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Abstract 

Genome-Wide Evaluation of Populations 

 

A large amount of genetic marker data is now available in many species.  This thesis 

investigated the use of this type of data to estimate genetic values in both animal and 

human populations.  Two different general approaches are followed.  The first approach 

aimed at detecting quantitative trait loci (QTL) associated with phenotypic traits in dairy 

cattle.  A large number of QTL affecting different traits were detected using both a linkage 

analysis variance component method, which found 102 potential QTL, and a linkage 

disequilibrium regression method, which resulted in 144 SNP associations.  The remainder 

of this thesis investigated a second general approach, called genome-wide evaluation 

(GWE), which allows us to estimate the effects of all QTL affecting a particular trait 

simultaneously and to predict breeding values by summing the effects of all loci.  

Deterministic predictions of the accuracy of a GWE least squares approach were derived 

and tested using simulated data.  The factors that affect this accuracy and their relationships 

were clearly defined.  Although many GWE methods exist, they can be broadly grouped 

into variable and non-variable selection methods.  Variable selection methods, such as 

BayesB, attempt to identify a subset of SNP from which to estimate breeding value, 

whereas non-variable selection methods, such as genomic best linear unbiased prediction 

(GBLUP), assume all SNP have an effect.  Two GWE methods representative of both 

groups, BayesB and GBLUP, were compared for varying effective population sizes and 

numbers of QTL affecting the trait.  Population and trait genetic architecture were found to 

have a large influence on the relative performance of methods.  The variable selection 

method was only found to be advantageous when the number of QTL was less than the 

number of independent chromosome segments.  In addition, deterministic formulae derived 

for the least squares approach were extended to be predictive of the accuracies of both 

BayesB and GBLUP.  Predictions for GBLUP accuracy were tested using real dairy cattle 

data and were found to be generally accurate.  In addition, the reasons why selection on 

genomic breeding values is expected to result in lower inbreeding rates per generation than 



 

traditional genetic evaluation methods, when compared at the same rate of genetic gain, are 

summarised.  Furthermore, a chromosomal phasing algorithm was developed to phase and 

impute missing genotypes in complex pedigrees.  The algorithm was tested in varying 

depths of pedigree in simulated data and was able to impute a high percentage of genotypes 

correctly.  Imputation of missing genotypes could be used to increase sample sizes for 

GWE.  In addition, a method was developed to estimate the proportion of genetic variation 

tagged by a particular SNP chip and this method was used to estimate the proportion of 

variation tagged by the chip currently in use in dairy cattle.  Finally, the expected impact of 

sequence data on GWE and issues related to implementation of GWE were discussed. 
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Traditional genetic evaluation methods, such as best linear unbiased prediction, use 

phenotypic data and pedigrees to estimate breeding values.  Additional data sources, such 

as molecular information, can be incorporated into these approaches with the aim of 

increasing genetic gain.  Development of methods to include blood group data (Neimann-

Sorensen & Robertson 1961) or DNA marker data (Smith 1967) in animal breeding actually 

preceded the discovery of genetic markers.  Once genetic markers, such as restriction 

fragment length polymorphisms, microsatellites and single nucleotide polymorphisms 

(SNP) were found, further development of statistical methods to detect quantitative trait 

loci (QTL) followed (e.g. Haley & Knott 1992; Georges et al. 1995; George et al. 2000; 

Meuwissen & Goddard 2000; Knott & Haley 2000; Meuwissen et al. 2002; Grapes et al. 

2004).   

The initial expectation that QTL will be widely used in animal breeding programs has not 

fully materialised because of a number of implementation challenges.  Early marker maps 

were very sparse and therefore QTL could not be fine-mapped.  Therefore, using them in 

marker-assisted breeding schemes required the determination of the phase between markers 

and QTL.  Secondly, effects of significant QTL tended to be overestimated (e.g. Beavis 

1998; Goring et al. 2001).  This meant that effects needed to be re-estimated in independent 

population samples before using QTL information in breeding schemes.  Studies also 

turned up false positives and validation studies were initiated to attempt to identify true 

QTL.  Unfortunately many QTL could not be consistently validated in independent 

samples, likely as a result of studies being underpowered.  The incorporation of QTL into 

breeding programs has been further complicated by the fact that the genetic variance 

accounted for by a QTL must be properly weighted with the polygenic variance.  

Furthermore, genotyping was expensive and collectively these issues have mainly 

prohibited widespread implementation of marker-assisted selection.  Nevertheless, some 

causative mutations have been identified (e.g. Grisart et al. 2004; Cohen-Zinder et al. 2005; 

Clop et al. 2006) and there are breeding schemes which have successfully applied marker-

assisted selection in quantitative traits (e.g. Guillaume et al. 2008). 

Sequencing of various livestock genomes has accelerated the development of high 

throughput genotyping and SNP discovery.  These developments have given rise to chips 
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with thousands of SNP at reducing cost.  The density of these SNP chips is such that 

markers can now be expected to be in population-wide linkage disequilibrium (LD) with 

QTL, which allows for easier use of marker data.   

The availability of dense marker maps has opened new opportunities for genetic evaluation 

of individuals with high accuracy.  Meuwissen et al. (2001) proposed a genetic evaluation 

method called genome-wide evaluation (GWE) and its wide-spread use depended on dense 

marker maps being available.  Similarly, wide-spread application of genetic markers in 

animal breeding also seems to depend on effective and, preferably, simple methodology 

being available.  Genome-wide evaluation fulfils that role and its beauty is its simplicity.  

Rather than concentrating on finding particular QTL of moderate to large effect, GWE 

estimates effects for all markers or haplotypes in the genome.  These effects are then 

summed to a breeding value for an individual.  It is important that each QTL is in 

significant LD with at least one marker, so that all of the genetic variance is accounted for.  

Most GWE methods estimate marker effects simultaneously and significance thresholds are 

generally not applied.  In addition, marker effects are regressed towards the mean 

depending on a variance parameter which can differ across methods.  These features reduce 

the overestimation of effects.  The application of marker information pre-GWE required at 

least three steps, such as detecting the QTL, confirming them and re-estimating effects, and 

finally incorporating them into animal breeding programs to estimate breeding values.  In 

contrast, GWE uses one step in which marker effects and breeding values are estimated.     

There are a number of advantages of GWE over classic genetic evaluation methods.  

Assuming that enough phenotypes and genotypes are available for estimation of marker 

effects, breeding value accuracies from GWE can be substantially higher than those 

obtained with traditional approaches (Chapter 3 this thesis; Goddard 2008).  The main 

reason for this increase in accuracy is that with molecular information the Mendelian 

sampling term can be better quantified, though the accuracy of genomic breeding values is 

also, in part, due to relationships among individuals in the sample (Habier et al. 2007).  The 

reliance of GWE on the Mendelian sampling term is also the reason why lower inbreeding 

rates per generation are expected when compared to best linear unbiased prediction 

(Chapter 6 this thesis; Woolliams et al. 2002).  In GWE, marker effects are estimated in one 
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population sample of individuals with phenotypes and genotypes.  Once effects have been 

estimated, breeding values can be predicted for animals only genotyped from the same 

population with only genotypes.  Being able to calculate breeding values for juveniles 

without phenotypes or progeny can potentially shorten generation intervals substantially, 

leading to even greater annual genetic gains.  Furthermore, GWE can potentially be applied 

in un-pedigreed populations as, in principle, a pedigree is not required.  On the other hand, 

genotyping and, in some cases, phenotyping can be costly especially if a large number of 

genotypes and phenotypes is required for estimating effects, as it is the case for traits of low 

heritability.  Thus, it may be difficult to justify GWE in populations with narrow profit 

margins.  However, genotyping costs are expected to continue to decline in the future and 

wide-spread application of GWE may be possible.  The large potential impact on genetic 

gain of GWE may also lead to substantial changes in the design of breeding programs. 

Genome-wide evaluation research is, in many ways, still in its infancy.  Several studies 

have confirmed the potential of GWE and each study reveals another piece of the puzzle.  

This thesis adds more pieces to this puzzle. 

 

 

Outline of Thesis 

The overall aim of this thesis was to investigate the use of genomic marker data in genetic 

evaluation of populations.  The thesis deals with both QTL detection and GWE methods.  

However, the focus is on GWE after Chapter 2 and breeding value accuracy is the unifying 

theme among these remaining chapters. 

 

Chapter 2 is a QTL detection study in production and functional traits of Holstein cattle 

using both a linkage analysis variance component method and an association approach.  A 

10K Bovine SNP chip is used, and numerous potential QTL and significant SNP 

associations are detected.   

Chapter 3 derives deterministic equations for the prediction of accuracy for continuous and 

for dichotomous traits both in population and case control studies using a least squares 
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approach.  The equations are extensively tested using stochastic simulation and the factors 

affecting GWE accuracy are identified. 

Chapter 4 investigates the impact of population genomic structure and trait genetic 

architecture on GWE methods.  A variable selection (BayesB) and a non-variable selection 

method (GBLUP) are compared at three different effective population sizes and a wide 

range of QTL affecting the trait.  Furthermore, deterministic equations of Chapter 3 are 

extended to predict the accuracy of these two methods. 

Chapter 5 compares predictions from Chapter 3 to accuracies achieved in real Holstein and 

Jersey dairy cattle populations both in the USA and Australia and also to predictions from a 

formula proposed by Goddard (2008).  Both deterministic predictions match real accuracies 

generally well, though equations may need to be extended to account for the proportion of 

the genetic variance captured by a SNP chip, when predicting the accuracy in a denser SNP 

chip. 

Chapter 6 uses theoretical concepts on inbreeding established from traditional pedigree-

based methods to extrapolate what inbreeding rates are expected from selection using 

GWE.  It concludes that selecting on genomic breeding values will result in lower rates of 

inbreeding per generation when compared to traditional best linear unbiased prediction at 

the same rate of genetic gain. 

Chapter 7 describes a chromosomal phasing algorithm computationally efficient for 

imputing missing genotypes.  The approach is tested in simulated data with varying number 

of generations and with three different proportions of loci missing.  The performance of the 

algorithm is very good when more than two generations of individuals are available.   

Chapter 8 is the General Discussion which raises four main topics.  First, a method is 

presented to estimate the proportion of the total genetic variation tagged by current SNP 

chip, and this proportion is estimated for the 50K Illumina Bovine chip using US Holstein 

data.  Secondly, GWE methods are discussed in terms of their performance according to 

different trait and population genetic architectures.  The third topic is the impact that 

sequence data is likely to have on GWE.  Finally issues related to implementation are 

discussed. 
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ABSTRACT 

Quantitative trait loci (QTL) detection bovine genome scans were performed via variance 

component linkage analysis (VCLA) and linkage disequilibrium single locus regression 

(LDRM).  Four hundred and eighty four Holstein sires, of which 427 were from 10 

grandsire families, were genotyped for 9,919 single nucleotide polymorphisms (SNP) using 

the Affymetrix MegAllele GeneChip Bovine Mapping 10K SNP array.  A hybrid of the 

granddaughter and selective genotyping designs was applied.  Four thousand eight hundred 

fifty six of the 9,919 SNP were located to chromosomes in base-pairs and formed the basis 

for the analyses.  The mean polymorphism information content of the SNP was 0.25. The 

SNP cM position was interpolated from their base-pair position using a microsatellite 

framework map.  Estimated breeding values were used as observations and the following 

traits were analyzed: 305-day lactation milk, fat and protein yield, somatic cell score, herd 

life, interval of calving to first service, and age at first service.  Both approaches were 

effective in detecting potential QTL with a dense SNP map.  The VCLA analysis detected 

102 potential QTL, while LDRM analysis found 144 significant SNP associations after 

accounting for a 5% false discovery rate.  Twenty potential QTL and 49 significant SNP 

associations were in close proximity to QTL cited in the literature.  Both methods found 

significant regions on Bos taurus autosome (BTA) 3, 5, and 16 for milk yield, BTA 14 and 

19 for fat yield, BTA 1, 3, 16 and 28 for protein yield, BTA 2 and 13 for calving to first 

service, and BTA 14 for age at first service.  LDRM was well suited for a first genome scan 

due to its approximately eight times lower computational demands.  Further fine mapping 

should be applied on the chromosomal regions of interest found in this study. 

 

INTRODUCTION 

Traditional methods of genetic improvement in livestock species have relied solely on 

phenotype and pedigree information.  The discovery of genetic markers has made it 

possible to detect regions of the genome that are significantly associated with differences in 

the expression of a phenotype such as milk production, so called quantitative trait loci 

(QTL).  Genetic response can be improved by including the QTL in marker assisted 

selection (MAS), which is a method of selection that makes use of phenotypic, genotypic 



 
 

Holstein Cattle Genome Scan 

 19

and pedigree data (Smith 1967).  In MAS, selection does not occur on the QTL directly, 

unless the genetic marker is the causal mutation, but on the marker that is linked to the QTL 

through linkage disequilibrium (LD).  

In the past, genotyping many markers was expensive and therefore specific experimental 

designs were developed to reduce the impact of having fewer markers on statistical power.  

The granddaughter design in dairy cattle made use of the high sire estimated breeding value 

(EBV) accuracies due to progeny tests to maximize power while lowering the number of 

genotyped animals (Weller et al. 1990). However, more recently, high throughput methods 

have been developed to genotype markers such as single nucleotide polymorphisms (SNP) 

which have significantly reduced the cost.  It is currently possible to genotype individuals 

for 10,000, 50,000 or more SNP with a GeneChip array and the bovine genome can be 

covered with a dense SNP map to potentially increase the power of association studies.   

The QTL detection studies performed to date have found a large number of QTL in dairy 

cattle for traits of medium to high heritability, such as milk yield and composition traits 

(e.g. Khatkar et al. 2004; Polineni et al. 2006).  Information on QTL that are associated 

with conformation and functional traits is becoming more readily available (e.g. Schrooten 

et al. 2000; Ashwell et al. 2005) and traits of lower heritability, such as fertility traits, have 

been successfully mapped for QTL (e.g. Boichard et al. 2003; Kuhn et al. 2003).  

The advent of high throughput genotyping technology gives hope to finding more QTL for 

functional and fertility traits where heritability is usually low. The aim of this study was to 

use the higher power gained from a dense SNP map and perform scans of the Bos taurus 

genome to detect potential QTL in traits of medium to low heritability via variance 

component linkage analysis (VCLA) (George et al. 2000) and linkage disequilibrium single 

locus regression (LDRM) (Grapes et al. 2004). 

 

MATERIALS AND METHODS 

Experimental Design.  The experimental design was a hybrid of the granddaughter (Weller 

et al. 1990) and the selective genotyping (Darvasi & Soller 1992) designs.  Ten Holstein 

grandsires with sufficiently large groups of progeny tested sons in Canada were chosen.  

From these ten families, the lowest and highest four to five sons were chosen according to 
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their EBV for each of the following four traits (305-day lactation protein yield, mammary 

system, somatic cell score and daughter fertility). Some bulls overlapped across traits, so 

that the number of bulls resulting from this process was 333, for a mean of 33 sons per 

grandsire.  In addition, 88 grandsons from six of the 10 grandsires, 46 potential sires of 

sons, and 17 Holstein bulls imported from Europe were added.  In total 484 bulls were 

genotyped and 421 of the bulls were part of the 10 core families. Up to 6 generations of 

genotyped sires were represented in the dataset and the mean inbreeding coefficient of all 

genotyped bulls was 5.9%. All the 484 sampled bulls contributed genetically to the current 

Canadian Holstein cow population. 

The dataset was checked for stratification between the European and North American bulls 

by tracing back the pedigrees and by calculating allele frequency correlations between the 

17 European and a random sample of 17 North American bulls in the dataset for all the 

SNP that showed significant associations with any of the traits analyzed (5000 replicates).  

The expected correlation of allele frequencies within only the North American bulls was 

also calculated from 5000 random samples of two groups of 17 North American bulls.  

 

Observations.  The observations used were EBVs obtained from the Canadian Dairy 

Network, Guelph, Ontario from the May 2006 genetic evaluation (Van Doormaal 2007).  

Multiple Across Country Evaluation was used, if needed and available, according to the 

minimum criteria for official bull proofs of the (Canadian Dairy Network 2007).  The EBV 

statistics can be found in Table 1 and show that the mean EBV accuracy was high (range 

88.3% to 94.9%).  The following traits were analyzed: 305-day lactation milk yield (MY), 

305-day lactation protein yield (PY), 305-day lactation fat yield (FY), somatic cell score 

(SCS), herd life (HL), interval from calving to first service (CTFS), and age at first service 

(AFS).  Herd life is a measure of longevity expressed as the number of lactations a cow 

stays in the herd.  Somatic cell score refers to the amount of somatic cells a cow has in her 

milk and is an important indicator trait for mastitis.  Calving to first service is the period 

from parturition to first insemination in days and AFS is the age in days at which a heifer is 

artificially inseminated for the first time.   
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Table 1.  Mean estimated breeding value (EBV x ), EBV standard deviation (EBV SD), Mean EBV 

accuracy (EBV acc. x ), and percentage of bulls with an EBV accuracy equal or greater than 90.0 (% 

acc. ≥ 90.0 ) for milk yield (MY), fat yield (FY), protein yield (PY), somatic cell score (SCS), herd 

life (HL), calving to first service (CTFS), and age at first service (AFS) 

Trait EBV x  EBV SD EBV acc. x  % acc. ≥ 90.0 

MY 631 773.9 94.9 91.8 

FY 19 28.6 94.9 91.8 

PY 22 22.4 94.9 91.8 

SCS 3.04 0.28 92.0 90.8 

HL 3.01 0.22 88.3 55.1 

CTFS 0.20 5.22 91.0 63.6 

AFS -1.02 8.79 92.7 84.6 

 

 

 

 

Genotype assays.  Maxxam Analytics Inc., Guelph, Ontario, Canada extracted DNA from 

the semen samples and Affymetrix Inc., South San Francisco, California, USA performed 

the SNP genotyping via the Affymetrix MegAllele GeneChip Bovine Mapping 10K SNP 

array (Affymetrix Inc. 2006).  Four hundred and eighty four bulls were tested for 9,919 

SNP, but 56 of bulls failed to produce genotyping results due to possible phenolchloroform 

contamination.  9,628 SNP produced data and of these, 4,856 SNP were physically located 

to chromosomes (in base-pairs) using the bovine genome sequence (Btau-2.0) obtained 

from the International Bovine Genome Sequencing Consortium 

(ftp://ftp.hgsc.bcm.tmc.edu/pub/data/Btaurus/fasta/Btau20050310-freeze/) at the time of 

this research.   
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Table 2.  Single nucleotide polymorphism (SNP) frequency, Bos taurus autosome (BTA) length, and 

average number of SNP per centiMorgan (cM) per BTA  

BTA Frequency BTA Length (cM) SNP/cM 

1 257 147 1.75 

2 250 120 2.08 

3 267 129 2.07 

4 202 110 1.84 

5 171 132 1.30 

6 226 127 1.78 

7 177 138 1.28 

8 162 121 1.34 

9 171 110 1.55 

10 217 106 2.05 

11 285 127 2.24 

12 135 113 1.20 

13 174 93 1.88 

14 141 92 1.54 

15 160 96 1.67 

16 203 98 2.08 

17 148 110 1.35 

18 147 84 1.75 

19 144 93 1.55 

20 148 76 1.96 

21 100 95 1.05 

22 149 80 1.86 

23 152 71 2.13 

24 150 69 2.18 

25 126 64 1.97 

26 112 75 1.50 

27 78 66 1.18 

28 94 56 1.69 

29 116 69 1.68 

Mean 167.66 98 1.71 

 

Calculation of SNP statistics.  Deviation from Hardy-Weinberg equilibrium of the SNP 

was tested using a Chi-square test with one degree of freedom.  The departure from random 
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mating, heterozygosity (H) and polymorphism information content (PIC) was also 

determined.  Departure from random mating was calculated as the mean difference between 

the observed and expected number of heterozygotes under Hardy-Weinberg equilibrium 

and SNP H was calculated based on observed allele frequencies.  Polymorphism 

information content for the SNP was calculated as shown in Guo and Elston (1999) and was 

the probability that one can determine if it was the maternal or paternal allele that an 

offspring has inherited from its parent assuming no cross-over during meiosis.   

 

Building the linkage map.  The cM positions for the SNP were interpolated using a 

microsatellite framework map available from the National Centre for Biotechnology 

Information, Bethesda, MD, USA (National Centre for Biotechnology Information 2006).  

This framework map was edited to allow for interpolation of SNP cM positions.  When the 

marker order between the bp and cM maps changed, the crossing microsatellite with a 

pattern contrary to the other microsatellites in the same section was deleted.  All 

microsatellite markers that had the same bp positions or had a cM position of 0.0 were 

removed.   When two or more microsatellite markers had the same cM position only the 

marker with the lowest bp position was retained in the framework map.  Once both the 

microsatellite bp and linkage map had the same order, the SNP’s bp locations were 

interpolated to cM based on its location within a microsatellite bracket.   

 

Variance component linkage analysis (VCLA).  Due to the structure of the genotyped 

population and the complexity of the pedigree information, a restricted maximum 

likelihood method with variance component estimation was chosen (George et al. 2000).  

Single trait analysis was performed on a chromosome by chromosome basis.  Single 

nucleotide polymorphisms with a PIC of 0.0 were excluded from the analysis.  Using Loki 

(Heath 1997), the IBD probabilities were estimated at 1cM intervals starting at 0.0cM and 

ending after the last SNP position on a chromosome.  Mixing in Loki was improved by 

setting the LM ratio (proportion of locus versus meiosis updates) to 0.5 (Daw et al. 1999).  

Two hundred thousand iterations were performed with a burn-in period of 1,000 iterations 

to achieve satisfactory IBD convergence.  If a marker was closer than 0.1cM to the point 
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where the IBD probability was to be estimated the IBD matrix sometimes turned out to be 

singular.  In these cases, to avoid singularity, the QTL location was moved to either the 

right or the left of the original position, so that the minimum distance to the closest SNP 

was 0.1cM.  ASReml (Gilmour et al. 2000) computed the mixed linear models at each IBD 

location to obtain parameter estimates for the random factors.  The full fitted model was:   

y = µ1 + Z1a + Z2v + e          

where y is a vector of EBVs, µ is the population mean, Z1 is the incidence matrix for animal 

effects, a is a vector of the additive polygenic animal effects, Z2 is the incidence matrix for 

the QTL effects, v is a vector of the additive QTL effects, and e  is the vector of 

residuals. The random effects a, v, and e were assumed to be independent and normally 

distributed: a ~ N (0, Aσ2
a), v ~ N (0, Gσ2

QTL), and e ~ N (0, Iσ2
e).  Where A is the 

numerator relationship matrix, σ2
a is the variance of the additive polygenic effects, G is the 

IBD probability matrix, σ2
QTL is the additive QTL variance, I is the identity matrix, and σ2

e 

is the residual variance.  This model was then refitted without the Z2v term. The QTL test 

performed was a likelihood ratio test (LR), where the maximum restricted likelihood of the 

full model was compared to the maximum restricted likelihood of the model missing the 

QTL effect.  The additive relationship matrix (A) was the same for both models and 

included all relevant animals in the pedigree (5,615 animals).  The sires’ EBVs were 

assumed to have equal residual variances, given that most of the bulls had highly accurate 

proofs (Table 1). 

  

Linkage disequilibrium single locus regression (LDRM).  A primary linkage 

disequilibrium screen using regression on individual SNP genotypes was carried out 

(Grapes et al. 2004).  Markers were assumed to be in LD with QTL in close proximity and 

the effect evaluated was additive only (QTL allele substitution effect).  SNP with a minor 

allele frequency of less than or equal to 0.1 were excluded from the analysis. The following 

model was calculated at each SNP genotype location using ASReml: 

y = Xb + Z1a + e        

with a ~ N (0, Aσ2
a) and e ~ N (0, Iσ2

e), where X is the design matrix in which SNP 

genotypes were coded 0, 1 and 2 for 1-1, 1-2, and 2-2 allele combinations, respectively, and 
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b is the vector of coefficients of the regression on recoded SNP genotypes. As for VCLA, 

the sires’ EBVs were assumed to have equal residual variances. Thus regressions were not 

weighted by the EBV accuracies.   

  

Statistical Inference.  The false discovery rate (FDR) (Benjamini & Hochberg 1995) was 

used to account for multiple hypotheses testing.  All significance values computed in this 

study were on a 5% chromosome-wise FDR level.  The significance values for VCLA were 

obtained from a mix of two chi-square distributions (Self & Liang 1987).  In VCLA, due to 

the nature of FDR, the largest LR in a peak could possibly not be significant at 5% FDR, 

while positions with a lower LR around it were significant.  In those cases the position with 

the largest LR was still reported as the peak, because FDR is not monotonic with respect to 

the probability of the test statistic and does not recognize the dependency of the tests.  In 

LA, the tests for QTL at IBD positions close to each other are likely dependent (Fernando 

et al. 2004). The p values for the LDRM were taken from a two tailed t-test distribution and 

only SNP below a chromosomal FDR of 5% were reported. 

Confidence intervals were not calculated as bootstrapping would have been too 

computationally intensive to carry out.  In its stead logarithmic odds scores (LOD) were 

computed and two QTL on a chromosome were considered distinct if the LOD score 

dropped more than one point from the higher peak at a position between the two LR peaks. 

Potential QTL and significant SNP associations were considered in agreement with QTL 

cited in the literature if they were within a confidence interval of a QTL in a published 

study, or, if such an interval was not available, they were within 5cM of a QTL position in a 

published analysis. When comparing the results to previously reported QTL, it is important 

to recognize that cM locations are relative and depend on the linkage map used in each 

study. Differences occur because linkage maps (cM) are calculated based on the amount of 

recombination between the genetic makers relative to the first marker evaluated on the 

chromosome. Therefore, comparisons to literature positions give only a coarse measure of 

QTL location agreement. 
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RESULTS 

SNP and dataset statistics.  The located SNP were moderately evenly distributed across 

the genome.  Table 2 shows the SNP frequency and density per chromosome.   The number 

of SNP and SNP density per Bos taurus autosome (BTA) varied from 78 to 285 and 1.18 to 

2.24 SNP/cM, respectively.  Seventeen percent of SNP were not in Hardy-Weinberg 

equilibrium at the 5% significance level and the departure from random mating was 0.04 

(SE 0.003) which confirms that positive assortative mating had occurred in the sires’ 

pedigrees.  The mean H for the SNP was 0.31 (range 0.0 to 0.5) and per chromosome mean 

SNP H ranged between 0.26 and 0.35.  The mean PIC was 0.25 (range 0.0 to 0.375) 

and the chromosomes with lowest and highest means were the same as the H results 

because PIC is highly dependent on H.  Four hundred and thirty one of the 4856 SNP in 

this dataset had a PIC of 0.0.  These SNP were non-segregating, or fixed, and would not 

have added any information to the analysis and were therefore removed.   

Tracing back of the 17 European bull pedigrees revealed that 86% of their founders (sires 

with unknown parents) were of North American origin. Thus, the European bulls were 

strongly related to the North American bulls.  In addition, the mean correlation of allele 

frequency of significant SNP associations between the European bulls and North American 

bulls in the dataset was 0.85 (range 0.70 to 0.93).  This was very similar to the allele 

frequency correlations within the North American bulls of 0.87 (range 0.71 to 0.94).  These 

results indicate that population stratification was likely not responsible for the significant 

results in our study. 

 

Potential chromosomal regions of interest detected.  The potential QTL found with 

VCLA, as well as the previous studies that are in agreement, can be seen in Table 3.   

Variance component linkage analysis detected a total of 102 potential QTL, including 15 

for MY, six for FY, 52 for PY, four for SCS, 20 for CTFS and five for AFS.  Twenty of 

these QTL were in agreement with QTL previously reported in the literature including four 

for MY, four for FY, 11 for PY and one for SCS.  New potential QTL were found for MY 

(11), FY (2), PY (41), SCS (3), CTFS (20) and AFS (5). 
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Linkage disequilibrium single locus regression found 144 significant SNP associations, 

which are reported in Table 4.  When there were more than one SNP within a 1cM bracket 

they were grouped together and the maximum absolute t-value is reported.  The number of 

significant SNP associations found per trait was: 31 for MY, seven for FY, 22 for PY, 32 

for SCS, 17 for HL, 14 for CTFS and 21 for AFS.  As was the case with VCLA, a 

proportion of the positions, 48 of the 140 SNP, were in agreement with previous findings.  

These SNP included 23 for MY, two for FY, 14 for PY, and nine for SCS.  The individual 

literature studies can be found in the footnotes of Table 4.  New significant SNP 

associations were found in the respective traits: eight for MY, five for FY, eight for PY, 23 

for SCS, 17 for HL, 14 for CTFS and 21 for AFS.  A number of SNP were associated with 

phenotypic variation in both milk and protein yield and this could likely be explained by 

large genetic correlations between the two traits.  The direction (positive versus negative) 

of the regression coefficients was in all cases the same if one SNP had a significant 

association with differences in phenotype for both traits.   

 

Table 3.  Potential QTL detected via variance component linkage analysis for milk yield (MY), 

protein yield (PY), fat yield (FY), somatic cell score (SCS), calving to first service (CTFS), and age at 

first service (AFS) 

BTA Location (cM) Trait LR1 FDR2 

1 79 PY 13.8 - 

1 1093 PY 9.0 - 

1 135 PY 9.1 - 

2 71 PY 11.0 0.06 

2 105 CTFS 11.2 - 

3 374 MY 8.9 0.10 

3 255 PY 7.5 - 

3 455 PY 15.3 - 

3 41 SCS 10.8 0.07 

3 27 CTFS 10.2 0.09 

3 34 CTFS 9.7 - 

3 45 CTFS 9.1 - 

3 68 CTFS 4.7 - 

4 4 MY 4.8 - 
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BTA Location (cM) Trait LR1 FDR2 

4 14 MY 7.8 - 

4 57 MY 4.9 - 

4 86 MY 9.5 0.12 

4 16 PY 10.7 0.06 

4 85 PY 8.1 - 

4 105 PY 6.9 - 

5 1 MY 18.3 - 

5 1 PY 23.9 - 

5 2 CTFS 16.3 - 

6 256 PY 11.1 0.06 

6 98 PY 10.5 - 

6 50 CTFS 9.3 0.15 

6 59 AFS 9.0 - 

6 68 AFS 14.1 - 

6 100 AFS 7.6 - 

8 0 PY 11.1 - 

8 38 PY 10.7 - 

8 53 PY 12.3 - 

8 85 PY 9.3 - 

8 122 PY 8.1 - 

9 8 PY 11.8 - 

9 757 PY 9.2 - 

10 21 PY 5.8 - 

10 99 PY 15.5 - 

11 38 PY 6.5 - 

11 66 PY 10.7 0.07 

11 72 PY 8.9 - 

11 96 PY 6.3 - 

11 95 CTFS 11.4 - 

11 108 CTFS 10.1 - 

12 52 FY 6.4 - 

12 673 FY 8.4 0.21 

12 90 FY 2.8  - 

13 30 PY 13.2 - 

13 744 PY 11.8 - 

13 20 CTFS 13.6 - 
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BTA Location (cM) Trait LR1 FDR2 

13 39 CTFS 6.8 - 

13 90 CTFS 4.7 - 

14 37 FY 8.5 0.17 

14 229 SCS 11.1 - 

14 53 SCS 9.2 - 

14 74 SCS 6.2 - 

14 3 AFS 9.0 0.13 

14 62 AFS 5.0 - 

15 17 PY 4.5 - 

15 41 PY 10.0 - 

15 62 PY 11.9 - 

15 93 PY 7.5 - 

15 6 CTFS 11.6 - 

15 94 CTFS 11.0 - 

16 863 MY 11.5 - 

16 59 PY 7.2 - 

16 68 PY 9.6 - 

16 853 PY 19.6 - 

16 98 PY 13.0 - 

18 0 MY 10.1 - 

18 13 MY 6.2 0.19 

18 4110 MY 7.9 - 

18 84 MY 5.7 - 

18 0 PY 3.9 - 

18 41 PY 9.8 - 

18 65 PY 8.4 - 

18 8410 PY 15.5 - 

19 36 MY 16.2 - 

19 60 MY 10.9 - 

19 3611 FY 11.3 - 

19 5111 FY 7.8 - 

19 29 PY 20.3 - 

19 59 PY 7.1 - 

23 76 MY 10.3 - 

23 6 PY 10.4 - 

23 2611 PY 5.7 - 
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BTA Location (cM) Trait LR1 FDR2 

23 4211 PY 7.5 0.08 

24 7 PY 7.1 - 

24 53 PY 11.6 - 

24 54 CTFS 9.4 0.08 

25 51 MY 11.2 - 

25 476 PY 9.0 - 

25 52 PY 13.8 - 

25 64 PY 6.5 - 

25 57 CTFS 9.0 0.09 

26 11 CTFS 7.6 - 

26 72 CTFS 7.8 0.19 

28 1 PY 8.1 - 

28 11 PY 8.5 0.10 

28 35 PY 6.0 - 

29 8 CTFS 8.4 0.13 

29 20 CTFS 4.0 - 

29 60 CTFS 4.1 - 
1LR = likelihood ratio test. 
2FDR = false discovery rate, reported only if at the peak position FDR was higher than 0.05.  
3In agreement with (Rodriguez-Zas et al. 2002) 
4In agreement with (Ashwell et al. 2004) 
5In agreement with (Heyen et al. 1999) 
6In agreement with (Viitala et al. 2003) 
7In agreement with (Georges et al. 1995) 

8In agreement with (Khatkar et al. 2004) 
9In agreement with (Zhang et al. 1998) 
10In agreement with (Olsen et al. 2002) 
11In agreement with (Bennewitz et al. 2003) 

 

The total number of potential QTL and significant SNP associations found per trait and 

method of analysis are summarized in Table 5.  This table also lists the number of BTA on 

which both methods found significant associations and agreement between the two methods 

was greatest for the milk production traits and less for SCS and HL. 
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DISCUSSION 

Choice of dependent variable.  Estimated breeding values were used as the dependent 

variable in both VCLA and LDRM.  Previous studies have found that using EBVs instead 

of daughter yield deviations (DYD) or de-regressed EBVs either does not significantly 

reduce power (Israel & Weller 1998) or only slightly reduces power (Thomsen et al. 2001).  

The potential for EBVs to cause a downward bias was reduced by the high mean EBV 

accuracy in this study (Table 1).   

The EBVs were not weighted in the analysis to account for accuracy because mean EBV 

accuracy was high and the potential increase in power would have been minimal.  The 

extent to which EBVs are regressed towards zero decreases as the amount of information 

available to calculate the EBV increases.  Thus, EBVs of bulls with lower accuracy have a 

smaller variance than the EBVs of bulls with higher accuracy (Israel & Weller 1998).  Bulls 

with EBVs of lower accuracy would therefore have a less impact on the results and this 

would mitigate the potential for causing bias when not weighting EBVs. However, this 

might not be the case for DYD and de-regressed EBV, because bulls with EBVs of lower 

accuracy would de-regress more and potentially might influence the results to a larger 

extent. 

 

Table 4. Significant single nucleotide polymorphism (SNP) associations from linkage disequilibrium 

single locus regression analysis for milk yield (MY), fat yield (FY), protein yield (PY), somatic cell 

score (SCS), herd life (HL), calving to first service (CTFS), and age at first service (AFS) 

BTA Location (cM) Trait No. of SNP Max. |t-value| Mean (r2)1 

1 473 MY 1 3.5  

1 1424 MY 1 4.0  

1 140 FY 1 3.7  

1 475 PY 1 3.5  

1 142 PY 1 3.8  

1 1315 SCS 4 4.3 0.86 

1 140 AFS 1 3.7  

2 1096 SCS 1 3.7  

2 24 CTFS 1 4.4  

3 503 MY 1 3.8  
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BTA Location (cM) Trait No. of SNP Max. |t-value| Mean (r2)1 

3 505 PY 1 3.4  

3 103 PY 1 3.5  

4 32 SCS 1 3.9  

5 3 MY 1 3.4  

5 77 SCS 2 3.6 0.83 

5 86 SCS 1 3.8  

5 51 AFS 1 3.4  

5 78 AFS 2 3.0 NA2 

5 82 AFS 2 3.5 0.84 

6 52 SCS 1 3.0  

6 72 SCS 1 4.2  

6 73 SCS 1 2.9  

6 74 SCS 1 3.4  

6 75 SCS 1 2.9  

6 78 SCS 1 2.8  

6 81 SCS 1 2.8  

6 82 SCS 1 3.2  

6 83 SCS 3 3.9 0.65 

6 46 HL 1 3.4  

6 51 HL 1 3.5  

6 53 HL 2 3.2 0.08 

6 56 HL 1 3.1  

6 59 HL 1 3.6  

6 61 HL 1 3.2  

6 73 HL 1 3.1  

6 83 HL 2 2.9 0.19 

6 84 HL 2 2.9 0.49 

7 60 MY 2 3.6 0.99 

7 737 MY 2 3.9 0.38 

7 757 MY 1 2.9  

7 827 MY 1 3.1  

7 60 PY 2 3.1 0.99 

7 68 PY 1 2.8  

7 737 PY 2 3.5 0.38 

7 757 PY 1 3.1  

7 95 PY 1 2.9  
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BTA Location (cM) Trait No. of SNP Max. |t-value| Mean (r2)1 

8 101 FY 1 3.5  

9 573 MY 2 3.4 0.58 

9 36 HL 1 3.7  

9 39 HL 1 3.7  

10 10 CTFS 1 3.5  

10 20 CTFS 6 3.4 0.75 

10 23 CTFS 1 2.8  

10 31 CTFS 1 3.4  

10 42 CTFS 1 2.8  

11 119 SCS 4 3.5 0.21 

11 60 AFS 1 4.2  

12 59 MY 1 3.8  

13 63 HL 1 4.8  

13 35 CTFS 1 3.4  

14 48 MY 8 4.0 0.97 

14 58 MY 1 3.3  

14 68 MY 2 3.5 0.83 

14 126 MY 3 3.3 0.75 

14 42 MY 1 3.0  

14 286 FY 1 3.4  

14 46 PY 4 2.9 0.95 

14 126 PY 3 3.3 0.73 

14 4 AFS 8 3.9 0.99 

14 5 AFS 1 2.8  

14 6 AFS 1 2.6  

14 50 AFS 1 3.0  

14 54 AFS 1 2.6  

15 75 MY 1 3.3  

16 46 MY 1 3.5  

16 46 PY 1 3.5  

16 485 SCS 1 3.5  

16 8 CTFS 2 4.1 0.87 

18 50 AFS 1 3.2  

19 93 FY 1 3.6  

19 476 SCS 1 3.2  

19 58 HL 1 3.6  
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BTA Location (cM) Trait No. of SNP Max. |t-value| Mean (r2)1 

23 529 SCS 2 3.5 0.98 

23 2 AFS 1 3.8  

25 55 SCS 1 3.4  

26 557 MY 1 3.3  

27 28 SCS 1 3.3  

28 33 FY 3 3.1 0.68 

28 45 FY 1 3.3  

28 48 FY 1 3.0  

28 33 PY 1 2.9  

28 445 PY 1 3.1  

28 465 PY 1 3.3  

29 5 SCS 1 3.1  

29 67 SCS 1 3.3  
1Mean (r2) = mean r2 (linkage disequilibrium) between SNP 

2NA= r2 was not available for these two SNP  
3In agreement with (Khatkar et al. 2004) 

4In agreement with (De Koning et al. 2001) 

5In agreement with (Rodriguez-Zas et al. 2002) 

6In agreement with (Bennewitz et al. 2003) 

7In agreement with (Boichard et al. 2003) 

8In agreement with (Grisart et al. 2004) 

9In agreement with (Ashwell et al. 1998) 

 

 

Variance component linkage analysis.  The VCLA method located 102 potential QTL.  

The relatively large number of new QTL found was promising.  The great efficiency of 

QTL detection for protein yield (52 potential QTL) could be partly explained by the fact 

that this was one of the traits used for selective genotyping.  While the selective genotyping 

approach seemed to have shown benefits for protein yield QTL, it has not shown an equally 

strong performance in SCS, where only four QTL were called significant.  No potential 

QTL were found for HL with VCLA, which was possibly due to a lower mean EBV 

accuracy of HL (Table 1).  The improved QTL detection in SCS over HL might have been 

due to the higher SCS EBV accuracy, the minor selective genotyping carried out and 
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because SCS EBVs were available for all bulls genotyped, which was not the case for HL.  

It was also encouraging that for CTFS and AFS, 20 and five potential QTL were found, 

respectively.  The improved result over previous studies in detecting QTL for traits of lower 

heritability showed that using a dense SNP map can increase power in linkage analysis. 

 

Linkage disequilibrium regression method.  The LDRM was successful and a total of 

144 significant SNP associations were detected.  In traits of low heritability, such as SCS, 

HL, CTFS and AFS, the LDRM found a large number of significant SNP associations.  

This makes it a viable choice for future genome scans in dairy cattle. 

Single nucleotide polymorphisms in very close proximity to each other were often all 

significantly associated with a particular phenotype.  The r2 (Hill & Robertson 1968) was 

calculated according to the same guidelines as Sargolzaei et al. (2008) to determine the 

amount of LD between significant SNP associations within a 1cM bracket.  As can be seen 

in Table 4, in most cases the SNP were in very strong LD and this suggests that they are all 

associated with the same QTL.  However, in some cases the SNP exhibit low LD (e.g. BTA 

6, 53cM, HL, r2 = 0.08) and may be associated with the same or another QTL.     

 

Comparison of results.  The VCLA method did produce the expected results in locating 

DGAT (Grisart et al. 2004) at position 3cM, which is a QTL with a large effect in fat yield 

located on chromosome 14 at position 0.1cM (Khatkar et al. 2004).  The LDRM showed a 

significant SNP association with fat yield at position 28cM which is within the confidence 

interval calculated by Bennewitz et al. (2003) but falls outside of the Khatkar et al. (2004) 

meta-analysis confidence range.  The reason for this suboptimal result of the LDRM may 

be in the poor SNP distribution at the beginning of chromosome 14.  No SNP were present 

until 4cM on that chromosome and the LDRM may be more sensitive to gaps in SNP 

distribution. 

Neither VCLA or the LDRM showed conclusive results for the ABCG2 mutation located in 

the middle of BTA 6 (Cohen-Zinder et al. 2005) which has an effect on milk yield and 

composition in Holstein cattle.  While VCLA detected two protein QTL on BTA 6, one at 

25cM and another at 98cM, they were outside of the confidence interval of the meta-
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analysis for this trait (Khatkar et al. 2004).  At the location of the causative mutation 

identified by Cohen-Zinder et al. (2005) the SNP distribution showed a gap and the LDRM 

possibly did not overcome that. 

 

Table 5. Total number of potential QTL or significant SNP found per trait for variance component 

linkage analysis (VCLA) and linkage disequilibrium single locus regression (LDRM), the number of 

potential significant regions found with LDRM when accounting for a confidence interval (CI) of 

10cM, and the Bos taurus autosomes (BTA) on which both methods found significant associations. 

 Significant BTA regions Agreement 

Traits VCLA LDRM LDRM (CI = 10) VCLA + LDRM 

MY 15 31 15 BTA 3, 5, 16 

FY 6 7 6 BTA 14, 19 

PY 52 22 13 BTA 1, 3, 16, 29 

SCS 4 32 15 - 

HL - 17 7 - 

CTFS 21 14 6 BTA 2, 13 

AFS 5 21 9 BTA 14 

Total 102 144 71 12 

 

In some traits, such as SCS, HL and AFS, VCLA identified fewer potential regions than 

LDRM.  While VCLA maps potential QTL, the LDRM detects significant SNP 

associations.  Therefore multiple SNP in close proximity could be in LD with the same 

QTL.  The extent to which not accounting for LD between several SNP and one QTL could 

have inflated the number of potential significant regions found with the LDRM was 

investigated.  Significant SNP were counted as being in LD with the same QTL when they 

were within 5cM of each other (confidence interval = 10cM).  When counted by this 

method, 71 significant chromosome regions were found with the LDRM.  As can be seen in 

Table 5, even when grouping SNP into 10cM groups the LDRM detected more significant 

regions in traits of low heritability while finding equivalent or fewer numbers of significant 

associations in traits of moderate heritability. 
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Overall, the LDRM discovered a more uniform number of chromosomal regions across 

traits.  There were few BTA on which both methods found significant associations as can 

be seen in Table 5.  Significant regions for PY that resulted from both methods were found 

on four BTA, which was the most of any trait in this study.   The differences in QTL 

discoveries among the two methods are likely related to the sample size that was likely not 

large enough and was limiting the power of both approaches, associated with the inherent 

differences in the methods with respect to the use of the LD information. 

The VCLA utilizes LD within families to calculate IBD probabilities and it is more 

efficient when the average r2 is low (< 0.2), as in the case of low density of markers, 

compared to LDRM.  However LDRM becomes equally efficient to VCLM when the 

density of markers increases and the average r2 is high (Grapes et al. 2004; Zhao et al. 

2006; Goddard & Hayes 2007). This is so, because LDRM requires a dense and preferably 

uniformly distributed marker map, and, if there are gaps with no SNP, the power to detect a 

QTL diminishes (Grapes et al. 2004).  In the current study, while the average marker 

density was 1.7 per cM, there were gaps in the distribution of SNP and differences in SNP 

density across chromosomes.  This could have lead to different rates of success in detecting 

QTL between LDRM and VCLA, depending on the chromosomes and/or chromosomal 

regions analyzed. The r2 between SNP differs across genomic regions and chromosomes 

(Sargolzaei et al. 2008) and could lead to differences between VCLA and LDRM 

depending on where the QTL were located. 

Another option of QTL analysis is to use a combined linkage disequilibrium and linkage 

analysis in a LDLA approach (Olsen et al. 2005), which can narrow confidence intervals 

considerably when compared to LA, but this was beyond the scope of this study. 

A LR profile of VCLA and a t-test profile representative of the LDRM can be seen in 

Figure 1.  The t-test pattern of the LDRM was more erratic than the LR profile of VCLA, 

which was likely due to the LDRM treating each SNP as a separate regression whereas in 

VCLA all SNP on a chromosome were considered together to calculate IBD at each 

position.  In VCLA, this lead to a moderation of the variability in the LR profile. The BTA 

14 SCS analyses in Figure 1 also show an example of suggestive unison between the two 

methods even when only one of them showed significant results.  Three significant peaks 
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were found with VCLA, but none of the SNP associations were significant in LDRM.  

However, considering Figure 1b, it is possible to see that the LDRM yielded three regions 

where the SNP have higher t-test values, albeit not significant.   

The primary focus of this study was on detecting significant chromosome regions for 

further analysis and not estimating the effects of these regions.  In whole genome scans, 

QTL effects are known to be overestimated, because when the test statistic is maximized 

over the many point-wise tests in the genome, the estimates of the parameter(s) 

characterizing the locus-specific effects (e.g. QTL variance) are effectively maximized as 

well (Göring et al., 2001). There was strong evidence for both methods that this was the 

case in this study (results not shown). Another reason for an upward bias might be the 

presence of more than one QTL in a chromosomal region (Allison et al. 2002) which was 

not accounted for in the single-QTL analyses performed.  In addition, the partial selective 

genotyping based on four traits carried out in this study may have added to the 

overestimation in some of the analyzed traits. 

In LDRM, an effect estimate which was based on few genotypes could have been a source 

of bias.  Single nucleotide polymorphisms with a minor allele frequency of less than or 

equal to 0.1 (1441 SNP) were excluded from the analysis for that reason.  The most 

significant t values and effects were checked for all traits to determine if a possible bias 

existed and the minor genotype frequency was never below 0.05, which corresponds to 23 

bulls with this genotype, in the SNP investigated.  Therefore, this was likely not a large 

source of bias in this study. 

The LDRM had the lower computational requirement of the two methods.  The LDRM 

analyzed one chromosome in approximately 0.5 hour, whereas VCLA needed on average 

four hours, not including IBD calculation time, on a server with 16 Gigabytes (GB) of 400 

MHz CL3 memory, eight 500 GB SATA disk drives (Iomega, San Diego, California) and 

four jobs running simultaneously.  When computing power or time is limiting, LDRM is 

more useful than VCLA for a first QTL scan with a dense SNP map.   
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Figure 1.  Test statistic profile for somatic cell score (SCS) on chromosome 14: a) Variance 

component linkage analysis (VCLA) likelihood ratio profile and b) Linkage disequilibrium single 

locus regression (LDRM) absolute t-test profile. 
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CONCLUSIONS 

The two genome scans resulted in 102 potential QTL and 144 significant SNP associations 

for production, functional and reproduction traits in the Holstein dairy sires genotyped.  A 

large number of potential chromosomal regions of interest for traits of low heritability were 

detected.  This study was one of the first applications of the LDRM to real dense SNP data 

and it showed that the LDRM was capable of detecting significant SNP associations at an 

average SNP density of 1.7 SNP per cM.  The LDRM located more potential chromosomal 

regions of interest than VCLA in traits of low heritability. Future work with the LDRM and 

the full set of SNP marker locations should increase its statistical power.   
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ABSTRACT 

The prediction of the genetic disease risk of an individual is a powerful public health tool.  

While predicting risk has been successful in diseases which follow simple Mendelian 

inheritance, it has proven challenging in complex diseases for which a large number of loci 

contribute to the genetic variance.  The large numbers of single nucleotide polymorphisms 

now available provide new opportunities for predicting genetic risk of complex diseases 

with high accuracy.   

We have derived simple deterministic formulae to predict the accuracy of predicted genetic 

risk from population or case control studies using a genome-wide approach and assuming a 

dichotomous disease phenotype with an underlying continuous liability.  We show that the 

prediction equations are special cases of the more general problem of predicting the 

accuracy of estimates of genetic values of a continuous phenotype. Our predictive equations 

are responsive to all parameters that affect accuracy and they are independent of allele 

frequency and effect distributions.  Deterministic prediction errors when tested by 

simulation were generally small.  The common link among the expressions for accuracy is 

that they are best summarized as the product of the ratio of number of phenotypic records 

per number of risk loci and the observed heritability.   

This study advances the understanding of the relative power of case control and population 

studies of disease.  The predictions represent an upper bound of accuracy which may be 

achievable with improved effect estimation methods.  The formulae derived will help 

researchers determine an appropriate sample size to attain a certain accuracy when 

predicting genetic risk. 

 

INTRODUCTION 

Genetic risk of disease is an important component of overall risk of disease in addition to 

environmental, socio-economic, and behavioral risk factors.  Therefore, predicting the 

genetic risk of disease for an individual is a powerful tool in taking preventative measures 

against the onset of the disease.  Such predictions from genetic testing are relatively 

straightforward when a disease is caused by one or few genes.  However, when a disease is 

of complex inheritance, the genetic risk of the disease may be associated with many loci, 
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each explaining only a small portion of the genetic variance (e.g. Hayes & Goddard 2001; 

Valdar et al. 2006).  In this case, the prediction of genetic risk of disease of a particular 

individual becomes more challenging.  Currently, prediction of risk for complex diseases is 

based mainly on pedigree analysis but this approach yields predictions of risk that are of 

low precision; for example predictions would be identical for full siblings without 

offspring, yet the genetic variation among them accounts for half or more of the genetic 

variance (Falconer & Mackay 1996; Bijma & Woolliams 1999). 

The identification of very large numbers of single nucleotide polymorphisms (SNP) has 

enabled the use of genome-wide association studies (GWA) to detect alleles that are 

associated with risk for complex diseases (Hirschhorn & Daly 2005), such as Type II 

Diabetes and Crohn’s disease (Wellcome Trust Case Control Consortium 2007).  In tandem 

with this substantive increase of SNP data, several methods for quantifying and/or 

predicting genetic risk of disease from multiple genes have been put forward (Pharoah et al. 

2002; Janssens et al. 2006).  Wray et al. (2007) extended these methods by using an GWA 

approach to estimate the individual genetic risk of disease.  Unlike the risk estimates 

obtained using only pedigree, the estimates resulting from such a GWA approach are more 

precise by allowing for differentiation among full-siblings.  In addition, no pedigree or 

family history is needed either for estimating risk in one genotyped sample from the 

population or for predicting risk in a fresh sample.  Similar genome-wide methodology has 

been proposed in animal and plant breeding to estimate additive genetic values for 

quantitative traits (Meuwissen et al. 2001; Xu 2003).  One critical difference between the 

two genome-wide approaches is that Wray et al. (2007) set a significance threshold for the 

loci selected for disease prediction, whereas Meuwissen et al. (2001) use all loci regardless 

of whether they affect or not the trait considered.  The approach of Meuwissen et al. (2001) 

therefore attempts to achieve the maximum estimate precision of the complete genetic 

value for a given dataset by including loci that may have too small of an effect to achieve 

statistical significance, and, thus, reduces the overestimation of allele effects (Goring et al. 

2001). 

Wray et al. (2007) computed the precision of the individual genetic risk estimates by 

simulation. While simulation studies are useful in getting initial results on the number of 



 
 

Chapter 3 

 48

phenotypic records needed to achieve a desired level of accuracy, they are computer 

intensive and time consuming with large numbers of markers.  Most importantly, they do 

not provide a deep insight on how all variables that affect accuracy interact.  Therefore, it is 

desirable to develop deterministic equations that are responsive to all variables that 

influence accuracy. 

Here we present simple expressions for the genome-wide accuracy of prediction of genetic 

disease risk.  We derive general expressions for continuous traits and the necessary 

extensions for dichotomous disease traits with data obtained either from population studies 

or case control studies.  The predictions are tested by computer simulation under a variety 

of parameters influencing accuracy, such as, for example, disease prevalence, heritability 

and distributions of allele effects and frequencies 

 

MATERIAL AND METHODS 

Derivation of Equations.  The predicted accuracy that is derived below represents the 

upper bound that can be achieved when estimating effects in one population sample and 

then predicting individual genetic risk in another sample from the same population. 

Throughout this article the accuracy of predicted genetic risk ( ) is defined as the 

correlation between true and predicted genetic values.  One advantage of using  is that 

the factors influencing it can be clearly derived using the principles of population genetics, 

as we show below. We will first derive equations that are predictive of  for a genome-

wide approach with a continuous phenotype, such as height, assuming a population study 

where individuals are sampled at random. These will then be adapted to predict disease risk 

for a dichotomous phenotype (‘affected’ or ‘unaffected’) with an underlying continuous 

liability. The equations are then further adapted to the situation of case control data.   

 

Continuous phenotype.  We will assume that there are  potential loci affecting a trait 

which are independent, biallelic and acting additively, where  may be large.  These loci 

may be candidate genes or genetic markers of which a significant proportion may have zero 

effects.  For locus , let a randomly chosen reference allele for that locus have 

frequency  and true allelic substitution effect . We shall assume without loss of 
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generality that the distribution of allele frequencies  is symmetric about , and 

likewise that allelic effects  are symmetric about .  No further distributional 

assumptions will be made here on  and , so for example, many of the allele segregating 

may have negligible or zero effect. No assumptions are made concerning the covariance 

between  and  in the populations sampled. We intend to derive the accuracy of the 

prediction of the additive genetic value ( ) of an individual that can be achieved after the 

measurement of  phenotypes. 

An estimate of the effect of each allele may be obtained by regression of the phenotypic 

records on the genotypes one locus at a time because the loci are independently segregating.  

Assume the population variance of the phenotypes is 1.  The estimated allele substitution 

effect will be  with expectation , and is obtained by regressing the phenotypes 

on the observed number of reference alleles in the genotype, denoted  for individual  

and locus  (i.e.  = 0, 1, or 2). The sampling variance of the allele estimate is 

 where  is the residual variance after regression on  and 

 is the adjusted sums of squares for . Although not assumed here, 

when the population is in Hardy-Weinberg equilibrium  is given by .  

For the present, we shall conservatively take , which underestimates the accuracy of 

the prediction. 

Our aim is to predict the accuracy of a new population sample, so we apply the original 

estimates to a new sample of the same population. Values referring to the second sample 

will be ‘dashed’, hence individual  from the second sample has  alleles at locus . The 

additive genetic value of i is given by  with estimate . 

Then . Noting that  can be re-written as 

 with , it is seen that  

and that . Of these remaining terms, , where  is the 

observed heritability for the trait, assuming the phenotypic variance is 1. Again using the 

decomposition , it can be shown that 

, following from (i) the independence of 
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the loci and (ii) the sampling variance of  derived earlier.  Finally , 

since the second sample comes from the same population, so  , 

and substituting  gives  

 . (1) 

Therefore accuracy is seen to be a function of the product of the observed heritability  

and the ratio of the number of phenotypes recorded to the number of loci involved, .  A 

second order correction to relax the assumption  is given in Appendix S1, where it is 

shown to result in an upward correction to  of fractional magnitude . 

 

Dichotomous disease phenotype.  We shall now derive the accuracy of predicting 

individual genetic risk to disease ( ) in a random population sample by considering 

disease prevalence in a liability model [9].  For a disease with prevalence , phenotypes are 

defined as  for unaffected, and  for affected, so  and 

.  Individuals with the highest liability are affected by the disease.  Let 

liability be , scaled so  and , and  is the regression of liability on 

the number of reference alleles at locus j.  The linear predictor of  on  is given by 

 (Robertson 1961), where  equals the mean liability of affected individuals, 

which we will term the selection intensity (Falconer & Mackay 1996) corresponding to the 

prevalence of the disease in the population.  Let the slope of the regression of  on  be 

, then , with sampling variance, estimated conservatively using the 

phenotypic variance  

 . (2) 

The coefficients  may be rescaled to give estimates , with sampling 

variance 

 .  (3) 

Repeating the argument outlined above for a continuous phenotype with 

, and 
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, where  is the 

heritability on the liability scale.  Simplifying terms results in: 

  (4) 

Robertson and Lerner (1949) show that the relationship between additive heritability on the 

observed scale and the heritability on the liability scale satisfies 

 . (5) 

Substitution then results in Equation  (1) with  being replaced by : 

 . (6) 

Therefore the dichotomous phenotype study of disease results in an identical formula for 

 as the continuous phenotype provided the heritability used is that for the observed 

dichotomous scale. 

 

Case Control Disease Study.  The formulae will now be extended to derive the accuracy 

 of a genetic risk prediction when applying a case control design to a dichotomous 

phenotype.  The need for modification of the equations for a case control design comes 

from the selection of individuals from within the population to achieve a prevalence within 

the sample of cases and controls of , and where typically  with equal numbers of 

cases and controls.  Parameter values post-selection will be ‘starred’. It is assumed in the 

following without loss of generality that cases are less common than controls in the 

population so .  Two parameters in particular need to be re-estimated because 

of the selection practiced: (i)  ; and (ii) the regression of  on , 

. Both these corrections can be made as shown in detail in Appendix S2.  

Briefly, assuming no covariance between  and , . 

 is  and so since  and  over loci are unaffected by the sampling 

of cases and controls, . Appendix S2 shows 

that using Normal theory . Further 
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, where  is the truncation point of a Normal 

distribution for upper-tail probability , . 

Approximating  for a binomial trait with probability ½, appropriate for equal 

numbers of cases and controls, gives 

, and substituting  results 

in 

 . (7) 

Changing the heritability from the liability scale for a population sample to the observed 

scale for a population sample using Equation (5) produces 

 . (8) 

 

Finally, substituting , gives 

 . (9) 

Thus the form of  for a case control study shows equivalence to the  of continuous 

and dichotomous phenotypes provided heritability is on the observed scale and the 

appropriate changes are made in  to account for the selection of cases and controls.  The 

value of  is 1 in population studies (Equation (6)), where  (and, hence, ).  

When ,  and there is an increase in  compared to a population study 

with the same . 

 

Simulations.  Stochastic computer simulations were used to test the deterministic 

predictions of  for a number of parameters affecting the continuous and dichotomous 

phenotypes.  We describe the full simulation method for the continuous trait and then state 

additional steps that were needed for the dichotomous phenotypes (random population 

sample and case control).  In all scenarios (i) individuals were unrelated; (ii) loci were 

independent; (iii) all genetic action was additive; (iv) for simplicity, loci were assumed to 

be in Hardy-Weinberg equilibrium; and (v) each scenario was replicated 100 times, except 
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for case control scenarios with  where 500 replicates were run. Furthermore for 

initial simulations (vi) allele frequencies were sampled from a uniform distribution 

corresponding to a common-disease-common-variant hypothesis (CDCV) (Reich & Lander 

2001); and (vii) allele effects were drawn from a reflected exponential distribution which 

was made symmetric about . Items (vi) and (vii) were modified as described below.   

For the continuous phenotypes, the phenotypic variance was 1. True additive genetic values 

for  individuals were calculated as  and  for the minor and major 

alleles, respectively, for each of  simulated loci, and summing over loci.  The value of 

 used in most scenarios was 1000 and  varied accordingly, depending on .  Two 

exceptions were  = 0.02, where  = 20,000, and the scenarios in which  was kept 

constant with  = 100.  The scale factor of the exponential distribution was chosen to 

obtain the required additive heritability ( ). Phenotypic records were simulated by adding 

independent environmental terms to the true genetic effects drawn from a Normal 

distribution with mean zero and variance .  Allele substitution effects ( ) were 

estimated by regression of  phenotypic records on genotypes one locus at a time.  A 

second sample of individuals was then simulated with genotypes based on the same allele 

frequencies and effects as the original population.  The estimated additive genetic values 

were then computed according to the following model: , as described 

above.  Finally,  was calculated as the correlation between true and estimated additive 

genetic values.  Bias was also assessed by the slope of the regression of  on . 

The continuous phenotype case was tested for robustness to different distributions of allele 

frequency and effects, and their correlation.  The allele frequencies were also drawn from a 

beta (U-shape) distribution, consistent with a neutral allele model (Pritchard 2001), with 

parameters alpha = 0.3, and theta = 0.3.  Allele effects were also sampled from a normal 

distribution with mean zero.  The effect of having a percentage of loci with zero effects was 

investigated by setting a proportion of the effects to zero while keeping the overall genetic 

variance constant.  In all cases, the scale factor for the distribution of allele effects was 

modified to maintain the desired .   



 
 

Chapter 3 

 54

Further testing of the predictions was done by introducing a correlation between the 

heterozygosity at a locus and the squared magnitude of the allele substitution effect at a 

locus.  This was done for a uniform distribution of allele frequencies and the reflected 

exponential distribution of allele effects.  This was achieved empirically: if the randomly 

drawn frequency had heterozygosity greater than the median (i.e. ) then 

the magnitude of the allele effect was drawn to be less than the median of the distribution of 

the magnitudes.  

The simulation of a random population sample for the dichotomous disease phenotype 

followed the same structure as above but contained the additional step of treating the 

underlying continuous phenotype distribution as a liability for the disease with heritability 

 on the liability scale (Robertson & Lerner 1949). Therefore, with prevalence , the 

fraction  of the population with the greatest liability were considered to be affected. 

Therefore allele effects were estimated from the dichotomous phenotype and the accuracy, 

, was calculated as the correlation between the true and estimated genetic liability for the 

disease estimated in an independent population sample. 

Case control studies were simulated with an equal number of cases and controls (i.e. 

).  A dichotomous disease phenotype with sample size  was simulated by 

including an additional selection step which expanded the population size to .  

The liabilities were constructed as for the population study of a dichotomous disease, the 

 individuals with the greatest phenotypic liability were considered to be affected 

cases, and a further  were randomly chosen from those remaining as control 

phenotypes.   Allele effects were estimated as for the population studies, and the accuracy 

was estimated from a randomly-drawn independent population sample of size . 

 

RESULTS 

Population-wide studies of continuous phenotypes.  When allele effects were drawn 

from an exponential distribution and frequencies were from the uniform, the deterministic 

formula for  was found to predict the simulated data reliably across the wide range of 

parameters used (Table 1).  The prediction errors across all parameters studied were in the 

range of -1.3 to 4.0% (Table 1).    
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The close agreement between the predicted and achieved accuracies is also seen in Table 2 

and was maintained when: (i) allele frequencies were drawn from a beta-distribution (% 

error -0.9 to 0.7); (ii) allele effects were drawn from a normal distribution (% error -0.8 to 

5.0); (iii) exponential allele effects were mixed with varying proportions of alleles with no 

effects, ranging from 0 to 95% (% error 0.1 to 26.6, Table 3); (iv) ’s ranging from 0.02 to 

5 were investigated (% error -20.0 to 4.0, Table 1); and (v) the genetic architecture was 

varied by keeping  constant and changing  ( , % error  0.1 to 7.6; and 

, % error -0.5 to 0.0).  It should be noted that the large percentage errors seen 

when  =0.02 are due to low , where the absolute difference between the expected and 

simulated  was still less than 0.02. The introduced correlation between heterozygosity 

and squared substitution effect was tested with  = 1 and  using the empirical 

procedure described in the Materials and Methods.  With an achieved correlation of -0.36 

and an observed  = 0.39, the predicted accuracy from Equation  (1) was 0.53, with 

an error of 1.1% when compared to simulation.  In conclusion, it is clear that the 

deterministic  is robust to wide distributional assumptions on the joint distribution of 

frequency and effect of allele substitution, as predicted from the derivation.  

Therefore the predictions of genome-wide accuracy shown in Figure 1 based on Equation 

 (1) for different values of observed  and  have wide applicability.  For all , 

the accuracy was most sensitive to  when  was low and this sensitivity was potentiated 

by higher numbers of phenotypes per genotype tested. The accuracies are functions of , 

so the required  to achieve a given accuracy is proportional to .  Thus, the numbers of 

phenotypes per genotype need to be twice as high for half the heritability. To obtain 

accuracies of 0.71, corresponding to predicting half the genetic variance, , and 

therefore  must be  because . 
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Table 1.  Predicted accuracy and percentage prediction error assessed by simulation with disease 

prevalence = 0.1 (SE  range 0.0004 - 0.0065) 

  a = 0.02   = 0.50   = 1.00   = 5.00 

 b Pc %errord  P %error  P %error  P %error 

Ce 0.1 0.045 4.0  0.218 3.6  0.301 2.2  0.577 0.4 

 0.5 0.100 2.1  0.447 -0.5  0.577 -0.2  0.845 -0.1 

 0.9 0.133 -1.3  0.557 0.2  0.688 -0.2  0.905 -0.1 

             

DP
f 0.1 0.026 -14.1  0.130 -6.6  0.182 -2.2  0.382 -1.6 

 0.5 0.058 -1.1  0.281 0.6  0.382 -1.1  0.679 0.2 

 0.9 0.078 -9.8  0.365 1.6  0.485 0.8  0.779 0.2 

             
DC

g 0.1 0.043 -0.6  0.209 2.4  0.290 3.5  0.560 -1.9 

 0.5 0.089 -4.3  0.407 3.0  0.533 0.8  0.816 -2.9 

 0.9 0.112 -20.0  0.490 -0.4  0.622 -0.4  0.872 -3.3 

a  = number of phenotypes per number of loci 
b  = heritability (observed scale for C and DP, liability scale for DC) 

cP = predicted accuracy of estimated additive genetic value 
d% error = percentage prediction error = 100(P−accuracy from simulation)/P 
eC = continuous phenotype 
fDP = dichotomous phenotype, population study 
gDC = dichotomous phenotype, case control study 
 

Population-wide studies on dichotomous disease phenotypes.  The form of the predicted 

accuracy ( ) is very similar to that for a quantitative trait. Again the prediction of  was 

very good (% error -14.1 to 1.6; see Table 1).  The validity of the prediction resulting from 

Equation (6) was robust to varying disease prevalence over the range of 0.01 to 0.5 (% error 

-1.9 to 1.4, Table 4).  The form of the prediction in Equation (6) is a function of  and the 

observed additive heritability on a (0,1) scale, but this can be achieved with varied 

combinations of disease prevalence and underlying heritability of liability. This is shown in 

Table 5, which also demonstrates that, as predicted from Equation (6),  is a function of 

only  as accuracy remains constant with varied disease prevalence and . 
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Table 2. The effects of different distributions of allele frequency and effects on accuracy in a 

continuous phenotype with observed heritability = 0.5 (SE range 0.0004 - 0.0057) 

   Simulated 

a Predicted  Betab/Nrmc Beta/Expd Unif/Nrm Uni/Exp 

0.02 0.100  0.095 0.093 0.100 0.097 

0.50 0.447  0.442 0.436 0.451 0.450 

1.00 0.577  0.577 0.579 0.576 0.578 

2.00 0.707  0.709 0.714 0.704 0.709 

5.00 0.845  0.849 0.848 0.846 0.846 

10.00 0.913  0.914 0.914 0.913 0.912 

a  = number of phenotypes per number of loci 
bBeta = beta distribution (alpha = 0.3, theta = 0.3) of allele frequencies 
cNrm = normal distribution of allele effects 
dExp = exponential distribution of allele effects 
fUni = uniform distribution of allele frequencies 

 

The predicted  of population studies of continuous phenotypes and dichotomous disease 

phenotypes with an underlying continuous liability follow the same functional form as seen 

in Equation (6).  Therefore, Figure 1 can be used to derive predicted  for dichotomous 

phenotypes as well as continuous phenotypes. However, note that in the liability model, 

even if liability was fully determined genetically, the additive heritability on the observed 

scale will never exceed 0.64 (i.e. , where  is the standardized normal density 

function) with the remaining genetic variation appearing non-additive. The corresponding 

maximum  achievable will be reduced and this will be most serious for low .  Even 

with the most favorable circumstances of  and liability , the accuracy will 

never exceed 0.71 if  1.56, and it should be expected that  needs to be much greater 

than this to explain half the genetic variance. This circumstance should not be expected to 

change when using other disease models than the liability, since the loss of  arises from 

the loss of quantitative information when moving from a continuous genetic value 

(however defined) to the categorical observation of affected or not. 
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Table 3.  Accuracy for continuous phenotype when setting 0.95 of a loci to zero (  = 0.02 = 

400 b/20,000 , SE range 0.0042 - 0.0057) 

c 0.95 of  zero 0.0 of  zero Predicted 

0.1 0.057 0.043 0.045 

0.5 0.101 0.097 0.100 

0.9 0.129 0.135 0.133 

a  = number of loci 
b  = number of phenotypes 
c  = observed heritability 

 

 

 

Figure 1.  Predicted accuracy of estimated genetic values of a continuous phenotype.  Predicted 

accuracy of estimated additive genetic values of a continuous phenotype as a function of observed 

heritability and number of phenotypes per genotype tested,  = 0.02, 0.1, 0.5, 1, 2, 5, 10 and 20 from 

minimum to maximum accuracy respectively. 
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Case control studies of dichotomous disease phenotypes.  The prediction formula for 

accuracy of case control studies ( ) is not a simple function of  and the observed , but 

also depends on both the heritability on the liability scale and the disease prevalence, as 

seen from Equation (8).  Therefore, comparisons require consideration of how  in 

Equation (9) varies.  The simulations assumed , with equal numbers of cases and 

controls.  Although, as seen in Table 1, the predictions are generally good (% error -20.0 to 

3.5), where the large error deviations are again due to low , there is a trend towards the 

underestimation of  as prevalence becomes low (Table 4).  

 

 

Table 4. Accuracy for a dichotomous disease trait as prevalence varies (a  = 0.5, b  = 1, SE range 

0.0026 - 0.0048). 

Prevalence  Study Type DP
c  Study Type DC

d 

  Pe % Errorf  P % Error 

0.01  0.186 -0.8  0.593 -11.1 

0.03  0.271 -1.9  0.568 -6.8 

0.05  0.317 0.3  0.554 -3.5 

0.10  0.382 -0.6  0.533 0.6 

0.20  0.444 1.4  0.511 -2.5 

0.30  0.473 1.2  0.499 -0.2 

0.40  0.487 -0.6  0.493 1.2 

0.50  0.491 0.0  0.491 1.4 

a  = heritability on liability scale 

b  = number of phenotypes per number of loci 

cDP = population study of dichotomous phenotypes  
dDC = case control study of dichotomous phenotypes 
eP = predicted accuracy of additive genetic values 
f% error = percentage prediction error = 100(P−accuracy from simulation)/P 
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Table 5.  Simulated accuracy of a population study for a dichotomous phenotype as prevalence and 

a varies and b stays constant ( c = 10,  = 0.2, predicted accuracy = 0.816, Equation (4), SE 

range 0.0025 - 0.0038) 

Prevalence  Accuracy 

0.05 0.893 0.810 

0.10 0.584 0.814 

0.20 0.408 0.814 

0.30 0.347 0.813 

0.40 0.322 0.813 

0.50 0.314 0.813 

a  = heritability on liability scale 
b  = heritability on observed scale  
c  = number of phenotypes per number of loci  

 

The value of  for case control studies is best illustrated by comparison with population 

studies of dichotomous disease traits.  Figure 2 integrates this information and shows the 

relationship of prevalence and observed heritability in population and case control studies.  

Values of  below the narrowly dashed line derived from Equation (5) are not possible 

under the liability model, for example, an observed additive heritability of 0.5 and a 

prevalence of 0.1 could not exist in the same dataset.  Each contour represents an level of 

constant , where the dashed lines represent a population study and the solid lines denote 

a case control design with .  As described above the contours are vertical for 

population studies as, given , the accuracy is independent of , but for case control 

studies move towards lower  as prevalence decreases. Several clear conclusions on case 

control studies can be drawn: (i) the overall trend of  increasing with more phenotypes 

per number of genotype holds true for case control studies (Table 1); (ii) population studies 

and case control studies are equivalent when the prevalence is 0.5 (Figure 2) ; (iii) a case 

control study is always more accurate than a population study with the same number of 

individuals genotyped (Figure 2); (iv) for a constant ,  increases as the disease 
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prevalence increases in population studies, since this increases , but in case control 

studies  increases as the disease prevalence decreases because of the more intense 

selection induced by the less prevalent disease (Table 4). 

 

Figure 2.  Predicted accuracy of estimated genetic risk from population and case control designs of a 

dichotomous phenotype.  Contour plot of predicted accuracy for varied prevalence and additive 

heritability on the observed scale, in population studies (dashed vertical line) and case control studies 

(solid line) of dichotomous phenotypes.  Each contour represents a line of constant accuracy, starting 

from the right 0.9, 0.8, 0.7, and 0.6.  The narrowly dashed line is derived from Equation (5) with 

, so values below this line are not possible under the liability model. 

 

DISCUSSION 

We have derived simple deterministic predictions of  in continuous and dichotomous 

phenotypes using either a population or a case control study and we have shown them to be 

appropriately responsive to changes in disease prevalence, heritability, and the number of 

phenotypic records per number of risk loci to be estimated.  In addition, the equations have 

proven robust to changes in allele effect distributions, including different fractions of loci 
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with zero effect and differing allele frequency distributions.  Population studies are also 

robust to covariances between the magnitude of allele effects and heterozygosity, although, 

in principle, this robustness does not hold for case control studies.  This advance in 

understanding has been used to summarize the influence of critical parameters such as 

heritability and numbers of phenotypes and risk loci on accuracy of prediction, and also to 

show the degree to which case control designs can add power to studies. 

The approach taken here has been to assume the potential loci affecting the trait are known, 

and this has an impact that is double edged.  First, it allows for a clear quantification of the 

limitations imposed on  by the number of phenotypes obtained, irrespective of marker 

densities.  The information gained by doing so is of equal importance to knowing the 

number of markers needed for a certain  but seems to have received less attention 

recently.  Second, it implies that the predicted  are upper bounds for the data obtained, 

since some loss of  will occur through the use of markers which are potentially in 

imperfect linkage disequilibrium (LD) with loci with effect (Dekkers 2004), and the 

inclusion of candidate loci that may have no effect within the population. 

The impact of including these loci with no true effect may be explained by two applications 

of our formulae. The first application assumed the loci affecting a disease trait are known 

and thus  demonstrates an upper bound on the accuracy; for example, consider  = 

1000 loci with effects greater than 0,  = 10,000 phenotypes and   = 0.1, then the 

predicted accuracy is obtained with  = 10, and will be 0.71.  Now consider if those 1000 

loci are contained with a set of  = 100,000 marker loci, with 99% having zero effect so 

that now the accuracy is obtained with  = 0.1; our predictive equations remain valid and 

predict an accuracy of 0.10.   From these applications of our formulae it is clear that the 

approach of estimating loci effects one at a time will inevitably result in low accuracies, 

and further, adding more marker loci with zero effects while using the same approach will 

reduce the expected accuracy.  The low accuracies predicted accord with the empirical 

findings from large scale studies of human data that have recently been reported (Weedon 

et al. 2008).  It is clear that alternative approaches to prediction will be needed to bridge the 

gap and raise accuracies towards the potential placed by the phenotype collection.  
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Nevertheless, potential alternative approaches are available and evidence already exists that 

these approaches may significantly increase predictive accuracy.  One approach is to 

implement model selection approaches.  Similarly, improvements in  can be achieved by 

implementing model selection least squares procedures to identify a subset of SNP from 

which to predict effects (Meuwissen et al. 2001; Habier et al. 2007), or by using more 

complex procedures to identify a subset to set to zero (Yi & Xu 2008).   Some of these 

studies (Meuwissen et al. 2001; Habier et al. 2007; Yi & Xu 2008) also incorporate the use 

of prior information within Bayesian procedures and demonstrate significant increases in 

accuracy over least squares.  Increasing the number of markers when using priors can 

increase accuracy because the size of the marker subset chosen stays the same due to the 

prior but the portion of the genetic variance captured by the markers subset increases 

(Solberg et al. 2008).  However the use of Bayesian approaches will demand reliable 

distributions for incorporation into models.  Literature estimates informing priors on  

and the distributions of the effects will become more widely available as GWA studies 

become more powerful (Hayes & Goddard 2001; Chamberlain et al. 2007).  Full genome-

wide methods (Meuwissen et al. 2001; Xu 2003), where genetic risk or additive genetic 

values are estimated in one step, using all loci simultaneously particularly if they are 

correlated, might be expected to approach the upper bound of  faster than methods 

which impose significance thresholds and, thus, do not capture all the genetic variation.  

From the results presented here it may be argued that priors on the numbers of loci 

positively contributing to the genetic variance will be more critical than those describing 

the distribution of gene effects.  

In this paper we have used a liability model for disease instead of the commonly used log 

genetic risk model and the impact of doing so is likely to be small for large datasets.  For a 

set of  and , an underlying log-risk can be approximated well by a liability (Lynch & 

Walsh 1998; Wray et al. 2007) and the distribution of effects on the log-risk scale will be 

transformed to a distribution on the liability scale, and the predictions developed here are 

not dependent on the distribution of effects.  However there is evidence that distinctions 

may be larger when  is very close to zero or one (Cox 1970).   
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A critical assumption of the genetic models studied was that the loci acted independently.  

In humans, most LD stretches for 10 to 30kb, while some linkage disequilibrium blocks 

may be >100kb (Ardlie et al. 2002).  The human genome contains 3.1 billion bases (Venter 

et al. 2001) and, assuming 2000 known loci contribute to the additive genetic variance, 

each genomic segment between them would be 1550kb.  This confirms that this model is 

viable in human.  One could apply our formulae by interpreting  as the number of 

independent chromosome segments (i.e. haplotype blocks).  The length and, thus, the 

number of these segments would depend on the amount of LD present in the genome.  The 

number of such segments have been estimated directly from pair-wise LD between markers 

(Barrett et al. 2005) and closely related measures, such as the number of independent tests 

on the genome, have been estimated using principle component analysis (Shriner et al. 

2008) and have been derived analytically for specific experimental designs (Risch 1991).  

When LD exists, either between markers and risk loci or between risk loci, the predictive 

efficiency of our equations will be reduced.  Modeling the pattern of LD by extension of 

our formulae would thus be important when many loci are used, as with dense SNP marker 

maps, or when predicting additive genetic values in other species, such as some livestock 

populations where the extent of LD is large compared to human (Mcrae et al. 2002; 

Sargolzaei et al. 2008). 

An attraction of molecular predictors of genetic risk compared to pedigree predictors is the 

potential to apply the predictions more widely within populations and across populations. 

Obtaining sufficient accuracy within populations can be achieved by the quality and size of 

sampling, but there are additional factors in play when transfer across populations is being 

considered.  For example, one benefit of genome-wide prediction is that individual allele 

effects are estimated with a precision that is related to the molecular variation observed at 

the locus, , which determines the contribution of genetic variance when combined 

with the squared magnitude of effect.  This benefit may break down when predictions are 

transferred across populations.  As an illustration, consider a rare allele of large effect 

which will be relatively imprecisely estimated in the estimation sample, but because the 

contribution of the locus to total variance is small there is only a small impact upon the 

accuracy of further predictions within the same population.  In a different population, such 



 
 

Prediction of Genome-Wide Evaluation Accuracy 

 65

an allele may have a greater frequency and contribute a greater part of the genetic variance, 

and, consequently, the predictive accuracy will suffer.  Specifically, the ability to transfer 

predictions will depend on  in each of the two populations used for estimation and 

application, and this in turn depends on both the allele frequency ( ) and the degree of 

admixture present in the population.  Furthermore, an additional risk of transferability 

across populations is the presence of epistasis which may differentially influence .  

Any directional selection present in the population is likely to introduce a covariance 

between the magnitude of allelic effect and heterozygosity, since selection promotes the 

movement of alleles of large effect quickly through intermediate frequencies, where they 

create large genetic variance, towards extreme frequencies.  The predictions of  

developed make no assumption of the covariance, and hence are robust to such selection in 

the population prior to estimation in population studies.  In contrast, the derivation for the 

case control study does assume independence of heterozygosity and magnitude (as 

described in Appendix S2).  However, in the limited simulations carried out with such 

covariances in case control studies, the impact of the breaking this assumption appeared 

small (results not shown). 

Our derivations show that  can be reduced to very similar forms for population and case-

control studies of continuous and dichotomous phenotypes (c.f. Equations  (1), (6) 

and (9)).  The common element affecting  for all three equations is the term , 

describing the joint effect of , the number of phenotypic records per locus associated with 

the trait, and the observed heritability.  Increasing either of these improves , but the 

study shows that the major determinant of the trade-off between these two factors is their 

product. For a population study  is completely sufficient to determine accuracy, 

independent of prevalence ( ) and heritability ( ) of liability for a dichotomous trait, but 

for a case control study both  and  retain some influence on  over and above their 

impact upon .  This is because, in a case control study, the term  in Equation (9) is 

adjusting for the selection of the cases and controls, and the strength of selection will 

depend upon , and its impact on genetic variance will depend on .   
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The predictive equations are a good fit to the simulated values and we have demonstrated, 

by theory and simulation, that they are independent of allele frequency and effect 

distributions.  The formulae have increased the understanding of the relative differences 

between predicting  in a random sample of a population and in case control studies.  The 

expressions for  derived will help researchers design experiments of appropriate size to 

estimate genetic risk to disease. 

 

ACKNOWLEDGEMENTS 

We are grateful to Bill Hill, Piter Bijma and two anonymous reviewers for their helpful and 

constructive comments.  HDD was supported by the SABRETRAIN Project, which is 

funded by the Marie Curie Host Fellowships for Early Stage Research Training, as part of 

the 6th Framework Programme of the European Commission. BV received support from the 

Scottish Executive Environment and Rural Affairs Department (SEERAD) and INIA, and 

JAW received funding from the Biotechnology and Biological Sciences Research Council 

(BBSRC). 

 

 
REFERENCES 

 
Ardlie, K. G., L. Kruglyak, and M. Seielstad, 2002 Patterns of linkage disequilibrium in the 

human genome. Nat. Rev. Genet. 3: 299-309. 
Barrett, J. C., B. Fry, J. Maller, and M. J. Daly, 2005 Haploview: analysis and visualization 

of LD and haplotype maps. Bioinformatics 21: 263-265. 
Bijma, P., and J. A. Woolliams, 1999 Prediction of genetic contributions and generation 

intervals in populations with overlapping generations under selection. Genetics 
151: 1197-1210. 

Chamberlain, A. J., H. C. McPartlan, and M. E. Goddard, 2007 The number of loci that 
affect milk production traits in dairy cattle. Genetics 177: 1117-1123. 

Cox D. R., 1970 Analysis of Binary Data. Methuen & Co Ltd, London. 
Dekkers, J. C., 2004 Commercial application of marker- and gene-assisted selection in 

livestock: strategies and lessons. J.Anim Sci. 82 E-Suppl: E313-E328. 
Falconer D. S., and T. F. C. Mackay, 1996 Introduction to Quantitative Genetics. 

Longman, Harlow, UK. 
Goring, H. H. H., J. D. Terwilliger, and J. Blangero, 2001 Large upward bias in estimation 

of locus-specific effects from genomewide scans. Am. J. Hum. Genet. 69: 1357-
1369. 



 
 

Prediction of Genome-Wide Evaluation Accuracy 

 67

Habier, D., R. L. Fernando, and J. C. M. Dekkers, 2007 The impact of genetic relationship 
information on genome-assisted breeding values. Genetics 177: 2389-2397. 

Hayes, B. J., and M. E. Goddard, 2001 The distribution of the effects of genes affecting 
quantitative traits in livestock. Genet. Sel. Evol. 33: 209-229. 

Hirschhorn, J. N., and M. J. Daly, 2005 Genome-wide association studies for common 
diseases and complex traits. Nat. Rev. Genet. 6: 95-108. 

Janssens, A. C. J. W., Y. S. Aulchenko, S. Elefante, G. J. J. M. Borsboom, E. W. 
Steyerberg et al.  2006 Predictive testing for complex diseases using multiple 
genes: Fact or fiction? Genet. in Med. 8: 395-400. 

Lynch M., and B. Walsh, 1998 Genetics and the analysis of quantitative traits. Sinauer 
Associates Inc., Sunderland, MA. 

Mcrae, A. F., J. C. Mcewan, K. G. Dodds, T. Wilson, A. M. Crawford et al.  2002 Linkage 
disequilibrium in domestic sheep. Genetics 160: 1113-1122. 

Meuwissen, T. H., B. J. Hayes, and M. E. Goddard, 2001 Prediction of total genetic value 
using genome-wide dense marker maps. Genetics 157: 1819-1829. 

Pharoah, P. D. P., A. Antoniou, M. Bobrow, R. L. Zimmern, D. F. Easton et al.  2002 
Polygenic susceptibility to breast cancer and implications for prevention. Nat. 

Genet.  31: 33-36. 
Pritchard, J. K., 2001 Are rare variants responsible for susceptibility to complex diseases? 

Am. J. Hum. Genet.  69: 124-137. 
Reich, D. E., and E. S. Lander, 2001 On the allelic spectrum of human disease. Trends in 

Genetics 17: 502-510. 
Risch, N., 1991 A Note on Multiple Testing Procedures in Linkage Analysis. American J. 

Hum. Gene. 48: 1058-1064. 
Robertson, A., 1961 Inbreeding in Artificial Selection Programmes. Genet. Res. 2: 189-&. 
Robertson, A., and I. M. Lerner, 1949 The Heritability of All-Or-None Traits - Viability of 

Poultry. Genetics 34: 395-411. 
Sargolzaei, M., F. S. Schenkel, G. B. Jansen, and L. R. Schaeffer, 2008 Extent of linkage 

disequilibrium in Holstein cattle in North America. J.Dairy Sci. 5: 2106-2117. 
Shriner, D., T. M. Baye, M. A. Padilla, S. Zhang, L. K. Vaughan et al.  2008 Commonality 

of functional annotation: a method for prioritization of candidate genes from 
genome-wide linkage studies. Nucleic Acids Res. 36. 

Solberg, T. R., A. K. Sonesson, J. A. Woolliams, and T. H. E. Meuwissen, 2008 Genomic 
selection using different marker types and densities. J. Anim. Sci. 86:2447-2454. 

Valdar, W., L. C. Solberg, D. Gauguier, S. Burnett, P. Klenerman et al.  2006 Genome-
wide genetic association of complex traits in heterogeneous stock mice. Nat. 

Genet. 38: 879-887. 
Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural et al.  2001 The sequence 

of the human genome. Science 291: 1304-+. 
Weedon, M. N., H. Lango, C. M. Lindgren, C. Wallace, D. M. Evans et al.  2008 Genome-

wide association analysis identifies 20 loci that influence adult height. Nat. Gene. 

40: 575-583. 
Wellcome Trust Case Control Consortium, 2007 Genome-wide association study of 14,000 

cases of seven common diseases and 3,000 shared controls. Nature 447: 661-678. 



 
 

Chapter 3 

 68

Wray, N. R., M. E. Goddard, and P. M. Visscher, 2007 Prediction of individual genetic risk 
to disease from genome-wide association studies. Genome Res. 17: 1520-1528. 

Xu, S. Z., 2003 Estimating polygenic effects using markers of the entire genome. Genetics 
163: 789-801. 

Yi, N. J., and S. H. Xu, 2008 Bayesian LASSO for quantitative trait loci mapping. Genetics 
179: 1045-1055. 

 

 

APPENDIX S1 

Equation (1) has been derived assuming . In practice, if ,   would be derived 

from a multiple regression and a better approximation would be 

, where the first term is the environmental variance and in the 

second the genetic variance is unaccounted for.  By replacing  in the derivation of 

Equation (1) with  and rearranging the terms using the substitution  

gives: 

  (10) 

This gives a quadratic equation in , and  is the solution of 

 which allows for a second order correction of the accuracy. By 

re-arranging the denominator of Equation (10) so that 

, and noting the last term may be 

approximated by , the fractional magnitude of this upward correction to  is 

seen to be . For example if   = 10 and  = 0.1, then Equation  (1) gives 

 and the fractional underestimate is of the order of 0.0125 (i.e. 1.25% error). The 

same formula can be shown to apply for population studies of dichotomous traits and, 

analogously,  for case control studies. 

 

APPENDIX S2 

Consider the impact on  of selection of cases and controls.  The selection is 

equivalent to setting a truncation point  of a Normal distribution on the liability scale 

corresponding to the proportion of affected individuals .  This requires sampling the 
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required number of cases with liabilities  and the controls with liabilities .  In 

this appendix we will not assume the cases and controls are equally sampled but consider 

the more general case where  are cases and  are controls.    Prior to setting 

the truncation point,  where  is the phenotypic value and 

. With  not small, then we may assume constancy of 

regression, a property of multivariate normal distributions [31], giving 

. The  can be calculated directly as 

, where  . Therefore 

 and assuming no covariance between   and  gives 

the result . 

There are three traits to consider, the disease score , liability , and the allele number at 

locus , .  Prior to selection of the cases and controls  and the following 

regression equation holds: 

 , (11) 

with . After selection of cases and controls it is 

assumed that using a normal approximation the validity of (11) remains, and: 

  (12) 

with . Therefore using (11) and (12) gives: 

. (13) 

Note when , there is no selective sampling and , and 

, which is identical to  in the population study. 
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ABSTRACT 

Genome-wide evaluation combines statistical methods with genomic data to predict genetic 

values for complex traits.  Considerable uncertainty currently exists in determining which 

genome-wide evaluation method is the most appropriate.  We hypothesise that genome-

wide methods deal differently with the genetic architecture of complex traits.  We 

compared a genomic best linear unbiased prediction method (GBLUP), and a genomic non-

linear Bayesian variable selection method (BayesB) using stochastic simulation across three 

effective population sizes and a wide range of numbers of quantitative trait loci (NQTL).  

GBLUP had a constant accuracy, for a given heritability and number of phenotypes, 

regardless of NQTL.  BayesB had a higher accuracy than GBLUP when NQTL was low, but 

this advantage diminished as NQTL increased and when NQTL became large, GBLUP slightly 

outperformed BayesB.  In addition, deterministic equations are extended to predict the 

accuracy of both methods and to estimate the number of independent chromosome 

segments (Me) and NQTL.  The predictions of accuracy and estimates of Me and NQTL were 

generally in good agreement with results from simulated data.  We conclude that GBLUP 

and BayesB (at high NQTL) accuracy are highly dependent on Me.  We propose a decision 

rule to choose a genome-wide method: when NQTL < Me choose a variable selection method 

such as BayesB and when NQTL > Me choose GBLUP.   

 

INTRODUCTION 

Genome-wide evaluation combines traditional approaches to the prediction of genetic 

values with the use of high throughput genotype data such as single nucleotide 

polymorphisms (SNP) (Meuwissen et al. 2001).  The accuracy of predicted genetic values 

from genome-wide evaluation can be substantially higher than that of traditional methods 

provided that enough phenotypic records are available for estimating marker effects 

(Daetwyler et al. 2008; Goddard 2008; Hayes et al. 2009c).  Genome-wide selection, i.e. 

selection based on genomic predicted genetic values, also has the potential to reduce the 

generational inbreeding rates in animal breeding programs (Dekkers 2007; Daetwyler et al. 

2007).  Furthermore, the application of genome-wide evaluation approaches can 
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significantly aid our understanding of complex trait genetic architecture in a similar way as 

quantitative trait loci (QTL) analysis (Hayes & Goddard 2001). 

The genome-wide evaluation methods suggested to date can be broadly categorized into 

groups according to whether or not there is assortment of the SNP by magnitude of effect or 

contribution to the variance. One group treats SNP homogeneously and includes variants of 

genomic best linear unbiased prediction (GBLUP). This group includes a form of ridge 

regression (Whittaker et al. 2000) proposed by Meuwissen et al. (2001), where individual 

loci effects are regressed towards zero, and the use of a realised relationship matrix in 

GBLUP. In the latter, the relationships may be based upon either identity-by-descent 

probabilities (Villanueva et al. 2005) or, more commonly, identity-by-state probabilities 

(NejatiJavaremi et al. 1997; Hayes et al. 2009c) averaged over all loci.  The ridge-

regression and the identity-by-state approaches have been shown to be equivalent (Habier 

et al. 2007; Goddard 2008) as the number of SNP become large. A second group provides 

for heterogeneity among SNP contributions, with some contributions permitted to be large 

whilst the remainder are small, possibly zero. This assortment is aided by Bayesian 

approaches placing priors on numbers assumed to have a major contribution (e.g. BayesA, 

BayesB (Meuwissen et al. 2001; Meuwissen et al. 2009), among others (Lee et al. 2008)), 

or some penalty based on functions of the magnitude of effect for each SNP (e.g. Lasso 

(Tibshirani 1996; Yi & Xu 2008)) or other smoothing metric (Long et al. 2007). A third 

group attempts to reduce dimensionality by using principal components or partial least 

squares (e.g. Raadsma et al. 2008; Solberg et al. 2009) to identify an informative subset 

contrasts among SNP genotypes. The main two methods currently used in real datasets are 

a linear prediction method, GBLUP, and variants of non-linear Bayesian variable selection 

approaches such as BayesB.  

As described above, Bayesian methods can accommodate prior assumptions where loci 

effect variances can differ across loci, in contrast to GBLUP.  In addition, BayesB 

(Meuwissen et al. 2001) is a variable selection method because it incorporates priors on the 

numbers of loci with effect, while others are set to zero.  According to Meuwissen et al. 

(2001), when the number of loci is large, the proportion of them actually having an effect 
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may become small.  Thus, only fitting a subset of loci with which to estimate the effects 

will reduce the dimensionality of the model and can be advantageous in terms of accuracy. 

In most simulated published data, the accuracy of BayesB outperformed that of GBLUP 

(e.g. Meuwissen et al. 2001; Habier et al. 2007; Lund et al. 2009).  However, real data 

results have not consistently supported this conclusion.  Two reviews of empirical results in 

dairy cattle to date have shown that GBLUP and BayesB result in very similar accuracies 

for most traits (VanRaden et al. 2009; Hayes et al. 2009a).  One reason for the 

disagreement between simulated and real data results could be that the genetic architecture 

simulated is significantly different from what is found in real populations.  

Studies published to date that compare methods using simulated architectures have 

considered only 50 or fewer QTL affecting the trait (Meuwissen et al. 2001; Habier et al. 

2007; Lund et al. 2009), which displays a rather narrow range.  We hypothesise in this 

paper that the relative utility of genome-wide evaluation methods depends significantly on 

both the genomic structure of the population and the genetic trait architecture. The accuracy 

of some genome-wide evaluation approaches can be accurately predicted from the number 

of individuals in the training population ( ), number of loci and heritability ( ) 

(Daetwyler et al. 2008).  The derivation of the number of independent chromosome 

segments ( ) has further advanced accuracy predictions (Goddard 2008).  However, the 

relative efficiency of different methods is uncertain when the number of QTL ( ) is 

high.  Thus, the main objective of this study was to compare a linear method, GBLUP, and 

a non-linear variable selection method, BayesB, using simulated data across a range of 

population and trait genetic architectures to further understand the mechanics of genome-

wide evaluation methods.  An important secondary objective was to extend deterministic 

prediction models to predict the accuracy of both methods and to propose methodology to 

estimate the  of populations and  of complex traits.  Theoretical models 

complement stochastic simulation by helping the understanding of the factors involved in 

genome-wide evaluation performance and, in return, stochastic simulation is used to 

confirm theoretical derivations. 
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METHODS 

Theoretical development: Deterministic prediction of genome-wide accuracy can help us 

understand why the relative performance of methods may differ.  Daetwyler et al. (2008) 

derived equations for predicting the accuracy of a simple least-squares genome-wide 

evaluation approach for continuous and dichotomous traits.  The original formula for 

genome-wide accuracy for a continuous trait is , where  

is the correlation between true and estimated additive genetic values (i.e. accuracy) and  

is the number of independent loci (Daetwyler et al. 2008).  The accuracy was independent 

of how large the subset of loci was that make non-zero contributions. Thus, it did not matter 

whether there were many non-zero loci effects of small magnitude or only a few non-zero 

loci effects of large magnitude.  In Daetwyler et al. (2008), the formulae were derived by 

considering the regression of phenotypes on one locus at a time and naturally extend to 

multiple loci if they are independent.  Therefore the formula will work for small numbers of 

dispersed loci in a genome and will tend to zero as  becomes large; erroneously, because 

loci cannot be added independently in a finite genome due to linkage.  Daetwyler et al. 

(2008) discussed that an empirical value for  could be used in place of , because  

was assumed independent and this dependence of the accuracy of GBLUP on a concept of 

predicted Me was also proposed by Goddard (2008).  His derivation builds on work by 

Visscher et al. (2006) in which the variance of identical-by-descent sharing for full sibs was 

developed, and provides a prediction , where  is the genome 

length in Morgans (Goddard 2008).   Substituting  in place of  results in: 

 , (1) 

which predicts the accuracy of GBLUP.  At no time does the argument moving from 

original formula of Daetwyler et al. (2008) to Equation (1) depend on the distribution of 

marker effects, so we come to the first testable hypothesis in this study which states that 

GBLUP accuracy is independent of . 

Our second testable hypothesis was that the accuracy of BayesB when  is high would 

tend to that of GBLUP.  If our first hypothesis is confirmed, then the dependence of 

GBLUP on  is an advantage at high , even though  may be higher than .  
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Heuristically, if GBLUP delivers accuracy as if there are a  number of QTL, the benefit 

from prior information that there are approximately  (or more) QTL is unclear given 

equation (1).  On the other hand, it is a clear disadvantage if  because GBLUP 

cannot adapt the model to suit the data.  In contrast, BayesB is a variable selection method 

which attempts to determine the ‘optimum dimensionality’ given the data and prior 

information.  When  is high this optimum is likely to be  in both methods.  

Hence, the accuracy of BayesB at high  can be predicted in the same way as GBLUP: 

if , then variable selection may deliver an advantage in accuracy because 

choosing a subset of variables will reduce the dimensionality of the model, and substituting 

 for  is likely to better predict the accuracy of BayesB.  This results in the 

following equation, 

 . (2) 

Further rearrangement of Equations (1) and (2) allows for empirical estimates of  ( ) 

to be made in the following way,  

 , (3) 

where  is the squared accuracy of estimates of genetic values using GBLUP or BayesB 

(when ) for individuals without phenotypes.  Predicting  with GBLUP 

requires molecular relatedness to be known, whereas this is not required when using 

BayesB.  This result gives a further sub-hypothesis that the empirical Me is predicted by the 

formula for independent segments given by Goddard (2008).  Also, if , 

additional information on  can be gathered using BayesB accuracy because it can 

choose a subset of loci or variables, by applying the following formula, 

 , (4) 

where, in this case,  is the squared accuracy of genetic values resulting from BayesB.  

Hence, additional insight into complex traits can be gained by combining genome-wide 

evaluation and deterministic prediction. 

 

Simulations 
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Our study consisted of three main steps. First, populations of individuals were simulated to 

be in mutation drift equilibrium.  Second, effects were assigned to a number of QTL that 

were randomly selected from the whole set of segregating loci and true genetic values and 

phenotypes were generated for each individual.  The third step consisted of the genetic 

evaluations of the individuals generated with both GBLUP and BayesB. 

 

Populations and Genome: Populations in mutation drift equilibrium were simulated by 

random mating individuals for many generations with recombination and mutation.  The 

number of male and female parents was ½  across generations.  One male and one 

female offspring were produced per mating.  The number of generations needed to attain 

mutation drift equilibrium was approximately 5 .  Thus, a total of 1,000, 5,000 and 

10,000 generations were simulated until linkage disequilibrium and heterozygosity values 

were stable for  = 200,   = 1,000 and  = 2,000, respectively.  In the final 

generation, a set of training individuals (of variable size) in which the loci effects were to 

be estimated was generated by random mating.  Using the same parents with dams re-

randomised, a set of validation individuals of size equal to the training set was produced 

whose genetic values were to be predicted.  This limited the impact of relationships on the 

accuracy of predicted genetic values as the validation set was not the offspring of the 

training set but it ensured that both sets were from the same gene pool.  In scenarios where 

the size of the training sets ( ) was larger than , population size was increased by 

increasing the number of offspring per mating in the final generation. 

The total genome size was 10 Morgans and 10 chromosomes of 1Morgan each were 

simulated.  In generation zero all individuals were completely homozygous for the same 

allele and mutations were applied at a rate of 2.5 *10-5 per locus per meiosis in the 

following generations.  Mutations switched allele one to two and vice versa.  The number 

of mutations per chromosome was sampled from a Poisson distribution with mean 

corresponding to the product of the number of loci per chromosome and the mutation rate 

and they were then randomly distributed across the chromosome.  Similarly, 

recombinations per chromosome were sampled from a Poisson distribution with a mean of 

one per M and were then randomly placed along the chromosome.  Linkage disequilibrium 
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(LD, ) statistics (Hill & Robertson 1968) between adjacent segregating loci were 

averaged among all pairs exceeding a minor allele frequency of 0.05 and matched expected 

 values (Sved 1971; Tenesa et al. 2007).  When all segregating loci are included, 

achieved LD will not match expected  closely (Hudson 1983).  Heterozygosity of 

segregating loci at mutation drift equilibrium followed expectations, 

, where  is the mutation rate (Sved 1971).  Allele 

frequency distributions were found to follow a U-shaped distribution.   

 

Table 1.  Number of QTL simulated for each proportion of independent chromosome segments ( ) 

for three values of effective population size ( ). 

Ne 0.03 Me 0.05 Me 0.15 Me 0.3 Me 0.5 Me 0.75 Me 1 Me 

200 12 24 73 146 243 365 486 

1000 51 101 303 606 1010 1515 2020 

2000 95 189 567 1134 1890 2835 3780 

 

The number of loci at the start of the simulation (generation zero) required several 

considerations concerned with obtaining appropriate number of segregating loci ( ) and 

 in the final generation. The realised relationship matrix used in GBLUP can be 

singular if  is less than the number of individuals in the matrix (VanRaden 2008), 

preventing the inversion needed to compute solutions. Thus,  at mutation drift 

equilibrium was made larger than the maximum sum of training and validation individuals 

to be used, and a similar  was used across all scenarios to reduce variability.  However, 

as  increased the proportion of segregating loci ( ) in the last generation also 

increased and for  = 200,  = 1,000, and  = 2,000, approximately 0.04, 0.28 and 

0.52 of initial loci were segregating at mutation drift equilibrium, respectively.  This 

required the adjustment of the number of initial loci. The achieved value of  at 

equilibrium for each scenario is shown in Table 2.  To obtain ,  in a random 

mating population, as derived by Goddard (2008) was used as a guide to allow comparisons 

to be made across .  The following  scenarios were simulated: 0.03, 0.05, 0.15, 
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0.30, 0.50, 0.75 and 1 .  Table 1 outlines the corresponding  for these proportions 

of  for the three .  Note that throughout this study our use of the terms ‘low’ or 

‘high’  may refer to different actual  across the three  because  was 

scaled to be proportional to  (Table 1).    

 

Table 2.  Parameter values for the simulated scenarios, where  = effective population size;  = 

number of individuals in the training set;  = heritability; Prior = prior used in BayesB; = 

number of independent chromosome segments;  = number of segregating loci in last generation 

(SE < 9.5).  

Scenario    Prior   

1 200 200 0.3 Exact 445 4576 

2 200 1000 0.3 Exact 445 4646 

3 1000 1000 0.5 Exact 1890 4696 

4 1000 1000 0.3 Exact 1890 4696 

5 1000 1000 0.1 Exact 1890 4696 

6 1000 500 0.3 Exact 1890 4599 

7 1000 2000 0.3 Exact 1890 4721 

8 1000 1000 0.3 51 QTL 1890 4696 

9 2000 2000 0.3 Exact 3774 4632 

 

The desired  were randomly chosen from .  True allele substitution effects ( ) 

were sampled from .  True genetic values for 2  (i.e. training and validation set) 

individuals were calculated as  and  (where  is the major allele 

frequency at locus ) for the minor and major alleles, respectively, for each QTL.  These 

were summed over  and scaled to have the variance of  (Falconer & Mackay 

1996).  Phenotypic records were simulated for  (training set) animals by adding 

independent environmental terms drawn from  to true genetic values.  The 
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accuracy of both genome-wide evaluation methods was computed as the correlation 

between true and estimated genetic values.  

 

GBLUP analysis: The evaluation with GBLUP applied the following model which was fit 

in ASReml (Gilmour et al. 1995): , where  is the vector of phenotypic 

values,  is the population mean,  is an incidence matrix for random individual effects,  

is a vector of random individual additive genetic values and  is the residual.  Random 

effects  and  were assumed normally distributed as  and , 

respectively, where  was the realised relationship matrix computed using the  loci.  In 

, the relationship between a pair of individuals was based on identical-by-state 

probabilities and included all training individuals with phenotypes and validation 

individuals without phenotypes.  The total allelic relationship at a locus between a pair of 

individuals was calculated as , where  is 1 if allele  in the first 

individual is identical to allele  in the second individual and 0 otherwise.  Averaging over 

loci as  yields the numerator relationship between all individual 

pairs required for  (NejatiJavaremi et al. 1997; Hayes et al. 2009c).  Genetic values were 

then predicted by solving , where  was the estimated 

additive genetic variance. 

 

BayesB analysis: We implemented a variant of the original BayesB (Meuwissen et al. 

2001).  The model applied was , where  was an incidence 

matrix relating the number of favourable alleles an individual carries at a locus to the 

estimated loci effect  (i.e. 11 = -1, 12 = 0, 22 = 1).  A flat prior was used for  and for  

the prior was assumed to follow .  BayesB can account for the probability that a 

proportion of loci have no effect ( ).  The prior applied for the proportion of non-zero 

effect loci was exact, so , except for scenario 8 where 51 QTL was 

used  regardless of the actual .  A weak prior for the genetic variance was chosen 

from a scaled inverted chi square distribution and it was found to have an inconsequential 

influence on results. Our implementation of sampling loci variances was slightly different 
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from Meuwissen et al. (2001).  Instead of sampling a variance at each locus, we calculated 

a variance based on all loci at the end of each iteration and then drew locus variances from 

that distribution in the subsequent iteration.  The length of the Gibbs chain was 105,000 

iterations and the first 5,000 iterations were discarded as warm up.  Estimates at every 20th 

iteration were stored as a sample resulting in a total of 5,000 samples.  Autocorrelations of 

sampled effects were found to be close to zero which showed that they were almost 

independent (Wang et al. 1994). This allowed for shortening of the chain length to 45,000 

iterations (2000 samples) for scenarios with  = 2,000 to reduce running time.   

 

RESULTS 

GBLUP accuracy: A clear trend is apparent in GBLUP.  The accuracy of GBLUP for a 

given set of values for  and  stays constant regardless of  and this constant 

accuracy is observed across all scenarios simulated (Figure 1 and Table 3).  This confirmed 

our first hypothesis. The constant accuracy results from the unique  of a population 

which, in turn, depends on  and  in a random mating population (Goddard 2008).  The 

plateau of GBLUP accuracy increased when more phenotypic records were used in the 

estimation of genetic values and when  increased (Figure 1).   

 

BayesB accuracy: In contrast to GBLUP, with BayesB the accuracy was highest at low 

 and then decreased as  increased (Figure 1 and Table 3).  This can be 

explained by the increase in dimensionality in the analysis as the number of variables with 

effects to be estimated increases.  Once  was high BayesB reaches a plateau where 

the accuracy does not decrease anymore despite increasing .  This plateau is observed 

in all BayesB scenarios and the value of the accuracy at this plateau depended on ,  

and  (Tables 3 and 4).  The plateau decreased when  increased.  An increase in  

and  influenced the accuracy in two ways, firstly, it raised the overall accuracy in all 

 scenarios. Secondly, it slightly shifted the onset of the accuracy plateau to higher 

.   
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Table 3.  Accuracy of GBLUP and BayesB (exact priors) for different effective population sizes 

( ), numbers of QTL expressed as proportions of , numbers of individuals in the training set 

( ) when the heritability is 0.3.  SE < 0.023 in all scenarios. 

Method   0.03Me 0.05Me 0.15Me 0.3Me 0.50Me 0.75Me 1 Me 

GBLUP 

200 200 0.405 0.450 0.429 0.414 0.444 0.416 0.398 

1000 1000 0.505 0.501 0.508 0.502 0.507 0.501 0.511 

2000 2000 0.575 0.579 0.571 0.568 0.571 0.571 0.568 

          

BayesB 

200 200 0.739 0.649 0.463 0.400 0.398 0.365 0.344 

1000 1000 0.865 0.772 0.601 0.516 0.480 0.451 0.445 

2000 2000 0.886 0.812 0.646 0.573 0.544 0.522 0.506 

 

 

Under scenario 8 (Table 2) an incorrect low prior was applied and results demonstrate the 

need to use accurate priors for  in Bayesian analyses.  The use of incorrect low priors 

for  yielded a lower accuracy than exact priors as seen in Figure 2. The gap between 

the accuracy of exact and low priors increased as  increased because proportion of 

the genetic variance explained by the low prior became smaller.  

 

Comparison of GBLUP and BayesB: The comparison of GBLUP and BayesB leads to 

several key observations.  BayesB always performed better than GBLUP at low .  

However, as  increased, the difference between the two methods became smaller and 

eventually both approaches achieved very similar accuracy.  The  at which this 

equivalence occurred was increased with increasing ,  and  (Figure 1, Tables 3 and 

4).  Once  increased past the equivalence point, BayesB had a slightly lower accuracy 

than GBLUP and settled at a constant accuracy (Table 3).  The difference between GBLUP 

and BayesB at high  decreased when  was increased. 

 

 

Table 4.  Accuracy of GBLUP and BayesB (exact priors) in training (T) and validation (V) 

individuals for different effective population sizes ( ), numbers of QTL ( ) expressed as 
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proportions of  and numbers of individuals in the training set ( ) when the heritability is 0.3. 

SE < 0.023 in all scenarios. 

    = 200   = 1000 

  Pop.  = 200  =1000  = 500  =1000 =2000 

BayesB 

0.03 Me 
T 0.794 0.958  0.801 0.883 0.933 

V 0.739 0.952  0.757 0.865 0.924 

0.05 Me V 0.649 0.905  0.602 0.772 0.870 

0.15 Me V 0.463 0.803  0.421 0.601 0.744 

0.30 Me V 0.400 0.709  0.371 0.516 0.656 

0.50 Me 
T 0.599 0.778  0.583 0.657 0.741 

V 0.398 0.654  0.373 0.480 0.613 

1 Me V 0.344 0.591  0.342 0.445 0.567 

         

GBLUP All 
T 0.656 0.771  0.625 0.682 0.747 

V 0.444 0.622  0.407 0.507 0.612 

 

In Figure 2, the maximum x-value of  plotted is equal to the predicted  from 

Goddard (2008) and it is clear that BayesB approaches the plateau and approximates the 

equivalence to GBLUP well below this value. A first inspection therefore suggests that the 

second hypothesis does not hold.  However the argument for the second hypothesis is based 

upon the empirical , and the values  may be calculated for  = 0.1, 0.3 and 0.5 by 

averaging over the values of  and using Equation (3) gives values of 890, 900 and 

700. In this context, hypothesis two is shown to be broadly valid, in that superiority of 

BayesB over GBLUP disappears when  approaches , although there is trend for 

this superiority to disappear slightly sooner than . These observations held for other 

scenarios (excluding the use of the incorrect prior). The comparison between  and  

is addressed in more detail below. 
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Figure 1.  Accuracy of GBLUP and BayesB (exact priors) in validation individuals for different 

numbers of QTL and heritabilities ( ) when the effective population size is 1,000 and the number of 

individuals in the training set is 1,000. SE < 0.018 in all scenarios. 

 

Decay in accuracy: A non-trivial issue in genome-wide evaluation is the decay in accuracy 

observed when effects are estimated in a population sample (training set) with individuals 

genotyped and phenotyped and then these estimates are used to obtain genetic values in 

another population sample (validation set) with individuals only genotyped.  Habier et al. 

(2007) have shown that this decay in accuracy is, in part, due to a decay in genetic 

relationships between individuals and was greater in GBLUP than in BayesB when 50 QTL 

were simulated.  A similar trend can be seen in Table 4 where the decay in accuracy 

between training and validation individuals was also much greater in GBLUP than that of 

BayesB at low .  However, this trend diminished as  increased and the decay of 

accuracy reached similar levels in both methods at high .   
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Figure 2.  Accuracy of BayesB in validation individuals with exact priors (BayesB Prior Exact) and a 

low prior of 51 QTL regardless of the actual number of QTL (BayesB Prior 51 QTL = 0.05Me) when 

the effective population size is 1,000, the number of individuals in the training set is 1,000, and 

heritability is 0.3.  Accuracy of GBLUP is included for reference.  SE < 0.009 in all scenarios. 

 

 

Predictions of accuracy: Figure 3 shows the accuracies of GBLUP and BayesB predicted 

with Equations (1) and (2), respectively and the accuracies from simulations in the 

validation set.  Predictions of GBLUP and BayesB (at high ) accuracy were generally 

accurate.  The accuracy of the predictions were highly dependent on .  In BayesB, the 

drop in accuracy as  increased was predicted well.  Equation (2) tended to over-

predict BayesB accuracy, particularly in scenarios with low proportions of  (using 

Goddard (Goddard 2008)) and low  and . Overall, predictions became more accurate 

as  increased (Figure 3).   
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Figure 3.  Predicted (black bars) and simulated (grey bars) accuracy of GBLUP and BayesB for a) a 

heritability ( ) of 0.3 and varying effective population size ( ) and number of individuals in the 

training set ( ) and for b)  = 1000 and varying  and . Different numbers of QTL expressed 

as proportions of  were considered for BayesB. 
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Table 5.  Estimated ( ) and predicted (  and ) number of independent chromosome 

segments. Estimates were obtained from Equation (3) with mean squared accuracy of GBLUP or 

BayesB from 50 replicates of simulated data ( SE). The number of QTL is 1  and predictions are 

 as in Goddard (2008) and  as in Hayes et al. (2009c). 

       

   GBLUP  BayesB     

200 200 0.3 294 29 579 73  445 2,000 

200 1000 0.3 487 17 584 25  445 2,000 

1000 1000 0.5 883 24 1103 27  1890 10,000 

1000 1000 0.3 890 28 1243 33  1890 10,000 

1000 1000 0.1 822 41 1551 111  1890 10,000 

1000 500 0.3 803 39 1187 48  1890 10,000 

1000 2000 0.3 1014 21 1280 26  1890 10,000 

2000 2000 0.3 1253 24 1769 42  3774 20,000 

 

Empirical  and : The accuracy of GBLUP or BayesB (when ) is 

required for estimating  using Equation (3).  When GBLUP accuracy was used, we 

averaged the accuracy across all  scenarios simulated for a given set of values for  

and .  We also used the BayesB accuracy when .  This was done for each 

population replicate to obtain a standard error.  It is a sub-hypothesis that  as predicted 

by Goddard (2008) approximates .  Empirical estimates of  using GBLUP were 

always lower than those using BayesB (Table 5) due to the higher GBLUP accuracy when 

 is high.  The estimates using BayesB accuracy were more variable than GBLUP as 

shown by the larger SE of BayesB in Table 5.  A general trend was apparent showing that 

 increased as  increased which suggests that  has not reached its true value, 

however the change in  is small in relation to the difference from Me.  Furthermore, 



 
 

Chapter 4 

 88

 does not increase linearly with  and this may indicate that it may be approaching 

asymptotic values. 

The number of QTL controlling the trait ( ) was estimated using Equation (4) with 

reliability values from BayesB when .  As shown in Figure 4 for Scenario 7, 

the estimated  do follow the actual  well and are predictive of the trend.  

Empirical  were better estimated with higher  following the same trends as 

deterministic predictions of BayesB accuracy.  Note that incorrect priors will reduce  

accuracy. 
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Figure 4.  Actual number of QTL simulated and number of QTL predicted with Equation (4) using 

BayesB accuracy when the effective population size is 1,000 and the number of individuals in the 

training set is 2,000 and the heritability is 0.3. 

 

DISCUSSION 

We have compared GBLUP and BayesB at various population and trait genetic 

architectures and at various .  We demonstrated that GBLUP had a constant accuracy, 

for a given   and , regardless of .  The accuracy of BayesB was greatest at low 

, decreased with increasing  and eventually reached a lower accuracy plateau 
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below which the accuracy did not fall even when  was further increased.  BayesB has 

an advantage over GBLUP at low , but this advantage decreased as  increased 

and it finally diminished completely or, in some cases, the advantage switched to GBLUP 

depending on  and .  The value of near equivalence was related to the empirical 

number of independent segments estimated from the GBLUP accuracy, , which was 

less than the theoretical prediction of  provided by Goddard (2008). It is clear from this 

study that quantifying the superiority of GBLUP over BayesB or vice versa depends upon 

three sets of attributes: the population genome structure (e.g. , ), the trait genetic 

architecture (e.g. , ) and the experimental design (e.g. ).  Superiority is, 

therefore, not a property of the method and general statements to that effect should be 

avoided.  Furthermore, we have proposed and tested equations for the prediction of GBLUP 

and BayesB accuracy and the estimation of  and .  Our predictions follow 

achieved GBLUP and BayesB accuracy well.  Empirical  values seem to be 

approaching an asymptote with increasing  and our estimates of  follow the trend 

of true . 

The constant accuracy of GBLUP, for a given  and , confirmed our first hypothesis 

and clearly shows that this accuracy depends crucially on genomic properties, and not on 

properties of the trait, and summarised in the concept of , the number of independent 

segments.  In turn,  will depend on  and , which can be viewed, in the short term, 

as constants in a random mating population (Goddard 2008).  In a wider sense,  and the 

more commonly known haplotype blocks are comparable measures resulting from 

population history.  Haplotype blocks are segments of the genome within which haplotype 

diversity is low, bounded by areas where evidence for historical recombination exists (e.g. 

Goldstein 2001; Gabriel et al. 2002; Frazer et al. 2007).  While haplotype blocks are an 

empirical measure,  is theoretically derived and results from variation in relationship 

between relatives and from variation in linkage disequilibrium across the genome (Goddard 

2008).  Both the number of haplotype blocks and  increase with increasing  and in 

close relatives haplotype blocks will be long and  will be small (Hayes et al. 2009c).  It 

should be noted that the dependence of GBLUP on  shown in this study does not 
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support the conclusion that GBLUP assumes an infinitesimal model in which there are a 

very large number of genes each contributing a small portion to the genetic variance.  In 

fact, GBLUP is indifferent to , unless  is very small (unpublished results), as 

demonstrated in this study. 

While it is clear that in GBLUP the accuracy is a due to  regardless of , in 

BayesB the accuracy depends on the interplay of two features of genetic architecture, 

namely  and .  Our results follow our second hypothesis that the behaviour of 

BayesB accuracy at high  is similar to that of GBLUP.  The accuracy of BayesB 

declines as  increases due to increasing model dimensionality.  Eventually, BayesB 

reaches a  at which there is no advantage to variable selection and the accuracy 

becomes very similar to GBLUP accuracy.  The point at which this occurs approaches  

with increasing .  Therefore, we propose that the accuracy of BayesB at high  is 

also dependent on  just like in GBLUP.  This is also supported by the accuracy plateau 

being observed across at similar proportions of  and that near equivalence is 

approximated closely by  = ,   where  is the empirical estimate of  

obtained from GBLUP analysis of the data.  Therefore, the plateau is not function of actual 

 but of .  Another argument for  to be a major determinant in BayesB 

accuracy at high  is that it can be accurately predicted with Equation (3).   

The difference in accuracy at high  between GBLUP and BayesB may be explained 

by the way both methods process and model information.  With GBLUP, each independent 

segment is estimated irrespective of whether it has an effect or not whereas with BayesB, 

an additional step is involved in which for each locus it is estimated if the locus has an 

effect or not (i.e. determination of ).  This comes at a cost in efficiency because there is an 

error associated with this process.  We can view this as a balance of two factors.  The first 

is the rise in BayesB accuracy achieved by choosing a near correct subset of loci with effect 

when  and the second is the error associated with determining  which 

depends on .  When  the advantage of choosing a subset diminishes 

(heuristically, it is likely that each independent segment contains QTL) and, with BayesB, 

the balance shifts to the second factor.  Thus, under this scenario, GBLUP performs slightly 
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better than BayesB.  This argument is further supported by the decreasing difference in 

accuracy between GBLUP and the BayesB accuracy plateau at high  when  is 

increased, because with more information the error associated with  decreases in BayesB. 

The findings that both GBLUP and BayesB depend significantly on  are given more 

weight by the fact that the accuracy of both methods can be predicted with Equations (1) 

and (2), respectively.  The predictions were generally accurate but limitations have also 

been highlighted, especially in predicting BayesB accuracy.  Extensions to the formulae 

may be needed to predict BayesB more accurately at low proportions of  when  or 

 are also low, and there is also a need to review whether  as formulated by Goddard 

(2008) is a good predictor of .  However, being able to predict the trend in BayesB 

accuracy is a significant step forward (Figure 3).  One of the assumptions in the original 

derivation (Daetwyler et al. 2008) was that all of the genetic variance was tagged by the 

loci used in the analysis.  This represents a complication when applying our equations to 

predict the accuracy using a commercially available SNP chip, because the current chips 

are likely to miss a portion of the genetic variance.  This is due to several reasons.  Firstly, 

it is likely that the number of SNP on current chips is not high enough to tag all the genetic 

variance and variation not associated with SNP (e.g. copy number variation) will also be 

missed.  Secondly, SNP with higher than average heterozygosity are selected for 

developing the chips and therefore loci with low minor allele frequency are proportionally 

underrepresented (i.e. ascertainment bias).  The problem is amplified by researchers 

discarding low minor allele frequency SNP as part of quality control measures.  This leads 

to substantial difficulties when estimating effects for rare QTL alleles of which there are 

likely a large number.  The result of this missing genetic variance in the analysis of real 

populations is that our deterministic equations are likely to over-predict the accuracy in 

both methods.  Extensions to the formulae are needed which take into account this missing 

genetic variance.   

The fact that our equations account for the entire genetic variance will, however, be a clear 

advantage as the scientific community moves towards the analysis of sequence data for 

which our formulae are appropriate in their current form.  In sequence data analysis, all 

base-pairs are included and therefore no rare alleles would be missing.  Thus, all the genetic 
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variance is contained in the sequence and the prediction does not rely on capturing LD with 

the true mutation.  Analysis of sequence data will, however, be challenging because the 

number of variables (i.e. all base-pairs) will be extremely large underlining a further need 

to develop rapid variable selection methods (Meuwissen et al. 2009).   

Additional insight into complex traits can be gained by combining genome-wide evaluation 

and deterministic prediction.  We have shown that  can be estimated with Equation (3) 

if the accuracy of GBLUP or BayesB is known.  Two theoretical values for  have been 

proposed to date,  (Goddard 2008) and  (Hayes et al. 

2009c).  In addition,  could be calculated per chromosome and 

summed over chromosomes, which yields a larger value than considering the full genome 

length at once (Meuwissen 2009).  Our estimates of  ( ), even though still increasing 

with increasing , remain lower than either but were of the right order of magnitude 

when using Goddard (2008) rather than  (Table 5).  In real data using  in 

Equation (1) appears to predict GBLUP accuracy well (Hayes et al. 2009b).  However, this 

may be due to the artifacts of SNP arrays missing a significant proportion of the genetic 

variance (as described above) leading to lower accuracies and an upward bias in estimating 

.  Once more of the genetic variance is captured with new technology we would expect 

that estimates of  from real data would likely tend towards the derivation of Goddard 

(2008), or possibly lower.  In addition to ,  can be estimated with BayesB 

accuracy if .  As Figure 4 shows, this can be a coarse measure of , 

because small changes in accuracy can cause relatively large fluctuations in .  A 

complication in estimating  in data with markers in LD with QTL is that several SNP 

may be in LD with a particular QTL and this could lead to overestimates of .  In 

addition, BayesB requires knowledge of the true  in its prior.  Nevertheless, estimates 

of  could aid investigations into complex trait architectures, perhaps through 

examining the correspondence between the assumed prior on  and the resulting 

estimate and they represent an additional piece of information for choosing a genome-wide 

evaluation method.      
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The trends observed in this study are supported by experiences in real data.  Results in dairy 

cattle genotyped with a 50K SNP chip show that GBLUP and BayesB lead to very similar 

accuracies in most traits (VanRaden et al. 2009; Hayes et al. 2009a).  VanRaden et al. 

(2009) report correlations between linear and nonlinear methods of >0.99 in a vast majority 

of traits.  This is consistent with the findings of this study and it suggests that in real animal 

populations quantitative traits are controlled by a large number of QTL and for most traits 

.  There are of course always exceptions to the rule and, for example, in dairy 

cattle BayesB performed better than GBLUP in milk fat content (VanRaden et al. 2009).  

This is likely due to a significant portion of the variation being explained by genes of large 

effect such as DGAT (Grisart et al. 2004).  Hence, in this trait it is likely that , 

or that a relatively small number of QTL explain the majority of the genetic variance in the 

trait.  We have demonstrated in this study the reasons for the methods’ relative performance 

in different traits are based on population and trait genetic architecture.     

The principles established in this study should be transferable to other populations as the 

trends have been confirmed across three different .  In our view, investigators need to 

gather evidence to answer two questions.  Firstly, what is the population’s  and, 

secondly, how many  are likely contributing to the genetic variance in a particular 

trait.  When  GBLUP will result in higher accuracy than BayesB, but when 

 BayesB will outperform GBLUP.  Therefore, in populations where  is 

very low, for example in Jersey cattle  (Weigel 2001), it is unlikely that applying 

BayesB will be advantageous because  is also small.  In contrast, in humans 

 (Erlich et al. 1996) and the resulting  of 42,864, using Goddard’s 

equation (2008), is very large.  Thus, the  affecting a particular disease trait would 

need to be very numerous for GBLUP to be advantageous in a genome-wide evaluation of 

genetic risk.  Reducing the dimensionality of the data by applying a variable selection 

approach, such as BayesB, would be more promising.  While the computational 

requirement of a full BayesB approach would be extensive when a large number of SNP are 

used, new approaches based on the similar principles as BayesB have been proposed which 

are less computationally demanding (Meuwissen et al. 2009).  
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In summary, we have demonstrated the relative performance of a linear (GBLUP) and a 

non-linear variable selection (BayesB) genome-wide evaluation method under different 

genetic population and trait architectures, and have proposed equations for the deterministic 

prediction of the accuracy of both methods.  Furthermore we have provided guidance on 

which method is appropriate for a certain population via the introduction of a decision rule: 

when  choose a variable selection method such as BayesB and when 

 choose GBLUP.  The methodology presented here to estimate  and 

 will aid in unraveling the complexity of quantitative traits. 
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ABSTRACT 

Deterministic predictions of the accuracy of genomic breeding values in selection 

candidates with no phenotypes have been derived based on the heritability of the trait, 

number of phenotyped and genotyped animals in the reference population where the marker 

effects are estimated, the effective population size and the length of the genome.  We 

assessed the value of these deterministic predictions given the results that have been 

achieved in Holstein and Jersey dairy cattle.  We conclude that the deterministic predictions 

are useful guide for establishing the size of the reference populations which must be 

assembled in order to predict genomic breeding values at a desired level of accuracy in 

selection candidates.  

INTRODUCTION 

Genomic selection refers to the selection of animals for breeding based on genomic 

breeding values.  Meuwissen et al. (2001) demonstrated using simulation that the accuracy 

of genomic breeding values can be very high if they are predicted from a large number of 

DNA markers.  Provided the markers are dense enough, the accuracy of genomic breeding 

values will depend on the number of individuals genotyped and phenotyped in the reference 

population where the effect of the markers are predicted, the heritability of the trait, and the 

number of independent loci or chromosome segments in the population (Daetwyler et al. 

2008; Goddard 2008).  Goddard (2008) and Hayes et al (2009) further derived deterministic 

predictions of the number of independent chromosome segments based on the effective 

population size and the length of the genome of the species in question.  These 

deterministic predictions would have great value in guiding the design of experiments to 

implement genomic selection if the accuracy they predicted agreed with that observed in 

real data.  Such data is now available; recently, VanRaden et al. (2009) reported accuracies 

of genomic breeding values as high as 0.75 for total merit index in Holstein Friesian dairy 

cattle using 38416 single nucleotide polymorphism (SNP) markers genotyped in 3576 

progeny tested bulls.  Accuracies of genomic selection are also available for Australian 

Holstein Friesian and Jersey cattle, using a similar number of SNPs.                
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The aim of this paper was to assess the value of the deterministic predictions of accuracy of 

genomic breeding values given results that have been achieved in Holstein and Jersey dairy 

cattle. 

MATERIALS AND METHODS 

In Daetwyler et al. (2008) the accuracy of genomic breeding values was predicted as 

)
2

/(
2

qNhNhr += where N = number of individuals genotyped and phenotyped in the 

reference population, h2 = heritability of trait or reliability of breeding values in the 

reference population, q = number of independent chromosome segments in the population.   

Daetwyler et al. (2008) also proposed a corrected for their prediction when N ≥ q.  The 

correction was to add )2/(
4

Nqr  to the above prediction to get the final accuracy.  As N ≥ 

q for most of the situations we will investigate, we will use the accuracy from the above 

equation with the correction.          

In Goddard (2008), the accuracy of genomic breeding values was predicted as 

[ ])21/()21ln((*)2/(1 aaaaaNr −+++−= λ  where a= 1+2 λ/N , and λ= qk/h2 , 

with k = 1/log(2Ne), where Ne is the effective population size.  Note that this derivation 

assumes that σe
2 is close to the phenotypic variance.  For both predictions, the value of q 

used was the number of independent chromosome segments, 2NeL, where L is the length of 

the genome in Morgans (Hayes et al. 2009).  The difference between the formula of 

Daetwyler et al. (2008) and Goddard (2008) potentially arises because Goddard (2008) 

assumed that that the effect estimate for common QTL is more accurate for QTL with 

intermediate allele frequency, because they explain more of the genetic variance than QTL 

with extreme allele frequency.  In contrast, Daetwyler et al. (2008) assumed the accuracy of 

estimating QTL effects was equal regardless of their frequency.  The accuracy of genomic 

breeding values for the two deterministic predictions were compared for a range of 

heritabilities, N=5000 and Ne=100.     

Accuracy of breeding values from the two predictions were also compared to accuracies of 

genomic breeding values reported by VanRaden et al. (2009) and United States Department 

of Agriculture results 
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(http://aipl.arsusda.gov/reference/genomic_comparison_yng_0901.htm) for total net merit 

in Holstein Friesian cattle and Jersey cattle, and our own results in Australian data for these 

two breeds.  The phenotypic records in the reference population were daughter yield 

deviations (DYD) for total merit index for the US data or de-regressed breeding values for 

Australian Profit Ranking (APR) in the Australian data.  The average reliability of the DYD 

in the reference population was 0.9.  In order to deterministically predict the accuracy that 

these experiments could have achieved, an assumption of the Ne  in each breed was 

required.  Young & Seykora (1996) gave an estimate of 100 for the Ne of US Holsteins.  

The Ne in Australian Holsteins is similar (de Roos et al. 2008).  For US Jerseys, the 

effective population size is smaller, with a recent estimate of 30 (Weigel 2001).  The Ne of 

Jersey’s in Australia is likely to be similar given the large contribution of US Jersey bulls to 

the Australian population.  Given these estimates of Ne in the two breeds, we used Ne=100 

in the predictions for Holsteins and 30 in Jersey’s.  A genome length of 30 Morgans was 

assumed. 

RESULTS AND DISCUSSION 

The accuracies of genomic breeding value predicted by Goddard (2008) and Daetwyler et 

al. (2008) are similar, though Daetwyler et al. (2008) would predict a lower accuracy of 

breeding value at low to moderate heritabilities given the same number of independent 

chromosome segments and number of phenotypic records, Figure 1.  Both deterministic 

predictions agreed fairly well with the accuracies of genomic breeding value reported for 

US and Australian Holstein Friesian and Jersey dairy cattle, Figure 2.  The % error was low 

for the Goddard prediction vs the US Holstein data at 3%..  However in the Australian 

Holstein data the observed accuracies were somewhat higher than the predictions.   This 

may just reflect a small validation sample used in the Australian data leading to a large 

standard error for the estimate of reliability.   
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Figure 1.  Accuracy of genomic breeding values with 5000 phenotypic records, effective population 

size of 100 and increasing heritability, predicted by the deterministic formula of Goddard (2008) or 

Daetwyler et al. (2008).   

 

 

Another contributing factor may be that the deterministic predictions assume that the 

accuracy of breeding values is a result of the SNPs capturing the effect of QTL, whereas 

some of the accuracy of genomic breeding values in livestock populations may be a result 

of the SNPs capturing the effect of relationship, particularly if there are large half sib 

families in the population (eg. Habier et al. 2007).  For comparison, the accuracy of parent 

average breeding values for net merit available for young bulls in the US data was 0.37 

(VanRaden et al. 2009). 
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Figure 2.  A.  Accuracy of genomic breeding values from the deterministic prediction of Goddard 
(2008) and Daetwyler et al. (2008) with Ne=100, and accuracy of genomic breeding value for total 
merit index or Australian Profit ranking in US or Australian Holstein Friesian cattle.  B.  Accuracy of 
genomic breeding values from deterministic predictions with Ne=30, and accuracy of genomic 
breeding value for total merit index or Australian Profit ranking in US or Australian Jersey cattle 
respectively.  
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The deterministic method of Goddard (2008) used here assumes a normal distribution of 

QTL effects.   For the majority of traits studied by Van Raden et al (2008), methods for 

predicting genomic breeding values which assumed a normal distribution of quantitative 

trait loci (QTL) effects performed almost as well as methods assuming a exponential 

distribution of QTL effects.  The exception was traits with a QTL of known large effect, eg. 

fat percentage (Grisart et al. 2004).  For such traits, the deterministic prediction of Goddard 

(2008) would under-predict accuracy of genomic selection.  The accuracies of prediction 

also depend on Ne.  The values of Ne used here are estimates of Ne in the recent past, 

however Ne in cattle has been much larger historically.  It is not clear how the change in 

historical Ne should affect accuracy of genomic breeding values.  Nevertheless, using 

current Ne gave good agreement between predictions and observed results.  

 

CONCLUSIONS 

The deterministic predictions of accuracy of genomic selection presented by Goddard 

(2008)  extended by Hayes et al. (2009), and that of Daetwyler et al. (2008) agree well with 

observed accuracies of genomic selection in US and Australian Holstein Friesians and 

Jerseys.  We can conclude that these deterministic predictions are a useful tool to guide 

design of genomic selection experiments, for example how large should the reference 

population be to achieve a desired level of accuracy.  It must be noted we have compared 

predicted and observed accuracies of genomic breeding value for a situation where 

phenotypes were very accurate predictors of breeding value.  The performance of the 

deterministic predictions of both Daetwyler et al. (2008) and Goddard (2008) should be 

also evaluated in other situations where the heritability of the trait is lower, as the 

difference predicted accuracy of genomic selection is greater at lower heritabilities.         

 

ACKNOWLEDGEMENTS 

The authors are grateful to Curt van Tassell and Tad Sonstegard from the USDA for 

providing genotypes under a collaborative agreement between USDA and Department of 



 
 

Chapter 5 

 104

Primary Industries Victoria.  We are also grateful to Paul Van Raden and George Wiggans 

of USDA for providing some of the information required to assemble Figure 2.  

 

 

REFERENCES 

 

Daetwyler, H. D., B. Villanueva, and J. A. Woolliams, 2008 Accuracy of Predicting the 
Genetic Risk of Disease Using a Genome-Wide Approach. PLoS ONE 3: e3395. 

de Roos, A. P. W., B. J. Hayes, R. J. Spelman, and M. E. Goddard, 2008 Linkage 
disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus 
cattle. Genetics 179: 1503-1512. 

Goddard, M. E., 2008 Genomic selection: prediction of accuracy and maximisation of long 
term response. Genetica 136: 245-252. 

Grisart, B., F. Farnir, L. Karim, N. Cambisano, J. J. Kim et al.  2004 Genetic and functional 
confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in 
affecting milk yield and composition. Proc.Natl.Acad.Sci.U.S.A 101: 2398-2403. 

Habier, D., R. L. Fernando, and J. C. M. Dekkers, 2007 The impact of genetic relationship 
information on genome-assisted breeding values. Genetics 177: 2389-2397. 

Hayes, B. J., P. M. Visscher, and M. E. Goddard, 2009 Increased accuracy of artificial 
selection by using the realized relationship matrix. Genet.Res. 91: 47-60. 

Meuwissen, T. H., B. J. Hayes, and M. E. Goddard, 2001 Prediction of total genetic value 
using genome-wide dense marker maps. Genetics 157: 1819-1829. 

VanRaden, P. M., C. P. Van Tassell, G. R. Wiggans, T. S. Sonstegard, R. D. Schnabel et al.  
2009 Invited review: Reliability of genomic predictions for North American 
Holstein bulls. J. Dairy Sci.  92: 16-24. 

Weigel, K. A., 2001 Controlling inbreeding in modern breeding programs. J. Dairy Sci. 84: 
E177-E184. 

Young, C. W., and A. J. Seykora, 1996 Estimates of inbreeding and relationship among 
registered Holstein females in the United States. J. Dairy Sci. 79: 502-505. 

 

 



 

 

 

 

Chapter 6 

 

 

 

Inbreeding in Genome-wide Selection 

 

 

Hans D. Daetwyler
*#
, Beatriz Villanueva

†
, Piter Bijma

#
, and John A. Woolliams

* 

 

 

*Genetics and Genomics, Roslin Institute (Edinburgh), Roslin, Midlothian, EH25 9PS, UK; 
#Animal Breeding and Genomics Centre, Wageningen University and Research Centre, 
6700 AH Wageningen, The Netherlands; †Sustainable Livestock Systems, Scottish 
Agriculture College, West Mains Road, Edinburgh, EH9 3JG, UK 
 

 

Published in Journal of Animal Breeding and Genetics, 2007, 124: 369-376. 

 

 

 

 

 

 

 

 



 
 

Chapter 6 

 106

ABSTRACT 

Traditional selection methods, such as sib and best linear unbiased prediction (BLUP) 

selection, which increased genetic gain by increasing accuracy of evaluation have also led 

to an increased rate of inbreeding per generation ( GF∆ ).  This is not necessarily the case 

with genome-wide selection, which also increases genetic gain by increasing accuracy.  

This paper explains why genome-wide selection reduces GF∆  when compared to sib and 

BLUP selection.  Genome-wide selection achieves high accuracies of estimated breeding 

values through better prediction of the Mendelian sampling term component of breeding 

values.  This increases differentiation between sibs and reduces coselection of sibs and 

GF∆ .  The high accuracy of genome-wide selection is expected to reduce the between 

family variance and reweigh the emphasis of estimated breeding values of individuals 

towards the Mendelian sampling term. Moreover, estimation induced intraclass correlations 

of sibs are expected to be lower in genome-wide selection leading to a further decrease of 

coselection of sibs when compared to BLUP.  Genome-wide prediction of breeding values, 

therefore, enables increased genetic gain while at the same time reducing GF∆  when 

compared to sib and BLUP selection. 

 

INTRODUCTION 

Meuwissen et al. (2001) described genome-wide prediction (GWP) methods to estimate 

haplotype effects, assuming a high density genetic marker map across the entire genome.  

Their methods yielded high accuracies of estimated breeding values (EBV) based on 

genotypic information in newborn individuals without phenotypic records.  Moreover, they 

showed that this high accuracy could then be maintained, with only minor loss, over 

subsequent generations when neither offspring nor parent had records.   

In the past, methods proposed to increase accuracies of EBVs have resulted not only in 

accelerated rates of genetic gain ( G∆ ) but also in increased inbreeding rates per generation 

( GF∆ ).  This was particularly true for methods that include information on relatives such 

as Best Linear Unbiased Prediction (BLUP) (Henderson 1975). When EBVs derived from 
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BLUP were used in a traditional way, namely ranking the candidates on these EBVs and 

truncating the distribution to choose those with the highest values, G∆  was increased but 

so was GF∆ (Belonsky & Kennedy 1988).  This meant that short term gain was greater at a 

cost to long term gain (Quinton et al. 1992).  While the long-term consequences of genetic 

variance reduction are often ignored in commercial breeding schemes, high GF∆  also has 

more immediate effects.  Monogenic recessive alleles can drift to high frequencies due to 

high usage of one superior individual (e.g. CVM in Holsteins; Agerholm et al. 2001; 

Kearney et al. 2005) and inbreeding depression can have increased impact because the 

degree of depression is empirically associated with GF∆ (Wiener et al. 1992).   

This experience with BLUP, coupled with the increased  GF∆  observed when selection 

intensity is increased, has led to an empirical association being perceived between gain and 

inbreeding.  However, this association is much weaker in GWP.  This paper has the 

objective of explaining why the increased accuracy of genome-wide methods leads to 

decreased GF∆ when compared to sib and BLUP selection.  Thus, GWP provides a method 

for achieving both the short term goal of increased and sustained G∆  and the long-term 

needs for maintaining genetic variation.  The approach taken will be to examine the existing 

quantitative genetic theory related to inbreeding and selection both for truncation selection 

and for methods using optimum contributions (e.g. Meuwissen 1997; Grundy et al. 1998). 

 

Inbreeding with mass and BLUP truncation selection.  It is useful to discuss in terms of 

the breeders equation, AiG ρσ=∆ , how increasing G∆  has led to increased GF∆  in 

mass and BLUP truncation selection. The additive genetic standard deviation ( Aσ ) is a 

constant for a trait in the short term and, therefore, advances in G∆  come from increasing 

the selection intensity ( i ) or the accuracy of EBVs ( ρ ).  

The first option of increasing G∆  is by increasing i . However, reducing the proportion of 

individuals selected decreases the number of parents and invariably leads to increased 
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GF∆ . This is true for both mass and BLUP truncation selection as shown in Figure 1 for 

different values of heritability (
2h ). 
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Figure 1.  Inbreeding rates per generation from mass and best linear unbiased prediction (BLUP), and 

genome-wide selection (GWS) at two selection intensities (i) withheritability ranging from 0.1 to 1.0, 

predicted with SelAction (Rutten et al. 2002).  SelAction input parameters:  20 males, 200 females, 4 

male and 4 female offspring per dam, proportion selected = 0.05 males, 0.20 females (lower i), and 

0.01 male, 0.1 female (higher i), mass used own performance, BLUP included information on own 

performance, full-sibs and half-sibs, GWS used only information on phenotypes in the marker trait, 

and GWS accuracy assumed was 0.85. 

 

The second way to increase G∆  is to increase accuracy.  Consider mass selection with a 

simple model of additive and independent environmental effects. Here both accuracy and 

intraclass correlation among sibs are determined entirely by 
2h  and there is a balance 

between two effects.  Correlations among sibs increase as 
2h  increases, leading to 

increased coselection of sibs and higher GF∆ .  In contrast, at higher 
2h  the Bulmer effect 
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reduces the between family genetic variance (
2

B

σ ) relatively more, reducing co-selection of 

sibs and GF∆ .  When 
2h  is lower than intermediate values, F∆ increases because of the 

first effect, but when 
2h  increases beyond intermediate values the balance shifts to the 

second effect and GF∆  is decreased (Figure 1).   

In contrast to mass selection, BLUP makes use of information from all relatives, 

appropriately weighted to maximise accuracy.  The higher accuracy leads to a stronger 

Bulmer effect, which reduces the 
2

B

σ .  The Bulmer effect is less dependent on 
2h  in 

BLUP than in mass selection and, therefore, has a relatively small impact on intraclass 

correlations.  However, intraclass correlations are increased due to inclusion of sib 

information because of additional induced correlations which are due to using common 

information (i.e. residual terms averaged among relatives) (Wray et al. 1990).  The high 

intraclass correlations increase coselection of sibs and GF∆ .  The emphasis on sib 

information is high at lower 
2h  but decreases when 

2h  increases and so the coselection of 

relatives always decreases as 
2h  increases, in contrast to mass selection. Therefore, both 

elements (co-selection and Bulmer effect) combine to produce the downward trend of GF∆  

as 
2h  increases (Figure 1).  As 

2h  approaches 1 the use of sib information becomes 

unimportant when the phenotype is observed and the GF∆  approaches that achieved with 

mass selection. 

 

Three components of a breeding value.  The breeding value of an individual can be 

conceived as having three components (Woolliams 2007): (i) the breeding value of the sire; 

(ii) the breeding value of the dam; and (iii) the Mendelian sampling term, which is the 

aggregate deviation arising from sampling the segregation of alleles within the sire and 

within the dam (See Figure 2 for an illustration).  Information on ancestors and collateral 

relatives increases accuracy through directly adding precision on the first two of these 

components.  The accuracy of the Mendelian sampling term can be increased by using an 
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individual’s phenotypic record or progeny information.  In practice, most BLUP selection 

schemes increase accuracy by capturing additional information on ancestors and collateral 

relatives, because progeny information is often not available at the time of selection.  It 

becomes clear that, at the time of selection, BLUP relies heavily on increasing accuracy of 

2

B

σ  to increase G∆  (Figure 2).  In contrast, GWP utilises the Mendelian sampling term 

more heavily and the consequences of this feature on GF∆  will now be discussed further. 
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Figure 2.  Representation of the sources of information utilised (shaded areas) and their proportions 
before and after selection (i.e. selection reduces the between family variance) when using best linear 
unbiased prediction (BLUP) and genome-wide prediction (GWP) to predict the estimated breeding 

value of a newborn with no phenotypic record. SA  is the sire breeding value, DA  is the dam 

breeding value, and ja  is the Mendelian sampling term. 
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Genome-wide prediction of breeding values.  Meuwissen et al. (2001) demonstrate that 

GWP increases accuracy of EBV prediction. The important issue is how the increased 

accuracy is achieved, namely using the markers to explain the Mendelian sampling terms.  

In the past, physiological indicator traits, which were genetically correlated to a particular 

trait of interest, were used to select young animals and increased G∆  by giving an early 

indication of an animal’s Mendelian sampling term (Woolliams & Smith 1988).  

Genotyping technology provided another tool that could be used to gain insight into an 

animal’s unique ability, as individuals could be genotyped at birth or even as an embryo.  

Marker assisted selection (MAS) was found to increase G∆  because each genetic marker 

explained a part of the within family variance (Mendelian sampling variance, 
2

M

σ ) 

(Meuwissen & Van Arendonk 1992).  Preselecting young dairy sires with MAS increased 

G∆  and offered a method to select within families (Mackinnon & Georges 1998).  While 

the number of markers is dramatically increased with dense marker maps, the principle is 

the same.  Thus GWP offers the possibility that an individual’s Mendelian sampling term 

can be estimated with great accuracy early in its life. 

As an example of the potential of GWP consider the EBV accuracy achieved by Meuwissen 

et al. (2001).  An individual with only parent information and no record has an EBV ( Â ) 

that is equal to DSi AAA ˆ)5.0(ˆ)5.0(ˆ += , where SÂ and DÂ are the sire and dam EBVs, 

respectively.  The accuracy of the EBV (
AA ˆρ ) is [ ] 1

ˆˆˆ
−

=
AAAAAA

σσσρ , where 
AA ˆσ is 

the covariance between true breeding value (TBV) and EBV and 
Â

σ  is the EBV standard 

deviation.  Assuming that the parent EBVs have an accuracy of 1 (i.e. AA =ˆ ), then 

2
ˆ

2
ˆ )5.0(

AAAA
σσσ == , and [ ] 71.0)5.0()5.0(

21222
ˆ ==

−

AAAAA
σσσρ , which is the 

upper bound of accuracy for an animal at birth when using conventional BLUP.  The GWP 

Bayesian method achieved an accuracy of 0.85 (Meuwissen et al. 2001).  Hence, the 

difference in accuracy of 0.14 observed in GWP and the upper bound in conventional 
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BLUP must originate from the increased accuracy of the Mendelian sampling term estimate 

(Woolliams et al. 2002). 

The accuracy of the Mendelian sampling terms (
MM ˆρ ) in GWP can be approximated for 

this example. Assuming that 
2
Bσ  was explained precisely (i.e. 

22 )5.0( AB σσ = ), then the 

proportion of the Mendelian sampling variance explained by the GWP EBV ( 22
ˆ MMM
σρ ) is: 

    
222

ˆ
22

ˆ )5.0( AAAAMMM
σσρσρ −= ,         

where 2

ÂA
ρ  is the proportion of 

2
Aσ  explained by the EBV. When 

AA ˆρ  is 0.85 in GWP, 

then the 
MM ˆρ  of GWP is: 

[ ] [ ] 67.0)5.0()5.085.0()5.0()5.0(
212212212212

ˆˆ =−=−=
−−

AAAAAAMM
σσσσρρ .  

The approximated increase of 0.67 in the accuracy of 
MM ˆρ  of GWP is very large when 

compared to 0ˆ =MM
ρ  in conventional BLUP.  However, it is unlikely that 

2
Bσ  is 

explained precisely. A more plausible scenario would be that 
22 5.0 AB σσ <  and, if overall 

GWP  
AA ˆρ   is still 0.85, this would result in 67.0ˆ >MM

ρ .  Conventional BLUP EBVs 

are parent averages when an animal has no record of its own, whereas GWP identifies and 

uses the new Mendelian sampling variation that is generated in each generation.  This 

exploitation of new variation is the major source of increased G∆  of GWP over 

conventional approaches. Utilizing Mendelian variation is key to achieving sustained 

genetic progress (see Figure 2) and reducing GF∆  (Woolliams & Thompson 1994; 

Woolliams et al. 1999).    

 

Inbreeding with truncation genome-wide selection.  In GWP, GF∆  can be much lower 

than in mass or BLUP for comparable resources and there are several reasons why this is 

the case.  First, GWP breeding values are less correlated between sibs because they rely 



 
 

Inbreeding in Genome-Wide Selection 

 113

more on Mendelian sampling information (Figure 2).  The increased accuracy of Mendelian 

sampling terms in GWP allows for better differentiation within families and leads to lower 

coselection of sibs, which reduces GF∆ . Second, GWP achieves higher accuracy for all 

values of phenotype 
2h  and, therefore, a strong Bulmer effect is induced by selection and 

reduces 
2
Bσ .  Due to the Bulmer effect, GWP further re-weights the offspring EBV 

towards the Mendelian sampling term (Figure 2), which further  reduces coselection of sibs 

and GF∆ . This is repeated in successive generations where an individual’s breeding value 

has less influence on selection of descendents.  The above processes decrease GF∆  

because the Mendelian sampling term arises from the random sampling of alleles carried by 

the parents and the variance of these terms is regenerated in each generation.  In the long-

term the Mendelian sampling variance is reduced by the loss of alleles due to inbreeding.    

Moreover, in species where only males can attain high accuracies (through progeny tests) 

and have a high number of selected offspring, GWP is expected to shift the selection 

emphasis from males towards females because males and females will have more similar 

accuracies.  This leads to more evenly distributed long-term contributions among male 

ancestors and, therefore, decreases GF∆  when BLUP and GWP are compared at the same 

G∆ .  This would be the effect of the shift in emphasis from sires to dams in dairy cattle 

pointed out by Schaeffer (2006).   

  

Inbreeding and genetic gain with optimum contribution genome-wide selection.  The 

previous section has examined how genome-wide selection (GWS) may affect G∆  and 

GF∆  when the design parameters are fixed (i.e. truncation selection). However, a more 

appropriate approach is to consider how to maximise G∆  with fixed resources and fixed 

GF∆  by optimising long-term genetic contributions of the selection candidates 

(Meuwissen 1997; Grundy et al. 1998).  

 Optimum contribution selection is attempting to allocate contributions of 

candidates and ancestors in relation to the best estimate of the Mendelian sampling term of 
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each individual (Avendano et al. 2004).  The optimum solution is, beyond a threshold 

value, to have a linear relationship between the long-term contribution of an individual and 

its (true) Mendelian sampling term (Grundy et al. 1998).  In reality, however, this optimum 

cannot be attained for two reasons.  First, contributions of distinct individuals cannot 

always be changed independently, e.g. it is not possible to change the contribution of an 

individual without changing that of its parent.  Second, because Mendelian sampling terms 

are estimated with limited precision, the true optimum contributions are also known with 

limited precision. Hence, the solution is a compromise repeated each generation as more 

accurate information on Mendelian sampling terms becomes available. This was confirmed 

by Avendano et al. (2004), who showed by simulation that the major component by which 

optimum contribution algorithms keep GF∆  at a predefined level, while maximising G∆ , 

is the estimated Mendelian sampling term. Grundy et al. (1998, 2000) show that with 

optimum contributions, G∆  is proportional to Mendelian sampling term estimate.  It 

therefore follows directly that a more accurate estimate of the Mendelian sampling term 

will lead to more G∆  while not affecting GF∆ .  Hence, the use of optimum contribution 

procedures and GWP together will always result in more G∆  when compared at the same 

GF∆ .  Quantifying the full benefit of GWP in relation to inbreeding will require further 

development of methods to predict the accuracy of the Mendelian sampling term 

(Avendano et al. 2005). 

 

Implications on inbreeding of frequency of haplotype effect re-estimation.  There are 

other considerations in GWP that reinforce why GWP is expected to reduce GF∆ , but 

these may depend on how GWP is implemented. Two cases can be considered: (i) where 

haplotype effects are estimated in either earlier generations or, conceivably, in related but 

distinct populations, and (ii) where haplotype effects are re-estimated each generation or 

whenever new phenotypic information is available as part of a continuous process.  

 No updating.  When GWS is used with previously estimated haplotype effects 

with no updating, then the EBV is a sum of haplotype values which do not change over 

generations. In this case the marker based genome-wide EBV can be treated as a classical 
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trait with 12 =h  and its genetic correlation with the original phenotypic trait is equal to 

the accuracy of GWP (Schrooten et al. 2005; Dekkers 2007a; Dekkers 2007b).  Thus, 

genome-wide truncation selection is expected to have a similar GF∆  to those achieved by 

mass and BLUP selection at 12 =h .  Figure 1 shows there is no distinction in this case 

between mass selection and BLUP, as BLUP GF∆  tends towards mass selection GF∆  as 

2h  increases.  This trend is substantiated by the fact that a lower GF∆  can be achieved in 

BLUP by artificially increasing the trait 
2h  which reduces the reliance on relatives (Toro 

& Perez-Enciso 1990; Grundy et al. 1994).  When predicted with SelAction (Rutten et al. 

2002), the GF∆  of GWS is similarly low as BLUP at 12 =h  and, in addition, stays at this 

low and constant level regardless of the 
2h  of the original phenotypic trait (Figure 1).   

 Another property of traits with 12 =h  is that increasing selection intensity by 

reducing the proportion of candidates selected, while increasing the total number of 

candidates, has only a small effect on GF∆ .  This scenario would be equivalent to 

genotyping more individuals but still selecting the same number of parents to increase 

selection intensity.  In Figure 1, while BLUP shows a large increase in GF∆  at lower 
2h , 

GWS (when treated as a trait with 12 =h ) results only in a small and constant increase in 

GF∆  regardless of phenotypic trait 
2h .  Therefore, when applying GWS with no updating 

of haplotypes, selection intensity can be increased in this way with relatively little 

consequence on GF∆ . 

 Continuous updating.  When GWP is applied with continuous re-estimation of 

haplotype effects, then the process of estimation might be considered as inducing 

correlations due to the averaging of residual terms of relatives just like the estimation of 

sire and dam EBVs in BLUP.  This applies particularly in a simple pedigree with only 

parents and offspring.  In BLUP, all offspring of a parent are averaged to provide an 

estimate of the parent EBV, so differences between EBVs of sires (dams) are contrasts 

between sire (dam) family means. This is the origin of the intraclass correlation leading to 
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coselection of sibs in BLUP that is described above.  In GWP, if haplotypes are re-

estimated continuously then contrasts are made across the population as a whole comparing 

carriers and non-carriers of particular alleles both between and within families. Thus the 

estimation-induced intraclass correlations act much less strongly as sources of coselection 

of sibs.  This would reduce GF∆  when compared to BLUP. 

It should be noted that continuous re-estimation of haplotype or marker effects must be 

more effective in generating G∆  for a trait than not updating effects. This follows because 

re-estimating marker effects with additional phenotype information must result in at least as 

good accuracy compared to ignoring it.  In each generation, novel additive genetic variation 

is generated which is not captured by the original estimate of the haplotype effects.  This is 

due to the decay of linkage disequilibrium between markers and to changes in allele 

frequencies which are associated with mutation, dominance and epistasis.  The cost of 

collecting some phenotypes might prohibit regular updating of haplotype effects and so 

allowing some loss of accuracy (and G∆ ) may be a cost-effective option.  

 

Impact of linkage on inbreeding.  In this paper all comparisons of GF∆  between 

different selection methods are based on inbreeding as calculated from the pedigree.   

Differences do exist between inbreeding calculated from pedigree information and 

inbreeding computed from genotypic data.   

The pedigree based method is an expectation assuming neutral loci and, therefore, the two 

alleles of the same neutral locus on two homologous chromosomes have an equal chance of 

being selected.  This ignores that the two alleles present in non-neutral loci on either 

chromosome may have different effects on a trait which leads to unequal selection 

probabilities between the two alleles of the neutral locus when there is linkage (Santiago & 

Caballero 1998).  The proportion of loci that is actually neutral, when neutral is defined as 

not under selection directly or indirectly (i.e. linked to an allele under selection), is 

unknown.  However, while it was found that the assumption of no linkage is violated in 

small genomes (< 10 Morgans), it becomes progressively more appropriate as genomes 

become larger (Fernandez et al. 2000; Villanueva et al. 2005).  Thus in farm animal species 
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which typically have genome sizes of 20 to 30 Morgans, accurate average inbreeding rates 

across the whole genome can be predicted from pedigree records.  

When inbreeding is calculated from genotypic data the expectation is adjusted with 

identity-by-state probabilities at the marker loci to yield actual inbreeding at specific 

locations across the genome (Pong-Wong et al. 2001; Liu et al. 2002; Roughsedge et al. 

2006).  The increasing amount of genotypic data available will lead to new methods for 

calculate inbreeding which could give an indication of the effect of linkage on the 

accumulation of localised inbreeding across the genome.  The potential exists; therefore, to 

get a more complete picture of inbreeding with genotypic methods than with pedigree based 

methods.     

 

Practical issues of implementing genome-wide selection.  This article has discussed an 

important benefit of GWS, namely increased gain with no cost to inbreeding.  Other 

potential benefits that GWS offers to livestock breeders are: (i) overcome age limitations 

whilst offsetting additional costs through changes in structure; (ii) overcome or reduce sex 

limitations, or more generally limitations caused by measuring only special subsets e.g. 

expensive or destructive testing; (iii) use in non-pedigreed populations; (iv) a direct link 

between the genetic evaluation and the genome.  Nevertheless, the relevance and benefits 

described will vary among sectors and depend on practical issues related to the 

implementation of GWS. 

  Generation Interval.  Genome-wide selection is expected to increase G∆  and 

reduce GF∆  due to the high accuracy of the Mendelian sampling term.  However it would 

be expected that there are opportunities to reduce the generation interval with GWS since a 

substantial increase in accuracy is available in the newborn.  In dairy cattle, it has the 

potential to reduce the generation interval of sires of bulls and dams from six to two years, 

as progeny tests may become unnecessary (Schaeffer 2006). This may increase the annual 

inbreeding rate ( AF∆ ).  However, the biological risks of inbreeding depression and 

deleterious alleles are more relevant in the context of GF∆ , because balancing processes, 

such as mutation, also occur per generation.  Optimum contributions with constrained GF∆  
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(Grundy et al. 1998; Grundy et al. 2000) could be used to manage the transition to shorter 

generation intervals. Whether or not the scheme would evolve into that of Schaeffer (2006) 

remains unknown.  However, in a truncation scheme an increase in AF∆  may occur, but 

the arguments above would be expected to remain valid and more gain achieved with GWS 

if compared to BLUP at same GF∆  per generation.    

 The need to manage pedigrees.  GWS does not fully remove the impact of 

pedigree on GF∆ .  Parents come as packages of haplotypes, and with truncation selection, 

parents with good packages will tend to have more offspring selected even though 

individual haplotypes are being evaluated.  While GWS decreases GF∆  when compared to 

BLUP, it is not inbreeding free.  Breeding programs are competitive and are expected to 

push for more G∆  by, for example, increasing selection intensity through a reduction of 

the number of parents which would increase GF∆ .  Therefore, the need to manage 

inbreeding using tools such as optimum contributions to maximise G∆  in relation to GF∆  

remains. 

CONCLUSION 

This paper has outlined why GWS is expected to result in lower GF∆  than BLUP 

selection.  The main reason for this reduced  GF∆  is that GWP will result in an increased 

estimation accuracy of the Mendelian sampling term.  This allows for better differentiation 

within families and leads to lower coselection of sibs, which reduces GF∆ .  The between 

family portion of the additive genetic variance in GWS is reduced quickly due to the high 

EBV accuracy and shifts the emphasis of selection in favour of the Mendelian sampling 

term which has no effect on inbreeding as it is regenerated in each generation.  Haplotype 

effects which are used for several generations without re-estimation will resemble a trait 

with 12 =h  and result in low and constant GF∆  regardless of the original trait 
2h .  When 

haplotype effects are re-estimated in each generation, contrasts between haplotypes are 

made both between and within families, thereby reducing coselection and through reduced 
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estimation induced correlations between sib EBVs.  Mendelian sampling terms are also 

used in optimum contribution procedures which could be used to maximise G∆  at a preset 

rate of GF∆ . 
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ABSTRACT 

Related individuals share potentially long chromosome segments which trace to a common 

ancestor.  We describe a chromosomal phasing algorithm (ChromoPhase) which utilises 

this characteristic of finite populations to phase large sections of a chromosome.  In 

addition to phasing, our method can impute missing genotypes in individuals genotyped at 

lower marker density when more densely genotyped relatives are available.  ChromoPhase 

uses a pedigree to collect an individual’s surrogate parents and offspring and then cycles 

through these relatives one at a time to find shared chromosome segments.  Once a segment 

has been identified, any missing information in the proband can be filled in with 

information from the relative.  We tested ChromoPhase in a simulated population 

consisting of 5 generations and 600 individuals across generations at a marker density of 

5.5 times the effective population size per Morgan.  The percentage of correctly phased loci 

was high and ChromoPhase correctly imputed a high percentage of missing genotypes.  

Performance was marginally reduced when the proportion of genotypes missing increased 

and considerably reduced as the number of generations available in the pedigree decreased.  

Our results demonstrate that imputation of missing genotypes, and potentially full genome 

sequence, using long-range phasing is feasible. 

 

INTRODUCTION 

High density single nucleotide polymorphism (SNP) arrays are now available for many 

species.  The genotypes resulting from high throughput methods are unphased and, 

therefore, the paternal or maternal source of each allele is unknown.  Knowledge of 

parental origin or haplotype information can be useful in the analysis of complex traits, 

such as quantitative trait loci (QTL) detection (e.g. Meuwissen & Goddard 2000) and 

genomic selection (e.g. Meuwissen et al. 2001; Calus et al. 2008; Villumsen & Janss 2009).   

Many methods for resolving haplotypes have been proposed and they fall into two broad 

categories: those that use known relationships between individuals to perform a linkage 

analysis and those that rely on linkage disequilibrium among the SNP in a population 

without known relationships.   
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The first category can be subdivided into those that use likelihoods (e.g. peeling (Elston & 

Stewart 1971; Janss et al. 1995) and Lander and Green algorithm (Lander & Green 1987)) 

and those that are rule-based or use parsimony approaches.  Rule-based approaches use 

genotyped  parents and progeny (i.e. trios) and neighbouring loci to resolve the phase (e.g. 

NejatiJavaremi & Smith 1996; Pong-Wong et al. 2001; Qian & Beckmann 2002; Baruch et 

al. 2006).  In the case where no parent genotype information is available, genotyped 

progeny may aid in haplotyping dense (Windig & Meuwissen 2004) and sparse marker 

maps (Weeks et al. 1995).  Examples of the second category include PHASE (Stephens et 

al. 2001; Stephens & Donnelly 2003), fastPHASE (Scheet & Stephens 2006), 

HAPLOTYPER (Niu et al. 2002), BEAGLE (Browning & Browning 2009) and an 

approach by Schouten et al. (2005), where the latter two accomodate a mix of relationship 

and population data. Non-likelihood methods also exist for unrelated individuals, for 

instance methods using parsimony identify unambiguous haplotypes from individuals 

which are homozygous at all loci considered, and then add additional haplotypes from 

individuals with one heterozygous genotype (Clark 1990; Tier 2006).  A crucial 

computational issue is that the potential number of unique haplotypes increases 

exponentially as more loci are considered (i.e. 2N, where N is the number of loci).  This 

drastically slows most methods if there are many individuals and many loci, and this is 

exactly the type of data which is most useful and now available. 

Population characteristics such as geographical proximity can result in a high probability 

that individuals within a given population share a common ancestor not many generations 

ago.  Similarly, in commercial animal populations selective breeding has reduced effective 

population sizes by limiting the number of parents, again causing individuals to share one 

or more common ancestors in the last few generations.  If individuals share a common 

ancestor  generations ago, they are likely to have a shared chromosome segments of 

average length  Morgans.  With dense genotyping of markers, these segments will 

contain many markers and so it should be possible to recognise them and distinguish them 

from short segments that are identical-by-state (IBS) but do not trace to the common 

ancestor, without complex likelihood calculations. These observations lead to new 

approaches to phasing haplotypes which are based on the premise that if a large section of 
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two gametes is IBS then there is a high probability that this section originated in a common 

ancestor (Kong et al. 2008).   

Kong et al. (2008) called their method long range phasing but the principle can also be used 

to impute and phase missing genotypes or even to impute genotypes on individuals that 

have not been genotyped at all. One particularly useful application might be to impute 

dense genotypes on individuals with sparse genotypes using dense genotype information on 

their relatives.  In the extreme, full genome sequences could be imputed for individuals 

which have been genotyped at moderate density, provided they had enough relatives that 

had been fully sequenced (Goddard 2008).  

Here we describe a computationally efficient algorithm (ChromoPhase) that can phase 

whole chromosomes. We use a similar approach to that of Kong et al. (2008), but whereas 

they focus on genotypes, we use haplotypes more explicitly. We also use pedigree to 

identify whether a relative is likely to share a part of an individual’s paternal or maternal 

chromosome. Our approach should be faster than that of Kong et al. (2008) because only 

known relatives are compared, more accurate because runs of genotypes that are alike by 

chance are less likely to be accepted as true shared segment, and more flexible in dealing 

with missing genotypes and completely ungenotyped individuals. This includes phasing of 

founders in a pedigree.  

 

METHODS 

ChromoPhase relies on the same principle as Kong et al. (2008) in that it makes use of the 

potentially long chromosome segments which related animals share.  These segments are 

particularly long when individuals are closely related, as during meiosis the probability of a 

recombination is approximately one per Morgan.  Therefore, with dense marker genotypes, 

the phase can be established by comparing an individual to close relatives. 

We assumed bi-allelic loci with a reference allele coded 0 and an alternative allele coded 2.  

Genotypes were coded 0, 1, and 2, corresponding to 00, 02, and 22 respectively.  Missing 

alleles and genotypes are assigned ‘5’.  Loci are expected to be dense enough so the risk of 

double recombinations between adjacent loci may be neglected.  The algorithm consists of 

three stages.  In the first stage, potential sources of shared chromosome segments are 
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identified using a pedigree.  Secondly, rule based allele assignments are made per locus 

based on parents, offspring and mates.  The third stage consists of an iterative process in 

which each individual is phased or imputed (i.e. each individual is considered to be the 

proband once per iteration starting with the oldest animals) and compared to related 

individuals to find unbroken strings of matching alleles on their respective chromosomes.  

Missing alleles in the proband within such shared chromosome segment are filled in with 

the information from the relative.  We will describe all processes for the paternal side of the 

pedigree but the maternal side is treated in the same manner. 

 

Stage 1, Information Sources: Pedigree and genotype data is read and ungenotyped 

individuals are removed unless they have at least one genotyped progeny, because 

ungenotyped individuals add no information unless they connect genotyped individuals.  

Molecular genotyping errors are checked at each locus by identifying where the proband  

genotype ( ) is inconsistent with the father genotype ( ) (e.g.  = 0 and  = 2).  For 

each individual, considered in turn as the proband, three sets of relatives are defined. The 

first set ( ) consists of all offspring of the proband and these are collected starting with the 

youngest individual.  The second set, called surrogate fathers ( ), consists of individuals 

related to the proband through his or her father.   If the father is genotyped, then only the 

father is included in  because the information from more distant relatives will pass 

through the father to the proband during iteration.  In a proband with an ungenotyped 

father, then the set of surrogate fathers of the proband comprises its father’s sets of 

offspring (except the proband), surrogate fathers and surrogate mothers. 

 

Stage 2, Single locus, rule-based allele assignment:  ChromoPhase applies rule-based 

allele assignment to the paternal or maternal gamete if they can be unambiguously resolved 

based on an individual’s own known genotype, parental alleles or offspring alleles  (e.g. 

Pong-Wong et al. 2001; Baruch et al. 2006).  All paternal ( ) and maternal alleles ( ) in 

all individuals are set to 5 (missing) at the start.  Then the following rules are applied 

starting with the oldest individual.  If the proband genotype ( ) is homozygous, then both 

its paternal  and maternal alleles  equal .  If both alleles of the father are known 
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and equal (i.e.  is homozygous) then  is the same as the paternal allele of the father 

.  If a proband genotype, , is missing, but its paternal allele is known and its maternal 

allele is missing, then if an offspring paternal allele, , is known and opposite to the 

proband’s known allele ( ), the proband maternal allele ( ) equals the offspring’s 

paternal allele ( ).   

 

Table 1.  Rules for matching alleles one locus at a time between proband and surrogate father, where 

d is a distinguishing match, ? is a inconclusive match, + is a conclusive match, E is a definite non-

match which ends a segment, alleles coded 0, 2 and  5 for missing. 

Proband Surrogate Father    

Paternal 

Allele 

Paternal 

Allele 

Maternal 

Allele 
Match Conclusive Distinguishing 

0 0 0 both + no 

0 0 2 paternal + d 

0 2 2 no no E 

5 0 0 ? ? no 

 

Stage 3, Comparison of relatives:  An iterative process follows in which each individual 

is considered as the proband once per iteration starting at the top of the pedigree.  Single 

locus, rule-based filling of alleles (stage 2) continues at the start of each iteration and 

proband as more information becomes available.  ChromoPhase then compares each 

proband to each of its relatives in the three sets ( ,  and ) one locus at a time to 

identify shared chromosome segments consisting of a consecutive string of matching loci.  

We will describe the different types of matches by using an example where the proband is 

compared to a surrogate father.  Consider proband  whose  is compared to both alleles 

of a surrogate father (  and ) at one locus, as illustrated in Figure 1.  This 

comparison yields one of four outcomes defined in Table 1.  A conclusive match (+ in 

Figure and Table 1) occurs when  is not missing and  =  or  =   or both.  

A distinguishing match (d in Figure and Table 1) is defined as  =  or  =  

but not both.  Thus, a distinguishing match is also a conclusive match, but in a 
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distinguishing match the source of  can be clearly determined and it is used to define the 

start and end of a shared segment to reduce errors.  Missing information in ,  or 

 counts as an inconclusive match (? in Figure and Table 1) which is not allowed to 

end a shared segment.  Information is stored on which surrogate father allele (  or 

) was a distinguishing match with the proband at the last locus.  A definite non-match 

(E in Figure and Table 1) occurs when  is not equal to the surrogate father’s allele found 

on the chromosome which matched at the last distinguishing locus.  A minimum length of 

50 consecutive matching (i.e. conclusive, inconclusive, and distinguishing) loci between 

two distinguishing matches was required to accept a shared segment. Within that run, the 

number of loci with conclusive matches needed to exceed 40.  The minimum number of 

conclusive matches guards against too many missing loci being counted as matches within 

a considered segment.  Requiring longer segments will reduce errors but it will also result 

in fewer phased or imputed loci.  The minimum length required for segments can be 

adapted to suit a dataset and will depend on marker density. 

 

 

 

Figure 1.  An example comparison of alleles on the proband’s paternal gamete  to alleles on both 

surrogate father gametes (  and ) to identify a shared chromosome segment, where d is a 

distinguishing match, ? is a inconclusive match, + is a conclusive match and E signifies a definite 

non-match which ends a segment. There is a shared segments between  and . 
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We will now describe the comparison at consecutive loci of each proband with its two 

different groups of relatives; surrogates,  and , and offspring, .  First, the proband 

is compared to all of its surrogates.  If the proband is genotyped,  is compared to  

and . Otherwise, if the proband is not genotyped, proband offspring paternal allele 

 is compared to  and .  Whenever a shared segment has been identified and 

exceeds the minimum number of matches required, the information from all surrogate 

comparisons is collectively stored as a count of allele 2 per locus.  Once all the comparisons 

to surrogate fathers are completed  is filled in based on this information.  Surrogates do 

not always agree on a particular allele at a locus. Therefore, proband alleles are filled in 

based on the collective information from all surrogates exceeding a threshold. Allele 2 is 

assigned if the ratio of allele 2 counts over the total number of counts from all surrogates is 

0.9 at a particular locus, and assigned the 0 allele if this ratio is less than 0.1.  Equal weight 

is given to information from different surrogate fathers, if there are more than one. Hence, 

the 10th surrogate father may contribute as much information as the first, irrespective of 

degree of relationship. 

The proband is then compared to its offspring (e.g.  and  to offspring ) to fill in 

remaining missing alleles.  Here, a distinction is made between genotyped and ungenotyped 

probands.  In genotyped individuals, threshold criteria for shared segments (e.g. number of 

conclusive matches) are as in surrogate father comparisons.  In ungenotyped individuals 

and genotyped founders, filling in of  or  is more liberal and any missing proband 

alleles within a shared segment are filled in with information from  once a string of 

more than 50 matches has been identified (i.e. no threshold is specified for the number of 

missing alleles).  In addition, recombinations are mapped on the chromosome.  In founders, 

 is arbitrarily filled in first with information from  because chromosomes cannot be 

differentiated.   

Iterations end when no more alleles have been changed or when the maximum number of 

iterations specified has been reached.   
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Simulations for Testing 

Populations and Genome: Populations in mutation drift equilibrium were simulated by 

randomly mating individuals for 1000 generations with recombination and mutation.  

Effective population size ( ) was 200 and the number of male and female parents was 

equal across generations.  Previous work established that with this  mutation drift 

equilibrium was achieved with 1000 generations.  One male and one female offspring were 

produced per mating.  Pedigree and genotype information was retained for individuals in 

the last five generations.  In generation 996 through 999, 100 individuals were simulated 

and generation 1000 consisted of 200 individuals for a total of 600 individuals.   

 One chromosome was simulated measuring one Morgan.  In generation zero all individuals 

were completely homozygous for the same allele and mutations were applied at a rate of 

2.5 *10-5 per locus per meiosis in the following generations.  Mutations switched allele one 

to two and vice versa.  The number of mutations and recombinations per chromosome were 

sampled from a Poisson distribution.  The mean for the number of mutations corresponded 

to the product of the number of loci per chromosome (both monomorphic and polymorphic) 

and the mutation rate, and the mean for recombinations was one per Morgan.  The number 

of sampled mutations and recombinations were then randomly placed on the chromosome. 

Approximately 1100 segregating bi-allelic loci were present at generation 1000, which is 

equivalent to a density of 5.5  per Morgan.  Two cases were considered, one where all 

loci were included and another where loci were selected to exceed 0.02 minor allele 

frequency (MAF).  Discarding low MAF loci is expected to make our tests more 

conservative because high homozygosity is favourable to our approach and it is also meant 

to mimic application in real data where low MAF loci are often discarded as part of quality 

control measures.  Linkage disequilibrium (LD, ) statistics (Hill & Robertson 1968) 

between adjacent segregating loci were averaged among all pairs exceeding a MAF of 0.05 

and matched expected  values (Sved 1971; Tenesa et al. 2007).  Allele frequency was 

found to follow a U-shaped distribution as expected.   

 

Testing: The utility of ChromoPhase was evaluated in the simulated data described above.  

Phasing was tested in five replicates of data with unselected loci and in five replicates of 
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the data where loci were selected to have MAF > 0.02.  Phasing utility was checked within 

each replicate in the whole five generation dataset, and in three subsets of the data 

consisting of the last four, three and two generations in the data set.  The pedigree used by 

the program was restricted to the generations being tested.  Hence, no additional 

information was available on ancestors beyond the animals in dataset.  Inferred alleles were 

compared to true alleles and this yielded the following test parameters for both paternal and 

maternal alleles, i) percent correct, ii) percent missing, iii) percent wrong.  In addition, 

alleles which are inconsistent between offspring and parents were counted as conflicts (e.g. 

   or ). 

Imputation of missing genotypes was evaluated in two population replicates with loci < 

0.02 MAF removed by setting the genotypes at a specific locus as missing for a random 

proportion of individuals in the last generation, with 0.2, 0.5 and 0.99.  Each locus, in turn, 

was assessed this way.  This was repeated in the last four, three, and two generations to 

investigate how ChromoPhase copes with varying depths of pedigree.  This resulted in nine 

scenarios per locus (i.e. three proportions and three pedigree depths) and for each scenario 

five replicates were computed to reduce variability.  Initial results for imputation in the 

whole dataset were similar to tests in the last four generations and were therefore omitted.  

The same test parameters were collected for imputation as in phasing.  In addition, 

information on imputed genotypes was enumerated as, i) percent correct, ii) percent 

missing and iii) percent wrong when compared to true genotypes.  

 

RESULTS 

Phasing:  Phasing was evaluated in all animals including founders and results can be found 

in Tables 2 and 3.  The percentage of alleles phased correctly in the replicates selected for 

MAF > 0.02 (Table 2) when compared to true alleles was high, ranging from 98.1% when 

all generations were available to 94.5% when only 2 generations were included.  Errors 

decreased as the number of generations increased demonstrating that ChromoPhase makes 

use of information more than one generation removed.  Another possible reason for 

decreased performance in 2 generations is that in founders, the proband’s paternal allele is 

arbitrarily filled in with progeny information initially because distinguishing between 
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founder chromosomes is not possible.  Once more paternal alleles are filled in, it becomes 

possible to distinguish between chromosomes in founders.  However, whole chromosomes 

could be switched in founders, as paternal or maternal origin cannot be assigned.  It is 

therefore expected that founders are the source of the majority of phasing errors.  For 

example, when a two generation pedigree is used, errors in founder are expected to be 

approximately 3.7% due to arbitrary assignment to paternal alleles.  Such differences are 

not a problem as they do not reduce the accuracy of phasing progeny, and, as founders, they 

have no parental genotypes to conflict with. In data without selection based on MAF (Table 

3) the percentage phased correctly is increased and errors are reduced as expected due to 

increasing locus homozygosity.   

 

Table 2.  Performance of ChromoPhase in percent in paternal (p) and maternal (m) alleles of all 

individuals, including founders, when the dataset consisted of the last 5, 4, 3, or 2 generations (Gen.) 

of genotyped animals.  Conflicts refer to inconsistent genotypes between parents and offspring.  Loci 

with minor allele frequency < 0.02 were removed, means of 5 population replicates and SE was < 2% 

in all scenarios. 

  Correct Missing Wrong Conflicts 

Gen.  p m p m p m Genotypes 

5  98.1 98.1 0.0 0.0 1.9 1.9 0.0 

4  97.6 97.6 0.0 0.0 2.3 2.3 0.0 

3  96.8 96.8 0.1 0.1 3.1 3.1 0.0 

2  94.5 94.5 0.6 0.6 5.0 4.9 1.9 

 

Imputation: Similar trends to phasing where observed in imputation.  Table 4 shows 

means across all loci of imputed genotypes when a proportion of individuals in the last 

generation were set to missing one locus at a time.  The percentage of correctly imputed 

genotypes was greatest when 4 generations of data was available.  The number of missing 

genotypes increased as the number of generations decreased.  However, wrongly imputed 

genotypes stayed constant at 0.2% in both 4 and 3 generations, but increased in the 2 

generation data.  In the 4 generation dataset, performance was stable as the proportion of 

individuals set to missing increased.  A decrease in correct imputation was apparent with 
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increasing proportions of genotypes missing only when 3 or 2 generations were included in 

the dataset.  This suggests that when a sufficiently deep pedigree of genotyped ancestors is 

available the approach becomes more robust. 

 

 

Table 3.  Performance of ChromoPhase in percent of phasing paternal (p) and maternal (m) alleles of 

all individuals, including founders, when the dataset consisted of the last 5, 4, 3, or 2 generations 

(Gen.) of genotyped animals.  Conflicts refer to inconsistent genotypes between parents and offspring.  

All loci included, means of five population replicates and SE < 1% in all scenarios. 

  Correct Missing Wrong Conflicts 

Gen.  p m p m p m Genotypes 

5  98.5 98.5 0.1 0.1 1.4 1.4 0.0 

4  98.1 98.1 0.1 0.1 1.8 1.8 0.0 

3  97.8 97.8 0.1 0.1 2.2 2.2 0.0 

2  95.8 95.8 0.5 0.5 3.8 3.8 1.5 

 

 

 

Means of correctly imputed loci within centiMorgan brackets are shown in Table 5 and for 

one scenario in Figure 2.  This was to test the utility of ChromoPhase at various locations 

across a chromosome.  Percent correctly imputed was lower at the beginning and end of the 

chromosome, but maximum performance was reached relatively quickly at approximately 

10cM and was sustained until approximately 90cM (Figure 2).  The reduced performance 

likely stems from the reliance on shared segments in our approach.  If a proband has 

multiple surrogates these segments may overlap and opportunities for filling in missing 

information increase.  However, at the beginning and end of a chromosome it is less likely 

that shared segments overlap because a locus with a distinguishing match must be found to 

start and end a segment. 
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Table 4.  Overall performance of ChromoPhase in percent when imputing genotypes and paternal 

alleles in a proportion (Prop.) of individuals in the last generation one missing locus at a time in the 

last generation when 4, 3 or 2 generations (Gen.) are included in the dataset.  Means of across all loci 

from two population replicates.  

   Genotypes  Paternal Alleles 

Gen. Prop.  Correct Missing Wrong  Correct Missing Wrong 

          

4 0.20  98.7 1.2 0.2  99.3 0.6 0.2 

4 0.50  98.6 1.2 0.2  99.2 0.6 0.2 

4 0.99  98.5 1.3 0.2  99.2 0.6 0.2 

          

3 0.20  98.3 1.5 0.2  99.0 0.8 0.2 

3 0.50  97.7 2.1 0.2  98.7 1.1 0.2 

3 0.99  94.9 5.0 0.2  97.2 2.6 0.2 

          

2 0.20  87.1 8.0 5.0  92.6 4.7 2.7 

2 0.50  83.2 12.1 4.7  89.8 7.6 2.6 

2 0.99  62.2 37.6 0.2  77.1 22.8 0.1 

 

 

Similarly to grouping loci within centiMorgan categories, loci were also grouped according 

to heterozygosity and these group means are presented in Table 6 and Figure 3.  Correct 

imputation was very high when heterozygosity was low and showed a decreasing trend as 

heterozygosity increased.  This trend became more pronounced as fewer generations were 

represented in the dataset.  ChromoPhase was most robust to changes in heterozygosity and 

changes in proportion of individuals set to missing at a locus when 4 generations of 

genotype data were available.  Correct imputation was significantly above imputation 

which could achieved via inspection of parental genotypes which is shown in Figure 3 as 

the probability that both parent genotypes are homozygous for a given locus heterozygosity. 
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Figure 2.  Proportion of genotypes imputed correctly in last generation when 0.5 of genotypes were 

set to missing one locus at a time and 3 generations were included in the dataset.  Presented in means 

per centiMorgan.  Mean of two population replicates.   

 

 

DISCUSSION 

We have described a long-range phasing and imputation algorithm, ChromoPhase.  Testing 

of ChromoPhase has been shown to be highly accurate for both pure phasing of genotyped 

loci and for imputation of missing genotypes.  Our approach seeks out and phases long 

chromosomal segments which are shared between relatives.  This is a significant 

improvement over other approaches which phase per locus or only consider a few loci at a 

time (e.g. Schouten et al. 2005).   

The identification of shared chromosome segments is also the key to imputing genotypes, 

as any missing information within a segment can potentially be filled in the proband with 

information from its relative.  The key aspect of identifying a shared segment is the 

recognition that if two animals share a haplotype over many continuous loci, then the 

probability that this haplotype coalesces to a common ancestor becomes high.   
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Table 5.  Performance of ChromoPhase in percent correct when imputing genotypes in a proportion 

(Prop.) of individuals in the last generation one missing locus at a time when 4, 3 or 2 generations 

(Gen.) are included in the dataset.  Means of two population replicates within centiMorgan bins. 

   centiMorgan 

Gen. Prop.  1 - 2 3 – 5 6 – 10 11 – 90 91 - 95 96 - 98 99 - 100 

          

4 0.20  86.0 96.0 98.0 99.4 97.7 95.7 93.0 

4 0.50  86.3 96.0 97.9 99.4 97.6 95.9 93.2 

4 0.99  85.5 95.8 97.8 99.3 97.6 95.8 93.1 

          

3 0.20  86.2 94.6 97.3 99.2 97.3 95.4 90.1 

3 0.50  85.2 93.9 96.3 98.6 96.8 95.2 89.8 

3 0.99  83.0 89.7 91.9 96.0 94.5 93.0 88.6 

          

2 0.20  80.7 86.7 88.2 88.2 80.1 81.2 75.8 

2 0.50  77.4 82.8 83.6 84.3 76.7 78.8 73.2 

2 0.99  59.8 61.0 58.0 63.3 59.1 63.8 57.7 

 

 

Kong et al. (2008) made use of this concept in individuals of unknown relationship by 

searching for a sufficiently long stretch of loci with no incompatible genotypes that can 

therefore be assumed to have originated in a common ancestor.  All potential surrogates of 

a proband for a genome segment of predefined length were identified and stored at the 

beginning of their algorithm.  They then phased a proband by cycling through its surrogates 

to identify a homozygote at a particular locus.  Our approach is similar, but operationally 

different, as we chose to work within a pedigree and thus we are able to compare alleles 

within family relationships, and to compare at the level of the allele instead of genotypes.  

Our algorithm compares relatives in each iteration (not just at the start, as in Kong et al. 

2008) to make use of new information as it becomes available and we do not specify a 

maximum length for shared segments.  Thus, a shared segment may potentially span the 

full chromosome and allows us to use all available information.  In addition, we limit the 

list of surrogate fathers (mothers) to the nearest relative in each line of the pedigree that has 

been genotyped.  If the father has been genotyped, no other surrogate fathers are included, 
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because the parental genotype contains the necessary information.  This reduces the number 

of comparisons that must be made because information from more distant relatives is 

transmitted through the pedigree with iteration.  Consequently ChromoPhase uses all the 

information used by Kong et al. (2008) but uses some additional information.  For instance, 

using distinguishing matches to define the start and end of a matching chromosome 

segment eliminates some errors.  

 

Table 6.  Performance ChromoPhase in percent correct when imputing genotypes in a proportion 

(Prop.) of individuals in the last generation one missing locus at a time when 4, 3 or 2 generations 

(Gen.) are included in the dataset.  Means of two population replicates within 0.1 heterozygosity bins. 

   Heterozygosity 

Gen. Prop.  0.01 - 0.10 0.11 – 0.20 0.21 – 0.30 0.31 – 0.40 0.41 – 0.50 

        

4 0.20  99.6 99.1 98.7 98.1 97.4 

4 0.50  99.6 99.1 98.7 98.0 97.3 

4 0.99  99.6 99.1 98.6 97.9 97.1 

        

3 0.20  99.6 99.1 98.5 97.5 96.4 

3 0.50  99.6 99.0 98.0 96.6 94.8 

3 0.99  99.5 98.0 95.7 92.6 87.5 

        

2 0.20  97.0 91.6 86.6 80.8 74.6 

2 0.50  96.0 88.8 82.4 74.7 67.5 

2 0.99  89.9 72.8 58.2 44.0 31.2 

 

 

The program is computationally fast and one run with 600 genotyped animals required 

approximately 15 seconds.  Approximately six iterations were required and running time 

was not significantly affected whether imputation was included or not. 
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Figure 3.  Proportion of genotypes imputed correctly in last generation when 0.5 of genotypes were 

set to missing one locus at a time and 3 generations were included in the dataset.  Presented in means 

per 0.01 locus heterozygosity.  Means of two population replicates and grey series is the probability 

that both parents are homozygous at a particular heterozygosity. 

 

Our use of pedigree information to identify surrogates is limiting when such information is 

not available.  Even though the relationship between animals without recorded pedigree 

relationship is unknown, they are still expected to share chromosome segments, albeit 

shorter than segments between close relatives, by virtue of being part of the same 

population. Restricting comparisons to known relatives reduces computer time and 

erroneous matches but also loses information, especially if the pedigree is incomplete. 

ChromoPhase could be modified to make comparisons among all founders if this loss of 

information was too great. 

Currently the algorithm applies to autosomes and further modification to sex chromosomes 

may be necessary.  Recombination occurs freely between X chromosomes hence, phasing 

involving females is expected to be the same as autosomes.  Simplification may be possible 

in males since it should be straight forward to distinguish between X and Y chromosomes.  

Pseudoautosomal recombination between X and Y is believed to be restricted to the 
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relatively short regions at either end of the X chromosome in human representing 

approximately 2% of all bases in total (Charlesworth 1991; Ross et al. 2005).  Therefore it 

may possible to ignore recombination between the pseudoautosomal regions in sex 

chromosomes of males.   

The comparison of haplotypes in our algorithm also results in computational efficiency 

because the same process is used for phasing and imputation.  The main objective of 

ChromoPhase is to complete as much information as possible in a proband haplotype by 

using information from shared segments with relatives. It is therefore irrelevant from the 

method’s point of view whether this is for phasing or imputation, though the algorithm 

benefits when genotypes are available at a locus.  Furthermore, comparison at the level of 

the allele allows for more exact determination of what constitutes a matching segment.  

This results in more power than determining IBS on a genotype level (e.g. Kong et al. 

2008).  Furthermore, we start and end segments with distinguishing matches at a locus in 

which a proband allele matches one surrogate allele but not the other.   The increase in 

power allowed for the minimum number of allele matches to be shortened substantially to 

50 when compared to Kong et al. (2008) which used 1000 consecutive genotypes.  Part of 

this reduction can be attributed to Kong et al. (2008) having a marker density which was 3 

times higher, as a product of , than the one used in this study.  Our algorithm showed 

good performance with an additional reduction to the minimum length of shared segments 

of approximately 17 times after accounting for marker densities.  In addition, our approach 

copes with missing alleles, but to guard against errors we have implemented a threshold for 

the amount of missing alleles allowed in a shared chromosome segment.   

Distinguishing shared segments depends crucially on filling in as much information as 

possible with rule-based methods.  This is especially important in early iterations as 

comparatively little information is available.  Rule-based filling is difficult in individuals 

without parent information and therefore a disproportionate amount of errors are likely to 

occur in founders.  However, in general, phasing in the last few generations is of greater 

interest than in founders and our method seems robust as such errors in founders do seem 

less likely to be transferred to younger individuals.  
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We have made conservative assumptions in testing ChromoPhase.  First, imputation results 

were only reported in the dataset where loci with MAF < 0.02 removed, which resulted in a 

more rigorous test of the algorithm.  Secondly, we used the percentage of correctly imputed 

genotypes as the crucial test parameter in most of our tables and figures.  As can be seen in 

Table 4, the number of imputed alleles exceeds the number of correct genotypes and this 

trend becomes more substantial when fewer generations are included in the data.  Partial 

haplotype information may however still be useful in, for example, genomic selection.   

The application of our method in real data sets will require addressing several challenges, 

such as completely ungenotyped animals in the data, incomplete pedigrees, genotyping 

errors and SNP mapped to wrong genome locations.  Currently, completely ungenotyped 

individuals are retained if they connect genotyped individuals, and their haplotypes are 

attempted to be phased like other individuals.  This works satisfactorily if the ungenotyped 

individual has genotyped ancestors and descendents in the data (results not shown), but is 

problematic when an individual has no genotyped ancestors.  It is also important that 

correct and as complete as possible pedigree information is available for determining 

surrogates.  Most genotyping errors can be detected by comparing trios though if they are 

not detected then they may result in erroneous haplotype assignments.  Map errors may 

cause a wrongly mapped locus to appear shared between relatives where it may only be a 

match by chance (i.e. it is only IBS) causing phasing errors. 

A likely application of ChromoPhase is to impute haplotypes and genotypes in individuals 

which are genotyped at lower SNP density when relatives are available which are 

genotyped at higher density.  The current study confirms that this would be possible when 

probands are genotyped at a density of 5.5  per Morgan and denser genotypes are 

available on relatives.  Thus, it should be feasible to impute genotypes in individuals which 

are genotyped at 50K once information from denser SNP chips becomes available in their 

relatives.  It may even be possible to move to sparser than 5.5  proband genotyping, but 

this needs further investigation.  In contrast, there is no upper limit to how dense the 

genotypes can be for successful imputation, and even imputing full genome sequence data 

will eventually be feasible once sufficient ancestors have been sequenced. 
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The potential for ChromoPhase to increase the number of genotyped individuals while 

simultaneously reducing genotyping costs is very large.  Key benefits will be increased 

sample sizes to achieve higher accuracies in genomic selection and to increase the power of 

QTL studies.  Reducing genotyping costs through strategic genotyping of ancestors and 

upgrading to denser genotyping from sparser SNP chips in the current generation with 

ChromoPhase will allow for the application of genomic selection in species where currently 

this technology is not economically feasible 
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This thesis has primarily sought to increase the understanding on genetic evaluation of 

populations using genomic data.  The content reflects the increasing speed with which new 

methods are embraced and applied in real populations in response to new data types, such 

as a large number of single nucleotide polymorphisms (SNP), becoming available.  

Currently, the animal breeding community is in the midst of a paradigm shift concerning 

the analysis of genomic data and incorporation of results into breeding programs.  The two 

main drivers of this shift have been a method proposed by Meuwissen et al. (2001) called 

genome-wide evaluation (GWE) and the development of dense SNP chips.  Genome-wide 

methods require large numbers of markers to be effective and, in turn, information from 

dense SNP can be quickly applied through GWE.  Therefore, it is the synergy of the two 

drivers that allows for wide ranging changes in perspectives for animal breeding programs.  

The rate of adoption of GWE is however different in various species.  The dairy cattle 

industry has moved quickly to implement GWE because large improvements in genetic 

gain are possible and cost savings in progeny testing of bulls could easily be identified.  

Other species, such as swine and poultry are moving more slowly towards this 

implementation, because the expected genetic gain from GWE in these species is perhaps 

less than in dairy cattle.  Pre-dating this shift to GWE, the focus was on quantitative trait 

loci (QTL) detection and subsequent incorporation of QTL into breeding programs with 

marker-assisted selection.  Thus, the objective pre-GWE was to mark particular DNA 

segments to aid in predicting part of a breeding value, whereas GWE attempts to quantify 

the collective contribution of all markers to predicted breeding values. 

This thesis contains chapters spanning the period before and after this general shift of focus 

away from finding individual QTL to considering all QTL in a single evaluation step.  

Chapter 2 presents a genome scan for QTL detection in dairy cattle using the 10K 

Affymetrix bovine SNP chip, which at the time was a ‘dense’ chip.  The two methods used 

are a variance component linkage analysis approach and an association study.  In 

accordance with the shift to GWE of the animal breeding community, this thesis then turns 

its attention to GWE of populations, both animal and human.  A crucial parameter used to 

gauge the efficacy of GWE is its accuracy, or the correlation of true and estimated breeding 

values, because accuracy is an important component of genetic gain.  The importance of 
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GWE accuracy is reflected within this thesis.  In fact, accuracy is the thread that ties the 

remaining chapters of this thesis together because it is a central component in each.  In 

Chapter 3, the accuracy of GWE is theoretically derived for continuous and dichotomous 

traits in population and case control studies.  The formulae are extensively tested by 

stochastic simulation and represent a theoretical foundation for Chapters 4 and 5.  Chapter 4 

investigates the impact of the genomic structure of populations and genetic trait architecture 

on the accuracy of GWE methods.  A key conclusion of this chapter is that the relative 

performance of different GWE methods is heavily influenced by both population and trait 

genetic architecture.  Equations are derived to predict the accuracy of genomic best linear 

prediction (GBLUP) (NejatiJavaremi et al. 1997; Meuwissen et al. 2001) and of a Bayesian 

variable selection approach, known as BayesB, with priors on the numbers of QTL 

(Meuwissen et al. 2001).  Chapter 5 compares the accuracy predictions of Chapter 3 to 

those of Goddard (2008) and to empirical values from North American and Australian 

Holstein and Jersey data.  Chapter 6 outlines the expected effect of GWE on the rate of 

inbreeding per generation. It concludes that selection on breeding values from GWE results 

in lower inbreeding levels than classical BLUP at same rate of genetic gain because of 

increased accuracy of Mendelian sampling terms.  Chapter 7 changes focus to describe and 

evaluate a phasing and imputation algorithm which applies long-range phasing.  A direct 

application of this method will be to increase sample size by imputation of genotypes to 

increase the accuracy of GWE per unit of genotyping cost.   

This General Discussion will concentrate on four main topics, which are both theoretical 

and applied: i) missing genetic variance with currently available chips, ii) performance of 

GWE methods under different genetic architectures, iii) the impact of sequence data on 

GWE, and iv) challenges to implementing GWE.   

 

The Missing Genetic Variance 

A central parameter of genomic evaluation using high density SNP chips is the proportion 

of the genetic variance that is currently tagged by a chip.  In other words, before any kind 

of analysis has started, what is the upper bound of accuracy that could be achieved using 
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GWE given a certain density of SNP? or what is the upper bound of the proportion of QTL 

that could be detected with a chip assuming that sample size is not a limiting factor?   

The models used to investigate genomic evaluation have assumed this proportion to be one 

(e.g. Chapters 3 and 4 this thesis, Goddard 2008).  While some acknowledge this caveat 

(Dekkers 2007), this issue has not been fully addressed in the literature.  There are several 

reasons why this proportion currently does not equal one.  While more and more SNP are 

being included on platforms, the marker density is still not high enough so that all QTL are 

in extensive linkage disequilibrium (LD) with at least one SNP.  This is supported by the 

increasing accuracies demonstrated in simulated data with higher marker densities (Calus et 

al. 2008; Solberg et al. 2008).  Furthermore, SNP with higher heterozygosity are 

preferentially selected for chips, introducing what is called the “ascertainment bias”.  While 

this is not a bias in the traditional breeding value estimation sense, it implicitly shifts the 

focus to estimating QTL with higher minor allele frequency (MAF).  There were valid 

reasons for this selection, especially with early SNP chips developed with low genome 

coverage.  Firstly, it can be difficult to establish if a rare allele is actually a SNP or a 

sequencing error.  Hence, inclusion of rare SNP on chips was avoided to reduce this 

problem.  Secondly, having higher MAF was expected to ensure that a large proportion of 

SNP will be segregating across breeds. Thirdly, application in QTL mapping initially 

involved relatively small sample sizes which only resulted in sufficient power to predict 

relatively common loci.  In addition, SNP with low MAF are often excluded as part of extra 

quality control measures preceding QTL and GWE analysis to reduce genotyping errors, 

and this only serves to increase the problem.  The effect of this difference in heterozygosity 

is that many rare alleles are likely missed, because rare QTL would not be in high LD with 

a SNP of intermediate frequency.  Missing rare QTL has implications both in the short and 

in the long term.  The short term effect is that we cannot capture all the current genetic 

variation, while, in the long term, genetic gain is reduced because rare alleles are not 

selected.  Once they are at higher frequency due to selection, these rare QTL in the current 

generation will explain a larger proportion of the genetic variance in future generations.    

The following describes theoretical ways of quantifying the proportion of the genetic 

variance that can currently be tagged by a SNP chip.  The methodology is applicable across 
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different SNP chips and species while the actual estimates presented are specific to the 50K 

Illumina SNP chip currently used in dairy cattle.  The approach used is based on the 

accuracy of GWE in real populations and on prediction equations developed in Chapter 3. 

Dekkers (2007) partitioned GWE reliability into two parts: the proportion of the total 

genetic variation captured by the markers ( ) and the reliability of predicting the 

proportion of the variance associated with markers ( ).  This resulted in an equation for 

the observed reliability of a genomic breeding value ( ) expressed as .  Chapter 

4 proposed the following equation for the reliability of GWE, 

, where  is the reliability of a genomic breeding 

value,  is the number of phenotypes,  is the trait heritability, and  is the number of 

independent chromosome segments.  In turn, the  used is , as 

derived by Goddard (2008), where  is the effective population size and  is the genome 

length in Morgans.  The derivation of GWE accuracy in Chapter 3 assumed that all the 

variation was captured by the markers and, thus,  may be substituted for  and 

rearranging gives the following expression for , 

 . (5) 

Hence, we can view the proportion of the genetic variance captured by the markers as a 

ratio of observed and the maximum reliability achievable.  Equation 1 allows for point 

estimates of  to be made from real data.   

While point estimates are valuable as a means of getting information of how much of the 

genetic variance is tagged at the current observed reliability, it is of interest to determine 

the maximum achievable  ( ) within a particular SNP chip, population and trait.  In 

turn, this maximum will determine the upper bound of GWE accuracy achievable with a 

particular SNP chip. 

Substituting the full formula for  results in,  

  (6) 

and inserting  for , gives: 
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 , (7) 

 

and taking its inverse results in   

 . (8) 

This can be treated as a regression equation where   , , with intercept 

, and slope , where  is a constant that will depend on trait and population.  

Therefore by regressing  on  we can determine the  possible with a 

particular chip and, in turn, the maximum accuracy achievable within a particular SNP 

chip, population and trait.  When  is very large, the maximum achievable reliability will 

be equal to .  Note that  refers to the proportion of the genetic variance captured at a 

particular number of phenotypes and  refers to the maximum proportion of the genetic 

variance captured by a SNP chip. Also note that  is a constant within a trait and population 

and, therefore, regression estimates of  do not require  to be known, whereas the 

point estimates using Equation (5) do require knowledge of .   

 

Estimation of  in real data.  The above equations are now used to estimate  from 

four estimates of GWE reliability in the North American dairy cattle population.  It was 

important that there were several estimates of reliability resulting from various numbers of 

phenotypes.  The number of phenotypes needed to be high to ensure that the  from the 

regression equation was not overestimated.  Note that whenever the terms phenotypes or 

observations are used, the implicit assumption is made that phenotyped individuals are also 

genotyped.  The USDA provided four estimates of reliability in the trait Net Merit.  The 

data and method of GWE analysis has been described in VanRaden et al. (2009b) and, 

briefly, in Chapter 5.  The method of analysis was GBLUP and SNP with a minor allele 

frequency of <0.05 were excluded.  De-regressed estimated breeding values (EBV) of 

progeny tested bulls were used as observations with a reliability of 0.9, thus the  used in 

the equations was also 0.9.  The reliabilities used here included updated EBVs and one 

more year of predictor bulls in the estimate, hence the values for Net Merit in Table 1 
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slightly differ from VanRaden et al. (2009b).  In addition, cows were included in estimate 3 

and 4.  De-regressed cow EBVs had a lower reliability than bull EBVs and, therefore, bulls 

and cows needed to be combined to an equivalent reliability.  The contribution of the cows 

to the reliability was very low in estimate 3 adding 0.01 in the final value 0.59 (VanRaden 

et al. 2009a).  Based on the respective bull and cow contributions, each bull contributed 

approximately as much as 12.4 cows to the reliability.  The number of cows was therefore 

adjusted to “bull equivalents” by division of 12.4 to account for the difference in EBV 

reliability (i.e. adjusted  = number of bulls + number of cows/12.4).   

 

Table 1.  Description of four Net Merit GWE reliability estimates used in our calculations, resulting 

from GBLUP and 50K Illumina SNP chip.  Adjusted cows (Adj. Cows) = cows / 12.4. 

Estimate 
Number of 

Bulls 

Number of 

Cows 

Adj. Number 

of Cows 

Adj. Total 

 

GWE 

Reliability 

1 2130 0 0 2130 0.48 

2 3576 0 0 3576 0.58 

3 4422 947 76.2 4498.2 0.59 

4 7600 2711 218.3 7818.3 0.69 

  

 

In trait Net Merit in North American Holsteins with 50K Illumina SNP chip, the estimate of 

 is approximately 1.244 (SE 0.053), with 95% confidence interval (1.091, 1.398) 

which converts to a  of 0.80, with an approximate SE of 0.034.  Therefore the 

maximum achievable reliability that can be achieved with the current 50K Illumina chip for 

Net Merit in Holsteins is estimated to be 0.80.  Figure 1 shows the  which can be 

achieved at increasing numbers of phenotypes taking into account  with the regression 

equation. 

Point estimates of  for the four reliability estimates using Equation (5) are also shown in 

Figure 1, in these estimates a  of 0.9 and  of 640 was used.  It is clear that with the 

current number of observations  has not reached asymptotic levels and, therefore, 

increasing sample size will yield significant benefits in increasing .  However, 
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approaching the asymptote will require very large numbers of observations (Figure 1).  The 

 estimated may decrease slightly once estimates of the reliability using more 

observations become available. 

 

0.2

0.4

0.6

0.8

1

0 25,000 50,000 75,000 100,000 125,000 150,000

Number of Phenotypes

R
e
li
a
b
il
it
y
 o
r 
P
ro
p
. 
V
a
r(
G
)

Reliability using Regression q 2̂ Point Estimates

 

Figure 1.  Reliability estimates from regression equation (8) and point estimates from equation (5) of 

the proportion of genetic variation tagged in North American Holstein cattle in trait Net Merit using 

the 50K Illumina SNP chip.  Error bars represent a 95% confidence interval at 2 df (± 0.08). 

Currently, the maximum proportion of the genetic variation tagged, , by the 50K 

Illumina SNP chip is approximately 0.80.  There are several ways  could be increased.  

The first step would be not to exclude SNP with low MAF.  While excluding these SNP 

seems a convenient and effective way to eliminate genotyping errors it also results in a cost 

to  because of missed rare QTL.  Similarly, more SNP with low MAF should be 

included in future SNP chips to capture more rare QTL alleles.  Simulations for Chapter 4 

suggest that up to 40% of loci can have a minor allele frequency of <0.05 at mutation drift 

equilibrium resulting in a u-shape distribution of allele frequencies.  In human, several 

studies are suggesting that a very large number of loci may be contributing to genetic 

variation in quantitative traits (e.g. Weedon et al. 2008; The International Schizophrenia 



 
 

General Discussion 

 153

Consortium 2009).  Individually, low frequency alleles are not likely to explain very much 

of the genetic variance but, taken collectively, the proportion of the genetic variance 

accounted for by rare QTL could be significant.  In addition, as described above, once rare 

QTL are selected on and their allele frequencies increase, their contribution to the genetic 

variance also increases.  Therefore, in the long term, these QTL are an important source of 

genetic gain.   

The second way to increase  would be to develop SNP chips with higher marker 

density.  This would lead to higher LD between SNP and QTL and, therefore, more of the 

genetic variation would be captured. Efforts are currently underway in a number of species 

to increase the SNP density by discovering new SNP to include on chips.   

It is currently uncertain whether increasing SNP density or including a greater proportion of 

rare SNP would lead to greater increases in .  Increases in SNP density are expected to 

produce significant benefits, whereas the proportion of the genetic variance accounted for 

by rare alleles is still of considerable debate.  Consider as an example in human, where 

some argue for the rare allele hypothesis (Pritchard 2001) and others favour the common 

variant common disease theory (CVCD) (Reich & Lander 2001).  However, if one 

considers that current sample sizes in case control studies are quite large (e.g. Wellcome 

Trust Case Control Consortium 2007), one would expect that the genetic variance of the 

sum of associations found would be much larger than observed if the CVCD hypothesis 

were true.  Therefore, because collectively the associations detected to date do not seem to 

account for a larger proportion of the genetic variance, it is likely that rare alleles are an 

important component of the genetic variance.  Given that the impact of rare QTL is 

potentially large, the best strategy for SNP development would be a combination of 

increases in SNP density and inclusion of a greater proportion of rare SNP. 

 The impact of a higher  can be quantified heuristically with the regression equation 

above.  Assuming the slope is constant and assuming the  achieved by a new chip is 

0.9, then  at 10,000 observations would increase to 0.774, which is an improvement of 

0.072 from current levels.  Therefore, large increases in reliability through advances in SNP 

chip technology are currently possible irrespective of increases is sample size.   
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I have shown that knowledge on  is a valuable measure to determine SNP chip 

performance.  I will now propose how  could be used to gain insight into complex 

traits. 

 

 and empirical .  This thesis has demonstrated that the number of independent 

chromosome segments, , also called the number of effective segments, is a crucial 

factor affecting the accuracy of GBLUP and BayesB (Chapters 4 and 5).  A theoretical 

derivation of , which is an extension on the variance of identity-by-descent sharing for 

full-sibs (Visscher et al. 2006), has been proposed in the literature and that is 

 (Goddard 2008).  This formula has been extended to take into 

account chromosomes, resulting in , where  is 

chromosome and  is now the chromosome length (Meuwissen 2009).  Values are now 

additive over chromosomes and higher than values from the original.  Another predictive 

equation for  is  (Hayes et al. 2009b).  This prediction equation has been used in 

Chapter 5, though it perhaps lacks the theoretical foundation of the first two.  Indeed, one of 

its problems in real data might be that it does not consider . 

Chapter 4 demonstrated that insight can be gained by combining accuracies achieved in real 

populations and deterministic equations.  Specifically, estimates of  ( ) can be 

obtained using GBLUP accuracy and , which is appropriate 

when the all the genetic variance is accounted for in the analysis.  One complicating factor 

when estimating  from real data was that the original equations did not account for 

.  Equations can now be extended to consider . 

The origin of the missing genetic variance in current analyses can be viewed as coming 

from two sources.  Firstly, a proportion of the genome could be missed completely because 

it is not marked by SNP.  In the spirit of Chapter 3, the proportion not tagged by a SNP chip 

could appear to be part of the error variance because it cannot be tracked and, thus,  

would be reduced by the missing variance and approximated by .  Furthermore, the 

genome that is being marked would appear like , because some segments would be 
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completely missed in the analysis.  Amending Equation (6) by multiplying  and  by 

, and approximating  as in Chapter 3, results in 

.  Rearranging for  gives, 

 . (9) 

The second source of the missing genetic variance comes from imperfect LD between 

markers and QTL.  Here one could argue that multiplying  by  is not necessary 

because all segments are tracked by markers, though some only weakly.  Treating Equation 

(6) as before, but not multiplying  by , reveals  

 . (10) 

Comparison of the two forms shows that Equation (10) can be quickly calculated by 

multiplying Equation (9) by .  These equations are expected to represent both ends of a 

spectrum and it is likely that  is a function of both sources of the missing genetic 

variance.  Note that, while the formulae for GBLUP accuracy and  are demonstrated 

here, the same equations would apply when estimating the number of QTL from Bayesian 

variable selection (e.g. BayesB) accuracy when the number of QTL is less than  

(Chapter 4). 

 was calculated from the USDA Holstein and Jersey and Australian Jersey reliabilities 

described above and the results are shown in Table 2.  Accounting for  decreases , 

when compared to values resulting from the formula in Chapter 4, as expected.  Values 

from the updated formulae are greater than the prediction of Goddard (2008) but there is a 

general downward trend with increasing accuracy.  Accuracy in US Holsteins has not 

reached asymptotic levels yet with current samples sizes, hence it is expected that  

would continue to trend downward with increases in accuracy, possibly reaching the 

prediction of Goddard (2008).  However, determination of  depends on a number of 

important assumptions and, therefore, it may deviate from actual .  Solving for an 

empirical estimate of , using the formula of Goddard (2008) and  from Holstein 

reliability estimate four and Equation (10), results in an estimate of  of approximately 

147.  Thus, the discrepancy between our estimate of  and the  of 100 (Young & 
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Seykora 1996) used in our equations is small.  Currently, however,  from the North 

American reliabilities seem to match predictions per chromosome best (Meuwissen, 2009).  

The estimates demonstrate clearly that  is smaller than the  used in Chapter 5 

(Hayes et al., 2009b).   

 

Table 2.  Empirical  and predictions of  for Holstein and Jersey cattle, heritability = 0.9, 

assumed effective population size 100 for Holstein and 30 for Jersey, genome length = 30 Morgans, 

and  = number of observations.  

   
Ch. 4 

 
Eq. (9) 

 
Eq. (10) 

 
Goddard 

 
Meuwissen 

 
Hayes et al 

Holstein 2130 2077 1278 1022 640 1000 6000 

Holstein 3576 2331 1220 977 640 1000 6000 

Holstein 4498 2813 1441 1153 640 1000 6000 

Holstein 7818 3161 1122 897 640 1000 6000 

Jersey 280 1323 1008 806 220 376 1800 

Jersey 1560 1245 715 572 220 376 1800 

 

 

Quantification of  is a valuable measure of a SNP chip.  Furthermore, incorporating  

into deterministic formulae yields more precise insight into  and the number of QTL 

affecting quantitative traits. 

 

Performance of GWE Methods Under Different Genetic Architectures 

Recently, there has been a focus in the animal breeding literature on the development and 

evaluation of GWE methods to predict breeding values.  Methods are unquestionably 

crucial to achieving maximum accuracy of GWE.  The performance of any method 

significantly depends on the size and genetic structure of the dataset evaluated, whether it is 

simulated or real data.  In GWE a pattern emerged in the literature where GBLUP and 

BayesB were repeatedly compared in very similar simulated genetic architectures (e.g. 

similar  and number of QTL ( ); Meuwissen et al. 2001; Habier et al. 2007; Lund 

et al. 2009).  Results consistently suggested that BayesB performed better and a 
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conventional wisdom developed that it was superior to GBLUP.  This thesis reveals that 

superiority is not a property of a method but that it depends significantly on both genetic 

population and trait architecture.  Chapter 4 concentrated on GBLUP and BayesB.  Here I 

want to generalise its findings to other GWE methods.  Note that discussion focuses, for the 

most part, on population and trait genetic architecture and it assumes a constant number of 

phenotypes, genotypes and heritability.  Also note that  refers to actual QTL with 

effect, whereas markers refers to the total number of genetic markers used in the analysis.    

Methods of GWE can be categorised into two groups: the first group of methods considers 

all markers as having an effect and the second group of methods attempts to discriminate on 

whether markers have an effect or not. Methods in this second group are called variable 

selection methods.  The high dimensionality of the data used in GWE may justify choosing 

a subset of markers for which to estimate effects.  However, considering the impact of 

genetic architecture shows that the benefit of dimensionality reduction can be variable 

(Chapter 4).   

Although the unifying characteristic of the first group of methods is that each marker is 

assumed to have an effect, there are differences in how they model the data and this leads to 

variation in performance.  I will focus on the following three methods within the first 

group: least-squares without model selection, GBLUP (NejatiJavaremi et al. 1997; 

Meuwissen et al. 2001), and BayesA which can be regarded as a Bayesian implementation 

of GBLUP (Meuwissen et al. 2001).  The least-squares without model selection method 

estimates marker effects by regression of phenotypes on each locus, one at a time.  The 

implicit assumption of the method is that each marker potentially explains all of the genetic 

variance.  With this approach, the accuracy will decrease as more markers are added.  Thus, 

when many markers are used this method will result in low accuracy and results from 

Chapter 3 show that the accuracy does not depend on  but on the total number of 

independent markers.   

Higher accuracies are expected with GBLUP for which two implementations have been 

described. The first replaces a relationship matrix based on pedigree with a realised 

relationship matrix calculated from identical by state or descent probabilities at all markers 

across the genome (Fernando & Grossman 1989; NejatiJavaremi et al. 1997; Villanueva et 
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al. 2005).  The second implementation of GBLUP is a form of ridge regression, which fits 

an incidence matrix connecting markers and phenotypes (Meuwissen et al. 2001; Habier et 

al. 2007).  Marker effects are simultaneously estimated in one step and each marker is 

shrunk according to a constant variance parameter, usually the genetic variance divided by 

the number of markers.  The two implementations of GBLUP have been shown to be 

equivalent (Habier et al. 2007; Goddard 2008).  This thesis investigates GBLUP and clearly 

confirms that it crucially depends on what is termed the number of independent 

chromosome segments,  (Chapter 4).  The accuracy of GBLUP is indifferent to  

and, in that regard, GBLUP is similar to least squares.  However, in contrast to least 

squares, GBLUP accuracy does not decrease as the number of markers increases.  This 

independence with regard to  and the number of markers is advantageous in traits 

where  is larger than  because the dimensionality does not increase beyond .  

Furthermore, when the number of SNP used in an analysis is also large, calculating a 

realised relationship matrix may be a computationally more efficient way to implement 

GWE than using a Bayesian approach.  

Bayesian estimation without variable selection has been termed BayesA by Meuwissen et 

al. (2001).  Their model assumes that all markers have an effect just like in GBLUP.  

However, BayesA samples individual marker variances through Gibbs sampling, therefore, 

they may vary across markers.  It is expected that, with appropriate priors, BayesA will 

perform better than GBLUP if large disparities between marker variances exist.  A 

comparison of BayesA to GBLUP and BayesB would be expected to reveal that BayesA 

would perform better than GBLUP and worse than BayesB when  is low, which is 

supported by the results of Meuwissen et al. (2001).  As  increases BayesA accuracy 

is expected to gradually decrease and eventually become similar to GBLUP accuracy once 

  .  The accuracy of BayesA could be slightly higher than that of GBLUP at 

high , because BayesA is able to account for differences in marker variances.  In 

addition, from results described in Chapter 4, BayesA accuracy would also be slightly 

above BayesB accuracy when  > , because BayesA performance is not reduced 

by the error associated with variable selection, which is applied in BayesB. 
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The second group of GWE methods can be broadly categorised as variable selection 

methods, because they aim to identify a subset of the genotypic data which explains a large 

proportion of the variance in phenotypes.  There are differences between the methods in 

how this is accomplished.  The following methods are discussed below: Bayesian variable 

selection (BayesB) (Meuwissen et al. 2001), least squares with model selection (Meuwissen 

et al. 2001; Wray et al. 2007; Habier et al. 2007), partial least squares (Raadsma et al. 

2008; Solberg et al. 2009), principal component regression (Solberg et al. 2009), and Lasso 

(Tibshirani 1996; Hasti et al. 2001).   

BayesB can be thought of as BayesA with an additional variable selection step.  First, 

BayesB determines the subset of markers with effect with Gibbs sampling.  It does so by 

determining the proportion of markers without effect ( ) and then uses the same process as 

BayesA to sample effects and variances for proportion .  In BayesB, variable selection 

is on the magnitude of the effect alone without significance thresholds.  Chapter 4 

demonstrates that BayesB achieves high accuracy when  is low and gradually 

diminishes as  increases.  Thus, at low  it has an advantage over GBLUP, but 

eventually, as  increases, its accuracy becomes equal to GBLUP when .  

Once  > , BayesB accuracy is slightly lower than GBLUP due to error with 

choosing .   

Least squares with model selection chooses a subset of variables either by forward or 

backward stepwise selection (Hasti et al. 2001) and then estimates the marker effects in this 

subset.  In this implementation all markers in the subset are estimated simultaneously.  

Forward selection, as applied by Meuwissen (2001) and Habier et al. (2007), builds the 

final model by choosing significant markers in an iterative process of individual marker 

linear regressions.  Variables are chosen according to a significance threshold.  Hence 

selection takes into account both the magnitude of effect and the standard error of the 

estimate.  Applying a threshold in this way is similar to QTL analysis and therefore brings 

with it problems associated with the overestimation of effects (Beavis 1998).  Habier et al. 

(2007) reported improved accuracy of least squares model selection at low  through 

relaxation of the significance thresholds used in Meuwissen et al. (2001).  Least squares 

had a lower accuracy than BayesB and similar or lower accuracy than GBLUP depending 
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on thresholds.  It is expected that with increasing  least squares will become 

progressively worse due to a greater proportion of the genetic variance being missed, 

because many markers of small effect would not meet thresholds.   

Partial least squares and principal component regression reduce dimensionality by choosing 

a set of linear combinations of the input data (i.e. marker matrix X and phenotypic data y in 

GWE).  Thus, both methods attempt to move from estimating effects of genes to estimating 

contrasts between groups of genes.  Solberg et al. (2009) found that both approaches 

resulted in very similar accuracies at varying marker densities and low .  In addition, 

their accuracy was always lower than BayesB accuracy and they are in the same range as 

GBLUP accuracy for similar parameters when compared to Meuwissen et al. (2001).  Thus, 

when a variable selection method is desirable at low ,  BayesB is expected to result in 

higher accuracy than partial least squares or principle component regression.  Furthermore, 

partial least squares and principal component regression are not predicted to improve 

accuracy over GBLUP values as  increases, because the number of linear 

combinations necessary to capture the phenotypic variance would also increase, whereas in 

GBLUP the variables considered (i.e. ) stay constant.   

Lasso is a shrinkage method and is closely related to ridge regression GBLUP.  However, 

the parameter used in Lasso to shrink back estimates differs from GBLUP.  In Lasso, a 

portion of the marker estimates can effectively be set to zero by choosing a shrinkage 

parameter which is small.  This can be regarded as implicit subset selection.  Analogous to 

BayesA and GBLUP, there are also Bayesian implementations of Lasso (Yi & Xu 2008).  

The original Lasso, in combination with Least Angle Regression (Efron et al. 2004), 

resulted in higher accuracy than either GBLUP or BayesA when tested in the 12th QTL-

MAS Workshop Uppsala data (G. Usai and B. Hayes, pers. com., 2009).  In this dataset 

 was low (~ 50) and therefore it would be expected that a subset method and BayesA 

produce better results than GBLUP.  In traits with high  this advantage is predicted to 

erode. 

In summary, there are many methods of GWE and they fall in two main categories: those 

which choose subset of loci and those which do not.  Other GWE methods exist which have 

not been discussed in this section, such as non-parametric analysis (Gonzalez-Recio et al. 
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2008), kernel methods (de los Campos et al. 2009), and machine learning approaches (Long 

et al. 2007).  The general behaviour of any variable and non-variable selection methods 

under different population and trait genetic architectures can, however, be extrapolated 

from the results of this thesis.  Variable selection is advantageous when  is low, 

particularly when  < .  However, the gain in accuracy is expected to diminish as 

 increases.  Indications from real data point towards many  contributing 

towards the genetic variance in most quantitative traits and only small differences between 

GWE methods are observed in, for example, most dairy cattle traits (Hayes et al. 2009a; 

VanRaden et al. 2009b).  Results from this thesis suggest the following decision rule:  

when  < , choose a variable selection method (e.g. BayesB) and when  > 

 choose a non-variable selection method (e.g. GBLUP, Chapter 4).  The  used could 

be as in Goddard (2008) or could be empirically estimated from GBLUP as shown in this 

General Discussion.  The evaluation of a particular GWE method must be performed in 

more than one trait genetic architecture (e.g. low and high ).  However, findings may 

be extrapolated between population genomic structures (i.e. ) by considering  as a 

proportion of . 

 

 

The Impact of Using Sequence Data on the Accuracy of GWE 

Increasing numbers of markers are being included on SNP chips and the cost of SNP 

genotyping is still decreasing due to new and improved genotyping technology.  At the 

same time, the speed of genome sequencing technology has improved dramatically and this 

also has reduced cost of sequencing.  Whether and how sequencing will be used for 

prediction of genetic values is uncertain.  Here I discuss i) the potential benefits of using 

sequence data in GWE, ii) how sequence data could be analysed and iii) how sample size 

could be increased by sequencing animals using a chromosomal phasing approach.   

The main advantage of using sequence data is that all of the genetic variation would be 

captured and  would equal one.  In terms of deterministic prediction of accuracy, the 

extensions discussed in this General Discussion to account for  would not be necessary 

and the formulae proposed in Chapter 4 would be appropriate, provided that additional 
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sources of genetic variation would be interpreted (e.g. copy number variants).  However, it 

may be necessary to better approximate the error associated in choosing a subset from a 

very large number of markers in deterministic predictions.   

Currently in Holstein cattle,  is approximately 0.75 with the 50K Illumina SNP chip at 

the current number of observations (Figure 1).  Moving to a new chip would allow for 

additional gains in .  Assuming that another 0.15 improvement in  is possible with a 

denser SNP chip and higher sample size, it still would leave an additional 0.10 to be gained 

by GWE in sequence.  Realistically, large numbers of phenotyped individuals would be 

needed to achieve high accuracy even if  were above 0.90.  Therefore, even though 

sequencing costs are decreasing, sequencing a large number of training individuals and 

selection candidates in every generation will likely still be cost prohibitive.  Thus, 

sequencing will only be widely used if its costs decrease to very low levels.   

The first challenge of sequence data is the large amount of data that has to be processed.  In 

terms of GWE, there is a significant amount of data editing that could be performed to 

reduce the computational burden.  Firstly, monomorphic loci could be excluded from 

analysis as they do not contribute to the genetic variance.  The human HapMap project has 

discovered approximately 3.1 million SNP (Frazer et al. 2007).  Secondly, if there is a 

group of loci in very high LD (i.e. LD  1), then only one locus in the group could be 

retained.  Sequencing would need to be to sufficient fold coverage so low frequency alleles 

could be confidently identified.  These steps would reduce the dataset, but would still leave 

a very large number of SNP to consider.  The crucial parameter is  and, due to the 

large number of SNP expected in the analysis, approaches are needed which can identify 

the SNP with effect.  The principles for GWE method performance in different population 

and trait genetic architectures established in SNP data are expected to remain true for 

sequence data. The extreme dimensionality of the data would require variable selection type 

methods when  is less than .  Currently, among variable selection methods, 

Bayesian methodology (e.g. BayesB,  Meuwissen et al. 2001) seems to achieve the highest 

accuracies.  However, MCMC methods come with a heavy computational burden when the 

number of markers is large and using such approaches for sequence data would be 

infeasible without considerable increases in computation infrastructure.  New methods of 
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variable selection are being developed to reduce computational demands (Meuwissen et al. 

2009; Shepherd & Woolliams 2009).  However, when  is greater than , non-

variable selection methods are expected to perform better than variable selection 

approaches.  A large computational load is expected and rapid methods for non-variable 

selection methods such as BayesA will need to be developed. 

 Sequencing is expected to remain too costly in the foreseeable future to be applied to the 

large number of individuals required for effective GWE.  One way to obtain the large 

sample sizes needed for high GWE accuracy would be to sequence individuals in silico.  

Chapter 7 describes a method for imputing missing genotypes using a chromosomal 

phasing algorithm when denser genotypes are available on ancestral and collateral relatives.  

The approach bore good results when two ancestral generations were available in addition 

to the animals to be imputed (probands), but its performance was reduced when only one 

ancestral generation was available because phasing in founders is difficult.  There is no 

upper limit to the density of the ancestral genotypes which can be imputed in the proband.  

Therefore, it would be possible to impute full genome sequence in individuals which are 

genotyped with a dense SNP chip.  Full sequencing in ancestors would increase the 

proportion of correctly imputed loci because haplotypes would be fully known in 

sequenced founders.  The number of sequenced ancestors needs to be large enough so that 

every chromosomal segment in the proband traces back to a sequenced ancestor.  Thus, 

imputation could offer lower cost solutions to both genotyping and sequencing because the 

principle is the same. 

 

Challenges for Implementing GWE  

There are a number of barriers to widespread implementation of GWE.  The feasibility of 

GWE in a particular species needs to be evaluated by considering both the increase in 

genetic gain that is achievable with GWE over traditional selection methods and the extra 

costs involved in GWE.  The economic gain associated with genetic progress must 

outweigh the cost associated with genotyping and phenotyping for GWE to be profitable.  

Here I will discuss strategies to implement GWE in species where currently the costs of 

genotyping perhaps outweigh the benefits of increased genetic gain from GWE. 



 
 

Chapter 8 

 

 164

Increases in genetic gain from GWE are expected to come from two main sources, 

assuming selection intensity is constant. Annual genetic gain can be increased from 

decreases in generation intervals, because GEBVs can be calculated for juveniles without 

phenotypic records or progeny. The second source of genetic gain arises from increases in 

accuracy expected from applying GWE methodology.   The potential to decrease generation 

intervals depends on the species.  For example, in pigs and poultry, generation intervals are 

already short and GWE may not provide substantial decreases.  On the other hand, in cattle, 

generation intervals are much longer, partly because of progeny testing of bulls.  Therefore, 

large increases in genetic gain due to reduction of generation intervals may be possible with 

GWE in cattle.   

The additional genetic gain from increased GWE accuracy is less variable across species 

and is more dependent on the number of phenotypes,   and .  Predictive formulae 

have shown that a large sample sizes are required to get high GWE accuracies (Chapter 3 

this thesis; Goddard 2008; Hayes et al. 2009b).  The main constraint to apply GWE is that 

usually only a limited number of phenotypes and genotypes are available, particularly for 

traits of low heritability.  However, it is exactly in these traits that GWE could have the 

greatest benefit.   

GWE could be used to select on novel traits which are difficult to phenotype in the general 

population.  Marker estimates could be trained in a resource population and GEBVs could 

be calculated for selection candidates without a measured phenotype.  The size of the 

resource population needed to train highly accurate marker estimates would also depend 

greatly on the  of the novel trait, and in traits of low  this would be a significant 

challenge. 

Increasing samples size requires consideration of both phenotyping and genotyping.  

Collection of phenotypic records is being practiced in most species currently, though 

mostly in easily recorded traits.  In species such as dairy cattle, a large number of 

production records have traditionally been collected to estimate accurate bull EBVs. 

Although the infrastructure may already exist to collect large numbers of phenotypes, in 

some species, it may be difficult to collect a large number of accurate phenotypic records to 

achieve high GWE accuracy.  This is especially true for traits involving subjective scoring, 
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such as dressage in horses, or classification of disease phenotypes, such as psychological 

disorders in human.  Even though currently many species have systems in place to collect 

phenotypes, there is a need to continue and, in some cases, increase efforts to obtain large 

numbers of highly accurate phenotypes to reach high GWE accuracy. 

Increasing the number of genotypes is greatly dependent on the cost of genotyping.  While 

genotyping costs are decreasing, it still may be too costly to justify widespread genotyping 

in species where gains in genetic progress are expected to come, in large part, from 

increases in accuracy alone (e.g. pigs and poultry).  However, lower cost solutions to 

benefit from the expected extra gains from GWE may exist and should be developed. 

One such solution is imputation of missing genotypes through chromosomal long range 

phasing as described in Chapter 7.  The principles for imputing missing genotypes and 

sequence data, as discussed above, with this approach are the same.  The method makes use 

of ancestral and collateral relatives which are genotyped at full marker density to impute 

genotypes in probands which are genotyped with at lower marker density.  Genotyping 

costs would be reduced because selection candidates would only need to be genotyped with 

low density chips that are less costly.  Therefore imputation could provide a lower cost 

solution to increase the number of genotypes.  Furthermore, SNP chip technology is still 

improving at a fast rate, and to benefit from the increases in SNP density in new chips, re-

genotyping animals, which have already been genotyped at lower density, with new chips 

may be necessary.  Imputation of new SNP in animals genotyped with the older low density 

chip is possible if the low density SNP are also included in the high density chip.  This 

could provide a solution to increase sample size and to upgrade to higher density SNP 

chips.  Similarly, imputation could be used to combine animals which are genotyped with 

two SNP chips with similar density, which have a large proportion of SNP in common, to 

create a denser combined SNP chip.   

The number of ancestors with full density genotyping needed to impute a large proportion 

of loci with high accuracy needs further investigation.  Breeding systems which have a 

relatively small number of founders would likely be most suitable for imputation (e.g. dairy 

cattle).  Less hierarchical populations, such as beef cattle and sheep, would require 

relatively more ancestors with high density genotypes, making implementation more costly.   
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Strategic genotyping could be used to take full advantage of genotype imputation to 

increase GWE accuracy and reduce cost.  Strategic genotyping designs would likely differ 

across species and even across breeds.  However, all strategies would try to identify the 

smallest number of individuals with full density genotypes needed for successful 

imputation in animals genotyped at lower density.  Pedigree analysis could reveal the key 

ancestors which are expected to have contributed the largest proportion of genes to the 

current generation.  If DNA of such key ancestors is not available, then a sufficient number 

of their progeny with high density genotypes could be added to the sample to represent their 

genomes.  Any set of animals with full genotyping would be added to the sample to 

increase the probability that shared segments could be identified.  Once enough relatives 

were fully genotyped for feasible imputation, each subsequent generation could be imputed 

as long as no non-genotyped individuals from outside were introduced into the population.  

Nucleus schemes could be established both for intensive selection for genetic gain but also 

to produce breeding animals for the general population.  While the best implementation 

strategy for imputing genotypes is currently uncertain, significant potential exists to 

increase sample size and reducing genotyping cost in a way that the theoretical benefits of 

applying GWE can be materialised in animal breeding programs. 

 

Looking to the future.  The first wave of using genomic data by incorporation of few QTL 

into breeding programs may have largely been a false dawn.  We are now in the midst of 

the second wave of applying genomics in breeding programs and the two main drivers of 

this wave are genome-wide evaluation and the arrival of new technology.  Despite all of the 

unknowns associated with genome-wide evaluation, there are reasons to be optimistic about 

its widespread use in future years.  The methodology overcomes some of the problems 

associated with earlier genomics approaches and is easier to apply.  Genome-wide 

evaluation can increase genetic gain in many species and there is great potential to 

reorganise breeding programs to exploit its benefits.  Furthermore, solutions to adapt 

genome-wide evaluation to species where the benefits depend greatly on implementation 

costs are starting to emerge.  It is for these reasons that we are witness to a new dawn of 

using genomics in the genetic evaluation of populations. 
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Summary 

This thesis investigates the use of genomic marker data in the genetic evaluation of 

populations.  Incorporating molecular data into breeding value estimation can improve its 

accuracy or correlation of true and estimated breeding values.  The availability of large 

numbers of single nucleotide polymorphisms (SNP) has caused a shift in the way that 

genetic marker data is applied.  Before dense SNP chips, the focus was primarily on 

marking particular quantitative trait loci (QTL), which are segments of the genome found to 

be associated with a phenotypic trait.  These QTL would then be incorporated into breeding 

schemes through marker-assisted selection.  The arrival of dense SNP markers datasets was 

preceded with the proposal of a method called genome-wide evaluation (GWE).  In GWE, 

all chromosome segments effects are estimated simultaneously in one step and these effects 

are then summed to breeding value for an individual.  This new method reduces the number 

of distinct steps necessary to use genetic marker data in genetic evaluation and also 

overcomes some of the challenges faced by QTL detection approaches. 

 

The chapters in this thesis present work in both QTL detection and GWE.  However, there 

is significant focus on GWE after Chapter 2.  The chapters on GWE have a strong emphasis 

on the accuracy of GWE.  Deterministic predictions are proposed and tested and the impact 

of genetic architecture on GWE methods is evaluated.  A method is presented which can 

impute missing genotypes to increase the density of genotypes and, in turn, increase GWE 

accuracy.  Furthermore, ways to quantify the missing genetic variance and challenges to 

implementing GWE are discussed. 

 

Chapter 2 is a QTL detection study in Holstein cattle using both a linkage analysis variance 

component method and an association approach in a 10K Bovine SNP chip.  The first 

approach exploits linkage disequilibrium within families and found 102 potential QTL, 

whereas the second method makes use of linkage disequilibrium across the whole 

population and detected 144 significant SNP associations.  

In Chapter 3 deterministic formulae for the prediction of accuracy are derived for 

continuous and dichotomous traits in population and case control studies using a GWE least 
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squares approach.  The core formula proposed for the accuracy of GWE in a continuous 

trait is , where  is the correlation between true and 

estimated breeding values,  is the number of phenotypes,  is the trait heritability, and 

 is the number of loci.  The predictions are extensively tested using stochastic 

simulations and found to be appropriately responsive to the factors affecting accuracy.  The 

formulae in this chapter represent the foundation for theoretical work in later chapters. 

In Chapter 4, a hypothesis prompted by Chapter 3 is investigated regarding the impact of 

population genomic structure and trait genetic architecture on GWE methods.  Genomic 

best linear unbiased prediction (GBLUP) and a Bayesian variable selection method 

(BayesB) are compared at three different effective population sizes and a wide range of 

number of QTL affecting the trait.  GBLUP had a constant accuracy regardless of the 

number of QTL, confirming that its accuracy depends crucially on the number of 

independent chromosome segments.  BayesB had higher accuracy than GBLUP when the 

number of QTL was low, but its accuracy decreased as the number of QTL increased.  

Eventually, BayesB accuracy reached a lower plateau which was just below GBLUP 

accuracy, suggesting that BayesB also depends on the number of independent chromosome 

segments at high numbers of QTL.  Furthermore, deterministic equations of Chapter 3 are 

extended to predict the accuracy of these two methods. 

Chapter 5 compares deterministic predictions from Chapter 3, and those suggested by other 

authors, to accuracies achieved in real Holstein and Jersey cattle populations both in the 

USA and Australia.  Deterministic predictions match real accuracies generally well, though 

there is a need to extend the equations to account for the proportion of the genetic variance 

captured by a SNP chip. 

In Chapter 6, theoretical concepts established from studies on inbreeding from traditional 

methods and the use of molecular markers, are used to extrapolate what inbreeding rates are 

expected with selection based on GWE.  It concludes that genomic selection will result in 

lower rates of inbreeding per generation for the same rate of genetic gain when compared to 

selection based on traditional best linear unbiased prediction. 

Chapter 7 describes a method to phase and impute missing genotypes.  The approach is 

tested in datasets containing varying number of generations and with three different 
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proportions of loci missing.  Performance is very good when more than two generations of 

individuals are available.  The main application of this long-range phasing approach will be 

to impute missing SNP in individuals genotyped at lower density with information from 

relatives genotyped at higher density.  This will increase the sample sizes available for 

GWE, which, in turn, will increase GWE accuracy. 

Chapter 8 is the General Discussion which raises four main topics.  First, a method is 

presented to estimate the proportion of the total genetic variation tagged by current SNP 

chips.  This proportion is estimated for the 50K Illumina Bovine chip using US Holstein 

data.  Furthermore, work in Chapter 4 is revisited and empirical estimates of the number of 

independent chromosome segments, which account for the proportion of the genetic 

variance tagged by markers, are presented. Secondly, the performance of GWE methods in 

different genetic population and trait architectures is discussed.  The third topic discussed is 

the impact that sequence data is likely to have on GWE.  Finally issues related to 

implementation are considered. 
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Samenvatting 
 

Dit proefschrift onderzoekt het gebruik van moleculaire merkers voor genetische evaluatie 

van populaties. Moleculaire merkers kunnen worden gebruikt om de nauwkeurigheid van 

geschatte fokwaardes te verhogen. De manier waarop merkers worden gebruikt is 

veranderd door het beschikbaar komen van grote hoeveelheden zogenaamde SNP-merkers. 

In het verleden was men gericht op het opsporen van een beperkt aantal zogenaamde QTL, 

delen van het genoom die direct in verband staan met een kenmerk. Het doel was om deze 

QTL te benutten in fokprogramma’s met behulp van merker-ondersteunde selectie. Met het 

beschikbaar komen van grote hoeveelheden SNP-merkers kan gebruik worden gemaakt van 

een methode die gericht is op het gehele genoom, en bekend staat als “genome-wide 

evaluation” (GWE). Bij GWE worden effecten voor alle chromosoomsegmenten in één 

keer geschat, en deze worden opgeteld tot een totale fokwaarde voor het individu. Deze 

methode beperkt het aantal stappen dat nodig is voor toepassing van moleculaire merkers in 

genetische evaluatie, en lost ook een aantal problemen op die bij QTL-detectie optreden.  

 

Dit proefschrift presenteert resultaten van zowel QTL-detectie als GWE. Vanaf Hoofdstuk 

3 richt het proefschrift zich op GWE,  met een nadruk op nauwkeurigheid. Deterministische 

voorspellingen van nauwkeurigheid worden gepresenteerd en getest, en de invloed van de 

genetische structuur op nauwkeurigheid wordt onderzocht. Een methode wordt 

gepresenteerd voor het berekenen van missende genotypes, met als doel merkerdichtheid en 

nauwkeurigheid van GWE te verhogen. Daarnaast worden praktische toepassing van GWE 

en manieren om ontbrekende genetische variatie te kwantificeren bediscussieerd. 

  

Hoofdstuk 2 gaat over QTL-detectie in Holstein melkvee met een 10K SNP-chip, en 

vergelijkt een linkage-analyse variantie-componenten methode met een associatie studie. 

Met de eerste methode, die linkage-disequilibrium binnen families benut, zijn 102 

potentiële QTL gevonden. Met de tweede methode, die linkage-disequilibrium in de gehele 

populatie benut, zijn 144 significante SNPs gevonden.   
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Hoofdstuk 3 presenteert formules voor de nauwkeurigheid van GWE voor zowel continue 

als 0/1-kenmerken, in populaties en case-control studies, gebruik makend van de kleinste-

kwadraten methode. De nauwkeurigheid van GWE voor een continu kenmerk wordt 

gegeven door , waarin  de correlatie tussen echte en 

geschatte fokwaarde voorstelt,  het aantal fenotypes,  de erfelijkheidsgraad, en  

het aantal loci. De voorspellingen zijn uitgebreid getest met behulp van simulatie, en 

voorspellen het verloop van nauwkeurigheid goed. Deze formules vormen de basis voor 

theoretisch werk in de volgende hoofdstukken. 

Hoofdstuk 4 onderzoek een hypothese over de invloed van populatie en genoomstructuur 

op de nauwkeurigheid van GWE-methoden, die voortkomt uit Hoofdstuk 3. Genomische 

“best linear unbiased prediction” (GBLUP) en een Bayesiaanse variabele selectiemethode 

worden vergeleken voor verschillende waardes van effectieve populatieomvang en 

aantallen QTL. Resultaten laten zien dat de nauwkeurigheid van GBLUP niet wordt 

beïnvloed door het aantal QTL. Dit bevestigt dat nauwkeurigheid afhangt van het aantal 

onafhankelijke chromosoom segmenten, en niet van het aantal QTL. BayesB was 

nauwkeuriger dan GBLUP bij weinig QTL, en vertoonde een afnemende nauwkeurigheid 

bij een toenemend aantal QTL. Bij veel QTL bereikte BayesB een iets lagere 

nauwkeurigheid dan GBLUP. Dit suggereert dat, bij veel QTL, de nauwkeurigheid van 

BayesB ook wordt bepaald door het aantal onafhankelijke chromosoom segmenten. In 

Hoofdstuk 4 zijn de formules voor nauwkeurigheid uit Hoofdstuk 3 uitgebreid naar GBLUP 

en BayesB. 

Hoofdstuk 5 vergelijkt voorspellingsformules uit Hoofdstuk 3 en formules voorgesteld door 

anderen met gerealiseerde nauwkeurigheden in Holstein en Jersey melkvee uit de VS en 

Australië. Resultaten tonen een goede overeenkomst tussen voorspelde en gerealiseerde 

nauwkeurigheden, maar ook de noodzaak tot uitbreiding van de formules om rekening te 

houden met de fractie genetische variatie die door SNPs wordt verklaard. 

Hoofdstuk 6 bespreekt de verwachte inteelttoename bij selectie op GWE-fokwaarden, 

gebruikmakend van theoretische concepten over inteelttoename in geselecteerde populaties. 

De conclusie is dat, bij eenzelfde genetische vooruitgang, selectie op GWE-fokwaarden zal 
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resulteren in lagere inteelttoenames per generatie dan selectie op klassieke “best linear 

unbiased prediction” van fokwaarden. 

Hoofdstuk 7 beschrijft een methode om missende genotypes te berekenen en allelen toe te 

wijzen aan haplotypes. De methode is getest voor verschillende aantallen generaties en 

proporties missende loci, en werkt zeer goed als tenminste drie generaties beschikbaar zijn. 

De belangrijkste toepassing van deze methode ligt in het berekenen van ontbrekende SNPs 

in individuen die zijn gegenotypeerd voor een beperkt aantal merkers, gebruik makend van 

uitgebreide genotypes gemeten aan hun verwanten. Dit verhoogt de steekproefomvang van 

GWE en daarmee ook de nauwkeurigheid. 

Hoofdstuk 8 bevat een algemene discussie gericht op vier onderwerpen. Als eerste wordt er 

een methode gepresenteerd voor het schatten van de fractie genetische variantie die door 

huidige SNP-chips wordt verklaard. Deze fractie wordt geschat voor de 50K Illumina 

Bovine chip, toegepast op Holstein gegevens uit de VS. Daarnaast wordt werk uit 

Hoofdstuk 4 herzien, en worden empirische schattingen voor het aantal onafhankelijke 

chromosoom segmenten gegeven, rekening houdend met de fractie variantie verklaard door 

SNP-chips. Ten tweede wordt de nauwkeurigheid van GWE-methoden bediscussieerd, in 

relatie tot de structuur van de populatie en het genoom. Ten derde wordt de verwachte 

impact van kennis van de DNA-volgorde op GWE besproken. Als laatste wordt toepassing 

van GWE in de praktijk bediscussieerd.  
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