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ABSTRACTABSTRACTABSTRACTABSTRACT    

 

 

This thesis is an account of the development and use of a framework to introduce 

flexibility in crop modelling. The construction of such a framework is supported by 

two main beams: the implementation and the modelling beam. Since the beginning of 

the 1990s, the implementation beam has gained increasing attention in the crop 

modelling field, notably with the development of APSIM (Agricultural Production 

Systems sIMulator) in Australia, OMS (Object Modelling System) in the United States, 

and APES (Agricultural Production and Externalities Simulator) in Europe. The main 

focus of this thesis is on the modelling beam and how to combine it with the 

implementation beam. I first explain how flexibility is adopted in crop modelling and 

what is required for the implementation beam of the framework, namely libraries of 

modules representing the basic crop growth and development processes and of crop 

models (i.e. modelling solutions). Then, I define how to deal with this flexibility (i.e. 

modelling beam) and more specifically I describe systematic approaches to facilitate 

the selection of the appropriate model structure (i.e. a combination of modules) for a 

specific simulation objective. While developing the framework, I stress the need for 

better documentation of the underlying assumptions of the modules and of the criteria 

applied in the selection of these modules for a particular simulation objective. Such 

documentation should help to point out the sources of uncertainties associated with 

the development of crop models and to reinforce the role of the crop modeller as an 

intermediary between the software engineer, coding the modules, and the end users, 

using the model for a specific objective. Finally, I draw conclusions for the prospects of 

such a framework in the crop modelling field. I see its main contribution to (i) a better 

understanding in crop physiology through easier testing of alternatives hypotheses, 

and (ii) integrated studies by facilitating model reuse.  

 

 

 

KeywordsKeywordsKeywordsKeywords: model structure, uncertainty, modularity, software design patterns, good 

modelling practices, crop growth and development. 
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1. Crop modelling, the Wageningen crop models and their (re)use1. Crop modelling, the Wageningen crop models and their (re)use1. Crop modelling, the Wageningen crop models and their (re)use1. Crop modelling, the Wageningen crop models and their (re)use    

Modelling is a way to simplify a system. A system is defined as a part of reality that 

contains interacting components. Crops are populations of plants of which the growth 

is managed by humans for any of various uses they may have for (parts of) these 

plants. Crop modelling is a way to simplify the part of reality (i.e. system) known as a 

crop. 

 

At first, crop models were mainly developed to increase understanding of the basic 

processes of crop growth and development. Taking the crop models developed at 

Wageningen University over the years as a reference, good examples of such models 

are ELCROS (Elementary CROp growth Simulator, De Wit et al., 1970), BACROS 

(BAsic CROp growth Simulator, De Wit, 1978), and SUCROS (Simple and Universal 

CROp growth Simulator, Van Keulen et al., 1982). Subsequently, the focus in 

modelling became more application-oriented and models were developed to increase 

understanding of the degree to which the main biotic and abiotic factors constrain 

crop yields. Among the Wageningen crop models, an example of such a model is 

WOFOST (WOrld FOod STudies, Van Keulen and Wolf, 1986), which is still used for 

yield forecasting in the European Union (e.g. in the MARS project, Monitoring 

Agricultural ResourceS, http://mars.jrc.it/). 

The increasing number of applications resulted in the development of a multitude of 

different models, and soon the need was felt to combine different models in one single 

framework for handling the modelling and analysis needs of different cropping 

systems in different environments. Two examples of such simulation frameworks are 

DSSAT (Decision Support System for Agrotechnology Transfer, Jones et al., 2003) and 

APSIM (Agricultural Production systems SIMulator, Keating et al., 2003). They 

provide structures to easily incorporate new models and to enable the simulation of 

different crops. So far, no such framework can be identified within the pedigree of crop 

growth simulation models of Wageningen’s “School of De Wit” (Bouman et al., 1996; 

Van Ittersum et al., 2003). 

 

Finally, the emphasis shifted towards addressing the need to create generic crop 

modelling tools to support scientific investigations and facilitate decision-making for 

crop managers (Hammer et al., 2002). Generic models are based on common model 

algorithms and structure to simulate ‘all’ crops, with differences among crops being 

reflected in the use of different crop-specific sets of parameters. Among the crop 

growth simulation models of the “School of De Wit”, examples of such a model are 

GECROS (Genotype-by-Environment interaction CROp growth Simulator, Yin and 

Van Laar, 2005) or WOFOST (Van Keulen and Wolf, 1986). 
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Diversity of models leads to a diversity of reuses and abuses of models (Boote et al., 

1996). Models are used to describe, simulate, extrapolate and ultimately understand 

the function of dynamic systems. This is not different for crop models: they can be, 

and are, used for various objectives (from understanding crop functioning to scenario 

analysis exploration) by different users (from researchers to policy makers) and at 

various scales (from gene to globe). Because of this plethora of models and their uses, 

the quest for balance in crop modelling between the objectives of the simulation and 

the approaches selected has become a subtle exercise. It involved navigating between 

very detailed modelling approaches, aiming at process understanding for a wide range 

of conditions rather than at yield prediction, and very empirical approaches primarily 

aiming at prediction and specific to a particular location (Monteith, 1996; Rastetter et 

al., 1992). 

 

As a response to this quest for a better balance, emphasis has been put on the 

development of frameworks which support flexible model composition, the 

composition depending on the problem at stake. Progress in computer science and 

software engineering [e.g. object-oriented programming (Reynolds and Acock, 1997) 

and, more recently, component-oriented programming (Qureshi and Hussain, 2008)] 

supports the development of modular approaches to create such modelling 

frameworks that serve as vehicles to assemble models according to different modelling 

aims. As a result, in the past 10 years, modular frameworks have been promoted as a 

way (i) to carry out comparatives studies, in which they are viewed as playing a 

heuristic role, and (ii) to integrate crop models in systems with broader boundaries, by 

building on crop models already existing capability (Hammer et al., 2002). In the 

Wageningen crop models, the development of FSE (Fortran Simulation Environment, 

Van Kraalingen, 1995) and FST (Fortran Simulation Translator, Rappoldt and Van 

Kraalingen, 1996) can be considered attempts for creating such frameworks. 

Moreover, Wageningen’s recent involvement in the development of APES 

(Agricultural Production and Externalities Simulator, Donatelli et al., 2010) within the 

SEAMLESS project (Van Ittersum et al., 2008) is an example of this new emphasis. 

Development of such modular frameworks creates flexibility in crop modelling. But 

how can we deal with modularity and flexibility in crop modelling, and how can we 

create balanced composition? 

 

2. Modularity and flexibility in crop modelling: implementation level2. Modularity and flexibility in crop modelling: implementation level2. Modularity and flexibility in crop modelling: implementation level2. Modularity and flexibility in crop modelling: implementation level    

Modularity is the property of a system to be made up of relatively independent, but 

interacting components or parts. In crop modelling, it refers to the possibility to 

assemble a model from different components and/or modules representing crop 
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growth and development processes and soil water and nitrogen dynamics. The extent 

to which a system is broken down into small parts (e.g. component and modules) is 

called granularity. A component is a piece of software used for composition of a 

model, while a module is a conceptualization of a process implemented within a 

component (e.g. radiation use efficiency or photosynthesis to calculate biomass 

production). 

Flexibility refers to the quality of being adaptable. In crop modelling, flexibility is given 

through the ability to create different modelling solutions (MS) on the basis of the 

specific objective of the simulation study. A modelling solution (i.e. crop model) is the 

result of the combination of different modules and components, selected in 

dependence of the system studied (a crop model adapted to a given crop, in a given 

environment and for a given question). 
 

Granularity (i.e. level of decomposition) was also advocated by Zeigler and Marshall 

(1991) in the development of the Discrete Event System Specification (DEVS). Figure 

1.1 illustrates the different levels of granularity introduced above in comparison with 

the terminology from Zeigler et al. (2000). The DEVS is based on a collection of 

models to be assembled to satisfy a new requirement (system of systems, SoS), and 

these models are an assemblage of what they called primitives (Figure 1.1). 

  (a)       (b)  

 

 

 

 

 

 

 

 
Figure 1.1. Modularity and flexibility are represented via different levels of granularity within 
(a) DEVS vs. (b) APES and this thesis. 
 

Accordingly, flexibility and modularity in crop modelling result in the construction of 

building blocks with different levels of granularity, representative for different parts of 

the systems under study. The construction of these building blocks is facilitated by 

what Van Evert et al. (2005) called an “implementation-level” framework, the main 

purpose of which is to link existing models, often treated as black boxes. Subsequently, 

the main research questions arising from modularity and flexibility are: (i) how do we 

make existing models work together; and (ii) how do we design new modelling 

solutions for easier and balanced assembly? 

Models  

System of System (SoS) 

Reusability framework 

Composition framework 

Components 

Modelling solution (MS) 

Modelling framework 

Implementation framework 

Modules Primitive  
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3. Definition of concept for model construction3. Definition of concept for model construction3. Definition of concept for model construction3. Definition of concept for model construction: modelling level: modelling level: modelling level: modelling level    

Model conceptualization remains the heart of the matter (Donatelli et al., 2002), and 

there is a need to couple principles of systems analysis with the application of new 

software engineering techniques (i.e. use of design patterns, component-oriented 

design) in crop modelling. These current software engineering techniques enable an 

easy plug-and-play of modules (Papajorgji, 2005). However, such an easy assemblage 

of modules needs to be associated with guidance for model adaptation/re-assembly for 

the system studied (a given crop, in a given context, and for a given question). This 

guidance should be provided by a structured and coherent set of concepts to (i) 

capture similarities and differences among crops and (ii) define the basic properties of 

the cropping system. These concepts can be translated into selection criteria or 

systematic approaches to guide the user of the framework in the selection of modules 

or components, to assemble a new MS. 

 

A concept can be defined as the “logic to assemble of the appropriate modules”. The 

development of such a concept should be based on systems analysis principles, 

enabling to go from the objective of the simulation to the right assembly of modules, 

representative of the Genotype × Environment × Management interactions of the 

cropping system under study (Figure 1.2). The formulation of concepts supports the 

construction of the model structure, in agreement with the users’ simulation objective. 

Indeed, these concepts contextualize the model for a specific application (Villa, 2007) 

by (i) arriving at an accurate and unambiguous problem definition, (ii) identifying the 

relevant factors to consider for construction of the model, and finally (iii) defining the 

model structure, i.e. the modelling solution. 

  

 

 
 
 
 
 
 

Figure 1.2. From objective(s) to the “right modelling solution”: construction of a concept to 
guide the user in module selection.  
 

Formulating concepts is achieved mainly through comparison of the various existing 

crop modelling approaches (i.e. modules) and on the basis of a thorough 

understanding of crop physiology and the user’s demand. Concepts represent this 

understanding and should, therefore, correspond to the main criteria guiding the 

selection of a specific modelling solution (Figure 1.2). To this end, those concepts 

express rules to identify the specific combinations of modules needed for the 

Objective Concept Concept Concept Concept     
Rules to identify the “right” model 
structure corresponding to a specific 
GxExM context 
 

Definition of criteria and/or 
approaches for module selection  

The “right” 
modelling solution 
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simulation objective. Formulation of these concepts produces an explicit analysis of 

the trade-offs in terms of level of details and generality among crop modelling 

approaches. The resulting criteria and systematic approaches can be considered as the 

“modelling-level” framework (Van Evert et al., 2005), aiming at guiding the user in the 

selection of modules and the assembly of the modelling solution. To define these 

criteria and to use systematic approaches helping to go from the simulation objective 

to the “right modelling solution” (Figure 1.2.), various type of experts are involved 

among which are crop physiologists, agronomists, crop modeller, and software 

engineers. 

 

4. Objective 4. Objective 4. Objective 4. Objective     

Given this context, a project was launched to develop an approach that should 

facilitate model (re-)use, by integrating new software engineering techniques in crop 

modelling (Donatelli et al., 2002) and system analysis, to enable to build models from 

(physiologically) meaningful components (Ewert, 2008). This project was initiated 

within the SEAMLESS project (Van Ittersum et al., 2008) to re-enforce collaboration 

between the various developers of the crop component of the Agricultural Production 

and Externalities Simulator (APES). The key idea of this collaboration was the 

development of a modular approach that would allow exchange of models (or parts of 

models, i.e. modules), substitution of processes, depending on the user demand and 

objective (which may vary from local to regional and larger scale). This thesis focuses 

more specifically on the definition of criteria or approaches to guide the selection of 

modules to assemble a modelling solution for specific applications (e.g. exploration of 

management options at the whole-farm scale; integrated assessment of agricultural 

systems at regional scale; assessment of climate change impact on crop productivity at 

global scale). 

 

The general objective objective objective objective of this thesis is the development of a framework to assemble 

different crop models depending on the crop system to analyse and the simulation 

objective. This framework is operational at the two main levels explained before: the 

implementation level and the modelling level. After briefly describing the main 

principles used for the implementation level (Chapter 2), the remainder of the thesis 

focuses on the modelling level. At the modelling level, two aspects receive particular 

attention, i.e. identification and definition of physiological similarities and differences 

among crops and explicit description of the context of the simulation. From this 

general objective, more specific objectives are derived:  

• Incorporate different crop growth and development modelling approaches in 

the framework (implementation level); 
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• Explicitly formulate the hypotheses underlying different simulation approaches 

and their validity domains (modelling level); 

• Develop systematic approaches to select the relevant modules to build a 

modelling solution that meets a specific simulation objective (modelling level). 

 

5. Outline5. Outline5. Outline5. Outline    

Creating a “generic” crop modelling framework for design and assessment of 

innovative cropping systems requires the development of a modular and flexible 

structure associated with concepts that will help modellers and end-users to select 

modules and to construct the crop model (i.e. modelling solution) they need for their 

objective. In this thesis (Figure 1.3), Chapter 2 describes how to bring the modularity 

into the framework, and how new software techniques can be applied in crop 

modelling. From the software design presented in Chapter 2, two distinct libraries can 

be distinguished in the framework: one including the different modelling approaches 

(i.e. modules describing the basic crop processes), and one including the result of the 

assemblage of these modules into a new modelling solution (i.e. a crop model for a 

given crop, in a given context, for a given question).  

Chapter 3 tackles the issue of flexibility and defines a methodology (guideline) to select 

and combine these different approaches into a modelling solution according to specific 

criteria (e.g. physiological specificities of the crop, data availability, level of detail of the 

modules, limiting factors of production). This methodology emphasizes the 

importance of explicitly formulating the hypotheses underlying different simulation 

approaches and their validity domains. From the principles laid out in Chapters 2 and 

3, it is concluded that the framework is built from two main beams: (i) the 

implementation beam and (ii) the modelling beam (Figure 1.3). However, there is a 

need to (i) further investigate on the development of concepts for the selection of 

modules, and more specifically (ii) refine the criteria guiding this selection. These are 

the subjects of Chapters 4 and 5 (Figure 1.3). 

In Chapters 4 and 5, we used the principles discussed and elaborated previously, and 

studied two specific case studies, developing a set of concepts to select the relevant 

modules to build a modelling solution that meets a specific modelling objective. 

Although the two chapters do not explicitly apply the whole methodology presented in 

Chapter 3, we can see them as an example of how to operationalise the part of the 

framework on the selection of modules (i.e. modelling beam). 

Chapter 4 deals with the scale and data availability criteria, focussing on an analysis of 

the effects of modelling detail in simulating crop productivity under a wide range of 

climatic conditions. Through comparison of various modelling approaches (modules), 
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we identified the importance of clarifying the assumptions underlying the 

quantification of a parameter value, as a parameter may represent a different meaning 

(and hence a different numerical value), depending on the approach selected. We also 

demonstrated that when addressing issues at global scale with rather scanty data, one 

needs to be aware of the potential consequences of the simplification of processes, as 

this may lead to the omission of important relationships. 

Chapter 5 focuses on crop physiology and more specifically on the “crop type” 

criterion. It emphasizes the importance of integrating crop physiologist’s knowledge in 

all the modelling processes when crop type-specific modules are selected. In practice, it 

illustrates an approach that supports the integration of crop physiological knowledge 

into the framework. It emphasizes that the modeller should have a thorough 

understanding of the conceptual model and should communicate/interact efficiently 

with software engineers in developing a new modelling solution for a new crop. 

Chapter 6 synthesizes the main outcomes of the previous chapters, highlighting what is 

needed for the development of a framework to introduce flexibility in crop modelling 

and what the potential future of such a framework could be. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.3. Schematic outline of this dissertation, based on two main beams: (i) the 
implementation beam, defined by software engineering techniques and (ii) the modelling 
beam, defined by an approach supporting the selection of modules. Two specific case studies 
refine the criteria for modules selection, considering the (i) scale and accuracy of simulations, 
and (ii) crop type.
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AbstractAbstractAbstractAbstract    

Crop growth models are used for a wide range of objectives. For each objective a specific 

model has to be developed, because the reusability of a model is often limited by the necessity 

of a fundamental restructuring to adapt it to a different objective. To overcome this 

limitation, we developed a method to facilitate model restructuring by a novel combination of 

software technology with expert knowledge.  

This resulted in the decision-making software application CROSPAL (CROp Simulator: 

Picking and Assembling Libraries). CROSPAL includes (i) a library of processes each 

containing different modelling approaches for each crop physiological process and (ii) a 

procedure based on expert knowledge of how to combine the different processes for the 

objective of the simulation. 

A brief overview of the state of the art in crop modelling is presented, followed by an account 

of the developed concept to improve flexibility in crop modelling considering expert 

knowledge. We describe the design of the software and how expert knowledge is integrated. 

The use of CROSPAL is illustrated for the modelling of crop phenology. We conclude that 

CROSPAL is a helpful tool to improve flexibility in crop modelling considering expert 

knowledge but further development and evaluation is required to extend its range of 

application to more processes and issues crop modelling is presently addressing. 

 

KeywordsKeywordsKeywordsKeywords: crop models, design pattern, phenology, model flexibility, physiological processes, 

libraries. 
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1. Introduction 1. Introduction 1. Introduction 1. Introduction  

Crop growth modelling started in the late 1960s with De Wit (1965). Initially, crop 

models were developed to increase understanding of the mechanisms (i.e. 

physiological processes) underlying crop growth and development. Subsequently, the 

focus in crop modelling became more application-oriented and models were used to 

increase the understanding of the degree to which the main abiotic factors (weather 

and soil) constrain crop yields (Van Ittersum and Rabbinge, 1997). As a result, each 

crop growth model tended to focus on one crop and one specific set of conditions. 

Different modelling approaches have been developed to simulate the same process. 

For instance, for the simulation of biomass accumulation, various algorithms have 

been used. Some models comprise a very detailed description of the processes related 

to photosynthesis and respiration, while others use the radiation use efficiency 

approach, representing the detailed photosynthesis and respiration models by one 

parameter. Similar differences in modelling approaches and detail can be found for 

other crop physiological processes. Therefore, the quest for balance in crop modelling 

has become a subtle exercise, navigating between very detailed modelling approaches 

aiming at process understanding for a wide range of conditions, and empirical 

approaches primarily aiming at prediction, but specific to a particular set of (local) 

biophysical conditions (Monteith, 1996; Rastetter et al., 1992). 

 

The crop modelling community, being aware of the specificity of the many models 

developed, and searching for greater generality, initiated the development of more 

generic models. Such generic models aim at widening the range of applicability of crop 

simulation models. Some examples are WOFOST (Supit et al. 1994), CROPGRO 

(Jones et al., 2003), STICS (Brisson et al., 2003), and EPIC/CROPSYST (Stockle et al., 

2003). Reflecting on these efforts, Brisson et al. in Wallach et al. (2006: p.261) stated 

that “the generic nature of a model does not preclude crop specificity, but it is 

indicative for the efforts being made towards a common approach based on agro-

physiology”. Common model algorithms and structure are adopted for all crop species 

and differences among species are defined in species-specific sets of parameters. 

Although each of these models has been widely applied, they still strongly reflect a 

specific modelling community (e.g. WOFOST, one of the Wageningen models; STICS, 

a French model; EPIC/CROPSYST, a model developed by the American crop 

modeller’s community). The degree to which models have been applied outside the 

community of the developers, can mainly be attributed to the accessibility of the 

specific model and the efforts to disseminate the model by the team that was involved 

in its original development.  
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Furthermore, as modelling became more application-oriented in the 1990s, attempts 

were made to combine different models to analyze cropping systems in different 

environments and with different management practices. DSSAT (Decision Support 

System for Agrotechnology Transfer, Jones et al., 2003) and APSIM (Agricultural 

Production Systems sIMulator, Keating et al., 2003) are two prominent examples of 

such simulation frameworks. The main objectives of these models are (i) to simulate 

productivity of cropping systems, taking into account weather, crop genetics, soil 

water, soil carbon and nitrogen dynamics, and management in single or multiple 

seasons and in crop rotations at any location, a common feature shared by all crop 

models and (ii) to provide a modular structure to facilitate incorporation of new 

modules - a specific objective of DSSAT and APSIM. Interaction among components 

takes place at the cropping system level where crop, soil and climate are identified as 

the key sub-systems. Thus, although these cropping system models apply principles of 

modularity, their structure does not allow an easy plug-in pull-out of lower level (e.g. 

plant process level) modules for different simulation objectives. The crop growth and 

development module essentially constitutes the main entity. The mechanistic detail of 

the physiological processes considered within the crop module cannot be easily 

replaced by another formulation. The crop module runs as a whole and within this 

module, processes are inseparable. For instance, substituting the phenology module 

implemented within APSIM by an alternative module (developed and required for 

another application) is not straightforward. 

 

To overcome this limitation, Wang et al. (2002) proposed a generic crop model 

template for APSIM, based on four main components: (i) a standard crop interface, 

(ii) a generic crop model structure, (iii) a crop process library and (iv) a crop 

parameter file. The crop parameter file enables to switch between different modelling 

approaches, represented in the crop process library. Principles applied in this 

framework were already mentioned in the late 1990s when Hammer (1998) described 

a tree structure of a generic crop template, enabling to switch between optional 

processes within sub-modules. Later, this framework was applied by Van Oosterom et 

al. (2006) substituting the module of floral initiation with a gene network module. 

Such work is essential for further development of a crop modelling framework to 

facilitate the change of the structure of crop models.  

 

However, despite the merit of addressing modelling choices at the level of 

physiological processes, no clear evidence of consistent substitution is presented. The 

framework facilitates substitution in terms of software engineering, but does not 

facilitate the user to ensure that a new method substituting another is compatible to 
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the modelling approaches of the other physiological processes to which it will be 

linked. This is particularly important for the temporal resolution of processes to avoid 

stiff systems.  

 

Thus, the exchange of a modelling approach for a specific physiological process may 

require changes in the modules of other crop processes that may not be self-evident 

and may complicate the plug-in pull-out procedure. Also, the links among key 

physiological processes may become unbalanced (Monteith, 1996) and not suitable to 

the objective of the simulation. Although the framework presented by Wang et al. 

(2002) is a step towards the facilitation of including various modules representative of 

various crop growth processes, the issue of consistency in substituting one module by 

another within cropping system models has not been explicitly addressed yet. It 

remains to clarify how to identify and “evaluate the alternatives” (Hammer, 1998, 

p.30). Day (2001, p.217) stated “Isolating the critical processes is the first step. 

Describing them at an appropriate level of detail, preferably only one or two levels 

below that of the output of interest, is the next target.”  Similarly, Acock and Acock 

(1991) pointed out the difference in the level of detail needed if the main objective is 

prediction or understanding of the mechanism representing processes in the crop 

system (“up to two levels of organization below the level of prediction”, p.56). 

 

In crop modelling, the Soil-Plant-Atmosphere System Simulation (SPASS, Wang and 

Engel, 2000), the object-oriented crop model by Acock and Reddy (1997), the generic 

crop model template in APSIM (GCROP, Wang et al., 2002), the Agricultural 

Production and Externalities Simulator (APES, Donatelli et al., 2010) and the 

Common Modelling Framework of Moore et al. (2007) are illustrative examples of the 

few attempts to apply modularity to the simulation of the essential processes common 

to crop development and growth. However, explicit procedures are lacking for 

selecting the appropriate processes depending on the simulation objectives and 

defining the relationships among these processes which we specifically address in this 

study. Combining principles from Wang et al. (2002), object-oriented design and the 

use of hierarchical configuration adopted by Moore et al. (2007), we designed 

CROSPAL (CROp Simulator: Picking and Assembling Libraries), a crop modelling 

framework for the user to pick and assemble the crop simulator he/she needs. Not 

only should the choice of the level of detail be governed by quantitative criteria such as 

characteristic time of the models but also by the definition of criteria representing the 

objective and the targeted output of the simulation.  
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2. CROSPAL design: concept for a crop modelling framework2. CROSPAL design: concept for a crop modelling framework2. CROSPAL design: concept for a crop modelling framework2. CROSPAL design: concept for a crop modelling framework    
In the proposed crop modelling framework, we apply the principle of modularity to 

facilitate the re-use of crop models and modules for individual processes. We include 

modules with different descriptions of the key plant physiological processes for the 

user to compose the crop model (i.e. crop simulator) that meets best the simulation 

objective. The crop modelling framework guides the user in the selection of these 

descriptions to support consistency in the considered processes linked to a crop 

simulator. Through principles of systems analysis, comprising among others the 

definition of system boundaries, simplification of reality, problem definition, and 

identification of attributes of interest leading to the definition of criteria, the 

appropriate combination of modelling approaches is defined for a specific simulation 

objective. The crop modelling framework comprises (i) a library of plant process 

descriptions with different modelling approaches for each process and (ii) a procedure 

or workflow describing how to combine the different processes for an application, 

resulting in (iii) a library of crop simulators (i.e. crop models developed for specific 

applications). 

 

To build the framework, we need (i) to define a set of basic crop growth and 

development processes according to our understanding of the crop system, (ii) to 

provide different modelling approaches for each process, (iii) to express expert 

knowledge in the form of explicit criteria to ensure consistency in the selection and 

linkage of modelling approaches for a specific application and (iv) to use object-

oriented design to provide flexibility to the framework (Donatelli et al., 2006 a,b). 

 

2.1. Library of crop growth and development processes 2.1. Library of crop growth and development processes 2.1. Library of crop growth and development processes 2.1. Library of crop growth and development processes     

Wery (2005) defined the major crop growth and development processes as leaf area 

expansion, production of assimilates, partitioning of assimilates, phenology 

(vegetative and reproductive development), nitrogen dynamics, and transpiration. 

This representation of crop physiology is supported by Hay and Porter’s (2006) 

description of the physiology of crop yield where they identified “the interlinked 

processes that form the basis of crop growth and yield” as phenological development, 

leaf canopy development and biomass production and its partitioning over the plant 

organs. This categorization gives information on growth and development of the crop 

in response to any change in the environment of the system. Each of these basic crop 

growth and development processes can be modelled in various ways and with different 

mechanistic details (Table 2.1), resulting in a variety of crop models.  
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Table 2.1. Proposed crop growth and development processes and selected corresponding crop 
modelling approaches (adapted from Wery, 2005). For comparison, the template proposed by 
Wang et al. (2002) is also included. 
Plant growth and development processesPlant growth and development processesPlant growth and development processesPlant growth and development processes    Modelling Modelling Modelling Modelling ApproachesApproachesApproachesApproaches 

Proposed structureProposed structureProposed structureProposed structure    Related Related Related Related 7 main 7 main 7 main 7 main 
components in GCROP *components in GCROP *components in GCROP *components in GCROP *    
(Figure 1 in Wang et al., 2002)    

Light interception: leaf area 
expansion, leaf canopy 
development 

C: canopy 
E: senescence 

• Development stage 
dependent 

• Biomass accumulation 
dependent 

Dry matter production  
 

B: biomass (B1) 
Partly D: root system (root 
biomass) 

• Water use efficiency 
(WUE) 

• Radiation use efficiency 
(RUE) 

• Minimum (RUE,WUE) 

• Farquhar approach: 
Photosynthesis, 
Assimilation, Respiration  

Phenology: vegetative and 
reproductive development 

A: phenology • Leaf appearance rate based 
on photo-thermal time 

• Gene network model 

• Simple regression 
Partitioning/allocation: 
development of sink and 
assimilate partitioning 

B: biomass • Predetermined allocation 

• Source/ sink 

Production level:  e.g. 
Water stress 

Partly D: root system ( root 
depth) 
F-G: water and nitrogen 

• Stomatal conductance 

• Transpiration, water uptake 

• Nitrogen uptake 

* Letters A-G refer to the essential processes of a generic crop model template (Wang et al., 2002). 

 

The library of these different modelling approaches for each individual crop growth 

and development processes is constructed using principles from object-oriented 

design to support flexibility for model development. The next step in the construction 

of the crop modelling framework is to define rules to help the user to select and 

combine the appropriate modelling approaches of these physiological processes 

according to the simulation objective. 
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2.2. Procedure to combine the modelling approaches: building2.2. Procedure to combine the modelling approaches: building2.2. Procedure to combine the modelling approaches: building2.2. Procedure to combine the modelling approaches: building    a library of crop a library of crop a library of crop a library of crop 

simulatorssimulatorssimulatorssimulators    

In the crop modelling framework, we aim at explicit identification of the most 

important characteristics of the system and how these will influence the selection of 

the modelling approaches to build the crop simulator. The key relationships among 

the different processes represented in the system are based on the knowledge of the 

expert and his/her understanding of the functioning of the system.  

 

Crop growth and development is the result of the interaction of (i) the availability of 

resources, (ii) the ability of the crop to capture these resources and convert them into 

biomass and (iii) the way management of the system affects 1 and 2. Accordingly, to 

select the appropriate combination of modelling approaches, we apply five criteria: (i) 

crop physiology, (ii) limiting factors, (iii) scale (temporal and spatial), (iv) 

management practices, and (v) accuracy/adequacy of simulation. These criteria 

represent the main factors determining the simulation of crop performance. They 

consider Genotype x Environment x Management interactions (Yin et al., 2004), 

including effects of technological changes (Ewert, et al., 2005), scale and data 

availability. 

 

To represent these criteria and guide the user in constructing or selecting a consistent 

crop simulator, we designed a graphical user interface (GUI) that helps to define the 

combination of the different modelling approaches. We established the following 

hierarchy. First, we select the modelling approach depending on crop physiology (crop 

type), limiting factors and scale (Figure 2.1a). Such criteria will guide the selection of 

the main basic crop processes to include. For example, if the user wants to simulate 

potential crop yield of winter wheat at field level, the choice of ‘winter crop’ in the 

GUI will direct him to pick a photo-vernal thermal modelling approach for 

phenology. Second, according to the choices made, another more detailed window 

appears to select the management and the required accuracy of the simulation (Figure 

2.1b). On the basis of these selections, we retrieve a pre-defined crop model structure 

(crop simulator), corresponding to the user’s objective. The definition of these criteria 

and how they influence the selection of the modelling approaches is the result of 

expert knowledge embedded into CROSPAL. 
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a. First set of criteria to decide upon 

 
b. Second set of criteria 
Different screens may appear depending on the choice made on a. We present the most complete one. 

 
Figure 2.1. The graphical user interface (GUI) of the crop modelling framework (CROSPAL) 
in two main windows to illustrate the hierarchy of criteria in the choice of the model 
structure. 

 

In this way the framework provides (i) pre-defined crop models to be selected from a 

library of crop simulators depending on the application (these crop simulators 

encapsulate the expert knowledge from crop modellers and software engineers), and 

(ii) guiding rules for the more advanced user, to develop crop models (bottom up 

approach, picking and assembling from the library of crop modelling approaches), 

extending the expert knowledge in CROSPAL. The pre-defined models can directly be 

run through the GUI, while the rules are the result of the process of going through the 

criteria guiding the user to characterize the level of modelling detail needed (Chapter 
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3). Once the user (a crop modeller or agronomist) has defined this level of detail, not 

only will he/she use the modelling approaches already included, but also the user or an 

associated software engineer may create the missing pieces to enrich the framework. 

 

Thus, the novelty of the framework resides in the development of this workflow or 

procedure that encapsulates expert knowledge (agronomist or crop modeller) into 

crop models (crop simulators developed by a software engineer) for various 

applications. These different crop simulators will result from rules that explicitly state 

why a specific approach has been selected. Such a framework facilitates the 

comparison of different modelling approaches and enhances testing and comparing 

different approaches to particular processes, so that scientific understanding can 

advance. We are aware that there is rarely one unique modelling solution. However, 

we think that this framework can guide the user to define the best solution for a 

specific objective, given the available expert knowledge and the available data. 

Importantly, the expert knowledge is not static, but will evolve through the use of the 

framework, e.g. through comparisons of models composed of different modelling 

approaches for similar processes, or validation of results generated by different 

developed models using experimental data. 

 

2.3. Software design to incorporate expert knowledge in t2.3. Software design to incorporate expert knowledge in t2.3. Software design to incorporate expert knowledge in t2.3. Software design to incorporate expert knowledge in the definition of crop he definition of crop he definition of crop he definition of crop 

simulatorssimulatorssimulatorssimulators    

To include new modelling approaches into the framework, a clear understanding of 

the software design is needed. The possibility to easily add a new modelling approach 

and combine it with already existing ones is based on software engineering techniques. 

Software engineering techniques such as object-oriented design have been applied for 

a long time in the industrial sector, but have only recently been introduced in the field 

of agricultural research (e.g. APES, Donatelli et al., 2010). In software engineering, the 

main purpose of a design pattern is to describe simple and elegant solutions to specific 

and recurrent problems (Gamma et al., 1995). Design patterns can also be used in the 

development of a crop growth and development modelling framework. In our 

particular case, we decided to use the “plug and play” architecture (Papajorgji, 2005).  

 

The use of the plug and play architecture provides the capability of automatically 

creating new configurations, and is based on: (i) the strategy design pattern, which is a 

behavioural pattern: “defining a family of algorithms, encapsulating each one, and 

making them interchangeable” (Gamma et al., 1995), and (ii) the abstract factory 

design pattern which is a creational pattern: “providing an interface for creating 

families of related or interdependent objects without specifying the concrete classes” 
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(Gamma et al., 1995). Strategy and abstract factory design patterns are combined in 

such a way that the strategy design pattern permits to set up the library of plant 

processes and the abstract factory design pattern allows to create the library of crop 

simulators (combination of these different processes). The strategy design pattern is 

also used to define the model granularity within APES components (Donatelli et al., 

2010). A full description and concrete application of some of these components can be 

found in Donatelli et al. (2006a, 2006b, and 2010). Descriptions of other components 

(e.g. soil water, soil nitrogen and carbon) can be found on the APES website 

(http://www.apesimulator.org/). 

The abstract factory defines the basic structure of the model. For instance, the abstract 

crop class includes various methods (e.g. CreateDM(), CreatePheno(), Figure 2.2a) 

that represent the crop growth and development processes. The different modelling 

approaches for each of these processes are encapsulated in various strategies (e.g. 

BiomassProd_LUE class or BiomassProd_LUE_CS class, Figure 2.2b). The strategy 

design pattern describes a family of mutually interchangeable modelling approaches. 

Each family of strategies defines the basic crop growth and development processes 

where exchangeability of modelling approaches is possible. 

 

Furthermore, the abstract factory design pattern facilitates the creation of a new crop 

simulator in such a way that a new concrete factory can be added easily (e.g. 

Concrete_Crop_Winter, Figure 2.2a). The concrete factory is the reflection of the 

expert’s perception of the system or/and the result of the different criteria checked by 

the user in agreement with his/her simulation objective. If none of the concrete 

factories available corresponds to the expert’s choices, a new concrete factory can 

easily be created. Finally, the use of the abstract factory allows including a common 

approach in line with the generic models’ principles. 

Thus, through the use of the plug and play architecture (Papajorgij, 2005), we include 

in the framework an explicit link to the representation of the expert knowledge of the 

system. The creation of new concrete factories corresponds to the development of new 

crop model structures (i.e. crop simulator) and the use of the abstract factory provides 

flexibility in the choice of modelling approaches. For instance, if the user wants to 

simulate potential crop yield of winter wheat at field level, the choice of a winter crop 

in the GUI will direct him to pick the Concrete_Crop_Winter presented in Figure 

2.2a, while if the user wants to simulate spring wheat, then the Concrete_Crop_Spring 

will be selected. In the same way, if the user wants to simulate crop yield of winter 

wheat for the whole of Europe, the Concrete_Crop_Winter_Teffect will be selected, as 

the range of temperatures within Europe might be an important characteristic to 

consider (Ewert et al., 1999). 



 

 
 

a. The abstract factory design creating a basic changeable structure of the crop model. 
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Abstract_Crop 

#

  

Abstract_Crop() 
+

  

CreateDM() 
+

  

CreateDMorgans() 
+

  

CreateLAI() 
+

  

CreatePheno() 
+

  

CreateRootDepth() 

Concrete_Crop_Winter_Teff  

+

  

Concrete_Crop_Winter_Teffect()  
+

  

CreateDM()  
+

  

CreateDMorgans() 
+

  

CreateLAI() 
+

  

CreatePheno() 
+

  

CreateRootDepth()  

Concrete_Crop_Winter  

+

  

Concrete_Crop_Winter() 
+

  

CreateDM() 
+

  

CreateDMorgans()  
+

  

CreateLAI()  
+

  

CreatePheno()  
+

  

CreateRootDepth() 

Concrete_Crop_Sring_Teff  

+

  

Concrete_Crop_Sring_Teffect() 
+

  

CreateDM() 
+

  

CreateDMorgans()  
+

  

CreateLAI()  
+

  

CreatePheno() 
+

  

CreateRootDepth()  

Concrete_Crop_Spring  

+

  

Concrete_Crop_Spring()  
+

  

CreateDM () 
+

  

CreateDMorgans()  
+

  

CreateLAI() 
+

  

CreatePheno() 
+

  

CreateRootDepth() 

Concrete_Crop_SpringLeavesNumber  

+

  

Concrete_Crop_SpringLeavesNumber()  
+

  

CreateDM()  
+

  

CreateDMorgans()  
+

  

CreateLAI()  
+

  

CreatePheno()  
+

  

CreateRootDepth()  



 

 
 

b. The strategy design pattern applied to the CreateDM() corresponding to the dry matter process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2. The main design patterns implemented to develop the crop modelling framework: a) the abstract factory design pattern and b) the 
strategy design pattern.
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Biomass_CreateDM 

#

  

Biomass_CreateDM() : 
+

  
Update (Crop.Data.Variables.Rates, 
Crop.Data.Variables.Auxiliary,  
Crop.Data.Variables.Exogenous 
Crop.Data.Variables.RatesExternal 

Crop.Data.Variables.StatesExternal ) 

Biomass_LUE  
-

  

_inputs:  
-

  

_outputs:  
-

  

_param:  
-

  

LUE:  
+

  

par:  
-

  

strategyName:  

-

  

BiomassProd_LUE() : 
+

  

BiomassProd_LUE()  
-

  

calculate():void   
+

  

Update():void  
 
 

«property
+

  

RadiationUseEfficiencyVarInfo() : 

Biomass_LUE_Temp  
-

  

_inputs:  
-

  

_outputs:  
-

  

_param:  
-

  

LUE:  
+

  

par:  
+

  

pheno:  
-

  

strategyName:  

-

  

BiomassProd_LUE_Temp()  
+

  

BiomassProd_LUE_Temp()  -

  

calculate():void  
+

  

Update( ):void 
  
 

«property
+

  

AirTemperatureBase() : 
+

  

RadiationUseEfficiency() : 
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Not only does the application of this design prevent implementation of inconsistent 

combinations of objects, but it also provides flexibility to the framework. This 

flexibility lies in the possibility of creating new combinations of modelling approaches 

(i.e. crop simulators). However, if the user’s overall vision of crop growth and 

development is totally different from the one formulated in the abstract factory, a 

change in the design is required. This is not a "shortcoming" of the pattern, but it 

rather points to the degree to which object-oriented systems are amenable to adding 

or removing abstractions. In that sense, the expert knowledge enters the framework at 

different levels. First, the abstract factory defines the key plant physiological processes 

according to crop physiologists’ knowledge (which have been already pre-defined 

according to crop physiology, Section 2.1). Second, through the selection of criteria 

(GUI), the agronomist expert defines different modelling approaches (strategies) and 

ways to combine them (concrete factories). To illustrate the principles and the design 

described above, an example is presented to define different modelling approaches 

that can be used to represent the phenology of a crop and identify the appropriate 

approaches for a set of different research objectives. 

    

3. Application of CROSPAL: example of crop phenology 3. Application of CROSPAL: example of crop phenology 3. Application of CROSPAL: example of crop phenology 3. Application of CROSPAL: example of crop phenology     
As mentioned by Hammer et al. (2002), crop modelling is moving in two directions, 

one from cropping level to higher integration levels such as farms and regions and the 

second from crop level to the lower level of integration, such as the genetic level. We 

claim that the development of the proposed crop modelling framework supports both 

directions, as different modelling approaches can be included and considered for 

further application depending on the objective of the user of CROSPAL. We use the 

example of phenology to further illustrate this. Phenology is the sequence and rate of 

initiation of developmental events (i.e. phases) in the course of the life cycle of a crop, 

from germination of seeds to maturity of the plant and ripening of the seeds. The 

sequence of the different phases is invariable, but their timing is dependent on 

environmental conditions, such as temperature and day length. In evaluating crop 

growth models, phenology is the first process to be assessed because it is a driver of 

most of the other plant processes. It can be considered at 3 levels of detail (Table 2.2): 

(i) the crop level, based on the classical photo-thermal modelling approach, (ii) the 

gene network level, on the basis of a more detailed and mechanistic approach, and (iii) 

a more aggregated summary, based on the timing of flowering and ripening according 

to a simple regression on environmental factors. Each of these approaches has its 

specificities and targeted applications. The most suitable approach for a specific 

objective is selected on the basis of expert knowledge. 
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Table 2.2. Main characteristics of the modelling approaches studied to simulate phenology. 

    Leaf appearance rate, Leaf appearance rate, Leaf appearance rate, Leaf appearance rate, 
and photoand photoand photoand photo----thermal thermal thermal thermal 
time approachestime approachestime approachestime approaches    

Gene network Gene network Gene network Gene network 
model approachmodel approachmodel approachmodel approach    

Simple regression Simple regression Simple regression Simple regression 
approachapproachapproachapproach    

Main objective Provide a temporal 
framework for 
simulating crop growth 
processes defined by 
the appearance of leaf 
primordia and leaves 

Understanding the 
consequence of 
modifying gene 
networks on the 
prediction of 
flowering time 

Determine 
harvesting time at 
regional level 

Type of 
approach 

Mechanistic: Timing 
of each phenological 
stage based on 
qualitative 
morphological 
changes on the 
developing apex  

Molecular pathway 
dynamics: 
mathematical 
formulation of gene 
network 

Empirical relation: 
regression analysis 
between sowing 
date, latitude and  
flowering date or 
harvesting date 

Main 
assumptions 

It assumes a decline in 
the rate of leaf 
production as a 
function of 
temperature for leaves 
formed later in the 
crop cycle 

For a specific 
cultivar, the alleles 
present in the 
network regulate 
aspects of 
temperature and 
photoperiod 
responses 

Flowering and 
physiological 
maturity time at 
regional level is 
mostly dependent 
on sowing date and 
latitude 

Main inputs Daily temperature, day 
length 

Genotype specific 
input 

Latitude and 
sowing date 

Crop 
characteristic/ 
Parameters 

Thermal time of the 
different stages is 
cultivar dependent; 

Development stages 
to define the 
photoperiod-
sensitive period 

Regression 
coefficient 
according the crop 
and the location 

Main outputs Development stages, 
date of heading and 
leaf numbers 

Date of flowering, 
leaf numbers 

Regional date of 
harvest 
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3.1. Definition of the 3.1. Definition of the 3.1. Definition of the 3.1. Definition of the different modelling approaches (different strategies)different modelling approaches (different strategies)different modelling approaches (different strategies)different modelling approaches (different strategies)    

The most commonly used approach to simulate crop development is based on the 

temperature sum (thermal time) above a base temperature. The base temperature 

represents the temperature below which development ceases. The development rate is 

defined as the inverse of the duration of a development phase. The approach assumes 

that within a range of temperatures, crop development rate increases proportionally 

with increasing temperature (Roberts and Summerfield, 1987). The crop enters the 

next development stage when the thermal time requirement for the current phase is 

satisfied (Van Keulen and Seligman, 1987). A similar approach is based on the rate of 

leaf appearance and final number of main stem leaves. Jamieson et al. (1995) 

demonstrated that: (i) leaf primordia appearance in wheat can be predicted on the 

basis of temperature alone, and (ii) final leaf number is controlled by the 

photoperiodic and vernalization responses of the crop. In this approach, the 

production rate of leaf primordia is considered to be independent of day length and 

sowing date (Miglietta ,1992) . 

 

A more mechanistic approach to simulate flowering time is based on QTL 

(Quantitative Trait Loci) analysis, determining the sensitivity of the crop to 

photoperiod. This approach enables to predict the effect of a modified gene network 

on flowering time (Van Oosterom et al., 2006). According to day length, different crop 

phenotypes will react differently. Integration of such an approach in a crop model 

enables to link information at the molecular level with the phenotypic performance of 

the crop. Analysis of the gene network gives a better insight in why a crop responds in 

a certain manner to different environmental conditions (e.g. day length). 

 

A much simpler approach that can be used to predict flowering is based on empirical 

observations and simple regressions between flowering time and latitude (Hammer et 

al., 1996), or sowing time and the duration of the growth cycle. To derive such 

regressions for various crops, regional data for different crops in different regions are 

required. The main assumption underlying this approach is that sowing date is the 

most important factor in determining flowering and physiological maturity of a 

specific crop or variety in a region. 

Each of these approaches can be implemented as a strategy according to the strategy 

design pattern. The choice of the strategy for a specific objective is done via the 

selection of the factory that corresponds to the criteria identified in the following 

section. 
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3.2. 3.2. 3.2. 3.2. SelectionSelectionSelectionSelection    of modelling approaches given an objectiveof modelling approaches given an objectiveof modelling approaches given an objectiveof modelling approaches given an objective    

Accurate prediction of crop development is essential for accurately simulating 

morphogenesis and yield components, and is also important in scheduling 

management practices and assessing the response of a specific cultivar to e.g. weather 

variability. All three approaches mentioned above have been applied in (different) 

crop models. One of these approaches will be most appropriate for a specific objective 

of the simulation. Consideration of expert knowledge will help to find the most 

relevant approach for each situation. One could imagine users of CROSPAL, having 

the following different modelling aims: 

 

Aim 1: Explain the gene influence on photoperiod sensitivity of cultivars to 

flowering time; 

Aim 2: Determine the right timing for management practices such as fertilizer 

application or disease control according to the development stage of the crop; 

Aim 3: Study crop productivity and harvesting time in a long-term perspective (e.g. 

under different management practices) for different regions. 

 

Table 2.3 summarizes the possible applications of phenology modelling approaches, 

and the selected model approaches according to the simulation objective or aim. 

 
Table 2.3. Objectives, criteria and modelling approaches selected to simulate phenology. 
Objective of Objective of Objective of Objective of 
simulationsimulationsimulationsimulation    

Main criteria determining the Main criteria determining the Main criteria determining the Main criteria determining the 
choicechoicechoicechoice    

Approach chosenApproach chosenApproach chosenApproach chosen    

Understanding the 
principle of 
development 

Crop physiology: Need of a 
mechanistic, ontogenetic 
approach 

Gene network model 

Scheduling 
management practices 

Management practices 
Fertilization: importance of the 
double ridge stage in wheat 
Pesticide application: number of 
leaves 

 
Thermal time 
and 
Leaf appearance  

Regional yield 
prediction 

Scale:  Simulation over a broad 
geographical range 

Simple regression 

 

Aim 1: 

The main objective of this simulation is to increase understanding of the variation in 

the response of a crop or cultivar to environmental factors. More specifically, the user 

wants to predict the phenotypic consequences (e.g. time of flowering) for a crop with a 

new gene combination. The gene network model expresses the photoperiod sensitivity 
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of a crop in having either a recessive or dominant gene (Van Oosterom et al., 2006). 

Clearly, to achieve this aim, an eco-physiological QTL model should be incorporated 

into a crop simulation model. Such an approach will allow the user to test different 

gene combinations and determine how the crop responds to different environmental 

conditions. 

 

Aim 2:  

(a) The timing of fertilizer application should match the temporal variation in nutrient 

(e.g. nitrogen) demand. To accurately match supply with demand, it is important to 

identify the periods of high nitrogen requirements. Kirby et al. (1989) showed that in 

wheat the developing shoot apex is most sensitive to fertilizer application at the double 

ridge stage. This stage was shown to be best approximated by the thermal time 

approach (Miglietta and Porter, 1992) that allows explicit identification of the timing 

of each critical development stage such as the double ridge, terminal spikelet, ear 

emergence, etc. Therefore, from knowledge retrieved from the literature, we identified 

the thermal time approach as most appropriate in determining the timing of fertiliser 

application. 

(b) The timing of plant disease control can often be linked to a specific development 

stage. However, for practical purposes it is often identified by a certain number of 

leaves (Bindi et al., 1995). Although the thermal time approach defines the 

temperature sum from one phenological stage to another, it does not take into account 

that thermal time between successive leaves may vary with cultivar, planting date and 

location. The leaf appearance rate approach does account for such differences. The 

approach determines the number of leaves and therefore the timing of a specific stage 

as characterized by a certain number of leaves, and holds over a wide range of sowing 

dates and latitudes. Thus, for determination of the timing of disease control measures, 

the leaf appearance rate approach is most appropriate. 

 

Aim 3: 

For studies aiming at estimating e.g. the long-term effects on harvest time and crop 

productivity of a farmer’s adaptation of management practices to new policies, a 

simple approach that predicts the length of the crop cycle and of the grain filling 

period is needed. In long-term model predictions, it was demonstrated that empirical 

approaches, based on observations and simple regressions predicted yield as well or even 

better than more detailed agro-climatic crop models (Hammer et al. 1996). Indeed, due 

to poor knowledge of some input data, the use of a simple approach can lead to a good 

trade-off between accuracy and likely cost of application in a forecasting mode. 

Therefore, if the main objective of the study is for example to define harvest time of 
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wheat over a long-time series at regional level (e.g. the SEAMLESS project, Van 

Ittersum et al., 2008), a very simple approach such as the regression model will be robust 

(and sufficient) for large-scale applications. The main criteria to decide on this regression 

model (between sowing date, latitude and  harvesting date) are the scale (i.e. regional 

application) and the availability of data. 

 

3.3. Workflow of the methodology and use3.3. Workflow of the methodology and use3.3. Workflow of the methodology and use3.3. Workflow of the methodology and use    of CROSPALof CROSPALof CROSPALof CROSPAL    

Figure 2.3 shows the key steps of our methodology for the construction of a crop 

simulator using expert knowledge, combining knowledge from agronomists, crop 

modellers and software engineers.  Following the methodology explained above 

(Section 2), first the crop modeller with the help of the agronomist identifies the 

different modelling approaches to describe phenology that should be included in the 

framework. Then, the software engineer translates these into strategies (step 2). In a 

third step, the agronomist, having his objective in mind, identifies the key criteria for 

the simulation of the crop system and selects them within the GUI. Finally, the 

software engineer creates the (different) concrete factories (if needed) according to the 

selection criteria considered in the GUI (step 4).  

 

 

 
Figure 2.3. Key steps in the crop modelling framework to select the model structure on the 
basis of expert knowledge. 
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Figure 2.4. Main screens of the CROSPAL GUI used to schedule the timing of pesticide 
application for a wheat crop. 

 

To illustrate the outcome of this methodology, we describe the case where the user of 

CROSPAL (e.g. an agronomist) wants to identify the best pesticide application time 

for a wheat crop (aim 2). The user of CROSPAL (e.g. an agronomist) sees the need to 

define some specific development stages, which are practically identified by a certain 

number of leaves (Bindi et al., 1995). Before the user of CROSPAL, an agronomist, 

starts to run CROSPAL, step 1 and 2 (inclusion of various modelling approaches 

within the software) have already been realized in collaboration with a crop modeller 

and a software engineer, as a starting point for the use of the CROSPAL. Then, 

running CROSPAL, the user will identify the main characteristics of his system 

following the GUI of CROSPAL (step 3, Figure 2.4): (i) spring wheat, (ii) growth in 

water and nitrogen limiting conditions, and (iii) field level. Resulting from this 

particular selection, a second window will appear where the user will have to select 

different criteria related to the management practices at field level (key criteria for this 

particular case). The user will define a homogenous field with a pre-defined irrigation 

schedule and the importance of the determination of leaf number, which will 

automatically require detailed experimental data (Figure 2.4). Following these various 

selections, the user interface of CROSPAL will indicate that a leaf appearance rate 

modelling approach is required and that it is not yet included in the framework.  
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Figure 2.5. Main outputs of the crop simulator in CROSPAL resulting from the selection for 
simulation aiming at scheduling pesticide application for a wheat crop.  
LAI: leaf area index; WSO: Weight Storage Organs; ABG: Above ground Biomass; DOY: Day Of the Year. 

Finally, with support of a software engineer, the user will include this approach as a 

new strategy and define a new concrete factory (step 4). Figure 2.5 shows the results of 

the simulation after incorporation of the leaf appearance rate approach and the 

associated factory. This sequence of steps facilitates the use of a procedure in which 

the information will not be lost. Not only does such a methodology help to define 

various crop simulators, based on previous experiences/expert knowledge, but the 

proposed crop modelling framework also presents a clear procedure for the future 

modeller to create his/her own crop model structure from the existing library within 

the framework. 

 

4. Discussion and conclusions4. Discussion and conclusions4. Discussion and conclusions4. Discussion and conclusions    

In this study, we described CROSPAL, a crop modelling framework for users to define 

different combinations of modelling approaches of crop growth and development 

processes to build a crop model for a specific objective. This framework focuses on the 

main challenge to adequately combine different crop modelling approaches of 

processes to a crop model with consistent and appropriate scales of process complexity 

(Voinov et al., 2004; Rastetter et al., 1992). CROSPAL relies on the explicit inclusion 

and utilization of expert knowledge through the definition of selection criteria in a 

GUI,  the graphical interface between the software engineer (coding the strategies and 

factories) and the agronomist or crop modeller (defining the main basic crop 

processes and how to combine them). 
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As Rahman et al. (2004) mentioned, a modelling framework should comprise different 

modelling approaches and should guide the user in running a simulation. CROSPAL 

contains a library of modules simulating various crop growth and development 

processes under various assumptions and guides the user in picking and assembling 

them to create a new library of crop simulators. The proposed design builds on the 

work from Wang et al. (2002), but explicitly integrates expert knowledge in the 

selection of the relevant structure of the crop model depending on its objective. The 

user (e.g. an agronomist) will, in general, have knowledge on the crop physiology and 

on the impact of agronomic practices on crop growth and development. He/she will 

specify the simulation objective on the basis of the five criteria identified in the 

framework: (i) crop physiology, (ii) limiting factors, (iii) scales, (iv) management 

practices, and (v) the desired accuracy of simulation. The expert may not necessarily 

need a strong background in modelling or software engineering, as the proposed 

framework will provide a tool to translate their systems knowledge into modelling 

options.  

 

As mentioned by Holzworth et al. (2010), abstraction is “a key technique to enable 

[…] separation of logic”. In CROSPAL, the assemblage of the abstract factory and the 

strategy design patterns provides the framework with a high flexibility, and structures 

the combination of the modelling approaches, the logic of the crop simulator. The 

flexibility resides in the possibility to create a new strategy (ease of extensibility) 

or/and a new concrete factory (ease of composition), while the abstract factory 

provides a consistent structure to combine processes. By using this type of design, we 

create for the user the possibility for an explicit link between the different crop 

modelling approaches included in the framework (the strategies) and the 

representation of the system by expert knowledge (the factories). However, as 

mentioned above, the definition of the abstract factories can be difficult to maintain if 

the user’s overall vision of crop growth and development is totally different from the 

one presently represented. Indeed, we defined the abstract factory according to the key 

plant physiological processes that we pre-defined according to crop physiology 

(Section 2.1). If the user disagrees on this delineation, a change in the design will be 

required. Moreover, although CROSPAL is extensible, future development of the 

software will require a strong and efficient interaction among agronomists, crop 

modellers and software engineers (Chapter 5). Such work relies on effective 

collaboration among these different disciplines and therefore illustrates the 

importance of integrative science.  
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Finally, we illustrated the applicability of these principles with an example on crop 

phenology. We have selected phenology, as this process is central in many crop 

models and the first process to consider when testing simulation models of crop 

production (e.g. Ewert et al., 1999). Once this process is accurately modelled, other 

processes such as resource capture and allocation can be studied. The main focus of 

this study was to describe a procedure for combining different modelling approaches 

based on expert knowledge. Therefore, we choose to illustrate our approach with an 

example where the knowledge on the processes (phenology) is not limiting. However, 

our approach should also allow addressing issues that deserve special attention 

(heuristic goals) in the field of crop modelling such as resource competition models 

(including interaction with soil modules). Such models will require to include other 

strategies regarding for example water dynamics (e.g. water uptake, water demand) 

and to explicitly define criteria (e.g. soil water holding capacity, crop drought 

resistance) that will result in new factories (Chapter 3-4-5) and additions to the GUI. 

Additional effort will be needed to further develop and extent CROSPAL for this and 

other applications. Importantly, not only should CROSPAL represent a way to 

capitalize what is known in the field of crop modelling through pre-establishing crop 

simulators but also serve as a learning tool for the researcher, crop modeller and/or 

agronomist to test new hypotheses on plant growth and development processes. 
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AbstractAbstractAbstractAbstract    

Crop models require different structures for different applications. Modular crop modelling 

frameworks, such as the recently developed agricultural production and externalities 

simulator (APES), support the change of model structure. However, the assembly of different 

modules to create a model may not always result in the best model structure. We developed 

and tested a protocol for a systematic selection and evaluation of a crop growth model 

structure. The novelty of the presented approach relies on a throughout analysis of the 

different modelling approaches (modules) and on how to assemble them to create new 

modelling solutions (i.e. model). We use a case study to demonstrate that we can explicitly 

express and test the different assumptions behind the choice of a specific modelling approach. 

Our case study refers to the simulation of crop growth in response to nitrogen management 

and the importance of an accurate simulation of the nitrogen uptake. Applying the proposed 

protocol, we identify the need to improve the initially selected nitrogen mineralisation 

module. We conclude that the protocol is suitable to provide guidance for systematic testing 

of different crop processes modelled and that the crop modelling framework can be extended 

by including various modelling approaches to improve a modelling solution, instead of 

developing a plethora of individual crop growth models. The use of the protocol highlights 

the importance of the documentation of the modelling process and of the clarification of the 

uncertainty associated.  

 

KeywordsKeywordsKeywordsKeywords: model structure, modules, uncertainty, selection, protocol, nitrogen. 
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1. Introduction1. Introduction1. Introduction1. Introduction  
Much progress has been made in developing mathematical models that simulate the 

development and growth of crops under various conditions of weather, soil and 

management; widely known models are e.g. CropSyst (Stöckle et al., 2003), APSIM 

(McCown et al., 1996), DSSAT (Jones et al., 2003), EPIC (Williams et al., 1989), 

WOFOST (Supit et al., 1994). Most of these models are designed to operate as one 

comprehensive entity with a specific structure and detail for simulating crop growth 

and soil nutrient (often nitrogen) cycling processes (e.g. EPIC, Sharpley and Williams, 

1990, STICS, Brisson et al., 2003). Nevertheless, the degree of detail included in 

simulation models should correspond to the specific research question addressed 

(Passouria, 1996). Models should be as simple as the nature of their objectives allow, 

not be overloaded with unnecessary details, and have minimum data requirements 

(Sinclair and Seligman, 1996). Therefore, it should be possible to construct ad hoc 

crop growth models customized to specific simulation problems. This asks for 

modular crop modelling frameworks. For few of the existing crop growth simulation 

models, such modularity is achieved by providing a set of modules with different 

degree of complexity for a specific crop or soil process, often meant to adapt the model 

to the available input data (e.g. CropSyst provides the user with a choice of sub-models 

to predict evapotranspiration, Stöckle et al., 1994). 

 

In SEAMLESS-IF (a computerized framework to assess and compare ex-ante 

alternative agricultural technologies and agricultural and environmental policy 

options, Van Ittersum et al., 2008), the crop modelling framework APES (Agricultural 

Production and Externalities Simulator, Donatelli et al., 2010) has been designed to be 

flexible and modular. APES consists of various modules for simulating crop growth 

and development, soil carbon, nitrogen and water dynamics. Its design facilitates the 

adjustment of model structure depending on the objective of the simulation, the data 

availability and the type of cropping system (annual crops as well as grasslands, 

vineyards and agro-forestry under a range of soil/weather conditions and 

management practices). Such a crop modelling framework offers the flexibility to 

potentially different ways of combining modules to one effective simulation model 

(herein referred to as modelling solution, MS). A key challenge in using modular and 

flexible frameworks such as APES is to find an MS which is the “best fit” for a specific 

application. It requires an approach based on systems analysis to select the best MSs, 

or if necessary, to create a new, better MS.  
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The main objectives of the present paper are (i) to describe a protocol for the selection 

and evaluation of a modelling solution and (ii) to demonstrate and test its use with an 

application to a case study, in which we assessed the impact of nitrogen management 

on crop production and externalities in Flevoland, the Netherlands. 

 

 

2. Material and Methods2. Material and Methods2. Material and Methods2. Material and Methods    

2.1. Description of the crop modelling framework APES2.1. Description of the crop modelling framework APES2.1. Description of the crop modelling framework APES2.1. Description of the crop modelling framework APES    

APES is a modelling framework based on the concept of modularity to improve 

flexibility in handling the diversity of cropping systems and simulation applications. 

While the diversity of cropping systems can be the result of various factors including: 

(i) biophysical conditions (soil, weather), (ii) type of crop, land use system or agro-

management (grassland, cereal, legumes, perennial crops, agro-forestry), and (iii) type 

of production (fodder, grain, tuber), the range of simulation applications can be 

characterised by e.g. (iv) type of crop performance indicators and environmental 

externalities evaluated (nitrogen leaching, erosion, soil carbon) and, (v) data 

availability for model evaluation and simulation (experimental data, expert 

knowledge, statistical data). The modularity of APES is illustrated by the possibility to 

include different components and modules representing crop and soil processes. 

 

Figure 3.1 depicts the different levels of granularity included within APES and how a 

modelling solution (MS) corresponding to the simulation objective can be defined 

from components and modules. A component is a piece of software representing crop 

and/or soil process that is used to compose a cropping system model (e.g. crop, light 

interception, water uptake, soil water, soil N, soil C-N, components highlighted in 

Figure 3.1a.). A component can comprise various modules. A module is a specific 

conceptualization of a crop or soil process implemented within a component (e.g. 

radiation use efficiency, R U ER U E , for biomass production within the crop component, 

Figure 3.1b.). Flexibility in APES is given through the ability of easily combining 

different components and modules to create diverse MSs (3.1b and 3.1c), i.e. a specific 

combination of different modules and components depending on the objective of the 

simulation (e.g. the simulation of crop yield and nitrate leaching in a specific type of 

land use system with specific management practices), and on data availability (type of 

data and their quality). 
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identified Figure 3.1.Representation of APES modularity and flexibility with different levels of granularity: (a) the components, 

software units used for composition, (b) the modules, conceptualization of a process within a component,  
(c) the modelling solutions (MS), combination of different modules depending on the objective of the simulation. 
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 Currently, APES integrates various modules representing crop phenology 

(determinate vs. indeterminate), crop canopy dynamics (i.e. leaf area index -LAILAI- 

expansion and senescence), dry matter production and partitioning with the effects of 

stress factors, root growth, all including in the crop component; the water dynamics in 

the soil (cascade approach vs. Richards equation, non-linear partial differential 

equations to represent water flow in the soil),part of the soil water component; and  

nitrogen dynamics in the soil included in two different soil nitrogen components (one 

with microbial activity regulating crop residue decomposition  and one with an 

implicit representation of the microbial activity, based on first-order decomposition 

rates). Table 3.1 gives an explicit list of the current components and modules available 

in APES (Donatelli et al., 2010). At the same time, APES has been designed to allow 

further extension of this list of modules, when necessary and inclusion of other 

component if required (e.g. crop disease component, Salinari et al., 2008). 

 

2.2. Protocol for selection and eval2.2. Protocol for selection and eval2.2. Protocol for selection and eval2.2. Protocol for selection and evaluation of a modelling solution, based on uation of a modelling solution, based on uation of a modelling solution, based on uation of a modelling solution, based on 

systems analysissystems analysissystems analysissystems analysis    

Because the APES crop modelling framework offers different ways of combining 

components and modules to one MS, we developed a protocol for identifying the best 

MS for a specific application. The protocol follows three main steps: (i) MS selection, 

(ii) MS calibration, and (iii) MS evaluation and improvement. Each of these steps 

includes four aspects (facets) of analysis: the criteria of selection and evaluation, the 

problem to define, the available data, and the selection and evaluation of model 

components (Figure 3.2). The protocol leads to two main outcomes: (i) an MS selected 

and evaluated for a specific application, and (ii) an associated uncertainty matrix 

(Walker et al., 2003) that identifies the potential “unknown” related to the MS for the 

targeted application.  

 

The uncertainty matrix distinguishes different types and sources of uncertainties in 

order to facilitate uncertainty classification. The matrix is divided in four main parts: 

(i) the contextual part, referring to the uncertainty related to the understanding of the 

system under study, (ii) the input/data, analysing the uncertainty related to the 

dataset, (iii) the parameters, associated with the calibration process of the MS and the 

uncertainty related to the value and meaning of parameters, and finally (iv) the model 

structure highlighting the parts of the model where knowledge is not yet complete. 
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Table 3.1. Components and modules available in APES. 
 

APES: libraries of components and modules APES: libraries of components and modules APES: libraries of components and modules APES: libraries of components and modules     

Components Modules Available 
Light interception 
component 

• Homogenous 

• Pronk (Pronk et al., 2003) 
Crop component Phenology modules  

• Thermal time 

• Photothermal time 

• Photovernaltime  

• Indeterminate phenology 

Leaf area expansion module  

• Biomass accumulation dependent (Spitters and 
Schapendonk, 1990) 

Dry matter production module 

• Radiation use efficiency (Monteith, 1977) 

Partitioning/allocation module 

• Predetermined allocation (Van Keulen and Seligman, 
1987) 

Water dynamics module 

• Water stress index moderated with a drought 
tolerance parameter  

Nitrogen dynamics modules 
Nitrogen stress based on the NNI approach (Lemaire , 
1997; Shibu et al., 2010) 

• Nitrogen stress on RUERUE  (Green , 1987) 

• Nitrogen stress on RUERUE  and LAILAI  (Vos et al., 2005) 
 

Water uptake component • Water uptake is defined by using parameters such as 
root conductance and leaf potential 

Soil water component Two water dynamics modules 

• Simple cascade approach 

• Richard’s equation approach 
Nitrogen component  
(i.e. SoilN) 

• Soil nitrogen available: nitrogen transformation 
process is driven only by water and temperature 
(Johnsson et al., 1987) 

Soil CN component • Soil nitrogen available. The role of soil micro-
organisms is represented in a mechanistic way 
through the mineralization-immobilization turnover 
processes during organic matter decomposition 
(Corbeels et al., 2005) 
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Figure 3.2. Protocol for a systematic evaluation of a modelling solution (MS) within the crop modelling framework. This protocol follows three 
major steps: (1) MS selection, (2) MS calibration, (3) MS evaluation and improvement.

Step 1Step 1Step 1Step 1    

MSMSMSMS    
selectionselectionselectionselection    

Crop type, scale, accuracy 
of simulation, limiting 

factors and management 
practices 

Get a precise and 
unambiguous definition 

of the question 

 

Data availability Check available 
modules and add new 

ones if needed 

C
hapter 3 

42
 

 



Systems analysis: the modelling beam of the framework 
 

43 
 

2.2.1. Step 1- MS selection 

In the first step of the protocol, we explicitly describe the rationale and objective of the 

model application according to basic criteria derived from the crop modelling 

expertise. We define five main criteria to guide the selection of modules: (i) crop type, 

(ii) spatial and temporal scale, (iii) required accuracy of simulation, (iv) growth 

limiting factors, and (v) management practices (Adam et al., 2010). These criteria 

consider genotype x environment x management interactions (Yin et al., 2004), 

including effects of technological changes (Ewert, et al., 2005), scale and data 

availability. These criteria are used to assess the suitability of the available components 

and modules in APES to the objective of the simulation and to the available data. The 

clear definition of the modelling goal leads to a clear description of the cropping 

system: the boundaries, the components and its environment (external factors). Such 

description contextualizes the model application by (i) getting a precise and 

unambiguous definition of the question to be addressed with the model and (ii) 

identifying the relevant external factors and agro-management options to be simulated 

with the model. The contextualization helps to accurately delineate which processes 

are relevant for the specific application and the uncertainty associated with the 

definition of the system under study. Then, in agreement with the application 

objective, we identify the data needed and clarify whether they are available for the 

specific application. The identification of the available data, allows defining the 

limitations associated with these data for model calibration and input variables. This 

step of the protocol leads to the selection of the appropriate model components and 

modules to assemble an MS and to a clear identification of the contextual uncertainty 

(i.e. problem framing) of the application, as a result of the explicit definition of 

conditions and circumstances of the system studied. If some modules important for 

the application are not available, we need to create and add them to the framework, 

before to proceed with the following step. 

  

2.2.2. Step 2- MS calibration 

The second step is essential to gain confidence in the selected MS and to improve its 

applicability for the specific study. Specific statistical criteria used for the evaluation of 

the MS are the root mean square error (RMSERMSE) or the relative mean absolute error 

(RMAERMAE), as an indication of the importance of the model error and its distribution, or 

the coefficient of correlation (RR ), an indication of the degree to which the observed 

and simulated variables trends are associated. An important first action in this step is 

the proper identification of the processes and parameters that need to be calibrated. 

The processes considered depend on the objective of the application, the selected 
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components and modules, and the available data. For instance, if no leaf area index 

(LAILAI) data is available, a detailed calibration of LAILAI  dynamics is impossible. Through 

this step in the protocol, we gain information about the importance of the parameters 

for the specific application and the reliability of the parameter values due to the data 

available (or not) for calibration. Thus, the uncertainty related to the available data 

and parameters of the models is clearly identified.  

 

2.2.3. Step 3- MS evaluation and improvement 

The main objective of this third step of the protocol is to evaluate the MS by applying 

the calibrated MS to a wider range of conditions and to analyze how the calibrated MS 

behaves under this broader range of agronomic conditions. The decision criteria to 

accept the MS as a fair representation of the crop’s behaviour is when variables 

(indicators of the system behaviour) reproduce the observed response of the crop to 

the factor of interest. These observed responses can also be expectations based on 

expert knowledge or results in the literature, but are ideally independent data.  

To create a wide range of soil-weather-agro-management situations, we test the 

sensitivity of the model to the different factors of interest for the specific application 

(e.g. temperature, nitrogen input). Then, the MS is analysed looking at the main 

model output variables representing the overall performance of the cropping system 

such as the state variables representative of key crop processes, i.e. above-ground 

biomass, grain yield, leaf area index, water and nitrogen uptake, and stress indices. If 

the selected MS does not reproduce the expected behaviour potential hypotheses on 

the reason of this mismatch are formulated and other module(s), derived from other 

crop models or expert knowledge, is(are) selected or included in the framework. The 

modularity of the framework enables this easy plug-and-play of components for 

further testing, until we establish the “right’ MS for the specific application. 

 

2.3. Case study 2.3. Case study 2.3. Case study 2.3. Case study     

2.3.1. Objective 
It is anticipated that due to high prices fluctuations and environmental constrains (i.e. 

compliance to the Nitrate Directive of the European Commission, EC, 2001) farmers 

will have to adapt their management to more efficient and sustainable cropping 

practices. In this case study, we look more explicitly at nitrogen management and its 

impact on crop yield and externalities (nitrate leaching) in the Flevoland region of the 

Netherlands. Applying nitrogen beyond the crop needs leads to undesirable nitrogen 

leaching and unnecessary costs for the farmers. Efficient nitrogen management should 

prevent from such drawbacks and favour yield productivity. 
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2.3.2. Data sources 
We collected data from the literature for the three main crops present in Flevoland 

(winter wheat: Groot and Verberne, 1991; maize: Horsch, 2000; and potatoes: Van der 

Schoot et al., 2002). In these datasets, crop growth and development was monitored in 

detail to capture the crop dynamics within the growing season. We tested our selected 

MS for various management practices: sensitivity to different level of nitrogen 

application representative for the Flevoland region. 

 

2.3.3. Data analyses 
To calibrate the selected MS, we used the relative mean absolute error (RMAERMAE1), to 

measure how close the outputs of the model (SiSi) were to the observed data (OiOi). For 

the sensitivity analysis (i.e. crop response to different nitrogen management), we 

analysed the model outputs with the expected behaviour (i.e. expert knowledge). More 

specifically, we used the De Wit 3-quadrant (De Wit, 1992) to analyse the crop yield 

responses to different nitrogen management practices, looking at nitrogen capture and 

conversion efficiency by the crop as a function of soil available nitrogen. We also look 

at nitrate leaching, to assess the potential undesirable losses of nitrogen of the system. 

 

3. Results 3. Results 3. Results 3. Results     

Table 3.2 summarizes the application of the protocol to the case study assessing the 

impact of nitrogen management on crop production and nitrate leaching in Flevoland. 

Table 3.3 represents the associated uncertainty matrix. 

3.1 Step 1: MS selection3.1 Step 1: MS selection3.1 Step 1: MS selection3.1 Step 1: MS selection    

Criteria of selection: The 5 criteria for MS selection are given in Table 3.2 (as 

mentioned in section 2.2.1). Following these criteria, the problem definition and data 

available are analysed to guide the model components selection. 

Problem definition: The main objective is to assess the impact of different nitrogen 

management practices on agricultural productivity and environmental externalities 

(i.e. nitrate leaching) in one European region (i.e. Flevoland, the Netherlands). The 

main crops grown in Flevoland are winter wheat, potatoes and fodder maize. In terms 

of the required accuracy of the simulation, we are interested in the model behaviour, 

analysing the yield response to different levels of N supply, rather than “exact 

prediction” of yield. We assume that the crops do not experience any significant water 

limitation during the growing cycle, mostly because of high rainfall in Flevoland 

(tested with simulation, see the uncertainty matrix, Table 3.3).  

                                                 
1 RMAE= 1

n

P+n
i=1(

jSij¡Oijj
Sij

)
 with i (number of observations) = 1,...,n and j the di®erent variables considered 



 

 

Table 3.2. Application of the protocol for a targeted application with the objective to assess management practices on crop production and 
externalities in Flevoland. 

* MS: modelling solution 

CASE CASE CASE CASE 
STUDYSTUDYSTUDYSTUDY    

CriteriaCriteriaCriteriaCriteria    ProblemProblemProblemProblem    DatabaseDatabaseDatabaseDatabase    Model componentsModel componentsModel componentsModel components    

Step 1Step 1Step 1Step 1    
MS* selection 

(5 criteria) 
 

 

1. Crop type Winter wheat, maize 
and potatoes 

Winter wheat  Photo-vernal-thermal phenology module 

2. Scale 
 

Region Field experiment Leaf area expansion is biomass 
accumulation dependent 
Radiation use efficiency (RUERUE)  
Partitioning is with predetermined 
allocation table 

3. Accuracy of the 
simulation 
 

Pattern Crop growth processes data. 
No soil data. 

4. Limiting factor No water limitation  Simple cascade approach and no water 
stress 

5. Management 
practices 

Nitrogen management Different nitrogen treatments  
Poor information on soil 
characteristics  

SoilN and Nitrogen stress on RUERUE 

Step 2Step 2Step 2Step 2    
MS 

Calibration 

Statistical evaluation 
RMAERMAE< 0.2 

Calibration 
phenology, LAILAI  
dynamics, RUERUE and 
nitrogen content in 
the crop 

Selection of the experimental 
dataset with highest nitrogen 
application 

Calibration first on potential production 
conditions and then on nitrogen limiting 
conditions (results in Table 3.4) 
  

Step 3Step 3Step 3Step 3    
MS evaluation 

and 
improvement 

Typical Liebig curve 
 
 
 
De Wit 3 quadrant  

Test the sensitivity of 
yield to a gradient of 
nitrogen  
 
Analysis of the 
nitrogen use efficiency 

Sensitivity: 
Different nitrogen application  
2 growing seasons 
Data to evaluate : 
winter wheat with different 
nitrogen treatments 

Evaluation/ improvement MS : too low 
nitrogen uptake and too high nitrogen 
leaching 
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New module to test: 
Inclusion of a more mechanistic 
representation of the microbial activity in 
the soil nitrogen dynamics (SoilCN) 



 

 
 

Table 3.3. Uncertainty matrix associated with the MS to simulate crop response to nitrogen application in Flevoland, NL (adapted from Walker 
et al., 2003). 

Source of uncertaintySource of uncertaintySource of uncertaintySource of uncertainty    NatureNatureNatureNature    
System or knowledge-based 

The “known known”    

Range Range Range Range     
Statistical / Scenario  

The “unknown (to be) known”    

Recognized ignoranceRecognized ignoranceRecognized ignoranceRecognized ignorance    
Mostly due to data availability 

 The “known unknown”    
Contextual: boundaries and definitions Contextual: boundaries and definitions Contextual: boundaries and definitions Contextual: boundaries and definitions  

Flevoland, the Netherlands 
Weather data from Swifertbant 
Soil information representative of the 
experimental location 

While running models at water limited 
conditions, no water stress was observed 

We considered that there is no water 
limitation as we are in Flevoland (NL) 

Winter wheat, maize and potatoes 
Most extensive dataset on winter wheat 
(Groot and Verberne, 1991) 

Not enough data on maize and potatoes – 

Nitrogen (N) management Three treatments: 80-140-240 kg ha–1 – – 

Input/data uncertaintiesInput/data uncertaintiesInput/data uncertaintiesInput/data uncertainties 

Field experiments 
Experimental trials in PAGV 
1982-83 carried out for simulation studies  

“Several parameters were measured in a 
rather crude manner or derived from 
general soil data bases” (Groot and 
Verberne, 1991p.349) 

Growing conditions are not always optimal 
even in experimental trials (despite 
conscious monitoring) 

ParametersParametersParametersParameters 

Calibration 

Winter wheat growth and development 
under potential growth conditions 

Phenology, leaf area index  and dry 

matter dynamics, RUERUE and crop N 
dynamics  

Unclear distinction between the different 
crop organs for N content; no information 
on N leaching 

Explorative study 
Effect of nitrogen stress 
Nitrogen uptake 

We tested nitrogen stress effect on LAI 

and RUERUE: no differences were observed  

We assume that the N stress affects only 

the RUERUE 

Model StructureModel StructureModel StructureModel Structure 
Biomass production and LAI    Yield, Nitrogen uptake Yield, nitrogen content in leaves and 

storages organs    
Assumption: good simulation of crop N 
uptake = a good simulation of the soil N 
dynamics 

Crop nitrogen dynamics modules N effect on RUERUE; N uptake 
N stress effect on LAILAI  and RUERUE: no 
differences observed 

We assume that the N stress affects only 

the RUERUE 

Soil modules Microbial uptake N use efficiency: N uptake    
No precise information of soil N available 
for the crop and soil microbial activity 
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Database: We collected data from the literature for the three main crops. The most 

extensive dataset was for winter wheat (Groot and Verberne, 1991). For this particular 

dataset, phenological stages, LAILAI , dry matter in green leaves, grains and total above 

ground biomass, as well as the nitrogen content of the different crop organs (leaves, 

stems, grain and roots) were monitored at weekly intervals. Field experiments were 

conducted during two growing seasons with different levels of nitrogen application. 

Daily weather data were obtained from the meteorological station at Swifterbank, 15 

km from the experimental farm. The datasets for the other crops only included a 

couple of harvesting dates (Van der Schoot et al., 2002) or were located in the 

Netherlands but not precisely in Flevoland region (Horsch, 2000).  

 

Model components: Considering the data available and the objective of the application 

with the criteria defined previously, we defined the different modules/components 

that can be selected. 

(1) The most extensive dataset being on winter wheat, we decided to focus our study 

on this crop. It requires a phenology module that includes a vernalization process. We 

selected a photo-vernal-thermal approach (Stöckle et al., 1994) available in APES, to 

represent the phenology of winter crop (Table 3.1). 

(2; 3) Although the scale for this study was the region, we used a field experimental 

dataset. This was acceptable as in Flevoland the agro-environmental conditions 

(climate and soil) are considered homogeneous. Further, we looked for data over the 

growing season to capture the model behaviour in response to farm management 

actions, asking for a model with a rather low input data demand, but running at a 

daily-time step. Therefore, we looked at rather simple representation of the crop 

growth processes, also in agreement with our criteria of simulation accuracy: looking 

at model’s behaviour in response to one limiting factor, rather than quantitative 

prediction. The following main modules (responding to these criteria) were selected 

within the crop component of APES (Table 3.1): (i) leaf area development, with the 

approach of the leaf area expansion dependent on biomass allocation (Spitters and 

Schapendonk, 1990); (ii) biomass production, with the radiation use efficiency 

approach (Sinclair and Muchow, 1999); and (iii) biomass allocation with 

predetermined allocation coefficients (Van Keulen and Seligman, 1987). 

(4) As water was not considered as a major limiting factor (Table 3.3), we used the 

simple cascade approach for simulating water movement in soil (i.e. infiltrating water 

is passed on layer by layer down the soil profile as upper layers are refilled to field 

capacity). Coupling of this approach with the soil nitrogen uptake and mineralisation 

allows us to assess nitrate leaching. No gaseous losses are simulated. 
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(5) Concerning the nitrogen dynamics, i.e. soil nitrogen mineralisation, we considered 

a rather simple soil nitrogen dynamics module (soilN, Table 3.1), not requiring 

detailed calibration, as the data availability in terms of the soil nitrogen dynamics were 

rather scarce (i.e. the data collected were more related to crop growth processes than 

to soil nitrogen dynamics: LAILAI , dry matter and nitrogen in the crop). The soilN 

module is based on the main nitrogen transformation processes driven only by water 

and temperature (Johnsson et al., 1987). The soil microbial biomass is implicitly 

represented as part of the litter and manure pools. It was coupled with the crop growth 

modules via a nitrogen stress effect (nitrogen nutrition index, NNI approach, Lemaire, 

1997). Looking at winter wheat, the nitrogen stress was assumed to mostly affect the 

dry matter accumulation via RUERUE , with no effect on LAILAI  (Green, 1987, Shibu et al., 

2010). A list of the different modules selected for the initial MS is provided in Table 

3.2, step 1. 

 

Uncertainty matrix: From this first step of the MS selection, we explicitly stated that 

no water limitation occurred in Flevoland, mostly because of the high rainfall in the 

study area. We tested this hypothesis before to continue further. While running the 

model with rainfed conditions, we found that the crop did not experience any water 

stress, as we expected (contextual part of the uncertainty matrix, Table 3.3). Further, 

we identified rather poor data availability in terms of the soil database, leading to the 

selection of soil components with rather simple water and nitrogen soil dynamics 

approaches. 

 

3.2. Step 23.2. Step 23.2. Step 23.2. Step 2----MS calibration MS calibration MS calibration MS calibration     

Problem: While selecting the MS, we considered that the most important processes to 

calibrate are (i) the phenology, (ii) the biomass production and partitioning (iii) leaf 

area of the crop, and (iv) crop nitrogen dynamics (assuming that a good simulation of 

crop nitrogen uptake is a pre-requisite for a good estimation of nitrate leaching). 

Therefore, the parameters to calibrate should relate to these four main processes in the 

crop component (Table 3.4) and more specifically to (i) the temperature sum 

corresponding to the various development phases, (ii) the specific leaf area and the 

relative growth rate of LAI during its exponential growth (i.e. juvenile phase), (iii) the 

radiation use efficiency and reallocation of biomass from leaves and stems to the 

storages organs during the grain filling period, and (iv) nitrogen concentration in the 

different crop organs (i.e. leaves, roots, stems and storage organs). 



 

 

Table 3.4. Main crop growth module parameters for the APES-MS after calibration and the associated RMAE for the main variables calibrated. 
 
Modules calibrated Modules calibrated Modules calibrated Modules calibrated 
within the crop within the crop within the crop within the crop 
componentcomponentcomponentcomponent    

    Parameters (after calibration)Parameters (after calibration)Parameters (after calibration)Parameters (after calibration)        Calibration evaluationCalibration evaluationCalibration evaluationCalibration evaluation    

Description Values Unit Variables calibrated RMAE 

Phenology 

 Air temperature (Base)  0 °C  

Estimated from observation 
and weather information 

 Air temperature (Sum Emergence ) 100 °C d  
 Air temperature (Sum Anthesis)  600 °C d  
 Air temperature (Sum Maturity) 730 °Cd  
 Maximum number of days for vernalization 32 days  

Leaf area 
development 

 Relative growth rate of LAILAI  (exponential phase)  0.006 (°Cd)–1  
Green leaf area index 0.12 

 Specific Leaf Area  0.021 m2 g–1  

Biomass production 
and partitioning 

 
Radiation Use Efficiency (RUERUE) 3 g MJ–1 

 Dry matter in green 
leaves 

0.19 

 Fraction of dry matter reallocated from leaves to the 
grains (storage organs) 

0.4 - 
 Dry matter  in above 

ground biomass 
0.11 

 Fraction of dry matter reallocated from stems to the 
grains (storage organs) 

0.2 - 
 

Dry matter in grains 0.23 

Nitrogen dynamics 

 N Max concentration  in storage organs 0.025 g N gDM–1    
 N Max concentration  in leaves at DVS 0.5 0.05 g N gDM–1  N content in leaves 0.12 
 Fraction Max N concentration in root from N 

Concentration in leaves 
0.37 - 

 
N content in grains 0.20 

 Fraction Max N concentration in stems from N 
Concentration in leaves 

0.40 - 
 N content in whole 

plant 
0.28 

 Translocation N (Time Coefficient) 6 days    
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Database: To calibrate the MS, we used the experimental data with the highest 

nitrogen application, to simulate potential growth conditions (i.e. no nitrogen stress 

on crop growth). We performed the calibration in a step-wise manner. We first 

estimated the phenological parameters from the observations and recorded weather 

data. Then, we calibrated parameters related to leaf area index, biomass production 

and allocation and nitrogen dynamics, respectively. The calibration was done 

manually by trial-and-error method, comparing the model results with the observed 

results. We evaluated the outputs with the RMAERMAE , considering a value below 0.2 to be 

acceptable (Mayer and Butler 1993). 

 
Calibration of MS: Table 3.4 gives the parameters calibrated and the calculated RMAERMAE  

for the main variables used for calibration. For phenology, the accumulated 

temperature sum for physiological maturity has been calculated to assess the 

harvesting time of the crop; the accumulated temperature sum at anthesis corresponds 

to the observed date of maximum leaf biomass and beginning of storage organ growth. 

The vernalization requirement of winter wheat has been adjusted to observe a start of 

an “effective” crop growth at the beginning of February. With respect to the leaf area 

index dynamic, the default value of relative growth rate of leaf area index during the 

juvenile phase [0.009 (°Cd)–1] is based on Van Keulen and Seligman (1987) who 

included a wide range of data from different wheat cultivars (i.e. both spring and 

winter wheat) in their analysis. Winter wheat requires a lower value, corresponding to 

the range observed by Van Delden et al. (2001). The specific leaf area was estimated 

from the observed data, to avoid compensation error with the calibration of the 

radiation use efficiency (RUERUE ).The range of variation for RUERUE  is small, as it is more a 

crop specific than a variety specific parameter. Consequently, once total biomass has 

been calibrated (through RUERUE ), calibration of reallocation parameters enables to 

adjust the biomass partitioning between the different organs at the end of the growing 

season. Finally, for the nitrogen dynamics, the calibration was carried out on nitrogen 

content of the various crop organs and the overall crop uptake at the end of the 

growing season. Figure 3.3 shows the model outputs after calibration compared to 

observed data for dry matter and nitrogen content in the various crop organs and for 

the leaf area index. 
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Figure 3.3. Observed and simulated after calibration (a) dry matter, and (b) nitrogen content in various crop organs and (c) leaf area index 
during the 1982-83 growing season. 

(a) (b) 

(c) 
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Most of the RMAERMAE  have a value under 0.2 (Table 3.4), proof of a satisfactory 

calibration of the MS. The higher value of the RMAERMAE  (but still acceptable) for the dry 

matter in grain can be related to slower dry matter accumulation at the beginning of 

grain filling as the main difference between the observed and simulated values were 

observed during this period rather than at the end of the growing cycle (Figure 3.3a). 

The higher value for the total nitrogen content in the crop can be related to an 

underestimation of the nitrogen content in the roots for which we did not have any 

observed value. Also leaves, sheaths and stems were separated in the observed data, 

while in the model sheaths are not explicitly simulated. Also, as shown in Figure 3.3b, 

the nitrogen content in grains increased suddenly at the end of the growing season, 

while the model did not simulate such “unexpected” change. 

 

Uncertainty matrix: The main uncertainty for this step remains in the nitrogen 

dynamics. First as mentioned earlier, the distinction between the different crop organs 

in the experiments was done differently than in the model (Table 3.3). Further, the 

calibration was mostly carried out on crop processes and no detailed evaluation of soil 

nitrogen dynamics was carried out. We assumed that if the crop nitrogen uptake was 

properly simulated, the soil nitrogen dynamics were also simulated in a reasonable 

manner (Table 3.3). 

 

3.3. Step 33.3. Step 33.3. Step 33.3. Step 3----MS evaluation and improvementMS evaluation and improvementMS evaluation and improvementMS evaluation and improvement    

Problem: The aim of the third step of our methodology is to test whether our selected 

and calibrated MS responds correctly under a wide range of levels of nitrogen 

fertilization. To test the sensitivity of yield to a gradient of nitrogen, we set up an 

explorative study where the input data vary only in terms of nitrogen input. 

 

Database: We ran simulations with weather data and soil information from the dataset 

of Groot and Verberne (1991). Their dataset comprises detailed crop measurement for 

two growing seasons (1982-83 and 1983-84) with various nitrogen treatments, which 

we used for evaluation of the MS. However, with respect to the soil dynamics, they 

clearly stated that soil parameters were not always collected in sufficient detail and 

could only be derived from a general database (see input/data uncertainties in Table 

3.3). When necessary, we used results from other simulation exercises (e.g. nitrate 

leaching) conducted previously with the same dataset (De Willigen 1991). We varied 

the nitrogen applications from 0 kg N ha–1 to the maximum of 240 kg N ha–1, with 80, 

140 and 180 kg N ha–1 as intermediate treatments, in agreement with the experiments 

(Groot and Verberne, 1991). 
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Figure 3.4. The 3 quadrant diagram to analyze the crop response to nitrogen application (after De Wit, 1992). 
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MS evaluation: Figure 3.4 represents the crop response to the nitrogen gradient. We 

used the De Wit 3-quadrant representation (1992) to analyse the nitrogen use 

efficiency by the crop. One of the quadrant presents grain yield against nitrogen 

application (i.e. fertilizer response curve, representative of the agronomic efficiency, 

AE); the second, yield against nitrogen uptake (yield-uptake curve, representative of 

the physiological nitrogen use efficiency, NUE); and the third quadrant relates 

nitrogen application to nitrogen uptake (application –uptake curve, representative of 

the apparent nitrogen recovery, ANR). 

 

Simulated grain yield varies from 3t ha–1 for the no nitrogen application to 8t ha–1 for 

the highest nitrogen application (i.e. 240 kg N ha–1). The fertilizer response curve does 

not follow the typical response curve determined by Liebig (Quadrant II, De Wit, 

1992). It appears that although the curve reaches a plateau for an optimal nitrogen 

supply, the simulated nitrogen uptake (Quadrant III) is lower than the observed 

nitrogen uptake (for all doses of the nitrogen application) and nitrate leaching appears 

to be high (even when no nitrogen fertilization occurred, Table 3.5). From previous 

simulation exercises (De Willigen, 1991), nitrate leaching was considered negligible.  

 

The soilN module selected considered the crop nitrogen demand according to a 

logistic curve (Greenwood et al., 1974). During a crop growth period, the main 

mechanisms behind the nitrogen uptake are diffusion and root absorption and the 

nitrogen uptake is only limited when the soil nitrogen concentration is low. The 

nitrogen available in the soil is the result of the net mineralisation in which implicitly 

it is considered that the soil microbes absorb a fraction of the available nitrogen. 

However, according to Leffelaar et al. (2007, pers. comm.), the proportion of nitrogen 

uptake by the microbes is far from negligible and should not be under-estimated. 

Therefore, we concluded that the fraction (already) absorbed by the microbes in the 

soilN module might be too low for the soils in Flevoland, which have high organic 

matter content. Underestimation of the potential microbial nitrogen uptake could lead 

to an overestimation of nitrogen leaching (and as a result an underestimation of crop 

nitrogen uptake). Therefore, we decided to include a new soil nitrogen dynamics 

module (SoilCN, Table 3.1) which includes an explicit simulation of the microbial 

activity to test the above hypothesis. After calibration (results not shown), we 

estimated results (grain yield and nitrogen uptake for the calibration run) similar to 

the ones observed for the different nitrogen applications (Table 3.5). With respect to 

the explorative study, with this new module, nitrate leaching was negligible and 

although the crop nitrogen uptake tended to be overestimated, the simulated yield 

agreed better with the observed (rRMSErRMSE= 0.1 compared to 0.2 for the initial MS). 



 

 

Table 3.5: Main outcomes from the sensitivity analysis. 

Growing Growing Growing Growing 
seasonseasonseasonseason    

Nitrogen Nitrogen Nitrogen Nitrogen 
application  application  application  application  
= scenario= scenario= scenario= scenario    Grain yieldGrain yieldGrain yieldGrain yield        Crop nitrogen uptakeCrop nitrogen uptakeCrop nitrogen uptakeCrop nitrogen uptake        

Nitrate Nitrate Nitrate Nitrate 
leaching***leaching***leaching***leaching***        

Nitrate leaching + Nitrate leaching + Nitrate leaching + Nitrate leaching + 
uptakeuptakeuptakeuptake    

 kg N  ha–1 t  ha–1  kg N  ha–1  kg N  ha–1  kg N  ha–1 

  observed 
initial 
MS* 

improved 
MS  observed 

initial 
MS 

improved 
MS  

initial 
MS 

improved 
MS  

initial 
MS 

improved 
MS 

1982-83 0  2.91 4.43   47 99  48 1  95 100 
 80 6.25 4.22 6.99  105 89 160  47 1  136 161 
 140 7.44 6.80 8.12  163 149 204  47 1  196 206 
 240** 8.28 7.89 8.34  231 191 227  47 1  237 228 
               
1982-83 0  2.87 3.94   52 89  82 7  134 95 
 80 7.36 4.88 5.87  182 120 159  82 7  202 166 
 180 8.03 6.51 7.61  191 174 210  82 7  255 217 
 240 7.7 7.05 7.78  220 189 215  82 7  271 222 

*MS: Modelling Solution;  the initial MS results from the  first modules selection while the improved MS results from the selection of a new module after 
evaluation of the initial MS, in this specific the soilCN. 

** This experiment (fertilization of 240 kg N  ha–1, year 1982-83) was used  for calibration. Calibration was carried out on the dynamics of leaf area index, dry 
matter accumulation and nitrogen content in the different crop organs, and not specifically on accumulated variables (i.e. total grain yield or total nitrogen 
uptake). 

*** No observed data; assessment made from previous simulations (De Willigen, 1991). 
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Uncertainty matrix: The lack of data on soil nitrogen dynamics does not allow us to 

fully understand why we underestimated the crop nitrogen uptake and overestimated 

the nitrogen leaching while using the soilN module. We attributed this to an 

underestimation of the fraction of mineral soil nitrogen absorbed by the microbes. Use 

of a new soilCN module confirms such hypothesis. However, data collection on 

nitrogen mineralisation might help to better understand the phenomena simulated. 

Further, as there is no consensus in the literature on the nitrogen effect on crop 

growth (Olesen et al., 2002, Shibu et al., 2010), we also tested the module with nitrogen 

effect on RUERUE  and LAILAI . No difference in the results was observed (see model 

structure in the uncertainty matrix, Table 3.3). 

 

 

4. Discussion4. Discussion4. Discussion4. Discussion    

4.1. Need of a protocol to select an MS in a modular crop modelling framework4.1. Need of a protocol to select an MS in a modular crop modelling framework4.1. Need of a protocol to select an MS in a modular crop modelling framework4.1. Need of a protocol to select an MS in a modular crop modelling framework    

The systematic approach for selecting and evaluating a modelling solution (MS) 

presented in this study is in line with the classical method of model building presented 

by Rabbinge and De Wit (1989), which includes 3 major phases: (i) conception, (ii) 

comprehension and (iii) evaluation and application. 

 

In practice, the potential user of the framework must in the first place clearly define 

the purpose of the model application, before selecting and using a crop simulation 

model. Until recently, there were two options when using a model: (i) reuse an already 

existing model without introducing significant modifications or (ii) build a new model 

‘ad hoc’ (Passioura, 1996). With the adoption of new software engineering techniques 

by the crop modelling community (Wang et al, 2000; Donatelli et al., 2002; Papajorgji 

and Pardalos, 2006; Adam et al., 2010), a third way of developing and using crop 

simulation models came into the picture: (iii) construct models from building blocks 

available in a crop modelling framework. The flexibility and modularity of APES, due 

to its component-oriented design, enables an easy technical assembly of these different 

modules in the same platform. But associated methodology should be provided to 

facilitate the selection and evaluation of models (i.e. modelling solution) (Ahuja and 

Howell., 2002). Not only should the crop modelling framework be an 

“implementation framework” (Van Evert et al., 2005) considering each module as a 

black box, but also a “modelling framework” (Van Evert et al., 2005) to formalize how 

to use these various modules. 
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Thus, our protocol should be seen as an important addition to the crop modelling 

framework to facilitate the decision on which MS is the most suitable for a specific 

application. It improves the process of creating a sound MS within APES. The 

protocol has two main advantages in the process of model use. First, it helps to 

contextualize the model application (Villa, 2007) by (i) getting a precise and 

unambiguous problem definition and by (ii) identifying the relevant modules to 

consider for the construction of the model. Second, the protocol enables (i) to evaluate 

the selected MS for the given application and (ii) to change/alter it (by substituting 

modules) if the selected structure does not capture the essential processes that are 

relevant for the particular application. The use of the protocol helps to test alternative 

hypotheses and evaluate the consequences (i.e. models results) of using other 

modelling approaches/solutions. 

 

4.2. Need of documentation of the modelling process4.2. Need of documentation of the modelling process4.2. Need of documentation of the modelling process4.2. Need of documentation of the modelling process    

The protocol promotes the compliance to the good modelling practices (Van Oijen, 

2002) with the clear definition of the underlying principles for each module (Scholten, 

2008) and the explicit definition of an associated uncertainty matrix to the MS, to 

reveal the potential “unknown” of the system (Refsgaard et al., 2007). The use of the 

protocol re-enforces the need of a good definition of the level of detail needed in a 

crop process-based model and should prevent from an “over-tuning” of parameters 

(Van Oijen, 2002), while emphasizing the potential uncertainty in the model structure. 

The protocol facilitates a systematic selection of different modules to re-assemble 

properly and create a new modelling solution. However, it does not preclude from a 

misuse of the crop modelling framework. Specific expertise is still needed to define the 

right component for the right simulation objective. For instance, in this study, while 

we tested two modules of soil nitrogen dynamics included in the framework (APES), 

we could notice differences in models’ behaviour (Table 3.5). 

However, we were unable to fully understand why we underestimated the crop 

nitrogen uptake and overestimated the nitrogen leaching with one of the modules. We 

attributed it to a rather low implicit microbial activity contribution in the nitrogen 

uptake (Corbeels et al. 2005), especially for the soil under study (high organic matter 

content) and tested such hypothesis with a new module. However, such statement has 

to be taken with caution, and it re-enforces the need for good module documentation 

(Donatelli et al., 2002, Bellochi et al. 2010), when modules are included in the 

framework. The lack of documentation and a lack of expertise by the framework user 

in one or the other aspect of the modelling study might lead to a misuse of the 

different modules.  



 

 
 

Table 3.6. Synthesis of the information given in the uncertainty matrix associated with our improved MS: qualitative assessment (1: rather 
certain; 0: low uncertainty; -1: high uncertainty). 

Source of Source of Source of Source of 
uncertaintyuncertaintyuncertaintyuncertainty    

NatureNatureNatureNature    
The “known known”The “known known”The “known known”The “known known”    

Range Range Range Range     
The “unknown (to be) The “unknown (to be) The “unknown (to be) The “unknown (to be) 

known”known”known”known”    

Recognized ignoranceRecognized ignoranceRecognized ignoranceRecognized ignorance    
The “known The “known The “known The “known 
unknown”unknown”unknown”unknown”    

Level of uncertaintyLevel of uncertaintyLevel of uncertaintyLevel of uncertainty    
(sum per source of (sum per source of (sum per source of (sum per source of 

uncertainty)uncertainty)uncertainty)uncertainty)    
Contextual: boundaries and definitionsContextual: boundaries and definitionsContextual: boundaries and definitionsContextual: boundaries and definitions    
Flevoland, the 
Netherlands 

1 0 0 

3333    Winter wheat, maize 
and potatoes 

1 0 0 

Nitrogen 
management 

1 0 0 

Input/data uncertaintiesInput/data uncertaintiesInput/data uncertaintiesInput/data uncertainties    
Field experiments 
 

1 -1  0 0000    

ParametersParametersParametersParameters    
Calibration 1 1 -1 

0000    
Explorative study 0 0 -1 

Model StructureModel StructureModel StructureModel Structure    
Biomass production 
and  LAI     

1 0 -1 
----3333    

Crop nitrogen 
dynamics  

0 0 -1  

Soil modules -1 0 -1      
Level of uncertaintyLevel of uncertaintyLevel of uncertaintyLevel of uncertainty    
(sum per type of (sum per type of (sum per type of (sum per type of 
uncertainty)uncertainty)uncertainty)uncertainty)    

5555    0000    ----5555    
 

— 
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We described the use of the uncertainty matrix (Walker et al., 2003) as a way to tackle 

such issue by (i) explicitly stating where the lack of understanding was, and (ii) 

classifying the various sources of errors. Subsequently, we synthesized the information 

given in the uncertainty matrix, in a qualitative way, to comprehend better where the 

main uncertainties in our case study came from (Table 3.6). From this synthesis, we 

could identify (i) the lack of data on soil nitrogen dynamics as one of the main 

obstacles, (ii) as well as the incomplete understanding of the nitrogen mineralisation 

related to the nitrogen crop uptake. As a result, the main uncertainty in our MS 

remains in the model structure, but it could be explained by our “recognized 

ignorance” of some biophysical phenomena (N mineralisation and uptake), mostly 

related with a lack of data for further analysis. Such analysis clearly shows how our 

protocol helps to report on the decisions made during the modelling process. It also 

clearly highlights the potential misuse of the crop modelling framework when there is 

lack of documentation on the underlying assumptions of each module. 

 

4.3.4.3.4.3.4.3.    Concluding remarksConcluding remarksConcluding remarksConcluding remarks    

Our approach builds on the classical method of model building (Rabbinge and De 

Wit, 1989), mostly through its integration within a modular crop modelling 

framework. Model building should not be seen anymore as a linear process but rather 

as an iterative process where different hypotheses can be more easily tested due to the 

progress of software techniques. Use of the protocol presented in this study should 

guide the user in the selection of modules to assemble an MS. Indeed, modular crop 

modelling framework in combination with the protocol allows (i) to easily change the 

structure of the MS according to the simulation objective and data availability, and (ii) 

to define various MS with an explicit identification of the associated uncertainty, each 

corresponding to a specific simulation objective.  

Future users of modular crop modelling frameworks will most likely be confronted 

with the same issues (i.e. flexibility) as the ones we faced in this study and they will 

most likely redefine new MS or/and include new modules in the framework. Thus, 

reuse of the protocol for new modelling applications will (i) further test the modules 

within APES, (ii) further refine the criteria for a more general applicability of the 

guidance for modules selection (Chapter 4), and (iii) further enrich the current library 

of modelling solutions of the framework (Figure 3.1), gathering different modelling 

approaches (Table 3.1) in one tool rather than in a plethora of models. 
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AbstractAbstractAbstractAbstract    

Crop simulation models are widely applied at large scale for climate change impact 

assessments or integrated assessments. However, often a mismatch exists between data 

availability and the level of detail in the model used. Good modelling practice dictates to keep 

models as simple as possible, but enough detail should be incorporated to capture the major 

processes that determine the system’s behaviour. The objective of this study is to investigate 

the level of detail incorporated in process-based crop growth models, usually developed and 

tested at the field scale that captures the effect of climatic variability on simulated yields for 

larger scale applications. We conducted a multi-site analysis and identified the impact of the 

effect of temperature and radiation on radiation use efficiency (RUE ) on a daily basis, as well 

as on a seasonal basis. Further, we found that particular attention should be given to the 

choice of the light interception approach for large scale application of crop models. Two 

different LAI  dynamics approaches (i) gave significant differences in simulated yields 

irrespective of the characteristics of the location and (ii) explained best the differences in the 

yield sensitivity to climatic variability. After clarifying the assumptions underlying the 

parameter representing the onset of senescence in both LAI  dynamics approaches, the higher 

yields simulated by the summarized approach were attributed to a misrepresentation of leaf 

senescence. We concluded that a better understanding of leaf senescence is still needed, 

particularly to represent the onset of senescence in crop models.  

 

 

KeywordKeywordKeywordKeywords: crop growth model, climatic variability, photosynthesis, radiation use efficiency, 

leaf area index, model complexity, leaf senescence.
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1. Introduction1. Introduction1. Introduction1. Introduction    

A key rule in good modelling practice is that the choice of a model depends on the 

question asked (Van Waveren et al., 1999). In crop modelling, a large variety of 

models has been developed since the 1960s, with each new model addressing a specific 

objective. Crop models have initially been developed for application at the field scale. 

Application of these models at larger scales such as for climate change impact 

assessments (Ewert, 2004a; Leemans, 1997) or integrated assessment studies (Van 

Ittersum et al., 2008) has become a common practice. However, for these applications, 

the required scale and objective of a crop growth model may go beyond the scope of 

the original model. Hence, the reuse of a model without any adaptation might lead to 

inaccuracies in model outputs, caused by (i) a misrepresentation of processes in the 

model, (ii) incorrect input data (unsuitable temporal or spatial resolution, or 

inaccurate measurements), including parameter values (Scholten, 2008), or (iii) a 

misinterpretation of the system, as the importance of effects relevant at lower levels 

may decrease at higher levels, while other factors, often not considered in the original 

crop model may become more important (Ewert, 2004a). 

 

Challinor et al. (2004) identified the need for process-based crop growth models to 

capture the impact of climatic variability on crop yields over large areas. One of the 

challenges to apply a model for simulating crop growth and development at higher 

aggregation levels (e.g. Europe, Therond et al., 2010) is to ensure that the model 

appropriately addresses the response of crops to the temperature and radiation 

gradients found in such a heterogeneous environment. The model must reproduce the 

behaviour of the system under a wide range of conditions, representing the spatial 

variability, and therefore the model used should be robust. Bondeau et al. (2007) also 

mention the use of process-based crop models at the global scale to improve the 

representation of feedbacks between crop physiology and climate. A process-based 

model integrates descriptions of the underlying processes of the cropping system to 

explain its behaviour at the higher system level (Van Oijen, 2002), and usually 

includes at least two essential processes for crop growth, namely light interception by 

the leaf area and light utilization to produce biomass (Ewert, 2004b). In various crop 

growth models ((Ritchie and Otter, 1985); Spitters and Schapendonk, 1990; Spitters, 

1990; Jamieson et al., 1998; (Stöckle et al., 2003); Bondeau et al., 2007) we found that 

(i) leaf area index (LAI , m2 leaf area m–2 ground area) dynamics and (ii) biomass 

production are modelled with different mechanistic detail, usually depending on the 

main objective of the model developed. 
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A distinction can be made between explanatory, i.e. detailed mechanistic approaches 

with a high level of modelling detail, and descriptive, i.e. summarized approaches with 

a lower level of modelling detail (Penning de Vries et al., 1989). Detailed models have 

a high explanatory power, containing most of the elements and interactions that 

characterise a system, but they are resource-intensive (e.g. in terms of input data and 

simulation time). Summarized (also called summary) models are easier to handle (e.g. 

less parameters are needed and the models are simpler to interpret), but are generally 

more descriptive, reflecting little of the mechanisms explaining the behaviour of the 

system, often containing simplified representations of complex processes. Selection of 

the appropriate level of detail for each process to include in a crop growth model is 

often seen as a critical step in model development (Brooks and Tobias, 1996). It is a 

common rule to keep the model as simple as possible given the objective, but enough 

detail should be incorporated to capture the major processes that determine the 

system’s behaviour (De Wit, 1968). It is also acknowledged that an optimum situation 

exists in terms of explanatory capacity of a model and the number of processes 

considered (Leffelaar, 1990; Passioura, 1996; Tittonell, 2008). 

 

The objective of this study is to investigate the effect of the level of detail incorporated 

in a process-based crop growth model, usually developed and tested at the field scale, 

to simulate yields at larger spatial scale, i.e. regional level and higher. Particular focus 

is on LAI  dynamics (representing the light interception approaches) and biomass 

production (representing the light utilization approaches) under potential growing 

conditions (Goudriaan and Van Laar, 1994; Van Ittersum and Rabbinge, 1997). We do 

not aim to develop the “best” large scale crop growth model, but the results of this 

study should improve the understanding of the relative importance of the different 

approaches to simulate potential crop yields at larger scales, especially in response to 

spatial differences in terms of radiation and temperature regimes. 

 

 

2. Materials and Methods2. Materials and Methods2. Materials and Methods2. Materials and Methods    

We compared models with different modelling detail of the key growth processes of 

light interception and light utilisation to simulate crop yields in response to spatial 

variability in climate. The analysis follows two main steps: 

1. Test of the models (i.e.modelling approaches) against measured data to ensure that 

all approaches are able to reproduce observed growth under field conditions for a 

range of climatic conditions. We selected experiments from different locations 

across the world that provided measurements of biomass and LAI  and the 

associated weather data; 
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2. Systematic comparison of the behaviour of the models under a wide range of 

climatic conditions (following a climate gradient across Europe) to investigate the 

sensitivity of yield simulations to the use of the different approaches (i.e. different 

levels of detail) for the two growth processes examined. 

 

2.1. Descriptions of the modelling approaches2.1. Descriptions of the modelling approaches2.1. Descriptions of the modelling approaches2.1. Descriptions of the modelling approaches    

We defined a detailed approach as one that describes a feature (e.g. crop growth) in 

terms of processes occurring at underlying hierarchical scale (also referred to as a 

more mechanistic approach).  Incorporation of a description of photosynthesis 

according to Farquhar et al. (1980) can be considered as a detailed approach. In 

contrast, a summarized approach is seen as one that includes existing knowledge from 

underlying processes expressed in a simple relationship that describes the main 

responses of those processes to biotic and abiotic factors (also referred to as a 

descriptive approach, no explanation provided). Sinclair and Muchow (1999) 

identified application of the radiation use efficiency concept for simulating biomass 

production from intercepted radiation as an example of such an approach. 

 

In this study, both, light interception by the leaf area and light utilization producing 

biomass were studied in a summarized and a detailed approach. Table 4.1 includes the 

key equations of the approaches studied. The associated parameter values can be 

found in Table 4.2. 
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Table 4.1. Key equations of the approaches applied for (a) LAILAI  dynamics and (b) biomass 
production. 

(a)  

Equations for the detailed Equations for the detailed Equations for the detailed Equations for the detailed LAILAI     dynamics approachdynamics approachdynamics approachdynamics approach    

Juvenile phase (LAILAI < 0.75 and development stage < 0.16): 

(1) 
dLAIgrowth

dt
= LAI£Rg£Te®

dLAIgrowth
dt

= LAI£Rg£Te® 

with: Te® = max(0; [Taverage ¡ Tbase])Te® = max(0; [Taverage ¡ Tbase]) 
Te®Te® , effective physiological temperature in °C and TaverageTaverage, average daily temperature in °C 

 

Following the juvenile phase: 

(2) 
dLAIgrowth

dt
=

dWleaf

dt
£SLA

dLAIgrowth
dt

=
dWleaf

dt
£SLA 

After anthesis (fTsum senfTsum sen) or in case of self-shading (LAIcriticalLAIcritical): 

(3) 
dLAIsen

dt
=¡Rd£LAI

dLAIsen
dt

=¡Rd£LAI  

with: Rd = max(Rd-ag; Rd-sh)Rd = max(Rd-ag; Rd-sh), see Appendix A. 

Equations for the summarized Equations for the summarized Equations for the summarized Equations for the summarized LAILAI     dynamics approachdynamics approachdynamics approachdynamics approach    

Before anthesis: 

(4)fLAImax =
fTsum

fTsum + e(l1¡l2£fTsum)
fLAImax =

fTsum
fTsum + e(l1¡l2£fTsum)  

with: 

fTsum =
Tsum

TsumTotal
fTsum =

Tsum
TsumTotal  

with: TsumTsum, temperature sum in °C days, representative of the development stage of the crop 

l1 = ln
¡fTsum1

fLAI1
¡ fTsum1

¢

+l2 £ fTsum1l1 = ln
¡fTsum1

fLAI1
¡ fTsum1

¢

+l2 £ fTsum1 

l2 =

¡

ln
£

f Tsum1

fLAI1
¡ f Tsum1

¤

¡ ln
£

f Tsum2

fLAI2
¡ f Tsum2

¤¢

f Tsum2 ¡ f Tsum1
l2 =

¡

ln
£

f Tsum1

fLAI1
¡ f Tsum1

¤

¡ ln
£

f Tsum2

fLAI2
¡ f Tsum2

¤¢

f Tsum2 ¡ f Tsum1
 

After anthesis : 

fLAImax =
(1 ¡ fTsum)2

(1 ¡ fTsum sen)2
fLAImax =

(1 ¡ fTsum)2

(1 ¡ fTsum sen)2
 

To guarantee sufficient biomass: 

(5) LAI = min
¡

fLAImax £ LAImax;
£

Wtotal ¡ Wroot

¤

£SLA

¢

LAI = min
¡

fLAImax £ LAImax;
£

Wtotal ¡ Wroot

¤

£SLA

¢

 

with WtotalWtotal and WrootWroot standing total and standing root biomass, respectively, in g C m–2. 
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(b) 

Equations for the detailed biomass production approachEquations for the detailed biomass production approachEquations for the detailed biomass production approachEquations for the detailed biomass production approach 

 (6) Agd =

µ

Je + Jc ¡
p

(Je + Jc)2 ¡ 4 £ µ £ Je £ Jc
2 £ µ

¶

£dlengthAgd =

µ

Je + Jc ¡
p

(Je + Jc)2 ¡ 4 £ µ £ Je £ Jc
2 £ µ

¶

£dlength 

with:  

(7) Je =
C1 £ Cq £ Rdr £ 0:415£ (1¡ e¡k£LAI)

dlength
Je =

C1 £ Cq £ Rdr £ 0:415£ (1¡ e¡k£LAI)

dlength
  

(8) Jc =
C2£Vm

24
Jc =

C2£Vm
24

 

with  Vm =
¡ 1

b

¢

£
¡C1

C2

¢

£
£¡

2 £ µ ¡ 1
¢

£s ¡
¡

2 £ µ £ s ¡ C2

¢

£¾
¤

Vm =
¡ 1

b

¢

£
¡C1

C2

¢

£
£¡

2 £ µ ¡ 1
¢

£s ¡
¡

2 £ µ £ s ¡ C2

¢

£¾
¤

 

                    £Rdr £ 0:415£ (1¡ e¡k£LAI)£Cq£Rdr £ 0:415£ (1¡ e¡k£LAI)£Cq 
 

with RdrRdr, daily incoming radiation (MJ m–2 d–1), dlengthdlength, length of day (h), VmVm Rubisco capacity (g 
C d–1 m–2) 

 (9) C1 = ÁTC3 £ Cmass £ ®C3 £ (
(pi ¡ ¡¤)

(pi + 2 £ ¡¤)
C1 = ÁTC3 £ Cmass £ ®C3 £ (

(pi ¡ ¡¤)

(pi + 2 £ ¡¤)
  with pi = ¸max £ ca £Ppi = ¸max £ ca £P  

(10a) C2 =
pi ¡ ¡¤

pi + KC £ (1 + O2

KO
)

C2 =
pi ¡ ¡¤

pi + KC £ (1 + O2

KO
)

  with (10b)  

Ki =K25£Q
(T¡25)=10
10 with i either C or OKi =K25£Q
(T¡25)=10
10 with i either C or O 

 

(11) ¡¤ =
[O2]

2£ ¿
¡¤ =

[O2]

2£ ¿
  

with ÁTC3ÁTC3, a temperature stress factor (–), CmassCmass, atomic mass of carbon (g mol–1), pipi, internal 

partial pressure of CO2 (Pa) , ¡¤¡¤, CO2 compensation point (μmol mol–1), and [O2][O2], partial 
pressure of oxygen (Pa) 
 

(12) And = Agd ¡RdAnd = Agd ¡Rd with  (13) Rd = b£VmRd = b£Vm 

and ¾ =

·

1¡
(C2 ¡ s)

(C2 ¡ µ £ s)

¸1=2

¾ =

·

1¡
(C2 ¡ s)

(C2 ¡ µ £ s)

¸1=2

and   s =
24

dlength
£ bs =

24

dlength
£ b

 
 

(14) NPP = And ¡Rroot ¡Rso ¡Rpool ¡RgNPP = And ¡Rroot ¡Rso ¡Rpool ¡Rg  
RiRi (g C d−1 m−2), the maintenance respiration of  ii corresponding to roots, storage organs and a 
reserve pool, respectively, and RgRg the growth respiration as 

Rg =max[0;0:25£ (And ¡Rroot ¡Rso¡Rpool)]Rg =max[0;0:25£ (And ¡Rroot ¡Rso¡Rpool)] 
 

Equations for the summarized biomass production approachEquations for the summarized biomass production approachEquations for the summarized biomass production approachEquations for the summarized biomass production approach 

(15) NPP = RUE £ PARINTNPP = RUE £ PARINT   with  PARINT = Rdr £ 0:5 £ (1 ¡ e¡k£LAI)PARINT = Rdr £ 0:5 £ (1 ¡ e¡k£LAI) 



 

 
 

Table 4.2. Key parameters of the approaches applied and their default values.    

SymbolSymbolSymbolSymbol    DescriptionDescriptionDescriptionDescription    Default value (Default value (Default value (Default value (unit)unit)unit)unit)    SourceSourceSourceSource    

Common parametersCommon parametersCommon parametersCommon parameters        

CfCf  Conversion from carbon to dry matter 0.46 g C (g DM)–1  (a) 

kk  Light extinction factor 0.5 (–) (b) 

SLASLA Specific leaf area 0.048 m2 (g C)−1  (d) 

fTsum senfTsum sen Fraction of the total temperature sum when senescence starts (at anthesis) 0.60 (−)  (c) 

TbaseTbase Physiological base temperature 0 °C (d) 

LAILAI  dynamics approachesdynamics approachesdynamics approachesdynamics approaches     

Parameters for the detailed LAILAI  dynamics approach  

RgRg Maximum relative growth rate of leaf area index during the juvenile stage 0.009 (°Cd)−1  (d) 

LAIinitialLAIinitial Initial leaf area index 0.012 m2 m−2 (d) 

LAIjuvenile stageLAIjuvenile stage Threshold of leaf area index when juvenile stage ends 0.75 m2 m−2 (d) 

Rd-shRd-sh  Relative death rate due to shading 0 - 0.03 d−1  (d) 

Rd-agRd-ag  
Relative death rate due to ageing 

(temperature dependent) 
0.03 - 0.09 d−1  (d) 

LAIcriticalLAIcritical Critical leaf area index above which self-shading is considered 4.0 m2 m−2 (d) 

Parameters for the summarized LAILAI  dynamics approach  

fLAI1fLAI1 and fLAI2fLAI2 
Fraction of leaf area index at specific points on the leaf area development 

curve corresponding to specific development stages 
0.05 and 0.95 (−) (c) 

fTsum1fTsum1 and fTsum2fTsum2 
Fraction of temperature sum at specific points on the leaf area 

development curve corresponding to specific development stages 
0.15 and 0.50 (−) (c) 

LAImaxLAImax Maximum leaf area index 5.0 m2 m−2 (c) 
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SymbolSymbolSymbolSymbol    DescriptionDescriptionDescriptionDescription    Default value (unit)Default value (unit)Default value (unit)Default value (unit)    SourceSourceSourceSource    

Biomass production approachesBiomass production approachesBiomass production approachesBiomass production approaches        

Parameters for Farquhar photosynthesis approach (C3 plants)  
K25K25 and Q10Q10 The value of the parameter at 25 °C and the relative change in the parameter for a 10 °C change in 

temperature, respectively 
 

KCKC  
KOKO 

¿¿ 

Michaelis constant for CO2 

Michaelis constant for O2 

CO2/O2 specific ratio 

30 Pa (Q10Q10= 2.1) 

30 kPa (Q10Q10= 1.2) 

2600 μmol μmol–1 (Q10Q10= 0.57)  

(b) 

(b) 

(b) 

®C3®C3 C3 quantum efficiency  0.08 μmol μmol−1  (b) 

bb Rd=VmRd=Vm ratio for C3 plants 0.015 (b) 

O2O2  Partial pressure of O2 20.9 kPa (b) 

CqCq 
Conversion factor for solar radiation at 550 nm 

from MJ m−2 d−1 to mol m−2 d−1 
4.6 × 10−3  

µµ Co-limitation parameter 0.7 (−) (b) 

¸max¸max 
Optimal ratio of intercellular to ambient CO2 

concentration 
0.8 (–)   (e) 

caca Ambient CO2 concentration 341 μmol mol−1  

PP  Atmospheric pressure 100 kPa (b) 

Parameters for the radiation use efficiency approach  

RUERUE  
Radiation use efficiency based on PAR and total 

biomass 
1.38 g C MJ−1 

 

(a) Goudriaan and Van Laar, 1994 ;(b) Haxeltine and Prentice, 1996a&b ;(c) derived from Neitsch et al., 2002; 
(d) Van Keulen and Seligman, 1987; (e) Sitch et al., 2003.
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2.1.1. Leaf area index dynamics 

The detailed LAI  dynamics approach is based on temperature and leaf dry matter 

supply driven by the development stage of the crop (i.e. phenology). During the 

juvenile phase, LAI  development is governed by temperature and its effect on cell 

division and extension, following an exponential growth pattern (RgRg, Table 4.2). 

Following this exponential phase, leaf area expansion is governed by the supply of dry 

matter (Table 4.1, Eq. 2) and is calculated by multiplying the simulated rate of increase 

in leaf weight (
dWleaf

dt

dWleaf

dt
, g C m–2 d–1), based on the total amount of biomass produced 

multiplied by a leaf biomass allocation factor, with the specific leaf area (SLASLA, Table 

4.2). Finally, leaves senesce (Table 4.1, Eq. 3) due to (i) self-shading (Rd-shRd-sh, Table 4.2) 

when LAI  reaches a critical value (LAIcriticalLAIcritical, Table 4.2) and (ii) ageing after anthesis 

(with time of anthesis defined by fTsum senfTsum sen, Table 4.2). The relative rate at which leaves 

age depends on temperature (Rd-agRd-ag, Table 4.2), increasing with increasing 

temperature. This approach is used in the LINTUL model (Light, INTerception and 

UtiLization, Spitters and Schapendonk, 1990). 

The summarized LAILAI  dynamics approach is governed by the development stage of the 

crop. Leaf area development is calculated on the basis of a forcing function, 

comprising a sigmoid and a quadratic component (Table 4.1, Eq. 4). LAILAI  at any point 

in time is calculated as a fraction of an exogenously defined LAImaxLAImax (Table 4.2) and 

two shape coefficients l 1  and l 2  (-) (Eq. 4). These coefficients are defined by the 

fractions fLAI1fLAI1 and fLAI2fLAI2 of the maximum LAILAI  (Table 4.2), and the associated 

fractions of the temperature sum fTsum1fTsum1 and fTsum2fTsum2 (Table 4.2), representing points 

on the leaf area index versus development stage curve (Neitsch et al., 2005) at specific 

development stages (e.g. end of juvenile stage, anthesis). The start of LAILAI  senescence 

is defined by fTsum senfTsum sen, which is the fraction of the total growth cycle temperature sum 

at which senescence starts to exceed the formation of new leaf tissue. In agreement 

with what is applied in the more mechanistic approach, we set this starting point at 

anthesis. Finally, in this approach, potential LAILAI  is reduced if the required biomass to 

support the calculated LAILAI  is not available (Table 4.1, Eq. 5). This approach is applied 

in the LPJmL model (Lund-Potsdam-Jena managed Land, Bondeau et al., 2007) and is 

derived from the SWAT model (Soil and Water Assessment Tool model, Neitsch et al., 

2005). 

 

2.1.2. Biomass production  

The detailed approach to describe the production of biomass is based on the 

description of the photosynthesis and respiration processes according to Farquhar et 

al. (1980) with simplifications introduced by Collatz et al. (1991; 1992). The 
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assimilatory process includes the conversion of CO2 into carbohydrates. Daily gross 

photosynthesis (A gdA gd , g C m–2 d–1) is defined as a gradual transition between two 

limiting rates (Table 4.1, Eq. 6). Photosynthesis is determined either by the amount of 

intercepted light (JeJe, g C m–2 h–1, Table 4.1, Eq. 7) or by the available amount of the 

enzyme Rubisco (JcJc, g C m–2 h–1, Table 4.1, Eq. 8). Those rates are both influenced by 

ambient temperature (Table 4.1, Eqs. 9, 10a/b and 11), via ¿¿ (Table 4.2) and via KCKC 

and KOKO, the temperature-dependent Michaelis-Menten constants for CO2 and O2 

(Table 4.2), respectively. Daily net photosynthesis (AndAnd, g C m–2 d–1, Table 4.1, Eq.12) 

is calculated as daily gross photosynthesis minus “dark” respiration (RdRd, g C m–2 d–1). 

RdRd is scaled to the maximum catalytic capacity of Rubisco per unit leaf area (VmVm, g C 

m–2 d–1, Table 4.1, Eq. 13). To calculate net primary production (NPPNPP , g C m–2 d–1, 

Table 4.1, Eq. 14), maintenance respiration for the various organs (R iR i, g C m–2 d–1, for 

roots, storage organs, and carbohydrate pool, respectively) is subtracted from daily net 

photosynthesis and 25% of the remaining assimilates is assumed to be expended in 

growth respiration. This approach is used in various models, but the present equations 

(Haxeltine and Prentice, 1996) are implemented within the LPJmL model (Bondeau et 

al., 2007).  

 

Alternatively, the summarized approach is based on a linear relationship between 

accumulated intercepted radiation, and accumulated biomass over the growing 

season. The slope of this linear relation is called radiation use efficiency (RUERUE , Table 

4.2) (Monteith, 1977) and summarizes the combined effect of photosynthesis and 

respiration processes. The product of the daily intercepted amount of photosynthetic 

active radiation (PARINTPARINT) and RUERUE  gives the net increase in biomass over the day 

(Table 4.1, Eq. 15). This approach is used in models such as LINTUL (Spitters and 

Schapendonk, 1990), CropSyst (Stöckle et al., 2003) and CERES (Ritchie and Otter, 

1985). 

 

These four approaches (two for LAILAI  dynamics and two for biomass production) were 

combined in various ways resulting in four models (Table 4.3). 
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Table 4.3. Overview of combination of processes and their derived models. 

Light utilization approach: Light utilization approach: Light utilization approach: Light utilization approach:     
Biomass production Biomass production Biomass production Biomass production     

Light interception Light interception Light interception Light interception 
approach: approach: approach: approach: LAILAI     
dynamicsdynamicsdynamicsdynamics    

Model nameModel nameModel nameModel name    

Farquhar photosynthesis 
combined with: 

detailed Detailed crop model 

 summarized LPJmL (Lund-Potsdam-
Jena managed Land) 

RUERUE  combined with: detailed LINTUL (Light, 
INTerception and 
UtiLization) 

 summarized Summarized crop model 

 

2.2. Model testing2.2. Model testing2.2. Model testing2.2. Model testing    

To test the four models, measured LAILAI  and biomass data for spring wheat, under 

optimal agronomic conditions for potential growth, from contrasting locations, were 

collected with their associated weather data: Australia (Meinke et al., 1997), Europe 

(Van Oijen et al., 1998; Bender et al., 1999; Ewert and Pleijel, 1999; Van Oijen and 

Ewert, 1999), and USA (Kimball et al., 1995; 1999; Ewert et al., 2002). Details are given 

in Table 4.4. The locations vary in temperature conditions during the growing season: 

in the USA temperatures (i.e. number of days > 22.5 °C) are higher during the end of 

the growing season than in the Netherlands or Australia. Moreover, radiation levels 

during the growing season are higher in the USA than in the other locations.  

The four models were calibrated with respect to phenology, LAILAI  dynamics and yield 

for these locations. The parameters fTsum senfTsum sen, SLASLA, LAImaxLAImax  and total temperature sum 

(TsumTsum) of the growth cycle were first estimated from the observed data, and 

subsequently adjusted according to model results (i.e. simulated LAILAI   and yields). The 

calibration was done manually by trial-and-error method, comparing the model 

results with the observed results. RgRgwas calibrated on the basis of model results, 

guided by values found in the literature. For the biomass production approaches, RUERUE  

was directly estimated from the observed data: it was not calibrated, to avoid the 

compensation effect with the calibration on SLASLA. 

To evaluate the quality of the model outputs, we used the relative root mean square 

error (rRMSErRMSE1, Wallach et al., 2006) for yield and the relative mean absolute error 

(RMAERMAE2, Mayer and Butler, 1993) for LAILAI  dynamics.  

                                                 
1 rRM SE =

q

P +n
i=1(Si¡Oi )2

n
£

1
O i

rRM SE =
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P +n
i=1(Si¡Oi )2

n
£

1
O i  
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Table 4.4. Weather characteristics for the various locations of experimental datasets. 

    
Australia, Australia, Australia, Australia, 

QueenslandQueenslandQueenslandQueensland    
Europe,Europe,Europe,Europe,    

The NetherlandsThe NetherlandsThe NetherlandsThe Netherlands    
USA,USA,USA,USA,    

ArizonaArizonaArizonaArizona    
 1993 1995 1996 1992-93 1993-94 1994-95 
Average temperature 
during the growing 

season (°C) 15.5 14.8 13.4 15.2 14.7 15.5 

Days < 7.5°C 2 7 12 1 9 7 

Days > 22.5°C 4 9 3 10 10 16 
Total radiation 
(MJ m−2 growing 
season-1) 2033 2042 1998 2579 2904 2649 
Intercepted PAR 
(MJ m−2  growing 
season-1) 554 669 616 823 797 724 

 

 

2.3. Systematic comparison of model behaviour to 2.3. Systematic comparison of model behaviour to 2.3. Systematic comparison of model behaviour to 2.3. Systematic comparison of model behaviour to climate variabilityclimate variabilityclimate variabilityclimate variability    

To investigate the relative importance of the two growth processes on simulated crop 

yield and their ability to capture climatic variability, the models were run with weather 

data representing a wide range of climatic conditions in Europe (Figure 4.1). Assessing 

model behaviour for a wide range of environmental conditions should demonstrate 

how robust the different approaches are under different conditions and therefore how 

suitable the different approaches are for application at larger scales. Nine locations 

were selected across Europe: Denmark, the United Kingdom, the Netherlands, 

Germany, France (centre and south), Spain (centre and south), and Italy. They 

represent the European climatic gradient according to the classification from Metzger 

et al. (2005). Daily data for minimum and maximum temperature and incoming 

short-wave radiation for the year 1982 (for this specific year daily weather data were 

available for the nine locations) were extracted from a database described by Van 

Kraalingen et al. (1991). In addition to location-specific weather data, the models were 

run with default parameters for LAILAI  dynamics and biomass production approaches as 

obtained from the calibration step for the Netherlands (assuming those parameters to 

be representative for Europe). We adapted the phenology parameters for each 

location. As sowing and harvesting dates for spring wheat were not available for all 

locations, we used data for spring barley as a proxy (Table 4.5,Boons - Prins et al., 

1993). 
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Figure 4.1. Location of the nine weather stations, representing a climatic gradient (from 
Denmark to southern Spain). 

 

To evaluate the sensitivity of simulated yields to the modelling approaches, we 

performed an analysis of variance (ANOVA) to identify significant differences among 

simulated yields associated with the different approaches and locations (assumptions 

of ANOVA of normality of the data and homogeneity of variance were not violated). 

With respect to location, we classified the 9 locations in two categories (North vs. 

South, using latitude as a criterion, Table 4.5) to be able to run the ANOVA and 

identified whether simulated yields significantly differed among the locations, but also 

between the different approaches (interaction effect) in the different locations.  

 

The outcomes of this analysis indicate, as a first step, whether the simulated yields 

differ significantly among approaches and locations. But, they do not identify which 

process most strongly affects the simulated yield variability across locations. 

Therefore, we used the relative standard deviations (RSDRSD 3) (i) to determine if 

location-specific weather influenced the outcomes of a certain approach and thus if 

there is any effect of climatic variability on model outcomes and (ii) to understand the 

relative importance of the different light interception (i.e. LAILAI  dynamics) and 

utilization (i.e. biomass production) approaches to capture this climatic variability. 

RSDRSD  was calculated for (i) RUERUE , representing the light utilization approach, (ii) 

intercepted photosynthetically active radiation (PARPAR), representing the light 

interception approach and (iii) yield, which is the variable of interest and the 

integrated result of both processes.  

 

                                                 
3 RSD=

¾yield

yield
RSD=

¾yield

yield
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Finally, a sensitivity analysis was carried out on parameters of the summarized and 

detailed approaches of LAILAI  dynamics to evaluate the impact of a change in a given 

parameter on simulated yields. Parameter values given by the initial approach (i.e. 

Table 4.2) were used as default. We applied a range of variation in the parameters 

based on the variation found in the observed data and in the literature. LAILAI  reached 

up to 7 m2 m–2 in the observed data. Furthermore, Hay and Porter (2006) indicate that 

90% of the incoming radiation is usually intercepted at a LAILAI  varying from 3 to 5 m2 

m–2(Hay and Porter, 2006). Therefore, we tested the sensitivity for this parameter from 

3 to 7 m2 m–2. SLASLA varies from 0.036 to 0.061 m2 (g C)–1 in the observed data, in 

agreement with Stöckle et al. (2003). The first phase in LAILAI  development, critical for 

LAILAI  dynamics, is defined by the parameter RgRg in the detailed approach. From 

calibration and values given in Van Delden et al. (2001) for spring wheat, we defined a 

range from 0.005 to 0.013 (°C d)–1. Finally, the timing of the onset of leaf senescence is 

defined by the parameter fTsum senfTsum sen which varied from 0.5 to 0.7 in the observed data 
 

We varied each parameter within the defined range (Table 4.6) by small increments of 

± 1-4%, depending on parameter. We considered small increments to be able to 

identify the sensitivity to each parameter. The sensitivity index SiSi 4 is based on the 

local variation in the output value with respect to the variation in a given parameter 

(Wallach et al., 2006). If SiSi is small (SiSi < 0.5), the simulated yield is not very sensitive 

to the parameter tested. This analysis gives some indication of the relative importance 

of the parameter for different locations and different approaches.  
 

Table 4.5. Location-specific phenological cultivar parameters used for the systematic 
comparison of models. 

Countries Countries Countries Countries     SymbolSymbolSymbolSymbol    
LatiLatiLatiLati----
tudetudetudetude    

Location*Location*Location*Location*    
Emergence Emergence Emergence Emergence 
(day of year) 

Temperature sum Temperature sum Temperature sum Temperature sum 
till maturitytill maturitytill maturitytill maturity (°Cd) 

Denmark  DK 57.1 north 90 1577 
United  Kingdom UK 52.35 north 51 1693 
The Netherlands  NL 52.1 north 85 1924 
Germany GE 48.12 north 60 1383 

France (centre) Fr_centre 47.97 north 69 1657 

France (south) Fr_south 43.62 south 36 2149 
Italy  IT 42.42 south 31 2044 
Spain (centre)  SP_centre 40.45 south 31 2022 
Spain (south) SP_south 37.42 south 31 2443 

* regions at latitudes below 45° are considered to be southern. 

                                                 

4  
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Table 4.6. Statistical setting used in the sensitivity analysis on the key parameter values of the 
light interception approaches.   

* derived from the observed data and literature. 
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Figure 4.2. Relative mean absolute error (RMAERMAE) to analyze the performance of the LAI 
dynamics simulation and relative root mean square error (rRMSErRMSE ) to analyze the 
performance of simulated yield for the four studied models. 

Symbol Symbol Symbol Symbol     DescriptionDescriptionDescriptionDescription    Unit Unit Unit Unit     DefaultDefaultDefaultDefault    
Standard Standard Standard Standard 
deviation*deviation*deviation*deviation*    

IncreIncreIncreIncre
mentmentmentment    

Source*Source*Source*Source*    

SLASLA Specific leaf area 
m2 gC–1 

 

0.048 
 

0.0125 
 

0.001 
 

Dataset and 
Stöckle et al. 
(2003) 

RgRg 

Relative growth 
rate of leaf area 
index during the 
juvenile phase 

°C–1d–1 

 
0.009 

 
0.004 

 
0.0004 

 

Van Delden 
et al. (2001) 
 

LAImaxLAImax 
Maximum leaf 
area index 

m2 m–2 

 
5 
 

2 
 

0.1 
 

Dataset and 
Hay and 
Porter (2006) 

fTsum senfTsum sen

 

Fraction of the 
total 
temperature 
sum when 
senescence starts 

Unitless 
 

0.6 
 

0.1 
 

0.01 
 

Dataset and 
Neitsch et al. 
(2002) 



Criteria of selection: data availability and scale 

77 
 

3. Results3. Results3. Results3. Results    
3.1. Test of the models with experimental data3.1. Test of the models with experimental data3.1. Test of the models with experimental data3.1. Test of the models with experimental data    

After calibration, simulated yields reproduced the observed yield with a rRMSErRMSE  

ranging between 18% and 40% (Figure 4.2), depending on the model. Agreement 

between simulated and observed yields is closest for models using the summarized 

LAILAI  dynamics approach, especially when parameter values estimated from the 

observed data were used. The simulations of LAILAI  dynamics support this observation. 

The model including the detailed LAILAI  dynamics approach performs least satisfactorily 

with a RMAERMAE  of 0.50 vs. a RMAERMAE  of 0.36 for the models with the summarized LAILAI  

dynamics approach.  

 

On the one hand, it is clear that by estimating LAImaxLAImax from the observed data, LAILAI  is 

simulated satisfactorily in the summarized LAILAI  dynamics approach (RMAERMAE = 0.36), 

with no improvement through calibration (Figure 4.2). On the other hand, calibration 

is important in the detailed LAILAI  dynamics approach, especially for RgRg. The default 

value of RgRg (0.009 (°Cd)–1) is based on Van Keulen and Seligman (1987) who included 

a wide range of data from different wheat cultivars (i.e. both spring and winter wheat) 

in their analysis. Spring wheat requires a higher value of RgRg, corresponding to the 

range observed by Van Delden et al. (2001). 

 

Finally, calibration of SLASLA andfTsum senfTsum sen also improves the simulated yields, 

independent of the LAILAI  dynamics approach (Eqs. 2 and 5). With respect to the 

biomass production approaches, a lower value of RUERUE  was estimated from the data for 

locations with higher temperatures and total accumulated radiation over the growing 

cycle (i.e. USA, Table 4.7). However, because of lack of data, it was not possible to 

define a significant relationship forRUERUE  as a function of radiation and temperature 

from our dataset, as the data were too limited. Table 4.7 gives the calibrated 

parameters for each location. 
 

Table 4.7. Parameter values after calibration using experimental datasets. 

        
Australia Australia Australia Australia 

(Queensland)    
EuropeEuropeEuropeEurope    

(the Netherlands) 

USAUSAUSAUSA    
(Arizona) 

fTsumsenfTsumsen 0.61 0.54 0.550.550.550.55    

PhuPhu 1804 1609 2070 
RgRg    0.0130.0130.0130.013    0.0130.0130.0130.013    0.0100.0100.0100.010    

SLASLA 0.06 0.045 0.054 

LAImaxLAImax 7 6.75 6.35 
RUERUE * 1.52 1.33 1.01 

*RUERUE  was not calibrated to avoid a compensation error with the SLASLA parameter. 
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The models with the summarized LAILAI  dynamics approach could simulate crop 

productivity reasonably well in locations with different radiation intensities and 

temperature conditions (e.g. USA, Arizona vs. Europe, the Netherlands). However, 

this is achieved only when applying parameter values estimated from the dataset. 

When applying the models for a wider range of conditions, the issue of data 

availability needs to be considered.  

    

    

3.2. Model behaviour in response to climatic conditions3.2. Model behaviour in response to climatic conditions3.2. Model behaviour in response to climatic conditions3.2. Model behaviour in response to climatic conditions    

 3.2.1. Sensitivity of simulated yield to the different modelling approaches  

To investigate the behaviour of the models in capturing the effects of different climatic 

conditions as relevant for regional applications, we ran the four models with weather 

data from a climatic range across Europe. The parameter values (except for 

phenology) were calibrated for the Netherlands, considered representative for Europe 

from our dataset. Simulated yields vary from a maximum of 8.38 Mg dry matter ha−1 

in southern Spain to a minimum of 4.44 Mg dry matter ha−1 in Germany (Figure 4.3). 

The minimum yield was simulated with the combination of the detailed LAILAI  

dynamics and the RUERUE  approach (LINTUL), while the maximum was simulated with 

the combination of the summarized LAILAI  dynamics and the RUERUE  approach 

(summarized crop model). LINTUL shows the strongest response to climatic 

variability (R S DR S D  = 0.20, Table 4.8), while the two models using the Farquhar 

approach (LPJmL and detailed crop model) show the weakest response (RSDRSD  = 0.12, 

Table 4.8). 

 

Further, to better understand which process is more sensitive to climatic variability, 

we used the relative standard deviations (RSDRSD ) of RUERUE  and intercepted PARPAR (Table 

4.8). The calculated RUERUE  value, based on outcomes from the Farquhar photosynthesis 

approach, is slightly influenced by climatic variability (RSDRSD= 0.04). Intercepted PARPAR 

shows the highest RSDRSD values, especially when using the detailed LAILAI  dynamics 

approach, demonstrating that this process is most sensitive to climatic variability 

(R S DR S D  = 0.24 - 0.26). 
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Table 4.8. Relative standard deviation (RSDRSD) to define the ability of each approach to capture 

climatic variability. 

    

SummarizedSummarizedSummarizedSummarized    

    LAILAI     dynamics approachdynamics approachdynamics approachdynamics approach        

Detailed Detailed Detailed Detailed     

    LAILAI     dynamics approachdynamics approachdynamics approachdynamics approach        

 

LPJmL 

(Farquhar) 

Summarized 

crop model 

(RUERUE ) 

Detailed crop 

model 

(Farquhar) 

LINTUL 

(RUERUE ) 

RSDRSD yield 0.12 0.15 0.12 0.20 

RSDRSD intercepted PAR 0.16 0.16 0.24 0.26 

RSDRSD RUERUE  0.04 0.00 0.04 0.00 

 

 

 
Figure 4.3. Range of simulated yields for a wide range of conditions in Europe according to: 
(a) location (i.e. North vs. South),  
(b) LAILAI  dynamics approach per location (i.e. detailed LAI vs. summarized LAI), and  
(c) biomass production approach depending on locations (i.e. Farquhar North vs. RUERUE  
North and Farquhar South vs. RUERUE  South). 
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Table 4.9. Analysis of variance to identify whether the different modelling approaches and 
locations (North vs. South) result in significant differences in simulated yields.  

 

From the ANOVA (Table 4.9), we identify that location (i.e. northern vs. southern 

regions) has a clear influence on simulated yields, independent of the approach chosen 

(p < 0.001): simulated yields are higher in southern regions than in northern regions 

(Figure 4.3a). Moreover, the choice of the LAILAI  dynamics approach is important which 

is independent of the location (p < 0.01): simulated yields are always higher with the 

summarized LAILAI  dynamics approach (Figure 4.3.b). 

Finally, the ANOVA demonstrates a significant difference in simulated yields for the 

two biomass production approaches, depending on location (p < 0.05): RUERUE  simulates 

higher yields in southern regions than the Farquhar approach, while the Farquhar 

approach simulates higher yields in northern regions (Figure 4.3c). The latter result 

supports our observations that if the RUERUE  approach is used, the value of RUERUE  should 

be adjusted to temperature and radiation conditions. 

 

3.2.2. Sensitivity to parameter values for the LAILAI  dynamics approaches 

The choice of the light interception approach has a significant influence on simulated 

yields (ANOVA results, Table 4.9) and this process most strongly reflects the effect of 

climatic variability (higher RSDRSD ) on yields. Subsequently, we carried out a sensitivity 

analysis on key parameters of the light interception approaches to assess their relative 

importance for the simulated yields, when combined with the RUERUE  approach. Figure 

4.4 shows the sensitivity index (SiSi) for the parameters tested in the detailed and 

Response: YIELDResponse: YIELDResponse: YIELDResponse: YIELD    Sum of squaresSum of squaresSum of squaresSum of squares    dfdfdfdf    FvalueFvalueFvalueFvalue    Pr(>F)Pr(>F)Pr(>F)Pr(>F)        

Biomass production approach 0.30 1 0.56 0.46  

LAILAI     dynamics  approachdynamics  approachdynamics  approachdynamics  approach    4.234.234.234.23    1111    7.997.997.997.99    0.0090.0090.0090.009    ********    

Location (North vs. South)Location (North vs. South)Location (North vs. South)Location (North vs. South)    12.7812.7812.7812.78    1111    24.1524.1524.1524.15    3.50 × 103.50 × 103.50 × 103.50 × 10––––5555    ************    

Biomass production ×××× LAILAI  

dynamics  approach 
0.47 1 0.89 0.35  

Biomass production approach Biomass production approach Biomass production approach Biomass production approach ××××    

locationlocationlocationlocation    
2.932.932.932.93    1111    5.535.535.535.53    0.030.030.030.03    ****    

LAILAI  dynamics approach ×××× 

location 
1.44 1 2.72 0.11  

Biomass production approach ×××× 

LAILAI  dynamics approach ×××× 

location 

0.91 1 1.73 0.20  

Residuals 14.82 28    

Significance codes: '***' 0.001; '**' 0.01 ; '*' 0.05   
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summarized LAILAI  dynamics approaches. The sensitivity of simulated yield is different 

for the different parameters considered (Figure 4.4). The sensitivity of simulated yields 

is irregular in the detailed LAILAI  dynamics approach, while it is smooth in the 

summarized LAILAI  dynamics approach. 
Detailed LAI dynamics approach Summarized LAI dynamics approach 

 (LINTUL) (Summarized crop model)

0
.5

1

0
.5

2

0
.5

3

0
.5

4

0
.5

5

0
.5

6

0
.5

7

0
.5

8

0
.5

9

0
.6

0
.6

1

0
.6

2

0
.6

3

0
.6

4

0
.6

5

0
.6

6

0
.6

7

0
.6

8

0
.6

9

0
.7

GE

DK

UK

NL

FR_centre

FR_south

IT

SP_centre

SP_south

fTsum sen (-)

 (c) fTsum sen sensitivity

0-1 1-2

2-3 3-4

0.005 0.006 0.007 0.009 0.010 0.011 0.012

GE

DK

UK

NL

FR_centre

FR_south

IT

SP_centre

SP_south

Rg ((°C d)
-1

)

(a) Rg sensitivity

1-1.5

0.5-1

0-0.5

0
.5

1

0
.5

3

0
.5

5

0
.5

7

0
.5

9

0
.6

1

0
.6

3

0
.6

5

0
.6

7

0
.6

9

GE

DK

UK

NL

FR_centre

FR_south

IT

SP_centre

SP_south

fTsum sen (-)

(e) fTsum sen sensitivity

0.4-0.6

0.2-0.4

0-0.2

0.0
36

0.0
38

0.0
4

0.0
42

0.0
44

0.0
46

0.0
48

0.0
5

0.0
52

0.0
54

0.0
56

0.0
58

0.0
6

GE

DK

UK

NL

FR_centre

FR_south

IT

SP_centre

SP_south

SLA (m
2 

(gC)
-1

)

(b) SLA sensitivity 

0-0.5 0.5-1

1-1.5 1.5-2

3 3.4 3.8 4.2 4.6 5 5.4 5.8 6.2 6.6

GE

DK

UK

NL

FR_centre

FR_south

IT

SP_centre

SP_south

LAImax (m
2
 m

-2
)

(d) LAImax sensitivity

0.4-0.6

0.2-0.4

0-0.2

 
Figure 4.4. Sensitivity index (S iS i) of the yield for the main parameters according to the LAILAI  
dynamics approaches. S iS i  = 1 means that a change in the parameter value will induce the same 
relative change in simulated yield.  Symbols referring to the locations are the same as those in 
Table 4.5.The parameters tested are: 

(a) RgRg: Relative growth rate of leaf area index during the juvenile phase 
(b) SLASLA: Specific leaf area 
(c and e) fTsum senfTsum sen: Fraction of the total temperature sum when senescence starts  
(d) LAImaxLAImax: Maximum leaf area index 
LINTUL (Light, INTerception and UtiLization) is the model combining the RUERUE  approach with the detailed 
LAILAI  dynamics approach, while summarized crop model is the one combining the RUERUE  approach with the 
summarized LAILAI  dynamics approach. 
Note that the colours in the various figures represent different ranges of S iS i  
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The relative growth rate of LAILAI  in the exponential phase (RgRg), used in the detailed 

LAILAI  dynamics approach, was varied from 0.005 to 0.013 (°C d)–1. The sensitivity of 

simulated yield to this parameter is variable, depending on location and the value of 

the parameter itself. On the one hand, simulated yields are highly sensitive to RgRg in the 

northern locations (Germany, Denmark, the United Kingdom and partly the 

Netherlands) with a SiSi between 1 and 1.5 (i.e. a change in RgRg by 1% will result in a 

change in simulated yield of 1% to 1.5%). On the other hand, in the southern regions, 

a change in RgRg has a relatively smaller impact on simulated yields, especially for values 

exceeding the default value of 0.009 (°C d)–1 (Figure 4.4a). From the calibration we 

obtained a value for RgRg of 0.013 (°C d)–1, which implies that only simulated yields in 

Germany, Denmark and the United Kingdom will be highly sensitive to a variation in 

this value (SiSi > 1). 

 

SLASLA (varying from 0.0036 to 0.06 m2 (g C)–1) behaves similarly, with the exception of a 

higher sensitivity (SiSi > 1) in southern regions (i.e. Italy and Central Spain) with values 

of SLASLA < 0.042 m2 (g C)–1 (Figure 4.4b). When using a value of 0.045 m2 (g C)–1 for 

SLASLA (as derived from the calibration for the Netherlands), the northern regions will be 

highly sensitive (SiSi > 1) and most of the southern regions moderately sensitive (0.5 

<SiSi< 1), except for the South of France and South of Spain, where yield sensitivity is 

relatively small (SiSi< 0.5) to variation in this parameter. 

 

Finally, the sensitivity of simulated yield to fTsum senfTsum sen in the detailed LAILAI  dynamics 

approach is high (Figure 4.4c). For values of fTsum senfTsum sen exceeding 0.66, the sensitivity of 

simulated yield is uniform among locations, i.e. independent of changes in fTsum senfTsum sen, 

simulated yield will at least change by the same proportion (SiSi > 1). For values of 

fTsum senfTsum sen below 0.6, the yield is highly sensitive in many locations (SiSi > 2). 

Interestingly, for a few locations and some specific values of fTsum senfTsum sen, the simulated 

yield is not sensitive to a change in its value (e.g. central Spain for a value of 0.64 and 

the United Kingdom for a value of 0.52). For a fTsum senfTsum sen value of 0.54 (the calibrated 

value for the Netherlands), simulated yield is highly sensitive to variations in its value, 

with SiSivarying from 1.55 to 2.45 for any location. For the model using the 

summarized LAILAI  dynamics approach, the results of the sensitivity analysis are much 

more straightforward, with a moderate sensitivity (0.4 < SiSi<0.6) of the simulated yield 

to both parameters LAImaxLAImax (Figure 4.4d) and fTsum senfTsum sen (Figure 4.4e). For LAImaxLAImax 

exceeding 5.5 m2 m–2, the sensitivity of the simulated yield is even lower (0.2 < SiSi<0.4), 

independent of the location. 
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4. Discussion 4. Discussion 4. Discussion 4. Discussion     

4.1 General behaviour of the models4.1 General behaviour of the models4.1 General behaviour of the models4.1 General behaviour of the models    

All models simulated higher yields in southern regions than in northern regions 

(Figure 4.3a), associated with longer growing seasons and higher radiation intensities 

during the growing season, due to earlier sowing dates and higher temperature sums 

till physiological maturity (Boons-Prins et al., 1993, Table 4.5). The consequence is 

higher accumulated intercepted PARPAR, leading to higher biomass accumulation and 

therefore higher simulated yields. Such model outcomes are contrary to what is 

observed (yields are usually lower in southern regions than in northern regions in 

Europe, Van Oijen and Ewert, 1999). Indeed, the input data in terms of phenology 

were derived from spring barley, because of lack of available data for spring wheat 

(Boons-Prins et al., 1993). This proxy may be questionable, as other studies report that 

spring wheat can be sown between November-December in Mediterranean regions 

(Russell and Wilson, 1994). Hence, this result underlines the importance of adequately 

including farmers’ practices at different locations, as a response to the spatial 

variability in climate (Reidsma et al., 2010). Further, it may not be sufficient to only 

adapt model parameters for phenology (e.g. Thérond et al., 2010) for larger scale 

applications, but also growth processes are particularly important to capture the 

effects of climatic variability.  

 

4.2. Biomass production approa4.2. Biomass production approa4.2. Biomass production approa4.2. Biomass production approachescheschesches    

The two biomass production approaches result in significant differences in simulated 

yields, differentiated among locations. The RUERUE  approach simulates higher yields in 

southern regions than the Farquhar approach, while the Farquhar approach simulates 

higher yields in northern regions (Figure 4.3c). Using the RUERUE  approach, with a 

constant RUERUE   value for large scale applications (Tan and Shibasaki, 2003; Liu et al., 

2007), we might over-simplify, ignoring effects of high temperatures and high 

radiation intensities on net photosynthesis, both considered in the Farquhar approach 

(Figure 4.5) or on daily light use efficiency (Choudhury, 2000; 2001).  
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Figure 4.5. Potential net photosynthesis (AndAnd) as a function of temperature and a number of 
constant total radiation intensities at one CO2 concentration of 341 ppm.  
The two vertical lines indicate the temperature limits where AndAnd  is 75% of its maximum value (7.5 and 22.5 °C) 
for the Farquhar approach (detailed biomass production approach). 

 

The use of a constant RUERUE  (over the growing cycle as a whole) incorporates a lower 

conversion efficiency during the grain filling period due to, mostly, reallocation of 

assimilates to the grains (Van Keulen and Seligman, 1987). Moreover, when LAILAI  

reaches values of 3-4 m2 m–2, the effect of radiation intensity on RUERUE  reflects the light 

saturation effect. Higher radiation then leads to lower RUERUE , as the leaves at the top of 

the canopy are light saturated and thus, higher light absorption does not lead to higher 

assimilation  (Hay and Porter, 2006). As a consequence, conversion efficiency 

calculated on the basis of total absorbed radiation is lower. Finally, this aggregated 

value of RUERUE  also includes the temperature effect on respiration processes. So, to keep 

the model as simple as possible, i.e. to appropriately balance between data availability 

and model structure for large scale application (Addiscott, 1998; Hansen and Jones, 

2000; Jagtap and Jones, 2002), the RUERUE  approach could be extended by incorporating 

the effects of temperature and radiation (Stöckle and Kemanian, 2009). We propose to 

adapt the seasonal value (Medlyn, 1998; Sinclair and Muchow, 1999), using results of 

the Farquhar photosynthesis algorithms (Mitchell et al., 2000). Figure 4.6 

demonstrates how the effect of temperature and radiation on the value of RUERUE  could 

be expressed on a daily basis (derived from Choudhury, 2001) and on a seasonal basis 

(derived from the present study), which is more appropriate for regional applications 

of crop growth models. 



 

 

Figure 4.6. Scaling of RUERUE  for large scale applications, from (a) an exponential relation on a daily basis (from Choudhury, 2000) (b) a linear 
relation on a seasonal basis: graphical representation of the relation and observed vs. simulated RUERUE  for both cases. 
* The daily RUERUE  ranges 0.75 to 2.25 gC MJ—1, according to RUE = 0:75 + 2:5£ exp(¡(0:016£temp)£PAR)RUE = 0:75 + 2:5£ exp(¡(0:016£temp)£PAR)

 with 10 · temp · 20 and 3 · PAR · 1410 · temp · 20 and 3 · PAR · 14  
temp :temp : daily average temperature (°C) and P ARP AR : daily photosynthetically active radiation (MJ m—2 d—1). 

** The seasonal ranges 1.45 to 1.65 g C MJ—1 according to RUE = 2:1¡ 3:5 ¢ 10¡4 £PARINT ¡ 2:5 ¢ 10¡2 £ tempRUE = 2:1¡ 3:5 ¢ 10¡4 £PARINT ¡ 2:5 ¢ 10¡2 £ temp with 11· temp·18 and 375·PARINT ·80011· temp·18 and 375·PARINT ·800 
temp :temp : average temperature during the growing season (°C) PARINTPARINT : intercepted photosynthetically active radiation (MJ m—2 growing season—1). 
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4.3 4.3 4.3 4.3 LAILAI     dynamics approachesdynamics approachesdynamics approachesdynamics approaches    

The two different light interception approaches result in significant differences in 

simulated yields, independent of the location considered, and most clearly captures 

climatic variability. These results confirm earlier work that identified light 

interception as an important factor in determining crop growth (Heath and Gregory, 

1938; Watson, 1947) and with later ones in the context of climate change studies 

(Ewert, 2004b; Jamieson et al., 1998). 

 

Using the same parameter values, the summarized LAILAI  dynamics approach simulates 

higher yields than the detailed LAILAI  dynamics approach (Figure 4.3b).  We assumed 

the fTsum senfTsum sen parameter to have the same value in both approaches, as it was difficult to 

find an unambiguous definition of this parameter (i.e. onset of leaf senescence). In 

some cases, fTsum senfTsum sen is equivalent with the physiological meaning of leaf senescence, 

i.e. when leaves actually start to senesce (Havelka et al., 1984), while in some other 

cases, it is a visual interpretation of the phenomenon (Mi et al., 2000; Araus and Tapia, 

1987), when the death rate of leaves overrides their growth rates. We considered the 

timing of the onset of senescence to be equal in the two approaches, i.e. at anthesis, in 

line with the detailed approach. However, the original description of the summarized 

approach defined the timing of the onset of senescence more on a visual observation: 

“LAILAI  will remain constant until leaf-senescence begins to exceed leaf growth” 

(Neitsch et al., 2005, p.294). Furthermore, we assumed the timing of the onset of 

senescence to be identical across locations. However, phenological characteristics (e.g. 

temperature sum requirements till anthesis) of wheat vary among cultivars (Slafer and 

Rawson, 1994), suggesting the need to also define site-specific values for fTsum senfTsum sen. 

Hence, looking at differences in simulated yield due to the different modelling 

approach, we analyzed the different responses of the models due to the use of the same 

parameter values and could clarify the different underlying assumptions, lumped in 

the fTsum senfTsum senvalue (e.g.), essential for simulated yields.  

    
    
5. Conclusions 5. Conclusions 5. Conclusions 5. Conclusions     
From the two main processes determining growth, i.e. light interception and 

utilization, we found that the first is most important in explaining yield sensitivity to 

climatic variability. We also showed that a different light interception approach results 

in significant differences in simulated yields, irrespective of the location. We conclude 

that for large scale application of crop models, particular attention should be given to 

the simulation of LAILAI  and light interception. Most critical in this respect is the 

representation of leaf senescence, particularly the onset of senescence which is 
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modelled differently in crop models, but has considerable impact on the simulation 

results.  

We also found that oversimplification of processes can lead to omission of important 

relationships, as evident in the application of the RUERUE  concept. We propose that 

models using the concept of RUERUE  should adjust seasonal RUERUE  depending on 

temperature and radiation. 

We finally demonstrated that through an integrated use of complex (i.e. detailed) and 

simple (i.e. summarized) approaches more insight can be gained about how to model 

crop growth for large scale applications, in support of decisions on the right trade-off 

between data availability and model detail.  
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AbstractAbstractAbstractAbstract    

The process of crop modelling to develop an operational software tool requires different 

skills, from conceptualization of the biophysical system to computer programming, involving 

three main scientific disciplines: agronomy, mathematics and software engineering. Model 

building implies transforming a conceptual model into sets of mathematical equations and 

then translating these equations into a computer program. The focus of this paper is on a 

procedure to re-assemble models, i.e. develop a new crop model from an existing one, using 

an existing crop modelling framework and crop physiological knowledge. Modifications to 

the initial crop model were classified according to three categories: (i) changes in the values of 

parameters, (ii) changes in equations, and (iii) changes in the overall structure of the model. 

We illustrate the approach with a case study transforming a wheat crop model into a pea crop 

model. We conclude that the use of the approach to re-assemble a new model in combination 

with a crop modelling framework leads to (i) integration of different disciplines around a 

modelling objective, (ii) combining new (expert) knowledge with existing models without ‘re-

inventing the wheel’, and (iii) efficient communication with the user of the tool. 

 

 

KeywordsKeywordsKeywordsKeywords: crop modelling framework, crop physiology, agronomic model, 

mathematical model, software. 
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1. Introduction1. Introduction1. Introduction1. Introduction    

Crop growth models can be applied in support of formalization of agronomic expert 

knowledge (Bouman et al., 1996) and/or of design alternative cropping systems 

(Bergez et al., 2010) and their assessment with respect to multiple criteria that are 

related to crop productivity and environmental externalities. Although crop models 

are often viewed as simulation software tools, they can assume different forms, from 

graphical representations of the cropping system (i.e. a conceptual model) to 

mathematical algorithms and coded computer programs. Accordingly, the process of 

modelling to arrive at an operational simulation tool requires combination of different 

skills, ranging from conceptualization of the biophysical system (system analysis and 

agronomy) to the coding of the mathematical equations (mathematics and software 

engineering). In applying crop modelling as a research tool, the researcher has three 

main options while starting a simulation study (Sinclair and Seligman, 1996): 

 

(i) create his/her own model: that requires a high investment, including 

knowledge of crop physiology and computer programming (Rabbinge and De 

Wit, 1989), but it has the advantages that the researcher is fully familiar with all 

the ins-and-outs of the model. As a result, the chance that the newly 

constructed model meets its specific objective is probably higher than when 

using existing (supposedly more general) models; 

 

(ii) re-use an existing model: the model, which is supposedly easy to use, is 

adopted  as a whole with only the modification of specific parameter values. 

However, the researcher often wants to comprehend the whole model (Spitters 

1990) instead of viewing the system in terms of its inputs and outputs, without 

any knowledge of its internal functioning. Furthermore, as the original model 

was targeted at a specific issue that is most likely different from the one it is re-

used for, it may not be optimally suited for the intended application. Moreover, 

there is a risk of its use outside its validity domain (Monteith, 1996), or of 

inappropriate parameterisation of the model, as crop models are often over-

parameterised (Brun et al., 2002; Chapter 4); 

 

(iii) combine both approaches: this implies developing his/her model starting 

from an existing one, which is considered, at first, as best suited for the 

problem to address, and that can be adapted and re-assembled for instance by 

adding parts of other models. To successfully re-assemble such a new model, 

intimate knowledge and a thorough understanding of the existing model(s) is 

required (Argent, 2004). Even for models properly documented, it often 
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requires intensive interactions with the original crop modeller(s) to decide 

what has to be changed in the model structure, equations and parameter values 

for the construction of the new model. 

 

Recently developed crop modelling frameworks tend to support the last option of re-

assembly models’ parts, highlighting the importance of modularity and flexibility in 

crop models (Wang et al., 2002; Quesnel et al., 2009; Adam et al., 2010; Donatelli et 

al., 2010). While these frameworks enable an easy plug-and-play of model 

components (Papajorgji , 2005) and facilitate modules linkage (Rizolli et al., 2008), it 

is often difficult for non-experienced users to fully apprehend the tool, to completely 

understand the different available components and to combine them properly in 

creating a new model (Chapter 3). Often, the emphasis on the software part of the 

framework may create a gap between the computer programmer/software specialist 

and the crop physiologist or agronomist (Argent, 2004; Holzworth et al., 2010), 

although they both may realize the added value of the use of simulation models for 

e.g. the formalization of expert knowledge and the design of alternative cropping 

systems and/or management practices.  

 

The focus of this paper is on the description of  a systematic procedure for re-

assembly  models i.e. developing a new crop model from an existing one, by using a 

modular crop modelling framework and available crop physiological knowledge. First, 

the conceptual model, that is seen as a shared “mental model that allows us to 

understand and simplify the problem” (Fowler, 1997 p.2), is co-developed by 

scientists of different backgrounds, having theoretical and/or practical knowledge of 

the crop(s) and cropping system(s) (Wery et al., 2009). Subsequently, this conceptual 

model of the biophysical system is translated into an operational simulation tool. 

 

Recent progress in crop modelling (Holzworth et al., 2010), and, in a broader context, 

in modelling for integrated assessment of farm production systems (Ewert et al., 

2009), supports this way forward in model building. For example, the crop modelling 

platform APES (Agricultural Production and Externalities Simulator) is a modular 

model for cropping systems that can be extended and updated, enabling transfer of 

new research results to operational tools (Donatelli et al., 2010). It includes 

components that offer simulation options for different biological processes of 

relevance to agricultural cropping systems. A component is a piece of software 

representing plant and/or soil process(es) that is(are) used to compose/construct a 

cropping system model (e.g. crop, light interception, water uptake, soil water, or soil 

carbon and nitrogen components). Each component implements the strategy design 
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pattern (Gamma et al., 1995), enabling easy plug-in of alternative modules, thus 

providing flexibility to the framework (Adam et al., 2010). A module is a 

conceptualization of a specific crop or soil process implemented within a component 

(e.g. radiation use efficiency or photosynthesis for biomass production). Finally, the 

overarching level of granularity included in APES is the modelling solution (MS), 

referring to a combination of components and modules to construct one effective 

simulation model. 

 

The objective of the study is to describe and test a systematic approach to support 

decision-making on what can be retained from existing models (model structure and 

parameters) and what needs to be changed (species- or even cultivar-specific modules, 

equations and parameter values) to adapt it for a new crop system to be simulated. 

This approach of model re-assembly has been tested using the APES platform, 

illustrated with a case study in which a grain legume (pea, Pisum sativum L.) model is 

developed from an existing cereal (durum wheat, Triticum durum L.) model. 

 

 

2. Materials and methods2. Materials and methods2. Materials and methods2. Materials and methods    

2.1 From one model to another: the 2.1 From one model to another: the 2.1 From one model to another: the 2.1 From one model to another: the need for three disciplinesneed for three disciplinesneed for three disciplinesneed for three disciplines    

We re-assemble an existing crop model with new knowledge to simulate 

performances of a new crop, leading to a new operational crop model (called here 

modelling solution, MS). The assemblage of the new crop model or MS follows 3 

phases, based on 3 scientific domains (Figure 5.1): 

- Phase 1: The agronomic domain, consisting of conceptual modelling , to 

identify the relevant basic crop processes (Wery, 2005), the validity domain of 

the existing model for system A and the physiological meaning of its key 

parameters compared to those of the new system (system B); 

-  Phase 2: The mathematical domain, in which the biophysical processes, 

identified above, are translated into a coherent set of mathematical equations 

with associated parameter values; 

- Phase 3: The software engineering domain, in which the sequence of the 

mathematical equations (from phase 2) representing the crop processes (from 

phase 1) is coded into a computer model. Each set of equations corresponds 

to a specific conceptualisation of a crop process and is represented by one 

module. 
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Figure 5.1. Approach to incorporate agronomic expert knowledge of system B (e.g. pea crop) 
into a new modelling solution from an existing modelling solution of system A (e.g. wheat 
crop), adapted from Roux et al. (2010). 
 
This approach of model re-assembly is designed to facilitate interactions among the 

scientific domains, while keeping complex questions specific to a discipline, inside 

each domain (Roux et al., 2010). Iterative interaction among the 3 domains allows 

incorporating expert knowledge into the new modelling solution. The use of this 

approach is based on two main inputs (Figure 5.1): an existing MS (i.e. a crop model 

for crop A, in the current study the durum wheat model) and expert knowledge of the 

system to be simulated (crop B, in the current study the pea crop). The main outcome 

of the approach is a new MS specific to the new crop B. 

 

On the basis of agronomic and crop physiological knowledge, the specificities of the 

models (e.g. a wheat crop or a pea crop growth model) are formulated: objective of the 

simulation, boundaries of the system, environment (i.e. forcing functions), key 

variables and parameters, input and output variables, and relevant relationships 

between the variables (De Wit, 1968). Such a graphical representation of the system 

results in a conceptual model, (i) distinguishing the main basic crop processes shared 

by the two crops from those specific to one of them, and (ii) describing the main 

hypotheses in a transparent manner (e.g. in an associated table). The simple 
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representation of the model is a prerequisite to facilitate the exchange between the 

software specialists and the crop physiologists (Van Daalen et al., 2002). This 

conceptual model illustrates the hidden and acknowledged assumptions of the system 

(Heemskerk et al., 2003), identifies the crop generic versus specific processes and 

equations, and forms the basis for the discussions among the crop specialists. 

Subsequently, the detailed formulations of the crop processes are included in the 

mathematical model. The transformation from the conceptual model to the 

mathematical model introduces a clear structure in the set of equations and yields an 

explicit description of the differences in the meaning of the key parameters, 

representing the specificities of system B in comparison to those of system A. Finally, 

the computerized model is based on the mathematical models by coding the 

structured set of equations. It should be a consistent transcription of the conceptual 

agronomic model, with ideally each module of the software representing a basic crop 

process (Adam et al., 2010). 

 

2.2 Approach to construct a modelling solution for a new crop2.2 Approach to construct a modelling solution for a new crop2.2 Approach to construct a modelling solution for a new crop2.2 Approach to construct a modelling solution for a new crop    

The approach builds on the Agricultural Production and Externalities Simulator 

(APES, Donatelli al., 2010), a crop modelling framework that contains a set of modules 

(each conceptualizing a specific crop process) for the simulation of plant growth and 

development and soil water and nutrient dynamics. Its component-based design 

makes it flexible and modular, facilitating the development of MSs (i.e. crop models), 

representing various types of cropping systems. This software architecture enables to 

capitalize on the new concept without modifying the original crop component, but 

rather by developing it further (Clements 1995; Argent 2004).  

 

In the approach developed here, modifications in the MS were introduced at three 

levels: (i) through adapting values of parameters, (ii) within a module, by changing, 

adding or removing (an) equation(s) with its (their) associated parameter(s), and (iii) 

in the overall structure of the model, by adding or removing algorithms that simulate 

(a) specific process(es) (i.e. module(s)). To identify the necessary changes, a clear 

description of the original MS (i.e. the conceptual model of system A) helped to clarify 

the hypotheses included in MSA and acted as an aid in the transfer of knowledge (Sterk 

et al., 2009). To describe the underlying assumptions in MSA, we relied essentially on 

the interaction between the crop physiologist and the crop component developer of 

APES (i.e. having the knowledge of what is in the existing modules). This interaction 

allowed an a posteriori definition of the basic crop processes, the equations and the 

software modules underlying MSA, in a consistent way across the three domains 

(Figure 5.1).



 

 

Table 5.1. Sources of information to collect expert knowledge on the pea crop. 
 

Crop processes Crop processes Crop processes Crop processes 
consideredconsideredconsideredconsidered    

Type of expertType of expertType of expertType of expert    Type of exchange Type of exchange Type of exchange Type of exchange 
(timing)    

Main outcomeMain outcomeMain outcomeMain outcome    SourceSourceSourceSource    

All Agronomist and modeller Workshop  
(June 2008, October 2008) 

Description of the original 
modelling solution 

Shibu et al., 2010, 
crop component help files 
(www.apessimulator.it) 

     
N fixation 
Phenology 

Agronomist with general 
knowledge of crops and 
more specifically of peas 

Workshop 
(August 2008, January 2010) 

Identification of changes needed 
for the pea crop and qualitative 
evaluation of the new MS 

Wery, 1996 

     
All Crop physiologists, pea 

experts  
(J. Wery, J. Lecoeur and L. 

Guilioni) 

Literature and 
discussion (beginning 

2009) 

Data collection 
Better understanding of pea 
functioning 

Agrophysiologie du pois 
proteagineux, Munier-
Jolain et al., 2005 
Lecoeur et al., 1998 
Guilioni et al., 2003 
Debaeke et al., 2006 

     
Dry matter 
accumulation 

Legume specialists (MH. 

Jeuffroy, G. Kaschuk) 
Discussion (end 2009) Modelling hypothesis on sink 

stimulation 
Discussion 
Kaschuk et al., 2009 
Yin and Van Laar, 2005 
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From the conceptual model MSA and expert knowledge from system B, we identified 

the processes that could be retained as they were, the ones that needed minor changes 

(i.e. parameter values, or equations) and the processes that should be added or 

removed (i.e. as modules), reflecting the specificities of the new system to be modelled. 

From literature review and data collection, we derived parameter values and modified 

model equations. This step resulted in an adapted conceptual model, including the 

main changes needed in the transition from MSA to MSB. 

The combination of the new modules and the modified equations (including 

parameter values) forms the new modelling solution (MSB). The software architecture 

of the crop component enables to capitalize on these new approaches, while retaining 

(without modification) the original crop component. Finally, the crop component 

developer had intensive exchanges with the expert crop physiologist/agronomist to 

evaluate (qualitatively) the consequences of the changes introduced in the new 

modelling solution. 

 

2.3 Case study2.3 Case study2.3 Case study2.3 Case study    

The methodology described sofar, has been applied to transform a (durum) wheat 

model (MSwheat) into a pea model (MSpea) that can be used to design new legume-based 

cropping systems in Midi-Pyrénées (Mahmood et al., 2010). The main sources of 

expert knowledge used are summarized in Table 5.1. 

First, to modify the original wheat modelling solution (MSwheat) that is based on the 

LINTUL3 model (Shibu et al., 2010), we identified three agronomists with substantial 

general knowledge of crop physiology to get a good understanding of the original 

wheat modelling solution, and with insights as well in the pea crop. Workshops were 

conducted with those crop experts and the crop modellers, developing the MSpea. 

Further, to deepen the insights gained, an extensive literature review and short 

communications with specialists of legume physiology were carried out. 

 

The main outcome of this exchange of information was a clear conceptual model of 

the new grain legume MS, with an explicit description of the required modifications in 

the cereal modelling solution. In the second phase, we translated the specificities of the 

pea crop into the required modifications at the three levels, i.e. parameter values, 

equations and algorithms/modules. Having identified these modifications required in 

the conceptual model for the grain legume, we expressed them into new values for 

specific parameters (thus becoming crop-specific parameters), new equations (changes 

in the mathematical model) and/or new modules (changes in the computer model, 

structure of the tool) to be included in the new MS. 
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Following iterative cycles, started in mid-2008, with crop physiologists and software 

engineers, and the translation of the various concepts into mathematical form, the new 

modelling solution for grain legumes (MSpea) was available for the targeted application 

by the end of 2009 (Mahmood et al., 2010). A final step before supplying the MSpea to 

the user was its evaluation. However, the focus of this study being on the development 

of a new model (i.e. modelling solution), we only validated the new model 

qualitatively, testing its performance with respect to hypotheses formulated by the 

crop experts. Since we developed this MS in the frame of a project aiming at designing 

new cropping systems, based on the introduction of grain legumes in the farming 

systems of Midi Pyrénées, France (Wery and Ahlawat, 2008, Mahmood et al., 2010), 

the tests of the model were carried out using data representative for the region of the 

project. We, therefore, executed a simulation test for the new pea model with weather 

data from Montpellier from 2003 to 2006 (Zander et al., 2010), and assessed its 

performance using expert knowledge and data from Wery (1996) and Debaecke et al. 

(2006). We tested MSpea under potential and under water-limited growth conditions 

(Van Ittersum and Rabbinge, 1997). 
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3. Results 3. Results 3. Results 3. Results     
3.1. Understanding the3.1. Understanding the3.1. Understanding the3.1. Understanding the    wheat modelling solutionwheat modelling solutionwheat modelling solutionwheat modelling solution    

The first result of the application of the proposed approach for model re-assembly was 

a clear description of the original modelling solution of the wheat crop (MSwheat), 

identifying the main crop growth and development processes and their interactions 

(Figure 5.2a). In general, crop growth models are developed at different degrees of 

complexity, depending on the objectives of the study (Penning de Vries, 1982; Sinclair 

and Seligman, 1996). APES, developed within the SEAMLESS project (Van Ittersum et 

al., 2008), needed the capability to simulate individual plant organs, because users 

were not only interested in the grain yield, but also in amount and composition of the 

plant residues returned to the soil. Overall, the APES model needed the capability to 

respond to farm management actions in order to generate the so-called technical 

coefficients for a whole farm model; FSSIM (Farm System Simulator, Louhichi et al., 

2010), to be run over a number of years, and, finally, data demands should not be too 

large. Hence, the crop component included in APES is based on the concept of 

radiation interception and utilization with allocation of carbohydrates to different 

plant parts, contained in the LINTUL model (Spitters, 1987): a simpler model would 

not be able to distinguish organs, whereas a more complex model would need more 

data, particularly for the description of the photosynthesis process and canopy 

structure, which are not likely to improve model performance or relevance at the level 

of the cropping system when field experiment data are limited. 

 

Figure 2a depicts the conceptual model of MSwheat, drawn in intensive interaction 

between the crop component modeller of APES and experts on crop physiology. It is a 

simple schematic representation of the different crop processes involved, serving as a 

basis for exchange with the pea crop physiologists. Crop growth and development can 

be defined through a few main basic processes (under potential growth conditions) 

(Wery, 2005): (i) phenological development, (ii) leaf area development, (iii) root 

development, (iv) biomass production, and (v) its partitioning over the plant organs. 

Subsequently, as a function of resource availability, growth under resource (water and 

nitrogen)-limited conditions can be defined through the effects of water and nitrogen 

(N) stress, quantified on the basis of the balance between water or N demand and 

uptake (i.e. capture) by the crop. 
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Figure 5.2. Conceptual models for (a) the existing wheat modelling solution, MSwheat and (b) 
the new modelling solution for the pea crop, MSpea derived from expert knowledge. 
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To share this conceptual model with scientists for its evaluation and to create 

confidence for users, the basic hypotheses underlying its structure and functions, i.e. 

“what is [included] in the model and what has been considered as less important” 

should be made explicit in the description of the model (Wery et al., 2009, p. 286). A 

hierarchical representation of the various crop processes, derived from expert 

knowledge, identifies the major components, drivers and functions of the wheat crop. 

First, phenology drives the development of leaf area and root expansion, both 

governing the capture of resources (i.e. light, water and nutrients) to produce biomass 

that is subsequently allocated to the various organs (roots, leaves, stems and storage 

organs) and to determine the potential transpiration of water. Subsequently, governed 

by resource availability (i.e. water and N in the soil) and crop demands (i.e. potential 

transpiration and N demand), crop growth may be limited by water and/or N stress. 

Table 5.2 synthesizes the main crop processes and the associated representation for 

each model domain (i.e. agronomy, mathematics and software engineering).  

 

The mathematical model of MSwheat is based on differential equations, relating the rates 

of changes of the states to themselves, other states and to environmental conditions 

(Leffelaar, 1999). If the state of a model at a certain moment is known, its state in the 

future can be calculated by means of numerical integration (the Euler method in this 

example). Appendix A gives a detailed description of each of the processes included in 

the crop component for cereals (i.e. wheat) of APES (www.apessimulator.it), including 

the main equations (i.e. mathematical model).  

 

The computerized model is based on the principle of component-oriented design as 

implemented in APES, with each process represented in one module (Adam et al., 

2010). The crop component of APES uses a structure in which parameters and 

modelling approaches (i.e. modules) can differ according to the crop simulated. 

Initially, the crop component has been based on the concept of light interception and 

utilization. Modifications and additions can be introduced to extend the list of crop 

types for which the model can be used. These changes include the implementation of 

alternative modules for each of the main crop physiological processes previously 

identified: (i) leaf development, (ii) biomass accumulation (Monteith, 1977), (iii) 

biomass partitioning (Van Keulen and Seligman, 1987), (iv) phenology (Van Keulen 

and Seligman, 1987; Streck et al., 2003; Hearn, 1994), (v) water dynamics and (vi) N 

dynamics (Shibu et al., 2010). 

 

 



 

 

Table 5.2. The main basic processes of the wheat modelling solution (MSwheat) and the underlying principles in terms of conceptual, mathematical 
and computer models. 
 

Crop processesCrop processesCrop processesCrop processes    Conceptual modelConceptual modelConceptual modelConceptual model    Mathematical model *Mathematical model *Mathematical model *Mathematical model *    Computerized Computerized Computerized Computerized model **model **model **model **    

Phenology Photo vernal thermal time: cumulative daily 
effective temperature (Van Keulen and Seligman, 
1987) and delay of  the development at the 
beginning (Stöckle, 2003) by vernalization from 
emergence until floral initiation and by 
photoperiodic response from emergence till 
anthesis 

Differential equations and 
reduction factors 

Winter crop phenology 
module  

    
Leaf 
development 

During the juvenile stage driven by temperature 
(cell division and extension). After this stage, leaf 
area expansion is restricted by the supply of dry 
matter  

Differential equations  Leaf area module 

Root 
development 

Cellular automaton responding to depth and plant 
water uptake 

Differential equations Link with the root 
distribution module 

    
Biomass 
production 

Radiation use efficiency approach (Monteith, 
1977; Sinclair and Muchow, 1999) 

Linear relation  Biomass production module 

Biomass 
allocation 

Biomass is allocated as a function of development 
stage (Van Keulen and Seligman, 1987) 

Distribution factors 
(allocation table) 

Biomass allocation module 
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Crop processesCrop processesCrop processesCrop processes    Conceptual modelConceptual modelConceptual modelConceptual model    Mathematical model *Mathematical model *Mathematical model *Mathematical model *    Computerized model **Computerized model **Computerized model **Computerized model **    
Potential crop 
transpiration 

Penman (1948) Penman equation Link with climate module,  

Water capture Depending on potential transpiration, soil water 
content and soil water characteristics 

Functional equations Link with the water uptake 
module 

Water stress The ratio between actual (water capture) and 
potential transpiration decreases linearly with soil 
moisture suction from unity at the critical suction 
to zero at wilting point (Feddes et al., 1978). Effect 
of water stress on 3 main processes (leaf 
development, biomass production and allocation) 

Reduction factor  Crop component 
wrapper***, through a 
parameter value (drought 
tolerance) 

    
Plant nitrogen 
demand 

Difference between maximum and actual organ 
nitrogen contents 

Differential equations Nitrogen  dynamics module 

Nitrogen 
uptake 

Partitioning of available soil N between crop and 
microbial demands 

Differential equations Link with the soil CN 
component 

Nitrogen stress nitrogen nutrition index  approach (Lemaire, 
1997)  
Effect of nitrogen stress on 3 main processes (leaf 
development, biomass production and allocation) 

Reduction factor Nitrogen dynamics module 

* equations are given and explained in Appendix A. 
** more information on the source code can be found at www. seamlessassociation.org or www.apessimulator.it. 
*** a wrapper is derived from the adapter design pattern (Gamma et al., 1995). It allows classes to work together that normally could not because of incompatible interfaces.
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3.2. Modifications in the wheat modelling solution: integration of the expert 3.2. Modifications in the wheat modelling solution: integration of the expert 3.2. Modifications in the wheat modelling solution: integration of the expert 3.2. Modifications in the wheat modelling solution: integration of the expert 

knowledge in the new modelling solution for peaknowledge in the new modelling solution for peaknowledge in the new modelling solution for peaknowledge in the new modelling solution for pea    

Figure 5.2b shows the conceptual model for the new modelling solution (MSpea), 

containing all the modifications for its re-assembly. This is the main outcome from the 

interactions and exchanges (workshops and discussions) with experts on legumes, and 

more specifically on the pea crop, complemented with knowledge derived from a 

literature review. On one hand, some of the modifications in the conceptual model can 

result in changes in parameter values or in a new mathematical definition of the 

processes in the model (Table 5.3, change in mathematical model). On the other hand, 

at the software level, the definition of new processes can lead to the addition of new 

modules in the computerized model or in the removal of existing modules (i.e. Table 

5.3, change in the computerized model).  

 

We identified the modifications needed to construct MSpea as follows (Figure 5.2b): 

(i) Changes in parameter values: different values for specific leaf area (SLASLA), 

radiation use efficiency (RUERUE) (Kaschuk et al., 2009), and modification of 

carbohydrate allocation as a function of development stage; 

(ii) Changes within a module: addition of an equation to limit N uptake from 

the soil (Wery, 1996) and;  

(iii) Changes in the overall structure of the model: addition of a N fixation 

module (Wery, 1996) and replacement of the phenology module (called 

indeterminate phenology) to define the indeterminate pattern of the plant, i.e. 

an extended flowering period under the control of temperature and water stress 

(Ney et al., 1994). 

 

(i) Changes in parameter values correspond to “common” changes in any crop model 

to adapt it to a specific species (Boogaard et al., 1998). Three parameters have been 

identified as having significantly different values for the pea crop compared to wheat 

(Figure 5.2b). Specific leaf area (SLASLA) defines how much leaf area is associated with a 

unit (increment in) leaf dry weight. Observations on wheat and pea leaf (including 

tendrils) morphology suggest that SLASLA of the two crops is different. Pea leaves are 

thinner than those of wheat and consequently, their SLASLA is higher (0.022 vs 0.018 m2 

g−1). From literature review and data collection (Debaeke et al., 2006), we estimated 

that SLASLA of pea ranged from 0.033 (Yin and Van Laar, 2005) to 0.025 m2 g−1 for 

various cultivars (from semi-leafless to leafy).  



 

 

Table 5.3. Summary of the main changes needed for MSpea as compared to MSwheat according to the disciplines. 
Main crop growth Main crop growth Main crop growth Main crop growth 
and development and development and development and development 
processesprocessesprocessesprocesses    

Change in the conceptual modelChange in the conceptual modelChange in the conceptual modelChange in the conceptual model    Change of mathematical modelChange of mathematical modelChange of mathematical modelChange of mathematical model    
Change within module: equation with 
associated parameter 

Change in the Change in the Change in the Change in the computerized computerized computerized computerized 
model/the software designmodel/the software designmodel/the software designmodel/the software design    
Change in the structure 

Phenology 

 No vernalization, no photoperiod, 
addition of a parameter for the shorten 
flowering time flowering period due to 
water stress,  

NC* Need for a new module 

Leaf development Pea leaves are thinner than wheat leaves 
Change of the parameter specific leaf 
area  

NC 

Root development   NC 

Biomass production 

Protein production is more energy-
demanding than carbohydrate production 
No additional carbon cost due to N 
fixation  

Change of the parameter radiation use 
efficiency  

NC 

Biomass allocation 
Allocation of biomass to the grain starts 
before anthesis 

Change of parameter value in the 
allocation table 

 

Crop transpiration   NC 
Water capture   NC 

Water stress 
The contribution of N2 fixation is reduced 
and flowering period is shortened under 
drought conditions 

NC 
Change in model structure associated 
with the N capture module and 
phenology module 

Crop nitrogen demand 
Nitrogen demand to be satisfied by the 
soil is limited due to additional 
contribution from nitrogen fixation 

Addition of equation with associated 
parameter 

NC 

Nitrogen uptake 
N fixation strategy complementary to the 
N-uptake module 

NC Need of a new module 

Nitrogen stress No stress NC 
Remove the nitrogen nutrition index  
module 

* NC: no change required. 
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A similar reasoning applies to radiation use efficiency (RUERUE), the slope of the linear 

regression between accumulated intercepted photosynthetically active radiation 

(PARPAR ), and accumulated total biomass (Monteith, 1977). It summarizes the combined 

effect of photosynthesis and respiration processes. Experimental evidence 

convincingly shows that this parameter is crop-specific (Sinclair and Muchow, 1999). 

As protein production is more energy-demanding than carbohydrate production 

(Penning de Vries, 1974), RUERUE  should be lower for legumes than for cereals. A value 

of 2 g dry matter (DM) (MJPARPAR)−1 was estimated for pea from data collected by 

Debaeke et al. (2006), in agreement with recent literature (Giunta et al., 2009), 

compared to a value of 3 g DM (MJPARPAR)−1 for wheat.  

 

Furthermore, Kaschuk et al. (2009) indicate that the carbon costs of the rhizobial and 

arbuscular mycorrhizal symbioses for legumes are compensated by increases in the 

rates of leaf photosynthesis. Hence, no additional mechanisms need to be modelled to 

represent the cost of N2 fixation on assimilate production, as is generally done in more 

complex models (e.g. GECROS, Genotype-by-Environment CROp growth Simulator, 

Yin and Van Laar, 2005). Finally, values for the coefficients of allocation of dry matter 

to the different organs were modified from the wheat to the pea crop according to the 

information from Munier-Jolain et al. (2005, p.115). Although the values for the N 

concentration in the different organs were also modified, we did not consider it as 

changes in ‘parameter values’, since it also implied the inclusion of new equations in 

the mathematical model (see (ii)). 

 

(ii) We identified major changes in the equations included in two modules, i.e. N 

demand and N uptake (Figure 5.2b). We assumed that pea has a lower potential of N 

uptake than wheat, which may be related to a lower fine root density in the surface soil 

layers (Gregory, 1998) and a lower “activity of nitrate reductase” (ANR, Wery, 1996). 

Therefore, we adjusted the N demand of the pea crop to define the required N uptake 

from the soil, by a reduction coefficient kk (Figure 5.3a), meaning that, for a given soil 

and N demand by the shoots, pea will absorb less mineral N from the soil than wheat. 

Crop N uptake is calculated from the nitrate N available in the soil. Daily N fixation 

from the atmosphere is then defined as the difference between daily crop N demand 

and daily N uptake from the soil (Figure 5.3a), assuming absence of N stress in the pea 

crop (see below). 
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(a)        (b) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3. Nitrogen (N) demand and N uptake, i.e. N uptake from the soil and N2 fixation, 
(a) conceptual approach for the new modules to be included in MSpea, (b) with the reduction 
factor (kk) for N uptake from the soil dependent on water stress. 

 

(iii) From the interaction with the crop experts, we identified two main modules to be 

added (i.e. N fixation and indeterminate phenology, Figure 5.2b), and one to be 

removed (N stress, Figure 5.2b). In formulating the N fixation module, we assume that 

N2 fixation can fully satisfy the N requirements of the legumes during the growing 

season, if N uptake from the soil is insufficient (Wery et al., 1986; Voisin et al., 2007). 

Although N deficiency can be observed in pea (Munier-Jolain  et al., 2005), we did not 

considered that phenomenon, as it is often the result of phosphorus and/or potassium 

deficiency or pea leaf weevil (Sitona lineatus) infestation (Wery, 1996), factors not 

considered in our initial MS. Further, we assumed that no N fixation takes place 

before development stage 0.3, the time needed for establishment of the nodules during 

the early phase of growth (Munier-Jolain et al., 2005). The contribution of N fixation 

to N uptake is assumed to decrease as water stress increases (Mahieu et al., 2009), 

translated by the increase in the reduction coefficient kk with water stress (Figure 

5.3b).This phenomena can be linked to the accumulation of nitrates in leaves to 

sustain osmotic adjustment (Lecoeur et al., 1992). 

 

In formulating the indeterminate phenology module, the indeterminate behaviour of 

the crop was defined to be governed by the temperature regime, but is co-determined 

by water stress. As in MSwheat, crop development, i.e. the order and rate of appearance 

of vegetative and reproductive organs, is defined in terms of phenological 

developmental stage (DVSDVS ) as a function of temperature sum, i.e. cumulative daily 

effective temperature. However, neither vernalization nor photoperiodic response was 

included. Further, we defined the length of the flowering period in dependence of 

water stress. The flowering period is shortened under water stress conditions (Ney et 

Water stress Drought tolerance 
coefficient 

N demand plant 

N demand soil 

N uptake 

N2 fixed 

k 

Soil 
component 

0.9 

0.7 
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al., 1994). Guilioni et al. (2003) demonstrated that under moderate water stress the 

number of flowering nodes is reduced. Hence, we defined the end of flowering in 

terms of a temperature sum, but also as a function of a water stress index (Figure 5.4).  

 

 
Figure 5.4. Indeterminate phenology module for MSpea: representation of the development 
stages co-determined by temperature (TSUM) and water stress. 

 

Appendix B gives the mathematical description of the new modules included in the 

crop component for legumes (i.e. MSpea) of APES (www.apessimulator.it). Each new 

module has been implemented as an alternative module for the corresponding crop 

physiological processes in the computerized model, based on the principle of 

component-oriented design (Adam et al., 2010). We included a new module called 

“indeterminate phenology” under the phenology physiological process and a module 

called “N fixation” under the N dynamics physiological process. The final MSpea 

includes the following modules: (i) leaf development based on temperature and leaf 

dry matter production, (ii) biomass accumulation based on RUERUE (Monteith, 1977), 

(iii) biomass partitioning based on allocation factors (Van Keulen and Seligman, 

1987), (iv) indeterminate phenology, (v) water dynamics and (vi) N dynamics (Shibu 

et al., 2010), including a N fixation module. Table 5.4 gives the key parameter values 

for MSpea compared to MSwheat. 

 

PPPPlantinglantinglantinglanting    EEEEmergencemergencemergencemergence    BBBBeginegineginegin    
floweringfloweringfloweringflowering    

MMMMaturityaturityaturityaturity    

TSUM 
Emergence 

EnEnEnEnd of flowering = d of flowering = d of flowering = d of flowering =     
BBBBegin grain filling egin grain filling egin grain filling egin grain filling = = = =     

BBBBegin leaves senescence egin leaves senescence egin leaves senescence egin leaves senescence     
    

TTTTime of the end of flowering ime of the end of flowering ime of the end of flowering ime of the end of flowering     
depending on water stressdepending on water stressdepending on water stressdepending on water stress 

TSUM Anthesis 

TSUM 
Beginning Flowering TSUM Physiological Maturity 

DVS = 0 DVS = 0.7 
DVS = 1 

DVS = 2 



 

 

Table 5.4. Key parameters for both modelling solutions: MSwheat and MSpea . 
Modules Modules Modules Modules     ParametersParametersParametersParameters    

Description Unit 
Default values 

MSwheat MSpea 

Phenology 

Air temperature (base)  °C 0 0 
Air Temperature (Sum Emergence)  °C d 160 140 
Air Temperature (Sum Anthesis) °C d 550 1200 
Air Temperature (Sum Maturity) °C d 840 700 
Maximum number of days for vernalization d 50 n.a. 

Additional parameters for the 
indeterminate phenology module 

Air Temperature (Sum Beginning Flowering to Maturity) °C d n.a. 700 
Water Stress delaying flowering unitless n.a. 0.2 

Leaf area development Leaf Area Index (Relative Growth Rate Exponential Phase) (°C d)–1 0.005 0.007 
Specific Leaf Area  m2 g–1 0.020 0.025 

Biomass production and 
partitioning 

Radiation Use Efficiency  g MJ–1 3 2 
Fraction of dry matter reallocated from leaves to the grains  - 0.4 0.3 
Fraction of dry matter reallocated from stems to the grains  - 0.2 0.2 

Nitrogen dynamics 

N (Maximum Concentration Storage Organs) g N m–2 0.025 0.06 
N (Maximum Concentration Leaves at initial conditions)  g N m–2 0.06 0.08 
Fraction (Maximum N Concentration Root of N Concentration 
Leaves) 

- 0.37 0.37 

Fraction (Maximum N Concentration Stem of N Concentration 
Leaves) 

- 0.40 0.5 

Translocation (Time Coefficient of N) d 10 10 
Additional parameters for the 
nitrogen fixation module 

N uptake reduction factor unitless 
 n.a. 0.7-

0.9 
Drought tolerance coefficient unitless  n.a. 0.2 
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3.3. Outcome from the pea modelling solution3.3. Outcome from the pea modelling solution3.3. Outcome from the pea modelling solution3.3. Outcome from the pea modelling solution    

We present the simulation outputs of the new pea model (MSpea) to test a number of 

hypotheses derived from the workshop conducted with the crop physiologists 

specialized in pea. We first assessed the performance of MSpea with respect to N 

dynamics under potential growth conditions. It was assumed that N fixation 

progressively replaces N uptake from the soil to satisfy crop N demand (Deschamps 

and Wery, 1987). Figure 5a shows such a pattern; we observe three main phases in the 

dynamics of N fixation and crop uptake of soil N (Figure 5.5b) related to crop growth 

(Voisin et al., 2007): (i) nodule establishment, when only soil N uptake takes place, (ii) 

vegetative growth phase, where daily N fixation is correlated with biomass growth 

(Hooda et al., 1989) and exceeds soil N uptake, and (iii) the grain filling period, when 

N fixation gradually declines with the decrease in crop N demand (Wery et al., 1988). 

 

Secondly, we assessed at the main differences in pea productivity under different water 

availability regimes (i.e. intensity and timing), to test three hypotheses on the impact 

of water stress on pea growth and development, formulated on the basis of the 

discussions with experts and corroborated by literature data: 

(i) The end of flowering is governed by the temperature regime, but is co-determined 

by the degree of water stress (Ney et al., 1994); 

(ii) The contribution of N2 fixation to total N-accumulation in the crop is lower under 

drought conditions and under conditions of high soil N supply (Zahran, 1999; Mahieu 

et al., 2009); 

(iii) A higher grain yield under moderate water deficit, compared to well-watered 

crops, is reproduced by the model as expected from the literature (Wery, 2005). 

Table 5.5 summarizes the main outputs of the simulations with different water 

limitations.  

 

 (i) Moderate water stress during the flowering period (i.e. constant low water stress 

applied as a forcing function) results in shortening of the flowering period by nine 

days (corresponding to about 200 degree-days, Table 5.5), due to formation of a 

reduced number of flowering nodes (Guilioni et al., 2003). When the stress mostly 

occurred after the flowering period, no major reduction in its length was observed. 
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Figure 5.5. Nitrogen dynamics in pea under potential growth conditions*: 
(a) accumulated crop nitrogen demand, nitrogen uptake from the soil and nitrogen fixation 
over the growing cycle;  
(b) daily crop nitrogen demand, nitrogen uptake from the soil and nitrogen fixation over the 
growing cycle. Integrating Figure 5b gives Figure 5a.  
* during the 2006 growing season no water and nitrogen stress occurred and there were no nitrogen losses 
through leaching. 



 

 

 
Table 5.5. First simulation results to assess that MSpea produces “reasonable” outputs. 
 Evaluation of the output was done during a workshop involving a pea crop expert, and with data from the literature. 
 

Scenario * 

Length of Length of Length of Length of 
flowering flowering flowering flowering 

periodperiodperiodperiod    

Aboveground Aboveground Aboveground Aboveground 
biomassbiomassbiomassbiomass    

YieldYieldYieldYield    
Soil nitrogen Soil nitrogen Soil nitrogen Soil nitrogen 

uptakeuptakeuptakeuptake    
Nitrogen Nitrogen Nitrogen Nitrogen 

fixedfixedfixedfixed    

Contribution N fixed Contribution N fixed Contribution N fixed Contribution N fixed 
to totalto totalto totalto total N N N N 

accumulation over accumulation over accumulation over accumulation over 
the crop cyclethe crop cyclethe crop cyclethe crop cycle    

 d t ha-1 t ha-1 kg ha-1 kg ha-1 % 

Potential growth 27 (±0.4) 13.2 (±0.8) 4.6 (±0.3) 51(±24) 106(±20) 67 

Moderate water stress 
during flowering period 

18 (±0.4) 9.3 (±0.9) 5.0 (±0.6) 34 (±13) 54 (±13) 61 

Severe water stress from 
flowering to 
physiological maturity 

26 (±0.4) 9.4 (±0.6) 2.1 (±0.2) 51 (±24) 95 (±14) 64 

* average values over years 2003-2006;  standard deviation in parenthesis 
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(ii) Data from Wery (1996) suggest that in a N-rich environment, N fixation 

contributed about 70% to total N accumulation over the crop cycle under potential 

growth conditions, compared to 60% under water-limiting conditions, where N 

uptake from the soil compensated the reduction in N fixation under water stress. Our 

results are of the same order of magnitude (Table 5.5), confirming a lower 

contribution of N2 fixation to total N-accumulation in the crop under drought 

conditions and under conditions of high soil-N supply (Zahran, 1999; Mahieu et al., 

2009).  

 

(iii) A higher grain yield under moderate water deficit, compared to potential growth 

conditions, is reproduced by the model (Table 5.5), as observed by Wery (2005) for 

indeterminate legumes such as pea and chickpea, and for field pea by Turc et al. 

(1990), while aboveground biomass was about 20 to 40% lower (Turc et al., 1990; 

Munier-Jolain  et al., 2005). This behaviour is attributed to the fact that in the absence 

of drought (i.e. under potential growth conditions) excessive leaf growth results in 

increased flower and pod abortion due to competition for carbohydrates, while 

moderate water deficit reduces leaf expansion more strongly than photosynthesis 

(Wery, 2005). Although these physiological processes are not explicitly represented in 

the model, it shows the emergent property of higher grain yield under moderate water 

deficit (Table 5.5). On the other hand, severe water stress from flowering to 

physiological maturity, a common phenomenon in Mediterranean regions (e.g. 

Montpellier), results in substantially lower grain yields (Mahieu et al. 2009; Table 5.5). 

 

 

4. Discussion4. Discussion4. Discussion4. Discussion    

4.1 Roles of the different models/disciplines4.1 Roles of the different models/disciplines4.1 Roles of the different models/disciplines4.1 Roles of the different models/disciplines    

The methodology of model re-assembly illustrated in this study, shows that 

construction of a crop growth model requires different disciplines, from crop 

physiology to computer science, with intensive interaction among them. Each of the 

disciplines plays a specific role in each of the phases of the crop model (re)assembly 

(from a conceptual model to a software tool). First, the (physiological) conceptual 

model can be seen as an “eye opener” (Van Daalen et al., 2002), identifying the main 

characteristics of the system under study and the objective(s) of the simulations. The 

development of this conceptual model relies on expert knowledge, combined with 

modelling skills, using principles of system analysis (De Wit, 1968; Odum, 1983). 

Subsequently, through a graphical representation, the explicit description of the 

validity domain and the main interpretations of the key parameters of the system, the 

conceptual and mathematical models can act as “arguments in dissent” or “vehicles in 
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creating consensus” (Van Daalen et al., 2002). Finally, the computerized model is 

often used as a software tool for designing and/or evaluating “management options” in 

research or development programs. It may support the user in making choices on the 

best agronomic management practices (i.e. an operational tool) for a given set of 

objectives. For instance, APES was initially designed within the SEAMLESS Integrated 

Framework to simulate the biophysical behaviour of a wide range of crops in specific 

rotations in response to agro-technical management options in interaction with 

weather and soil conditions (Donatelli et al., 2010). As a concrete example, in our case 

study, we could demonstrate that moderate water stress during the flowering period 

resulted in higher pea grain yields and a reduction of vegetative biomass and nitrogen 

fixation. 

 

To represent the conceptual model, we decided to use neither a Unified Modelling 

Language (UML) nor a relational diagram such as a Forrester diagram (Forrester, 

1961). Donatelli et al. (2002, p.8) identified the use of UML or any “visual tools” as a 

promising way forward for crop modelling. We support this conclusion on the use of 

visual tools to conceptualize the model and as a means to promote transparency in 

crop modelling. However, we believe that use of these types of diagrams in our 

approach may bias the discussions and model-re-assembly exercise in favour of 

modellers and/or software specialists. UML is a standardized general-purpose 

modelling language in the field of software engineering, while the relational diagram 

originated in the system analysis field. Using a rather coarse representation removed 

the “bias” towards a specific discipline and did facilitate the interaction among the 3 

scientific domains.  

 

4.2. Re4.2. Re4.2. Re4.2. Re----assembly from “building stones”assembly from “building stones”assembly from “building stones”assembly from “building stones”    

Our approach for model re-assembly uses new software techniques that support 

modularity and flexibility of the modelling tool. It can be seen as an efficient way to 

create adhoc models, rather than re-inventing the wheel (i.e. creating new models 

from “scratch”). Reuse of existing models that are supposedly seen as generic often 

leads to development of a large number of “scattered” versions of such models, with 

poor traceability of changes in parameters and equations with regard to crop 

physiology knowledge. The original model is often tailored to a specific objective, 

which determines to a large extent its structure and level of detail and complexity 

(Brooks and Tobias, 1996). Although efforts have been made to develop common 

model algorithms and structure to simulate a wide range of crop species (Boogaard et 

al., 1998; Brisson et al., 2003), models often need to be adapted for a new situation. 

The “universal model” that can be applied to any situation does not exist, and 
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modellers always face the dilemma of either creating their own model or adapting an 

existing one (Boote et al., 1996).  

 

With our methodology we demonstrated that new crop models can be created from 

“building stones”, using an existing modelling solution as a basis for the creation of a 

new one, without relying on the model developer. Building on existing models was 

already advocated by Spitters in 1990 (p. 391), in stating that “the appropriate model 

version can be composed from [existing] building-stones”. Today, new software 

techniques provide the means to operationalise this principle. The methodology we 

present is an addition to the existing APES framework in order to facilitate an accurate 

combination of the “building stones” or modules to meet the modelling objectives and 

with the available data, in strong interaction with crop physiologists not necessarily 

experts in crop modelling. 

 

4.3. Approach to combine with modular crop modelling frameworks4.3. Approach to combine with modular crop modelling frameworks4.3. Approach to combine with modular crop modelling frameworks4.3. Approach to combine with modular crop modelling frameworks    

We used APES as our support modelling framework. The flexibility and modularity of 

APES simplify the process of plug-in plug-out of crop or soil processes (Papajorgji, 

2005). However, our methodology on model re-assembly should be seen in a more 

generic sense and could be applied within other existing crop modelling frameworks 

such as APSIM (Agricultural Production Systems sIMulator, Wang et al., 2002) or 

RECORD (“REnovation et COoRDination de la modélisation de cultures pour la 

gestion des agroécosystèmes", Quesnel et al., 2009). For instance, with respect to 

APSIM, there are similarities between the use of our approach with the crop 

component of APES and the use of the generic PLANT model (Wang et al., 2002). 

“The PLANT model consists of many classes that have been designed in such a way to 

facilitate their swapping in and out for different crops. [….] the model developer is 

able to construct new crop models entirely from configuration documents.” (p. 889, 

Holzworth and Huth, 2009). This easy plug-in plug-out present in these crop 

modelling framework assumes that these processes can be combined without any 

problem  for the re-assembly of a new crop model (e.g. through new configuration 

files). However, there is a need to couple this easy plug-and play of modules with a 

“decision tree” to facilitate the development of these configurations files. The 

approach we illustrated in this study aimed at facilitating the construction of these files 

(i.e. selection of the different modules to combine), especially with respect to the 

criteria of crop type. It helps to combine software architecture with decision criteria, 

defined by the crop expert, to construct/re-assemble a new sound crop model. 
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1. Introduction: combining software techniques with systems analysis1. Introduction: combining software techniques with systems analysis1. Introduction: combining software techniques with systems analysis1. Introduction: combining software techniques with systems analysis    

The general objective of this thesis was to develop a modelling framework (i.e. an 

operational tool and guidelines that support its use) to design and assess innovative 

cropping systems. The key idea was the development of a modular approach that 

allows construction of modelling solutions (crop growth simulation models) aiming at 

answering specific agro-ecological questions through combination of models (or parts 

of models), guided by the demand for modelling detail and output. Adoption of 

advanced software engineering techniques in crop modelling in the past decade have 

led to the construction of modelling frameworks, consisting of libraries of models 

from which selections can be made, governed by the objectives of a specific simulation 

exercise. Advantages of a modular structure include the possibilities for: (i) 

interchange of code among models, (ii) testing alternative hypotheses, (iii) use of 

simple or comprehensive modules as required for a particular application, and (iv) 

sharing of expertise. 

Although these advantages are undeniable (Acock and Reynolds, 1989), and were 

illustrated on a few occasions, mostly within the APSIM1 framework (e.g. Van 

Oosterom et al., 2006, Moore et al., 2007, McMaster and Hargreaves, 2009), to my 

knowledge, no research has explicitly addressed the process of module comparisons or 

model adaptation within such frameworks. The focus is often more on the outcomes 

of the overall model than on the description of how models are constructed and 

assembled from different modules. However, as modelling frameworks provide 

technical possibilities to link modules, even if these links are physiologically 

meaningless, there is a need to support the qualified selection of modules to be linked. 

Thus, the main contribution of this thesis is on the model building process, and more 

specifically on the decision-making process of selecting one module rather than 

another (modelling beam of the framework) and incorporating that module into the 

model structure (i.e. module assembly). This selection process is based on explicit 

criteria to guide model development. Those criteria are identified in this thesis. 

In this thesis, I identified three main steps in the development of a framework to 

introduce flexibility in crop modelling: 

• Create the building blocks: identify the relevant library parts and include these 

building blocks into the framework (Chapter 2); 

• Link the building blocks: technically (Chapter 2) and conceptually (Chapters 3, 

4 and 5); 

• Evaluate and apply the framework (Chapters 3, 4 and 5). 

 

                                                 
1 APSIM: Agricultural Production Systems sIMulator (Keating et al., 2003). 
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Implementation 

beam (Chapter 2) 
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Figure 6.1. The contribution of this thesis to the development of a crop modelling framework 
consists of (i) two main libraries: the library of processes, and the library of models (Chapter 
2), and (ii) concepts: result of the definition of logic for model assembly (Chapters 3, 4 and 5). 

 

Within this thesis (Figure 6.1), I created the building blocks (Chapter 2) and 

developed methodological approaches (Chapters 3 and 5) to evaluate the crop model 

structure (i.e. modelling solution, MS) with emphasis on the process of selection of 

modules (i.e. building blocks) and their linkage (Chapter 4 and 5). The aim of this 

chapter is to discuss the choices made in the development of the crop modelling 

framework at the implementation (Section 2.1) and modelling levels (Section 2.2), and 

to discuss how such a framework can contribute to the advancement of crop 

modelling, but also its limitations (Section 3). Finally, this chapter concludes with the 

main contributions of this thesis to the crop modelling field (Section 4). 

 

 

2. The framework2. The framework2. The framework2. The framework    

2.1. Choice of software design and level of granularity: implications for the user 2.1. Choice of software design and level of granularity: implications for the user 2.1. Choice of software design and level of granularity: implications for the user 2.1. Choice of software design and level of granularity: implications for the user  

CROSPAL2 (Chapter 2), APES3 and APSIM are examples of modular frameworks, 

illustrating how modularity has been applied so far in crop modelling. Reflections on 

differences and similarities of the software design adopted to build modular 

frameworks (i.e. implementation beam) should help in identifying what is essential to 

                                                 
2 CROSPAL: CROp Simulator: Picking and Assembling Libraries (Adam et al., 2010). 
3 APES: Agricultural Production and Externalities Simulator (Donatelli et al., 2010). 
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create the libraries, without creating “Yet Another Modelling Framework” (Van Evert 

et al., 2005) and which are the consequences of their differences. 

 

The CROSPAL software design (Chapter 2) builds on my initial involvement in the 

development of APES. The shared use of the strategy design pattern4 to create the 

library of basic crop processes (Table 6.1) is one of the outcomes of these activities.  

The use of the strategy design pattern enables implementation of alternative modules 

to simulate the same (crop growth and development) process. I used the same 

strategies for the crop component of APES as the ones described in CROSPAL (based 

on the basic crop growth processes, Table 2.1, Chapter 2). This definition of modules, 

i.e. strategy, according to crop growth and development processes was similarly 

adopted within the generic crop model template (GCROP) of APSIM (Wang et al., 

2002), where it is represented by a crop process library (CPL). In a CPL, such 

processes are compiled in separate dynamic link libraries (dlls) that can be called by 

the generic model structure. Use of the strategy design pattern, as well as of separate 

dlls, enables easy addition of new modelling approaches (i.e. modules). It creates a 

high modularity in the framework and represents the characteristics of crop growth 

and development through their delineation in basic processes (Wery, 2005): this 

delineation is similar in all three frameworks (see also Table 2.1. in Chapter 2: 

comparison of CROSPAL strategies with GCROP delineation). 

 

The main difference among the three frameworks resides in how the overall structure 

of the crop model (i.e. assembly of modules) is configurated. In CROSPAL, the overall 

structure is obtained via the use of abstract factories and a graphical user interface 

(GUI), to relate a concrete factory5 to criteria of selection (Table 6.1). The use of the 

abstract factories design pattern (Chapter 2) enables the definition of the basic 

structure of the model, and, through formulation of new concrete factories, facilitates 

the creation of a new structure of crop models (i.e. modelling solutions). Further, the 

use of an abstract class6 provides the flexibility for the future user to include 

physiological principles common across crop types, to the “abstract crop”, providing 

generality to the model structure (i.e. identification of similarities among crops or 

generic crop characteristics). 

In APES, and more specifically in its crop component, the assembly of the various 

basic crop processes is constructed via the use of the interface7 IStrategy (Table 6.1). 

                                                 
4 Strategy design pattern: define a family of algorithms, encapsulate each one, and make them interchangeable. 
5 Concrete factory = modelling solution. 
6 Abstract class: a set of operations which all objects that implement the protocol must support. 
7 Interface: a set of named operations that can be invoked by users. 
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“A composite strategy [IStrategy] differs from a simple strategy, because it needs other 

(simple) strategies to provide its output(s)”, (Donatelli et al., 2010, p. 89). In other 

words, this composite strategy (Istrategy) defines the model structure by invoking 

other classes8 defined as simple strategies. This composite strategy (defining the 

model structure) can be selected by the user through the selection of a “model 

option”, either via an XML configuration file (in the integrated version of APES) or 

via a graphical user interface (GUI) in the stand-alone version. However, in contrast 

with CROSPAL, neither an explicit link is made via the GUI to relate a specific 

composite strategy to an MS, nor is a common behaviour to express generality in crop 

models (similarities among crops) included in the composite strategy.  

 

In the generic PLANT model (Holzworth and Huth, 2009), the modules are combined 

directly via XML9 files (Table 6.1), enabling the basic crop processes to be turned on 

and off (i.e. calling or not the different dlls). Therefore, the user can define the 

structure of the crop model him/herself, with no pre-packaged solution as in 

CROSPAL or APES. The use of XML files in the generic PLANT model enables to 

completely externalize the configuration of the crop model structure and to simplify 

the reuse of models (Holzworth et al., 2010). 

 
Table 6.1. Comparison of the different software designs adopted in different crop modelling 
frameworks, with respect to the level of granularity. (GUI, graphical user interface; XML, 
Extensible Markup Language) 

Level of granularityLevel of granularityLevel of granularityLevel of granularity    CROSPALCROSPALCROSPALCROSPAL    APESAPESAPESAPES    GCROPGCROPGCROPGCROP    

Modules  
Basic crop processes 

Strategy Strategy Dynamic link 
libraries (dlls) 

Component  
Crop 

Abstract factory 
and criteria with a 
GUI 

Composite strategy 
(IStrategy: interface) 

Generic model 
structure/ XML 
configuration 

Modelling solution 
Soil-crop  
(i.e. crop simulator) 

Definition of new 
concrete factories 
(further research 
needed to include 
the soil, see 
discussion of 
Chapter 2) 

Components 
linked via wrapper 
(using the ModCom 
framework : Hillyer 
et al., 2003) 

GCROP linked 
to the APSIM 
engine 

 

                                                 
8 Class, here, is used in relation to computer science. 
9 XML: Extensible Markup Language. 
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The software design of all three frameworks discussed allows modularity and 

flexibility in adapting the model structure. But the question then is which degree of 

flexibility should be given to the user of the framework? I believe that it should vary 

depending on the expertise of the user. The choice for one specific design mostly 

depends on how “free” and “knowledgeable” the future user of the modelling 

framework will be.  

Use of an XML file to configure a model (i.e. define its structure) provides total 

freedom to the user to select any module (Moore et al., 2007), no matter whether the 

different modules “fit” together conceptually. Technically, everything is possible and 

modifications in the configuration of the structure of the model are completely 

externalized. In APES, the use of the composite strategy provides less freedom to the 

user, as the developer defines this composition within the component (IStrategy) on 

the basis of his own opinion on the anticipated future modelling exercise/application. 

However, the selection of a specific model structure still remains the responsibility of 

the user through the use of model options. Further, the design adopted in APES also 

enables easy extension of any component and redefinition of the composite strategy 

(Donatelli et al., 2010) that could be tested by the user. In CROSPAL, the choice for 

the use of the abstract factory10 relies on the logic to assemble the crop model. This 

logic is the consequence of the vision of the developer on crop functioning and should 

correspond to the different criteria included in the graphical user interface. The 

selection of a specific MS (i.e. a specific model structure for an application) is guided 

by the selection of criteria by the user through the graphical user interface (Figure 2.1, 

Chapter 2). 

Finally, both APES and GCROP operate at a higher integration level in the delineation 

of the system, defining cropping system (soil-crop, water and nutrient limited 

production), whereas CROSPAL defines the crop system (crop only, potential 

production). In APES, the crop and soil components are linked using wrappers11, 

facilitated by the use of MODCOM, a software framework to assemble simulation 

models (Hillyer et al., 2003). In APSIM, the crop and the soil components are 

connected through the APSIM engine by receiving and processing ‘messages’ (Wang 

et al., 2002). A message is defined as an instruction for a component to perform an 

action. With respect to CROSPAL, further development is required to include the soil 

component in the framework (see discussion Chapter 2). Incorporation of the soil part 

could be done through the formulation of new concrete factories and by including 

new strategies.  

                                                 
10 Abstract factory patterns: a way to encapsulate a group of individual factories that have a common theme 
11 Wrappers are classes enabling combination of other classes that could not be combined, because of 
incompatible interfaces (i.e. adapter design pattern, Gamma et al., 1995). 
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2.2 From modules to an MS: a concept guiding the use of the framework2.2 From modules to an MS: a concept guiding the use of the framework2.2 From modules to an MS: a concept guiding the use of the framework2.2 From modules to an MS: a concept guiding the use of the framework    

In Chapter 1, I defined the word concept as the “logic to assemble the appropriate 

modules” and stated that a concept can be constructed on the basis of criteria for 

module selection or of a systematic approach. The definition of this logic is the main 

focus of a significant part of this thesis (Chapters 3, 4 and 5), testing different model 

structures according to the criteria defined in the CROSPAL graphical user interface 

(Figure 2.1, Chapter 2). The presence of the soil-crop system in APES, compared to 

the single crop system in CROSPAL, enabled further research on the relation between 

criteria and the resulting model structure corresponding to the simulation objective. 

As I was a member of the team that developed APES, it was possible to use this 

framework to test the different hypotheses on model structure (Chapters 3 and 5), 

directly working on the code. 

 

I used three main approaches to construct these concepts (Figure 6.2): (i) uncertainty 

matrix, (ii) sensitivity analysis, and (iii) expert elicitation. Use of these approaches 

highlighted the importance of the modelling beam of the framework (i.e. the protocol 

to guide users in the selection of modules). Particularly, emphasis is on the uncertainty 

assessment of the derived model structure. Without this modelling beam, there is a 

risk of misuse of the implementation beam of the framework, when the assumptions, 

underlying the building blocks (i.e. modules), have not been explicitly defined. 

 

 

 

 

 

 

Figure 6.2. Approaches used (in this thesis) to derive the concept that represents the system 
under study.  

 

A key step in the ‘Good Modelling Practice’ (GMP) Handbook (Van Waveren et al., 

1999) is step 3, “set up the model”, and more specifically step 3.4 on the construction 

of the conceptual model within the whole of the modelling process. This step helps to 

define the structure of the model and to explicitly formulate the reasons for the 

choices made in the modelling decision-making process. GMP asks for an explicit 

description of the general conceptual model, including (i) the domain of application 

(Chapters 3 and 5 of this thesis), (ii) the type of model required (i.e. explanatory vs. 

descriptive, Chapter 4), (iii) the relations and assumptions underlying the choices 

(Chapters 3, 4 and 5) and (iv) the verification of the conceptual model (Chapter 5). 

Objective 
ConceptConceptConceptConcept    

Basic crop growth processes  
    
    

The “right” 
modelling solution 

Sensitivity analysis 
(Chapter 4) 

Expert elicitation 
(Chapter 5) 

Uncertainty matrix 
(Chapter 3) 
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Throughout the thesis, I emphasized the uncertainty associated with the model 

structure in compliance with the good modelling practices. It is important to identify 

and collect the key information on the different assumptions that led the modeller to 

select a particular model structure (Chapters 3 and 5). The protocol presented in 

Chapter 3 deals with these aspects, for instance through (i) using an uncertainty 

matrix (Walker et al., 2003; Refsgaard et al., 2006; 2007), (ii) clarifying the main short-

comings of the modelling solution, and (iii) revealing the main assumptions 

underlying the modelling approaches (i.e. modules, Belhouchette et al., 2009). Use of 

the protocol re-emphasizes the importance of considering the lack of certainty in our 

models (and knowledge) and helps to recognize the “unachievable” goal of a universal 

model (Van Oijen, 2009).  

 

Dealing with this uncertainty starts with recognizing our incomplete knowledge. In 

this thesis, the incomplete knowledge is mostly identified through the use of the 

uncertainty matrix, but also via testing of different modelling approaches (e.g. 

Chapters 3 and 4), and discussing different hypotheses (Chamberlin, 1965). This 

methodology can be compared with the G2R3 approach (Grab-and-Glue, Run, Reject, 

Retry; Eldabi et al., 2005). It enables to quickly test a few hypotheses and draw 

conclusions from the outputs of the simulation exercise. It helps to reconstruct, repeat 

and reproduce the modelling process and to capitalize on the main outcomes of that 

process. It takes advantages of the “plug-and-play” facilities (Papajorgji, 2005) and 

enables to explicitly identify the validity domain of each of the modelling approaches, 

i.e. modules (Chapters 3 and 4), or modelling solutions when modules are coupled 

(Chapters 3 and 5). In the perspective of using a crop modelling framework, the 

process of model building should not be seen as a linear process (Rabbinge and De 

Wit, 1989), but rather as a cyclic process, that explicitly yields the uncertainty 

associated with each module tested.  

 

We also identify the risk of compensating errors in the conceptual model (model 

structure) with errors in the parameter values. Such problems can be the reflection of 

misrepresentation of a component or of relations among components of the system. 

Indeed, modelling, by definition includes the process of simplifying a system, in which 

the relations between components are not fully known. Chapter 3 emphasizes the need 

to clearly identify the uncertainty in model structure related to our incomplete 

understanding. This was done through the use of an uncertainty matrix (Walker et al., 

2003). Use of this matrix allows distinguishing different types and sources of 

uncertainties in order to facilitate uncertainty classification and to acknowledge that 

the underlying principles explaining the relations among components in the system 
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can never be fully known. Another example was given in Chapter 4 where the 

assumptions underlying the definition of the parameter representing the timing of the 

onset of leaf senescence, were different and not explicitly defined for each of the 

modelling approaches. Appropriate documentation of the modules and their 

underlying assumptions is essential (Donatelli et al., 2002; Bellochini et al., 2010; this 

thesis, e.g. Chapter 4). 

 

Further, there is a need for an appropriate definition of the level of modelling detail in 

a process-based crop model to prevent “over-tuning” of parameters (Van Oijen, 2002; 

Chapter 4). Identification of the required level of detail is based on a number of pre-

requisites, relying mostly on appropriate documentation of the decision-making 

process in model development (this thesis). Already Leffelaar (1990) pointed to the 

existence of an “optimum” level of detail in terms of the number of processes 

modelled that allows the closest approximation to system reality. In Chapter 4, we 

reinforced this idea and demonstrated that through an integrated use of complex (i.e. 

detailed) and simple (i.e. summarized) approaches more insight can be gained in how 

to model crop growth for large-scale applications, in support of decisions on the right 

trade-off between data availability and model detail. The omission of important 

relationships has the consequence of oversimplification in quantifying the radiation 

use efficiency (RUE). RUE is an aggregated value, measured over, usually, a period of, 

say, 10 days (or a growing cycle in Chapter 4), and it should therefore not be corrected 

for radiation and temperature on a daily basis (as done in models such as CropSyst, 

Stöckle et al., 2003), but rather on a seasonal basis. 

 

Finally, we acknowledged the importance of visual tools as a way to communicate and 

clearly identify the validity domain corresponding to the specificity of the system. We 

discussed also the recent developments of declarative modelling as a good way forward 

(Chapter 5). With visual modelling environments such as SIMILE (Muetzelfeldt and 

Massheder, 2003), the modeller should be able to focus further on the modelling 

aspect rather than on the implementation/technical aspects. In Chapter 5, use of a 

conceptual model enabled to define what to include and what not to include in the 

model, by involving an expert to identify the basic crop processes that must be added 

or removed according to crop type.  

 

Specific expertise is still needed to select the right modules for a specific simulation 

objective. However, in this thesis, by using crop modelling frameworks to go from 

modules to a MS, I stressed the importance of the documentation of the modelling 

process by (i) using conceptual modelling (e.g. visual tools) to define boundaries and 
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components to include in the model, (ii) emphasizing the role of the work group 

collaboration among crop experts and software engineers to create salient, legitimate 

and credible knowledge, and (iii) explicitly formulating the uncertainty related to the 

derived MS. These uncertainty assessments should be seen as the basis of the concept 

that enables to go from the objective of the simulation to the “right” modelling 

solution (Figure 6.2). 

 

 

3. What will the future bring t3. What will the future bring t3. What will the future bring t3. What will the future bring to crop modelling frameworks?o crop modelling frameworks?o crop modelling frameworks?o crop modelling frameworks?    

3.1 Requirements for successful development and use of3.1 Requirements for successful development and use of3.1 Requirements for successful development and use of3.1 Requirements for successful development and use of    crop modellingcrop modellingcrop modellingcrop modelling    

frameworksframeworksframeworksframeworks    

3.1.1. The importance of clear modelling objectives 

As Uran and Janssen (2003, p.525) mention, in general terms “All systems do what 

they were meant to do: they meet the functional specifications as defined at the start of 

the project. These specifications are usually rather vague and not clearly linked to the 

decision problem the system is designed to support”. Indeed, while developing a new 

tool (e.g. APES), the different partners involved may have different objectives in mind, 

although they may have agreed on the functional and technical requirements needed.  

 

The development of a crop modelling framework (as defined in this thesis) is mostly 

targeted at supporting basic research aimed at increasing understanding of the 

functioning of the system, where simulation is used to synthesize the interactive effects 

of crop physiology, soil characteristics, crop management, and weather on system 

behaviour, testing different hypotheses. APES (in the framework of the SEAMLESS12 

project) was designed as a strategic tool within a system for policy assessment, to 

evaluate strategies and consequences of alternative crop systems, assessing the impacts 

of weather and management on production, water use, nutrient use, nutrient leaching, 

and economics. Some members of the APES development team however, considered 

APES more as a modular tool, for real-time operational decision support to assist in 

management decisions (sowing date, irrigation, fertilization, harvest date, pest 

management), putting emphasis on its modularity aspect, rather than on the 

integration of the tool within the broader SEAMLESS framework. As Van Delden et al. 

(2010) rightly state “developers are often focused on explaining the contents of the 

system, more than on its use value, while the interest of the users is often on the 

latter”. This mismatch of interests and objectives often results in a tool that can be 

                                                 
12 SEAMLESS: System for Environmental and Agricultural Modelling: Linking European Science and Society; 

European project aiming at the development of a component-based framework in agricultural systems. 
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used by the developers themselves, but that is difficult to transfer to the intended 

users. Indeed, this statement is applicable to APES. All in all, APES fulfilled the 

functional requirements defined within the SEAMLESS project. However, despite a 

few workshops in which developers and users participated, currently only the 

developers can easily work with it, while other users still have difficulties. 

 

3.1.2. Role of the crop modeller within an integrated project 

From the beginning of crop model development, modellers had to combine 

knowledge of crop physiology, agronomy, modelling and programming skills (De Wit, 

1968; Odum, 1983). However, with the recent advances in each of these disciplines, a 

gap has developed between the software engineers and the system analysts/crop 

physiologists/agronomists. For effective model development and application, there is 

an urgent need to reconcile these disciplines. In Chapter 5 an approach is described 

aiming at realizing this goal through the use of conceptual modelling to make the 

underlying assumptions in the model and the correspondence of concepts among the 

disciplines (basic crop processes = set of equations = modules) explicit. The modeller 

should play an essential role in bridging the gap between developers and users. 

Developers13 of frameworks are responsible for the implementation of the modules 

and modelling solutions, they manage the implementation beam of the framework 

(architecture, design), and remain up to date with the ever faster advances in software 

engineer techniques (maintenance, evolution). End-users may use some modelling 

solutions for specific objectives in interaction with the modellers. Modellers are 

responsible for the actual development of the conceptual model to include in the 

framework (modules and modelling solutions) and should organise training courses, 

support and animations for the users, with assistance from the developers. 

Consequently, the modeller should act as an interface between the developers and the 

end users: he/she must understand a minimum of all disciplines involved in the 

process of model development, integrating knowledge from the users (i.e. 

agronomists, crop physiologists) and the developers (software engineers) to bridge the 

gap (Jakeman et al., 2006; Chapter 5). 

 

In the development of APES, the “work package” in charge of the biophysical 

modelling in the SEAMLESS project, the important role of the developer in creating 

the implementation beam of the framework came to the fore. However, very quickly 

the developers were confronted with the problem of testing and applying the 

modelling solutions created. Even if all the different modules incorporated in the 

                                                 
13 Developer, here, refers to software engineer. 
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modelling solution have been calibrated, the whole modelling solution will not 

necessarily yield “accurate” results. Consequently, within the SEAMLESS project, in 

response to these shortcomings, the ATILA group (Apes Testing and Improving Led 

by Applications, Casellas and Wery, 2009) was established. 

 

The main objective of this group was to test and improve specific modelling solutions 

(i.e. combinations of modules and components) of the APES framework. The group 

included three types of members, corresponding to the three roles defined earlier: 

users with knowledge of agronomic and crop management aspects, i.e. soils, crops and 

agro-management and able to provide data for calibration and evaluation; modellers 

with knowledge of the components (model and variables), their expected behaviour 

and their interactions with other components; and the developers, capable of changing 

equations and parameters in the code version. Interaction among these three groups 

of experts helped in making progress and in creating a community spirit around the 

development of APES. APSIM is another good example, where a stable funding 

organization (APSRU, Agricultural Production Systems Research Unit in Australia) is 

supporting the development of the framework and the organization of regular training 

sessions for the users (http://www.apsim.info). The clear identification of these three 

roles and the identification of the appropriate experts responsible for each of these 

roles seem to be prerequisites for the success in the development of such types of 

modular tools. 

 

3.2. Roles for crop modelling frameworks3.2. Roles for crop modelling frameworks3.2. Roles for crop modelling frameworks3.2. Roles for crop modelling frameworks    

3.2.1. Gaining insights in crop physiology by testing new hypotheses 

It appears that conflicts between operationality and generality will always remain, and 

will affect the development and use of a crop modelling framework. Although the 

framework presented in this thesis rests on two main beams (the implementation 

beam and the modelling beam), the use of three different frameworks (i.e. 

implementation beams) in this thesis is a good example of the gap between what one 

could do (i.e. operationality) and what one wants to do (i.e. generality). Indeed, 

involvement of different research teams, different interests, and different objectives 

have resulted in the use of three implementation beams (i.e. software tools). However, 

it is my firm opinion that crop modelling frameworks (such as CROSPAL, APES, 

GCROP) represent promising research tools to deal with flexibility in crop modelling. 

The principles identified for the development of the modelling beam of the framework 

(Chapters 3, 4 and 5) remain applicable irrespective of the implementation beam used. 

These principles enable implementation of different approaches and support the 
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integration of current scientific knowledge (combining models in one tool) and the 

comparison of approaches to deepen our understanding of crop physiology. 

 

A few examples of the application of crop modelling frameworks have been reported 

recently in the literature, especially using APSIM. For instance, Van Oosterom et al. 

(2006) substituted the module describing floral initiation with a gene network module. 

This type of work is essential for further development of a crop modelling framework 

to facilitate modification in the structure of crop models. A more recent example of 

the use of the modularity of APSIM is given by McMaster and Hargreaves (2009). 

They demonstrated the use of the principle of object-oriented design to couple 

principles of 3D modelling (using the phytomer concept as a unit repeated within and 

among shoots) with the plant module of APSIM. Following the same reasoning, it can 

be said that the use of a crop modelling framework can help in (i) creating and 

supporting a dialogue with crop physiologists and software engineers (Chapter 5) and 

(ii) identifying the impact of major process characteristics on crop growth factors, 

even at global scale (Chapter 4). These examples demonstrate that the use of crop 

modelling frameworks can accelerate the advancements in crop physiology in the 

modelling process, building on existing concepts. 

 

3.2.2. Clarifying uncertainties on model outputs for integrated assessment 

Crop modelling frameworks are increasingly used in integrated assessment studies, as 

originally APES was designed for in the framework of the SEAMLESS project. In such 

studies, the outputs of the crop model, assembled within the framework, are the 

interesting parts in the model chain, rather than the modelling process (Donatelli et 

al., 2010). Although integrated assessment studies also build on the advantages of 

modularity to create a model chain, the farm models only need indicators derived 

from the crop models as input variables (Janssen and Van Ittersum, 2007). 

Consequently, it is likely that when integrating a crop modelling framework (i.e. 

APES) in a larger modelling chain (e.g. SEAMLESS-Integrated Framework), the 

outputs of the models will be used by researchers  not familiar with the biophysical 

models and their main underlying assumptions (Jakeman et al., 2006). Use of the 

modelling beam of the framework, as illustrated in this thesis, can help in reducing 

these drawbacks by increasingly involving the end user (i.e. farm modeller) in the 

model development process. Indeed, as the main focus of this thesis shows, the crop 

modelling framework appears a useful tool to deal with uncertainty in model 

structure. 
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Use of such a framework can be of great help in identifying the origins of the 

uncertainties and in interpreting the outcomes of the modelling solution that are used 

as inputs in other models in an integrated framework. As I am writing these lines, a 

new crop modelling framework14 is under development, building on the approaches 

used in the modular APES framework. The envisioned use of this new framework is 

mostly in integrated studies, coupling it with farm models (pers. comm. Van Ittersum, 

Group Plant Production Systems, Wageningen University, 2010). I trust that the 

concepts presented in this thesis will be taken into account and that the role of the 

crop modeller in the development and use of this new framework will be brought to 

the fore. Conceptual modelling and the uncertainty related to a specific modelling 

solution used should be prioritized, rather than software engineering techniques. 

 

 

4. Conclusions: main contributions of this thesis in the crop modelling 4. Conclusions: main contributions of this thesis in the crop modelling 4. Conclusions: main contributions of this thesis in the crop modelling 4. Conclusions: main contributions of this thesis in the crop modelling 
fieldfieldfieldfield    

The development and use of a crop modelling framework has greatly contributed to 

the definition of guidelines that facilitate exchange of models (or parts of models, i.e. 

modules), representing different crop and cropping system processes, in dependence 

of user demands and objectives. The use of a crop modelling framework enables to (i) 

capitalize on new knowledge by testing alternative hypotheses without re-inventing 

the wheel, (ii) integrate different disciplines, and last but not least, (iii) communicate 

efficiently with the user of the tool by explicitly identifying the main uncertainties 

associated with its application. 

 

Throughout the thesis, I have stressed the need for documentation of the modelling 

decision process to facilitate model reuse. Three main approaches have been used to 

explicitly document the process of decision-making for model building. The use of the 

uncertainty matrix emphasized the importance of explicitly defining the unknown. 

The use of sensitivity analysis enables tackling the issue of the required level of detail 

and highlights the risks of over-simplification of processes when data are scarce. The 

integration of expert knowledge in the development of the framework emphasizes the 

importance of explicitly describing the underlying assumptions through the use of 

conceptual modelling and the future potential of visual tools such as declarative 

modelling. 

 

                                                 
14 ACE: Analyze Cropping system and Environment. 
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To properly use crop modelling frameworks, there is a clear need to go back to the 

principle of conceptual modelling, either in its heuristic role (Hammer et al., 2002, 

Chapters 4 and 5) or for integrated studies (Van Delden et al., 2010, Chapter 3). While 

technical advances have stimulated substantial progress in the crop modelling field, 

especially in providing modular frameworks that allow easy coupling of different 

models at a higher scale for use in integrated assessment studies (Van Ittersum et al., 

2008) or for further understanding of crop physiology (Hammer et al., 2002), 

conceptualisation of the systems remains an essential step. This thesis illustrates the 

continuing importance of the principles of systems analysis in the field of crop 

modelling, in combination with up-to-date advances in software engineering 

techniques: “crop modelling from conceptual modelling to software engineering and 

back”.  
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Phenology 
Crop development, i.e. the order and rate of appearance of vegetative and reproductive 
organs, is defined in terms of phenological developmental stage (Eq. 1, DVSDVS ) as a function of 
temperature sum, i.e. cumulative daily effective temperature (TeTe, Eq. 2). DVSDVS  from 0 to 1 
corresponds to the vegetative phase (from emergence to anthesis) and from 1 to 2 to the 
reproductive phase (from anthesis to physiological maturity). 
We added to the original LINTUL, a photoperiodic response (fpfp  as in LINTUL3) and a 
vernalization delay (fvfv , Eq. 2). Vernalization represents the need for a cold period for flower 
initiation of the crop. It reduces temperature sum accumulation (TsumTsum) between a low 
threshold temperature for optimal vernalization and a high threshold temperature for 
optimal vernalization.  
 

(DVS)10 =
(Tsum)10

Tsumanthesis

and (DVS)21 =
(Tsum)21

Tsummaturity

(DVS)10 =
(Tsum)10

Tsumanthesis

and (DVS)21 =
(Tsum)21

Tsummaturity

      (1) 

dTSUM

dt
= = Te £ fp £ fv

dTSUM

dt
= = Te £ fp £ fv         (2) 

Te = max(0; Taverage ¡ Tbase)Te = max(0; Taverage ¡ Tbase) 
 
Leaf area development 
The LAILAI  dynamics approach is based on temperature and leaf dry matter production driven 
by the development stage of the crop (i.e. phenology). During the juvenile phase, LAILAI  
expansion is governed by temperature, through its effect on cell division and extension, 
described via temperature-dependent relative growth rate; this phase thus follows an 
exponential growth pattern (Eq. 3). 
  
dLAIgrowth

dt
= LAI£Rg £ Te

dLAIgrowth
dt

= LAI£Rg £ Te         (3) 

 
Following this phase, leaf area expansion is restricted by the supply of dry matter and is 
calculated by multiplying the simulated rate of increase in leaf dry weight, which is based on 
the total amount of biomass produced multiplied by a leaf biomass allocation factor, with the 
specific leaf area (SLASLA, Eq. 4).  
 
dLAIgrowth

dt
=

dWleaf

dt
£SLA

dLAIgrowth

dt
=

dWleaf

dt
£SLA         (4) 

 
Finally, leaves senesce either due to (i) self-shading (rd-shrd-sh) when LAILAI  reaches a critical value 
(LAIcriticalLAIcritical) and/or (ii) ageing after anthesis (rd-agrd-ag). 

dLAIsen
dt

=¡rd£LAI
dLAIsen

dt
=¡rd£LAI          (5) 

with: rd = max(rd-ag; rd-sh)rd = max(rd-ag; rd-sh)  
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The rd-agrd-ag is a function of the temperature and is specified by the following (x,y) pairs: (-10 , 
0.03) , (10 , 0.03) , (15 , 0.04) , (30 , 0.09) , (50 , 0.09), where -10, 10, 15, 30 and 50 are 
temperatures and the values 0.03, 0.04 and 0.09 are the corresponding relative death rates due 
to ageing. Death of leaves due to ageing only occurs after anthesis, as indicated by Tsum ≥ 
Tsum-anthesis.  
 
Root development (link with the root distribution component) 
Root development comprises two components: root dry matter growth and root distribution. 
Root dry matter growth is derived from total biomass production multiplied by a biomass 
allocation factor. The root distribution component estimates the partitioning of fine roots 
between layers in the soil profile. The number of layers is fixed at the start of the simulation 
(different from the soil horizons, to which soil characteristics are attributed). Root growth 
rate is affected according to the current state of soil water and nutrients in a layer. Parameters 
can be fitted to adjust the water and distance to collar sensitivity so that root profiles of most 
species can be simulated. It is assumed that the horizontal distribution of crop roots is 
homogeneous, given that the root distribution is a one dimensional simplification of the 
system. The model is derived from the Hi-sAFe 3D model (Root Voxel Automaton, Mulia, 
2005; Mulia and Dupraz, 2006). 
 
Dry matter production 
The approach currently implemented for dry matter production is based on a linear 
relationship between accumulated intercepted photosynthetically active and accumulated 
biomass .  The slope of this linear relation is called radiation use efficiency (RUERUE , Monteith, 
1977) and summarizes the combined effect of photosynthesis and respiration. The daily 
intercepted photosynthetically active radiation (PARintPARint, Eq. 6) is assumed to increase with 

leaf area index (LAILAI ) following a negative exponential function of LAILAI  that is characterized 
by a crop specific radiation extinction coefficient (calculated within the light interception 
component). The photosynthetically active radiation is about half of the daily incoming 
radiation (RdrRdr, MJ m–2 d–1). Equation 7 described the daily rate of dry matter accumulation 
(NPPNPP, g m–2 d–1). 
 
PARint = Rdr £ 0:5 £ (1 ¡ e¡k£LAI)PARint = Rdr £ 0:5 £ (1 ¡ e¡k£LAI)  (6) 
 
NPP = RUE£PARintNPP = RUE£PARint         (7) 
 
Dry matter allocation 
The partitioning of dry matter among the different organs is described via a set of distribution 
factors (default allocation tables, Boons-Prins et al., 1993) that are defined as a function of 
development stage (Eq. 8). Before anthesis, most dry matter is allocated to the roots, leaves 
and stems. After anthesis, dry matter accumulates mostly in the storage organs. It is assumed 
that severe water stress will lead to increased allocation of dry matter to the roots, at the 
expense of allocation to the shoots.  
 
dWi

dt
= Pci

NPP
dWi

dt
= Pci

NPP          (8) 
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where dWi

dt
dWi

dt
 and P ciP ci are the rate of growth (g m–2 d–1) of organ i and the biomass partitioning 

factor to organ i (g organ-i g–1 biomass), respectively. 
 
Further we added to LINTUL3, reallocation of dry matter from leaves and stems to storage 
organs that starts after anthesis for cereals and could be of importance for other crops as well 
(Eq. 9). 
 
dWirealloc

dt
=

dDVS

dt
£ (Wi ¡ ((1¡ fracWirealloc)£WiMAX

))
dWirealloc

dt
=

dDVS

dt
£ (Wi ¡ ((1¡ fracWirealloc)£WiMAX

))   (9) 

with i = leaves or stems, and  

fracWleafrealloc =
Wleafmax¡Wdead Leafendcycle

Wleafmax
fracWleafrealloc =

Wleafmax¡Wdead Leafendcycle

Wleafmax
 

fracWstemsrealloc
=

Wstemsmax¡Wstemsendcycle

Wstemsmax
fracWstemsrealloc

=
Wstemsmax¡Wstemsendcycle

Wstemsmax
 

 
Water dynamics 
Potential plant transpiration  
The Penman equation (Eq. 10, Penman, 1956) is used to calculate potential 
evapotranspiration (from the CLIMA component: weather component included in APES) 
and the leaf area index is used to calculate partitioning between potential evaporation and 
potential transpiration.  
 

Tpot = ETref£ (1¡e(¡0:5£LAI))Tpot = ETref£ (1¡e(¡0:5£LAI))       (10) 
 
with TpotTpot potential transpiration in mm d–1, ETrefETref  the reference evapotranspiration in mm d–

1,  taking into account the soil and crop albedo, and LAILAI the leaf area index in m2 leaf m–2 
surface area. The 0.5 corresponds to the average extinction coefficient for visible and near 
infrared radiation, as total radiation (rather than PARPAR) contributes to evapotranspiration.  
 
Water capture (water uptake component) 
From crop water demand (i.e. potential transpiration) and root length density (from the root 
distribution component), the model computes a local water demand in each soil layer, 
proportional to the fraction of roots present in the layer. Available water for the crop is the 
difference between current soil water content and soil water content at wilting point.  
If in a particular layer available water exceeds local water demand, water uptake from that 
layer equals water demand. If available water is lower than the local water demand, the crop 
takes up all the available water from this layer and the unsatisfied demand is distributed 
among the other soil layers in a second loop. If no more water is available in any rooted layer, 
water demand (i.e. potential transpiration) is not met, and the crop experiences water stress. 
 
Water stress 
The water stress index (waterstresswaterstress) is calculated as a function of actual transpiration (TaTa) and 
potential crop transpiration (TpotTpot). It varies from 0 (no water stress) to 1 (maximum water 
stress). Water stress affects mainly daily growth via an adjustment of the light use efficiency, 
but only above a given threshold level. This adjustment is operationalized through a 
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genotypic parameter (the drought tolerance factor, DtDt) whose value represents the ability of 
the species to resist drought. It is defined as the specific value of the ratio of water uptake to 
water demand, below which the plant starts to experience water stress. 
 

waterstress = 1 ¡ min(1;
Ta
Tpot

£
1

Dt
)waterstress = 1 ¡ min(1;

Ta
Tpot

£
1

Dt
)      (11) 

 
 
 
 
 
 
 
 
 
 
Water stress affects three processes:  

1. leaf development during leaf area expansion in the  juvenile stage 
dLAIgrowth

dt
= LAI£Rg £ Te® £ (1¡ waterstress)

dLAIgrowth

dt
= LAI£Rg £ Te® £ (1¡ waterstress)   (12) 

 
2. total crop growth:  

 
dW

dt
= LUE£ PARint £ (1 ¡ waterstress)

dW

dt
= LUE£ PARint £ (1 ¡ waterstress)     (13) 

     
3. allocation to leaves: Dry matter partitioning changes in favour of root growth during 

the vegetative phase (Munns and Pearson, 1974) when the ratio of actual to potential 
transpiration falls below 0.5 (Van Keulen et al., 1987). 

 (Proot)ws =Proot£max(1;
1

(1¡waterstress) +0:5)
)(Proot)ws =Proot£max(1;

1

(1¡waterstress) +0:5)
)    (14) 

 
 
Crop nitrogen dynamics (Shibu et al., 2010) 
Crop nitrogen capture 
Based on the crop nitrogen demand and the root length density (from the root distribution 
component), the model computes a nitrogen demand in each soil layer proportional to the 
fraction of roots present in the layer. Nitrogen available for the crop is the difference between 
total soil nitrogen and microbial nitrogen demand (derived from Corbeels et al., 2005).  
 
Crop nitrogen demand 

The rate of change in nitrogen (dNcontent

dt
dNcontent

dt , g m–2 d–1) in each organ (with i referring to leaves, 
stems and roots) is calculated as (Eq. 15): 

(
dNcontent

dt
)i = (

dNuptake

dt
)i ¡ (

dNtranslocated

dt
)i ¡ (

dNloss

dt
)i(

dNcontent

dt
)i = (

dNuptake

dt
)i ¡ (

dNtranslocated

dt
)i ¡ (

dNloss

dt
)i (15) 

 

1 

W uptake / W demand 

Water stress index 
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tolerance 
parameter 
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water stress 
in the model 
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in the model 
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The rate of N uptake (
dNuptake

dt

dNuptake

dt
 , g m–2 d–1) for each organ is the result of total nitrogen taken 

up by the crop, partitioned in proportion to the demand of the organ (Eq. 16). Nitrogen 
uptake ceases at anthesis, because nitrogen content in the vegetative parts hardly increases 
after anthesis (Sinclair and Amir, 1992).  

(
dNuptake

dt
)i =

(Ndemand)i
(Ndemand)total

£
dNuptake

dt
(
dNuptake

dt
)i =

(Ndemand)i
(Ndemand)total

£
dNuptake

dt
      (16) 

N demand of individual organs, (Ndemand)i(Ndemand)i (g m–2 d–1)  with ii for leaves, stems, roots and 
storage organs, is calculated as the difference between potential and actual organ nitrogen 
contents. Potential nitrogen content is derived from the maximum nitrogen concentration of 
an organ (Nmax,iNmax,i, g (gDM)–1) defined as a function of crop development stage (Eq. 17). The 
parameter ¢UptakeMass°ow¢UptakeMass°ow defines the number of days needed for N uptake from the soil to 
satisfy the demand of each organ. We assume that 9 days (τ = 3) are necessary to 
approximately complete this process. 

Total crop nitrogen demand equals the sum of the nitrogen demands of the individual organs 
(excluding storage organs, for which nitrogen demand is met by translocation after anthesis 
from the other organs, i.e. roots, stems and leaves).  

(Ndemand)i =
(Nmax,i £Wi ¡ ANi)

¢UptakeMass°ow
(Ndemand)i =

(Nmax,i £Wi ¡ ANi)

¢UptakeMass°ow

       (17) 

 
Nitrogen demand of the grains (storage organs) is met exclusively by translocation from 
leaves, stems, and roots, as soon as grain growth starts.     
Total nitrogen available for translocation in the crop equals total nitrogen content of the 
organs (NcontentNcontent,g m–2) minus their residual non-transferable nitrogen contents, i.e. the 
nitrogen incorporated in structural crop components. The rate of translocation of N from 

each organ i to the grain ( dNtranslocated

dt
dNtranslocated

dt
, g m–2 d–1) corresponds to N demand of the grain 

(dNdemand

dt
)grain

dNdemand

dt
)grain, g m–2 d–1) multiplied by the translocated nitrogen of each organ (Eq. 18). 

(
dNtranslocated

dt
)i = (

dNdemand

dt
)grain £

(Ncontent)i ¡ [Wi£ (Nconcnot translocable)i]

(Ncontent)total
(
dNtranslocated

dt
)i = (

dNdemand

dt
)grain £

(Ncontent)i ¡ [Wi£ (Nconcnot translocable)i]

(Ncontent)total
  (18) 

 

N loss corresponds to the nitrogen lost due to death of the organ (Eq. 19, here, only leaves 
and roots) 

(
dNloss

dt
)i = (Nconcnot translocable)i£ (

dWdead

dt
)i(

dNloss

dt
)i = (Nconcnot translocable)i£ (

dWdead

dt
)i     (19) 

 

Nitrogen stress 

To simulate nitrogen-limited crop growth, the rate of dry matter accumulation is reduced 
when crop nitrogen concentration falls below a critical value. The nitrogen status of the crop 
is assessed by the nitrogen nutrition index (NNINNI , Eq. 20), defined as actual N concentration 
above the residual divided by a critical N concentration above the residual. To calculate this 
index for the crop as a whole, individual plant organs are considered.  

NNI =
Nactualtotal ¡Nresidual

Ncritical ¡Nresidual

NNI =
Nactualtotal ¡Nresidual

Ncritical ¡Nresidual
        (20) 
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Critical crop nitrogen concentration (Eq. 21), the lower limit of canopy nitrogen 
concentration in leaves and stems required for unrestricted growth, has been set to half the 
maximum nitrogen concentration (Jamieson et al., 1998). 

Ncritical =
n

X

i=1

Nmax,i £ (Noptimal)fractionNcritical =
n

X

i=1

Nmax,i £ (Noptimal)fraction      (21) 

Nstress = 1 ¡ NNINstress = 1 ¡ NNI   (Nstress = 1Nstress = 1  being maximum stress) 
Nitrogen stress affects three processes*:  

1. leaf development 
a. leaf area expansion in the juvenile stage: 
dLAIgrowth

dt
= LAI£Rg £ Te® £NNI £ (1¡ waterstress)

dLAIgrowth

dt
= LAI£Rg £ Te® £NNI £ (1¡ waterstress)   (22) 

b. Leaves senescence : If leaf nitrogen concentration per unit leaf area decreases, 
as nitrogen is translocated from the oldest leaves at the bottom of the canopy 
to newly formed leaves or to grains, leaves die: 

 (
dW

dt
)lossns

= Wlv £ R(death)ns
£ Nstress(

dW

dt
)lossns

= Wlv £ R(death)ns
£ Nstress

       (23) 

 

 (
dLAI

dt
)lossns

= LAI £ R(death)ns
£ Nstress(

dLAI

dt
)lossns

= LAI £ R(death)ns
£ Nstress

     

 (24) 
 
2. total crop growth:  

dW

dt
= RUE£ PARint £ NNI£ (1¡ waterstress)

dW

dt
= RUE£ PARint £ NNI£ (1¡ waterstress)    (25) 

 
3. allocation to leaves: It is assumed that severe nitrogen stress will lead to decreased 

allocation of dry matter to leaves 
(Pleaves)ns = Pleaves £ e¡Nstress(Pleaves)ns = Pleaves £ e¡Nstress      (26)  

 
*In this particular modeling solution,  we assumed that the nitrogen and water stresses can be multiplied rather 
that considering the most limiting factor of the two as the main limiting factor (as in Shibu et al., 2010). To our 
knowledge, no complete agreement on how to model the interaction of the two stresses is reached. Therefore, we 
are aware that such assumption could be discussed and a new modeling solution could be created to test 
alternative hypotheses.  
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Phenology 
As for cereals, phenological development of pea is mainly driven by temperature, but co-
determined by water stress (Ney et al., 1994). The indeterminate behavior of the pea is 
affected by water stress: it was assumed that the length of the flowering period is reduced 
under water stress (threshold value: wsparwspar), considering the beginning of flowering as 
Tsumbeginning°ower
Tsumbeginning°ower

 and the end of flowering as Tsumanthesisws
Tsumanthesisws

.  
 

Tsum =

Z

TedtTsum =

Z

Tedt
          

(27) 

 

(DVS)10 =
Tsum

Tsumanthesisws

and (DVS)21 =
Tsum

Tsummaturity

(DVS)10 =
Tsum

Tsumanthesisws

and (DVS)21 =
Tsum

Tsummaturity

     (28) 

 

Tsumanthesisws
= Tsumanthesis

£ fwsTsumanthesisws
= Tsumanthesis

£ fws       (29) 

 if(ws ¸ wspar)fws =
Tsumanthesis

¡ Tsumbeginning°ower

Tsumanthesis

if(ws ¸ wspar)fws =
Tsumanthesis

¡ Tsumbeginning°ower

Tsumanthesis

 

 elsefws =1elsefws =1 
 

Nitrogen capture 
We assumed that pea has a lower potential of nitrogen uptake from the soil  than wheat which 
may be related to a lower fine root density in  the surface soil  layers (Gregory, 1998) and 
lower activity of nitrate transporters (Wery, 1996). Therefore, we adjusted the nitrogen 
demand of the crop (Ndemandplant

Ndemandplant
 for each organ i referring to leaves, stems and roots to define 

total nitrogen demand from the soil, by a reduction coefficient kk. We assumed an increase in 
kk under water stress, reflecting the higher nitrogen uptake from the soil by the legumes under 
dry conditions (Mahieu et al., 2009).  
 

(Ndemand)i =
(Nmax,i £Wi ¡ ANi)

¢UptakeMass°ow
(Ndemand)i =

(Nmax,i £Wi ¡ ANi)

¢UptakeMass°ow        
(30) 

 

Ndemandplant
=

n
X

i=1

Ndemandi
Ndemandplant

=
n

X

i=1

Ndemandi

        
(31) 

 

Ndemandsoil
= k £ Ndemandplant

Ndemandsoil
= k £ Ndemandplant        (32) 

 
Daily nitrogen fixation (N¯xedN¯xed) is defined as the difference between daily crop nitrogen 
demand and daily nitrogen uptake from the soil. We assumed that N2 fixation can fully meet 
the nitrogen requirements of the legumes if nitrogen uptake from the soil is insufficient. 
 

if(0:3 · DV S · 1:5)if(0:3 · DV S · 1:5)  
 
N¯xed =Ndemandplant

¡Ndemandsoil
N¯xed =Ndemandplant

¡Ndemandsoil       (33)
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Crop growth models are, increasingly, applied for modelling crop growth and 
development under a wide range of climatic and soil conditions, under various 
management types (e.g. intensive vs. extensive agriculture) and at various scales (from 
field to globe). In response to these diverse uses of models, new software engineering 
techniques have recently been adopted in the crop modelling field to construct crop 
modelling frameworks that create flexibility and modularity in crop growth modelling, 
thus offering simulation options for different processes relevant to agricultural 
production systems. Such frameworks facilitate adaptation of the model structure to 
the objective of the simulation, to the production situation (different environments 
and management practices), to the spatial scale and to data availability. The study 
presented in this thesis gives insights in the ways to deal with the flexibility of these 
frameworks. It shows that one of the main issues for handling flexibility in crop 
modelling is to conciliate crop physiology and agronomy with software engineering. 
Combining these different disciplines involves: (i) the gathering of different modules 
describing crop growth and development processes, to constitute a library of 
alternative modules, and (ii) the development of a set of approaches to facilitate the 
assembly of the appropriate modules for a specific objective, leading to the 
construction of a library of assemblies of modules (i.e. crop growth models). The main 
outcome of this thesis is a framework providing a set of approaches to build models in 
a guided way (i.e. to select the appropriate modules for a specific model structure 
aimed at realizing specific objectives). 

 

The first requirement in building the framework is to create the libraries. Construction 

of these libraries requires the adoption of new software engineering techniques. 

Although comparable approaches have been described in the literature, the novelty of 

the approach described in Chapter 2 resides in the explicit description of the relation 

between the software design that provides modularity to the framework and the 

definition of criteria used in selecting the modules to assemble. This relation is 

achieved through the use of two main design patterns (i.e. general reusable solutions 

to a commonly occurring problem in software design). The strategy design pattern 

enables the construction of a library of modules, while the abstract factory design 

pattern enables the creation of a library of crop growth simulators (various assemblies 

of the modules), each with a specific model structure (i.e. a modelling solution, MS). 

These model structures are defined on the basis of explicit criteria. Application of 

these design patterns has been operationalized in the decision-making software 

CROSPAL (CROp Simulator: Picking and Assembling Libraries).  

The use of CROSPAL is illustrated for the modelling of crop phenology (Chapter 2). It 

exemplifies the collaboration between a crop expert (i.e. a potential user of CROSPAL) 

wanting to establish the right timing for a pesticide application on wheat and a 
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software engineer. This collaboration resulted in the inclusion of an alternative 

module for leaf appearance rate modelling within CROSPAL, thus expanding the 

library of modules. It resulted in the construction of a new crop growth simulator 

(MS) that allows simulation of the number of leaves - essential information for the 

expert to determine when to apply the pesticide. I concluded that the software design 

presented in Chapter 2 helps to deal with the necessary flexibility in crop modelling, 

but that further development and evaluation of this design is required to be able to 

extend its range of application to more processes currently addressed in crop 

modelling (e.g. resource competition, nitrogen stress effects on crop growth).  

 

To define the modelling solutions (i.e. the library of crop simulators), there is a need 

to explicitly formulate the validity domains and the underlying hypotheses of the 

different modelling approaches of essential crop growth and development processes 

(i.e. the library of modules) integrated in the framework. Chapter 3 addresses these 

issues and presents a systematic methodology to consistently describe the assumptions 

underlying each module. This methodology is elaborated in a protocol for a systematic 

selection and evaluation of a crop growth model structure (i.e. the modelling solution, 

MS). The protocol comprises three main steps: (i) MS selection, (ii) MS calibration, 

and (iii) MS evaluation and improvement. In particular, steps i and iii of the protocol 

rely on a thorough analysis of the different modelling approaches (modules), resulting 

in the selection of specific modules (step i), and on the procedure to assemble the 

modules to create a new modelling solution adapted to the simulation objective (i.e. 

step iii: MS improvement).  

By applying the proposed protocol for the simulation of crop growth in response to 

nitrogen management (Chapter 3), we identified the importance of the documentation 

of (i) the different modules included in the framework and (ii) the modelling decision-

making process to clarify the sources of uncertainties, associated with the different 

modules. For instance, in our case study, we explicitly formulated the assumptions 

underlying the module describing the nitrogen mineralisation process, and 

particularly we emphasized the importance of the contribution of soil microbial 

activity to the total nitrogen uptake from the soil under study (a soil with a high 

organic matter content). We also demonstrated that the use of this protocol (i) 

promotes the inclusion of different modelling approaches in one tool (instead of 

having a plethora of individual crop growth models) and (ii) facilitates reuse of (parts 

of) a model. Indeed in Chapter 3, we could easily reuse an existing soil nitrogen 

module that included an explicit description of soil microbial activity, thus creating a 

new MS more appropriate for our simulation objective. 



SUMMARY 

161 
 

By collecting different modelling approaches (i.e. modules) for crop growth processes, 

we logically found various levels of detail incorporated in crop growth models, 

reflecting the models’ objectives. Good modelling practice dictates to keep models as 

simple as possible, but enough detail should be incorporated to describe the major 

processes that determine the behaviour of the system to be modelled. To investigate 

the effect of the level of detail incorporated in process-based crop growth models, we 

used the principles of our framework to simulate potential yields under a wide range 

of climatic conditions (Chapter 4). We focused our analysis on the key crop growth 

processes of leaf area expansion and biomass production under different regimes of 

temperature and radiation. Our analysis showed that by using a constant radiation use 

efficiency (RUE) value under a wide range of climatic conditions, the description of 

the process of biomass production may be over-simplified, as the effects of high 

temperatures and high radiation intensities on the value of RUE are thus neglected. 

The effect of temperature and radiation should be considered not only on a daily basis 

(by using the detailed photosynthesis approach according to Farquhar), but also on a 

seasonal basis, by describing the value of RUE as a function of temperature and 

radiation (when using a less detailed description of the process of the biomass 

production). We derived a linear relation between RUE calculated over the growing 

season on the one hand, and the average seasonal temperature and seasonal 

accumulated radiation on the other hand. This relation can be used for further 

development of simple crop growth models to be applied at global scale. 

Furthermore, the two different approaches for the calculation of light interception 

studied (both described in terms of leaf area development: in one approach a function 

of  temperature and leaf dry matter supply, itself a function of phenology, and in the 

other approach a function of phenology only) resulted in significant differences in 

simulated yield (Chapter 4). We also found that the light interception approaches 

better explained the differences in yield sensitivity to climatic variability than the 

biomass production approaches. After clarifying the assumptions underlying 

identification of the parameter that represents the onset of leaf senescence in both 

light interception approaches, we concluded that a better understanding of the whole 

leaf senescence process is still needed. Misrepresentation of the leaf area index 

dynamics leads to significant over- or under-estimation of crop yields. These 

conclusions stress that for applications of crop growth models under a wide range of 

climatic conditions, particular attention should be given to the choice of the light 

interception description.  

 

The selection of the crop growth and development modules is also related to the crop 

type considered (e.g. cereals vs. legumes; annuals vs. perennials; temperate vs. 
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tropical). Modification of an existing modelling solution (i.e. a crop model) through 

addition, removal and/or modification of modules can be facilitated by the use of a 

crop modelling framework. In Chapter 5, we explained a procedure to develop a new 

crop model (i.e. re-assemble) from an existing one, using an existing crop modelling 

framework (APES, Agricultural Production and Externalities Simulator) and crop 

physiological knowledge. The success of the changes in the modelling solution (i.e. 

model structure) for a new crop relies on a stepwise approach, supporting the 

exchange of concepts among the three disciplines involved in the development of crop 

models (i.e. agronomy, mathematics and software engineering). 

We illustrated the approach with a case study in which a wheat crop growth model 

was transformed into a pea crop growth model (Chapter 5). The changes can be 

introduced at two levels. First, the modules can be modified, resulting in new modules 

to include in the library of modules. These modifications comprise: (i) changes in the 

values of parameters, and/or (ii) changes in equations. For instance, in our case study, 

we assumed the pea crop to have a lower potential for nitrogen uptake than wheat. 

Thus, we modified the crop nitrogen demand module, initially developed for wheat, 

by including a new equation to limit crop nitrogen uptake from the soil. Second, the 

overall modelling solution can be changed. In our case study, we created two new 

modules that were added to the initial modelling solution, namely a phenology 

module for indeterminate crops and a nitrogen fixation module. We also removed the 

nitrogen stress module from the initial modelling solution. We concluded that the 

approach to re-assemble modules into a new crop growth model by using a crop 

modelling framework leads to: (i) integration of knowledge from different disciplines 

around a modelling objective, (ii) combination of new (expert) knowledge with 

existing models without ‘re-inventing the wheel’, and (iii) efficient communication 

with the user of the tool. We demonstrated that through the use of the crop modelling 

framework and of conceptual modelling (using visual tools), we could easily transform 

one modelling solution into another, building on the combined expertise of the 

different disciplines. 

 

Overall, this thesis shows the main benefits, but also the limitations, of the 

development and use of crop modelling frameworks. I have illustrated that to include 

modularity and flexibility into crop modelling, we need to: (i) define the system in 

terms of the basic crop growth and development processes, (ii) provide different 

modelling approaches (modules) for each process, (iii) explicitly formulate expert 

knowledge to ensure consistency in the selection of modelling approaches for a 

specific application, and (iv) use design patterns (i.e. strategy and abstract factory 
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design patterns). Further, I discussed that a crop modelling framework can by used 

for: (i) synthesis and integration of results of fundamental research, (ii) strategic 

planning to evaluate policies, and/or (iii) assessment of management practices. 

Therefore, there is a need to clearly identify the objectives of all the different partners 

involved, before embarking on the development of the new tool. In addition, as 

communication between software engineers and users of the framework becomes 

more and more difficult because of specialisation, I stressed that the crop modeller 

should act as an intermediary between these two groups. Finally, I argued that the use 

of a crop modelling framework can contribute to further development of crop 

modelling (Chapter 6). Not only can it support the proper reuse of models for 

integrated studies, but it can also promote better understanding of crop physiology 

because it makes testing of alternative hypotheses easier. Combination of software 

engineering techniques and principles of systems analysis supports selection of crop 

models that match the simulation objectives of the users. I also emphasized the need 

for better documentation of modules and of the process of decision-making in 

modelling. These conclusions reinforce the continuing importance of the principles of 

systems analysis for the field of crop modelling, while making use of the latest 

advances in software engineering techniques: “crop modelling: from conceptual 

modelling to software engineering, and back”.  
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Gewasgroeimodellen worden meer en meer toegepast voor het modelleren van 

gewasgroei en -ontwikkeling onder verschillende klimaat- en bodemomstandigheden, 

bij verschillende beheerstypen (bv. intensieve vs. extensieve landbouw) en op 

verschillende schaalniveaus (van een perceel tot de gehele aarde). Als antwoord op 

deze diversiteit in het gebruik van modellen is men bij het modelleren van gewassen 

de laatste tijd nieuwe programmatuurkundige technieken (software engineering 

techniques) gaan toepassen om raamwerken voor gewasmodellering te construeren 

die flexibiliteit en modulariteit aan het modelleren van gewasgroei geven. Daarmee 

wordt het mogelijk verschillende processen die van belang zijn in landbouwkundige 

productiesystemen op verschillende manieren te simuleren. Dit soort raamwerken 

vergemakkelijkt het aanpassen van de modelstructuur aan het doel van de simulatie, 

aan de productieomstandigheden (verschillende milieus en beheersmaatregelen), aan 

de ruimtelijke schaal en aan de beschikbaarheid van gegevens. De studie die in dit 

proefschrift wordt gepresenteerd verschaft inzichten in de manier waarop de 

modelleerflexibiliteit die deze raamwerken bieden kan worden gebruikt. Hierbij blijkt 

het op één lijn krijgen van gewasfysiologie en agronomie enerzijds, en software 

engineering anderzijds één van de voornaamste opgaven te zijn. Het combineren van 

deze verschillende disciplines brengt met zich mee (i) het verzamelen van 

verschillende modules die gewasgroei en -ontwikkelingsprocessen beschrijven in een 

bibliotheek van alternatieve modules, en (ii) het ontwikkelen van werkwijzen om de 

juiste modules bijeen te brengen voor een specifieke doelstelling, om zo te komen tot 

de opbouw van een bibliotheek van samenstellen van modules (i.e. 

gewasgroeimodellen). Het voornaamste resultaat van dit proefschrift is een raamwerk 

dat aanwijzingen verschaft voor het bouwen van modellen, d.w.z. voor het kiezen van 

de juiste modules voor een specifieke modelstructuur die gericht is op het bereiken 

van specifieke doelen.  

 

Het eerste dat nodig is voor de bouw van het raamwerk is het opzetten van de 

bibliotheken, en bij het bouwen van deze bibliotheken dienen nieuwe software 

engineering technieken te worden toegepast. Hoewel vergelijkbare benaderingen in de 

literatuur zijn beschreven, is de benadering beschreven in Hoofdstuk 2 vernieuwend 

vanwege de expliciete beschrijving van de relatie tussen het software-ontwerp dat 

modulariteit aan het raamwerk geeft en de definitie van de criteria die gebruikt 

worden bij het selecteren van de te combineren modules. Deze relatie wordt bereikt 

door het gebruik van twee belangrijke ontwerppatronen (d.w.z., algemene, 

herbruikbare oplossingen voor een vaak optredend probleem in het ontwerpen van 

software). Het strategy-ontwerppatroon maakt de opbouw van een bibliotheek van 

modules mogelijk, terwijl het abstract factory-ontwerppatroon de opbouw mogelijk 
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maakt van een bibliotheek van gewasgroeisimulators (verschillende samenstellen van 

de modules), elk met een specifieke modelstructuur (d.w.z., een modelleeroplossing 

(modelling solution, MS)). Deze modelstructuren zijn gedefinieerd op basis van 

expliciete criteria. Toepassing van deze ontwerppatronen is geoperationaliseerd in het 

beslissingsprogramma CROSPAL (CROp Simulator: Picking and Assembling 

Libraries). 

Het gebruik van CROSPAL wordt geïllustreerd aan de hand van het modelleren van 

gewasfenologie (Hoofdstuk 2). De samenwerking tussen een gewasdeskundige (i.e. een 

potentiële gebruiker van CROSPAL) die de juiste timing van een pesticidebespuiting 

van tarwe wil vaststellen, en een software engineer wordt daarbij als voorbeeld 

gebruikt. Deze samenwerking resulteerde in het opnemen van een alternatieve module 

voor het modelleren van de bladverschijningssnelheid binnen CROSPAL, waardoor de 

bibliotheek van modules werd uitgebreid. Het resulteerde in de bouw van een nieuwe 

gewasgroeisimulator (MS) waarmee het aantal bladeren – essentiële informatie voor 

de deskundige om het bespuitingstijdstip vast te stellen – kan worden gesimuleerd. Ik 

concludeerde dat het software-ontwerp gepresenteerd in Hoofdstuk 2 helpt bij het 

oplossen van het probleem van de noodzakelijke flexibiliteit in gewasmodellering, 

maar dat dit ontwerp verder ontwikkeld en geëvalueerd moet worden om het 

toepassingsbereik tot meer processen waarmee de gewasmodellering zich 

tegenwoordig bezig houdt (bv. concurrentie om hulpbronnen, effecten van 

stikstofstress op gewasgroei) te kunnen uitbreiden. 

 

Om de modelleeroplossingen (i.e. de bibliotheek van gewassimulators) te definiëren, 

dienen de geldigheidsdomeinen van essentiële processen van gewasgroei en -

ontwikkeling (i.e. de bibliotheek van modules) welke in het raamwerk zijn 

geïntegreerd, en de hypothesen die daaraan ten grondslag liggen, expliciet te worden 

geformuleerd. In Hoofdstuk 3 wordt hierop ingegaan en wordt een systematische 

methodologie gepresenteerd om de aannames die aan elke module ten grondslag 

liggen consistent te beschrijven. Deze methodologie is uitgewerkt tot een protocol 

voor een systematische selectie en evaluatie van een structuur van een 

gewasgroeimodel (i.e. de modelleeroplossing (modelling solution (MS)). Het protocol 

bestaat uit drie hoofdstappen: (i) selectie van de MS, (ii) kalibratie van de MS, en (iii) 

evaluatie en verbetering van de MS. In het bijzonder stappen (i) en (iii) van het 

protocol steunen op een grondige analyse van de verschillende procesbeschrijvingen 

(modules), hetgeen resulteert in de selectie van specifieke modules (stap i), en op de 

procedure voor het combineren van de modules om te komen tot een nieuwe 
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modelleeroplossing die toegesneden is op het doel van de simulatie (i.e. stap (iii): 

verbetering van de MS). 

Door het toepassen van het voorgestelde protocol op de simulatie van gewasgroei in 

response op stikstofbeheer (Hoofdstuk 3) werd het belang duidelijk van het 

documenteren van: (i) de verschillende modules binnen het raamwerk en (ii) het 

proces van het nemen van modelleerbeslissingen, om duidelijkheid te verkrijgen over 

de bronnen van onzekerheden die met de verschillende modules samenhangen. Wij 

hebben bijvoorbeeld in onze casestudy expliciet de aannames geformuleerd die ten 

grondslag liggen aan de module die het proces van stikstofmineralisatie beschrijft en 

in het bijzonder hebben we het belang benadrukt van de bijdrage van de microbiële 

activiteit in de bodem aan de totale stikstofopname uit die bodem (een bodem met een 

hoog organisch stofgehalte). We hebben ook aangetoond dat het gebruik van dit 

protocol: (i) het bijeenbrengen bevordert van verschillende modules in één stuk 

gereedschap (in plaats van dat we een overvloed aan individuele gewasgroeimodellen 

krijgen), en (ii) het hergebruik van (delen van) een model gemakkelijker maakt. Wij 

konden in Hoofdstuk 3 inderdaad een bestaande bodemstikstofmodule die een 

expliciete beschrijving van microbiële activiteit in de bodem bevatte, gemakkelijk 

hergebruiken om een nieuwe MS te creëren die beter geschikt was voor ons 

simulatiedoel. 

Door het bijeenbrengen van verschillende procesbeschrijvingen (i.e. modules) van 

gewasgroeiprocessen werd het logischerwijs duidelijk dat gewasgroeimodellen 

verschillende niveaus van gedetailleerdheid bevatten, waarbij het niveau een 

afspiegeling is van het doel van het model. Volgens de principes van goed modelleren 

(Good Modelling Practices) dient men modellen zo eenvoudig mogelijk te houden, 

maar ze moeten gedetailleerd genoeg zijn om de voornaamste processen te kunnen 

beschrijven die het gedrag van het te modelleren systeem bepalen. Om het effect van 

de mate van detail in de beschrijving van processen in op procesbeschrijvingen 

gebaseerde gewasgroeimodellen te onderzoeken, hebben wij de principes van ons 

raamwerk gebruikt om potentiële opbrengsten onder zeer verschillende 

klimaatomstandigheden te simuleren (Hoofdstuk 4). Wij hebben onze analyse 

toegespitst op sleutelprocessen bij gewasgroei, namelijk de groei van bladoppervlak en 

de biomassaproductie onder verschillende temperatuurs- en stralingsomstandigheden. 

Onze analyse liet zien dat het gebruik van een constante waarde voor de 

stralingsbenuttingsefficiëntie (radiation use efficiency (RUE)) onder zeer verschillende 

klimaatomstandigheden voor de beschrijving van het proces van biomassaproductie te 

eenvoudig kan zijn, omdat dan de effecten van hoge temperatuur en hoge 

stralingsintensiteit op de waarde van RUE worden verwaarloosd. Het effect van 

temperatuur en straling dient niet alleen te worden beschouwd op dag-basis (wanneer 
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de gedetailleerde fotosynthesebenadering volgens Farquhar wordt gebruikt), maar ook 

op seizoensbasis, door de waarde van RUE te beschrijven als functie van temperatuur 

en straling (wanneer een minder gedetailleerde beschrijving van het proces van 

biomassaproductie wordt gebruikt). Wij hebben een lineaire relatie afgeleid tussen de 

over het groeiseizoen berekende RUE enerzijds, en de gemiddelde 

seizoenstemperatuur en de over het seizoen geaccumuleerde straling anderzijds. Deze 

relatie kan worden gebruikt voor het verder ontwikkelen van eenvoudige 

gewasgroeimodellen voor toepassingen op wereldschaal. 

Voorts resulteerden de twee benaderingen voor de berekening van de 

lichtonderschepping die werden bestudeerd (beide beschreven in termen van 

bladoppervlakte-ontwikkeling: de ene als een functie van temperatuur en aanbod van 

drogestof voor het blad (die zelf een functie is van de fenologie), de andere alleen als 

een functie van de fenologie alleen) in significante verschillen in gesimuleerde 

opbrengst (Hoofdstuk 4). Ook vonden we dat de benaderingen via de 

lichtonderschepping de gevoeligheid van opbrengsten voor klimaatvariabiliteit beter 

verklaarden dan de benaderingen via de biomassaproductie. Nadat we de aannames 

opgehelderd hadden die ten grondslag liggen aan de definitie van de parameter die het 

begin van de bladveroudering vertegenwoordigt in beide 

lichtonderscheppingsbenaderingen, concludeerden we dat een beter begrip van het 

gehele bladverouderingsproces nodig is. Een onjuiste berekening van de dynamiek van 

de bladoppervlakte-index (leaf area index (LAI)) leidt tot belangrijke over- of 

onderschatting van de gewasopbrengsten. Deze conclusies benadrukken dat bij het 

gebruik van gewasgroeimodellen voor een breed scala van klimaatomstandigheden 

speciale aandacht dient te worden gegeven aan de keuze van de beschrijving van de 

lichtonderschepping. 

 

De selectie van modules voor gewasgroei en –ontwikkeling hangt ook samen met het 

type gewas dat beschouwd wordt (granen vs. peulgewassen; eenjarige vs. 

overblijvende; gematigde vs. tropische). Veranderingen in een bestaande 

modelleeroplossing (i.e. gewasmodel) door toevoeging, verwijdering en/of wijziging 

van  modules kunnen worden ondersteund door het gebruik van een 

gewasmodelleringsraamwerk. In Hoofdstuk 5 hebben we een procedure uitgelegd 

waarmee een nieuw gewasmodel kan worden ontwikkeld (d.w.z., opnieuw 

samengesteld) uitgaande van een bestaand model door gebruik te maken van een 

bestaand gewasmodelleringsraamwerk (viz. APES, Agricultural Production and 

Externalities Simulator) en van kennis van de gewasfysiologie. Het succes van de 

veranderingen in de modelleeroplossing (i.e. in de modelstructuur) ten behoeve van 
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een nieuw gewas steunt op een stapsgewijze benadering die de uitwisseling van 

concepten tussen de drie vakgebieden die bij de ontwikkeling van gewasmodellen 

betrokken zijn - landbouwkunde, wiskunde en software engineering - ondersteunt.  

We hebben deze benadering geïllustreerd met een casestudy waarin een 

gewasgroeimodel voor tarwe getransformeerd werd in een model voor erwt 

(Hoofdstuk 5). De veranderingen kunnen worden aangebracht op twee niveaus. Ten 

eerste kunnen de modules worden aangepast, wat nieuwe modules oplevert die in de 

modulenbibliotheek worden opgenomen. De aanpassingen bestaan uit: (i) 

veranderingen in de waarden van parameters, en/of (ii) veranderingen in 

vergelijkingen. In onze casestudy hebben we bijvoorbeeld aangenomen dat erwt een 

lager vermogen tot stikstofopname heeft dan tarwe. Daarom hebben we de module 

voor stikstofbehoefte, die aanvankelijk voor tarwe ontwikkeld was, aangepast door er 

een nieuwe vergelijking in op te nemen die de stikstofopname van een gewas uit de 

bodem beperkt. Ten tweede kan de gehele modelleeroplossing worden veranderd. In 

onze casestudy hebben we twee nieuwe modules gecreëerd die aan de oorspronkelijk 

modelleeroplossing werden toegevoegd, namelijk een module voor de fenologie van 

gewassen met een onbepaalde groeiwijze en een module voor stikstofbinding. 

Daarnaast hebben we de module voor stikstofstress uit de oorspronkelijke 

modelleeroplossing verwijderd. We concludeerden dat de benadering van het opnieuw 

tot één geheel bijeen brengen van bestaande modules tot een nieuw gewasgroeimodel 

door gebruik te maken van een gewasmodelleringsraamwerk leidt tot: (i) de integratie 

van kennis uit verschillende vakgebieden rond een modelleringsdoel, (ii) de 

combinatie van nieuwe kennis (van deskundigen) met bestaande modellen zonder ‘het 

wiel opnieuw uit te vinden’, en (iii) een efficiënte communicatie met de gebruiker van 

dit stuk gereedschap. Wij hebben aangetoond dat door het gebruik van het 

gewasmodelleringsraamwerk en van conceptuele modellering (gebruik makend van 

visuele gereedschappen) wij op eenvoudige wijze de ene modelleeroplossing konden 

transformeren in de andere, bouwend op de gecombineerde expertise uit de 

verschillende vakgebieden. 

 

Over het geheel genomen toont dit proefschrift de voornaamste voordelen, maar ook 

de beperkingen, van de ontwikkeling en het gebruik van 

gewasmodelleringsraamwerken. Ik heb geïllustreerd dat om modulariteit en 

flexibiliteit in gewasmodellering in te brengen het noodzakelijk is om: (i) het systeem 

te definiëren in termen van de basisprocessen van gewasgroei en -ontwikkeling, (ii) de 

beschikking te hebben over verschillende procesbeschrijvingen (modules) voor elk 

proces, (iii) kennis van deskundigen expliciet te formuleren om consistentie te 
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waarborgen in de selectie van modules voor een specifieke toepassing, en (iv) 

ontwerppatronen te gebruiken (i.e. strategy- en abstract factory-ontwerppatronen). Ik 

heb voorts bediscussieerd dat een gewasmodelleerraamwerk kan worden gebruikt 

voor: (i) synthese en integratie van resultaten van fundamenteel onderzoek, (ii) 

strategische planning om beleid te evalueren, en/of (iii) het beoordelen van 

beheersmaatregelen. Het is daarom noodzakelijk om duidelijk de doelstellingen van 

alle betrokken partners vast te stellen voordat de ontwikkeling van een nieuw stuk 

gereedschap ter hand wordt genomen. Tevens heb ik benadrukt dat, vanwege de als 

gevolg van specialisatie steeds moeilijker wordende communicatie tussen software 

engineers en gebruikers van het raamwerk, de gewasmodelleur als bemiddelaar tussen 

deze twee groepen zou moeten optreden. Ten slotte heb ik betoogd dat het gebruik 

van een gewasmodelleringsraamwerk kan bijdragen aan de verdere ontwikkeling van 

gewasmodellering (Hoofdstuk 6). Het kan niet alleen het juiste hergebruik van 

modellen voor geïntegreerde studies ondersteunen, maar het kan ook leiden tot 

verbeterde inzichten in de gewasfysiologie, omdat het het testen van alternatieve 

hypothesen vergemakkelijkt. De combinatie van software engineering technieken en 

principes van systeemanalyse ondersteunt de selectie van gewasmodellen die aan de 

simulatiedoelen van de gebruikers voldoen. Ik heb ook benadrukt dat de modules en 

de besluitvormingsprocessen in het modelleren beter gedocumenteerd moeten 

worden. Deze conclusies ondersteunen het feit dat, terwijl wij gebruik maken van de 

nieuwste ontwikkelingen op het gebied van software engineering technieken, de 

principes van de systeemanalyse voor de gewasmodellering voortdurend van belang 

blijven: “gewasmodellering: van conceptueel modelleren naar software engineering, en 

terug”.    
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Les modèles de cultures sont de plus en plus utilisés dans un large éventail de 

conditions climatiques et pédologiques, pour divers types de systèmes de culture (par 

exemple, intensif vs. extensif) et à de nombreuses échelles (de la parcelle au globe). En 

réponse à cette diversité d’utilisation, le domaine de la modélisation des cultures a 

récemment adopté les pratiques du génie logiciel, créant flexibilité et modularité dans 

les plateformes de simulation pour offrir des options adaptées à chaque type 

d’utilisation en terme de processus biophysiques simulés, de variables d’intérêt et de 

mode de conduite simulés. Ces plateformes facilitent le changement de la structure des 

modèles en fonction de l’objectif de simulation, des niveaux de productions (différent 

environnements et pratiques agricoles), de l’échelle et de la disponibilité des données. 

Le travail présenté dans cette thèse traite de la gestion de la flexibilité de ces 

plateformes de simulation (Chapitre 1). On montre que le principal enjeu pour 

valoriser cette flexibilité est de réconcilier les connaissances agronomiques avec les 

pratiques du génie logiciel. La combinaison de ces deux disciplines nécessite (i) de 

collecter différent modules de croissance et développement de la plante, illustratif de 

différent processus physiologiques, pour constituer une bibliothèque de modules 

échangeables, et (ii) d’élaborer un ensemble d’approches qui facilitent l’assemblage des 

modules appropriés pour un objectif donné de simulation, constituant une 

bibliothèque d’assemblages de modules. L’aboutissement principal de cette thèse est 

une plateforme contenant un ensemble d’approches pour construire des modèles de 

façon guidée (c’est à dire, sélectionner les modules appropriés pour une structure 

particulière de modèle, correspondant à un objectif de simulation spécifique). 

 

La première condition pour construire la plateforme est de créer les bibliothèques. La 

construction de ces bibliothèques demande l’adoption des nouvelles techniques de 

génie logiciel. Bien que des approches comparables aient été décrites dans la 

littérature, la nouveauté de l'approche décrite dans le chapitre 2 réside dans la relation 

entre la conception du logiciel qui fournit modularité à la plateforme de simulation, et 

la définition de critères qui facilitent l’assemblage des modules. La relation est obtenue 

par l’utilisation de deux patrons de conception (à savoir des solutions standard pour 

répondre à des problèmes d'architecture et de conception des logiciels). Le patron de 

conception Stratégie permet de construire une bibliothèque de modules, alors que le 

patron de conception Fabrique Abstraite permet de créer une bibliothèque de 

simulateurs de cultures (assemblage de modules) ayant une structure de modèle 

spécifique (aussi appelée “solution de modélisation”), structure déterminée en 

fonction de critères d'assemblage des modules. Par cette dernière voie de conception 

de logiciel, nous avons obtenu un logiciel d’aide à la modélisation CROSPAL (CROp 

Simulator: Picking and Assembling Libraries). 
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L’utilisation de CROSPAL est illustrée pour la modélisation de la phénologie des 

cultures (Chapitre 2). Avec cet exemple, nous démontrons comment un agronome 

(utilisateur potentiel de CROSPAL) peut collaborer avec un informaticien, pour 

définir le moment approprié pour l’application de pesticides sur le blé. Cette 

collaboration a permis d’inclure dans CROSPAL, un nouveau module représentant 

une approche de modélisation de la phénologie par le rythme d’apparition des feuilles. 

Cette inclusion dans la bibliothèque des modules a permis de définir un nouveau 

modèle de culture simulant le nombre de feuilles, information essentielle pour 

déterminer quand appliquer le pesticide. L’adoption de cette démarche d’ingénierie 

logicielle (basée sur des patrons de conception) permet d’analyser la flexibilité de la 

plateforme de simulation tout en intégrant les connaissances d’experts sur les 

processus biophysiques simulés. Cependant, nous soulignons aussi qu’il est nécessaire 

d’utiliser et d’évaluer CROSPAL de manière plus approfondie, notamment sur les 

questions actuelles de la modélisation des cultures comme, par exemple, la 

compétition pour les ressources, ou les effets du stress azoté sur la croissance des 

plantes. 

 

Pour définir correctement les solutions de modélisation (bibliothèque des simulateurs 

de cultures), il faut formuler explicitement le domaine de validité, et les hypothèses 

sous-jacentes des différentes approches de modélisations (bibliothèque de modules). 

Le chapitre 3 aborde ces questions et présente une méthodologie systématique 

permettant de définir explicitement les principes représentés dans chaque module. 

Cette méthodologie est élaborée comme un protocole pour la sélection et l’évaluation 

systématique de la structure du modèle de culture (solution de modélisation). Le 

protocole comporte trois étapes principales: (i) la sélection de la solution de 

modélisation, (ii) la calibration de la solution, et (iii) l’évaluation et l’amélioration de 

cette solution. Le protocole présenté s’appuie sur (i) une analyse détaillée des 

différentes approches de modélisation (modules) au cours de l’étape 1, débouchant sur  

la sélection de modules, et sur (ii) la façon d’assembler les modules pour créer une 

nouvelle solution de modélisation mieux adaptée à l’objectif de simulation (étape 3: 

amélioration de la solution). 

En utilisant ce protocole pour simuler la réponse de la croissance des cultures à 

différents modes de gestion de l’azote (Chapitre 3), nous avons pu déterminer 

l’importance de la documentation (i) des différents modules inclus dans la 

bibliothèque de modules et (ii) du processus de décision de modélisation dans le but 

de clarifier les sources d’incertitudes liées à la sélection des modules ou aux hypothèses 

sous-jacentes des modules. Par exemple, dans notre étude de cas, nous avons 

explicitement formulé les hypothèses du module représentant le processus de 
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minéralisation de l’azote, et plus particulièrement nous avons identifié l’importance de 

la contribution de l'activité microbienne du sol dans l'assimilation de l'azote total pour 

le sol étudié (ayant une haute teneur en matière organique). Nous avons aussi 

démontré que l’utilisation du protocole, en lien avec une plateforme de simulation 

telle que celle présentée au chapitre 2, favorise la collecte de différentes approches de 

modélisation au sein d’un même outil, plutôt que leur dispersion dans une multitude 

de modèles de cultures. En effet, dans le chapitre 3, nous avons pu réutiliser un 

module existant de l’azote du sol comprenant une description détaillée de l’activité 

microbienne du sol, pour obtenir une solution de modélisation plus appropriée pour 

notre objectif de modélisation.  

 

Collectant différentes approches de modélisation (modules) pour les processus de 

croissance de la culture, nous avons identifié différents niveaux de détail incorporé au 

sein de ces modèles, reflet de l’objectif initial des créateurs du modèle. Les bonnes 

pratiques de modélisation imposent de définir un modèle aussi simple que possible, 

mais de garder assez d’informations sur les processus principaux déterminant le 

système. Par conséquent, nous avons utilisé les principes présentés précédemment 

pour étudier l’effet du niveau de détail dans un modèle de cultures développé et testé à 

l’échelle de la parcelle, pour simuler les rendements à plus grandes échelles spatiales, à 

savoir l’échelle régionale, nationale voire globale (Chapitre 4).Nous avons centré notre 

analyse sur les processus clés de croissance de la culture, à savoir l’expansion de la 

surface foliaire et la production de biomasse, sous différents régimes de température et 

radiation, pour déterminer l’importance relative du niveau de détail pour simuler le 

rendement potentiel. Nous avons montré que si nous utilisions une valeur constante 

pour le paramètre d’efficience d’utilisation de la radiation à grande échelle, nous 

risquions de trop simplifier le processus de production de biomasse, ignorant les effets 

de hautes températures et de rayonnements élevés sur ce processus. Non seulement les 

effets de la température et le rayonnement doivent être considérés sur une base 

quotidienne (quand on utilise l'approche détaillée de la photosynthèse selon 

Farquhar), mais aussi sur une base saisonnière lorsque l’on utilise une approche moins 

détaillée du processus, en ajustant le paramètre RUE pour la température et de 

rayonnement. Nous avons établi une relation linéaire entre le paramètre RUE calculé 

sur la saison d’une part, et la température saisonnière moyenne et l’accumulation du 

rayonnement au cours de la saison, d’autre part. Cette relation peut être utilisée pour 

la poursuite du développement de modèles de culture simple à l'échelle globale. 

De plus, les deux approches étudiées sur l’interception de la lumière (l’une basée sur la 

température et la production de biomasse de feuilles dépendante de la phénologie, 

l’autre basée sur la phénologie uniquement) fournissent des différences significatives 
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en terme de rendements simulés, et permettent de discuter des différences de 

rendements due à la variabilité climatique (Chapitre 4). Après avoir précisé les 

hypothèses sous-jacentes du paramètre représentant le début de la sénescence des 

feuilles dans les deux approches simulant la dynamique de l’indice foliaire (c.-à-d. 

interception de la lumière), nous avons conclu qu'une meilleure compréhension du 

processus de sénescence des feuilles est encore nécessaire. La mauvaise représentation 

de la dynamique de l’indice foliaire peut entraîner d’importantes sous ou 

surestimation des rendements. Ces conclusions soulignent qu’une attention 

particulière est nécessaire lors de la sélection de l’approche de modélisation définissant 

l’interception de la lumière pour des applications des modèles de culture à grande 

échelle, en tenant compte des données disponibles pour le paramétrage et l’évaluation 

á ces échelles. 

 

La sélection des modules représentant la croissance et le développement des cultures 

est également liée au type de culture considérée (céréales vs. légumineuses, annuelles 

vs. pérennes, tempérées vs. tropicales). L’ajout, le retrait ou le changement de modules 

d’une solution de modélisation existante (modèle de cultures) est facilité par 

l’utilisation d’une plateforme de simulation. Dans le chapitre 5, nous exposons une 

procédure basée sur une plateforme de simulation et les connaissances d’un expert en 

écophysiologie des cultures, permettant de développer un nouveau modèle de culture 

(solution de modélisation) à partir d’une solution déjà existante (ce que nous appelons 

“ré-assembler” un modèle). Le succès de la modification de la solution de modélisation 

(structure du modèle) repose sur une approche par étape, permettant d’échanger des 

notions entre trois disciplines impliquées dans le développement du modèle 

(agronomie, mathématiques et génie du logiciel). Nous avons illustré cette approche 

avec une étude de cas construisant un modèle de culture de pois à partir d’un modèle 

de culture de blé.  

Les changements peuvent se produire à deux niveaux. D'abord, les modules peuvent 

être modifiés, entraînant de nouveaux modules à inclure dans la bibliothèque de 

modules. Ces modifications comprennent: (i) les changements dans les valeurs des 

paramètres, et (ii) les changements dans les équations. Par exemple, pour notre étude 

de cas, nous avons supposé que le pois a un potentiel d'absorption d'azote plus faible 

que le blé. Ainsi, nous avons modifié le module de la demande en azote des cultures, 

initialement développé pour le blé en incluant une nouvelle équation pour limiter 

l'absorption de la plante d'azote du sol. Deuxièmement la solution de modélisation 

elle-même peut être modifiée. Dans notre étude de cas (Chapitre 5) nous avons créé 

deux nouveaux modules à ajouter à la solution de modélisation initiale, à savoir un 

module de phénologie de plante indéterminée et un module de fixation de l'azote. 
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Nous avons également supprimé le module de stress en azote. La structure globale du 

modèle a été ainsi été notablement modifiée par rapport au modèle de culture du blé. 

Nous avons conclu que l’utilisation de l’approche pour le ré-assemblage d’un nouveau 

modèle a permis (i) l'intégration des différentes disciplines autour d'un même objectif 

de modélisation, (ii) une combinaison de nouvelles connaissances avec des modèles 

existants, sans “réinventer la roue”, et (iii) une communication efficace avec 

l'utilisateur de l'outil aussi bien qu’avec le concepteur du modèle initial et qu’avec 

l’expert en écophysiologie. Nous avons démontré que l’on pouvait facilement passer 

d’une solution de modélisation à une autre, grâce à l'utilisation d’une plateforme de 

simulation et la modélisation conceptuelle (à l'aide d'outils visuels), s’appuyant sur 

l’expertise de chaque discipline. 

 

Dans l'ensemble, cette thèse a montré les principaux avantages, mais aussi les limites, 

du développement et de l’utilisation de plateformes de simulation. Il est apparu que 

pour inclure modularité et flexibilité dans la modélisation des cultures, nous avions 

besoin (i) de définir le système biophysique en référence aux processus représentatif 

de la croissance et du développement des cultures, (ii) de fournir différentes approches 

de modélisation pour chaque processus (modules), (iii) de formuler explicitement les 

connaissances d'experts pour assurer la cohérence dans la sélection des approches de 

modélisation pour une application spécifique, et (iv) d'utiliser des patrons de 

conceptions(Stratégie et Fabrique abstraite) pour fournir la flexibilité à la plateforme 

de simulation. Nous avons montré qu’une plateforme de simulation de cultures 

pouvait être utilisée (i) pour la synthèse et l’intégration des connaissances issues de la 

recherche sur le fonctionnement des cultures, (ii) pour l’évaluation des politiques 

agricoles, ou (iii) pour l'évaluation de pratiques agricoles. Par conséquent, il est 

nécessaire de définir clairement l'objectif, entre les différents partenaires concernés, 

avant de commencer le développement de nouvelle plateforme de simulation ou de la 

détermination de la solution de modélisation au sein de plateforme existante. 

Faisant le constat que les modélisateurs impliqués dans le développement des 

plateformes et les agronomes impliqués dans l’expérimentation s’éloignent de plus en 

plus, j’ai souligné l’importance du rôle du modélisateur des cultures en tant que 

médiateur entre les développeurs et les utilisateurs finaux. Je discute ainsi de la place 

que peut avoir une plateforme de simulation de cultures dans les développements 

futurs en modélisation des cultures (Chapitre 6). Non seulement ce type de plateforme 

peut faciliter la réutilisation des modèles existants au plan international, pour des 

études d'évaluation intégrée des systèmes agricoles, mais elles peuvent favoriser aussi 

une meilleure compréhension du fonctionnement des cultures en testant diverses 

hypothèses. La combinaison des techniques de génie logiciel et des principes de 
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l'analyse des systèmes assiste la sélection de modèles de cultures correspondant aux 

objectifs de simulation.  

Les conclusions de cette thèse confirment le rôle essentiel de l'analyse des systèmes 

dans le domaine de la modélisation des cultures, en combinaison avec des avancées 

dans les techniques de génie logiciel: “la modélisation des cultures: de la modélisation 

conceptuelle des systèmes biophysiques au génie logiciel et réciproquement”. 
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Whenever the definition was appropriate for this thesisappropriate for this thesisappropriate for this thesisappropriate for this thesis, items in the glossary are defined 
using/summarizing merriam Webster online (http://www.merriam-webster.com) and/or 
Wikipedia definitions (http://en.wikipedia.org/wiki/Main_Page). 

    
Abstract classAbstract classAbstract classAbstract class: a set of operations which all objects that implement the protocol must 
support.    

AlgorithmAlgorithmAlgorithmAlgorithm: a set of coherent equations to solve a specific problem. 

APES:APES:APES:APES: Agricultural Production and Externalities Simulator; a crop modelling 
framework developed within the framework of the SEAMLESS project. 
APSIM: APSIM: APSIM: APSIM: Agricultural Production Systems sIMulator; a modular modelling framework 
that has been developed by APSRU (Agricultural Production Systems Research Unit) 
in Australia. 

BeamBeamBeamBeam: a structural element, i.e. part supporting the framework. 

Class: Class: Class: Class: a    set of objects having the same behaviour (but typically differing in state), or a 
template defining such a set.    

ComponentComponentComponentComponent: a piece of software representing plant and/or soil processes that is used 
to compose a cropping system model (e.g. crop, light interception, water uptake, soil 
water, or soil C and N components in APES). 

Conceptual modelConceptual modelConceptual modelConceptual model: mental model that allows us to understand and simplify the 
problem 

CROSPCROSPCROSPCROSPAL: AL: AL: AL: CROp Simulator: Picking and Assembling Libraries; a decision-making 
software application for crop modelling.    

Design pattern:Design pattern:Design pattern:Design pattern: a general reusable solution to a commonly occurring problem in 
software design. 

DeveloperDeveloperDeveloperDeveloper: a person responsible for the implementation of the model.        

DSSAT:DSSAT:DSSAT:DSSAT: Decision Support System for Agrotechnology Transfer; a collection of 
independent programs that operate together, crop simulation models are at its centre. 

EquationEquationEquationEquation: a mathematical statement. 

Factory design patternFactory design patternFactory design patternFactory design pattern: a software design that provides an interface for creating 
families of related or interdependent objects without specifying the concrete classes. 

FlexibilityFlexibilityFlexibilityFlexibility: the quality of being easily adaptable. 

FrameworkFrameworkFrameworkFramework: a structure supporting or containing something. 

GCROP:GCROP:GCROP:GCROP: a generic crop model template; the APSIM generic crop module designed to 
implement a process-oriented approach in crop modelling. 

GranularityGranularityGranularityGranularity: the extent to which a system is broken down into small parts.        

GUI:GUI:GUI:GUI: Graphical User Interface. 

InterfaceInterfaceInterfaceInterface: a set of named operations that can be invoked by clients. 
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ModellerModellerModellerModeller: a person responsible for the actual development of the model. 

Modelling solution (MS)Modelling solution (MS)Modelling solution (MS)Modelling solution (MS): a combination of components to construct one effective 
simulation model. 

ModularityModularityModularityModularity: the property of a system to be made up of relatively independent, but 
interlocking components or parts.  

ModuleModuleModuleModule: a conceptualization of a specific crop or soil process implemented within a 
component (e.g. radiation use efficiency or photosynthesis for biomass production). 

MS: MS: MS: MS: Modelling Solution; defined within this thesis and in this glossary. 

ObjectObjectObjectObject: an instance (that is, an actual example) of a class. An object is a self-contained 
entity that consists of both data and procedures to manipulate the data. 

ParameterParameterParameterParameter: a value that determines the characteristics or behaviour of something. 

SEAMLESS:SEAMLESS:SEAMLESS:SEAMLESS: System for Environmental and Agricultural Modelling; Linking 
European Science and Society; European project aiming at the development of a 
component-based framework for agricultural systems.    

Strategy design patternStrategy design patternStrategy design patternStrategy design pattern: a software design that defines a family of algorithms, 
encapsulates each one, and makes them interchangeable. 

UserUserUserUser: a person responsible for the use of the model for a specific objective. 

WrapperWrapperWrapperWrapper: a class that serves to mediate access to another. 

 

SynonymsSynonymsSynonymsSynonyms    
Basic crop process = module = strategy = modelling approach 
Crop model = modelling solution = factory = crop simulator 
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