    
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Table 6: MSR and parameter values for different scenarios 
Scenario MSR Landslide 

prediction 
Stable cell 
prediction 

C f  (°) T (m2 d-1) � s (g cm-3) 

A2 0.630 0.732 0.527 0.2 33.4 11 1.8 
A5a 0.595 0.817 0.373 0.1 30.4 17 1.8 
A5b 0.545 0.507 0.583 0.2 31.4 15 1.7 
A10a 0.589 0.943 0.235 0.1 28.4 10 1.4 
A10b 0.453 0.471 0.435 0.2 30.4 10 1.7 
 
In scenario A2 the success rate of landslide prediction is similar as in scenario A1, but the 
success rate of stable cell prediction has decreased. This means the landslide area is 
overpredicted (Fig. 17).  
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Figure 17: Erosion and sedimentation for scenario A2a 
 
Comparing the two different runs of scenarios A5 and A10, the alternative runs seem to give a 
more conservative prediction of landslide sites. Both scenario’s however illustrate the fact that 
it is increasingly difficult for the model to predict accurate landslide patterns in the landscape. 
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Figure 18: Erosion A5 a en b 
 

 
Figure 19: Erosion A10 a en b 
 
Resampling to coarser resolutions filters out high slope gradients and smoothens the 
landscape (Table 7). As high slope gradients are an important factor in triggering landslides, 
this will influence the landslide locations because possible initiation locations are lost and 
landslide routing becomes less accurate.  
 
Table 7: Slope statistics watershed for different resolutions 
Resolution  (m) Min (°) Max (°) Mean (°) SD 
1 0.00 61.77 23.31 10.18 
2 0.00 51.77 22.92 9.82 
5  0.13 43.27 22.09 9.19 
10 0.55 38.34 21.03 8.51 
 
Furthermore the total watershed area might be altered by the resampling (Table 8). Claessens 
et al. (2005) showed that coarser resolutions yielded higher specific catchment areas 
(contributing area per unit contour length). Effects of resolution on distribution of slope 
gradient and specific catchment area have a direct impact on critical rainfall calculations 
(Claessens et al., 2005). Analysis of the multiple flow map for the 10 m resolution DEM (Fig. 
20), indicates that important flow routing details are lost, resulting in inaccurate prediction of 
landslide locations. Additionally the locations without a contributing area on the ridges 
increased so that some current landslide location have no drainage area, and can not be 
accurately predicted anymore.    
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Table 8: watershed surface area for different resolutions 
Resolution  (m) Area (m2) 
1 99746 
2 99736 
5 99875 
10 99700 
 
 
 

 
Figure 20: Multiple flow map for 10m resolution  
 
In contrast to these findings, Zhang and Montgomery (1994) suggest that a 10 m grid would 
suffice to model geomorphic and hydrological processes. Keijser (2009) showed that the 
LAPSUS-LS model performed satisfactory with 9 m resolution. In this study the 10m 
resolution itself might not be the cause of the low success in predicting landslides, but rather 
the effects on slope characteristics and contributing area that the aggregation method 
introduced. Also, Claessens et al. (2005) stresses that topographical and hydrological 
properties can vary for different landscapes. Optimal DEM resolution is thus context 
dependent. Taking into consideration earlier arguments that more complex and localized 
processes play a role in this catchment, finer resolutions might capture those processes better.  

3.3 Input parameters  
The MSR method was used to calculate the most favorable parameter combinations for each 
scenario. Changes in input parameter influences the model outcome but also influences the 
optimum value of other parameters. The best 10 runs for scenario A1, A2, A5 and A10 were 
analyzed to see if there was a difference in optimum parameter values (or ranges) between the 
different scenarios. Only for the parameters C and f  obvious patterns were observed (Table 
9).  
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Table 9: evolution of C and �  values with coarser resolutions 
Scenario C f  (°) 
A1 0.4 28.4 
A2 0.2 32.4 -35.4  
A5 0.1 – 0.2 30.4 
A10 0.1 – 0.2 28.4 
 
The combined cohesion is the ratio between forces resisting failure and promoting failure. It 
determines stability and thus influences critical rainfall values. If DEM resolution increases, 
combined cohesion must decrease to make more cells available for landslide initiating to 
compensate for lower slope gradients. The trend of a required higher stability, and thus higher 
C, for finer resolutions is in correspondence with the findings of Keijser (2009). The 
relatively high angle of internal friction for A2 might be necessary to limit the landslide 
initiation and keep a good prediction of stable cells. For scenario A5 and A10 the angle of 
internal friction needs to decrease again to make more cells available for landsliding as the 
slope gradients are decreasing. This, off course, is at the cost of stable cell prediction and the 
overall MSR. The optimal parameter combinations give no indication that these are the most 
realistic values or have a clear link with physical properties. 
 
Preston (2009) found an average off-slope sediment delivery ratio of 27,4 % for the Hinenui 
catchment. This data can be used to calibrate values for the run-out length �  and the minimum 
slope angle for maintaining flow � . Scenario A1a (Table 4) yields a sediment delivery ratio 
(SDR) of  21,3 %. Note that LAPSUS-LS calculates the sediment delivery ratio to the stream 
network, while Preston (2009) estimated off-slope delivery ratios. The two values can not be 
compared as such, but it gives an indication that a sediment delivery ratio of 21,3 % is a 
realistic value. A SDR scenario run was done with the optimal parameter combinations of 
scenario A1a as constants, and the run-out fraction and minimal slope angle for maintaining 
flow as variable parameters (Table 10).  
 
Table 10: Range and increments for SDR scenario 
Parameter Range Increment 
Min. slope angle �  (°) 1 -18 1 
Run-out fraction �  (-) 0.2 – 1.0 0.1 
Bulk density � s (g cm-3) 1.6 - 
Combined cohesion (C) 0.4 - 
Angle of internal friction f   (°) 29.4 - 
Transmissivity T (m2 d-1) 10 - 
 
The highest MSR for the SDR scenario was 0.796, with a SDR of 22.7 % (Table 11). 
Especially the stable cell prediction was improved. A decrease in the minimum angle for 
maintaining flow �  gives a better MSR as it shortens the erosion path and lowers the amount 
of cells active in landsliding. So, the model can be further improved by using sediment 
delivery ratios to calibrate parameter values.  
 
Table 11: MSR and parameter values for SDR scenario 

MSR Landslide 
prediction 

Stable cell 
prediction 

�  �  (°) SDR (%) 

0.796 0.718 0.873 0.2 7 22.7 
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Finally, the critical rainfall threshold was set to 0.1 mm/day for the modeled storm event. 
However, not all precipitation actually contributes to sub-surface flow e.g. because of 
interception by vegetation. As such, this parameter can be seen as a relative hazard indicator 
for landslides. This means that this value can also be used to optimize model performance. 
Table 12 shows used parameter values for the critical rainfall scenario (based on scenario 
A1a).  
  
Parameter Range Increment 
Critical rainfall threshold (mm day-1) 20 - 100 10 
Min. slope angle �  (°) 10 - 
Run-out fraction �  (-) 0.4 - 
Bulk density � s (g cm-3) 1.6 - 
Combined cohesion (C) 0.4 - 
Angle of internal friction f   (°) 28.4 – 31.4 1 
Transmissivity T (m2 d-1) 10 - 18 1 
 
Within this range of parameter combinations the model performance for the critical rainfall 
scenario is unsatisfactory. Especially landslide prediction performs poorly, which indicates 
that a relatively high critical rainfall threshold of 100 mm day-1 is necessary to generate 
sufficient landslides.   



 25 

4. Conclusion  
LAPSUS-LS, a multi-dimensional landscape evolution model, combines a steady-state 
hydrological model with an infinite slope model to predict the triggering of landslides and 
their subsequent movement downslope. The performance of the model has been studied with 
an existing dataset of 71 mapped shallow landslides in the Hinenui catchment on the East 
coast of North island, New Zealand. The performance of the model was optimized by 
calibrating different parameter values. A MSR of 0.739 was achieved at 1 m resolution. 
Landslides were generally predicted lower than the mapped erosion scars. This discrepancy 
could be due to inaccuracies in the DEM or other input data, lumping of soil and vegetation 
parameters, or due to the possibility that relevant processes for this environmental context are 
not included in the model. Landslides could be triggered on the lower edge of the scars but 
removal of failed landslide material could potentially increase the local slope by taking away 
initial support and may trigger subsequent upslope failure. Brooks et al. (2002) and Crozier 
and Preston (1999) argue that different stages of regolith stripping in this region change both 
the hydrological and geotechnical conditions of  slopes and add more complexity to the 
calculation of critical rainfall values. Solutions could be to introduce a legacy effect in the 
model by using multiple time steps, and to introduce spatial variability in soil and vegetation 
parameters. The specific characteristics of the landslides in the area might make the model 
performance vulnerable for simplifications regarding steady-state hydrology and rainfall 
characteristics.  
 
Furthermore, the effect of DEM resolution was studied. The MSR decreased with increasing 
DEM resolution to 0.630 at 2 m, 0.595 at 5 m, and 0.589 at 10 m resolution. The trade-off 
between a correct prediction of landslides versus stable cells becomes increasingly worse with 
coarser resolutions. Resampling to coarser resolutions filters out high slope gradients and 
smoothens the landscape. As high slope gradients are an important factor in triggering 
landslides, this will influence the landslide locations because possible initiation locations are 
lost and landslide routing becomes less accurate. Other variables like total watershed surface 
area and specific catchment area change with coarsening resolution.  
 
The optimal parameter combinations differ per resolution. Combined cohesion values are 
generally lower for coarser resolutions to make more cells available for landslide initiating to 
compensate for lower slope gradients. The same is true for the internal angle of friction. For 
the 2 m resolution however a relatively  high value was found for this parameter.  This might 
indicate that the higher angle is necessary to limit landslide initiation and thus keep a good 
prediction of stable cells. The other parameters did not show clear patterns. The model 
performance can be improved by calibrating parameters for calculation of trajectories of 
failed slope material with available SDR data.  
 
In this environmental context the 1 m resolution topography seems to resembles reality most 
closely and landslide locations are better distinguished from stables areas than for coarser 
resolutions. More gain in model performance could be achieved by adding complexities and 
parameter variations in the catchment. This is an interesting topic for further research. 
However, at the moment the model performs satisfactory at the 1 m resolution in the sense 
that it can give a good indication of spatial distribution of landslides and can be used in the 
prevention and potential hazard prediction of landslide events.  
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