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Chapter 1 

Introduction 

1. Origin and history of Brassicas 

1.1 Brassica taxonomy 

The Brassicaceae is a large plant family and comprises 338 genera and 3,700 species 

of major scientific and economic importance. The taxonomy of this group is difficult, 

which is partly due to convergent evolution in nearly every morphological feature 

used to define tribes and genera. Three family wide molecular phylogenetic analyses 

lead to the proposal of a new classification scheme to organize genera into tribes 

which greatly improved the understanding of the evolutionary relationships in the 

Brassicaceae, compared to earlier attempts that were mainly based on traits like fruit 

morphological characteristics (Al-Shebaz et al. 2006; Bailey et al. 2006; Beilstein et 

al. 2006). Most of the 338 genera were placed into 25 tribes and support the lineages I 

and II as firstly defined by Beilstein et al. (2006). Lineage I contains the Camelineae 

(to which Arabidopsis belongs) and lineage II contains the agronomically important 

Brassiceae tribe. The tribe Brassiceae is a monophyletic group and comprises around 

240 species and 49-54 genera. This tribe includes the economically important 

Brassica crops and radish (Raphanus).   

Brassicas are an important vegetable species, which provide a large proportion of the 

daily food intake in many regions of the world. Among the Brassica species, B. rapa 

(AA,2n=10), B. nigra (BB,2n=16) and B. oleracea (CC,2n=18) are diploid and B. 

juncea (AABB,2n=36), B. napus (AACC,2n=38) and B. carinata (BBCC, 2n=34) are 

amphidiploids, which result from a combination of the three different diploid 

genomes. 

The morphological variation present within Brassica species is enormous and is the 

result of local selection and breeding. This variation in appearance includes the leaves 

in crops like heading cabbages and the leafy types that do not form heads (pak choi, 

komatsuna etc.), the terminal and axillary buds in cauliflower, broccoli, broccoletto, 

the seedpods in seed stalk mustard, the swollen stems in taitsai and kohlrabi, the 

swollen roots in turnips and swede and the seeds in oil crops.  
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1.2 The origin of Brassica rapa 

Brassica rapa has been cultivated for many centuries (over 4000 years) from the 

Mediterranean region to Scandinavia, to Germany and into central Europe, and 

eventually to Central Asia (Gomez-Campo 1999; Dixon 2006). Earlier studies based 

on morphology, geographic distribution, isozymes and molecular data indicate that B. 

rapa originates from two independent centers (Denford and Vaughan 1977; Song et 

al. 1988; Gomez-Campo 1999).  

Europe has been proposed as the centre of origin for turnip types such as turnip rape, 

which were further developed in Russia, Central Asia and the Near East. Turnip is an 

old B. rapa sub-species and was probably domesticated from the wild progenitor 

which was transferred from the Iranian region into Europe (Reiner et al. 1995). The 

broccoletto’s originated from Italy, and form a clearly separate group somewhat 

related to European turnip and oil types (Zhao et al. 2005). 

Eastern Asia is proposed as the centre of origin for Asian leafy vegetables. Chinese 

cabbage is native to China and one hypothesis suggests that Chinese cabbage 

originated from hybridization between turnip (or turnip rape) and pak choi (Li 1981).  

Other cultivar groups of B. rapa most likely originated from different morphotypes 

within the two origin centers and subsequently evolved separately. Japanese 

vegetables are likely to be derived directly or indirectly from different types of pak 

choi, but have diverged through geographic isolation and intensive selection (Song et 

al. 1988, 1990). Song et al. (1988) considered that sarson and toria types in India were 

derived from European turnip rape and evolved separately. In studies of Zhao et al. 

(2005) and Warwick et al. (2008), the spring oilseed types including the yellow sarson 

types from India formed a subgroup which was clearly separating from European and 

Asian groups, suggesting the Indian subcontinent as a third center of origin at which a 

separate breeding tradition led to the development of the sarson types. 

 

1.3 Brassica rapa crop types 

Based on the organs used for consumption and their morphological appearance, a 

number of major cultivar groups (Figure 1), can be distinguished in Brassica rapa 

(Specht and Diederichsen 2001; 

"##$%&&'''($)*+#+*,-.(/+0,-)1(-2/(*/&345#0+6&75*..08*95*$*("#,)) with different sub-

species names. 

a) Chinese cabbage: B. rapa L. subsp. pekinensis (Lour.) Hanelt. 
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Chinese cabbage is native to China and is characterized by larger leaves and 

heads of different shape with winged petioles. It is mainly cultivated north of 

the Yangze river of China, in Korea and in Japan. In Korea, Chinese cabbage 

is used as the major component of “kim-chi”, the traditional preserved side 

dish and salad. At present the Chinese cabbage is commonly found in markets 

throughout the world.  

b) Pak choi: B. rapa L. subsp. chinensis (L.) Hanelt. Pak choi unlike the Chinese 

cabbage does not form a head, is characterized by green-white, enlarged 

midribs and it is widely cultivated in southern and central China. 

c) Wutacai: B. rapa L. subsp. narinosa (L.H. Bailey) Hanelt; Brassica chinensis 

L. var. rosularis Tsen & Lee. 

Wutacai (flat Chinese cabbage) forms a subgroup of pak choi-like cultivars 

that differ from typical pak choi types by their flat rosettes and many dark-

green leaves. This crop is mainly cultivated in southeastern China, and is more 

cold tolerant and resistant to bolting.  

d) Caixin (or Caitai): B. rapa L. var. parachinensis (L.H. Bailey) Hanelt.  

Caixin is an early flowering non-heading vegetable with leafy features similar 

to pak choi. It is mainly cultivated in southern and central China, and 

distributed in southeastern Asian countries nowadays. The edible parts of this 

crop are the young inflorescences and stems that can be harvested 40-80 days 

after sowing.  

e) Zicaitai:  B. rapa L. var. purpuraria (L.H. Bailey) Kitam. 

Zicaitai is characterized by the purple red stem and non-heading phenotype, 

and is mainly cultivated in southern and central China. This flowering purple-

stemmed Chinese cabbage has tender early inflorescences, stems and shoots, 

which are edible. This vegetable is tolerant to low temperatures and the purple 

color intensifies as the temperature decreases. 

f) Taicai (or Tai tsai):  B. rapa L. ssp. chinensis Makino var. tai-tsai Hort.  

Taicai’s are non-heading cabbage cultivars with irregularly notched leaves of 

different blade shapes. The tender leaves, stems, and even the conical-shaped 

succulent taproots are edible. These types are mainly distributed throughout 

eastern China and are widely cultivated in the Shandong and Jiangsu 

provinces. 
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g) Mizuna and mibuna: B. rapa L. subsp. nipposinica (L.H. Bailey) Hanelt; B. 

rapa L. var. Japonica. 

Mizuna and mibuna types are a small group of Japanese leafy vegetables with 

numerous serrated leaves or long narrow leaves. This crop is mainly cultivated 

and consumed in Japan.  

h) Komatsuna: B. rapa L. subsp. perviridis Bailey. 

Komatsuna is a type of neep greens, which is consumed for its young leaves, 

stalks and flower shoots. It is mainly grown in Japan and is also known as 

Japanese mustard spinach. It is most often grown in the spring and autumn, as 

it cannot endure extreme heat or cold for more than a short time. 

i) Turnip: B. rapa L. em. Metzg. subsp. rapa.. 

The turnip types are a group of cultivars grown for their enlarged hypocotyl 

and taproot, which can be subdivided in vegetable and fodder turnips. 

Manifold shapes and colors are typical characteristics of turnips. The turnip 

preferably grows in misty and cold regions.  

j) Broccoletto, Broccoli raab, Cima di rapa: Broccoletto group; B. ruvo L.H. 

Bailey. 

Broccoletto is a main Italian group of vegetable B. rapa of which the young 

compact inflorescences are consumed. Broccoletto has a strong stem and short 

internode length. The edible parts of this type are the small flower heads that 

appear when the plants are about 20 cm tall.  

k) Turnip rape: B. rapa L. subsp. oleifera (DC.) Metzg. 

Turnip rape is an oil type of B. rapa, which is mainly cultivated in Europe, 

China, India, Pakistan, Bangladesh and Canada. Summer oil types (summer or 

spring turnip rape) are mainly cultivated in Canada, northern Europe and 

Bangladesh. Dissected leaves and rosette seedlings characterize the Pakistan 

winter turnip rape  Cultivars of winter oil type are still cultivated for oil and 

biomass production in Scandinavian countries, they are more cold tolerant 

than oilseed rape and have high growth rate under low temperature. In China, 

three main oleiferous B. rapa ecotypes, viz. spring, winter and semi-winter 

turnip rape, were developed in adaptation to different climates, soil conditions, 

cultivation methods and farmer preferences (He et al. 2003).  

l) Sarsons: B. rapa L. subsp. dichotoma and trilocularis (Roxb.) Hanelt. 
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Indian oleiferous B. rapa includes three ecotypes, viz. brown sarson 

(Dichotoma), toria (Dichotoma) and yellow sarson (trilocularis). Brown 

sarson has long roots, with a limited lateral spread, enabling its successful 

cultivation under drier conditions. Toria has similar traits to brown sarson in 

morphology, and it is believed that it was selected from this type (Gomez 

Campos 1999). Very early flowering, self-compatibility and yellow seeds 

characterize the yellow sarson. 

 

Fig 1. Morphological types of Brassica rapa. (A) Pak choi, (B) Chinese cabbage, (C) Winter oil, (D) 

Turnip, (E) Wucatai, (F) Mizuna, (G) oil, (H) Brocoletto.  
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2. Metabolite profiling of Brassicas 

Metabolomics is the comprehensive analysis in which all the metabolites of an 

organism are identified and quantified (Fiehn et al. 2001). The components of the 

metabolome can be viewed as the end products of gene expression that define the 

biochemical phenotype of a cell or tissue. Currently, several analytical methods need 

to be applied in order to achieve the qualitative and quantitative analysis of all the 

metabolites in an organism. Among the technologies available at present for 

analyzing a metabolome, mass spectrometry (MS) and nuclear magnetic resonance 

(NMR) are considered to be the most universal approaches (Verpoorte et al. 2008). 

For example, liquid Chromatography-Mass Spectrometry (LC-MS) is used to detect 

highly rich polar or semi polar and thermo-labile positively or negatively charged 

compounds (Weckwerth and Morgenthal, 2005). Mass spectrometry only provides 

information on the mass of the detected metabolite for its indirect identification 

through the molecular formula (Moco et al. 2007). 

Nuclear Magnetic resonance (NMR) is a powerful tool to identify wide-spectrum 

structural groups of complex mixtures of compounds from biological samples (Liang 

et al 2006, Ward et al 2003).1H NMR can detect all the proton bearing (1H) 

compounds including most of the non-polar, “organic” compounds such as 

carbohydrates, aminoacids, organic and fatty acids, amines, esters, ethers and lipids 

present in a sample (Ward et al. 2003) 

One major limitation of metabolomics is the identification of the detected metabolites. 

One way to overcome this difficulty has been the use of reference compounds for 

well-known primary metabolites. However, for secondary metabolites, which are 

plant specific, many of these references are not available.  

Brassica is an important food source and it is considered to have beneficial nutritional 

properties such as antitumoral activities (Leoni et al. 1997,Cohen et al. 2000, 

Pods!dek 2007). The healthy components such as phenylpropanoids, phenolics, 

flavonoids and glucosinolates have been widely characterized in Brassica (Liang et 

al.2006, Onyilagha et al. 2003, Vallejo et al. 2004). For example, Brassica leaves 

have been found to accumulate flavonols (quercetin, kaempferol and isorhamnetin) 

and flavones (apigenin and luteolin) (Onyilagha et al.2003). "#$! %$&'()*)%+,!

'-'*./+/! )0! 1'2+)3/! ,3*&+1'2/! )0!!"#$$%&#' "#(#! 4$20)2%$5! (.!678! /4$,&2)/,)4.!
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"#$%&'! (#)(! within the most important metabolites that contribute to the 

differentiation between cultivars and developmental stages in Brassica rapa we can 

find aminoacids, carbohydrates, adenine, indole acetic acid (AA), phenylpropanoids, 

flavonoids, and glucosinolates (Abdel-Farid et al. 2007).  

For breeding purposes the diversity in total glucosinolate content and glucosinolate 

profile was profiled in leaves among varieties of Brassica rapa. Additionally their 

sensory attributes were evaluated in relation to glucosinolate content  (Padilla et al. 

2007).   

Another area with extensive research is the patterns of changes in metabolite profiling 

in relationship to biotic stress. The metabolic alterations of Brassica rapa leaves 

attacked by larvae of the specialist and generalist insects have been investigated with 

nuclear magnetic resonance (NMR) spectroscopy. Within this study the major signals 

contributing to the discrimination between the biotic responses were alanine, 

threonine, glucose, sucrose, feruloyl malate, sinapoyl malate, and gluconapin 

(Widarto et al.2006) 

 

3. Genetic dissection of phenotypic traits  

3.1.1 The candidate gene approach 

The candidate gene approach has been widely used in plant genetics to identify 

important genes controlling quantitative traits. This approach applies a priori 

knowledge of annotated genes, which have a known function and possible co-

segregation with detected quantitative trait loci. When the biochemical and/or 

physiological pathways related to a trait of interest are well known, the candidate 

genes may be chosen from among the genes which have been proved by different 

validation methods like transformation or cloning to be involved in this pathway or 

phenotypic regulation. These candidate genes may play a role as regulatory or 

structural genes for metabolic or growth and developmental pathways (Pfliger et al. 

2001). 

As depicted in Figure 2, a general approach to identify genomic regions that can 

contain candidate genes is first to evaluate the existence of genetic and phenotypic 

variation in a plant system. Secondly, a mapping population can be developed from 

accessions that show genetic and phenotypic variation for selected traits like for 

example, a double haploid or a recombinant inbred population. The genotypic 
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variation can be visualized as molecular polymorphisms that can be used to construct 

a genetic map and to localize candidate genes. Statistical correlations between the 

genetic polymorphisms and the phenotypic variation can be revealed through QTL 

analysis in these mapping populations. Alternatively, association studies can also be 

followed in a core collection of accessions.  

 

 

 

Figure 2.Candidate gene approach development for core collections and mapping 

populations 

 

3.2 Comparative mapping 

In Brassica rapa the candidate gene approach is complemented with a comparative 

map analysis, which takes advantage of the knowledge acquired from Arabidopsis 

thaliana in which the genome sequence and functions of many genes have been 

characterized.  

Brassica and Arabidopsis diverged 14.5 to 20.4 MYA from a common ancestor 

(Blanc et al. 2003; Bowers et al. 2003) and belong to the same Brassicaceae family. 
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In the tetraploid B. napus linkage groups N01 to N10 represent the Brassica rapa A 

genome, whereas linkage groups N11-N19 represent the Brassica oleracea C genome 

(Parkin et al. 2005, Sharpe et al.1995).  

In comparative genome analysis between B. napus and Arabidopsis 21 conserved 

genomic blocks were identified with RFLP probes which in most cases were 

triplicated within both the A and C genomes (Parkin et al. 2005). The homeologous 

regions to the Arabidopsis genome, which are triplicated within Brassica genomes 

result from an ancestral triplication event (Langercrantz, 1998). Further studies 

showed that although A. thaliana and Brassica differ by genomic rearrangements, the 

comparison of collinear regions identified between B. napus and A. thaliana (Parkin 

et al. 2005) resulted in the identification of 24 genomic blocks (A-X) (Schrantz et al. 

2006) largely corresponding to the 21 blocks identified by Parkin et al. (2005). These 

genomic blocks represent conserved segments identified among the ancestral 

karyotype A. lyrata and the A genome of Brassica napus ( from B. rapa). 

For the construction of a reference linkage map for the multinational Brassica rapa 

genome sequencing project, 116 SSR markers were assigned to the linkage groups of 

the A genome of B. napus. The marker order was conserved between B. rapa and B. 

napus with only few observed minor rearrangements. Sequence-tagged markers were 

used to test also the homology between Brassica sequences and Arabidopsis. The five 

chromosomes of Arabidopsis were represented by homologous sequences distributed 

throughout the ten B. rapa linkage groups (Choi et al. 2006). 

The consequences of the diploidization process from the hexaploid ancestor have 

been described for example for the FLOWERING LOCUS C (FLC) genes in B. rapa, 

which are found in Arabidopsis syntenic regions (Yang et al. 2006). In the same 

study, it was observed that at the microsynteny level more than 50% were not 

conserved within syntenic regions. 

Synteny analysis of QTL regions of B. rapa have been of aid for example in the 

identification of the clubroot resistance gene (Crr3) (Saito et al. 2006). EST-based 

SNP markers have also been used to construct a B. rapa linkage map, which was 

compared with the Arabidopsis linkage map. In this study based on homologous 

markers a fine synteny relationship was revealed and QTL loci were identified for 

flowering time and leaf morphological characteristics. Furthermore, based on the 

syntenic regions candidate genes were inferred for the control of developmental traits 

(Li et al. 2009). 
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3.3 Association mapping 

When studying complex traits in plants, association mapping is a tool to relate the 

genetic diversity expressed as allelic polymorphisms to the observed phenotypic 

variation. Results obtained with association mapping in various crops indicate that 

this technique can be successful in the identification of markers linked to genes and/or 

genomic regions associated to a desirable trait (Remington 2001, Simko et al 2004, 

Thornberry 2001, Wilson et al .2004, Agrama et al. 2007, Kraakman et al. 2006, Zhao 

et al. 2007). 

For example in potato, marker-trait associations were investigated by fitting single 

marker regression models; this association mapping approach identified AFLP marker 

loci for agro-morphological and quality traits (D’Hoop et al. 2008). In a collection of 

220 spring barley accessions, the association between flowering time and the 

variation in three genes known to play an essential role in the regulation of flowering 

time was found to be significant (Stracke et al. 2009). In Gossypium arboretum, fifty-

six germplasm accessions from regions of Africa, Asia and Europe were evaluated for 

eight fiber characters and genotyped with 98 SSR markers. In this study the general 

linear model method was used to disclose marker-trait associations (Kantartzi et al. 

2008). 

One of the most important constraints for the use of association mapping in crop 

plants is the unidentified population sub structuring and admixture. Population 

structure is the occurrence of subpopulations in the sample in which individuals are 

more closely related to each other than the average pair of individuals taken at 

random in a population (Breseghello and Sorrells, 2006). 

As a consequence, when association mapping is used to identify genes responsible for 

quantitative variation in a group of accessions, there is enough evidence to believe 

that confounding will be a significant problem, especially if the trait varies 

geographically, as does height, skin color or flowering time (Thornsberry 2001, 

Aranzana et al. 2005, Yu  et al.2006).  

In Brassica rapa association mapping has been used to unravel the genetic variation 

of leaf traits, flowering time and phytate content (Zhao et al. 2007). This study 

followed a whole genome approach with random markers, which introduced 

population structure into the statistical model for confounding correction. Although 

most of the markers did not have a map position, 3 markers were confirmed in 
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additional QTL studies showing the potential of this approach for identification of 

markers for breeding purposes.  

Additionally in genetically diverse B. napus genotypes a candidate gene approach via 

structure-based allele-trait association studies was followed to identify important seed 

glucosinolate loci (Hasan et al.2008). In this study the Arabidopsis-Brassica 

comparative genome analysis proofed to be relevant for the synteny-based 

identification of gene-linked SSR markers.  

In Brassicas several core collections have been well established and various genetic 

resources for association mapping are actually under development (Zhao et al 

unpublished results, """#!"#$$%&##%'()). In the near future the association mapping 

methodology will extend to the dissection of additional complex traits which 

combined with genomics tools will have more practical applications in Brassica 

breeding programs. 
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Scope of the thesis 

The main objective of this thesis is to unravel the genetics of the Brassica rapa 

metabolome. To achieve this goal a core collection was designed in order to contain a 

diverse group of morphotypes with different geographic origin. This group of 

accessions was profiled with available molecular markers with unknown map 

positions (AFLP and motif targeted markers) and known map positions 

(microsatellites). Association studies were performed in order to take advantage of the 

genetic diversity and metabolite variation evaluated through metabolite profiling 

technology. Additionally, the results obtained in previous QTL studies are compared 

to the association mapping results for glucosinolate variation.  

Furthermore, in order to identify candidate genes for metabolic regulation a double 

haploid population was profiled for metabolite content and expression abundance. 

The genetical genomics approach was followed for a selected group of biochemical 

pathways. The results will indicate how feasible this approach is in B. rapa, whether 

this could lead us faster to the identification of candidate genes and whether loci 

affecting metabolic traits can be identified for future marker assisted selection in 

breeding programs. 

In Chapter 2 we investigated the genetic diversity of a core collection of 168 B. rapa 

accessions. The number of groups and composition were defined through cluster 

analysis using molecular marker and morphological data. Additionally, we evaluated 

the use of metabolic profiling data for group classification in comparison to the 

genetic and morphological results. 

In Chapter 3 we evaluated the results obtained with different methodologies for 

association mapping studies in a group of selected targeted metabolites. Statistical 

analysis compared widely used methods, with and without correction for population 

structure, to Random Forests results. 

In Chapter 4 we followed an association mapping approach to dissect the genetics of 

a major QTL previously found in the A3 linkage group for glucosinolate variation. 

We applied a candidate gene approach with the profiling of microsatellites with 

known map position and physically linked to genes of the glucosinolate pathway. 

In Chapter 5 we combine information from metabolic variation and transcript 

abundance in a doubled haploid population developed from a cross between a yellow 

sarson and a pak choi. Using a genetical genomics approach we identify candidate 
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genes for selected biochemical pathways. Additionally, the use of a newly designed 

microarray based on EST sequences from different Brassicas was evaluated for this 

type of studies.  

In Chapter 6 all the findings are discussed and suggestions for future approaches for 

the dissection of traits in core collections and mapping populations are provided. 





Chapter 2 

The Patterns of Population Differentiation in a Brassica rapa 

Core Collection 

Dunia Pino Del Carpio Ram Kumar Basnet, Ric CH.De Vos, Chris Maliepaard, Richard 

G.F. Visser ,Guusje Bonnema 

 

Abstract  

With the recent advances in high throughput profiling techniques the amount of genetic 

and phenotypic data available has increased dramatically. Although many genetic 

diversity studies combine morphological and genetic data, metabolite profiling has yet to 

be integrated into these studies. For our study we selected 168 accessions representing the 

different morphotypes and geographic origins of Brassica rapa. Metabolite profiling was 

performed on all plants of this collection in the youngest expanded leaves, five weeks 

after transplanting and the same material was used for molecular marker profiling. During 

the same season a year later, twenty-six morphological characteristics were measured on 

plants that had been vernalized in the seedling stage.The number of groups and 

composition following a hierarchical clustering with molecular markers was highly 

correlated to the groups based on morphological traits  (r=0.420) and metabolic profiles 

(r=0.476). To reveal the admixture levels in B. rapa, comparison with the results of the 

programme STRUCTURE was needed to obtain information on population 

substructure.To analyze 5546 metabolite (LCMS) signals the groups identified with 

STRUCTURE were used for Random Forests classification. When comparing the random 

forest and STRUCTURE membership probabilities 86% of the accessions were allocated 

into the same subgroup.Our findings indicate that if extensive phenotypic data 

(metabolites) is available classification based on this type of data is very comparable to 

genetic classification. These multivariate types of data and methodological approaches are 

valuable for the selection of accessions to study the genetics of selected traits and for 

genetic improvement programs, and additionally provide information on the evolution of 

the different morphotypes in B. rapa. 
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Introduction 

In order to assess the levels and patterns of genetic diversity in a core collection of 

accessions one of the most important considerations is the choice of informative datasets. 

The ultimate goal is to examine simultaneously loci or traits to obtain a genome-wide 

pattern of genetic variation and to be able to classify the accessions. Morphological traits 

and molecular marker data have been widely used for this purpose and for the selection of 

lines with maximum variation for plant breeding programmes (Liu et al. 2007; Hartings et 

al. 2008; Zhang et al. 2008 ; Smykal et al. 2008). . Recently, high throughput 

metabolomics data have emerged as a valuable resource to measure phenotypic variation 

in natural populations on a large scale (Keurentjes et al. 2006). Because of its rapid 

development metabolomics are expected to be adopted as an essential component in plant 

breeding programs (Fernie et al. 2008; Verpoorte et al 2008). Furthermore, because 

metabolites are the result of the interaction of genes from several pathways, the 

integration with molecular marker and morphological trait data could increase our 

understanding of natural variation and can facilitate the identification of valuable genetic 

resources. 

Unravelling the complexity of large datasets presents a challenge in the selection of 

appropriate multivariate statistical approaches for the identification of subgroups within a 

core collection. This issue is particularly important in association studies where the 

relatedness among accessions is complex and the prevalence of a trait of interest in one 

subpopulation compared to the other subpopulations is known to be an important 

constraint (Yu et al. 2006; Aranzana et al. 2005). 

Brassica rapa is one of the most important members of the Brassica genus and has been 

cultivated for many centuries across Europe expanding eventually to Central and East 

Asia (Gomez-Campo 1999; Dixon 2006). Because in B. rapa subgroups representing the 

different morphotypes have arisen as a result of selection by plant breeders and adaptation 

to different geographic regions its phenotypic diversity can be related to population 

structure (Zhao et al. 2007) . 

In addition to the assessment of the diversity based on morphological characteristics and 

molecular markers Brassica morphotypes have been extensively screened for metabolite 

composition using GC-MS, LC-MS and/or NMR techniques (Abdel-Farid et al. 2007; 

Chen et al. 2008; Liang et al. 2006; Padilla et al. 2007; Rochfort et al. 2006; Romani et al. 

2006). The most frequently studied compounds are glucosinolates, flavonoids, 

carotenoids, tocopherols and phenylpropanoids. Generally, these studies report an 
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overview of compounds found in different organs or under different cultivation methods. 

However, in these studies the phytonutrient composition is neither included in a context 

of correlation to morphological characteristics nor related to molecular genetic diversity 

and it is restricted to the screening of a limited number of accessions within morphotypes 

and to known reference compounds.  

In the present study a Brassica rapa core collection of 168 accessions, representing 

different types and origins, was screened and classified using a genetic approach with two 

types of molecular markers, (AFLP and SSRs), a comprehensive metabolomics approach 

using LCMS-based untargeted profiling (De Vos et al. 2007), and a phenotypic approach 

based on 26 different morphological characteristics of vernalized plants.  

Population structure was calculated with data of AFLP markers (random, dominant) (Vos 

et al. 1995) and a set of non-linked multi-allelic SSRs (EST-based and genomic, co-

dominant). Accessions were assigned to subgroups in STRUCTURE and the amount of 

genetic differentiation between and within populations was calculated using F-statistics 

(Wright 1951; Cockerham 1969,1973). In addition for the analysis of metabolite data we 

used GeneSrF, a web-based tool and R package to analyze the 5546 individual LC-MS 

signals from the 168 accessions that implements individual LCMS signals selection and 

classification using Random Forests (Breiman 2001,Diaz-Uriarte et al. 2006,2007; 

Lunetta et al. 2004). 

The large and diverse types of datasets obtained in this study allowed us to  (1) Use 

clustering approaches to reveal the diversity of the sample set based on morphological 

characteristics and metabolite data in correlation to population structure subgroups (2) 

Reveal the relationship between B. rapa accessions and evolution of B. rapa types and 

forms based on genetic diversity data and F-statistics, and (3) Make use of a large data set 

of LC-MS untargeted metabolite profiling to classify and sub select a small number of 

metabolites specific for subgroups from the core collection using Random Forests. 

 

Materials and Methods!

Selection of plant materials and experimental design 

The Brassica rapa core collection included a total of 168 accessions representing the 

different morphotypes and geographic origin (Table S1).  The core collection included 

132 accessions that were part of the study of Zhao et al. (2005). From the 168 accessions, 

137 were obtained from the Dutch Crop Genetic Resources Center (CGN) in 

Wageningen, the Chinese Academy of Agricultural Sciences (CAAS)-Institute for 
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Vegetable and Flowers (IVF, Beijing) and the Oil Crop Research Institute (OCRI, China)- 

and the Osborn Lab (Madison, Wisconsin USA), while Dutch breeding companies 

provided 31 accessions (hybrid varieties and breeding lines). Firstly, uniformity in growth 

and appearance was checked in the field. Ten plants per accession were distributed over 

two blocks in groups of five plants and morphological traits were measured for 

comparison of plants within accessions (data not shown). 

For the metabolite profiling two plants per accession were sown in the greenhouse in 

September 2006 and September 2007 under the following conditions: 16 hrs light and 

temperature between 18 and 21C°. The plants were distributed over two tables in a 

randomized design with one plant per accession on each table. In the 5th week after 

transplanting, the leaf material (youngest fully expanded leaves) was harvested from one 

plant per accession from one table and directly frozen in liquid nitrogen, ground and 

stored at -70 C°. 

DNA was extracted from the ground and frozen material, from the same plant selected for 

metabolite profiling, with the DNAeasy kit (Qiagen, USA). 

Morphological data collection 

For the assessment of morphological traits, 10 seeds per accession were sown on filter 

paper on a Petri dish. After germination, the plates with seedlings were transferred to a 

dark cold room (5C°) for 4 weeks. After vernalization treatment, four germinated seeds 

were transferred to pots in the greenhouse and distributed over four tables, with one plant 

per table in a completely randomized design. 

Twenty-six morphological characteristics were measured from each plant per table at the 

time when the first flower opened, these included leaf, flower and plant architecture 

traits.For further calculations the final values were averaged over all the observations 

(Table 2).Photos of the different plant organs, one flower and one fully developed leaf 

(third leaf) from 4 plants were analysed using ImageJ software 

(http://rsb.info.nih.gov/ij/).The different morphological data values (continuous and 

categorical variables) were averaged over the four plants per accession and autoscaled 

within each variable using the formula z= x-mean/sd (x: variable to be standardized and 

sd: standard deviation). Data analysis of the autoscaled data, correlations between 

morphological variables and UPGMA hierarchical clustering of the accessions was 

performed using Genemaths XT (Applied Maths, Belgium). The dissimilarity matrix was 

calculated based on Euclidean distances between the morphological variables.  
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A. Leaf 

traits 
                

  Leaf length LL Length from base of petiole to tip of lamina (cm)     

  

Lamina 

blade 

length 

Lbl Distance from the tip lamina to the first lobe (cm)     

  
Lamina 

width 
LW Lamina width at the widest point (cm)     

  Leaf index LI Ratio of Lbl/LW       

  Leaf area LA The whole surface of full leaf including lobes (cm2)     

  
Leaf 

perimeter 
LP The edge of full leaf (cm)      

  
Petiole 

length 
LPL Distance from the base of the petiole to button of lamina (cm)    

  Leaf lobes LB Number of lobs on the leaf      

  Leaf color LC 
Visual score (1= dark, 2= high green, 3= medium green, 4= light green, 5= green-yellow, 6= 

yellow) 

  
Leaf edge 

shape 
LES Score (1= Entire, 2= Slightly serrated, 3= Intermediate serrated, 4= Very serrated)   

  
Presence of 

petiole 
LPP Score (0= absent, 1= present)      

  SPAD SPAD Chlorophyll content      

B. Flower 

traits 
                

  
Corolla 

length 
CL Symmetric length between petals (mm)     

  
Corolla 

width 
CW Symmetric width between petals (mm)     

  Petal length pL Distance from base to the top of the petal (mm)     

  Petal width pW Petal width at the widest point (mm)      

  Petal index pI Ratio of pL/pW       

  Petal area pA The whole surface of petal (mm2)      

  
Petal 

perimeter 
pP The edge of petal (mm)      

  Petal shape pS Scored (1=round, 2= oval, 3= elongate)     

  Petal color PC 
Visual screening of petal color (1=orange, 2= high yellow, 3=Yellow, 4= medium yellow, 5=light 

yellow) 

  
Flowering 

in time 
DTF Number of days from transplant till the appearance of the first open flower (days)   

C. Plant Architecture trait               

  
Leaf 

number 
LN Number of the leaves when the first flower opens     

  
Plant 

branch 
PB Number of the branches at flowering time     

  Plant height PH Distance from the cotyledons to the top of the plant at pre-mature stage (cm)    

  
Plant final 

height 
PfH Distance from the cotyledons to the top of the plant at mature stage (cm)     

 

 

 

LC-MS metabolic profiling 

Brassica rapa leaf samples were analyzed for variation in semi-polar metabolite 

composition using LC-QTOF MS, essentially as described in De Vos et al. (2007). In 

short, 0.5 g FW of frozen leaf powder, from an individual plant per accession, was 

weighed in 10 ml glass tubes and extracted with 1.5 ml of methanol containing 0.1% 

formic acid. Samples were sonicated and then filtered (Captiva 0.45 !m PTFE filter plate, 

Ansys Technologies) into 96-well plates with 700!l glass inserts (Waters) using a 
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TECAN Genesis Workstation equipped with a 4-channel pipetting robot and a TeVacS 

96-wells filtration unit. Samples were injected (5 !l) using an Alliance 2795 HT 

instrument (Waters), separated on a Phenomenex Luna C18 (2) column (2.0x 150 mm, 3 

mm particle size) using a 5-35% acetonitrile gradient in water (acidified with 0.1% formic 

acid) and then detected on-line firstly by a Waters photodiode array detector (wavelength 

220-600nm (Waters) and secondly by a Water-Micromass QTOF Ultima MS with 

negative electrospray ionization (m/z 80-1500).   

Metalign software (www.metalign.nl) was used to automatically extract and align all 

relevant mass signals (signal to local noise ratio > 3) from the raw data files. The total of 

46,788 signals was filtered for signals present in at least 10 samples and having 

amplitudes of at least 200 (about 8 times the noise value) in at least one of the samples. 

Then, all signals eluting within 3 min of retention time (i.e. the injection peak, mostly 

consisting of signals from non-retained highly polar compounds) were removed from the 

dataset.  

A total of 5,546 LCMS peaks defined by mass and scan number from 168 accessions 

were included in the subsequent data analysis. Hierarchical cluster analysis of the 

accessions was done in GeneMaths XT (Applied Maths, Belgium). The similarity matrix 

was calculated on the log2 transformed 5,546 LCMS data with Pearson’s correlation and 

UPGMA clustering in the program DARwin (Perrier et al. 2006) and drawn with 

TreeDyn (Chevenet et al. 2006). 

Because it is known that many metabolites can be influenced by environmental 

conditions, we tested the repeatability of the metabolic profiles. For this purpose we 

selected homogeneous accessions, which correspond to the ones obtained from Dutch 

seed companies. The 17 accessions were grown in the greenhouse during the same season 

of two consecutive years, each year at two separate locations in the greenhouse (blocks). 

We thus obtained 4 biological repetitions from two consecutive years. For each replicate, 

leaf material from two plants was collected at the same plant age (5 weeks after sowing). 

Upon harvest, the leaves were immediately frozen in liquid nitrogen, ground into a fine 

powder in liquid nitrogen, and stored at -80°C until use. The 4 replicates of the 17 

accessions had a unique profiling but were simultaneously extracted and analyzed for 

variation in metabolic composition, using the untargeted LC-MS profiling approach 

described above (De Vos et al. 2007). We subsequently analyzed by multiple linear 

regressions the correlation (R
2
) between metabolite signals within each year (by 

comparing the different blocks) and between years. 
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Genotypic datasets 

The AFLP procedure was performed as described by Vos et al. (1995). Total genomic 

DNA (200 ng) was digested with two restriction enzymes Pst I and Mse I and ligated to 

adaptors. Pre amplifications were performed in 20 µl volume of 1x PCR buffer, 0.2mM 

dNTPs, 30ng of adaptor primer, 0.4 Taq polymerase and 5 µl of a 10x diluted restriction 

ligation mix, using 24 cycles of 94° C for 30s, 56° C for 30 s and 72° C for 60s. Pre-

amplifications products were used as template for selective amplification with three 

primers combinations (P23M48, P23M50 and P21M47).  

For The MYB targeted profiling total genomic DNA was digested using the following 

enzymes per reaction: Hae III, Rsa I, Alu I and Mse I and ligated to an adaptor. Pre 

amplifications with one primer directed to a common myb motif  (Dr. Gerard van der 

Linden, Wageningen UR Plant Breeding, unpublished results) and one adaptor primer 

were performed in 25 µl of 1X PCR buffer (with 15Mm MgCl2), 0.2 mM dNTPs, 0.8 

pMol Gene specific primer, 0.8 pMol Adapter primer, U Hotstar Taq polymerase 

(Qiagen) and 5 µl of a 10X diluted restriction ligation mix. Amplification products were 

used as template for selective amplification. 

For microsatellite (SSR) screening twenty-eight primers were selected for amplification 

in the core collection accessions. From the primers 10 were genomic and 18 were new 

EST- SSRs (Dr. Marongcai, Dr. Jifeng Tang, which institute, place personal 

communication). The primers were selected because of their map position in different 

maps of Brassica rapa and distribution over all the linkage groups (A1-A10).  

AFLP and MYB profiling images were analyzed using Quantar PRO software (Keygene, 

The Netherlands); marker data were scored as present (1) or absent (0) and treated as 

dominant markers. Microsatellites scores were converted to binary data per observed 

allele (fragment of defined size) as present (1) or absent (0) and were also treated as 

dominant markers. 

The genetic distance values were calculated using Jaccard’s coefficient for 412 

polymorphic AFLP and SSR fragments.  
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Marker data was used for cluster analysis using the unweighted pair group method with 

arithmetic averages (UPGMA) clustering in MEGA 4.0 (Kumar et al. 2008).  

 

Assessment of genetic diversity 

The genetic diversity was assessed in 166 accessions  (excluding accession numbers 164 

and 165 because of large numbers of missing values) with 23 SSR primer pairs, which 

represented loci from different linkage groups. These twenty-three SSRs were subselected 

from 28 SSRs scored over the core collection not to overrepresent any of the linkage 

groups in the analysis (Table 1). 

The SPAGeDi 1.2 g program (from whom and where) was used to calculate Dst, the 

average gene diversity between subpopulations, the allele frequency per locus and the 

genetic
 
diversity corrected for sample size (He) [Hardy et al. 2002; Nei 1978). A 

hierarchical analysis of molecular variance (AMOVA) was performed on the SSR data 

with Arlequin 3.11 software (Excoffier et al. 2005). Data conversion was done in 

SPAGeDi and Genepop web application (http://genepop.curtin.edu.au/). F statistics (Fst) 

values were computed according to Weir and Cockerham 1984, to quantify the extent of 

between-within population differentiation. (FCT: between populations, FSC: within 

population). 

Fst values equal 0 when subpopulations are identical in allele frequencies and 1 when 

they have different alleles. Populations with little divergence have Fst values less than 

0.05, moderately differentiated populations have values between 0.05 and 0.15, greatly 

differentiated populations have values between 0.15 and 0.25 and very greatly 

differentiated populations have values greater than 0.25 (Hartl et al. 1997; Mohammadi et 

al. 2003). 
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1 Br46 R1 3 2 2 2 2.25 0.5 3 0.4145 

AGGTTTCGAG

GTTTGTGGCT
TCT  

CTAAACTCATCGCTT

CCGTAAACA  

2 br333 R1  5 4 3 3 3.75 0.957 6 0.5833 

AGTTGGCCCC

ATTTCATTGTT

AT 

CATCTTGACGGCCTC

CATCTCCA  

3 KS50420 R10 17 15 8 11 12.75 4.031 21 0.9112 

TTCACACAAG
GTTTGTGCC 

CGTAAAGGCATCAAG
GAAAA 

4 Br27 R2 5 4 4 4 4.25 0.5 5 0.526 

AAGTACATGG

TCATCCAAGG 

AAGGATCCATCACAT

GGTAA 

5 Br48 R2 4 5 4 3 4 0.816 5 0.6257 

GGTGGTGGGC

TGGGGAGTA  

CGTCGATCGATTCAT

AACCGTAGA 

6 br323 R2 8 4 4 6 5.5 1.915 8 0.7442 

GTGGTGAACG

TGCTTAAGAT 

ACGAGCTGGTTGAAA

GTTTA 

7 

F3H-

SSR2 R3 4 4 3 4 3.75 0.5 4 0.7432 

GTCATCTCCA

GGTAAATCCA 

TCTTGAACAACCTCT

CCCTA 

8 fito63 R3 6 5 4 6 5.25 0.957 9 0.6985 

GTTCAGTTCC
CAGATTCCTA

A 
TTTCCTCTTCCTTCTC

TCTTC 

9 br356 R3 3 3 3 2 2.75 0.5 4 0.4978 

GCATCTCAGC

CTTACAACTT 

AGCAAGAACCCAGAA

ACATA 

10 br377 R4 4 2 2 2 2.5 1 4 0.352 

GAAATGAGCG

ACAGTGTGAT 

ACAAACGACCAGTTC

ATAGG 

11 Br65 R4 3 4 2 3 3 0.816 4 0.3567 

TTCCGTCCCTT

CCCTAAACAA 

TGAACACTACTGCCC

AGAGAACAC  

12 Na10D09 R4 8 7 5 4 6 1.826 8 0.7452 Lowe et al (2003)   

13 br384 R4 6 6 5 4 5.25 0.957 6 0.7669 

TTCAATCACT

TCTTCGTTTG 

GAAGTAGCAGAAACA

GCACC 

14 brms34 R5 8 8 6 7 7.25 0.957 9 0.7947 

GATCAAATAA

CGAACGGAGA

GA 

GAGCCAAGAAAGGA

CCTAAGAT 

15 br378 R5 8 5 5 3 5.25 2.062 8 0.6027 

TTCATCCATC

CATCTTTCTC 

ATGATTCCTCCATGTT

CATC 

16 Br51 R6 3 3 2 3 2.75 0.5 3 0.4109 

CCGAGGAAGA

AAGCTGTTGA
GTTG 

ATCGCTTCCGTAGAC

ACCTTCGTT  

17 Na12h07 R6 6 5 4 3 4.5 1.291 6 0.5812 Lowe et al (2003)   

18 Br89 R6 6 6 4 6 5.5 1 9 0.6583 

CGTCCGTAGC

GCTATTTTTCA

GA3 

ACGTTGTCGATCGCC

CAGTTC  

19 

BR372-

WU R7 2 2 2 2 2 0 2 0.4491 

AACGTAGTCA

CCAACGAAAC 

TCTGAGAAAAGAAGG

AGCTG 

20 brms36 R7 6 5 4 4 4.75 0.957 7 0.7416 

Suwabe et al 

(2002)   

21 Ra2A01 R7 8 16 7 10 10.25 4.031 17 0.8576 Lowe et al (2003)   

22 br319 R8 4 3 3 3 3.25 0.5 4 0.671 

TCTATGATCA

TGGCTTCCTC 

TCTCCGGTGTAGAGT

TTGTT 

23 br321 R9 3 3 2 2 2.5 0.577 3 0.3669 

CCTTATCCCA

TCTCTCCTCT 

GAGATCAAAGTCGTA

GTGGC 

24 Br360* R3          

CATCGTCGTC
TCCAATACTA 

GAGTTGAGATCGTTC
CTCTG 

25 Br63* R3         

TTCCGTCCCTT

CCCTAAACA  

GAACACTACTGCCCA

GAGAACAC 

26 brms43* R3         

Suwabe et al 
(2002)   

27 ol11b05* R3         Lowe et al (2003)   

28 brms50* R3         

Suwabe et al 

(2002)   

Mean     5.652 5.261 3.826 4.217 4.739 0.859 6.739 14.0992     

s.d     3.142 3.583 1.642 2.449 2.704 0.848 4.366 0.166630     
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+8,9:89,; 

He: gene diversity corrected for sample size (Nei 1978); LG:chromosome location; Br:prefix for an EST 

SSR.*not considered for Fst statistics analysis. 
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Assessment of population structure  

Marker data (AFLP and SSR) were used to identify the different subgroups and admixture 

within the accessions of the core collection through a model of Bayesian clustering for 

inferring population structure. 

To be included in this analysis the SSR alleles were scored as dominant data making a 

total of 412 markers for the analysis. The number of subpopulations was determined 

using the software STRUCTURE 2.2 (http://pritch.bsd.uchicago.edu/software), assuming 

a model for Brassica rapa of K between 1 and 10 subpopulations, with a total of 300,000 

iterations for Markov Chain Monte Carlo repetitions and burn in of 100,000. 

Principal components analysis 

The autoscaled data from the 26 morphological traits were used for principal components 

analysis (PCA). PCA is the most commonly used visualization technique in multivariate 

statistics, which also identifies ‘Eigen’vectors and amounts of variance and cumulative 

explained variances per component. The PCA analysis was conducted by using the 

“FactoMineR” package in R-software (Husson et al. 2008). 

Mantel Test 

To test the correlation between the clusters calculated with the phenotypic and genotypic 

marker data, a Mantel test was applied in R packages ape4 and ecodist (Goslee et al. 

2007; Mantel 1967). 

Random Forests classification of LC-MS data 

We used GeneSrF, http://genesrf.bioinfo.cnio.es (Diaz-Uriarte et al.2007) a web-based 

tool originally implemented for microarray data to select very small sets of genes that 

preserve classification accuracy. The output includes bootstrapped estimates of prediction 

error rate and assessment of the prediction error. Based on the allelic frequency 

classification, STRUCTURE assigns the 168 accessions to subgroups. In the GeneSrF 

web-based application this subgroup classification was inserted as the class file and the 

5,546 LC-MS mass scan data were input as the equivalent of the expression data file. We 

considered the mean class membership probabilities obtained from the random forests 

output for comparison with the probabilities of inferred ancestry of individuals 

(membership probabilities) from AFLP and SSR markers obtained with STRUCTURE.  

 



Chapter 2 

! 31!

Results!

Population structure 

The genetic structure of 168 accessions was inferred using 412 markers (AFLP and SSR 

polymorphic bands). The Bayesian clustering implemented in the STRUCTURE software 

revealed 4 subpopulations. The selection of the subgroups (K=4) was done after the 

average likelihood value of runs for a given K value increased gradually until K=4. The 

selection of a K>4 would result in groups with no relationship to morphotype and/or 

origin of the accessions.  

Population 1, includes mostly vegetable turnip (VT) and fodder turnip (FT) from 

European origin and broccoletto accessions: (VT+FT); population 2, includes several 

types: pak choi, (PC) winter oil, mizuna, mibuna, komatsuna, turnip green, oil rape and 

Asian turnip (T): (PC+T); population 3, includes annual oil type accessions,spring oil 

(SO), yellow sarson(YS) and rapid cycling (RC): (SO, YS and RC) and population 4 

includes, mainly accessions of Chinese cabbage (CC) (Table S1). 

Of the 168 accessions, 112 were assigned to a group with a probability value of p>0.70. 

Fifty-six accessions have p< 0.7 probability values with different levels of admixture 

between subgroups (Table S1). The morphotypes with highest levels of admixture were 

the winter oils accessions from Pakistan with 6 out of 7 accessions having probability 

values of p<0.7 The highest membership probability values of the six winter oil 

accessions corresponded to population 1 (VT+FT) and population 2 (PC+T).  

Multivariate analyses 

Morphological traits 

The hierarchical cluster analysis of 26 morphological traits using the UPGMA method 

showed three distinct groups and few small groups of accessions (Figure 1). The first 

group (I) consisted of 28 accessions mainly European vegetable and fodder turnips; a 

second group (II) consisted of 62 accessions, including 51 Chinese cabbage accessions, 

landraces/cultivars and modern breeding lines from companies and 11 accessions 

corresponding to different types; the third (III) group consisted of 50 accessions, 

composed by a combination of pak choi, broccoletto, Asian turnips and few annual oil 

accessions. The turnip cluster (I) is formed mostly by accessions of European origin in 

correspondence to the STRUCTURE subgroup (population 1) without the broccoletto’s. 

The Chinese cabbage cluster (II) is very similar to the STRUCTURE subgroup 

(population 4) and independent of cultivated form (landrace or modern breeding lines 
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from companies) plus several accessions from STRUCTURE population 2.  The admixed 

cluster (III) groups accessions independent of cultivated form, similar to the 

STRUCTURE population 2 with several Asian types (pak choi, Chinese Cabbage, Winter 

oils, Asian turnips etc) plus the European broccoletto’s from STRUCTURE population 1. 

The results of the PCA indicated that more than 50 % of the total variance was explained 

by the first two PCs (31.22 % by PC1 and 23.87 % by PC2).  

The most relevant loadings for the PC1 were mostly leaf characteristics and flowering 

time and for PC2 the most important loadings were a combination of leaf and flower 

characteristics (Table 3). 

Correlation analysis of the 26 morphological traits showed significant and high 

correlations within leaf, flower and plant architecture traits, high values were also found 

between leaf (area and width) and flower traits (area and width) in correspondence to a 

possible modularity and genetic co-regulation of these developmental traits (data not 

shown).  

!"#$%&'"!#$%&$'()!$'*!+,$*&'-!.$/0)1!,2!34)!2&%13!34%))!5%&'(&6$/!7,86,')'31!01&'-!8,%64,/,-&($/!

*$3$"!

!

  PC 1 PC 2 PC 3 

Variance 31.22 23.87 9.58 

LPL 0.95 0.07 0.1 

LP 0.9 0.25 0.14 

LL 0.88 0.31 0.22 

DTF 0.86 0.04 -0.07 

LB 0.82 -0.13 0.11 

LA 0.58 0.68 0.05 

LES 0.46 0.09 0.22 

LW 0.43 0.74 -0.05 

SPAD 0.42 -0.27 -0.19 

LPP 0.41 -0.46 0.013 

Lbl 0.39 0.65 0.36 

pI 0.06 -0.47 0.74 

pS 0.06 -0.46 0.58 

pL -0.02 0.48 0.47 

LI -0.04 -0.06 0.71 

pP -0.06 0.74 0.08 

pW -0.07 0.85 -0.37 

pA -0.08 0.87 -0.14 

CW -0.11 0.76 -0.2 

CL -0.11 0.76 0.09 

LC -0.42 0.53 0.25 

LN -0.47 0.22 0.53 

PfH -0.66 0.44 0.11 

PB -0.66 0.07 0.18 

pC -0.76 -0.1 0.05 

PH -0.8 0.33 0.15 

 

*Abbreviation description in Table 1 
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Figure 1.Hierarchical cluster UPGMA obtained with 26 morphological traits..Colours in the first column indicate 

STRUCTURE subgroups; red: population 1, yellow, population 2, green: population 3 and blue: population 4.Colors in 

the second column indicate geographic origin; red: company line, yellow: Asia, blue: Europe, green: America. 
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Metabolite LC-MS data 

The clustering based on the log2 transformed LC-MS data from the core collection (5,546 

mass-scan numbers) showed 4 main groups and few small mixed groups (Figure 2B). 

Group I consists of 7 accessions, including spring oil (YS and SO) and one winter oil 

accession; group II includes 33 accessions of the following types: broccoletto, European 

vegetable and fodder turnips; group III, the most admixed group in terms of morphotypes 

and its relationship to the STRUCTURE subgroups, is composed of 81 accessions of the 

following types: pak choi, Asian turnips, turnip rape, winter oil, mizuna and few Chinese 

cabbages; and group IV consists of 47, mainly, Chinese cabbage accessions and modern 

company accessions. The composition of each group showed a high correspondence with 

the four subpopulations found with molecular marker information in STRUCTURE, 

especially in the case of groups I, II and IV and to a lesser extend for group III. 

In the hierarchical clustering based on LC-MS data, 31 accessions were differently 

classified with respect to the subpopulations found with STRUCTURE. From these 31 

accessions, 12 were also differently classified when molecular marker data were used for 

the hierarchical clustering (Figure 2A and 2B). These accessions have an admixed genetic 

nature, which allows for flexibility in terms of group assignment (Table S1). In the case 

of the remainder 19 accessions the genetic admixture is not significant, but still they are 

assigned to a different group based on this high number of metabolite mass scan signals 

(5,546) compared to their assignment to STRUCTURE subpopulations. 

Data of 3,564 mass scan signals from the 4 biological repetitions of the 17 homogenous 

company lines were evaluated through a linear regression on each individual mass scan 

signal. Comparison of blocks from the same year, by means of linear correlation 

regression analysis, resulted in average r
2
 values of 0.84 for year 1 and 0.86 for year 2. 

Comparison of results between years gave an average r
2 

value of 0.79. These results 

indicate that the LC-MS profiles of mass scan signals obtained from each accession are 

highly repeatable within and between years. Based on this biological repetition 

experiment on 17 homogeneous lines, we can assume that the metabolite profiles 

observed within the B. rapa core collection are consistent for most metabolites over 

different years and biological repeats. 
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Molecular marker data 

The clustering based on 412 AFLP and SSR markers gave as a result the separation of the 

collection into three groups. The three groups were composed as follows: I; a small group 

of oil types, II; a group of European turnips (vegetable and fodder turnip) and broccoletto 

and III; a group of morphotypes of 

Asian origin (Chinese cabbage, Pak 

choi and few Asian turnips). 

Comparison of the three groups 

identified with hierarchical clustering 

with the 4 subpopulations found in 

STRUCTURE indicated the 

subdivision of cluster/group III with 

the morphotypes of Asian origin into 

two different groups with also mainly 

accessions of Asian origin (II and IV) 

in STRUCTURE (Figure 2A). When 

the four groups found in 

STRUCTURE are compared with the 

oil group I, the European turnips 

group II and the Pak choi and Chinese 

cabbage group III found with the 

hierarchical clustering, the 

classification is different for 19 

accessions. However, as mentioned 

above, these accessions also group in 

a different way compared to 

STRUCTURE when metabolite data is 

used for clustering and reflects the 

admixed nature of these 19 accessions 

       (Figure 2A and 2B, table S1). 

Figure 2.Hierarchical cluster UPGMA obtained with (A) molecular markers and (B) 5,546 LC-MS mass-scan signals. 

The colors indicate STRUCTURE subgroups red: population 1, yellow, population 2, green: population 3 and blue: 

population 4. 
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Comparison of morphological, metabolic and molecular group classification  

The Mantel test between morphological and molecular distances revealed a strong and 

significant correlation value of r= 0.420 (p<0.01). In the comparison between metabolite 

and molecular distances the result is also strong and significant with a value of r=0.476 

(p<0.01). The congruence between metabolite and morphological data resulted in a weak 

but significant correlation with a value of r=0.174 (p<0.01). 

 

Population differentiation with microsatellite marker data  

The molecular marker data set of 23 SSRs and 166 genotypes was used for calculation of 

between and within population differentiation.  In the core collection the allele number 

ranged from 2 to 21 amplified fragments (alleles) per SSR. The mean allele number per 

SSR over all loci in the four sub populations is 4.7. The highest mean value for alleles 

was found in population 1(VT+FT) (European turnip and broccoletto group) and 

population 2 (PC+T) with a value of 5.6 and 5.3 respectively (Table 1). 

The genetic
 
diversity corrected for sample size (He) calculated over the four populations 

ranged from 0.91 for KS50420 (A10) to 0.352 for br377 (A04). Pairwise Ds (Nei’s 1978 

standard distance) between populations, as defined in STRUCTURE, indicated a high 

genetic distance value between population 1 (VT+FT) (European turnip and broccoletto 

group) and population 3 (SO, YS and RC) (oil group) of 0.4267 and a low value between 

population 1 (VT+FT) (European turnip and broccoletto group) and population 2 (PC+T) 

(pak choi and turnip group) of 0.1539 (Table 4). Global F-statistics results indicate the 

presence of moderately differentiated populations (Fst=0.1534), which points towards the 

occurrence of population structure. The Fst values of differentiation between populations 

ranged from 0.09 (population 1(VT+FT)-population 2(PC+T)) to 0.23 (population 3(SO, 

YS and RC)-population 4 (CC)) (Table 5). AMOVA results indicate that the highest 

percentage of variation is found within populations (84.66%) compared to among 

populations (15.34%). (Table 6) 

!

!

!

!

!

!

!

!
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  pop 1 pop 2 pop 3 pop 4 

pop 1   0.1539 0.4267 0.3151 

pop 2 0.1539  0.2637 0.1797 

pop 3 0.4267 0.2637  0.3245 

pop 4 0.3151 0.1797 0.3245   

 

&

!"#$%&("!I!(2$2%(2%5(!J$9B)(!87!4%77)&)32%$2%83!C)2'))3!<8<B9$2%83(!$(!4)7%3)4!%3!>E?FGEF?H"!

 

  pop 1 pop 2 pop 3 pop 4 

pop 1         

pop 2 0.08961    

pop 3 0.19046 0.14982   

pop 4 0.19843 0.14113 0.23374   

    

 

!"#$%&)*&KLMNK!&)(B92!87!O98C$9!I!(2$2%(2%5(!

 

Source of   Sum of Variance Percentage 

Variation* d.f Squares components of Variation 

Among 3 251.524 1.0058 15.34 

populations      

Within 328 1820.609 5.55064 84.66 

populations         

Total 331 2072.133 6.55643   

  
Fixation Index  FST: 

0.15341       

 

*Source of variation within and among populations as defined in STRUCTURE 

 

 

 

Random Forests classification and identification of variables 

Genotype information of the STRUCTURE subgroup classification was used in the 

random forest web based application to account for the estimated relatedness between 

accessions. The number of variables (metabolite: mass scan number) from the original 

dataset that can summarize, in a small subset, the differences between the classes (4 

population subgroups) was estimated. The mean class membership probabilities based on 

metabolite data obtained for each accession were plotted in a similar way to the 

STRUCTURE membership probabilities (Figure 3). Based on the Random Forests 

probabilities using metabolite data, 145 out of the 168 accessions were allocated into the 

same class compared to the one assigned using the molecular markers with a Bayesian 

clustering algorithm in STRUCTURE (Table S1). 
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Figure 3. Membership probabilities output for each accession represented as a barplot: (A) Random Forests, (B) 

STRUCTURE. 
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In the variable selection using all data a number of 100 variables was found to be the set 

with a good predictive accuracy for the classes (4 population subgroups). For the variable 

selection the bootstrap estimate of prediction error was 13.3% (using 200 bootstrap 

iterations). 

Correlation analysis between these 100 individual mass signals indicated that these might 

represent 35 different metabolites (Dr. Ric de Vos, PRI, unpublished results). Between 

the metabolites identified are isopropyl glucosinolate, methylpropyl glucosinolate, hexyl 

glucosinolate 2, caffeoylquinic acid, chlorogenic acid, coumaroylquinic acid, quercetin3-  

(2-feruloylsophoroside) 7-diglucoside and kaempferol coffeoyl tetraglucoside. The mass 

signals representing these thirty-five compounds were further used to construct a 

UPGMA dendrogram. Two biological replicates were included in these cluster analyses, 

an oil type RO18 and a caixin type L58 , which showed consistency in the clustering. In 

the hierarchical clustering   three very well defined groups are separated in accordance to 

the STRUCTURE groups: Group I (VT+FT: population 1), Group 2 (CC: population 4) 

and group 3 (PC+T: population 2) and few admixed subgroups. The oil group (SO, YS 

and RC: population 3) was found to be subdivided, the summer and spring oil accessions 

with STRUCTURE membership probability 0.79-0.98 were grouped based on metabolites 

in the sub-cluster oil I, while the other summer and spring oil accessions with 

STRUCTURE membership probabilities 0.38-0.43 were grouped in the sub-cluster oil II 

(Figure S1). 

 

 

 

Discussion 

With the recent advances in high throughput profiling techniques the amount of genetic 

and phenotypic data has increased dramatically. Although many studies combine 

morphological and genetic data, metabolite profiling has yet to be integrated into diversity 

studies. More importantly, to establish the existence of relationships between accessions 

with such a multivariate approach could lead us to a better understanding of the processes 

that shape natural variation. 

For our research we composed a Brassica rapa core collection with accessions widely 

diverse in geographical origin, morphotype and phenotypic characteristics. We consider 

Brassica rapa as suitable for genetic diversity studies because of the selection and 
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adaptation this crop has undergone during centuries of cultivation. Hence, the effect of 

these processes can be measured on the evolution of morphotypes and in the interaction 

of metabolite composition and developmental traits. 

B. rapa is mainly an out-crosser and self incompatible, except for some annual oil types, 

and as a result landraces are heterogeneous. In contrast, modern cultivars and breeding 

lines from seed companies are homogeneous hybrids with homozygous inbred lines. 

Hierarchical cluster analysis based on molecular markers identified three groups, very 

similar to the groups found in previous studies in B. rapa (Zhao et al. 2005 and 2007). 

Using hierarchical clustering the group number and composition identified with 

molecular markers is highly correlated to the groups based on morphological traits of 

vernalized accessions (r=0.420) and based on metabolic profiling of leaves(r=0.476).  

However, the number of groups separated with STRUCTURE is four, since group III 

(Asian crop types) defined using hierarchical clustering is represented by two structured 

groups (II and IV, comprising Chinese cabbages, and Asian turnips and Pak choi 

respectively); the resulting four subpopulations show correspondence to morphotype 

(turnip, oil, leafy types) and geographic origin (Asian and European). Because this output 

reflects the value of allele exchange (admixture) and relatedness among individuals we 

decided to use the structured sub-groups as a priori reference to define populations/classes 

for the random forests and genetic diversity estimation with microsatellites.  

A constraint in the use of AFLP profiling in a core collection is that the chromosomal 

map position of the AFLP markers is mostly unknown and that the markers are scored 

dominantly. In our study we made use of SSRs with known map position, which allowed 

us to overcome this issue and to confirm with AMOVA the presence of moderately to 

strong population differentiation (Fst=0.15341). The distribution of variation in the group 

of accessions was found to be larger at the within population level (84.66%) compared to 

the variation between populations (15.34%). This suggests that subpopulations harbor 

enough genetic variation and could be enlarged to study morphotype specific 

characteristics in association studies avoiding in this way the effect of population 

confounding. 

Although we collected data from leaf material at one developmental stage only, 

metabolite data proved to be very valuable in the classification of morphotypes, 

comparable to the genetic profiling and reflected the level of admixture found with 

STRUCTURE (figure 3). Random Forests provided a valuable tool to select a small group 

of variables from the unidentified LC-MS that represent/define these sub populations. For 
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future research high throughput metabolite profiling in combination with Random Forests 

and clustering analysis can be worthy for the identification of lines that carry interesting 

metabolites for crop improvement and/or for the selection of parental lines to create 

populations for metabolic QTL studies or to define subgroups with wide variation for 

association studies.  

Besides the classification purposes of this study, the value of multivariate data analysis to 

reveal morphotypes ancestry and evolutionary processes should be acknowledged. It has 

been suggested that in Brassica rapa similar morphotypes have an independent origin 

and/or a long and separate domestication and breeding history in Asia and Europe (Zhao 

et al.2005). In the study of genetic relationships among cultivated types of Brassica rapa 

with AFLP markers it is considered that turnip was the primitive type of cultivated B.rapa 

which originated in Central Asia or in Europe and spread both to East Asia and to Europe 

and India (Takuno et al 2007).  

Our results indicate that genetically the winter oil accessions from Pakistan show higher 

levels of population admixture, which indicate the presence of a genetic background 

shared both with European turnips and Asian pak choi types (STRUCTURE and F 

statistics). This ancestry of the winter oil type is reflected for example in morphological 

characteristics like the weedy-type look, the hairy, lobulated and rosette arrangement of 

the leaves, which resemble the European turnip type. If indeed winter oils are the ancient 

crop types that further developed into turnips and broccoletto in Europe and into turnips 

and pak choi in Asia then both turnip and pak choi types are a consequence of adaptation 

and selection on each continent. Further studies that will include sequencing of genes 

both affected and not affected by selection, will clarify the evolution of the B. rapa forms 

in different geographical regions. 

In this study we have estimated the genetic diversity in a group of 168 accessions with 

different types of data. Our statistical approaches have been successful to unravel the 

complexity of the data and to establish relationships between accessions using genetic 

markers, morphological data and metabolite profiles.  

The phenotypic diversity, represented by the evaluated traits (metabolite and morphology) 

from a large group of accessions, in this Brassica rapa core collection showed generally a 

high correlation with the genetic classification. However, hierarchical clustering of 

molecular data was not sufficient to reveal the level of admixture in Brassica rapa and 

comparison of clustering results with STRUCTURE is needed, especially when
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association studies in B. rapa are the goal, since it gives additional information on the 

level of population substructure.  

Additionally this type of multivariate type of data and methodological approach is 

valuable for the selection of accessions to study the genetics of selected traits and for 

genetic improvement programs. 
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Abstract 

Since an association mapping approach combines the observed phenotypic variation 

and genetic diversity through statistical analyses, with the final goal of correlating 

trait levels and alleles, it is important to separate the true effect of genetic variation 

from other confounding factors. In crop plants, for example these factors are related to 

adaptation to different uses and geographical locations. An additional consideration in 

this type of studies is the rapid availability of large datasets, which makes it necessary 

to explore statistical methods that can be computationally less intensive and more 

flexible for data exploration.  

In the present study we consider the genetic association between markers and 

tocopherols, carotenoids, chlorophylls and folate in a core collection of 168 Brassica 

rapa accessions of different morphotypes and origin. We followed widely used linear 

model association methods but in addition, we include Random Forests results for 

comparison. When the results across methods were compared we were able to 

successfully select a set of 16 significant markers. This set includes at least one 

marker associated per metabolite that can potentially be applied for the selection of 

genotypes with elevated levels of important metabolites. We showed that in this core 

collection of B. rapa confounding effects are present and that the incorporation of the 

STRUCTURE correction (Q matrix) in the linear regression model greatly reduces the 

number of significant associated markers. Additionally, our results demonstrate that 

Random Forests is an interesting complementary method with added value in 

association studies in plants.  
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Introduction 

In plants association mapping has been developed as a tool to relate genetic diversity, 

expressed as allelic polymorphisms, to the observed phenotypic variation in complex 

traits without the need to develop mapping populations. Results obtained with 

association mapping methods in various crops indicate that this technique can be 

successful in the identification of markers linked to genes and/or genomic regions 

associated to a desirable trait (Remington et al.2001, Simko et al 2004 a, b, 

Thornberry et al. 2001, Wilson et al. 2004, Agrama et al. 2007, Kraakman et al. 2006, 

Zhao et al. 2007) 

However, one of the most important constraints in the use of association mapping in 

crop plants is the unidentified population sub structuring, which arises as a result of 

adaptation, genetic drift, domestication or selection (Thornberry et al. 2001; Wright 

and Gaut 2005). Spurious associations due to population structure may lead to false 

positive associations, if the cause of the correlation is not tight genetic linkage 

between polymorphic locus and the locus involved in the trait, but disproportional 

representation of the trait in one subpopulation. (Breseghello and Sorrells, 2006) 

As a consequence, when association mapping is used to identify genes responsible for 

quantitative variation in a group of accessions, there is enough evidence to 

acknowledge that confounding will be a significant problem, especially if the trait 

varies geographically, as is the case for example for flowering time (Thornsberry et 

al. 2001,Aranzana et al. 2005, Yu et al.2006). 

Several methods can be used to infer multiple levels of relatedness in a population 

(Ritland et al. 1996; Yu et al 2006). The STRUCTURE program uses a Bayesian 

approach to cluster accessions of a collection into populations on the basis of 

multilocus genotype data (Pritchard et al. 2000, Falush et al. 2003,2007). Designed 

statistical tests using PCA have also been used to check/monitor for the existence of 

population structure in a data set and for the number of significant principal 

component axes (Price et al. 2006, Reeves and Richards. 2009, Patterson et al.2006). 

Similarly, kinship coefficients approximate identity by descent between pairs of 

accessions. In several association studies information about population structure 

and/or kinship has been included into the general linear regression and mixed linear 

models (Pritchard et al, 2000b, Zhao et al. 2007, Yu et al. 2006, Malosetti et al. 2007). 

Results obtained in some studies suggest that the method that accounts both for sub-
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populations and kinship (also called the “QK method”) is the most appropriate for 

association mapping  (Yu et al. 2006). 

In the near future the rapid development of whole genome sequencing technology will 

present challenges in the statistical analysis of marker-trait associations of extremely 

large datasets with sequence data of core collections with hundreds of individuals. 

Under these conditions it is necessary to consider and validate association methods 

that can handle such aspects as the size of the experimental population and the quality 

and quantity of the phenotypic data. 

A very different statistical approach, which carries one or more advantages above 

most other methods, is the Random Forests (Breiman 2001). This is a tree-based 

method, that has been used for marker trait associations with human disease data, 

because it allows the ranking and selection among very large sets of predictor 

variables (markers) that best explain the phenotype (Lunetta et al. 2004, Yuanqing Ye 

et al. 2004). This method is computationally very fast, scale-free and makes no strong 

assumptions about the distribution of the data. For emerging types of datasets like i.e. 

metabolite profiling these issues are of particular relevance.  

Furthermore, the power to detect epistasis in moderately sized populations in general 

is low, while Random Forests can implicitly use interactions among regressor 

variables to predict the phenotype and can help identify multi-locus epistatic 

interactions (Jiang et al. 2009, Chen et al. 2007). 

Structure correction cannot be included in association studies with Random Forests, 

which could be a disadvantage for its use in plant systems. However, to avoid 

population structure specialized populations from multiple intercrosses are being 

developed in maize and Arabidopsis (Stich et al. 2009); in these cases and when 

population structure is not present the use of Random Forests as a marker-trait 

association approach is suitable. 

Brassica rapa is an important member of the Brassica genus and has been cultivated 

for many centuries across Europe expanding eventually to Central and East Asia. 

Subgroups like the leafy vegetables; turnips and oil types have arisen as a result of 

selection by plant breeders and adaptation to different geographic regions. Previously, 

in a collection of 160 B. rapa accessions association analysis with correction for 

population structure led to the identification of 27 markers, related to the variation in 

leaf and seed metabolites as well as morphological traits  (Zhao et al. 2007). 
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In the present study we consider the genetic association between markers and 

tocopherols, carotenoids, chlorophylls and folate in a core collection of 168 B. rapa 

accessions of different morphotypes and origin. We explore the results obtained with 

association methods that correct for kinship and population structure which mainly 

aim to reduce the rate of false-positive associations and in addition, we make use of 

Random Forests for comparison and as a complementary method to the commonly 

used association methods.  

 

 

Materials and methods 

Plant material 

The Brassica rapa core collection included a total of 168 accessions of diverse 

morphotype and origin: 137 accessions were obtained from CGN, CAAS-IVF and 

CAAS-OCRI genebanks and the Osborn Lab while 31 accessions were provided by 

six different breeding companies (Supplementary Table 1). For the metabolite 

profiling two plants per accession were sown in the greenhouse under the following 

conditions: 16 hours light and temperature fluctuation between 18 and 21°C. The 

plants were distributed over two tables in a randomized design with one plant per 

accession on each table. In the 5th week after transplanting the leaf material (youngest 

expanded leaves) was harvested per plant. Upon harvesting, all plant materials were 

snap-frozen in liquid nitrogen and ground into a fine powder using an IKA A11 

grinder cooled with liquid nitrogen. Frozen powders were stored at -70°C until 

analyses. DNA was extracted from the ground and frozen material with the DNAeasy 

kit (Qiagen, USA). 

 

Metabolite analyses 

Folate extraction and analysis   

From each frozen powder, 0.15 g was weighed and 1.8 ml of Na-acetate buffer 

containing 1% ascorbic acid and 20 !M DTT, pH 4.7, was added. After sonication for 

5 min and heating at 100°C for 10 min, total folate content of samples was quantified 

using a Lactobacillus casei–based microbiological assay, after enzymatic 

deconjugation for 4 h at 37°C pH 4.8, with human plasma as a source of !-glutamyl 

hydrolase activity (Sybesma et al. 2003). Each extract was assayed in 4-6 replicates 

using different dilutions. The total technical variation of this analysis was determined 
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using 7 replicate extractions from the same frozen powder of two different randomly 

chosen genotypes, and was 5.5% and 6.9%, respectively. 

 

 

 

HPLC analyses of lipid-soluble phytonutrients 

Extraction and analyses of carotenoids, tocopherols and chlorophylls were performed 

as described by Bino et al. (2005). In short, 0.5 g of FW of frozen powder was taken 

and extracted with methanol-chloroform-Tris buffer twice, the chloroform fraction 

was dried using nitrogen gas and taken up in 1 ml of ethylacetate. The 

chromatographic system consisted of a W600 pump system, a 996 PDA detector and 

a 2475 fluorescence detector (Waters Chromatography), and an YMC-Pack reverse-

phase C30 column (250 x 4.6 mm, particle size 5 !m) at 40°C was used to separate 

the compounds present in the extracts. Data were analyzed using Empower Pro 

software (Waters Chromatography). Quantification of compounds was based on 

calibration curves constructed from respective standards. The total technical variation 

was between 2 and 8 percent, depending on compound, as was established using 12 

extractions of the same frozen powder from a randomly chosen genotype.  

 

Genotypic data 

The AFLP procedure was performed as described by Vos et al. (1995). Total genomic 

DNA (200 ng) was digested with two restriction enzymes Pst I and Mse I and ligated 

to adaptors. Pre amplifications were performed in 20 µl volume of 1x PCR buffer, 

0.2mM dNTPs, 30ng of adaptor primer, 0.4 Taq polymerase and 5 µl of a 10x diluted 

restriction ligation mix, using 24 cycles of 94° C for 30s, 56° C for 30 s and 72° C for 

60s. Pre-amplifications products were used as template for selective amplification 

with three primer combinations (P23M48, P23M50 and P21M47).  

For the Myb family targeted profiling, total genomic DNA was digested using the 

following enzymes per reaction: Hae III, Rsa I, Alu I and Mse I and ligated to an 

adaptor. Pre amplifications with one primer directed to a common myb motif  (Dr. 

Gerard van der Linden, Wageningen UR Plant Breeding , unpublished results) and 

one adaptor primer were performed in 25 µl of 1X PCR buffer (with 15Mm MgCl2), 

0.2 mM dNTPs, 0.8 pMol Gene specific primer, 0.8 pMol Adapter primer, U Hotstar 



!"#$%&'()(

*+(

Taq polymerase (Qiagen) and 5 µl of a 10X diluted restriction ligation mix. 

Amplification products were used as template for selective amplification. 

For microsatellite (SSR) screening, 28 primers were selected for amplification in the 

accessions of  the core collection. From the primers 10 were genomic and 18 were 

new Est based SSRs (Dr. Ma RongCai, Dr Tang Jifeng, WUR-PBR,). The primers 

were selected because of their map position in different maps of B. rapa and 

distribution over all the linkage groups (A01-A10) (data not shown). 

AFLP and Myb profiling images were analyzed using Quantar Pro
TM

 software; marker 

data were scored as present (1) or absent (0) and treated as dominant markers.  

Microsatellites scores were converted to binary data per observed allele (fragment of 

defined size) as present (1) or absent (0) and were also treated as dominant markers. 

 

Assessment of population structure  

Marker data (AFLP, Myb, SSR) were used to identify the different subgroups and 

admixture within the accessions of the core collection through a model of Bayesian 

clustering for inferring population structure. 

To be included in this analysis the SSR alleles were scored as dominant markers 

yielding a total of 539 markers for the analysis, and ploidy was set to one. The 

number of subpopulations was determined using the software STRUCTURE 2.2 

(http://pritch.bsd.uchicago.edu/software), by varying the assumed number of 

subpopulations between one and ten, with a total of 300,000 iterations for Markov 

Chain Monte Carlo repetitions and 100,000 burn in. 

In addition, we also followed the procedure PCO-MC as described by Reeves et al. 

(2009), to assess population structure. The method uses principal coordinate analysis 

(PCO) and clustering methods to infer subgroups in the population.  We chose this 

method to complement the analysis performed by STRUCTURE because it is 

computationally efficient and model free, and has been shown to be capable of 

capturing subtle population structure (Reeves et al. 2009). We used software NTSYS 

version 2.2 (Rohlf 1998) to produce pairwise distances, among all accessions, based 

on the Jaccard measure. Principal coordinates were obtained based on the distance 

matrix as described by Reeves et al. (2009). Then procedure PROC MODECLUS in 

SAS (SAS 1997) was used to group the accessions into clusters according to kernel 

density estimates in the PCO space. Clusters were formed by decreasing order of the 

kernel densities, starting with the largest estimated kernel density (by setting 
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method=6 at proc modeclus). We performed a test to determine which clusters were 

significantly distinct from the rest, using PROC MODECLUS, and estimated stability 

values for the clusters using the PCO-MC software                                    

(http://lamar.colostate.edu/~reevesp/PCOMC/PCOMC.html). Both are described in 

Reeves et al (2009). The PCO plot of the first two components was drawn in DARwin 

software version 5.0.155 (Perrier et al. 2006). 

 

Summary statistics of metabolite variation  

Box plots were chosen as a tool to explore the variation of metabolite concentrations 

according to different STRUCTURE classes (Fig1). One-way ANOVA was 

performed for each metabolite to find the mean differences among the four 

STRUCTURE classes. The least significant differences (LSD) was calculated to 

compare the differences of means of metabolite content in all possible combinations 

of the four STRUCTURE classes. Box plots, ANOVA and LSD calculations were 

performed using R statistical software.  

 

Association analysis 

Association analysis was performed in several steps of increasing complexity, with 

and without correction for population structure (Yu et al. 2006) using TASSEL 

(www.maizegenetics.net). A total of 243 markers with an allelic frequency higher 

than 10% were included in the association analysis. Since AFLP and myb markers 

gave dominant marker scores and TASSEL works with co-dominant data, within 

TASSEL we set the ploidy to one to work with dominant scores as we had done with 

STRUCTURE. 

In the first step a “naïve” model was used to associate each marker to the trait, 

trait = marker + error         (1) 

This model was fitted by a least squares fixed effects linear model in TASSEL where 

the markers are considered as a factor taking the value 0 (fragment absent) or 1 

(fragment present). In this case a t-test could also have been used to test association 

since we only have two classes for the marker. In this “naïve” model population 

substructure was not taken into account. 

In the second step the vector of cluster memberships Q obtained from Structure was 

added as a fixed term to the previous model 

trait = marker + Q + error         (2) 
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In the third step we corrected for kinship using a linear mixed model available in 

Tassel. The model can be written as  

trait = genotype + marker + error        (3) 

Where random terms are underlined. Genotype is a random factor with the different 

genotypes or accessions in the population. Tassel calculates kinship coefficients 

which are used to model the covariance between the different accessions. We have 

VG=!
2
K; VG is the variance-covariance matrix of the random genotype effects, K is 

the matrix of kinship coefficients and !
2
 is the additive genetic variance. 

In the fourth and final step we correct for kinship as well as population structure using 

a linear mixed model that combines the information contained in the two previous 

models. It is also known as the Q+K method in the terminology of Yu et al. (2006). 

trait = genotype + Q + marker + error       (4) 

As before, genotype is a random factor, with covariances given by the kinship matrix 

K and Q is a fixed term containing the cluster memberships. The model is similar to 

those described in Yu et al.  (2006) and in Malosetti et al. (2007). Here we used the 

same set of AFLP, MYB and SSRs data to estimate both K and Q. The percentage of 

variation was also implemented in TASSEL and extracted from the output for further 

analysis and comparison. 

 

 

 

Correction for multiple testing 

The p-values resulting from the model that included kinship and population structure 

matrix association analysis were corrected for multiple testing using Storey and 

Tibshirani’s method (Storey and Tibshirani, 2003) as implemented in the R package 

“qvalue”. 

 

Random Forests  

Random Forests (RF) regression (Breiman, 2001) was used in this study to find the 

associated markers among the 243 marker set to the tocopherol, carotenoids, 

flavonoids and folate metabolites. This method uses both a boosting and bagging 

approach (Gislason et al. 2006) and yields importance measures for each marker in 

the regression of metabolites on the multivariate marker data. In this study, RF was 

performed using 5,000 regression trees for each analysis. Each tree is formed on a 
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bootstrap sample of the individuals, the training set, while individuals that are not in 

the bootstrap sample (out-of-bag samples = OOB), are used for estimation of the 

mean squared error of prediction. Within each regression tree, at each split of the tree, 

a random subset of the markers is considered as a candidate set of markers for a 

binary split among the set of individuals. In each split the samples are subdivided into 

two groups according to the marker that generates the ‘purest’ set of two groups 

according to the ratio of between and within group variance for the metabolite values.  

This procedure is fast and can handle high dimensional data (p >> n). Each tree is 

fully grown (unpruned) to obtain low-bias, high variance (before averaging) and low 

correlation among trees. Finally, RF averages are calculated over all the trees and this 

results in low-bias and low variance of predictions of the trait based on the markers 

used in the Random Forests (Svetnik et al. 2003). This method has an internal cross-

validation (using the OOB samples) and has only a few tuning parameters which, if 

chosen reasonably, do not change results strongly (Gislason et al. 2006). 

The parameter “mtry”, which indicates the number of random variables considered at 

each split node, was optimized by choosing the “mtry” with the highest percentage of 

explained variation among separate RF analyses done on “mtry” values 3, 6, 12, 24, 

48 and 96 successively on the same data set.  The variance explained in RF is defined 

as 1-(Mean square error (MSE) / Variance of response), where MSE is the sum of 

squared residuals on the OOB samples divided by the OOB sample size (Pang et al. 

2006). The “mean decrease in MSE” (InMSE) was considered to quantify the 

importance of each marker. The higher the “InMSE” value of the marker, the greater 

the increase in explained variation when it is included in the model. 

However, RF yields only the relative importance of markers that explain the variation 

present in metabolites, but does not give a significance threshold level to choose a 

possible subset of associated markers. Therefore, a permutation method was used to 

calculate the significance of each marker association in this study. All the 

observations of a metabolite (the response in the regression) were permuted 1000 

times. For each metabolite, 1000 values for the increase in MSE of every marker were 

stored from RF regression analyses conducted for each permuted data set for a 

metabolite. The stored values for increase in MSE were ranked in ascending order. 

The ranks from 1 to 1000 for the observed incMSE values then can be used as the 

quantiles (0.001 to 1) of a “null distribution” for the incMSE values of each separate 
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marker For each marker the 0.95-quantile of the incMSE values of that marker from 

the permutations per metabolite was used as the threshold for significance. 

RF regressions of metabolites on markers were conducted by using the “Random 

Forest” package of the R-software (Breiman et al. 2005).  

 

Network visualization of metabolite and marker correlation 

A network is an extended graph, which contains additional information on the vertices 

and edges of the graph (de Nooy et al. 2005). In the marker-metabolite network, the 

vertices are the metabolites, in this case tocopherols, carotenoids, chlorophylls and 

folate, and associated markers. The edges correspond to metabolite-metabolite 

correlations and marker-metabolite correlations based on a predefined significance 

threshold p<0.05.In the present study we used correlation networks for the 

visualization of within and between pathway interactions through unique and shared 

significant markers .The network was constructed using the Pajek graph drawing 

software (Batagelj and Mrvar 2003)  

 

 

Results 

Principal coordinates analysis (PCO) and population structure of the core collection 

The genetic population structure of 168 accessions was inferred using 553 markers 

(AFLP, Myb and SSR polymorphic bands). The Bayesian clustering method as 

implemented in STRUCTURE revealed 4 subpopulations. Population 1 included oil 

types of Indian origin, spring oil (SO), yellow sarson (YS) and rapid cycling (RC): 

(SO, YS and RC); population 2 included several types from Asian origins: pak choi 

(PC), winter oil, mizuna, mibuna, komasuna, turnip green, oil rape and Asian turnip 

(PC+T); population 3 included mainly accessions of Chinese cabbage (CC) and 

population 4 included mostly vegetable turnip (VT), fodder turnip (FT) and brocoletto 

accessions from European origin (VT+FT) (Figure 1B). 
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Figure 1.Principal components analysis(A) and STRUCTURE(B) results. Colors define supopulations: 

red (oil: Population 1), green(PC+T:population 2),blue(CC: population 3) and yellow(VT+FT: 

population 4)  

 

Of the 168 accessions, 109 were assigned to a subgroup with a membership 

probability of p>0.70. Fifty-nine accessions were assigned to more that one subgroup 

and had membership probabilities below 0.7 corresponding to several subgroups 

(Supplementary Table 1). 

The PCO-MC method, which couples principal coordinate analysis to a clustering 

procedure for the inference of population structure from multi-locus genotype data, 

only showed one small distinct, statistically significant cluster, corresponding to oil 

types of Indian origin (Figure 1A). The first two axes accounted for 12.27% and 

8.21% of the total variation in the marker data.  
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Metabolite variation  

To estimate the variation within and between the different Brassica morphotypes, 

boxplots were constructed based on the total content value per metabolite for each 

subgroup as defined by STRUCTURE (Figure 2). Visual inspection of the box plots 

and the analysis of the significant differences between groups (LSD) showed a 

significant variation in the amount of most of the carotenoids and folate between the 

four population subgroups.  Conversely, the content of chorophyll b and lutein was 

significantly different between few subgroups and the content of tocopherols was just 

significantly different between the Chinese cabbage (CC) subgroup 3 compared to the 

other subgroups (Supplementary Table 2). 
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Association analysis 

Using linear and linear mixed models 

Because many of the phenotypic trait values showed a distribution highly correlated 

to the underlying population structure it was expected that the number of significant 

markers associated varied greatly between the different metabolites and analysis 

methods as shown in Table 1.  

 

 

Table 1.Association mapping result for the different linear models and Random forests (RF).Numbers 

indicate significant markers (P<0.05) found per metabolite. 

 

To test for marker-trait associations in our data we first applied an approach that did 

not include any correction for the level of relatedness or structure between accessions 

(model 1). As a result the number of significant markers found as associated to a 

specific metabolite was strongly inflated and ranged from 39 to 115 per metabolite. 

The highest number of significant markers (>100) was found for !-carotene, 

neoxanthin, violaxanthin and folate; these metabolites also showed the greatest 

variation in content between subgroups.   

To account for the level of relatedness between individuals and to reduce confounding 

by population structure, we included the kinship correction (K matrix) in model 3. 

However, with the inclusion of this correction the number of significantly associated 

markers remained high (41-110). Interestingly, the results of these two models are 

highly similar not only in number but also in the identity of the significant markers for 

each metabolite . 

In addition to the K matrix we introduced the STRUCTURE Q matrix as a correction. 

After accounting for population structure in model (2) the number of significant 

markers found per metabolite was substantially reduced. Although in many cases the 

number of significant markers was reduced by more than 50%, this drop down was as 

strong for the metabolites with subpopulation variation (carotenoids and folate) as for 

the tocopherols, which showed significant variation only between the CC subgroup 

and the other subgroups.   
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Furthermore, when we combined the information from the Q matrix and the K matrix 

in the full model 4, following the approach of Yu et al. 2006, the performance is 

comparable to model 2, which includes the Q matrix only in both the obtained number 

of associations and the identity of associated markers. 

After correcting for multiple testing only eight markers remained significantly 

associated withmetabolites: Alu_M476_0, pTAmCAC_148_3, Hae_M294_2, 

pGGmCAA_335_2 and pTAmCAT_312_3 for !-carotene; Alu_M476_0 for 

neoxanthin; pTAmCAC_101_7 and pTAmCAC_270_9 for violaxanthin and 

pGGmCAA_335_2 and pGGmCAA_386_7 for folate. Each of these markers 

explained between 4.3% and 6.3 % of the metabolites phenotypic variation  

To summarize the results obtained from the full model 4, we constructed a network 

with a total of 102 significant associated markers associated to the metabolites 

(P<0.05). This network allowed us to connect the metabolites of similar pathways 

through markers (Figure 3). 

 

 

Figure 3. Network of metabolite and marker Association for model 4. Carotenoids (light blue), 

tocopherols (green), chlorophylls (yellow) and folate (black).Markers box color indicate association to 

one metabolite (orange), to more than one metabolite(blue) and significant q-value(red). 
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The overlap of associated markers between all the pathways (carotenoids, 

tocopherols, chlorophylls and folate) was very limited as expected if we consider that 

biochemically different precursors are involved. We found only one marker that was 

significantly associated to all the four pathways. The overlap between pathways was 

restricted to nine markers associated with both tocopherols and carotenoids, five with 

tocopherols and chlorophylls, nine with chlorophylls and folate, ten with both 

carotenoids and folate and one with both tocopherols and folate. However, the largest 

overlap was found between markers associated with both carotenoids and the 

chlorophylls with a total of 37 markers found as significant in both pathways. Within 

pathways the overlap between individual metabolites of the pathway varied as 

follows: in the carotenoids the largest number of common markers (18) was found 

between lutein and neoxanthin, in the tocopherols the largest number (six) was found 

between !- and " tocopherols and the chlorophylls a and b share four markers (data 

not shown). 

 

 

Random Forests 

In spite of not considering any correction for population structure in the Random 

Forests association approach we decided to evaluate its performance in comparison to 

the simple model (1), which does not include any correction, and the full model, 

which includes the Q and K matrix correction (4). The number of associated markers 

with significance level of p< 0.05 per metabolite ranged between metabolites from 

eight for lutein and chlorophyll a to 21 for !-tocopherol. Interestingly, the results 

showed that the number of significant markers obtained with the RF approach was 

much lower for all the metabolites if compared to the simple model (1). 

However, in the Random Forests we used a rather conservative approach to calculate 

the markers p-values, which in turn resulted in a low number of significant markers 

for all the metabolites (see material and methods). Nonetheless, the overlap of 

significant markers between methods is large; with few exceptions the significant 

markers found with RF were also significant in the simple model (1). For example, a 

complete overlap was found for #-carotene, neoxanthin and violaxanthin, while a 
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lower overlap was found for ! tocopherol; 12 markers were identified with RF out of 

the 17 that were significant in the simple model (1) (Table 1). 

In contrast, when the results obtained with Random Forests are compared to the 

results obtained with the full model (4) the overlap between associated markers 

obtained through both methods was very low and ranged from one out of nine for !-

tocopherol to seven out of 15 for "-carotene. 

 

Marker-trait Associations across methods 

To compile a list of plausible strong associations for future research we compared the 

markers found as significant p<0.05 with RF to the markers found as significant with 

all the linear models (1-4) (Supplementary Table 3). If a marker was found as 

significant across methods it was considered as a strong metabolite-marker 

association; in total we found 34 associations, which represent 16 markers that met 

this criteria. Interestingly, we found at least one marker per metabolite in common 

across all the association mapping methods, from one for ! tocopherol to seven for "-

carotene. Furthermore, from these markers many were also common between 

metabolites from the same pathway but not between metabolites from different 

pathways.  For example, marker pTAmCAC_244_2 was found significant for all the 

tocopherols except "-tocopherol but was not found significant associated with the 

carotenoids, chlorophylls or folate, while marker pTAmCAC_148_3 was found as 

significant for all the carotenoids and chlorophylls except chlorophyll a but was not 

found as significant for the tocopherols or folate. 

 

Discussion 

An important consideration for the use of association mapping in crop plants is the 

presence of population structure. If a group of diverse accessions is chosen for this 

type of studies the risk exists that some of the accessions are more closely related to 

each other than the average pair of individuals taken at random in a population 

(Breseghello and Sorrells, 2006).  

B. rapa crop types are the result of different breeding histories around the world.  In 

our study we identified with STRUCTURE the presence of 4 subpopulations, which 

showed correlation with the origin and morphotypes of B. rapa.  These groups 

possibly arose as a result of different patterns of adaptation, domestication and 
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background selection (Thornberry et al. 2001, Wright and Gaut 2005, Zhao et al. 

2005). 

An alternative method to the STRUCTURE Q matrix, which has been used to capture 

the genome wide patterns of relatedness between accessions, is the principal 

coordinates analysis (PCO) loading results. In our study, after PCO the evidence for 

the presence of subgroups was not as clear when compared to the results obtained 

with STRUCTURE.  Furthermore, when the first two components are plotted, the 

PCO only captured 20% of the variation. Results from both the STRUCTURE 

membership probabilities and PCO analysis illustrate the highly admixed nature of the 

accessions in this B. rapa core collection. 

In practice, the PCO analysis as reported in Reeves et al. (2009) was computationally 

much more laborious and less successful to assign the highly heterogeneous B. rapa 

accessions into subgroups. Based on the above, the inclusion of the principal 

components loadings into the association model was not considered within the scope 

of this research. 

To reveal the marker-metabolite associations we applied four linear models and 

explored the impact of the different levels of relatedness between accessions on the 

results. We included either the results from STRUCTURE (model 2), kinship 

coefficients (model 3) or both (model 4) in the association models.  

Correcting for the level of relatedness (Kinship and/or Q matrix) resulted in a 

significant reduction in the number of marker-trait associations as shown in the 

number differences between model (1) and model (2) and (4). Although there was 

always overlap between the markers identified in these models, comparisons revealed 

that new associations arise when the Q matrix (model 2) and the Q matrix together 

with the K matrix (model 4) were introduced in the model. 

After correction with the inclusion of the kinship matrix in model (3) the reduction in 

the number of markers was not evident. Explanation can be found in the fact that the 

K matrix does not capture large differences between subpopulations (as defined by 

STRUCTURE) because the within population variation is larger than the between 

population variation (Pino Del Carpio et al. chapter 2, Zhao et al. 2005). 

In terms of how these methods performed reducing the false positive rates to 

distinguish causal from spurious signals, we observed that metabolites with a 

distribution highly correlated to the underlying population structure, like for example 

the carotenoids, still retained the highest number of associated markers overall the 
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statistical models. As a result, in spite of introducing a correcting term in our models 

we still expect a rate of false positives within this list of significant markers. Even in 

association studies with Arabidopsis inbred lines it is difficult to distinguish true 

associations from false ones because of confounding by complex genetics and 

population structure (Atwell et al. 2010). 

Within our results we decided to analyze further the significant markers obtained with 

the full model (4), which included the K and Q matrix in order to reveal the existence 

of different levels of genetic co-regulation of the metabolites.   

For example we observed that common markers could be found between and within 

pathways (carotenoids, tocopherols, chlorophylls and folate). The high number of 

common markers that were found between carotenoids and chlorophylls confirmed 

biological regulatory and biochemical expectations. Both are derivatives of the central 

intermediate geranylgeranyl diphosphate (GGDP) used for the synthesis of phytoene 

and chlorophylls. We hypothesize that these compounds could be under pleiotropic 

effect or under the control of genes in close linkage because of their association to the 

same marker Alu_476_0, a marker that stays significant after multiple testing 

correction (q-value). 

In the present study we considered the use of Random Forests (RF) as a 

complementary method to our association study. Because the performance of this 

method in association analysis has not been previously tested in plant systems, we 

first evaluated our RF results in comparison to the ones obtained with the already 

validated and widely used model (4) and the simple model (1). One reason to include 

the Random Forests approach in the present study is that although population 

structure methods correct for confounding these are underpowered because of the 

small sample size. One striking result of the RF analysis is the small number of 

associated markers that are found for all the metabolites. In general RF yields only the 

relative importance of markers that explain the variation present in metabolites, but 

does not give a significance threshold level to select a subset of associated markers. 

Therefore, to be more accurate in our selection and to be fair in our comparison, we 

introduced a permutation method to calculate the significance of each marker 

association in this study. However, this calculation proved to be very stringent in the 

number of selected significant markers if compared to the numbers obtained with the 

linear models (1-4). 
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For the selection of true strong associations we compiled markers, which are 

consistently found as significant across all methods, including Random Forest. 

(Supplementary Table 3).   

The importance of these results is confirmed for example in the case of the marker 

pTAmCAC_244_2 which was found as associated to !-, "- and #-tocopherol, 

pTAmCAC_148_3 found as associated to lutein, $-carotene, neoxanthin, violaxanthin 

and chlorophyll b; and pTAmCAC_101_7 found as associated to violaxanthin. The 

QTL mapping results from a double haploid population show the existence of 

overlapping QTLs for $-carotene, lutein, chlorophyll b and neoxanthin in the region 

where the marker pTAmCAC_148_3 is located. In this genomic region of 

chromosome A03 the genes %-cyclase, !-carotene hydroxylase and carotenoid 

isomerase can be named as potential candidates as identified based on synteny with 

Arabidopsis (Schranz et al 2006). For markers pTAmCAC_244_2 located on 

chromosome A10 and pTAmCAC_101_7 located on chromosome A06, no QTL have 

been reported for the metabolites included in our study. This result is not unexpected 

since with QTL mapping we only measure the effects of parental alleles, while in a 

core collection many alleles are represented. However, their genomic location points 

towards syntenic regions for the candidate genes Phytoene desaturase 1 for the 

tocopherols and Zeaxanthin epoxidase for violaxanthin respectively  (data not shown). 

In this study we have identified several markers that can be applied to screen B. rapa 

collections or breeding populations to identify genotypes with elevated levels of 

important metabolites that are considered as healthy compounds. While further 

validation of these markers for marker assisted selection in B. rapa is needed, at least 

the eight markers that are kept as significant after multiple testing correction (q-value) 

of the model (4) results and the 16 markers selected across methods should be 

considered as the most promising candidates for further work.  

At present we are in the process of expanding the core collection so that association 

mapping within the four subpopulations becomes feasible and to increase the power 

of the statistical analysis. We consider that the results obtained with Random Forests 

when compared to model (1) can be promising for its use in association studies to 

identify significant markers within subpopulations or marker-associations for traits 

with a distribution that is not correlated to the underlying population structure.  
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In an attempt to separate true from spurious associations and/or false negatives in 

future association studies using the present core collection we will follow a similar 

approach, which takes into account the level of relatedness between individuals (Q) 

and the use of Random Forests. 
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Chapter 4 

Association mapping reveals a role for MAM-genes and 

Myb28 on A03 in the regulation of aliphatic glucosinolate 

levels in leaves of Brassica rapa 

 

Dunia Pino Del Carpio, Mina Jin, Xiaowu Wang, Maria Joao Paulo, Richard GF 

Visser, Guusje Bonnema 

 

Abstract 

The present study was set up to determine the role of MAM and Myb28 in the 

regulation of aliphatic glucosinolate levels and composition in Brassica rapa. These 

genes were identified as the candidate genes mapping under a previously detected 

major QTL for glucosinolates. Multi allelic microsatellites markers linked to these 

genes were developed to sample the allelic variation around these loci. In addition, 

SSRs were developed to span the whole A03 chromosome to identify additional 

regions that could be involved in glucosinolate biosynthesis. The SSR markers were 

profiled over a core collection of 168 accessions, and glucosinolate composition of 6 

weeks old leaf material was measured. Association mapping was conducted taking 

into account the relatedness among accessions because of the presence of population 

structure in this collection and since the glucosinolate levels and profile varied 

between subpopulations.  Interestingly, not only MAM and Myb28, but also additional 

genes (AOP and GS-OH) involved in side chain modification and transcriptional 

regulation (Myb29) were associated with glucosinolates levels. This illustrates the 

power of combining QTL and association mapping, with the latter revealing 

additional allelic variation that segregates in the core collection. Furthermore, a very 

important observation was the significant reductions in allelic variation around genes 

associated with glucosinolates regulation in comparison with other positions in A03, 

illustrating that plant breeding changed genomic patterns of linkage through selection.  
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Introduction 

Glucosinolates are secondary metabolites, which are limited to species of the order 

Brassicales, which include Brassicas of economic and nutritional importance and the 

model plant Arabidopsis thaliana (Fahey et al 2001, Wittstock et al 2002). Although 

certain glucosinolate derivatives have antinutritional properties (Fahey et al. 2001, 

Mithen et al. 2000), several studies have shown that others, like methionine-derived 

isothiocyanates can offer protection against cancer (Talalay & Fahey" 2001, Zickute et 

al. 2005, Moore et al. 2007, Traka et al 2008). Additionally, studies have shown the 

existence of a relationship between glucosinolates and flavour and to insect resistance 

(Baik et al. 2003, Fenwick et al. 1983, Poelman et al. 2009) 

The biosynthesis of glucosinolates proceeds in three stages: side-chain elongation for 

the methionine and phenylalanine derived glucosinolates, development of the core 

structure from these glucosinolates, and secondary side-chain modification. 

In Brassica rapa the study of the variation on the glucosinolate content has largely 

been focused on the profiling of the diversity of these compounds in specific 

morphological types or regional varieties but not with the goal to identify genes with 

regulatory functions (Padilla et al. 2007). 

In a previous QTL study in B. rapa for glucosinolate variation in leaves, Lou et al. 

(2008) showed the presence of a major QTL for content of a number of aliphatic 

glucosinolates on linkage group A03 in a double haploid population of a cross 

between a yellow sarson and a pak choi accession. A major QTL at this position was 

also reported by the group of Dr. Wang Xiaowu  (IVF-CAAS, Beijing, personal 

information). 

Based on Arabidopsis-Brassica synteny and knowledge of genes involved in aliphatic 

glucosinolate biosynthesis in Arabidopsis, several candidate genes explaining the 

QTL can be proposed, like MAM and Myb28 for the major QTL and AOP for the 

minor QTL also on A03. 

In Arabidopsis three partially redundant MAM (methylthioalkylmalate) genes control 

the variation in side chain length of methionine-derived glucosinolates (Field et al. 

2004,Kroymann et al.2003, 2001). Two !-ketoglutarate-dependent dioxygenases 

encoded by the tightly linked and duplicated AOP2 and AOP3 genes, control 

production of alkenyl and hydroxyalkyl glucosinolates, respectively (Kliebenstein et 

al. 2001b). In addition, transcription factors like HAG1/MYB28, HAG2/MYB76 and 
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HAG3/MYB29 have been shown to be positive regulators of aliphatic glucosinolate 

biosynthesis (Gigolashvili et al. 2007, 2008). 

In general, the number of QTL one can map for a given trait is limited to allelic 

differences between parents of a cross. However, the number of potential QTL 

underlying the trait depends on the degree to which the mapping population captures 

the total genetic diversity available in nature (Zhu et al. 2008). Population or 

association mapping exploits both the allelic diversity and all of the recombination 

events that have occurred in the evolutionary history of a collection of individuals, 

such as those derived from wild populations, germplasm collections or subsets of 

breeding lines. As a consequence for identification of genes within a large genomic 

region, higher mapping resolution could be obtained in studies with natural 

populations than with bi-parental experimental crosses (Flint Garcia et al. 2005).  

In the present study we investigated the variation in the content and structure of 

glucosinolates (GLS) in a core collection of 168 accessions of diverse morphotype 

and origin with the ultimate goal to unravel the genetics of the glucosinolate 

biosynthetic pathway in B. rapa. SSR markers with defined physical distance from 

the candidate genes MAM and Myb28 for the major QTL on A03 were developed 

using sequences from BACs and contigs containing these genes.  Comparative 

genomic information with Arabidopsis and sequence information of B. rapa revealed 

the presence of additional genes on A03 involved in glucosinolate biosynthesis, like 

AOP, GS-OH and Myb29.  The SSRs linked to MAM and Myb28 plus SSR markers 

covering different positions across the A03 genetic map were profiled over the core 

collection. We followed an association mapping approach to verify the role of MAM 

and Myb28 in the regulation of glucosinolate composition and to identify additional 

genes/loci that regulate this pathway in B.rapa. In the analyses, the level of 

relatedness of the accessions from the core collection was taken into account with the 

inclusion of the Q matrix into the statistical model (Yu et al. 2006, Zhao et al. 2007). 

Furthermore, we investigated the level of variability of the SSR markers across 

linkage group A03 in comparison to the whole genome in the different sub 

populations to reveal whether breeding did change linkage patterns because of 

selection.  
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Materials and Methods 

Selection of plant material and experimental design 

The core collection included a total of 168 accessions representing the different 

morphotypes and geographic origin of Brassica rapa (Table S1).  The core collection 

included 132 accessions that were part of the study of Zhao et al. (2005). From the 

168 accessions, 137 were obtained from the Dutch Crop Genetic Resources Center 

(CGN) in Wageningen, the Chinese Academy of Agricultural Sciences (CAAS)-

Institute for Vegetable and Flowers (IVF) and the Oil Crop Research Institute (OCRI) 

and the Osborn Lab, while breeding companies provided 31 accessions (hybrid 

varieties and breeding lines). For the metabolite profiling two plants per accession 

were sown in the greenhouse in September 2006 and September 2007 under the 

following conditions: 16 hrs light and temperature between 18 and 21C°. The plants 

were distributed over two tables in a randomized design with one plant per accession 

on each table. In the 5th week after transplanting, the leaf material (youngest 

expanded leaves) was harvested from one plant per accession and directly frozen in 

liquid nitrogen, ground and stored at -70 C°. 

DNA was extracted from the ground and frozen material, from the same plant 

selected for metabolite profiling, with the DNAeasy kit (Qiagen, USA). 

 

LC-MS profiling of glucosinolates 

Brassica leaf samples were analyzed for glucosinolates using accurate mass LC-

QTOF MS, based on the protocol described in De Vos et al. 2007. In short, 500 mg 

FW of frozen leaf powder was weighed and extracted with 1500 !l of 99.875% 

methanol containing 0.125% formic acid. Samples were sonicated for 15 min and 

then filtered (Captiva 0.45 !m PTFE filter plate, Ansys Technologies) into 96-well 

plates with 700!l glass inserts (Waters) using a TECAN Genesis Workstation 

equipped with a 4-channel pipetting robot and a TeVacS 96-wells filtration unit. Per 

96-wells plate, 6 quality control samples, consisting of repeated extractions from 

Chinese Cabbage-068 were included to check for total technical variation, including 

variation due to extraction, metabolite stability and MS sensitivity. Extracts (5 !l) 

were injected using an Alliance 2795 HT instrument (Waters), separated on a 

Phenomenex Luna C18 (2) column (2.0x 150 mm, 3 mm particle size) using a 45 

minutes 5-35% acetonitrile gradient in water (both acidified with 0.1% formic acid) 
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and then detected firstly by a photodiode array detector (Waters 2996) at a 

wavelength range of 220-600nm and secondly by a Waters-Micromass QTOF Ultima 

MS with negative electrospray ionization at a mass range of m/z 80-1500. Leucine 

enkaphalin was used as lock mass for on-line mass calibration. Masslynx software 

(Waters) was used to control instruments and to process raw data. Peak areas of exact 

masses corresponding within 5 ppm to known Brassica glucosinolates 

(http://kanaya.naist.jp/knapsack_jsp/top.html) or as identified in previous LC-QTOF 

MS Arabidopsis metabolomics experiments (Beekwilder et al. 2008) were integrated 

using the Quantlyx tool of Masslynx, and used directly in the subsequent data 

analyses. Variation in relative glucosinolate level between technical replicates varied 

between 7 and 50%, depending upon peak intensity of the compound. 

 

For the association analysis we included individual values of the glucosinolates and 

total values for glucosinolate content based on the side chain length: tot3C, tot4C, 

tot5C, tot6C, tot7C and tot8C. Moreover, ratios comparing the amount of 

glucosinolates with different chain lengths: R3=(C4+C5+C6+C7+C8)/C3, 

R4=(C5+C6+C7+C8)/C4, R5=(C6+C7+C8)/C5, R6=(C7+C8)/C6, R7=C8/C7 were 

calculated in an attempt to find association between these values and markers linked 

to side chain elongation. Additionally, to identify markers with association to the 

values of alkenyl glucosinolates and side chain modification, we calculated the values 

for total alkenyl glucosinolates (totALK= 2Pr+3B+4P); and the ratios for 

hydroxylation: rat1=2H3B/2H3B+3B, rat2=H4P/H4P+4P and for the ratio of S-

oxiginated to alkenyl glucosinolates: rat3=3B/3B+4MSB and rat4=4B/4B+MSP. 

 

Microsatellite profiling 

We selected BACs along linkage group A03 to be screened for the presence of 

microsatellites (SSRs). Out of the total 37 SSR 15 were provided by Mina Jin (Korea) 

(KS 1-15) which have a random position on A03.   Eleven microsatellites were 

designed because they are linked to candidate genes for glucosinolate biosynthesis 

(MAM, Myb28, Myb29) and 11 newly designed primers were also randomly 

distributed along the linkage group (WUR 1-11) The BAC sequences targeting Myb28 

and Myb29 were obtained from Korea (Mina Jin) and the contig sequence containing 

the triplicated MAM gene was obtained from China (Dr. Xiaowu Wang, IVF Caas, 
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Beijing; personal communication). Physical and genetic position (if known) of most 

of the markers is shown in Table 1. 

PCR amplifications were carried out as follows: in a total volume of 10 ul, the mix 

included 1 unit of Taq DNA polymerase, 5mM of dNTP, 2.5 ul 10x supertaq buffer 

and 50 ng of each primer.Final concentration of DNA in the PCR reaction was of 

2ng.The PCR was performed on a GeneAmp PCR system 9700 (Applied Bio-system 

with the following program : 94 C for 2 min,35 cycles with 94 C denaturation for 30 

sec, 56 C annealing for 1 min and 72 C elongation for 1 min each step, and then a 

final elongation step 0f 5 min. 

Table 1.List of microsatellites 

profiled over the core collection. 

Indicated are the corresponding BAC 

name and marker KS (korea marker 

information),WUR (newly designed 

with sequence information),BAC 

(marker linked to candidate gene).The 

asterisk (*) indicates markers with 

known physical position at a BAC or 

contig.Map position correspond to 

genetic maps developed in Korea as 

reference the sequencing project. 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assessment of population structure  

Marker data (AFLP, Myb, SSR) were used to identify the different subgroups and 

admixture within the accessions of the core collection through a model of Bayesian 
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clustering for inferring population structure. The Bayesian clustering method as 

implemented in STRUCTURE revealed 4 subpopulations. Population 1, includes 

mostly vegetable turnip (VT) and fodder turnip (FT) from European origin and 

broccoletto accessions: (VT+FT); population 2, includes several types: pak choi, (PC) 

winter oil, mizuna, mibuna, komatsuna, turnip green, oil rape and Asian turnip (T): 

(PC+T); population 3, includes annual oil type accessions,spring oil (SO), yellow 

sarson(YS) and rapid cycling (RC): (SO, YS and RC) and population 4 includes, 

mainly accessions of Chinese cabbage (CC) 

Assessment of genetic diversity 

Power Marker V3.0 software was used to estimate polymorphism information content 

(PIC) according to the following equation:(Botsein et al.1980): 

  

where pi is the frequency of the ith allele, and n is the number of alleles (Botsein et al. 

1980). According to Botstein et al. (1980) a marker is highly informative if its PIC is 

greater than 0.5. Additionally the allelic frequencies were estimated using Power 

Marker V3.0 software. All the genetic diversity calculations were performed with 

defined subpopulations as described under population structure: population 1 

(VT+FT), population 2: (PC+T), population 3:  (YS+SO+RC) and population 4: 

(CC). 

Arlequin 3.11 software was used to perform a hierarchical analysis of molecular 

variance (AMOVA) (Excoffier et al. 2005) locus by locus, using 1000 permutations 

and the number of different alleles (FST-like). A distance matrix was also computed. 

Data conversion for Arlequin was done in SPAGeDi and Genepop web application 

(http://genepop.curtin.edu.au/). F statistics values  were computed according to Weir 

and Cockerham 1984, to quantify the extent of between-within population 

differentiation. (FCT: between populations, FSC: within population). Fst values equal 

0 when subpopulations are identical in allele frequencies and 1 when they have 

different alleles. Populations with little divergence have Fst values less than 0.05, 

moderately differentiated populations have values between 0.05 and 0.15, greatly 

differentiated populations have values between 0.15 and 0.25 and very greatly 



Chapter 4 

! 82 

differentiated populations have values greater than 0.25 (Hartl et al. 1997; 

Mohammadi et al. 2003). 

 

Association mapping 

For the association analysis we included microsatellite markers with alleles that 

showed a frequency higher than 10% and lower than 90% over the 168 accessions. 

The selection of markers based on these criteria resulted in 95 alleles (Table 4), 

corresponding to 33 microsatellite marker loci that were tested for marker-trait 

associations.  

A General Linear Model (GLM) as implemented in TASSEL v2.01 software was used 

for the marker-trait associations. The GLM performs association analysis by a least 

squares fixed effects linear model (Searle 1987), while also accounting for population 

structure. 

The membership probabilility of each accession was calculated in STRUCTURE as 

reported previously (Chapter 3).   The vector of cluster memberships Q obtained from 

STRUCTURE was added as a fixed term to the model: 

trait = marker + Q + error    

A value of 5,000 was set in the parameters for the permutation test (Churchill and 

Doerge 1994) in order to provide a test of significance that corresponds to the 

experiment-wise error in order to correct for the fact that multiple comparisons are 

being made. Marker-trait association was considered significant when the marker 

allele had a main effect P-value <0.05. 

 

Results 

Glucosinolate composition between morpho-groups 

A total of 22 glucosinolates could be identified from a whole LC-MS profiling data 

set of B.rapa leaves. The results included twelve aliphatic glucosinolates of 3C (2-

propenyl), 4C(3-butenyl, 2-hydroxybut-3-enyl, 4-methylsulfinylbutyl, 4-

methylthiobutyl, 

methsulphonylbutyl), 5C (4-pentenyl, hydroxypentenyl, methylsulfinyl pentyl), 6C 

(hexyl), 7C (heptyl) and 8C (8-methylsulfinyloctyl); three Indolic glucosinolates (4-

methoxyindol-3-ylmethyl, 1-methoxyindol-3-ylmethyl and indol-3-ylmethy) and one 
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aromatic glucosinolate (2-phenethyl). The common names, abbreviations, scientific 

names and descriptions are shown in Supplementary Table 1. 

The identification was based on information obtained from Brassica glucosinolates 

(http://kanaya.naist.jp/knapsack_jsp/top.html) and from glucosinolates that were 

identified in previous LC-QTOF MS Arabidopsis metabolomics experiments 

(Beekwilder et al. 2008). We can however not exclude the possibility that we missed 

glucosinolates, since this analysis was limited to the ones that could be identified. 

The highest detection signal over all the glucosinolates was found for 3-butenyl 

(gluconapin), and this was so across morphotypes.  

We used the variation found in the core collection for classification of the accessions. 

Three different clusters of glucosinolates can be identified based on the variation 

pattern of the glucosinolate content among accessions, using the log2-transformed 

values of the LC-MS signals of the identified glucosinolates (Figure 1).  

The first group contains the aliphatic glucosinolates 8-methylsulfinyloctyl 

(glucohirsutin I,II,III) isomers and 4-methylthiobutyl (glucoerucin) , the second group 

contains the aliphatic glucosinolates : 3-butenyl (gluconapin) , 4-pentenyl 

(glucobrassicanapin), 2-hydroxybut-3-enyl (progoitrin) and methylsulfinyl pentyl 

(glucoalyssin),  the indole glucosinolates 1-methoxyindol-3-ylmethyl 

(neoglucobrassicin)  and indol-3-ylmethyl (glucobrassicin)  and the aromatic 

glucosinolate 2-phenylethyl (gluconasturtiin); the third group contains the aliphatic 

glucosinolates hydroxypentenyl, methsulphonylbutyl, 2-propenyl (sinigrin), 4-

methylsulfinyl butyl (glucoraphanin) and isomers of  hexyl (I,II,III) and heptyl  

(I,II,III) and the indole glucosinolate 4-Methoxyindol-3-ylmethyl 

(methglucobrassicin). 

 

 

Figure 1.Hierarchical cluster of glucosinolate variation in a core collection of 168 accessions.Table indicate 

corresponding names and abbreviations, * isomere.(M1) 4-methylsulfinyl butyl, (M2) prop-2-enyl , (M3) 2-

hydroxybut-3-enyl, (M4) methylsulfinyl pentyl, (M5) hydroxypentenyl, (M6) but-3-enyl, (M7) 

methsulphonylbutyl, (M8) pent-4-enyl, (M9) 4-methylthiobutyl,(M10)indol-3-ylmethyl, (M11) 8-

methylsulfinyloctyl  *, (M12) 2-phenylethyl,  (M13) 8-methylsulfinyloctyl  *,(M14) hexyl*, (M15) hexyl*, (M16) 

hexyl*, (M17) heptyl*,(M18) heptyl*,(M19) heptyl*, (M20) 8-methylsulfinyloctyl*, (M21) 4-Methoxyindol-3-

ylmethyl, (M22) 1-methoxyindol-3-ylmethyl.!
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The largest differences among accessions were observed for the isomers of the long 

chained aliphatic glucosinolates, heptyl (I,II,III) and hexyl (I,II,III). The different 

glucohirsutin isomers and glucoerucin had the highest number of observations with 

values below the LC-MS detection signal (0.05).  

Based on the variation observed among accessions three clusters could be separated: 

group I included in its majority the Chinese cabbage morphotype, group II included 

vegetable and fodder turnips, brocolettos and pak choi types; and group III included 

the oil types (winter and spring oils, turnip rape and yellow sarson accessions) and 

turnip lines provided by the breeding companies. Separation between the Chinese 

cabbage (group I) and the groups II and III was determined mostly by the difference 

in long chain aliphatic glucosinolates heptyl and hexyl, but not glucohirsutin, which 

was not detectable in many accessions. On the other hand the separation between the 

group III oil types (winter and spring oils, turnip rape, yellow sarson and turnips of 

breeding companies) and groups II and I was mostly determined by the difference in 

the hydroxypentenyl composition. With the exception of the heptyl, hexyl and 

hydroxypentenyl, the glucosinolates showed a variation among accessions that is not 

morphotype specific or determined by the geographic origin. 

 

Markers and allelic variation  

For the association study we designed primers targeting microsatellites within 

sequenced BACs and contigs along the linkage group A03. Depending on the type of 

marker (random or linked to glucosinolate related genes) we had different objectives 

(Table 1). The group of random markers (KS and WUR) did not aim for the 

identification of any specific locus. These markers were selected because they are 

located in different genetic positions across the linkage group A03 and could lead to 

the identification of additional genomic regions of relevance for the regulation of 

glucosinolates. On the other hand, the markers coded BAC-MYB28 (1-7) and BAC-

MAM (1-2) had known physical distance from the transcription factor Myb28 and the 

GLS-Elong methylthioalkylmalate genes (MAM). Both of these genes mapped under 

the previously identified major glucosinolate QTL  (Lou et al. 2008) (Pino Del Carpio 

Chapter 5). Although, Myb29 does not map to this genetic region, we also profiled the 

markers BAC-MYB29 (1-2) physically linked to this transcription factor, since this 

transcription factor has been studied for its effect on glucosinolate regulation. In 
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short, the markers BAC-MYB28, MYB29 and MAM are markers targeting candidate 

genes. 

Together random and targeted markers made a total of 37 genomic microsatellites 

located along the linkage group A03 (Table 1). After profiling the microsatellites over 

the 168 accessions we could identify 374 alleles (Supplementary table 2). All the 

microsatellite markers had at least one allele that had a frequency higher than 10%. 

From the 374 total number of alleles only 98 alleles had a frequency higher than 10% 

and the markers BAC-MYB28-6, BAC-MYB28-7 and BAC-MAM3-1 had a major 

allele with a frequency of 90% or higher over all the accessions.  

For our study we used previously reported subgroup classification obtained in 

STRUCTURE in this same collection (Pino Del Carpio et al. Chapter 3).  

The number of alleles varied across markers on different chromosomal positions and 

between subpopulations (Figure 2). The average number of alleles per microsatellite 

marker that was found after the screening of 37 microsatellites over the populations 

was 10.  

!
Figure 2. Fst statistics and locus by locus AMOVA. Top image : blue peaks indicate number of alleles, 

red lines indicate Fst values.Bottom image for observed heterozygosity values the markers are ordered 

according to their position across linkage group A03 and population: blue (population 1:FT+VT), red 

(population 2:PC+T) and Green(population 4:CC),  population 3(YS+SO+RC) was not included 

because of small sample size. 

 

 

Across populations the highest average number of alleles (n=8) was found for 

populations 1 (PC+T) and 2 (VT+FT) in comparison to the average for the relatively 

small population 3 (YS+SO+RC) (n=4.1) and population 4(CC) (n=5.7). (Table 2) 
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WUR1 8 6 5 8 6.75 12 0.6614 

KS1 13 12 5 12 10.5 16 0.9185 

WUR2 14 17 7 16 13.5 24 0.8771 

KS2 4 3 2 3 3 4 0.5422 

KS3 5 6 3 4 4.5 6 0.4510 

WUR3 3 3 1 2 2.25 3 0.3480 

WUR4 8 5 4 2 4.75 9 0.4177 

WUR5 3 3 2 3 2.75 3 0.5359 

WUR6 4 4 4 4 4 4 0.6920 

WUR7 8 8 2 4 5.5 10 0.4445 

WUR8 20 17 8 6 12.75 25 0.8243 

BAC-

MYB28-7 3 3 1 3 2.5 3 0.1044 

BAC-

MYB28-6 2 2 1 1 1.5 3 0.0181 

BAC-

MYB28-5 2 2 2 2 2 2 0.3714 

BAC-

MYB28-4 10 12 4 7 8.25 13 0.7963 

BAC-

MYB28-3 5 4 1 2 3 5 0.4600 

BAC-

MYB28-2 4 4 3 2 3.25 4 0.4259 

BAC-

MYB28-1 4 3 2 2 2.75 5 0.4205 

BAC-

MAM3-1 3 3 4 1 2.75 4 0.1704 

BAC-

MAM3-2 7 6 3 3 4.75 7 0.5465 

KS4 20 16 6 16 14.5 23 0.9220 

KS5 8 7 6 6 6.75 9 0.7555 

KS6 8 6 4 5 5.75 8 0.7372 

KS7 19 26 10 15 17.5 28 0.9395 

KS8 8 7 4 5 6 8 0.6444 

WUR9 5 4 3 4 4 5 0.6510 

KS9 12 10 8 8 9.5 16 0.7408 

WUR10 8 10 5 6 7.25 10 0.8076 

KS10 12 13 6 12 10.75 14 0.8374 

WUR11 5 6 3 4 4.5 6 0.6314 

KS11 7 6 2 4 4.75 8 0.5053 

KS12 2 2 3 2 2.25 3 0.3711 

KS13 6 9 5 4 6 9 0.5986 

KS14 6 5 5 4 5 8 0.5501 

BAC-

MYB29-1 13 14 5 8 10 17 0.9011 

BAC-

MYB29-2 27 29 11 19 21.5 36 0.9423 

KS15 4 6 3 4 4.25 6 0.6793 

        

Mean 8.108 8.081 4.135 5.757 6.52 10.162  

 

Table 2.Summary statistics of microsatellites profiled over the core collection. Values are indicated 

according to subpopulations: Population 1 (FT+VT), population 2 (PC+T), population 3 (YS+SO+RC) 

and population 4(CC). PIC=polymorphic index content. 

 

The highest number of alleles per locus was found for marker MYB 29-2 (n=36) and 

the lowest number was found for marker BAC134-MYB28-5 (n=2). Polymorphic 

information content (PIC) was mostly related to the number of alleles per marker that 

was found within the core collection; for example, marker BAC-MYB29-2 with 36 

alleles had a PIC of 0.9423. Markers developed from BACs in the closest physical 
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distance to a candidate gene were variable in the PIC values, BAC-MYB28-5 had a 

PIC value of 0.3714, BAC-MAM3-1 had a PIC value of 0.1704, BAC-MAM3-2 had 

a PIC value of 0.5465 and BAC-MYB29-1 had a PIC value of 0.9011 . 

 

AMOVA and F statistics 

The Analysis of Molecular Variance (AMOVA) is a method of estimating population 

differentiation directly from molecular data. Testing hypotheses about differentiation 

within and between subpopulations can indicate different selective pressures among 

different subpopulations. This selection can have very different effects on different 

alleles and allele combinations across linkage group A03 and selection pressure will 

be reflected in lower heterozygosity values for each subpopulation. 

Global ANOVA based on the 4 subgroups as identified using STRUCTURE software 

indicated that the lower molecular variation was found among populations with a 

percentage value of 11% and the higher molecular variation was found within 

populations with a percentage value of 89% (Table 3). 

!

!

Table 3. AMOVA results between and within population. 

 

In accordance to this classification the Fst values obtained based on the analysis of 

microsatellite data of linkage group A03 clearly showed the differentiation between 

populations (Table 4). The largest value (Fst=0.23), which in turn signifies an Fst 

pairwise value for greatly differentiated populations, was found after comparison 

between population 3 (YS+SO+RC) and 4 (CC). The second highest values, which 

also correspond to greatly differentiated populations, were found after comparison 

between population 1 (VT+FT) and 3 (YS+SO+RC)  (Fst=0.16), population 1 

(VT+FT) and 4 (CC) (Fst=0.15) and population 2 (PC+T) and 3 (YS+SO+RC) 

(Fst=0.15). Values for moderately differentiated populations were found in the Fst 

pairwise comparison between populations 1(PC+T) and 2 (VT+FT) (Fst=0.08) and 

the comparison between populations 2 (VT+FT) and 4 (CC) (Fst=0.07).  
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Table 4. Fst values compared across subpopulations: Population 1 (VT+FT), population 2 (PC+T) , 

population 3 (YS+SO+RC) and population 4(CC) 

 

Across the linkage group A03 the Fst values varied greatly between genomic regions 

ranging from -0.01116 for the marker BAC-MYB28-7 at a distance of 79.7 kb from 

candidate gene Myb28 to 0.37886 for the marker BAC-MAM3-2 at a distance of 1.5 

kb from candidate gene MAM (Fig 2 and Supplementary Figure 1). 

The observed heterozygosity varied along different positions on the linkage group 

A03 in correspondence to the Fst values across subpopulations. The largest variation 

in heterozygosity values per marker and between subpopulations was found at the 

position around the MAM locus at the BAC-MAM3-2 marker with values of 0.54 for 

population 1 (VT and FT), 0.18 for population 2 (PC+T), and 0.18 for population 4 

(CC). 

Around Myb28, a reduced number of alleles was observed in particular between the 

region from BAC-MYB28-7 to BAC-MYB28-5. The observed heterozygosity in this 

region was also reduced in comparison to other genomic regions along the linkage 

group A03 and it followed the same pattern in subpopulations 1, 2 and 4 (Figure 2). 

Around the MAM locus the observed heterozygosity was also reduced as observed for 

markers BAC-MAM3-1 in all populations and BAC-MAM3-2 for populations 1 

(VT+FT) and 4 (CC). However, population 2 (PC+T) followed no significant 

reduction at the position of marker BAC-MAM3-2 in comparison to populations 1 

and 4. Interestingly, the peaks for Fst values were found at the position of the marker 

BAC-MYB28-5, the closest marker physically to Myb28 gene at a distance of 12.9 kb 

and BAC-MYB-28-3 at a distance of 68.3 kb of the Myb28 gene and at the position of 

the marker BAC-MAM3-2 at a distance of 1.5 kb of one of the triplicated copies of 

MAM (Figure 2 and supplementary Figure 1).    
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Association study of glucosinolate variation 

Although we included glucosinolates (GLS) of different types in the analysis 

(aliphatic, indolic and one aromatic), significant association results were only found 

for the aliphatic glucosinolates: 3-butenyl (gluconapin), 8-methylsulfinyloctyl 

(glucohirsutin), hexyl, heptyl, hydroxypentenyl; the ratios for aliphatic glucosinolate 

hydroxylation: 2H3B/2H3B+3B (rat1) and H4P/H4P+4P (rat2); the sum of alkenyl 

glucosinolates: 2Pr+3B+4P (totALK); and the total content of 4C  (tot4C) and 6C 

(tot6C) aliphatic glucosinolates (Table 6). 

The distribution of the glucosinolate-marker associations was not limited to a single 

locus on A03, but it was found over different loci along linkage group A03. 

A total of nine out of the 33 microsatellites included in the analysis had at least one 

allele associated to a single glucosinolate, a glucosinolate ratio or total glucosinolate 

content.  

The maximum number of alleles found to be significantly associated to one or more 

glucosinolates was two for the BAC-MYB28-5, WUR9 and KS14 markers.   

We denominated the identified marker-glucosinolate associations as linkage 

disequilibrium QTL (LDQTL) in further descriptions. 

The chromosomal regions with clusters of more than two associated aliphatic GLS, 

GLS ratios (1-4), GLS of different chain size 3C-8C or total aliphatic content were 

considered as major LDQTL genomic regions. Five majorLDQTL were identified and 

within these regions candidate genes for glucosinolate biosynthesis could be assigned 

(Table 6).  
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Table 6. Association results as obtained in Tassel. Indicated are QTL regions, candidate genes, 

markers and adjusted p-values for 5000 permutations (p_adj_Marker) together with explained variation 

(Rsq_Marker) 
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The marker BAC-MYB28-5 (LDQTL1), which is a microsatellite located at a 12 kb 

distance from the Myb28 gene, was found to be associated to 3-butenyl glucosinolate 

(3B), hexyl (HXL), 6C glucosinolates (tot6C), 4C glucosinolates (tot4C) and the 

hydroxylation ratio (rat1). The marker BAC-MAM (1-2) (LDQTL2), which is a 

microsatellite located within the BAC containing the MAM gene was found to be 

associated to heptyl (HPL) and hydroxypentenyl (H4P). Although the markers BAC-

MYB29-1 and BAC-MYB29-2 located at a distance of only 42.9 kb and 33.5 kb 

respectively of Myb29, neither of them showed association to glucosinolates. 

However, KS14 (LDQTL5), which is >50kb from Myb29 was associated to but-3-enyl 

glucosinolate (3B) and to the total amount of alkenyl glucosinolates (totALK). 

Two additional regions were found to be associated to glucosinolates; these SSR 

markers did not physically map on BACs with a candidate gene but were genetically 

linked to BACs with candidate genes. For example, marker KS6 (LDQTL3), with a 

genetic distance of 2.7 cM of the BAC containing the AOP gene, was found to be 

associated to but-3-enyl glucosinolate (3B), the total content of 4C glucosinolates 

(tot4C) and of alkenyl glucosinolates (totALK) and marker N6 (LDQTL4), a 

microsatellite marker of a BAC from the same scaffold as the locus with GS-OH 

genes, was found to be associated to but-3-enyl glucosinolate (3B) the hydroxylation 

ratios 1(rat1) and 2 (rat2) and the total content of alkenyl glucosinolates (totALK). 

The total explained variation of the associated markers showed a range between 

3.05% for the marker BAC-MAM (LDQTL3) allele 1, associated to an heptyl 

glucosinolate, to 7.52% for the marker WUR9 allele 3, associated to the 

hydroxylation ratio 1 (rat1).  

 

Discussion 

In Brassica rapa several QTLs for aliphatic glucosinolates were previously identified 

in two doubled haploid populations (Lou et al. 2008). The major QTL within this 

study was found at the bottom of linkage group A03 in both populations and in two 

seasons, while a second minor QTL was located in the middle region of the same 

linkage group in only one population in two seasons. Based on genome synteny and 

recent genome sequence information (Korea and China) a possible role in regulation 

of glucosinolates for chain elongation MAM genes and the transcription factor Myb28, 
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mapping under the major QTL was predicted. The AOP genes were predicted to map 

within the genomic region at the minor QTL in the middle of linkage group A03. 

Because this QTL study was limited to the variation found in two biparental crosses 

with a yellow sarson, a pak choi and a turnip parent, we decided to extent the study of 

glucosinolate content and variation to a collection of accessions of different 

morphotype and origin.  

The accessions from the core collection showed differences based on their 

glucosinolate contents, which demonstrates the existence of enough variation for the 

detection of genomic regions involved in genetic regulation of glucosinolate 

biosynthesis. Furthermore, because of the diversity in the glucosinolate biochemical 

structures, the possibility exists to study the variation at different levels of 

glucosinolate biosynthesis, like chain elongation, synthesis of the core structure and 

side chain modification (i.e oxidation and hydroxylation). These quantitative and 

qualitative differences are expected to be due to the allelic variation in structural and 

regulatory genes of the glucosinolate pathway among accessions.  

From the 22 glucosinolates that were detected, 3-butenyl (gluconapin) had the highest 

detection signal over all the glucosinolates. Because 4-methylsulfinyl butyl 

(glucoraphanin) is converted into 3-butenyl (gluconapin) by GLS-ALK (AOP) most of 

the accessions with high 3-butenyl (gluconapin) concentration had a reduced 

concentration of 4-methylsulfinyl butyl (glucoraphanin) and viceversa.  

Within the scope of the present study we decided to further study, through an 

association mapping approach, the genomic regions leading to the glucosinolate 

variation in linkage group A03 with particular focus on the major QTL locus found in 

the DH38 population. Available sequence information (Personal communication Mina 

Jin Korea, Dr. Xiaowu Wang, IVF CAAS) led us to identify the presence of a copy of 

a Myb28 gene at a distance of 240kb from a triplicate copy of MAM in the region of 

interest. Furthermore, a microsatellite marker developed from the BAC containing 

Myb28 was mapped in the DH38 population within the major QTL region (Pino Del 

Carpio et al Chapter 5). 

The three markers BAC-MYB28-5, BAC-MAM3-1 and BAC-MAM3-1, which had 

the closest known physical distance from the two candidate genes Myb28 and MAM 

showed association to aliphatic glucosinolates. Interestingly, the Myb28 gene appears 

to be a major regulator of the variation of glucosinolate content in Brassica rapa, 

showing association to five glucosinolate related-traits (LDQTL1). This regulation is 
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reflected at different levels; for example related to the content of 3-butenyl 

(gluconapin), the glucosinolate with the highest content in this collection, and the 

total content of 4C (tot4C) and 6C (tot6C) glucosinolates. Additionally, the 

association to the ratio of hydroxylation (rat1) reflects possible regulation of the GLS-

OH locus. On the other hand, the MAM markers only showed association to heptyl 

and hydroxypentenyl (LDQTL2), being in this context of less abundance in the overall 

variation of glucosinolates in B. rapa. 

One of the most important advantages of the association mapping approach is the 

possibility to find additional genomic locations related to a trait in comparison to 

biparental crosses, which are limited in the allelic variation of a cross 

(Abdurakhmonov et al. 2008). In our study genomic regions, which had not been 

previously reported, were found to be associated to hydroxylation ratios calculated 

with the glucosinolate data. The marker (WUR9) in the vicinity of the GLS-OH locus, 

which regulates the hydroxylation of alkenyl glucosinolates (Halkier and Du 1997) 

showed association to the hydroxylation of 3-butenyl (gluconapin) (rat1) to 2-

hydroxybut-3-enyl (progoitrin) and pent-4-enyl (glucobrassicanapin) to 

hydroxypentenyl (rat2) (LDQTL4).  

The GLS-ALK locus (AOP) is involved in the production of alkenyl homologues by 

removal of the methylthio group followed by the insertion of a double bond (Halkier 

and Du 1997). In our study KS6 (LDQTL3), with a genetic distance of 2.7 cM of the 

BAC containing the AOP gene showed association to the total content of alkenyl 

glucosinolates (totALK), the content of 4C glucosinolates (tot4C) and 3-butenyl 

(gluconapin). The association to the total alkenyl glucosinolates is in accordance to 

the function of this locus and the association to 3-butenyl (gluconapin) is in 

correspondence to the minor QTL previously found in two DH populations in 

Brassica rapa and to other studies in Arabidopsis and Brassicas (Lou et al. 2008, 

Kliebenstein et al. 2001a,b, Gao et al. 2004, Li et al. 2003).  

An example of the extent of linkage disequilibrium in this core collection is the 

presence of the association between KS14 (LDQTL5) to but-3-enyl glucosinolate 

(gluconapin) and total alkenyl glucosinolates (totALK). This particular marker is 

>50kb to the closest candidate gene Myb29; apparently the extent of LD in this region 

is larger compared to that around the Myb28 locus which shows the most significant 

marker-trait association up to a distance of only 13 kb (BAC-MYB28-5), which was 

the closest SSR linked to Myb28.  
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In Arabidopsis an important group of candidate genes for glucosinolate variation and 

regulation have previously been found through gene expression and metabolite QTL 

analyses (Wentzell et al. 2007,Kliebenstein et al 2001a,b).  These analyses showed at 

a population level that variation at MAM (GLS-Elong) and AOP (GLS-ALK) 

controlled the accumulation of glucosinolates and transcripts related to these 

metabolites. More recently, through Omics-based approaches Myb28 and Myb29 have 

been discovered as transcription factor genes involved in the regulation of aliphatic 

GSL production (Hirai et al. 2007). 

The B. rapa genome is sequenced (China and Korea) and with available sequence 

information several candidate genes for glucosinolate regulation have been recently 

identified (Zang et al. 2009). However, these candidate genes have not been identified 

as loci underlying QTL and their functions have not been validated in B. rapa. 

In the present study we screened microsatellites developed from BACs and sequenced 

contigs containing the candidate genes MAM and Myb28 (Korea (www.brassica-

rapa.org) and China (Dr. Wang Xiaowu, IVF CAAS, Beijing) located within the 

genomic region of the major QTL on A03 (Lou et al. 2008) and demonstrated their 

association to several aliphatic glucosinolates in a B. rapa core collection.  

In general, the resolution with which a QTL can be mapped is a function of how 

quickly linkage disequilibrium (LD) decays over distance. Brassica rapa is an 

outcrosser and conversely in outcrossers LD generally breaks down more rapidly like 

for example in maize (Remington et al. 2001). In the present study we showed that 

LD varied among loci in A03 in the vicinities of known candidate genes, which goes 

from a distance of 0.5kb (BAC-MAM3-1) to 13 kb (BAC-MYB28-5) or even over 

50kb near Myb29. This variation can be due to the different mutation rate of SSRs if 

compared to single nucleotide polymorphisms (SNPs) and insertions or deletions 

(InDels) that may have caused variation in the causal genes. These differences can 

affect the identification of LD even when a marker is associated to the gene at a very 

close range; on the other hand population subdivision and the allelic diversity in the 

different sub populations can increase LD around a gene and affect the rate of false 

positive results (Pritchard and Przeworski, 2001).  

In conclusion, following an association mapping approach we showed the importance 

of Myb28 as the major regulator of the aliphatic glucosinolate accumulation of 

different types and ratios as well as the effect of the MAM genes within this B. rapa 

core collection. More importantly, the screening of markers along linkage group A03 
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helped us to identify new genomic regions that could be sources of variation for 

glucosinolate regulation. More work is needed with markers closely linked to 

candidate genes to confirm our assumptions that GLS-OH and AOP are within this 

important genomic region. 
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Supplementary Table 1. A.Identified glucosinolates with common name, chemical name, 

abbreviation and description.B.Additionally values for ratios and total calculations for marker-trait 

associations are described.* isoforms 
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Supplementary Figure 1. Graphical representation of marker position and physical distance to the 

targeted candidate genes Myb28 and MAM.The KBr code indicate sequence information from Korea 

sequencing project, the BAC MAM-Myb28 is sequence information from China sequencing project 
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Supplementary table 2. Microsatellites alleles with  frequency > %10 

included in the association analysis 
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Chapter 5 

The genetics of the Brassica rapa metabolome 

 

Dunia Pino Del Carpio, Ram Kumar Basnet, Danny Arends, Frank Johannes, Ric CH 

De Vos, Jan Kodde ,Kim Boutilier, Johan Bucher, Ritsert Jansen, Richard Visser, 

Guusje Bonnema 

 

Abstract 

In the present study we followed a genetical genomics approach to identify candidate 

genes for six biosynthetic pathways: carotenoids, tocopherols, folates, glucosinolates, 

flavonoids and phenylpropanoids, based on the co-localization of metabolic QTLs and 

expression QTLs. A Doubled Haploid population was profiled for metabolite content 

and variation through targeted and LC-MS untargeted approaches. Additionally, the 

same population was profiled for transcript variation with a newly developed 

microarray assembled using EST sequences mainly from three species: B. napus, B. 

rapa and B. oleracea. Co-localization of mQTLs and eQTLs lead to successful 

identification of candidate genes for carotenoids, tocopherols and glucosinolates. 

Using the glucosinolates pathway as model pathway the results revealed the co-

localization of eQTLs of a cluster of co-regulated genes and mQTLs for short (3C-

5C) chain aliphatic glucosinolates with modified side chains around AOP in linkage 

group A09 and the co-localization of eQTLs for MAM genes and mQTL for long 

chained aliphatic glucosinolates in A03. On the other hand, further work is still 

needed to identify candidate genes for mQTLs found in A07 for flavonoids. The 

application of this type of studies in Brassica rapa and the future validation 

approaches for the identification of cis and trans regulation with the soon available 

Brassica rapa genome sequence are discussed. 
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Introduction 

 

With the advent of modern techniques for global phenotypic and genotypic profiling, 

the generation of huge datasets has increased the opportunity to dissect the genetics 

underlying complex traits.  

The dissection of the genetic regulation of a trait initiates with the collection of 

phenotypic data from a mapping population. Later on with the aid of molecular 

markers, as tags mapped across the genome, and through statistical analysis (QTL 

mapping) regulatory genomic regions can be identified. The ultimate goal of the QTL 

mapping is to determine which genes are responsible for the variation in a group of 

selected traits (Mackay 2001).   

In recent years, breeding for nutritional quality became an important research topic 

and in this context metabolomics approaches have enabled the parallel assessment of 

the levels of a broad range of metabolites (Fernie et al. 2009, Verpoorte et al. 2008, 

Rowe et al. 2008).  In Arabidopsis the metabolite variation was found to be abundant 

and its genetic regulation complex, plausible candidate regulators could be identified 

after LC-MS mass peaks were assigned to genomic loci (Keurentjes et al. 2006)   

The use of transcriptomics, which measures the variation in mRNA transcript 

abundance, has been recorded across populations in plants and expression profiles can 

be treated as heritable traits to map expression quantitative trait loci (eQTL); this type 

of analysis has been denominated as genetical genomics (Jansen and Nap 2001).  

Thus, with the integration of metabolomics with other genomic platforms it has been 

possible to identify candidate genes, which are correlated to the levels of metabolites 

in plant systems (Goossens et al. 2003, Hirai et al. 2005, Keurentjes et al. 2006). 

Furthermore, the investigation of selected biochemical pathways of pre-defined 

metabolites showed that the connections between gene expression and metabolite 

variation are complex  (Wentzell et al. 2007, Kliebenstein et al. 2006). 

Brassica rapa is an important source of vegetables. The variation in morphology is 

huge (oil, turnip,pak choi, Chinese cabbage and several Asian morphotypes) and 

similarly the variation in metabolite composition is large (Chapter 2). This variation 

has increased the interest of plant breeders to breed for phytonutrient quality in 

Brassica. B.rapa is a close relative to Arabidopsis, its triplicated genome has a well 

described genome synteny with Arabidopsis (Parkin et al.2005, Schranz et al. 2006). 

As a consequence of an evolutionary triplication event many genes have paralogues. 
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The triplicated nature of the Brassica genome, and the fact that at the moment of this 

study the genome sequence was not yet known, represented a challenge for the 

genetical genomics approach to unravel the genetics of metabolic traits 

For the present research, we had to face several considerations that could affect the 

outcome of the QTL study. In principle the choice of parental lines that could harbor 

enough variation in metabolite composition, and the choice of population, in which 

the number of recombinations can affect the mapping resolution and statistical power 

of the study (Doerge 2001). Other considerations like segregation distortion and 

phenotypic distribution are of relevance for statistical analysis and in particular if 

metabolite data is collected because different algorithms have to be applied to map the 

underlying variation (Fu et al. 2007, Broman 2003). 

An important step in a QTL mapping study is the selection of parental lines that 

contrast for the phenotype of interest. This statement also applies if we want to map 

expression quantitative trait loci (eQTL). However, if parental transcript variation 

would be used exclusively to select differentially expressed genes for subsequent 

studies, many informative genes would end up being overlooked because of 

transgressive segregation in the progeny (West et al. 2007, Keurentjes et al. 2007).  

In the present study we performed a metabolic and transcript profiling of leaves of six 

week old plants from a Doubled Haploid (DH) population developed from a F1 cross 

between a yellow sarson (R500) and a pak choi  (PC175) type. We applied an 

untargeted metabolomics approach using liquid chromatography-mass spectrometry 

(LC-MS) and a targeted approach to identify isoprenoids (carotenoids and 

tocopherols) and folates. Additionally, the whole genome transcript level was 

performed on all DH lines using a distant pair design with a newly developed 60-mer 

oligo microarray assembled using EST sequences mainly from three species: B. 

napus, B. rapa and B. oleracea (Trick et al. 2009). To prioritize on a number of 

candidate genes we used data of known biochemical pathways of phytonutrient 

metabolites. Although we narrowed our search within this group of genes we could 

find ample correlations between transcript abundance and metabolite level. These data 

are an important step to gain insight in the genetic factors responsible for the 

metabolite variation in B. rapa. Further work is needed to integrate our results with 

physical maps to correctly identify the genes that regulate either in cis or trans the 

identified eQTLs. With the complete B. rapa sequence expected to be available in the 

summer of 2010 this becomes a realistic option. 
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Materials and Methods 

Parental materials to develop a double haploid population 

A Brassica rapa Doubled Haploid (DH) population was developed from a cross 

between pak choi PC-175 (cv.Nai Bai Cai: accession number VO2B0226) as the male 

parent to the accession yellow sarson YS-143(accession number FIL500). The 

parental accessions were selected based on their differences in phenotypic 

characteristics and genetic distance (Zhao et al. 2005, Lou et al. 2008). Furthermore, 

this population is a reciprocal cross of the previously developed population DH 38 as 

described by Lou et al. (2008). 

The Doubled Haploid (DH) population was created using the microspore culture 

protocol described in Lou et al. (2008), based on Coventry et al. (1988) and Custers et 

al. (1994, 2001). The progeny of the DH plants from three F1 plants were used for the 

phenotyping and genotyping. The resulting population was named DH68 and 

consisted of 92 DH lines and for each line the corresponding F1 parent was known. 

 

Plant growth conditions 

The seeds of the DH lines were sown in Jiffy pots in the greenhouse under the 

following conditions: 16 hrs light and temperature between 18 C° and 21 C°. After a 

week germinated seedlings were transplanted and randomly distributed over three 

different blocks. Five weeks after transplanting, the 3
rd

 and 4
th

 leaves of each replicate 

were collected and placed in liquid nitrogen to be further grinded and stored at -70 C°. 

Each replicate was grinded individually and the mix with equally weighted amount of 

the three replicates was used for metabolic and transcriptomic profiling and DNA 

marker profiling for the construction of a linkage map and QTL analysis. 

 

 

LC-MS metabolic profiling 

Brassica leaf samples were analyzed for variation in semi-polar metabolite 

composition using LC-QTOF MS, essentially as described in De Vos et al. (2007). In 

short, 0.5 g FW of frozen leaf powder, from one individual plant per accession, was 

weighed in a 10 ml glass tube and extracted with 1.5 ml of methanol containing 0.1% 

formic acid. Samples were sonicated and then filtered (Captiva 0.45 !m PTFE filter 
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plate, Ansys Technologies) into 96-well plates with 700!l glass inserts (Waters) using 

a TECAN Genesis Workstation equipped with a 4-channel pipetting robot and a 

TeVacS 96-wells filtration unit. Samples were injected (5 !l) using an Alliance 2795 

HT instrument (Waters), separated on a Phenomenex Luna C18 (2) column (2.0x 150 

mm, 3 mm particle size) using a 5-35% acetonitrile gradient in water (acidified with 

0.1% formic acid) and then detected on-line firstly by a Waters photodiode array 

detector (wavelength 220-600nm (Waters) and secondly by a Water-Micromass 

QTOF Ultima MS with negative electrospray ionization (m/z 80-1500).   

Metalign software (www.metalign.nl) was used to automatically extract and align all 

relevant mass signals (signal to local noise ratio > 3) from the raw data files. A total 

of 6,673 mass signals was filtered for signals being present in at least 15 samples and 

having amplitudes of at least 100 (about 6 times the noise value) in at least one of the 

samples. Then, mass signals originating from the same metabolites were clustered 

based on their similar retention times and variation over samples, using the in-house 

developed Metabolite Mass Spectral Reconstruction script (Tikunov et al. 2006). This 

mass signal clustering retained 228 so-called centrotypes, in which each centrotype 

represents a unique metabolite. 

 

RNA isolation 

Total RNA was extracted using the TRIZOL reagent (Invitrogen) starting with 

approximately 300 mg of frozen leaf material. RNA concentration and purity were 

quantified with Nanodrop measurements and the quality of the total RNA was 

checked on a 1% RNase free agarose gel. 

Total RNA (5ul) was treated with the DNase I Amplification Grade kit (Invitrogen) 

for digestion of single and double stranded DNA according to manufacturer’s 

intructions. 

Total RNA was cleaned using the RNeasy Mini Kit (Qiagen) starting with the 100 !l 

of DNase I treated RNA.The concentration of the cleaned RNA was measured and the 

samples were diluted with nuclease free water (Qiagen) to 400 ng/!l in a total volume 

of 10!l 
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Microarray design 

The distant pair design proposed for two colour microarrays experiments by Fu and 

Jansen (2006) was followed as implemented in the R package designGG 

(http://gbic.biol.rug.nl/designGG/).  

The design uses genetic marker information to identify pairs of individuals with 

maximum dissimilarity across the mapping population and improves the efficiency of 

eQTL studies. In our study we used information obtained from 48 pairs of DH lines 

and the information on parental lines was additionally hybridized in two microarrays 

with dye swap of Cy3 and Cy5. 

 

 

QTL mapping analyses 

QTL analysis was performed using the basic single marker regression procedure 

present in R/qtl. This was done for both the expression ratio values and the metabolite 

datasets in a similar fashion, leading to results that could be easily combined in the 

end. A total of 78,688 expression probes together with 228 centrotypes (summarizing 

2,157 mass peaks from the LCMS analysis) were mapped back to the genetic map of 

B. rapa using the basic model. The expressions were measured using two-color array 

technology and for the mapping we used the ratio’s between two genotypes  

 

Yi = !+ "Gi + Error  

 

(Yi = Probe intensity, Gi =Genetic effect) 

 

In this model the genetic effect was annotated for the expression ratio’s as described 

in Fu & Jansen (2006); " is the effect of the different allele (1 for A>B 0 for A==B 

and -1 A<B).  This model was evaluated at each marker to get an estimate of the 

allelic effect on the expression probes. This results in a P-value, which was 

transformed into a LOD score. These scores where then visualized in three different 

ways to show underlying genetic architecture: Using QTL profile plots, circleplots 

and heatmaps.  

Further analysis was composed of permutation of the data to get estimates of 

significance thresholds. 
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To reconstruct the metabolic network based on the annotated glucosinolate data from 

the total LC-MS output we followed the MetaNetwork computational protocol as 

described in Fu et al. (2007). Significant second order correlations were plotted using 

Cytoscape with the generated network file (network.sif) and the edge-attributable file 

(network.eda). Additionally, the output QTL profiles  (-log10P significance values 

plotted at marker positions along the genome) were ploted for visualization for all the 

annotated metabolites (folate and isoprenoids) and 14 centrotypes of the LC-MS 

output.  

 

 

Results 

Construction of a genetic linkage map 

A genetic linkage map was constructed for population DH 68. A total of 247 markers 

were mapped in the DH population (Figure 1). The total map length was 942.25 cM 

and consisted of 10 linkage groups, corresponding to the 10 chromosomes of Brassica 

rapa. The largest linkage group was A03 with a size of 186.2 cM and the smallest 

linkage group was A07 with a size of 52.7 cM. Each of the linkage groups had at least 

one SSR marker, which allowed the identification of the corresponding chromosome 

and the comparison with previously published maps (Lou et al. 2008, Kim et al. 2006, 

Choi et al. 2007). In addition to the SSR markers, gene targeted markers related to the 

glucosinolate pathway were mapped in this population as well. A total of 19 markers 

related to the glucosinolate (GLS) biosynthetic pathway were mapped in all the 

linkage groups except for A04, A05 and A10. The linkage group with most GLS 

genes mapped was A03 with six. The mapping of this particular group of markers 

together with the SSRs was of aid for the identification of the map orientation and for 

further syntenic comparison with Arabidopsis thaliana in the search of candidate 

genes for metabolic pathways. 
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Figure 1. Map Doubled Haploid population DH68 

 

QTL analysis of targeted metabolites 

Making use of targeted metabolic extraction and analyses procedures, including 

quantification using reference compounds, it was possible to measure the variation in 

absolute levels of health-related phytochemicals in the leaves of Brassica rapa.  

Among the compounds quantified were tocopherols, carotenoids, and folic acid. The 

levels obtained for the carotenoids, !-, "-, #- and $-tocopherol and folate are 

presented in Table 1. Variation was observed in both the content and the composition 

within the DH population. Within the maximum values obtained among all the DH 

lines the highest levels for the tocopherols were observed for !-tocopherol with 22.65 

mg/kg FW. The lowest value was observed for #-tocopherol with a value of 0.21 
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mg/kg FW. In the case of the carotenoids, the higher value was lutein with a 

maximum value of 158 mg/kg FW and the lowest maximum value was observed for 

neoxanthin with a value of 45.41 mg/kg FW. The level of folic acid ranged between 

1303.68 to 4115.69 mg/kg FW.  

 

Table 1. Summary statistics of the metabolic variation for targeted metabolites. Units for all the 

metabolites are in mg/kg per FW. 

 

 

The QTL analysis of !-carotene, lutein, violaxanthin and neoxanthin resulted in 16 

significant mQTL (logp > 3.37, FDR=0.05) for these compounds (Table 2).  The 

identified QTL were calculated as significant logp value per marker and were 

distributed as follows: four for lutein, seven for !-carotene, three for neoxanthin and 

two for violaxanthin. The highest logp values were found for markers located in 

linkage group A03 for lutein (logp=11.5) and !-carotene (logp=4.3) and linkage 

group A09 for violaxanthin (logp=4) and neoxanthin (logp=3.8). Based on the QTL 

plot profile we also identified overlapping QTL regions located in linkage A05 for 

lutein and violaxanthin and in linkage group A10 for violaxanthin and neoxanthin. 

The QTL analysis of "-, !-, #- and $-tocopherol resulted in a total of seven significant 

mQTL (logp > 3.37, FDR=0.05) for these compounds.  The identified QTL with a 

significant logp value per marker were: two for "-tocopherol, three for !-tocopherol  

and two for $ tocopherol. No significant results were found for #-tocopherol.  
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Table 2.Metanetwork metabolic QTL results of targeted (tocopherols,carotenoids and folates) and 

untargeted LC-MS annotated results glucosinolates and 14 centrotypes (c-code).LG:linkage group, 

QTLl:left border,QTLr:right border. 

Metabolite  LG Marker QTLl(cM) QTLpeak(cm) QTLr(cM)(1.5) 

Logp 

value 

!-tocopherol NS 

"-tocopherol 2 M35 49.9965 50.913 58.9735 5 

"-tocopherol 5 M131 0 8.057 16.3365 4.1 

#-tocopherol 3 M73 61.356 62.454 65.0335 5.3 

#-tocopherol 3 M61 20.219 21.785 23.242 7.2 

#-tocopherol 3 M68 33.604 40.504 51.781 7.7 

$-tocopherol 2 M37 50.5115 72.876 74.218 4.2 

$-tocopherol 5 M133 0 19.635 25.614 4.4 

Folate 9 M218 75.3365 78.95 80.3405 3.7 

Folate 9 M234 127.3955 155.279 155.279 4.3 

lutein 3 M88 117.466 118.912 120.019 7.7 

lutein 3 M92 124.003 125.032 128.468 9.9 

lutein 3 M95 131.1835 133.224 145.3615 11.5 

lutein 5 M132 0 13.038 21.0605 4.6 

#-carotene 3 M62 9.3265 21.84 33.604 3.4 

#-carotene 3 M83 84.8655 85.872 97.351 3.6 

#-carotene 3 M104 166.2935 173.753 180.483 4 

#-carotene 3 M75 65.0335 66.806 67.627 4.1 

#-carotene 3 M109 184.292 186.239 186.239 4.3 

#-carotene 5 M143 47.5445 62.52 62.52 3.5 

#-carotene 5 M128 0 0 6.4155 3.6 

Neoxanthin 3 M88 81.5115 118.912 120.019 3.4 

Neoxanthin 9 M230 114.7575 118.417 122.8025 3.8 

Neoxanthin 9 M228 92.8325 107.279 109.1885 3.8 

Violaxanthin 9 M228 92.8325 107.279 109.1885 3.6 

Violaxanthin 9 M230 114.7575 118.417 142.0895 4 

glucoraphanin 3 M80 73.8775 78.402 90.249 5.8 

glucoraphanin 3 M74 59.121 63.261 65.0335 7.3 

sinigrin 1 M9 19.6135 20.293 20.929 4.6 

sinigrin 1 M7 12.9325 17.119 18.0265 5 

sinigrin 9 M218 63.2375 78.95 80.3405 7.7 

progoitrin 3 M90 122.447 123.768 128.468 9.6 

progoitrin 9 M214 69.516 72.422 73.2555 4.8 

progoitrin 9 M205 23.8815 26.19 45.7 5.2 

glucoalyssin 9 M218 66.442 78.95 80.3405 4.5 

hydroxypentenyl 3 M74 59.121 63.261 65.0335 6.8 

hydroxypentenyl 3 M91 124.003 124.238 128.468 9.7 

hydroxypentenyl 3 M80 76.729 78.402 84.8655 11.1 

hydroxypentenyl 3 M84 90.249 94.626 113.7975 12.9 

gluconapin 9 M205 23.8815 26.19 29.6625 5.3 

gluconapin 9 M214 66.442 72.422 73.2555 9.7 

methsulphonylbutyl 6 M151 11.1085 29.124 47.5845 5.2 

methsulphonylbutyl 8 M187 40.2155 44.124 50.37 4.4 

methsulphonylbutyl 9 M217 75.3365 78.915 80.3405 9.4 

methsulphonylbutyl 9 M213 71.421 72.157 73.2555 10.1 

methsulphonylbutyl 9 M222 83.0145 86.271 86.9845 10.2 

glucobrassicapin 3 M80 76.729 78.402 84.8655 5.1 

glucobrassicapin 9 M206 23.8815 33.135 36.2225 4.9 
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glucobrassicapin 9 M222 83.0145 86.271 92.8325 5.3 

glucobrassicapin 9 M211 63.2375 68.347 73.2555 5.3 

glucobrassicapin 9 M218 75.3365 78.95 80.3405 5.4 

glucoerucin 3 M73 61.356 62.454 65.0335 4.4 

glucoerucin 3 M69 45.693 50.882 55.332 4.8 

glucoerucin 9 M206 23.8815 33.135 36.2225 6.9 

glucoerucin 9 M221 83.0145 84.939 86.9845 9.4 

glucoerucin 9 M216 75.3365 76.584 80.3405 12.3 

glucoerucin 9 M211 66.442 68.347 69.516 12.9 

glucoerucin 9 M214 71.421 72.422 73.2555 14 

glucobrassicin NS 

gluconasturtin 3 M74 59.121 63.261 65.0335 4.9 

methglucobrassicin NS 

hexyl GS I 2 M35 49.9965 50.913 58.9735 5.7 

hexyl GS II NS 

hexyl GS III 3 M71 55.332 57.984 65.0335 7.1 

neoglucobrassicin NS 

heptyl GS I 3 M69 45.693 50.882 55.332 7.5 

heptyl GS I 3 M79 73.8775 75.056 81.5115 7.8 

heptyl GS I 3 M74 59.121 63.261 65.0335 10.2 

heptyl GS II 3 M89 120.019 121.126 122.447 4.8 

heptyl GS II 3 M84 90.249 94.626 105.8255 8.4 

heptyl GS II 3 M79 73.8775 75.056 78.783 10.8 

heptyl GS II 3 M74 61.356 63.261 65.0335 13.5 

heptyl GS III 3 M69 45.693 50.882 55.332 7.4 

heptyl GS III 3 M80 73.8775 78.402 84.8655 8.5 

heptyl GS III 3 M74 61.356 63.261 65.0335 9.3 

heptyl GS III 9 M219 75.3365 79.591 80.3405 4.7 

c1082 3 M59 0 0 9.3265 6.6 

c1082 7 M170 23.796 25.967 27.29 21 

c1082 7 M173 30.023 31.987 37.8985 15.8 

c1096 3 M59 0 0 21.8125 4.5 

c1096 7 M169 23.796 24.791 25.379 19.2 

c1138 7 M162 0 0 5.3695 4.6 

c1138 7 M169 23.796 24.791 27.29 6.6 

c1194 7 M162 0 0 5.3695 4.5 

c1194 7 M169 23.796 24.791 27.29 6.6 

c1194 7 M173 30.023 31.987 37.8985 6.6 

c1275 7 M170 25.379 25.967 27.29 16.8 

c1275 7 M172 30.023 31.433 37.8985 12.4 

c1320 3 M68 33.604 40.504 45.693 4.9 

c1320 7 M163 5.3695 10.739 11.8515 7.3 

c1320 7 M170 19.9985 25.967 27.29 9.3 

c1320 7 M172 30.023 31.433 46.001 12.1 

c1355 3 M59 0 0 9.3265 5.6 

c1355 3 M71 55.332 57.984 59.121 4.6 

c1355 7 M169 23.796 24.791 25.379 14.5 

c1435 3 M59 0 0 9.3265 6 

c1435 7 M170 23.796 25.967 27.29 9 

c1435 7 M173 30.023 31.987 37.8985 6.8 

c1435 9 M218 75.3365 78.95 80.3405 5.1 

c1435 9 M223 85.605 87.698 92.8325 5.5 
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The highest logp values were found for markers located in linkage group A03 for !-

tocopherol   (logp=7.7), linkage group A02 for "-tocopherol (logp=5) and linkage 

group A05 for #-tocopherol (logp=4.4). Only one overlapping QTL region was 

located on linkage group A05 for mQTL results of "- and #-tocopherol.  

Although the folate biosynthesis is regulated by several genes (Sahr et al. 2005) the 

mQTL analysis of folate content in the double haploid population resulted in the 

detection of only one significant mQTL (logp > 3.48, FDR=0.05) for this metabolite. 

The identified mQTL had a peak logp value of 4.3 in A09 although the QTL profile 

was irregular throughout this linkage group . 

 

 

 

 

 

 

 

c1440 3 M68 25.605 40.504 51.781 6 

c1440 7 M165 14.043 15.122 15.984 7.7 

c1440 7 M169 23.796 24.791 25.379 12.1 

c1440 7 M173 30.023 31.987 37.8985 8.2 

c1463 3 M68 33.604 40.504 45.693 4.5 

c1463 7 M163 5.3695 10.739 11.8515 8.2 

c1463 7 M170 23.796 25.967 27.29 11.3 

c1463 7 M173 30.023 31.987 37.8985 14.2 

c1500 3 M68 25.605 40.504 45.693 5.7 

c1500 7 M167 15.984 17.196 19.9985 9.4 

c1500 7 M169 23.796 24.791 27.29 12 

c1500 7 M173 30.023 31.987 37.8985 13.9 

c1500 7 M176 50.46 52.728 52.728 8.8 

c1536 3 M67 25.605 26.704 55.332 5 

c1536 3 M98 131.1835 140.568 145.3615 5.2 

c1536 7 M162 0 0 5.3695 9.7 

c1536 7 M169 23.796 24.791 27.29 12 

c1536 7 M173 30.023 31.987 37.8985 10.7 

c1683 7 M169 23.796 24.791 25.379 8.9 

c1702 3 M68 25.605 40.504 45.693 5.8 

c1702 7 M167 15.984 17.196 19.9985 8.3 

c1702 7 M169 23.796 24.791 27.29 10.5 

c1702 7 M173 30.023 31.987 37.8985 11.8 

c1702 7 M176 50.46 52.728 52.728 8.1 



!"#$%&'()(

( ***(

QTL analysis of untargeted LC-MS data 

The metabolite variation within the double haploid population was high with a total of 

2,758 different mass peaks detected. In general, each metabolite is represented by a 

group of masses with different retention time and mass-scan number. After grouping 

of the mass peaks because of high correlation between peak signals the whole dataset 

was reduced to 228 centrotypes, which potentially represent different metabolites (see 

material and methods). The natural variation in metabolite composition represented 

by 228 centrotypes was used in the further QTL analyses to unravel the genetic 

regulation of secondary metabolites. B. rapa metabolites detected by this LC-QTOF 

MS profiling of aqueous-methanol extracts were mostly semi-polar compounds such 

as glucosinolates, phenylpropanoids and flavonoids (De Vos et al. 2006). 

QTLs were detected for 158 out of the 228 centrotypes, the genomic distribution of 

the QTL profiles showed that these LC-MS detectable metabolites are not evenly 

distributed over the B. rapa linkage groups and cold and hotspots for the genetic 

regulation of metabolite content could be identified (Figure 2). The most important 

regulatory region seemed to be located in linkage group A07 where mQTLs were 

detected for 112 out of the 228 centrotypes. Furthermore, when we randomly selected 

14 out of the 112 centrotypes mapping to A07 to be identified they corresponded to 

metabolites identified as flavonoids (Dr. Ric de Vos, PRI, Wageningen University & 

Research Center; data not shown). The significant QTL loci detected for these 14 

centrotypes with at least one mQTL in A07 showed remarkable overlap in genomic 

regions of linkage group A03. Interestingly, nine out of the fourteen centrotypes 

showed the same mQTL pattern in the same regions of the linkage groups A03 and 

A07, while one centrotype showed an mQTL in the middle region of A03 and A07 

plus a region of A09 and four centrotypes only showed an mQTL in the region of 

A07. 
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Figure 2. Whole genome QTL analysis of 228 centrotypes from the LC-MS data.Lines indicate 

division for each linkage group 1-10 

 

 

QTL analysis of transcriptomics data 

To identify the genomic regions responsible for the metabolic regulation in Brassica 

rapa we profiled the transcript abundance of 92 DH lines in the DH68 population. To 

maximize the differences between pairs that were hybridized to each microarray we 

followed a distant pair design. A total of 50 pairs were used in the transcriptomics 

analysis, including dye swap and replicates of the parental lines. However, because it 

has been reported (West et al. 2007, Keurentjes et al. 2007) that the transcript 

variation in segregating populations is not limited to genes differentially expressed 

between parents, we followed a QTL analysis that was not limited to the results 

obtained comparing the parental lines. Instead, we followed a regression analysis of 

the transcript abundance represented by the 78,278 informative probes on the 

microarray against the 247 markers of the map. In total, 24,850 probes were detected 

as significant against a marker with a logp >3 which in turn corresponded to an 

average of 8.5 markers found as significant per probe with a total of 210,876 eQTLs. 

The whole genome profile of the number of eQTL versus chromosome position is 

displayed in Figure 3.  Based on the whole genome profile there is no evidence of 

eQTL clustered as hotspots. Instead, the eQTL were distributed randomly across the 

genome with a higher number than average on linkage groups A03, A05 and A09. 
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Figure 3. Whole genome QTL analysis of expression data. Numbers in x-axis indicate linkage group 

and y-axis indicate number of QTL per map position 

 

Unravelling the genomic regulation of metabolic pathways through the 

combined analysis of eQTL and mQTL loci 

To determine whether it was possible to identify regions involved in metabolic 

regulation we combined our mQTL and eQTL results. In order to combine these 

results we focused on the mQTL results of the group of targeted metabolites 

(carotenoids, tocopherols and folate) and the metabolites identified as glucosinolates 

and flavonoids from the LC-MS data of 228 centrotypes. 

In order to identify eQTL involved in the regulation of metabolite production we first 

screened the probes represented on the microarray against a compiled list of potential 

candidate genes that are known to be involved in the regulation of six biosynthetic 

pathways that lead specifically to the production of flavonoids, phenylpropanoids, 

glucosinolates, carotenoids, tocopherols and folate (Table 3).  
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Table 3.List of candidate genes for six biosynthetic pathways.The probes of the microarray are 

identified with a genebank code, origin 1.B.rapa, 2.B.napus,3.B.oleracea and 4 other Brassica 

species.Abbreviation is included in whole genome eQTL profiling. 
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Table 3. continued 
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Table 3. continued 

 

 

Table 3.continued 

In general, we searched for genomic regions in which metabolic QTL (mQTL) seem 

to co-localize with expression QTL (eQTL) of annotated probes which correspond to 

candidate genes of the selected pathways. Additionally, the probes were classified in 

correspondence to the EST sequence origin: (1) B.rapa, (2) B.napus, (3) B.oleracea 

and (4) other Brassica species; this code was added after the annotated gene name. 

The eQTL results corresponding to each pathway are summarized in Table 4. 

 

 

Table 4. Expression QTL detected in DH68.Results are indicated per metabolic pathway and according 

to the origin of the probe identified as candidate gene within each pathway. 
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Carotenoids 

A total of 68 probes were selected from the microarray data as being representative of 

candidate genes of the carotenoids pathway and were further tested for their 

significance by regression analysis. These probes correspond to ESTs, which have 

different Brassicas origin, with the largest number in this case from B. napus (n=49). 

A total of 29 probes had at least one significant QTL and within these 22 had a B. 

napus origin. 

When the results of both analyses are combined we can identify regions which harbor 

potential colocalization of QTL as observed in Supplementary figure 1.  For example, 

in linkage group A03 the markers with an eQTL for gene eLCY:2, mapped in an 

interval which spans a similar region to the QTL found  for lutein.  In linkage group 

A05 the markers with an eQTL for BLCY:1 mapped in a similar genomic region 

found for the QTL of lutein and !-carotene. Finally, in linkage group A09 the probes 

corresponding to ZE:2 and CRTISO showed a significant QTL in a region where a 

QTL for violaxanthin and a QTL for neoxanthin were identified. 

 

 

Tocopherols 

From the complete eQTL output we selected a set of thirty-five probes, which are 

known to be involved in the tocopherol pathway. From this set of probes the largest 

number had a B. napus (n=27) origin. After regression analysis a total of 12 probes 

had at least one significant QTL and within these nine had a B. napus origin. 

The combined results allowed us to identify regions in which co-localization of 

mQTL and eQTL for tocopherols was observed (Supplementary figure 2). In linkage 

group A03 the markers with an eQTL for gene VTE4:2 and GGPPS:2 mapped in an 

interval which span a similar region to the QTL found  for !-tocopherol.  In linkage 

group A05 eQTL loci for PDS:2, PDS:3 and GGPPS:2 mapped in a similar QTL 

region found for "- and #-tocopherol. 

Although we found mQTL for "- and #-tocopherol in linkage group A02 none of the 

selected candidate genes showed an eQTL neither in the same region nor on that 

linkage group. 
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Folates 

A total of 39 probes were selected from the microarray data as candidate genes that 

could potentially lead to the production of folate in B. rapa. The majority of these 

probes again  have a B. napus (n=25) origin. 

Twenty out of 39 probes had at least one significant QTL. The highest logp value 

being the one found for DHFR-TS1:2 in linkage group A03. However, when the 

results of the eQTL and mQTL are combined we could not identify regions in which 

both types of QTL co-localize (Supplementary figure 3). Either the identification of 

candidate genes did not include all the potential regulators or the relevant 

transcription factors were not included in the analysis and therefore we missed 

information on potential regulators in the A09 genomic region.  

 

Flavonoids and Phenylpropanoids 

The general phenylpropanoid metabolism leads to the synthesis of the major 

subgroups of flavonoids. To assess which genomic regions are responsible for the 

regulation of the flavonoids variation we performed the eQTL analysis with combined 

expression information obtained from probes that were annotated as candidate genes 

of the phenylpropanoids and flavonoids pathway. 

Out of the total number of probes, 69 were identified as representative for genes from 

the general phenylpropanoids pathway and 120 were identified as genes leading to the 

production of flavonoids. For both groups of probes the EST information had mostly 

a B. napus origin: 47 out of 69 for the phenylpropanoids pathway and 86 out of 120 

for the flavonoids pathway.  

To uncover which loci are controlling the variation in flavonoids within this DH 

population we combined the eQTL and mQTL data. Based on the whole genome 

analysis of the LC-MS centrotype data we previously selected a set of 14 centrotypes 

to be further annotated. The set was identified as a group of flavonoids and mQTL 

analysis was further performed with this subset of centrotypes (Table 2). The QTL 

analysis resulted in 48 significant mQTL (logp > 4.37, FDR=0.05) for these 

metabolites.  Strikingly, in comparison with the results obtained for other targeted 

pathways we obtained more single marker signals in the eQTL analysis 

(Supplementary figure 4). This will be considered when the eQTL and mQTL results 

are compared because it suggests that in the case of the transcriptomics analysis the 
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probe signals could be the result of mishybridizations and/or that significance 

threshold values for detecting an eQTL need still be adjusted to avoid false positive 

results.  

Even with these considerations, and although the region in linkage group A07 was 

detected as a hotspot for the mQTL, we were not able to find any suitable candidate 

gene in that location. Like for the folates, possibly the identification of candidate 

genes did not include all the potential regulators or the relevant transcription factors, 

which also may have caused the failure to detect regulators in the A07 genomic 

region.  

 

 

Regulatory network of the glucosinolate biosynthesis 

To further analyze the complete regulatory network of a pathway we focused on the 

very well characterized pathway in the Brassicaceae that leads to the glucosinolate 

biosynthesis. The variation and regulation of the glucosinolate content has been 

widely studied (Gigolashvili et al. 2007,2008, Kliebestein et al. 2001a,b,2006, Halkier 

and Du 1997, Mithen et al.2000) at different developmental stages and organs and 

with different approaches (Hirai et al. 2007). In Arabidopsis in a Ler vs Cvi RIL 

population two major loci were found through QTL analyses to explain the observed 

variation for most of the aliphatic glucosinolates (Kliebenstein et al. 2001). The 

MAM locus was responsible for the variation in length chain (Kroymann et al. 2001) 

and the AOP locus was responsible for the variation in side chain modification 

(Kliebenstein et al. 2001b). By using an association mapping approach in Brassica 

rapa the regions containing these loci have also been found to be significant in the 

regulation of glucosinolate content (this thesis, Chapter 4). In this same study 

(Chapter 4) in addition to MAM and AOP the transcription factor Myb28 was found to 

play an important role in the variation of the glucosinolate profile in the B. rapa 

accessions. 

In our study in a double haploid mapping population of 92 lines a total of forty-seven 

markers were detected as mQTLs for 15 glucosinolates out of the 19 identified from 

the LC-MS profiling. 

The mass signals for the 15 glucosinolates showed mQTLs that co-localized in 

genomic regions on linkage groups A03 and A09. Previously in an effort to enrich the 

genetic map with informative markers related to the glucosinolate pathway we 
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mapped in linkage group A03 two microsatellite markers that were linked to the 

Myb28 and MAM genes, located at position 57.98cM and 66.81cM respectively. 

Within this region in linkage group A03 spanning 22cM between 50.88cM (marker 

M69) and 72.77cM (marker M77) the heptyl (I,II,III) and glucoraphanin showed a 

QTL peak with the highest logp value at position 63.26cM (M74). Furthermore, hexyl 

III glucosinolate also showed an mQTL within the same region but with a peak 

specifically located at the position of the Myb28 marker.  

In linkage group A09 within a genomic region between 78.95cM and 86.27cM a 

different group of glucosinolates showed overlapping mQTLs. For example, 

glucobrassicanapin and sinigrin showed the highest logp value at 78.95cM (M218), 

glucoerucin and gluconapin showed a QTL peak value at position 72.42 (M214) and 

methsulphonylbutyl showed a QTL peak 86.27(M222).  

The network analysis of the mQTL result indicates a high genetic correlation between 

glucosinolates that have an mQTL in the same region. In the case of linkage group 

A03 mQTL were detected for the long chained glucosinolates and in A09 the mQTL 

were mostly detected for C3, C4 and C5 glucosinolates and their modified forms  

(Supplementary figure 5) 

For eQTL analysis a total of sixty-six probes were selected as representative of 

candidate genes for this pathway with the highest number (n=44) of sequences of B. 

napus origin. From this list of candidate genes 30 showed at least one eQTL (Figure 

4). The genes MAM:2, MAM:1 and Aconitase:3 showed an eQTL in the region on 

linkage group A03 which colocalized with the identified mQTLs for long chained 

aliphatic glucosinolates in that same linkage group. Additionally, the genes AOP:2, 

AOP:1(2), BCAT4:2(2), CYP83:A1:2 ,CYP83:A1:1, CYP79B3:1, FMO2:2, FMO1:2 

and SUR1:1 showed eQTLs in A09 which co-localizes with the identified mQTLs for 

modified glucosinolates in that linkage group. Cluster analyses of the microarray 

expression data of those genes (Figure 5) indicate that multiple genes follow a similar 

expression pattern. The genes that follow this pattern include all the genes, which 

showed an eQTL in A09.  
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Figure 4. 
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To determine if the expression regulation of these genes, which showed an eQTL is 

located at a distant (trans-regulation) or at a local (cis-regulation) level, it is necessary 

to compare the map position of the genes with the eQTL region by anchoring the 

genetic map to the physical map. However, at the time of this thesis there was no full 

B.rapa sequence infromation. Further studies with the aid of new sequence 

information (Xiaowu Wang, IVF-CAAS,China) will soon make such elucidations 

possible. 

(

Figure 5.Cluster analysis of microarray intensity ratio result of the DH lines pairs for the probes that 

showed a significant eQTL.Names of annotated probes corresponding to candidate genes for the 

glucosinolate pathway are depicted on the right. 
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Discussion 

A genetical genomics approach was chosen to gain insight in the genetics of the B. 

rapa metabolome. To illustrate the strength of this approach we selected a group of 

six biosynthetic pathways: carotenoids, tocopherols, folates, flavonoids and 

phenylpropanoids, in order to combine metabolic and expression QTL data obtained 

from a doubled haploid population (DH68). These pathways have been very well 

studied in Arabidopsis thaliana and most of the genes have been characterized 

(Gachon et al.2005).  

Traditionally, the synteny between Brassica and Arabidopsis has assisted in the 

prediction of candidate genes in genomic regions where a phenotypic QTL has been 

detected (Lou et al. 2008, Schranz et al. 2006). In the present study, the metabolites 

were detected in leaves of a Brassica rapa doubled haploid population through 

targeted methods to quantify isoprenoids and folate and also following an LC-MS 

untargeted profiling approach with 14 centrotypes representing flavonoids and 22 

glucosinolates annotated. 

The use of a metabolic targeted approach to identify isoprenoids and folate allowed us 

to further analyze the QTL results and predict a group of candidate genes based on 

synteny. 

On the other hand QTL analysis of the untargeted metabolites was performed with a 

group of 228 centrotypes, which potentially represent different compounds. The 

QTLs detected for the centrotypes clustered in a genomic region in linkage group A7. 

The co-localization of mQTLs in a cluster was an indication that these centrotypes 

possibly shared a common genetic regulator. Further identification of 14 centrotypes, 

which mapped in this QTL cluster, demonstrated that these are biochemically related 

to the flavonoid pathway. Thus, in our study a preliminary mQTL analysis was of aid 

to reduce our dataset of untargeted metabolites and to identify a region with an 

important genetic function for the regulation of the flavonoid pathway. 

To identify influential genes and gene products the genetical genomics approach has 

emerged as a tool to combine expression profiling with molecular marker analysis 

through the use of quantitative trait loci (QTL) analysis in a segregating population  

(Jansen and Nap 2001). For our study we profiled the transcript abundance of the 92 

DH lines with a newly developed microarray using unigenes assembled from EST 

sequences from mainly B. napus, B. rapa and B. oleracea (Trick et al. 2009).  
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The direct comparison of metabolite QTL and eQTL maps has shown the predictive 

capacity of eQTL to detect candidate genes for phenotypic differences in Arabidopsis 

(Wentzell et al. 2007). 

The comparison between metabolite QTL and eQTL in our study revealed co-

localization of both in many cases. The predictive value of the QTL comparison 

through co-localization was very successful in the case of the isoprenoids and the 

glucosinolate pathway but not complete either in the case of the folate or for the 

cluster of mQTLs found for the flavonoid centrotypes.  

Our inability to identify eQTLs related to mQTLs could be caused by the lack of 

inclusion of genetic regulators like transcription factors in our ratcheted analysis. The 

metabolic specific QTL can also be related to loci, which control the flux of 

substrates, post translational regulation of enzymes or newly identified regulatory 

genes. 

Nonetheless, for the aliphatic glucosinolates the eQTLs were consistent with the 

results obtained for the metabolic QTLs. The metabolic network results clearly 

suggest a difference in the correlation between glucosinolates. Further comparison 

with the expression differences results showed that co-localization existed with 

eQTLs found for AOP and MAM. 

The analysis of expression differences of a selected group of candidate genes for these 

selected pathways helped us to focus on well known and characterized genes. 

Although these candidate genes are potential regulators of important pathways 

leading to metabolites of interest, further considerations have to be included in the 

analysis of this type of data. The triplication of the genomes in Brassica has to be 

taken into account, with the presence of paralogues in both the A and C genomes. The 

fact that this microarray was assembled from EST sequences from different Brassicas 

will very likely influence the hybridization results because of the mRNA sequence 

diversity in probe regions (Alberts et al. 2007).  

Additionally in our study we selected probes representing structural genes, which 

probably act as cis-acting factors. In Arabidopsis and barley it has been reported that 

trans-QTL are more abundant than cis-QTL (West et al. 2007, Chen et al. 2010).  

Detailed analysis and annotation of all 24,850 probes with eQTL co-localizing with 

mQTL can lead to detection of these regulating genes. Furthermore, to identify genes 

and the types of regulation underlying each QTL , it will be necessary to anchor the 

genetic map to a physical map (Keurentjes et al. 2007).  Although we believe the data 
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generated in our study is valuable for the elucidation of the genetic regulation of the 

metabolome, additional work is still needed. Currently the amount of B. rapa genome 

sequence data is growing (http://www.brassica.info); this together with bioinformatic 

tools capable of handling such large datasets will make it possible to maximize the 

information obtain from this type of approaches. 
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Supplementary Fig 1.. QTL analysis results of the carotenoids pathway data. Top indicates QTL 

metabolic profiling and the bottom shows QTL expression results of probes representing candidate 

genes, names are listed on the right. Light Yellow (logp=3),yellow(logp=3-5),orange (logp=5-

7),darkorange (logp=7-10),red(logp=>10) 
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Supplementary Fig 2. QTL analysis results of the tocopherols pathway data. Top indicates QTL 

metabolic profiling and the bottom shows QTL expression results of probes representing candidate 

genes, names are listed on the right. Light Yellow (logp=3),yellow(logp=3-5),orange (logp=5-

7),darkorange (logp=7-10),red(logp=>10) 
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Supplementary Fig 3. QTL analysis results of the folates pathway data. Top indicates QTL metabolic 

profiling and the bottom shows QTL expression results of probes representing candidate genes, names 

are listed on the right. Light Yellow (logp=3),yellow(logp=3-5),orange (logp=5-7),darkorange 

(logp=7-10),red(logp=>10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



!"#$%&'()(

( *+,(

 
 

 

 
Supplementary Fig 4. QTL analysis results of the flavonoids pathway data. Top indicates QTL 

metabolic profiling and the bottom shows QTL expression results of probes representing candidate 

genes, names are listed on the right. A.flavonoids candidate genes and B.phenylpropanoids candidate 

genes Light Yellow (logp=3),yellow(logp=3-5),orange (logp=5-7),darkorange (logp=7-

10),red(logp=>10) 
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Supplementary Fig 5. QTL analysis results of the glucosinolates pathway data. Top indicates QTL 

metabolic profiling and the bottom shows QTL expression results of probes representing candidate 

genes, names are listed on the right. Light Yellow (logp=3), yellow (logp=3-5),orange (logp=5-7), 

darkorange (logp=7-10), red(logp=>10) 
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Chapter 6 

General discussion 

Within this thesis different approaches are followed to unravel the genetics of the 

Brassica rapa metabolome in a group of accessions comprising a core collection, and 

in a Doubled Haploid mapping population. To gain insight into the genetic regulation 

of metabolites we took advantage of the genetic and phenotypic diversity that can be 

found within and between the different B. rapa morphotypes. In this chapter the 

established relationships between the genetic and metabolic content in these different 

populations are discussed. 

 

Genetic and phenotypic multivariate analysis for the design of a core collection 

The genus Brassica has a long history of worldwide cultivation and comprises a large 

and diverse group of important vegetable, oil, fodder and condiment crops. B. rapa is 

the most diverse species with the longest cultivation history, and encompasses leafy 

vegetables, turnips and oils. The leafy vegetables include heading Chinese cabbage, 

pak choi, mizuna and mibuna, komatsuna and neep greens. The turnips include 

vegetable and fodder types and the oil types include both the annual oil types and 

biannual oil types (Zhao et al. 2005 and Chapter 1). 

In order to characterize the phenotypic and genotypic diversity of a group of 

accessions we followed a multivariate analysis. Hierarchical cluster analysis based on 

molecular markers (AFLP and microsatellites) identified three groups, very similar to 

the groups found in previous studies in B. rapa (Zhao et al. 2005 and 2007). A group 

with Chinese cabbage and pak choi and other Asian leafy types, but also some 

Japanese turnips, from mainly Asian origin, a group with European turnips, 

broccoletto and some oil types from European origin, and a small group of annual oils 

from Indian origin. The group number and composition obtained with molecular 

markers was highly correlated to the groups based on morphological traits of 

vernalized accessions. However, the value of allele exchange (admixture) and 

relatedness among individuals could only be obtained when molecular data was 

analyzed with STRUCTURE. In further studies we included the STRUCTURE Q 

matrix as a correction term for confounding in association studies (Chapters 3 and 4). 

For the breeding of nutritional-related metabolites it is necessary to differentiate 

subgroups of morphotypes and accessions within these subgroups to identify lines 
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that carry interesting metabolites or metabolite concentration for crop improvement 

and/or for the selection of parental lines to create populations for metabolic QTL 

studies. 

The analysis of metabolite data proved to be very valuable in the classification of 

morphotypes and comparable to the genetic profiling (Fig. 1).  

 

 

Figure 1.Hierarchical cluster UPGMA obtained with (A) 412 molecular markers and (B) 5546 (LC-

MS mass-scan signals) metabolites; the colors indicate the four population subgroups as defined by 

STRUCTURE.  

 

In terms of the analytical tools Random Forests proved to be valuable to select a small 

group of variables from the unidentified LC-MS data that represent or define sub 

populations. Among the metabolites that could be identified after selection of 
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variables that can define or differentiate subpopulations are: isopropyl glucosinolate, 

methylpropyl glucosinolate, hexyl glucosinolate 2, caffeoylquinic acid, chlorogenic 

acid, coumaroylquinic acid, quercetin3-  (2-feruloylsophoroside) 7-diglucoside and 

kaempferol coffeoyl tetraglucoside 

Currently, several genebanks have large well-evaluated Brassica collections. 

The ECP/GR (European cooperative programme for plant genetic resources) Brassica 

database (http://documents.plant.wur.nl/cgn/pgr/brasedb/) contains passport data of 

most of the European Brassica collections (Hintum and Boukema 1993; Boukema 

and Hintum 1998). The CGN (Center for Genetic Resources, the Netherlands, 

http://www.cgn.wur.nl/UK/) harbors a collection of cruciferous crops. Other 

resources for germplasm include the national plant germplasm system of the USA 

(Genetic Resource Information Network (GRIN)) the plant gene resources of Canada 

(GRIN-Canada) and China has collected more than 7000 oilseed and vegetable 

Brassica accessions in its genebank (Wu et al. 2008).  

Presently an effort to define a Brassica rapa Diversity Fixed Foundation Set 

(BrDFFS) representing the genetic diversity within B. rapa is ongoing through a 

collaboration between Wageningen UR Plant Breeding (Wageningen University & 

Research Center, Wageningen, The Netherlands), Vavilov Institute (St Petersburg, 

Russia) and IVF-CAAS (Beijing, China) (Zhao et al, accepted in Genome). A general 

approach for constructing such collections is the selection of a collection after 

clustering of groups based on genetic distances (Hu et al. 2000). After selection of the 

accessions a core collection can be constructed with equally sized subgroups with 

enough within variation to conduct association studies. In future studies our results 

can serve as a valuable reference for the selection of Brassica rapa accessions from 

groups defined by multivariate analyses.  Furthermore we conclude that the high level 

of admixture between groups expressed at phenotypic and genetic level ensures that it 

is possible to design a set of accessions that can harbor enough variation for 

association studies using all subpopulation data combined. 

 

 

Natural population mapping: a complementary approach and new insights into 

candidate genes 

Brassica rapa crop types are the result of different breeding and domestication 

histories around the world. Because adaptation, genetic drift, domestication or 
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selection influence the level of relatedness between types, confounding can be a 

significant problem in association studies. In order to reduce the rate of false-positive 

associations it is then necessary to correct for population structure. Previously, we 

identified with STRUCTURE the presence of four subpopulations, which showed 

correlation with the origin and morphotypes of B. rapa (Chapter 1).  Before further 

following any association method we first evaluated the Principal Coordinates 

Analysis (PCA) in order to introduce an additional confounding correction term. This 

approach together with the insertion of only the kinship matrix in the model did not 

prove to be relevant for our further studies because the result did not show significant 

differences if compared with a model without correction (Chapter 3).  

In general there are two categories of approaches in association studies: candidate 

gene association mapping and genome wide association mapping (Zhu et al. 2008). In 

Chapter 3 we considered whole genome association mapping by investigating the 

genetic association between markers with random positions over the B. rapa genome 

and tocopherols, carotenoids, chlorophylls and folate in a core collection of 168 B. 

rapa accessions. Many of these metabolites showed significant differences in amounts 

between the different sub populations.  Association analysis was performed in several 

steps of increasing complexity with and without correction for population structure 

(Yu et al. 2006) using TASSEL (www.maizegenetics.net).  A total of 243 AFLP, 

Myb-motif targeted and microsatellite (SSR) markers were included in the analysis. 

Additionally, for comparison and as a complementary method, we introduced the use 

of Random Forests for association studies in this type of plant collections. We 

selected markers that can be applied to screen B. rapa collections or breeding 

populations to identify genotypes with elevated levels of important metabolites that 

are considered healthy compounds. These markers met different criteria and eight 

markers were kept as significant after multiple testing correction (q-value) of the 

results obtained with the model with kinship and Q matrix (STRUCTURE) 

correction. Furthermore, sixteen markers selected across methods, including Random 

Forests, are considered as the most promising candidates for marker assisted selection 

and validation. Within this study we showed the feasibility of the `whole genome 

association mapping in a structured population of B. rapa with limited number of 

markers. However, because linkage disequilibrium differs between genomic regions 

and the presence of subpopulations it was not possible to calculate LD decay. 
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To study the variation in glucosinolate content in the same group of accessions we 

followed a different approach profiling SSRs from BACs containing candidate genes 

for the glucosinolates pathway. The profiling of microsatellites allowed us to capture 

the allelic variation across subpopulations and along the linkage group A03. 

The association method was similar to the one applied in Chapter 3, which included 

the kinship and Q matrix of STRUCTURE in the statistical model. We focused on the 

genetic dissection of a major QTL in A03 for glucosinolate variation previously 

identified in a doubled haploid population from a cross between a pak choi and a 

yellow sarson, which explained a large proportion of the variation in several aliphatic 

glucosinolates and was consistent over two seasons. Within our study we profiled 

microsatellite markers linked to the transcription factor Myb28 and the gene involved 

in aliphatic GLS chain elongation (MAM), which were identified through sequence 

information as the major candidates for the QTL region. The microsatellite linked to 

Myb28 was considered as the major regulator of glucosinolate variation because of its 

association to 3-butenyl (gluconapin), the total content of 4C (tot4C) and 6C (tot6C) 

glucosinolates and to the ratio of hydroxylation (rat1). The association of the marker 

linked to Myb28 to the ratio of hydroxylation reflects possible regulation at the 2-oxo 

acid dependent dioxygenase (GLS-OH) locus, which is responsible for the 

biosynthesis of hydroxylated alkenyl glucosinolates.  Besides the markers linked to 

Myb28 and MAM, designed within BACs and contigs with these candidate genes, we 

profiled markers across the linkage group A03. 

In our study the BAC containing the marker KS6, which had a genetic distance of 2.7, 

cM in the physical map of a Korean Doubled Haploid population used for the 

reference map (Mina Jin personal communication), to the BAC containing the AOP 

gene showed association to the total content of alkenyl glucosinolates. These results 

are of relevance for breeding if we consider that the regulation at the GLS-OH locus 

controls the conversion of 3-butenyl (gluconapin) to 2-hydroxy-3-butenyl 

(progoitrin), which is known to cause goiter among animals fed with rapeseed meal 

(Mithen et al. 2000). 

Cruciferous vegetables are known to have potential health effects; the cancer 

preventing properties of these vegetables is due among others to the activity of 4-

MSB isothiocyanates, which are derived from 4-MSB (glucoraphanin) glucosinolates 

by the action of endogenous myrosinase (Sarikamis 2009). Glucoraphanin can be 

converted into 3-butenyl (gluconapin) by AOP-2; in our study we found that 
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gluconapin is the most abundant glucosinolate and  is regulated by several loci in 

A03.  

The candidate gene approach was followed to unravel the genetic dissection of an 

apparently coordinated co-expression and interaction of the genes of the glucosinolate 

biosynthetic pathway in B. rapa. This approach was very successful in separating the 

roles of the closely linked Myb28 and MAM genes contained within the QTL region 

previously identified, and in identification of three additional candidate genes AOP 

and GS-OH involved in side chain modification and Myb29 in transcriptional 

regulation. 

 

 

Metabolomics and transcriptomics: the genetical genomics approach in B. rapa 

To identify genetic loci that explain the variation in secondary metabolites in leaves 

of five-week-old plants we analyzed 92 lines of a doubled haploid population 

developed form an F1 cross between a yellow sarson and a pak choi. We followed an 

untargeted metabolic profiling though LC-MS analysis and a targeted approach to 

identify the isoprenoids and folate composition of the mapping population. QTL 

analysis of the untargeted metabolites was performed with a group of 228 centrotypes, 

which potentially represent different compounds and a group of annotated 

glucosinolates from the LC-MS data. The analysis of the genomic distribution of 

these QTL showed that they were not evenly distributed over the B. rapa genome 

because 112 of the 228 centrotypes mapped on A07. The identification of some of 

these centrotypes demonstrated that these are biochemically related to the flavonoid 

pathway and therefore have a similar or common genetic regulation. However, it is 

still necessary to investigate whether this high correlation and QTL location of 

centrotypes in a hotspot on A07 can be due to technical factors. Traditionally the 

synteny between Brassica and Arabidopsis assists the identification of candidate 

genes in B. rapa as described in Chapter 1. When QTL results of the metabolic 

targeted approach of carotenoids, tocopherols and folate were analyzed it was 

possible to predict a group of candidate genes based on genome synteny and 

colocalization of QTL and candidate gene. However, the genetical genomics 

approach, which combines expression profiling with molecular marker analysis on a 

segregating population has made it possible to use quantitative trait loci (QTL) 

analysis for identification of influential genes and gene products (Jansen and Nap 
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2001). For our study we profiled the transcript abundance of the 92 DH lines with a 

newly developed microarray (Trick et al.2009) using unigenes assembled from EST 

sequences from mainly B. napus, B. rapa and B. oleracea. Using information from 

78,278 probes we found that in total 24,850 probes were detected as significantly 

associated with a marker with a LOD score >3. Furthermore, the whole genome 

profile of transcript abundance in the doubled haploid population of B. rapa showed 

no evidence for hotspots of eQTLs : QTL were distributed over the whole genome 

with a few genomic regions with more clustered eQTL (Chapter 5). To gain some 

insight in the genetic regulation of the metabolites detected by LC-MS profiling 

(centrotypes) and the targeted metabolites we selected six different biochemical 

pathways: carotenoids, tocopherols, folate, glucosinolates, flavonoids and 

phenylpropanoids. From a total of 397 candidate genes related to these pathways, 157 

showed at least one significant QTL (LOD>3, Table 1) Although these candidate 

genes are potential regulators of important pathways leading to metabolites of 

interest, several considerations have to be included in further analysis of this type of 

data. The presence of orthologues of the A and C genomes and paralogues within the 

A and C genomes resulting from the triplication of the genome in Brassica has to be 

taken into account. For example, this microarray was assembled from EST sequences 

from different Brassicas, which very likely will influence the hybridization results 

because of the mRNA sequence diversity in probe regions (Alberts et al. 2007).  

Additionally in Arabidopsis and barley it has been reported that trans- QTL are more 

abundant than cis-QTL (West et al. 2007, Chen et al. 2010). In our study we selected 

probes representing structural genes, which probably act as cis-acting factors. 

Currently the B. rapa genome sequence data available is growing 

(http://www.brassica.info), this together with bioinformatics tools capable of handling 

such large datasets will make it possible to identify genes and the types of regulation 

underlying each QTL. 
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Table 1. eQTL results for selected biochemical pathways. Candidate genes represented on the array are 

shown in the Original columns and number of candidate genes with significant QTL (LOD>3) are 

shown in the interest columns. 

 

In this thesis we followed different approaches to dissect the genetics of complex 

traits focusing mostly on metabolite variation. We first demonstrated through 

multivariate methods that Brassica rapa carries a wide metabolic variation, which is 

found across the different morphotypes. Through different association mapping 

methods and following a genome wide and a candidate gene approach we were able 

to link this metabolic variation to genomic regions and to dissect QTL results found in 

DH populations (Chapter 4). Our assumptions about the candidate genes for the 

isoprenoids and the glucosinolate pathway located within these QTL regions can soon 

be confirmed with the availability of the genome sequence. However, further work 

will be needed to validate the function of these genes with for example knock out, 

over expression or mutational analyses. One major constraint at the moment is the 

lack of such validation methods in B. rapa, even though several groups work on 

optimization of transformation.  The markers identified can still be useful for marker 

assisted selection of lines, for crossings or parental lines for breeding purposes.  

The construction of an expanded core collection based on the data generated within 

this thesis and following similar multivariate approaches can increase the chance of 

making better choices for allelic and phenotypic variation. Based on the impact that 

population structure had on our results we suggest in Brassica rapa to follow an 

association mapping approach in which the confounding effects or population 

structure are not present. A core collection can be “designed” to contain enough 

within variation to follow association studies in subpopulations but should also 

increase the frequency of rare alleles. In B.  rapa this could mean to rely on 

experimental crosses to create nested association mapping populations, as developed 

for maize (Yu et al. 2008) . If accessions of the small distinct group of spring oil 

types, which coincidentally are the ones that respond better in microspore culture and 

in vitro systems, are used as standard to cross with 20-30 selected lines of diverse 

morphotypes, followed by selfing or fixing through DH culture, large RIL populations 

can be developed.  

Although the work done in Arabidopsis has served as a reference for B. rapa research 

for many years, sequence information has already shown that gene map prediction 
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based on macrosynteny is not very informative. Additionally, one important aspect in 

the complexity of the B. rapa genome is the presence of paralogues, Our preliminary 

results with the genetical genomics approach, co-localization with metabolic QTLs 

and the use of a multispecies microarray indicate a possible subfunctionalization of 

the paralogues in B. rapa.  In this case the genetic dissection of traits must separate 

the main effect of the paralog and the interaction with other genomic regions. One 

research goal in this direction could be the development of introgression line 

populations, which should include QTL results in the selection of genomic regions for 

fine mapping and gene expression profiling.  

The Brassica rapa community will soon benefit from the availability of sequence 

information from several crop types. It is then necessary to develop new methods for 

genetic dissection of traits and/or to follow approaches developed for much more 

complex plant systems with similar domestication and crossing patterns i.e maize than 

to rely solely on work done in model species like Arabidopsis. 
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Summary 

In this thesis the metabolic variation in Brassica rapa is described based on results of 

metabolic profiling of a core collection of 168 accessions representing the different 

crop types and geographical origin and a Doubled Haploid population. In Chapter 2 

we describe the genetic and phenotypic variation of this core collection to explore the 

possibility of following association mapping methods to identify genes involved in 

metabolic regulation. We explored through a genome wide and candidate gene 

approach different association mapping methods in a core collection in Chapters 3 

and 4 respectively and in Chapter 5 we combined the QTL analysis of targeted and 

untargeted metabolites profiled through LC-MS with expression QTLs following a 

genetical genomics approach aiming to detect genes underlying the metabolite QTL.  

The genetic diversity evaluated through the screening of AFLP and SSR markers was 

correlated with classification of accessions using morphological and metabolic trait 

values. The relationship between accessions in groups was compared using 

hierarchical clustering and the STRUCTURE program. Using Random Forests 

classification a set of metabolites was selected that differentiated the different sub 

groups as determined by STRUCTURE (Chapter 2). Based on the classification into 

subpopulations using the STRUCTURE program we included the subpopulations as a 

correction term in our statistical model for association studies (Chapter 3). 

Additionally, because of the increasing amount of data that will be soon available 

through sequencing technology we tested the use of Random Forests in the search for 

marker-trait association for the isoprenoids pathway. Using the results obtained with 

the linear models as implemented in TASSEL and the results obtained in Random 

Forests we found a set of 16 significant markers with potential use for marker assisted 

selection in breeding for several isoprenoids 

The determination of map positions through synteny prediction and genetic mapping 

of a group of genes from the glucosinolate pathway lead us to identify Myb28 and 

MAM as candidate genes mapping under a previously detected major QTL for 

glucosinolates We followed an association mapping approach to investigate their role 

in the variation in glucosinolates in the core collection by profiling 37 SSR markers, 

which included markers linked to these candidate genes and markers distributed along 

different positions in linkage group A03 (Chapter 4). Interestingly, not only MAM and 

Myb28, but the AOP and GS-OH genes involved in side chain modification and 
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Myb29 in transcriptional regulation were also associated with glucosinolate levels. A 

genetical genomics approach was followed to identify candidate genes for variation in 

metabolites of six biosynthetic pathways: carotenoids, tocopherols, folates, 

glucosinolates, flavonoids and phenylpropanoids, based on the co-localization 

analysis and comparison between metabolic (m)QTLs and expression (e)QTLs 

(Chapter 5). A Doubled Haploid (DH) population was profiled for metabolite content 

and variation through targeted and LC-MS untargeted approaches. Additionally, the 

same population was profiled for transcript variation with a newly developed 105K 

Cogenics array assembled using mainly EST sequences from three species: B. napus, 

B. rapa and B. oleracea. Co-localization of eQTLs and mQTLs for several 

isoprenoids (tocopherols and carotenoids) and glucosinolates lead us to the 

identification of candidate genes for these pathways. However, further work is needed 

to identify the gene or genes underlying a major cluster of QTLs for 112 centrotypes 

derived from the LC-MS untargeted data. The results obtained through this combined 

approach and considerations that need to be taken into account when performing these 

types of studies with regard to identification of paralogues and the use of a multi 

Brassica species microarray for transcript profiling in Brassica rapa are discussed. 

In the final Chapter, the combined use of core collections encompassing the genetic 

diversity within B. rapa and biparental DH populations to unravel the genetic 

regulation of the metabolome are discussed. 
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Samenvatting 
 

In dit proefschrift is de variatie en genetische regulatie van metabolietsamenstelling in 

bladeren van Brassica rapa bestudeerd en zijn een aantal genetische loci op het genoom en 

kandidaatgenen voor die regulatie geïdentificeerd. Voor dit onderzoek is zowel een B. rapa 

core-collectie samengesteld uit materiaal van genenbanken en veredelingsbedrijven, die de 

verschillende gewastypes en de verschillende geografische herkomsten representeert, als een 

populatie van verdubbelde haploïden  gecreëerd. In hoofdstuk 1 wordt het genus Brassica en 

de soort B. rapa beschreven, met nadruk op de enorme morfologische variatie die tot uiting 

komt in de verschillende gewassen (bladgroentes als Chinese kool en Paksoi, knolgewassen 

als meiraapjes en voederraap, oliegewassen en groentes waarvan de bloeiwijze geconsumeerd 

worden zoals broccoletto en taicai). In hoofdstuk 2 is de genetische variatie, gebaseerd op 

moleculaire merkers, en de fenotypische variatie (zowel morfologische eigenschappen als 

metabolietsamenstelling) van de 168 accessies beschreven, met als doel te kijken in hoeverre 

deze verschillende datasets leiden tot vergelijkbare classificaties van de core-collectie en in 

hoeverre genetische kartering via associatie-genetica een optie is voor B. rapa. In de 

hoofdstukken 3 en 4 zijn verschillende statistische modellen getoetst om de associaties tussen 

genetische merkers en individuele metabolieten op te sporen, door genoombreed allelische 

variatie in merkers over de accessies te bepalen, of door juist in te zoomen op merkers die 

fysisch gekoppeld zijn aan genen die betrokken zijn bij de biosynthese van specifieke 

metabolieten. In hoofdstuk 5 is de genetische regulatie van metabolietsamenstelling 

onderzocht door de kwantitatieve variatie in metabolieten en genexpressie te meten in de 

populatie verdubbelde haploïden: deze aanpak word `genetical genomics`genoemd, en heeft 

als doel genen die de variatie onder een QTL (genetisch locus dat een deel van de genetische 

variatie voor een bepaalde kwantitatieve eigenschap verklaart) veroorzaken, te identificeren.  

 De genetische diversiteit in de core-collectie, geëvalueerd door de accessies te 

screenen met AFLP- (Amplified Fragment Length Polymorphism) en microsatelliet- (SSR) 

merkers, is gecorreleerd aan de classificatie gebaseerd op morfologische en metaboliet 

variatie. De genetische diversiteit wordt berekend via hiërarchische clustering en via het 

programma STRUCTURE, en de resulterende subgroepen worden met elkaar vergeleken. Met 

de statistische classificatie-methode RANDOM FORESTS is een aantal metabolieten 

geselecteerd die op basis van kwantitatieve variatie de verschillende groepen, zoals bepaald in 

STRUCTURE, kunnen onderscheiden (hoofdstuk 2). 
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 In hoofdstuk 3 wordt de allelische variatie in AFLP- en SSR-merkers gerelateerd aan 

variatie in glucosinolaten, tocopherolen, carotenoïden en folaat met behulp van verschillende 

statistische methoden, waarbij de groepen zoals gedefiniëerd in STRUCTURE worden 

ingevoerd als correctiefactoren. De geschiktheid van een geheel nieuwe statistische methode 

werd getoetst, namelijk RANDOM FORESTS, die vooral geschikt is voor grote datasets, 

zoals gegenereerd in metabolomics- en transcriptomicsonderzoek, om associaties van 

genetische merkers met variatie in metabolieten op te sporen. De gecombineerde resultaten 

zoals verkregen met de lineaire methodes, gecorrigeerd voor subpopulaties, en RANDOM 

FORESTS, resulteerde in een set van 16 merkers die significant geassociëerd zijn met 

gehaltes van specifieke isoprenoïden, en die gebruikt kunnen worden in de merkergestuurde 

veredeling voor optimale metabolietsamenstelling. 

 De genetische positie van een groot aantal genen uit de glucosinolaat-biosyntheseroute 

is bepaald via genetische kartering en voorspeld op basis van Brassica-Arabidopsis syntenie. 

Samenvallen van de genetische posities van deze genen en QTLs voor glucosinolaat-

samenstelling in het blad van B. rapa, leidde tot de hypothese dat twee genen, Myb28 en 

MAM, mogelijk de variatie in glucosinolaat-samenstelling verklaren. Dit werd nader 

onderzocht in een associatie-studie waarbij de associatie tussen glucosinolaat-samenstelling in 

het blad van de 168 verschillende accessies en de allelische variatie in 37 SSR merkers 

gelegen op koppelingsgroep A03, waaronder merkers gekoppeld aan glucosinolaat-

biosynthese en transcriptie regulerende genen, werd berekend (hoofdstuk 4). Dit toonde aan 

dat niet alleen allelische variatie voor MAM en Myb-28, maar ook voor genen betrokken bij 

modificatie van de zijketens, AOP en GSL-OH, en de transcriptiefactor Myb-29, geassociëerd 

waren met variatie in glucosinolaat-gehaltes in de core-collectie.  

 In hoofdstuk 5 werd de zogenaamde genetical genomics-aanpak gevolgd met als doel 

kandidaatgenen te identificeren die de variatie in metabolieten uit zes biochemische routes 

bepalen. Het betrof de carotenoïden, folaat, tocopherolen, glucosinolaten, flavonoïden en 

phenylpropenoiden. Hiervoor werd de metaboliet-samenstelling bepaald in blad van zes 

weken oude planten van de verdubbelde haploïden-populatie door middel van LC-QTOF-MS 

en gerichte analyse van specifieke metabolieten. Van hetzelfde materiaal werd RNA 

geïsoleerd om variatie in genexpressie te meten met de Cogenics array, die105.000 probes telt, 

gebaseerd op EST (Expressed Sequence Tags) sequenties van B. rapa, B. oleracea en vooral 

B. napus. Co-lokalisatie van QTLs voor metabolieten (mQTL) en een subset van de 

transcripten (namelijk de genen waarvan de rol in de biosynthese van de geselecteerde 

metabolieten bekend is) (eQTL) leidde tot een aantal kandidaatgenen voor de regulatie van 
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een aantal glucosinolaten, tocopherolen en carotenoïden. Voor een cluster van QTLs voor 112 

centrotypes geïdentificeerd met LC-QTLOF-MS op koppelingsgroep A07 werden nog geen 

kandidaat-genen geïdentificeerd. Verdere analyse is nodig als er ersteen annotatie van alle 

probes op de array beschikbaar is. In dit hoofdstuk worden de resultaten besproken, met focus 

op de rol van paralogen en de (on)mogelijkheden om met de Cogenics array expressie 

verschillen van de verschillende paralogen te bepalen.  

 In het afsluitende hoofdstuk worden de mogelijkheden besproken die een 

gecombineerde aanpak van QTL-kartering en genetical genomics in segregerende populaties 

(verkregen via het kruisen van twee ouders) en van associatiestudies in grote core collecties 

biedt om de genetica van het metaboloom te ontrafelen. Hierbij wordt ingegaan op de 

genetische resolutie van beide methodes en de beschikbare allelische variatie. 
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