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Abstract 
The research described in this thesis is about ion behaviour in milk systems 

as a function of changing conditions (pH, ionic strength, addition of 

electrolytes and non-electrolytes). The focus was on (i) quantification of the 

ion equilibria in milk systems based on experimental conditions, (ii) 

development of quantitative models describing the ion equilibria. The 

so-called Donnan Membrane Technique (DMT) was successfully applied to 

determine the concentrations of free Ca2+, Mg2+, Na+ and K+ ions in milk-like 

systems. Next, models were developed to describe ion equilibria in simulated 

milk ultrafiltrate solution (SMUF) as a first step to build models for milk 

systems. Freshly prepared SMUF appeared not to be in thermodynamic 

equilibrium regarding the supersaturation of calcium phosphate. Therefore, 

the equilibrium ion speciation (EIS) model and the dynamic ion speciation 

(DIS) model were developed for SMUF at equilibrium and at initial state, 

respectively. Both EIS and DIS models gave satisfactory predictions in ion 

equilibria in SMUF enriched with different electrolytes. Also, addition of 

non-electrolytes such as various disaccharides appeared to remarkably 

increase the Ca2+ and H+ ion activities in SMUF and milk. The observed 

results could be explained by a theory called Mean Spherical Approximation 

(MSA), which suggests that excluded volume effects due to addition of 

sugars account for the increase in Ca2+ and H+ ion activity coefficients and 

thus on Ca2+ and H+ ion activities. Based on the EIS and DIS models, a model 

named Milk Ion Speciation (MIS) was built to describe ion equilibria in milk. 

The MIS model was able to predict the ion composition in milk and milk 

enriched with different electrolytes. In addition, the methodologies of Ca2+ 

activity measurement were reviewed. We found that the calcium ion selective 

electrode (Ca-ISE) underestimated the Ca2+ activity at ionic strength lower 



than 0.1 mol/kg water compared to DMT. It appeared that the ionic 

composition of conventional calibration standards significantly affects the Ca 

ion activity measurement. A series of new calibration standards, having 

similar composition to milk serum, was developed and this remarkably 

improved the Ca2+ activity measurement in milk-like systems. The developed 

ion speciation models were carefully evaluated. Particularly, the current 

limitations of the models such as the nature of CCP and the effect of adding 

polyphosphate were intensively discussed. Moreover, the models were tested 

to calculate ion composition in cheese. It turns out that the models offer great 

potential to correlate ion properties with the functional properties of dairy 

products. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table of Contents 
 
1. General Introduction...............................................................................11 

2. Simultaneous determination of free Ca2+, Mg2+, Na+ and K+ ion 

concentrations in simulated milk ultrafiltrate and reconstituted skim milk 

using the Donnan Membrane Technique ............................................... 27 

3. Modelling ion composition in simulated milk ultrafiltrate (SMUF) I. 

Influence of calcium phosphate precipitation........................................ 51 

4. Modelling ion composition in simulated milk ultrafiltrate (SMUF) II. 

Influence of pH, ionic strength and polyphosphates.............................. 85 

5. Effect of Disaccharides on Ion Properties in Milk-based Systems...... 107 

6. Quantification and calculation of the ion composition in reconstituted 

skim milk and the consequences of adding electrolytes: HCl, NaCl, KCl, 

CaCl2 and Na2HPO4............................................................................. 139 

7. Accurate determination of the Ca2+ activity in milk-based system by 

Ca-ISE: effects of ionic composition on the single Ca2+ activity 

coefficient and liquid junction potentials............................................. 177 

8. General Discussion .............................................................................. 197 

9. Summary.............................................................................................. 227 

10. Samenvatting ....................................................................................... 233 

11. Acknowledgements ............................................................................. 241 

12. Curriculum vitae .................................................................................. 245 

13. List of publications .............................................................................. 247 

14. Overview of completed training activities........................................... 249 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 

Chapter 1  

General Introduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 1 

 
 
- 12 - 

1.1 Ion equilibria 

This thesis is about the ion behaviours in milk and systems derived from milk. 

The mineral fraction of milk is relatively small (approximately 8-9 g L-1) 

(Gaucheron, 2005). Potassium, sodium, calcium and magnesium ions are the 

main cations, and phosphate, citrate and chloride are the dominant anions. 

Milk minerals are partitioned between the colloidal and aqueous phases. 

Approximately 70% of calcium, 30% of magnesium, 50% of phosphate and 

10% of citrate are present as undissolved complexes in casein micelles, 

named colloidal calcium phosphate (CCP) (Holt, 1997). In the milk serum 

phase, salts exist either as free ions or as ion pairs/complexes. Sodium and 

potassium ions form only weak ion pairs with chloride, citrate and phosphate 

and therefore mainly remain as free ions. The divalent cations (Ca2+ and Mg2+) 

are mainly complexed with citrate and to a lesser extent with HPO4
2-. There is 

a dynamic and very rapidly attained equilibrium between the ion pairs and 

the free ions in the aqueous phase. Moreover, there is a dynamic but slowly 

attained equilibrium between salts in the aqueous phase and colloidal phase 

(Walstra & Jenness, 1984). The ion equilibria are known to play an important 

role in the structure and stability of casein micelles (Horne, 1998; Walstra, 

1990). Alterations of the ion equilibria induce significant changes in the ionic 

composition between the colloidal phase and aqueous phase. This will have 

effects on the physicochemical properties of casein micelles and the stability 

of products during processing and storage (De La Fuente, 1998; Fox & 

McSweeney, 1998; Huppertz & Fox, 2006). Therefore, it is of great 

importance to understand the ion equilibria under practical conditions. 

 

1.2 Ion equilibria – thermodynamic considerations 

The properties of a salt solution, such as the state of ionization of the various 

components, are not governed by concentrations but by activities (Walstra & 
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Jenness, 1984). For a given ion species i, the general relationship between 

activity ai and (molality) concentration mi is written as follows: 

iii γ⋅= ma                                                  (1) 

where γi is the molal activity coefficient. The same form of the equation is 

valid for molar concentrations but it should be realized that the activity 

coefficient depends on the unit chosen; in this thesis we will use the symbol 

yi for the molar activity coefficient to underline this dependency. 

 

As described in section 1.1, ions in milk systems are present in several forms, 

such as free ions, ion pairs/complexes and undissolved compounds. In other 

words, there are many association and dissociation reactions ongoing in milk, 

resulting in formation of dynamic ion equilibria. All the reaction rates of the 

ions depend on their activities. For example, the reaction for CaCl+ ion pair 

formation is given by: 

Ca2+ + Cl- ↔ CaCl+                                            (2) 

For the association equilibrium of CaCl+, we have an association constant: 
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Another example of solid CaHPO4 formation is given by: 

Ca2+ + HPO4
2- ↔ CaHPO4 (s)                                  (4) 

For solid precipitation, we have a solubility product: 

−−− ⋅⋅⋅=⋅= +++
2

HPOCa
2

HPOCa
2

HPOCaCaHPO 4242424
γγmmaaK        (5) 

where the activity of the solid is put to unity on the mole fraction scale and 

therefore does not appear in the equation. The KCaCl
+ and KCaHPO4 used here 

are intrinsic constants. They pertain to activities and can apply only to 

concentrations at infinite dilution. For not very diluted solutions (ionic 
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strength > 0.01 mol/kg water), the values of activity coefficients determine 

the activities of ion species together with the concentration according to 

equation (1). The values of activity coefficient can be obtained by using 

models, or by experiment but then mean activity coefficients and activities 

must be used in the case of ions; due to the requirement of electro-neutrality, 

it is not possible to do measurements with separate ions. Various models have 

been developed to describe ion activity coefficient in solutions, such as the 

Debye-Hückel limiting law, extended Debye-Hückel equation, Guggenheim 

equation and Davies equation. The details of these models have been 

reviewed by van Boekel (2008) and will not be explained in this thesis. The 

Davies equation (Davies, 1962) is an empirical model that has been widely 

used because it gives reasonable prediction of the ion activity coefficient for 

a solution with an ionic strength up to 0.5 mol/kg water. The Davies equation 

is written as follows: 

log(γi) = -0.5 zi
2 (

I
I

+1
 – 0.2 I), (I < 0.5mol/kg water)             (6) 

where zi is the charge of ion species i, I represents the effective ionic strength, 

which can be calculated as follows: 

∑ ⋅=
i

2
ii2

1 zmI                                             (7) 

However, all models are approximations in describing ion activity 

coefficients. The accuracy of model calculation highly depends on the 

complexity of the system. For a multicomponent system, ion pairs/complexes 

formation must be taken into account for the calculation of ionic strength. 

Otherwise, errors may exist for the values of activity coefficients.  
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1.3 Ion equilibria – Effects on milk proteins 

Aggregation and gelation of denatured dairy proteins can be induced by the 

presence of divalent cations (Bryant & McClements, 2000). The proposed 

mechanism is divalent cation bridging, in which two negatively charged 

regions on the protein are brought together by electrostatic attraction to the 

positive ion. Together with hydrophobic interaction, divalent cation bridging 

via colloidal calcium phosphate is thought to stabilize the casein micelle 

(Horne, 1998). During acidification, colloidal calcium phosphate is 

solubilized (Dalgleish & Law, 1989), and the kappa-casein micellar tails are 

collapsing (Vasbinder et al., 2003). The subsequent aggregation of casein has 

been proposed to be driven by a complex interaction including hydrophobic, 

van der Waals, and calcium-bridging attractions (Lucey, 2002). 

 

Some direct evidence for the important role of salts in milk systems can be 

found in recent literature. The increase in ionic strength by adding NaCl, has 

a significant effect on ion speciation in milk such as a decrease in pH, an 

increase in Ca2+ concentration, a decrease in the activity coefficient of ionic 

species and an increase in the hydration of casein micelles (Gaucheron, 2005; 

Huppertz & Fox, 2006). As a result, several properties of milk are changed, 

e.g., the rennet coagulation time of milk is increased (Famelart et al., 1999; 

Van Hooydonk et al., 1986) and the ethanol stability is reduced (Huppertz & 

Fox, 2006). Puvanenthiran et al. (2002) showed a difference in gel hardness 

in whey-supplemented acid gels with differing lactose and mineral 

compositions. The authors also found that in the case of the highest mineral 

concentration, no gelation was observed at all. Philippe et al. (2003) studied 

the physicochemical properties of skim milk enriched with CaCl2. The results 

showed that the behaviour of colloidal calcium phosphate seemed to be 

unchanged whatever the added calcium concentration. However, addition of 
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Ca to skim milk caused an increase in micellar density and resulted in a more 

compact micellar core. Choi et al. (2007) demonstrated that the concentration 

of colloidal calcium phosphate (CCP) associated with the casein micelles had 

an important influence on the properties of rennet-induced gels. Udabage et 

al. (2001) reported that addition of citrate or EDTA reduced the storage 

modulus of rennet-induced gels and above certain concentration rennet 

gelation was inhibited completely (10 mmol/kg milk). Mizuno and Lucey 

(2007) investigated the properties of milk protein gelation formed by addition 

of tetrasodium pyrophosphate (TSPP). The authors proposed a mechanism in 

which TSPP-induced gelation occurs when the added TSPP acts with calcium 

as a cross-linking agent between dispersed caseins. This provided 

fundamental information on the interactions between emulsifying salts and 

caseins that could be useful for the control of textural and functional 

properties of processed cheese. In summary, it is clear that control of the 

specific ion equilibria in dairy systems provides a way to control the 

functional properties of milk proteins and their gels.   

 

1.4 Ion equilibria – Quantification 

In general, the total ion concentrations in milk can be determined by 

inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 

cations and by anion exchange chromatography for anions (Asfaw & Wibetoe, 

2005; Gaucheron et al., 1996; Nobrega et al., 1997). However, the 

concentrations and activities of free divalent cations, such as Ca2+ and Mg2+, 

are known to play more important roles than the total ion concentrations in 

the physicochemical properties of casein micelles. Ca2+ and Mg2+, along with 

pH, affect the stability of the caseinate system and its behaviour during milk 

processing, especially in the coagulation of milk by rennet, heat and ethanol 

(Fox & McSweeney, 1998). The free Ca2+ ions can influence the environment 
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of the negatively charged casein micelles, leading to enhancement or 

reduction of their stability (Horne & Parker, 1981). Traditional methods for 

measuring Ca2+ activity or concentration in milk are based on the cation 

exchange resin technique (Christianson et al., 1954; Holt et al., 1981; 

Muldoon & Liska, 1969; Van Kreveld & Van Minnen, 1955) and the 

murexide method (Holt et al., 1981; Tessier & Rose, 1958). However, these 

methods have disadvantages such as being time-consuming (Muldoon & 

Liska, 1969) and inaccurate (Holt et al., 1981; Neville et al., 1995). So far, 

the calcium ion selective electrode (Ca-ISE) (Geerts et al., 1983; Holt et al., 

1981; Lin et al., 2006; Silanikove et al., 2003; Tsioulpas et al., 2007) has 

been used to rapidly determine free Ca2+ activity in milk. However, the 

Ca-ISE may suffer from matrix effects (Holt et al., 1981; Neville et al., 1995), 

which means that the composition of the sample may affect the accuracy of 

Ca2+ ion activity measurement. This requires that the calcium electrode must 

be properly calibrated in standards with composition similar to the samples, 

but such standards have not been developed yet. To measure Mg2+ activity or 

concentration, a cation exchange resin technique has been developed by Van 

Kreveld and Van Minnen (1955). However, this method has the same 

disadvantages as described for the measurement of Ca2+. More recently, a 

new method named Donnan Membrane Technique (DMT), based on Donnan 

equilibrium in a negatively charged membrane, has been developed by 

Temminghoff et al. (2000) and used to measure concentrations of free metal 

ions simultaneously in soil water. The DMT has been shown to be a robust 

and accurate technique to simultaneously determine different metal ions. It 

seems worthwhile to explore the potential of DMT for determination of free 

metal ions in food system.  
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1.5 Ion equilibria – Ion speciation models 

Ion speciation models that describe the ion equilibria of milk-like systems 

have been developed since the 1980s. Wood et al. (1981) attempted to 

calculate the ion concentrations in a simulated milk salt solution. For the ease 

of calculation, assumptions were made in the model such as no presence of 

magnesium, phosphate esters and proteins, and potassium was regarded as 

equivalent to sodium. Lyster (1981) extended the model from Wood et al. 

(1981), by including an equilibrated solid phase at different temperatures and 

pH values. Holt et al. (1981) developed a model to describe the ionic 

composition in milk diffusate, including all the relevant components in milk 

diffusate except milk proteins, and the calculated free Ca2+ and Mg2+ 

concentrations were in reasonable agreement with experiment. These models 

have been used for many years as useful tools to describe the ionic 

composition in aqueous phase of milk or dairy products (Gaucheron et al., 

2000; Kent et al., 1998; Le Graët & Gaucheron, 1999; Morris et al., 1988; 

Philippe et al., 2003), and to understand the interrelationship between the 

major ions and the physicochemical properties of casein micelles. However, 

these models did not include the colloidal calcium phosphate (CCP) and 

casein-bound cations in casein micelles. Therefore, their application in 

prediction of ion partitioning in milk and dairy products is still limited. More 

recently, Holt (2004) developed an equilibrium thermodynamic model for 

calculation of the ion partitioning in milk in which the colloidal calcium 

phosphate is assumed to be in the form of calcium phosphate nanoclusters. A 

generalized empirical formula for the calcium phosphate nanoclusters was 

used to define the molar ratios of small ions (Ca, Mg, Pi and citrate) to a 

casein phosphorylated sequence (Holt, 2004). This model provided a 

reasonable prediction of ion partitioning in milk in comparison with the 

experimental results of White and Davies (1958, 1963). Still, this model 
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requires further validation with more ion compositional data of milk samples 

under different conditions. Mekmene et al. (2009) presented a model to 

predict the ion partitioning between the micellar phase and the aqueous phase 

in milk and mineral-enriched milks (e.g., with added NaCl, CaCl2, Na3Citrate 

and Na2HPO4). This latter model is based on the earlier model of Holt et al. 

(1981) by integrating interactions of cations in casein micelles and taking 

into account the solubility of calcium phosphate in the micellar phase. The 

model was validated to give predictions generally agreeing with the literature 

experimental results, though differences in the order of 10 to 20 % still 

remain between model and experimental results. Moreover, this model is 

used to predict ion partitioning in milk and milk enriched with different 

electrolytes at a fixed pH value of 6.75. However, in reality, addition of 

electrolytes to milk induces changes in pH. Very recently, Mekmene et al. 

(2010) presented a model to simulate the ion equilibria of milk upon 

acidification. The model gave reasonable predictions of ion equilibria 

compared to experimental results. However, their model is not a generic 

model to describe the ion equilibria of milk at various conditions. Moreover, 

magnesium is considered to exist in the micellar phase as Mg3citrate2, which 

is an incorrect assumption since Mg is not present in the form of Mg3citrate2 

as reported by Alexander and Ford (1957). Consequently, a generalized 

model to describe the ion equilibria of milk under various conditions should 

be developed.  

 

1.6 Aim and outline of this thesis 

The objective of the research described in this thesis is first to quantify ion 

equilibria in milk and milk-derived systems as affected by practical 

conditions (e.g. with addition of different electrolytes and non-electrolytes). 

Second, we aim to develop ion speciation models that can be used to predict 
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the behaviour of ions in milk and milk derived systems as a function of 

changing conditions.  

 

After this introductory chapter, Chapter 2 describes the application of the 

Donnan Membrane Technique (DMT) in milk-like systems. DMT was 

investigated for its potential to determine the concentrations of free Ca2+, 

Mg2+, Na+ and K+ ions in milk-like systems.  

 

Simulated milk ultrafiltrate solution (SMUF) solution represents the milk 

serum in terms of mineral composition. Chapter 3 and Chapter 4 focus on 

developing models for ion equilibria of SMUF as a start for further 

establishment of ion equilibria model for milk.  

 

Earlier studies showed that sugars, as non-electrolyte, have significant effects 

on Ca2+ ion activities and pH in buffer solutions, but without offering 

reasonable explanations. Chapter 5 studies the influence of various 

disaccharides on ion equilibria in milk-like systems by using a more recent 

theory named Mean Spherical Approximation (MSA). 

 

Based on the models for ion equilibria of SMUF, a model named Milk Ion 

Speciation (MIS) was built and tested for milk under various conditions, as 

shown in Chapter 6.  

 

Ca-ISE was reported to suffer from matrix effects. It is investigated whether 

the ion compositions of calibration standards have an effect on the ion 

activity coefficients and liquid junction potential, thereby affecting the Ca2+ 

activity. Chapter 7 focuses on developing new calibration standards for 

Ca-ISE to improve the accuracy of Ca2+ activity measurements.  
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Chapter 8 is the general discussion in which the developed ion speciation 

models are critically discussed in terms of limitations and opportunities. 

Moreover, the practical use of the models is tested for a concentrated system 

derived from one-month-old Cheddar cheese, to investigate the predictive 

capacity of the models developed.  
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Abstract 
 

This study focused on determination of free Ca2+, Mg2+, Na+ and K+ 

concentrations in a series of CaCl2 solutions, simulated milk ultrafiltrate 

(SMUF) and reconstituted skim milk using a recently developed Donnan 

membrane technique (DMT). A calcium ion selective electrode was used to 

compare the DMT results. The study showed that the free Ca2+ concentrations 

measured by the DMT agreed well with calcium electrode data. 

Concentrations of free Ca2+, Mg2+, Na+ and K+ measured by the DMT agreed 

with concentrations predicted by existing ion speciation models. It is 

concluded that the DMT is suitable to measure various free metal ion 

concentrations simultaneously in complex milk-type systems.  

 

Keywords: free Ca2+, Mg2+, Na+ and K+ concentration, Donnan Membrane 

Technique (DMT), calcium ion selective electrode, simulated milk 

ultrafiltrate (SMUF), reconstituted skim milk  
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2.1 Introduction 

 

The mineral fraction is a small fraction of milk (approximately 8-9 g L-1), and 

contributes to the nutritional quality of milk and largely determines the 

physicochemical state of milk, thereby determining the conformation and 

stability of milk proteins (Fox & McSweeney, 1998; Gaucheron, 2005; 

Walstra & Jenness, 1984).  

 

Potassium, sodium, calcium and magnesium ions are the main cations in milk. 

The monovalent cations Na+ and K+ are present mainly in the free form and 

only to a limited extent in the form of ion pairs. The divalent cations, Ca2+ 

and Mg2+, play roles in the physicochemical properties of casein micelles, 

such as gelation induced by acid and rennet, heat stability, ethanol stability 

and sediment formation (Fox & McSweeney, 1998; Lin et al., 2006).The free 

Ca2+ ions can influence the environment of the negatively charged casein 

micelles, leading to enhancement or reduction of the repelling forces among 

them (Horne & Parker, 1981). Calcium contributes to the integrity of casein 

micelles by forming linkages between the protein molecules either as 

colloidal calcium phosphate (CCP) or by directly binding to caseins (Holt, 

1992; Schmidt, 1982). Therefore, it is important to be able to accurately 

measure the activity and the concentration of free calcium and magnesium in 

milk.   

 

Traditional methods for measuring Ca2+ activity or concentration are based 

on the cation exchange resin technique (Christianson et al., 1954; Holt et al., 

1981; Muldoon & Liska, 1969; Van Kreveld & Van Minnen, 1955) and the 

murexide method (Holt et al., 1981; Tessier & Rose, 1958). The cation 

exchange resin technique is quite time-consuming (Muldoon & Liska, 1969) 
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and there is competition between Ca2+ and Mg2+ (Temminghoff et al., 2000), 

which could hinder accurate determination of Ca2+ concentration. 

Furthermore, Holt et al. (1981) indicated that this method may overestimate 

Ca2+ concentration if citrate or inorganic phosphate complexes of metals are 

bound by the resin. The murexide method gave higher values for free Ca2+ 

concentration in milk when compared to the resin method and a calcium ion 

selective electrode (Holt et al., 1981). This is possibly due to the alterations 

of the calcium complex formation by the murexide (Neville et al., 1995). 

Since the 1980s, the calcium ion selective electrode (Geerts et al., 1983; Holt 

et al., 1981; Lin et al., 2006; Silanikove et al., 2003; Tsioulpas et al., 2007) 

has been used to rapidly determine ionic calcium activity in milk. The 

electrode may suffer from a matrix effect (Holt et al., 1981; Neville et al., 

1995), and some systems may be more sensitive to matrix effects than others 

(Neville et al., 1995). Consequently, the calcium electrode must be properly 

calibrated to determine the free calcium activity and concentration. To 

measure Mg2+ activity or concentration, a cation exchange resin technique 

has been developed by Van Kreveld and Van Minnen (1955). However, this 

method has the same disadvantages as described above.  

 

Recently, a new method named Donnan Membrane Technique (DMT), based 

on the Donnan equilibrium, has been developed by Temminghoff et al. (2000) 

and used in the field of environmental technology to measure free metal ion 

concentrations. Oste et al. (2002) applied the DMT to measure zinc and 

cadmium binding by humic acid in a range of pH 4 to 8, and the DMT agreed 

well with the ion selective electrode measurement. Van der Stelt et al. (2005) 

successfully used modified DMT cells to determine Ca2+, Mg2+, Na+ and K+ 

in animal slurry, which is a mixture of faeces, urine and cleaning water with 

high ionic strength (~ 0.4 M). Kalis et al. (2007) also successfully determined 
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the concentrations of free metal ions including copper, cadmium, zinc, nickel 

and lead in multi-component solutions in which natural organic matter 

complexes metal ions. Thus the DMT has been shown to be a robust and 

accurate technique to simultaneously determine different metal ions in 

multi-component solutions, with minimal distortion of sample equilibrium 

and interferences from other components.  

 

The objective of this paper is to determine whether the DMT is applicable to 

measure the free calcium, magnesium, sodium and potassium concentrations 

in simulated milk ultrafiltrate (SMUF) and skim milk. Results will be 

compared with literature data (Holt et al., 1981; Lyster, 1981) and for Ca2+ 

with a calcium ion selective electrode method.  

 

2.2 Materials and methods  

 

2.2.1  Donnan Membrane Technique  

The theory of the Donnan membrane technique was described by 

Temminghoff et al. (2000). Briefly, the sample solution, called the donor 

solution, containing free metal ions and their bound forms, is separated from 

an acceptor solution by a semi-permeable and highly negatively-charged 

cation exchange membrane. The negative electric potential of the membrane 

allows cations to pass through and restricts anions from crossing the 

membrane. The more positive the charge of an ion, the faster is equilibration 

between donor and acceptor side of the DMT cell. When the Donnan 

equilibrium is reached, the free cation (Mz+
donor) concentration in the donor is 

equal to the free cation (Mz+
acceptor) concentration in the acceptor at the same 

ionic strength on both sides. When the ionic strength is different between 

donor and acceptor, correction can be made based on the Donnan equilibrium 
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principle (Helfferich, 1962). This implies that, at the Donnan equilibrium, the 

activity ratios (corrected for charge) of the ions in the solutions on the two 

sides of the membrane are equal (Equation (1)):   
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                                (1) 

(Mz+) means the activity of the free target cation with charge z in either 

acceptor or donor. (N+) represents the activity of a monovalent reference ion 

(normally potassium ion K+).  

 

Potassium is chosen to correct for the differences in ionic strength between 

donor and acceptor. It exists almost completely as free ions (Van Der Stelt et 

al., 2005).    

 

The changing metal ion concentration in the acceptor solution during 

equilibration can be described by the following equation (Equation (2)) 

(Kalis et al., 2007; Temminghoff et al., 2000) 

  

)}(exp1{)]Me[]Me([ [Me]    [Me] 0 acc,  acc, 0 acc,  acc, bttttt −−×−+= =∞==   (2a) 

t0.95 = 
b

)20ln(
 (when [Me]acc, t=0 ≈ 0)                            (2b) 

where: 

[Me]acc,t is the metal concentration in the acceptor solution at time t, [Me]acc, 

t=0 is the metal concentration in the acceptor solution at time 0, [Me]acc, t=∞ is 

the metal concentration in the acceptor solution at the Donnan equilibrium, 

and b is a constant related to the ion transport dynamics.  

 

The value t0.95 is the time needed for the acceptor solution to reach 95% of 
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the Donnan membrane equilibrium. The t0.95 is often used as a measure for 

the Donnan membrane equilibrium because full equilibrium is never reached 

in practice.   

 

2.2.2 DMT apparatus 

For this research, the field DMT cell, developed by Van der Stelt et al. (2005), 

to determine the free cation concentrations was used. Figure 1 shows the 

DMT system set-up. The DMT cell consists of one chamber, which contains 

the acceptor solution. The acceptor chamber is separated from the sample 

(the donor) by two negatively charged cation exchange membranes (BDH 

Laboratory Supplies, Poole, UK). Each membrane is a matrix of polystyrene 

and divinylbenzene with sulphonic acid groups, which fully deprotonate 

above pH 2. The thickness of the membrane is 0.16 mm, and the charge 

density of the membrane is 0.8 mmol g-1 (Weng et al., 2005). The acceptor 

compartment, which contains an electrolyte solution with ionic strength 

similar to that of the donor, has a volume of ~10 mL and the contact surface 

area for cation exchange is ~20 cm2. The large ratio of surface area to volume 

leads to fast cation exchange between sample (donor) and acceptor solution 

(Kalis et al., 2007). The acceptor chamber is completely immersed in the 

sample solution, which is continuously stirred to minimize diffusion 

gradients in the donor solution (Kalis et al., 2007). Samples are taken out of 

the donor and acceptor solution at regular intervals for the determination of 

cation concentrations. Before using the DMT cell, all the materials, except 

the membrane, were cleaned by successively washing with: 0.1 M HNO3 and 

deionized water (Millipore, Amsterdam, The Netherlands). For the membrane, 

the cleaning procedure described by Kalis et al. (2007) was used.  
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Figure 1 (a) Schematic presentation of the DMT set-up and front view of a 

field DMT cell. (b) Side view of a field DMT-cell.  

 

2.2.3 Experimental Setup  

To test the performance of the DMT to determine free metal ions, three 

systems of increasing complexity were employed: (i) a series of CaCl2-KCl 

solutions, (ii) simulated milk ultrafiltrate (SMUF) and (iii) reconstituted skim 

milk. Experiments were carried out at 20 ºC and all glassware was washed in 

phosphate-free detergent, soaked in 1.4 M nitric acid and rinsed in deionized 

water (Millipore, Amsterdam, The Netherlands).  

 

2.2.3.1 Ca2+ concentration determination in the CaCl2-KCl solutions 

The CaCl2-KCl solutions used to test the DMT for ionized calcium 

concentration determination were: (1) 10 mM CaCl2 and 20 mM KCl; (2) 5 

mM CaCl2 and 35 mM KCl; (3) 1 mM CaCl2 and 47 mM KCl with an ionic 

strength of ~50 mM for each solution and final pH of each donor solution 

was 5.5. The acceptor solution (pH 5.5) contained 2 mM Ca(NO3)2 and 44 



Determination of free metal ions using Donnan Membrane Technique 

 
 

- 35 - 

mM KNO3 and had an ionic strength of approximately 50 mM. The pH was 

measured by a combined glass electrode (Orion 8172BNWP, Thermo, 

Beverly, USA). The DMT cell was filled with 10 mL acceptor solution and 

immersed into a beaker containing 2 L sample solution. The donor solution 

had been continuously stirred for 48 hours. Samples were taken out of the 

donor and the acceptor at the times 0, 4, 8, 24 and 48 h. Dilution was carried 

out if necessary. Calcium was determined by Inductively Coupled 

Plasma-Atomic emission Spectrometry (ICP-AES) (Varian, Mulgrave, 

Australia). Additionally, a calcium electrode (Orion 97-20, Thermo, Beverly, 

USA) was used as well to compare with the DMT results. The DMT 

experiment was carried out in duplicate, and the calcium electrode 

measurement repeated six times.  

 

2.2.3.2 Ca2+, Mg2+, K+ and Na+ determination in simulated milk 

ultrafiltrate (SMUF) 

A lactose-free simulated milk ultrafiltrate (SMUF) was prepared according to 

Jenness & Koops (1962). The acceptor solution consisted of 2 mM Ca(NO3)2 

and 60 mM KNO3, which had an ionic strength similar to SMUF. The pH of 

SMUF was 6.60. The DMT cell was filled with 10 mL acceptor solution and 

was immersed in a beaker containing 2 L SMUF solution. A same procedure 

was used for sampling and measuring as described in section 2.2.3.1. The 

experiment was repeated six times. 

 

2.2.3.3 Ca2+, Mg2+, K+ and Na+ determination in reconstituted skim 

milk 

Low heat skim milk powder (Nilac, NIZO, the Netherlands) was 

reconstituted by dissolving 200 g milk powder in 1800 g deionized water 

(Millipore, Amsterdam, The Netherlands) at 40-45 ºC under gentle stirring 
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for 45 minutes. Sodium azide 0.04 % (w/w) was added to prevent bacterial 

growth. The reconstituted skim milk was stored at 20 ºC overnight. The 

acceptor solution consisted of 5 mM Ca(NO3)2 and 65 mM KNO3, having an 

ionic strength of ~80 mM, which is similar to that of milk. The DMT cell was 

immersed into 2 L skim milk, and the skim milk was continuously stirred for 

72 hours. Samples were taken out of the donor and the acceptor solutions at 0, 

4, 8, 24, 48 and 72 h. Skim milk samples were first ultracentrifuged (at 

100,000 g, 20 ºC for 1 hour) in a Beckman L-60 ultracentrifuge with a 70 Ti 

rotor (Beckman Instruments Inc, California, USA). The supernatants were 

collected and diluted for the total concentration analysis by ICP-AES (Varian, 

Mulgrave, Australia). The samples of the acceptor were diluted and measured 

by ICP-AES (Varian, Mulgrave, Australia). A calcium electrode (Orion 97-20, 

Thermo, Beverly, USA) was used to measure the calcium activity in both the 

supernatant and the reconstituted skim milk, with the purpose first to 

compare with the DMT results and second to determine if casein micelles 

interfere with the determination of Ca2+ concentration by the electrode as 

reported by Silanikove et al. (2003). Ca2+ ion concentrations in supernatants 

were recalculated to Ca2+ ion concentrations in skim milk by multiplying by a 

correcting factor 0.96, in order to account for the excluded volume by 

proteins. The experiment was repeated four times.  

 

2.2.3.4 Ionic calcium measurement by a calcium electrode 

Ionic calcium was determined using an Orion 97-20 ion-plus calcium 

electrode and an Orion 720A+ meter (Thermo, Beverly, USA). Calibration 

was carried out with freshly prepared standard solutions in the range between 

10-4 and 10-2 M CaCl2. Calibration standard solutions were adjusted to ionic 

strength 0.09 M with KCl to calibrate the electrode for measurement of all 

the samples. The calibration curve plotted the electric potential (mV) as a 
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function of logarithm of calculated calcium activity. The time necessary for a 

stable reading was approximately 5 min. The obtained calcium activity for 

each sample was converted into free calcium concentration using the Davies 

equation (Davies, 1962) accounting for the calcium ion activity coefficient, 

as shown in the following formula:  

Log(γ Ca2+) = -0.5 (z Ca2+)2 (
I

I
+1

 – 0.2 I)                       (3) 

in which γCa2+ is the activity coefficient of free Ca2+, zCa2+ is the charge 

number of free Ca2+, and I is the effective ionic strength of the sample, 

expressed in M unit. 

The free Ca2+ concentration is then calculated by the following equation:  

+

+
+ = 2

2
2

Ca
CaCa
γ
ac                                                                        (4) 

in which aCa2+ is the free Ca2+ activity, and cCa2+ is the free Ca2+ 

concentration, expressed in M unit.  

 

2.2.3.5 Chloride and phosphate determination 

Less positively charged inorganic ion pairs and complexes, such as CaCl+, 

MgCl+ and CaH2PO4
+, may pass through the membrane. Therefore, total 

chloride and phosphate were also monitored in the acceptor solution to 

determine whether significant amount of chloride and phosphate were present 

at equilibrium. The chloride and phosphate were measured over time in the 

acceptor solution using FIAstar 5000 Analyzer (FOSS Tecator AB, Höganäs, 

Sweden) and ICP-AES (Varian, Mulgrave, Australia), respectively. Samples 

were removed from the acceptor solutions at 0, 8, 24 and 48 h in both the 

CaCl2-KCl experiment and the SMUF experiment; at 0, 8, 24, 48 and 72 h in 

the skim milk experiment. The total phosphorus was expressed as PO4, 
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because no organic phosphate was present in the acceptor.  

 

2.2.3.6 Statistical analysis 

Statistical analysis of the experimental data was carried out. The t-test was 

applied to test the significance of differences between the results obtained by 

the calcium electrode method and the DMT method at a level of P < 0.05 

 

2.3 Results and discussion 

 

2.3.1 Free Ca2+ concentration in a series of CaCl2-KCl solutions 

The DMT was tested first for Ca2+ determination with a series of CaCl2-KCl 

solutions. Figure 2a illustrates the attainment of Donnan equilibrium over 

time for the ratio of Ca acceptor / Ca donor . After 8 hours, more than 95 % 

Donnan equilibration was achieved for each sample. The ionic calcium 

transports were well described by equation (2a) with b values estimated for 

the fit to the data of calcium ion. No significant differences in pH were found 

between donor and acceptor solutions during the equilibration. At 8h, the 

concentration of chloride in the acceptor solution was less than 1 % of the 

concentration in the donor solution, indicating that a very limited amount of 

chloride ions was transported over the membrane and hardly affecting the 

free Ca2+ concentration, as shown in Figure 2a.  

 

The free calcium concentrations determined by DMT are shown in Table 1 

together with the ion selective electrode (ISE) data. The DMT result is 

consistent with the electrode result for the 10 mM CaCl2 sample. For samples 

with 5 mM and 1 mM CaCl2, the DMT results differ slightly from the 

electrode results but there is no statistically significant difference in the 

results between the two methods (P < 0.05). This validates DMT in its 
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measuring Ca2+ concentrations in simple salt solutions.   

 

Table 1 Free calcium ion concentration determined by DMT and calcium 

electrode for a series of CaCl2-KCl solutions a. 

 Solutions DMT (mM) Electrode (mM) 
CaCl2 10 mM 8.9 ± 0.6 8.7 ± 0.4 
CaCl2 5 mM 4.5 ± 0.2 4.4 ± 0.2 
CaCl2 1 mM 0.91 ± 0.06 0.87 ± 0.04 

a Measurements using the DMT and the calcium selective electrode were 

repeated two times and six times, respectively; ± means standard deviation; 

ionic strength of each CaCl2 solution was approximately 0.05 M.  

 

2.3.2 Ca2+, Mg2+, K+ and Na+ concentrations in simulated milk 

ultrafiltrate (SMUF) 

It took about 6 hours for Ca2+ and Mg2+ to reach the Donnan equilibrium 

whereas for Na+ 24 hours were required (Fig 2b). The transport of ions can 

be described well by the empirical equation (2a) with b values estimated for 

the fit to the data of the individual ions. At 24 h, the concentrations of 

chloride and phosphate in the acceptor were < 3% and < 1% of those in the 

donor (Fig 2b), respectively, which means that almost no metal phosphate 

complexes and metal chloride ion pairs were formed at Donnan equilibrium 

in the acceptor solution. In other words, the Ca2+, Mg2+, Na+ and K+ 

concentrations measured in the acceptor solution, represent the free Ca2+, 

Mg2+, Na+ and K+ concentrations at the Donnan equilibrium. During the 

equilibration, the pH and calcium activity of SMUF remained constant 

whereas the pH of the acceptor changed from 6.2 to 6.4. This slight change in 

pH did not affect cation concentration because it hardly changed the ionic 

strength of the acceptor and donor, and complexation with phosphate is then 
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insignificant.  

 

Table 2 shows the cation concentrations determined by the DMT and the 

calcium electrode as well as values reported by Lyster (1981) in SMUF. Both 

the DMT and the calcium electrode gave repeatable results (standard 

deviation less than 10 % of the mean value). Moreover, the free Ca2+ 

concentrations determined by the DMT and the calcium electrode were in fair 

agreement with the values calculated by Lyster (1981). However, free Mg2+
 

concentrations showed a large difference between the DMT result and the 

calculated result. This difference may be due to the association constant of 

MgCitrate- complex used in Lyster’s model, in which the pKa value of 

MgCitrate- was -3.29 (Lyster, 1981). However, Holt et al. (1981) used a pKa 

value for MgCitrate- of -5.05 (Martell & Smith, 1979). In this case, the free 

Mg2+ concentration would be reduced in the calculation, which is most likely 

comparable to the DMT result.  

 

Table 2 Free Ca2+, Mg2+, Na+ and K+ concentrations determined by DMT and 

calcium electrode in SMUF a (n=6). 

 Ions DMT (mM) Electrode (mM) Literature data (mM) b  
Ca2+ 1.58 ± 0.03 1.38 ± 0.03 1.23 
Mg2+ 0.53 ± 0.01 - 2 
Na+ 17.0 ± 0.1 - - 
K+ 38.5 ± 0.3 - - 

a [Ca] = 9.17 ± 0.07 mM, [Mg] = 3.31 ± 0.03 mM, [Na] = 19.0 ± 0.1 mM, [K] 

= 40.5 ± 0.3 mM, [Pi] = 11.88 ± 0.16 mM, [Cl] = 38.2 ± 1.4 mM, [Citrate] = 

9.6 mM, [SO4] = 1 mM; ± means standard deviation; ionic strength of SMUF 

was approximately 0.067 M 
b Values were taken from Lyster (1981) who calculated the free metal ion 
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concentrations in a simulated milk salt solution, which contained [Ca] = 9 

mM, [Mg] = 3.2 mM, [Na] = 57.7 mM, [Pi] = 11.6 mM, [Cl] = 37 mM, 

[Citrate] = 9.6 mM. 

 

Additionally, the Ca2+ concentration determined by the calcium electrode 

(1.38 ± 0.03 mM) was lower than that obtained by the DMT (1.58 ± 0.03 

mM). This difference could be due to the error in predicting free ion activity 

coefficients by the Davies equation (see section 2.2.3.4), which does not take 

into account certain ion pair formation. Indeed, not only 1:1 ion pairs but also 

highly complexed ion pairs are formed in SMUF, thereby affecting the actual 

ionic strength and the free ion activity coefficients. Also, the calcium 

electrode is possibly affected by a matrix effect. Holt et al. (1981) reported 

that Ca2+ concentration determined by different methods followed the order 

ion selective electrode < calculated ≈ resin equilibrium < murexide. The 

DMT showed Ca2+ concentration consistent with Lyster’s and Holt’s results, 

which suggested that the DMT results are sound.  
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Figure 2 (a) Acceptor/donor concentration ratio for Ca2+: (▲) 1mM CaCl2; 

(■) 5mM CaCl2 (◆) 10mM CaCl2 and Cl- (◇) as a function of time. (b) 

Acceptor/donor concentration ratio in SMUF for Ca2+ (◆), Mg2+ (■), Na+(▲), 

Cl- (◇) and phosphate (△) as a function of time. (c) Acceptor/donor 

concentration ratio in reconstituted skim milk for Ca2+ (◆), Mg2+ (■), Na+(▲), 

Cl- (◇) and phosphate (△) as a function of time. Curves are based on modeled 

values using equation (2a). 
 

2.3.3 Ca2+, Mg2+, K+ and Na+ concentrations in reconstituted skim 

milk 

To test a more complex system, experiments were conducted to measure the 

cations in reconstituted skim milk. Figure 2c shows that Donnan equilibrium 
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was reached after 8 hours for Ca2+ and Mg2+ and after 24 hours for Na+. 

During the experiments, the reconstituted skim milk had constant pH and 

calcium activity, indicating that the original ion equilibrium of milk was not 

altered. The pH of the acceptor changed from 6.0 to 6.2. Some chloride and 

phosphate passed through the membrane with time. However, chloride and 

phosphate had no effect on free cation concentrations in the acceptor due to 

their low concentrations which were less than 3 % of the total chloride and 1 

% of the total phosphate in the donor, respectively, as shown in Figure 2c.  

 

Table 3 shows the cation concentrations determined by the DMT and the 

calcium electrode and calculated by Holt et al. (1981). The calcium and 

magnesium ions were mostly complexed by anions in the serum, whereas the 

potassium and sodium ions were largely free. Both the DMT and calcium 

electrode gave repeatable and comparable values for Ca2+ concentrations, 

which are within the typical range 1-3 mM (Demott, 1968; Holt, 1985). The 

concentrations of Ca2+, Mg2+, Na+ and K+ which were determined by DMT, 

were generally consistent with the calculated ions concentrations in milk 

diffusate by Holt et al. (1981). Differences seems to be due to total Ca, Mg 

Na and K ion concentrations in Holt’s calculation a bit higher than those 

determined in DMT. Moreover, no statistically significant difference was 

found between the Ca2+ concentration determined by the calcium electrode 

and the DMT (P < 0.05).  

 

The Ca2+ activity, determined by calcium electrode in milk serum obtained by 

ultracentrifugation, was the same as that in skim milk, implying that the 

calcium electrode was not disturbed by complexing substances, such as 

casein micelles. This is in disagreement with the results of Silanikove et al. 

(2003), who reported that casein micelles in skim milk interfered with the 
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determination of Ca2+ concentration with an calcium electrode. From our 

findings as shown in Table 3, we conclude that it is not necessary to exclude 

casein micelles in measurement of Ca2+ activity and concentration in skim 

milk at neutral pH.  

 

Table 3 Ca2+, Mg2+, Na+ and K+ concentrations determined by DMT and 

calcium electrode in the reconstituted skim milk a (n=4). 

 

 Ions DMT (mM) 
Electrode b 

(mM) 

Electrode c 

(mM) 

Literature data 
d 

Ca2+ 1.56 ± 0.06 1.58 ± 0.01 1.62 ± 0.02 2.00 

Mg2+ 0.58 ± 0.02 - - 0.81 

Na+   14.9 ± 0.2 - - 20.9 

K+   40.8 ± 0.6 - - 36.29 
a Total ion concentrations in skim milk serum: [Ca] = 9.06 ± 0.05 mM, [Mg] 

= 3.15 ± 0.05 mM, [Na] = 17.3 ± 0.3 mM, [K] = 42.8 ± 0.7 mM, [Pi] = 11.3 ± 

0.3 mM, [Cl] = 42.0 ± 0.4 mM, [Citrate] = 9.4 ± 0.2 mM.  

± means standard deviation; ionic strength of skim milk was approximately 

0.08 M 
b Measurement of Ca2+ concentration in the serum of the reconstituted skim 

milk 

c Measurement of Ca2+ concentration in the reconstituted skim milk 
d Calculated concentrations of free metal ions in a typical milk diffusate (Holt 

et al., 1981), in which total ion concentrations were [Ca] = 10.2 mM, [Mg] = 

3.4 mM, [Na] = 22.0 mM, [K] = 38.0 mM, [Pi] = 12.4 mM, [Cl] = 32.3 mM, 

[Citrate] = 9.4 mM.  
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2.4 Conclusion 

 

The Donnan membrane technique (DMT) is demonstrated to be able to 

simultaneously analyze various free metal ion concentrations in SMUF and 

reconstituted skim milk, without any interference from the matrix and 

without disturbing the original ionic equilibria of the samples. The method 

provides reliable results, which are generally in good agreement with the 

calcium electrode results and literature data. The DMT is promising and has 

large potential applications in dairy research. The DMT offers possibilities 

for measuring the free ion concentrations, such as, Mg2+, Zn2+ in milk for 

which no electrodes are available. Moreover, it may measure the free Ca2+ 

and Mg2+ concentration in milk at different temperatures, as indicated by Sata 

(2004) that the cation exchange membrane is stable up to 120 °C. This is an 

advantage over the calcium electrode, which can not be used at pasteurization 

temperature. DMT has the disadvantage of being slow. However, it has been 

recently developed to measure free ion concentration in dynamic systems, in 

which the equilibration time was largely reduced (30 minutes instead of 2 

days) (Marang et al., 2006). Thus, the method can be possibly used to 

measure Ca2+ concentration in milk during acidification. Lastly, the DMT is 

expected to measure free metal ion concentrations in viscous dairy products, 

e.g. yoghurt and pudding. Therefore, the Donnan membrane technique can be 

helpful in exploring the ionic equilibria in milk quantitatively understanding 

more physicochemical interactions between casein micelles and ionic 

species.  
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Abstract 

Freshly prepared simulated milk ultrafiltrate (SMUF) is a solution that is 

supersaturated with respect to various calcium phosphate phases that 

precipitate in time. As a consequence, the ion composition of equilibrated 

SMUF was found to be significantly different from that of freshly prepared 

SMUF. This study proposes a thermodynamic ion-speciation model that is 

able to describe ion equilibria in SMUF. Moreover, it is also able to describe 

calcium phosphate precipitation in fresh SMUF on its way to equilibrium by 

using an apparent solubility product for CaHPO4·2H2O as a function of time. 

The model was validated by experiments in which CaCl2 and Na2HPO4 were 

added to freshly prepared SMUF. The changes in calcium activity and pH 

were followed and the precipitates were characterized by X-ray diffraction. 

The model was able to predict the observed changes. 

 

Keywords: calcium phosphate, precipitation, ion equilibria, ion speciation 

model, SMUF 
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3.1 Introduction 

 

Ion equilibria of milk, and in particular the distribution of calcium phosphate 

between casein micelle and serum phase, play an essential role in the stability 

and structural integrity of casein micelles (Fox & McSweeney, 1998; Holt, 

1997; Walstra & Jenness, 1984).  Alterations of ion equilibria can have 

important effects on casein micelles and this can have major consequences 

for milk processing, such as coagulation caused by rennet, acid and heating 

(De La Fuente, 1998). Therefore, it is necessary to have an accurate 

description of the ion equilibria in terms of concentrations and activities of 

various ions and complexes. Milk minerals are partitioned between the 

colloidal and aqueous phase. Approximately 70% of calcium, 30% of 

magnesium, 50% of phosphate and 10% of citrate are present as undissolved 

complexes in casein micelles, named colloidal calcium phosphate (CCP) 

(Holt, 1997). In the milk serum phase, salts exist either as free ions or as ion 

pairs. Sodium and potassium ions form only weak ion pairs with chloride, 

citrate and phosphate and therefore mainly remain as free ions. The divalent 

ions (Ca2+ and Mg2+) are mainly complexed with citrate and to a lesser extent 

with HPO4
2-. There is a dynamic and very rapidly attained equilibrium 

between the ion pairs and the free ions. Also, there is a dynamic but slowly 

attained equilibrium between salts in the aqueous phase and colloidal phase 

(Walstra et al., 1984). 

 

Simulated milk ultrafiltrate (SMUF), which was first described by Jenness 

and Koops (1962), is a solution that mimics the ion composition of milk 

ultrafiltrate. It is the most widely used simplified milk system in milk mineral 

deposition studies (Andritsos, Yiantsios & Karabelas, 2002; Rosmaninho & 

Melo, 2006; Spanos, Patis, Kanellopoulou, Andritsos & Koutsoukos, 2007). 



Chapter 3 

 
 
- 54 - 

It can also be used as a buffer solution for dispersion of milk proteins or for 

studying physico-chemical properties of milk proteins, such as heat stability, 

electrophoretic and ultracentrifugal analyses (Jenness et al., 1962). However, 

studies (Andritsos et al., 2002; Lyster, 1979; Schmidt & Both, 1987) have 

shown that SMUF is supersaturated with respect to various calcium 

phosphate phases when casein micelles are absent. This means that SMUF is 

thermodynamically unstable and subject to precipitation of calcium 

phosphate. 

  

The main calcium phosphate phases involved are amorphous calcium 

phosphate Ca3(PO4)2 (ACP), dicalcium phosphate dihydrate CaHPO4·2H2O 

(DCPD), octacalcium phosphate Ca4H(PO4)3·2.5H2O (OCP), tricalcium 

phosphate Ca3(PO4)2 (TCP) and hydroxyl-apatite Ca5(PO4)3OH (HAP). HAP 

is the least soluble calcium phosphate phase. However, it may not be the one 

that precipitates first because its precipitation kinetics is slower than that of 

the other phosphate forms (Rosmaninho et al., 2006). The formation of 

calcium phosphate precipitates depends on environmental conditions such as 

pH, ionic strength, temperature, molar ratio of Ca/P, presence of other ions 

(Johnsson & Nancollas, 1992; Schmidt et al., 1987; Schmidt, Both, Visser, 

Slangen & Vanrooijen, 1987; Spanos et al., 2007; Van Kemenade & De 

Bruyn, 1987). Earlier studies (Johnsson et al., 1992; Mekmene, Quillard, 

Rouillon, Bouler, Piot & Gaucheron, 2009; Van Kemenade et al., 1987) have 

shown that pH is the key factor that determines the crystalline structure of 

calcium phosphates. DCPD and OCP are formed in more acidic conditions, 

whereas HAP is preferentially formed under neutral or basic conditions. In 

addition, other ions such as magnesium and citrate have been reported to act 

as inhibitors of HAP crystal growth (Johnsson et al., 1992; Rosmaninho et al., 

2006). Instead, the presence of these ions in solution (Johnsson et al., 1992) 
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may stabilize the DCPD and OCP crystals. Consequently, calcium phosphate 

precipitation in SMUF is involved with several crystallization processes and 

transformation of various calcium phosphate phases and thus is quite 

complex.  

 

Modelling studies of calcium phosphate precipitation in milk systems have 

rarely been carried out. Lyster (1981) developed an ion equilibria model for 

SMUF with the possibility to calculate calcium phosphate precipitation in 

equilibrium at different values of temperature and pH. However, this model 

only accounts for one solid phase at equilibrium, and it has not been validated 

to calculate ion equilibria in the presence of solid phases upon addition of 

salts to SMUF.  

 

The objectives of the present work were twofold. The first objective was to 

develop an ion speciation model to calculate ion composition in SMUF at 

thermodynamic equilibrium, i.e., in the presence of precipitates. For this 

purpose, it was investigated how the model would perform by incorporating 

the solubility products of various calcium phosphate phases and other solids, 

such as calcium citrate, calcium carbonate and magnesium phosphate. In 

order to validate the model, experiments were carried out with SMUF and 

with SMUF to which CaCl2 and Na2HPO4, were added, respectively, after 

which the system was allowed to reach equilibrium in the pH range between 

4.8 and 7.4. The second objective was to develop an ion speciation model 

able to describe the ion composition of freshly prepared SMUF, i.e., far from 

equilibrium without any solid precipitation, and the change in ion 

composition while the system is equilibrating, i.e., under kinetic conditions of 

ongoing precipitation. For this purpose, a kinetic study was carried out to 

determine the change in the apparent solubility product of certain calcium 
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phosphate over time.  

 

3.2 Materials and Methods 

 

3.2.1 Experimental Setup 

All experiments were carried out at 20 ± 1.0 ºC and all glassware was washed 

in phosphate-free detergent, soaked in 1.4 M nitric acid and rinsed in 

deionized water (Millipore, Amsterdam, The Netherlands). All chemicals 

used were purchased from Fluka, with 99.5 % purity. SMUF without lactose 

was prepared according to Jenness & Koops (1962).  

 

3.2.1.1 Addition of CaCl2 

CaCl2 was added to SMUF samples up to a concentration of 0.1 mol/kg water. 

For the experiments in which Ca2+ activity, pH and precipitates were 

measured and analysed, CaCl2 solutions were added to SMUF to study the 

kinetics of precipitates formation. The equilibration time was approximately 

8 or 9 days. Free Ca2+ and Mg2+ ion concentrations were determined by 

Donnan Membrane Technique (DMT) and the experimental procedure was 

described earlier by Gao et al. (2009).  For the DMT experiment, solid 

CaCl2 was added to SMUF to accelerate calcium phosphate precipitation. The 

observed acceleration was presumably due to a seeding action of the added 

crystals. It was checked that the Ca2+ activity and pH 24 h after adding solid 

CaCl2 was the same as the values in SMUF 8 days after adding CaCl2 

solution. Also, X-ray diffraction showed no difference in the precipitates after 

adding CaCl2 as solid or as solution.  The DMT cell, which contains 10 mL 

acceptor solution, was immersed in 1.6 L donor solution (SMUF sample). 

The acceptor solution consisted of Ca(NO3)2 and KNO3, and had ionic 

strength similar to the donors. Specifically, for concentration of added CaCl2 
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in SMUF up to 0.04 mol/kg, the acceptor solution consisted of 5 mmol/kg 

Ca(NO3)2 and 113 mmol/kg KNO3; for concentration of added CaCl2 ranging 

from 0.06 and 0.1 mol/kg, the acceptor solution consisted of 10 mmol/kg 

Ca(NO3)2 and 247 mmol/kg KNO3.The donor was continuously stirred for 48 

hours. Samples were taken out of the donor and acceptor after 24 and 48 hour. 

Dilution was carried out if necessary. Calcium was determined by Inductively 

Coupled Plasma-Atomic emission Spectrometry (ICP-AES) (Varian 

Vista-Pro radial system, Mulgrave, Australia). The DMT experiment was 

carried out in duplicate, and the Ca activity and pH measurements were 

repeated six times.  

 

3.2.1.2 Addition of Na2HPO4 

Disodium phosphate (Na2HPO4) solution was added to SMUF in the 

concentration range between 0 and 0.48 % (w/w). Similarly to 3.2.1.1, the 

calcium activity and pH were measured during the equilibration period, and 

each measurement was repeated six times.  

 

3.2.1.3 Precipitate analysis 

SMUF with added salts (CaCl2 or Na2HPO4) showed precipitation. Several 

steps were carried out to collect the precipitate for analysis. The first step was 

to allow the precipitates in SMUF to reach equilibrium, which was supposed 

to have happened when the pH and Ca activity did not change in time 

anymore. Second step was to centrifuge SMUF solution at 3000 rpm for 15 

minutes at 20 °C (ALC PK131R, The Netherlands). After discarding the 

supernatant, precipitate was dried in an oven at 100 °C for 8 hours. The dried 

precipitate was acidified with 1.4 N HNO3 and the corresponding acidified 

solution was diluted 1000 times. Elements like Ca, Mg, Na, K and Phosphor 

were measured by ICP-AES (Varian Vista-Pro radial system, Mulgrave, 
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Australia). The molar ratios of Ca/P and Mg/P were calculated to determine 

which precipitates were formed. In addition, the obtained precipitates were 

further identified by means of X-ray diffraction (XRD), as described in 

section 3.2.6.  

 

3.2.2 Description of the model 

The computer program AESolve (Halotec Instruments, The Netherlands) was 

used in order to calculate the ion composition of SMUF under different 

conditions. Two types of models were developed: one based on intrinsic 

thermodynamic constants describing equilibrium and the other describing the 

temporal changes of freshly prepared SMUF on its way to equilibrium. The 

first one was called EIS (Equilibrium Ion Speciation) model, and the second 

one was named DIS (Dynamic Ion Speciation) model.  

 

The following components were included in the model: calcium, magnesium, 

sodium, potassium, citrate, phosphate, sulphate, chloride, and carbonate. 

Lactose and proteins were left out since the work presented here is limited to 

lactose-free SMUF. The components are supposed to react with each other, 

resulting in the formation of free ions, ion complexes, and salt precipitates. 

Ion complexes between major cations and major anions, as shown in Table 1, 

were considered in the model (Holt, Dalgleish & Jenness, 1981), while solid 

precipitation, such as dicalcium phosphate dihydrate (DCPD), and gas-liquid 

equilibria, such as partition of CO2 between gas and aqueous phase, were 

included as well. Some examples of ion complexes and precipitates are:   

Ca2+ + Citrate3- ↔ CaCitrate- (aq)                                  (1) 

Ca2+ + HPO4
2- ↔ CaHPO4 (aq)                                   (2) 

Ca2+ + Cl- ↔ CaCl+  (aq)                                        (3) 

Ca2+ + HPO4
2- +2H2O ↔ CaHPO4.2H2O (s)                         (4) 
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3Ca2+ + 2Citrate3- +4H2O ↔ Ca3Citrate2.4H2O (s)                    (5) 

 

The mass balance equation for each component was constructed and consisted 

of a sum of the concentrations of the various forms. As an example, the total 

concentration of calcium is shown in equation (6). The concentration of each 

ion species, for instance CaCitrate-, can be calculated using equation (7), while 

the activity coefficients were calculated from the Davies equation (8).  

 

](s)[CaCO
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in which -CaCitrateK  is the intrinsic association constant of CaCitrate- (see 

Equation (1)); +2Ca
γ , −3Citrate

γ , −CaCitrate
γ  the molal activity coefficients of 

free Ca2+ , Citrate3-  and CaCitrate-, respectively; +2Ca
z  is the charge 

number of free Ca2+; Ie  is the effective ionic strength of the sample, 

expressed in mol/kg water.  

 

Intrinsic ion association constants (Kass) and solubility products (Ksp) were 

taken from literature as shown in Tables 1 and 2. The Kass and Ksp values 

indicated as estimated were not randomly chosen. The estimated values were 

derived on the basis of the agreement between model calculation and 
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experimental results in terms of pH, Ca2+ activity and concentration. Kass and 

Ksp values of ion species and compounds related to sodium 

hexametaphosphate (SHMP) were also included in EIS and DIS models and 

were shown in the accompanying paper (part II) (Gao et al., 2009) 

 

For solid precipitates, apparent solubility products of amorphous calcium 

phosphates were used in the DIS model for predicting clear SMUF solution 

or precipitation in SMUF with addition of certain salts at initial state. When 

dealing with precipitation at thermodynamic equilibrium state, solubility 

products such as crystalline CaHPO4.2H2O and Ca3(PO4)2 were employed in 

the EIS model.  

 

The resulting equations describing electrolyte equilibria (called 

ion-speciation) are nonlinear algebraic equations that were solved 

numerically to obtain activities and concentrations for all the components and 

their complexes. Other properties of the solutions, such as the ionic strength, 

activity coefficients, pH and water activity, are also calculated by AESolve.  
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Table 1 Logarithm of intrinsic association constants (pKass) of ion species 

used in the EIS and DIS models  

  H+ Ca2+ Mg2+ K+ Na+ 
Citrate3- 6.4a 5.22a 5.15a 1.53e 1.9e 
HCitrate2- 4.76a 3.3c 2.7a 1.6e 1.6e 
H2Citrate- 3.13a 1.45a 1.18a 0a 0a 
PO4

3- 12.67b 6.46a 4.92a 1.7e 2a 
HPO4

2- 7.22b 2.85a 2.92a 1.11a 1.23a 
H2PO4

-  2.17b 1.04a 1.08a 0a 0a 
Cl- - 0.7e 1e 0a 0a 
OH- - 1.3b - 0e 0e 
HCO3

- 6.35a 1.26b 1.28a 0a 0a 
SO4

2- - 2.31a 2.23a 0.85a 0.7a 
P2O7

4- 9.25b 6.8b 7.2b 2.3b 2.3b 
HP2O7

3- 6.6b 3.6b 3.06b 1.3b 1.3b 
H2P2O7

2- 2.4b 2.8e 2.5e 1b 1b 
H3P2O7

- 0.9b 2.3b - - - 
H2P3O10

3- 2.5b - - - - 
HP3O10

4- 6.54b 5.5e 6e 1.5e 1.7e 
P3O10

5- 9.36b 8.1b 8.6b 2.5b 2.7b 
a Holt et al. (1981) 
b Smith and Martell (1981) 
c Martell and Smith (1979) 
d Davies (1962) 
e Estimated 
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Table 2 Solubility products (Ksp) of typical solid precipitates employed in the 

EIS and DIS models.  

Chemical name Chemical formula Solubility Product Ksp 

Tricalcium citrate tetrahydrate Ca3Citrate2·4H2O 2.29 · 10-18 a 

Tricalcium phosphate (TCP) Ca3(PO4)2 1.26 · 10-29 b 

Dicalcium phosphate dihydrate 

(DCPD) 
CaHPO4·2H2O 1.87 · 10-7 c 

Amorphous tricalcium phosphate 

(ACP) 
Ca3(PO4)2·xH2O 10-26 d 

Amorphous dicalcium phosphate CaHPO4.·2H2O 1.66 · 10-6 e 

Octacalcium phosphate (OCP) Ca4(HPO4)3·5H2O 1.26 · 10-49 c 

Calcium pyrophosphate Ca2P2O7 10-16 e 

Magnesium pyrophosphate Mg2P2O7 10-16 e 

Calcium carbonate CaCO3 4.8 · 10-9 a 

Trimagnesium phosphate Mg3(PO4)2 10-24 a     

Dicalcium sodium triphosphate Ca2NaP3O10 6.31 · 10-19 e 

Tetracalcium hexametaphosphate Ca4P6O19 3.16 · 10-25 e 
a Walstra & Jenness. (1984) 
b Lyster (1981) 
c Johnsson & Nancollas. (1992)  
d Seely (1998) 
e Estimated 

 

3.2.3 Details of the computer program AESolve 

The computer program AESolve (HaloteC Instruments, The Netherlands) 

allows users to perform complex equilibrium calculations in aqueous 

electrolyte systems. Solid precipitation and gas-liquid equilibria are taken 
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into account.  AESolve generates a thermodynamically consistent 

mathematical model consisting of non-linear algebraic equations and their 

parameters for the selected components. The equations are solved 

numerically by the solver engine. Supported concentration units include 

mol/kg water (molality), g/kg water and mass percentage. Molarity (mol/l) is 

not used since it is temperature dependent. Furthermore, models that describe 

non-ideality of ions in the aqueous phase include the Debye-Hückel limiting 

law, extended Debye-Hückel and the Davies equation. The Davies equation 

was used in EIS and DIS models. AESolve can perform equilibrium 

calculation either for one point or for a range of points (for changing 

concentrations). Calculations can be chosen for fixed pH or water activity or 

for pH or water activity when the system has reached equilibrium.  

 

Figure 1 shows a pseudo-algorithm to illustrate how AESolve works. An ion 

speciation model is defined by setting initial concentrations of selected 

components (in our case, the ones that were used to prepare SMUF). 

Subsequently, an iterative database search process starts that eventually 

yields all real species and involved reactions. If all species and involved 

reactions are known, the model is automatically built. The model consists of 

a set of algebraic equations and a set of unknown parameters, i.e., the 

concentrations to be calculated. The variables and expressions contained in 

the model are then parsed and compiled after which the order of evaluation is 

determined. In most cases large sets of algebraic loops need to be solved 

numerically. The total number of variables and equations may become large, 

since many real species will originate from only a small number of initial 

components through dissociation. AESolve automatically generates initial 

guesses with special algorithms. If a solution is not found after a specified 

time or number of iterations, the model is automatically simplified by 
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removing components or lowering concentrations in order to facilitate 

convergence. If a solution for this simplified model is found, the model is 

extended again. Previous results are then used as initial guesses for the larger 

model. This is also an iterative process until a solution is found for the entire 

model. 

 

Build model, constructing mass balance 
equations and all involved model constants and 
variables

Find all reactions and species in database

Input initial components and concentrations

Remove components
and/or lower concentrations

Add components
and/or increase concentrations

Algebraic equations and variables are parsed and 
compiled and subsequently the order of 
evaluation is determined

With initial guess, solve explicit equations and  
algebraic loops

Solution found?

Original model solved?

yes

No

yes

No

Results are exported to MS Excel 

Loop 1 Loop 2

 
 

Figure 1 Schematic presentation of AESolve details 
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3.2.4 Donnan Membrane Technique 

The theory of the Donnan membrane technique was described extensively by 

Gao et al. (2009) and Temminghoff et al. (2000). Briefly, the sample solution, 

called the donor solution is separated from an acceptor solution containing 

strong electrolytes by a semi-permeable and highly negatively-charged cation 

exchange membrane. The negative electric potential of the membrane allows 

cations to pass through and restricts anions from crossing the membrane. 

Within certain time, Donnan equilibrium is reached between the free metal 

ion (Mz+
donor) activity in donor and the free metal ion (Mz+

acceptor) activity in 

acceptor. The free metal ion activity present in the donor solution can be 

determined by correcting for differences in ionic strength between the donor 

and acceptor solution (Helfferich, 1962).  

acceptor 

donor 
/1

acceptor 

donor 

aN

aN

aM

aM
+

+

+

+
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ z

z

z
                                  (9) 

aMz+ represents the activity of the free target metal ion with charge z in either 

acceptor or donor. aN+ (normally potassium ion K+) represents the activity of 

a monovalent reference ion. Potassium is chosen to correct for the differences 

in ionic strength between donor and acceptor (Van Der Stelt, Temminghoff & 

Van Riemsdijk, 2005). 

 

If necessary, the so obtained free calcium activity in SMUF can be 

recalculated into free calcium concentration using the Davies equation 

(Davies, 1962) accounting for the calcium ion activity coefficient, as shown 

in equation (8). 

The free calcium concentration is then calculated by the following equation:  

θ
γ +

+

+
+ ×= 2

2

2
2

Ca

Ca
Ca Ca

m
a

m                                                              (10) 
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in which aCa
2+ is the free Ca2+ activity, and mCa

2+ is the free Ca2+ concentration 

(mol/kg water), mө
Ca

2+ is the standard state of free Ca2+ concentration (1 

mol/kg water). 

 

3.2.5 Ionic calcium determination by a calcium ion selective electrode 

Ionic calcium activity was determined using an Orion 97-20 ion-plus calcium 

electrode and an Orion 720A+ meter (Thermo, Beverly, USA). Calibration 

was carried out with freshly prepared standard solutions in the range between 

10-4 and 10-1 mol/kg water CaCl2. All the standard solutions, except for 10-1 

mol/kg water, were adjusted to ionic strength 0.09 mol/kg water with KCl. 

Calibration standard solutions were adjusted to ionic strength 0.09 mol/kg 

water with KCl to calibrate the electrode for measurement of all the samples. 

The calibration curve plotted the electric potential (mV) as a function of 

logarithm of calculated calcium activity. The time necessary to reach a stable 

reading was approximately 5 min, referring to electric potential change less 

than 0.1mV per minute.  

 

3.2.6 X-Ray diffraction 

X-ray diffraction (XRD) was conducted with a PANalytical Expert Pro 

System (Almelo, The Netherlands) by using nickel-filtered CuKα radiation 

(tube operating at 40 kV and 40 mA). The data were collected using an 

automated divergence slit (5mm irradiated length) and a 0.2 mm receiving 

slit. Phase identification was carried out with Crystallographica 

Search-Match software using the PDF data base release 2005 (McClune, 

2005). 
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3.3 Results and Discussion 

 

3.3.1 Precipitation at equilibrium: building of the model EIS 

In order to build the model EIS, the following experiments were done. Salts 

were added to SMUF and the response was measured via Ca2+ and Mg2+ 

measurements, pH, and analyses of the precipitates formed.  

 

3.3.1.1 Addition of CaCl2 to SMUF 

 

Addition of CaCl2 to SMUF changed the original ion equilibria in terms of 

thermodynamic properties of ions, such as ion activity, ion concentration and 

ionic strength and resulted in precipitation. The Ca2+ activity at equilibrium 

increased nearly proportional to the amount of CaCl2 added, as shown in 

Figure 2a. The Ca2+ activities measured by Ca-ISE were generally similar to 

the results by DMT, although there was a small difference at higher 

concentration of CaCl2. The calculated Ca2+ activities were in general 

agreement with the experimental results.  Besides Ca2+, another major 

divalent cation Mg2+ was also influenced. Figure 2b shows that the free Mg2+ 

concentration at equilibrium initially increased and then slightly decreased as 

a function of the added CaCl2 concentration. As an explanation for the 

observed behaviour, the EIS model suggests that extra Ca2+ associates with 

large quantity of citrate ions to form calcium citrate complex or precipitate, 

which then promotes dissociation of magnesium citrate complex, resulting in 

a sharp increase in Mg2+ concentration. With more and more CaCl2, Mg2+ ion 

interacts with Cl- to form the weak ion pair MgCl+, leading to a slight 

decrease in the concentration of Mg2+ ions. The Mg2+ concentration predicted 

by the EIS model was in agreement with the experimental results. The ionic 

strength of SMUF was calculated to increase up to 0.291 mol/kg water 



Chapter 3 

 
 
- 68 - 

according to the EIS model, as illustrated in Figure 2d.  
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Figure 2 Effect of CaCl2 addition on ion speciation in SMUF allowed to 

reach equilibrium. (a) Comparison of calculated and experimental free Ca2+ 

activity in SMUF: (□) DMT method (n=2); (△) Ca-ISE method (n=6); (—) 

EIS model calculation. (b) Comparison of calculated and experimental free 

Mg2+ concentration in SMUF: (×) DMT method (n=2); (---) EIS model 

calculation. (c) Comparison of calculated and experimental pH in SMUF: (■) 

measured pH at initial state (n=6); (▲) measured pH at equilibrium (n=6); (– 

–) EIS model calculation at equilibrium. (d) The calculated ionic strength.  

 

As a result of adding CaCl2, precipitation occurred in SMUF with respect to 

calcium phosphate. The EIS model showed that the precipitates were DCPD 

(b)

(c) (d)

(a) 
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(CaHPO4.2H2O) and tricalcium citrate tetrahydrate (Ca3Citrate2.4H2O) at 

equilibrium, which was confirmed by X-Ray diffraction as shown in Figure 

3A. Due to the abundance of Ca2+ ions, SMUF became also supersaturated 

with tricalcium citrate, which therefore appeared to precipitate. In the pH 

range studied, DCPD was the single calcium phosphate phase formed. Below 

pH 6.7, DCPD and HAP are the most favourable calcium phosphate phases 

(Van Kemenade et al., 1987). However, HAP crystal formation is largely 

inhibited due to the presence of Mg2+ and Citrate. It is suggested that 

formation of DCPD was the main reason of a decrease of pH in SMUF upon 

addition of CaCl2. The free Ca2+ ions interact with HPO4
2- ions, resulting in 

deprotonation of H2PO4
-. Furthermore, adding CaCl2 initially led to 

amorphous CaHPO4.2H2O formation. With time, amorphous CaHPO4.2H2O 

would be converted to its crystalline form. As a result, more precipitates were 

formed, causing further deprotonation of H2PO4
- and a decrease in pH until 

equilibrium is reached. All these effects are reflected in the pH change shown 

in Figure 2c. Clearly, the pH at equilibrium was well predicted by the EIS 

model.                                                                    
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Sample

Tricalcium Citrate

DCPD

KCl

A

Sample

OCP

ACP

KCl

Sample

OCP

ACP

KCl

B

 
Figure 3 X-ray diffraction patterns of precipitates in SMUF: (A) CaCl2 effect 

and (B) Na2HPO4 effect. 
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3.3.1.2 Addition of disodium phosphate (Na2HPO4)  

Figures 4 (a) and (b) illustrate that after adding Na2HPO4, initially Ca2+ 

activities decreased and pH values increased as a function of Na2HPO4 

concentration, respectively. With time, Ca2+ activities and pH values 

decreased until equilibrium. The Ca2+ activity and pH at equilibrium 

predicted by EIS matched with the experimental results within 10% deviation. 

The change of Ca2+ activity and pH in time is apparently related to the 

kinetics of calcium phosphate precipitation. Figure 3B shows a number of 

broad peaks indicating that the sample is quite amorphous. This suggested 

that the amorphous precipitates should be still in the process of calcium 

phosphate crystallization. The XRD pattern was best matched by Ca3(PO4)2 

(ACP) and Ca4H(PO4)3.5H2O (OCP). Meanwhile, Table 3 shows that the 

molar ratios of Ca/P are all between 1.33 and 1.45, indicating that the 

precipitates are most likely a mixture of OCP and ACP. Apart from the ACP 

and OCP peaks, some sharper peaks were also present in the pattern, which 

was crystalline KCl. Table 3 shows that the EIS model predicts OCP to be 

formed at equilibrium, no matter what concentration of Na2HPO4. According 

to precipitating sequence above pH 6.7 at 25 °C (Van Kemenade et al., 1987), 

which was DCPD/ACP → OCP → HAP,  OCP was generally less soluble 

and more stable than DCPD and ACP. Therefore, it is unlikely that DCPD 

and ACP were present at equilibrium. Moreover, the presence of Mg2+ and 

citrate may play a role in preventing HAP crystal growth. It seemed that HAP 

was hardly formed. Therefore, the EIS model appeared to predict the 

behaviour of calcium phosphate precipitates at equilibrium.  
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Figure 4 Effect of Na2HPO4 addition on ion equilibria in SMUF at 

equilibrium.  (a) and (b) Comparison of calculated and experimental free 

Ca2+ activity and pH in SMUF, respectively: (□) and (■) represent free Ca2+ 

ion activity and pH, respectively at initial state (n=6); (×) and (▲) represent 

free Ca2+ ion activity and pH, respectively at equilibrium (—) and (– –)  are 

free Ca2+ ion activity and pH predicted by the EIS model, respectively (n=6). 

 

Table 3 Characteristics of calcium phosphate precipitates in SMUF with 

added Na2HPO4 

Na2HPO4 

(%) (w/w) 

Experimental 

Ca/P 

Calculated 

Ca/P 

Precipitates by 

X-Ray 

Precipitates 

by the EIS 

Model 

0.04 1.45  1.33 Ca3(PO4)2 & OCP OCP 

0.08 - 1.33 - OCP 

0.16 1.43 1.33 Ca3(PO4)2 & OCP OCP 

0.24 - 1.33 -   

0.32 1.35  1.33 Ca3(PO4)2 &OCP OCP 

0.40 1.36  1.33 Ca3(PO4)2 & OCP OCP 

0.48 1.33  1.33 Ca3(PO4)2 & OCP OCP 

 

(a) (b)
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3.3.1.3 Stability of SMUF 

 

SMUF is a milk salt solution designed to have similar salt composition to 

milk serum. According to Jenness et al. (1962), freshly prepared SMUF is a 

clear solution. However, SMUF was observed to become turbid over time. 

Figure 2c and Figure 4 show that the Ca2+ activity and pH of SMUF without 

addition of CaCl2 or Na2HPO4 are reduced significantly. Furthermore, Table 

4 shows the Ca2+ activity is decreased over 50% and pH is decreased to 6.40. 

This can be explained by the formation of calcium phosphate precipitates. In 

other words, SMUF is a solution supersaturated with respect to calcium 

phosphate. Freshly prepared SMUF is therefore not in thermodynamic 

equilibrium and forms precipitates in time. The EIS model calculates the free 

Ca2+ activity and pH in SMUF at equilibrium, which is in good agreement 

with experimental results. Subsequently, Table 5 shows the calculated ion 

equilibria of SMUF at equilibrium. It indicates that the precipitates mainly 

consist of DCPD and OCP with a molar ratio 99:1. According to solubility 

isotherms of calcium phosphate phases, in which DCPD was more stable 

below pH 6.7 at room temperature (Van Kemenade et al., 1987), it makes 

sense that DCPD was formed.   

 

Table 4 Comparison of the measured calcium activity and pH (SD)a with the 

modelled results in freshly prepared SMUF and SMUF at equilibrium b,  

6.40 -2.69E-04-Model 

6.40 (0.01) 6.63 (0.01)2.70E-04 (2.0E-04)5.4E-04 (1.5E-04)Measurement

pH 
at equilibrium

pH 
at t=0 h

Ca2+ activity 
at equilibrium

Ca2+ activity 
at t=0 h

6.40 -2.69E-04-Model 

6.40 (0.01) 6.63 (0.01)2.70E-04 (2.0E-04)5.4E-04 (1.5E-04)Measurement

pH 
at equilibrium

pH 
at t=0 h

Ca2+ activity 
at equilibrium

Ca2+ activity 
at t=0 h

a n=6 
b Calcium activity was measured by calcium ion selective electrode 
c modelled results were obtained according to EIS model 
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In summary, the EIS model was able to predict ion composition at 

equilibrium in SMUF and also in SMUF to which CaCl2 or Na2HPO4 was 

added. The EIS model is strictly thermodynamic, i.e., based upon intrinsic 

thermodynamic association constants and solubility products. However, the 

consequence is that SMUF at equilibrium does not represent the salt 

composition in milk serum. This is of importance when SMUF is used as a 

buffer solution for dispersion of milk proteins or for studying the 

physico-chemical properties of milk proteins. Therefore, it was considered 

essential to also build a model that can predict ion composition in freshly 

prepared SMUF; we call this model DIS, as introduced above.  

 

Table 5 Calculated concentrations (mmol/kg water) of ions and complexes in 

SMUF at equilibrium by EIS model a, b.  

   Cation complex 
Anion Free ion Ca2+ Mg2+ K+ Na+ 
Citrate3- 0.70 5.27 2.64 0.23 0.30 
HCitrate2- 0.23 0.05 - 0.14 0.08 
H2Citrate- - c - - - - 
PO4

3- - - - - - 
HPO4

2- 1.77 0.14 0.09 0.34 0.25 
H2PO4

-  5.98 0.02 0.01 0.14 0.08 
Cl- 32.3 0.04 0.05 0.74 0.41 
OH- - - - - - 
HCO3

- 0.02 - - - - 
SO4

2- 0.85 0.02 0.01 0.09 0.04 
Free ion - 0.65 0.39 36.5 20.2 

a  Concentrations (mmol/kg water) of major ions in freshly prepared SMUF: 

[Ca] = 9.0, [Mg] = 3.2, [Na] = 18.3, [K] = 39.2, [Pi] = 11.6, [Cl] = 33.5, 

[Citrate] = 9.6, [SO4] = 1.0; ionic strength of SMUF was 0.069 mol/kg water  
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(calculated); pH of SMUF was 6.63.  
b At equilibrium, calcium phosphate precipitated in SMUF, which were 

DCPD 2.70 mmol/kg water, and OCP 0.026 mmol/kg water. The ionic 

strength of SMUF was 0.065 mol/kg water (calculated) and pH of SMUF was 

6.40.  
c Concentration shown as: - < 0.01 mmol/kg water 

 

3.3.2 Kinetic model of the change in pH and Ca2+ activity  

In order to determine the ion composition in freshly prepared SMUF, the 

approach was to measure the Ca2+ activity or pH at the intermediate states 

between preparation and equilibrium. Next, the ion speciation model DIS was 

fitted to experimental data by adjusting the solubility product (Ksp) of DCPD. 

Subsequently, the obtained Ksp values were plotted against time and the 

corresponding curve was extrapolated to obtain the apparent Ksp at t=0.  

 

SMUF to which CaCl2 was added was chosen to obtain the apparent Ksp as a 

function of time, because in SMUF to which Na2HPO4 was added, 

transformation of various calcium phosphate phases took place, whereas this 

was not so with CaCl2. There were two precipitates formed by adding CaCl2 

in SMUF. The formation of DCPD mainly accounted for the pH to change in 

time. Moreover, according to the precipitating sequence of calcium phosphate 

precipitates (Van Kemenade et al., 1987), DCPD appeared to be the first 

precipitating phase. Therefore, by adjusting the Ksp value of DCPD, the 

measured pH could be fitted by the DIS model at different times. By plotting 

the obtained Ksp values as a function of time, the apparent Ksp at t = 0 could 

be derived by extrapolation. However, for SMUF where Na2HPO4 was added, 

ACP was also formed initially. Due to the complexity of this system, the 

apparent Ksp of ACP at t=0 was not determined as described above. Several 
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solubility products of Ca3(PO4)2 were found in literature, in which the 

difference between solubility products were up to 103. The highest Ksp of 

Ca3(PO4)2 was chosen as the apparent Ksp of ACP at t = 0, which was 10-26 

(Seely, 1998). Both the apparent Ksp of DCPD and ACP were employed in the 

DIS model to test whether the model gave good prediction in pH and Ca2+ 

activity at t = 0. It is stressed that this is a purely empirical way to tackle the 

kinetics of precipitation. It would require much more study on precipitation 

kinetics to find out the full details of the mechanism behind the observed 

phenomena.  

 

Figure 5a shows the pH values at different times in SMUF with added CaCl2. 

At intermediate states, the measured pH values were well fitted by the model 

by adjusting the Ksp values. The obtained Ksp values were plotted against time, 

as shown in Figure 5b, and were fitted to a polynomial equation. This 

equation was used to extrapolate to t = 0 and this resulted in an apparent Ksp 

= 5.78 ± 0.1 (95 % confidence interval). By using the apparent Ksp value at t 

= 0, the ion composition of the freshly prepared SMUF was calculated. With 

this value, no precipitates were predicted by the DIS model. The calculated 

pH and Ca2+ activity were 6.63 and 6.41E-04, respectively, which were 

comparable to the measured results as shown in Table 4. The measured Ca2+ 

activity was lower than the calculated result. This was probably because the 

calcium electrode was influenced by matrix effect (Gao et al., 2009). Instead, 

the Ca2+ activity measured by Donnan Membrane technique was 6.45E-04 

(Gao et al., 2009), which was similar to the calculated value, indicating that 

the DIS model is indeed able to predict the ion composition at t = 0.  
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Figure 5 (a) model of pH change in time in SMUF with added CaCl2. (□)  

measured pH at t = 24 h; (—) calculated pH at t = 24 h; (◇) measured pH at t 

= 48 h; (– –) calculated pH at t = 48 h;  (×) measured pH at t = 72 h; (---) 

calculated pH at t = 72 h; (+) measured pH at t = 96 h; (– -) calculated pH at t 

= 96 h; (△) measured pH at t = 216 h; (– - -)  calculated pH at t = 216 h; 

experiments were carried out in triplicate (b) mathematical calculation of 

solubility product of CaHPO4·2H2O at t =0.  

 

The DIS model with apparent Ksp = 5.78 at t = 0 was also applied to calculate 

ion composition at t=0 in SMUF with added CaCl2 and Na2HPO4. Figure 6 

(a) shows that the model prediction of pH is in good agreement with the 

experimental results in freshly prepared SMUF with added CaCl2. Likewise, 

the measured pH values matched well with the calculated results in SMUF 

with added Na2HPO4 at t = 0, as shown in Figure 6b. Figure 6c illustrates 

the calculated Ca2+ activities at t = 0; the model prediction was a bit higher 

but showed same tendency as the experimental results. The difference could 

be due to matrix effect interfering with calcium ion selective electrode.  

 

(a) (b) 
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Figure 6 Comparison of calculated and measured pH and Ca2+ activity in 

SMUF. (a) CaCl2 effect: (□) measured pH at initial state (—) calculated pH at 

initial state by DIS model; (×) measured pH at equilibrium (▬) calculated pH 

at equilibrium by EIS model. (b) and (c)  Na2HPO4 effect on pH and Ca2+ 

activity, respectively: (■) measured pH or Ca2+ activity at initial state (– –) 

calculated pH or Ca2+ activity at initial state by DIS model; (▲) measured pH 

or Ca2+ activity at equilibrium (---) calculated pH or Ca2+ activity at 

equilibrium by EIS model. 

 

3.3.3 Ion composition in freshly prepared SMUF 

The ion species in SMUF, present either in a free form or complexed form, 

are involved in association or dissociation reactions. Table 6 shows the 

calculated concentrations (DIS model) of ion species in SMUF at pH 6.63, 

which are generally in good agreement with literature data (Holt et al., 1981). 

(a) 

(c) 

(b) 
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Summing up all the ion species, SMUF was calculated to have an ionic 

strength of 0.069 mol/kg water, which was similar to the reported value 0.073 

mol/kg water (Holt et al., 1981). Divalent metal ions, e.g. Ca2+ and Mg2+, 

were mainly bound by citrate3- and to a less extent by HPO4
2-, while 

monovalent metal ions, e.g. Na+ and K+, were present mainly in the free form. 

The calculated (DIS model) concentrations of free Ca2+, Mg2+, Na+ and K+ 

ions matched well with reported experimental results (Gao et al., 2009), 

which were 1.58, 0.53, 17.0 and 38.5 mmol/kg water for the concentration of 

free Ca2+, Mg2+, Na+ and K+ ion,  respectively. However, the calculated 

concentrations of each ion species, such as CaCitrate-, and NaCitrate2-, were 

slightly different from literature data (Holt et al., 1981). This could partly be 

due to the total concentrations of Ca, Mg, Na and phosphate from Holt et al. 

(1981) being a bit higher than those in SMUF, and partly because the 

association constants for certain ion species in the model were different from 

those by Holt et al. (1981).  
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Table 6 Calculated concentrations (mmol/kg water) of ions and complexes in 

freshly prepared SMUF by DIS model a, b, c versus literature values from Holt 

et al. (1981)  

    Cation complex  
Anion Free ion Ca2+ Mg2+ K+ Na+ 
Citrate3- 0.38 (0.26) 6.61 (6.96) 2.20 (2.02) 0.12 (0.04) 0.16 (0.03) 
HCitrate2- 0.07 (0.04) 0.04 (0.01) - (-) 0.04 (-) 0.02 (-) 
H2Citrate- - (-) - (-) - (-) - (-) - (-) 
PO4

3- - (-) - (-) - (-) - (-) - (-) 
HPO4

2- 3.18 (2.65) 0.57 (0.59) 0.26 (0.34) 0.60 (0.52) 0.44 (0.39) 
H2PO4

-  6.25 (7.50) 0.04 (0.07) 0.02 (0.04) 0.14 (0.18) 0.08 (0.10) 
Cl- 32.2 (30.90) 0.10 (0.26) 0.08 (0.07) 0.75 (0.68) 0.40 (0.39) 
OH- - (-) - (-) - (-) - (-) - (-) 
HCO3

- 0.04 (0.32) - (-) - (-) - (-) - (-) 
SO4

2- 0.83 (0.96) 0.04 (0.07) 0.01 (0.03) 0.09 (0.10) 0.03 (0.04) 
Free ion - 1.59 (2.00) 0.62 (0.81) 37.5 (36.3) 17.2 (20.9) 

a  Concentrations (mmol/kg water)  of the major ions in freshly prepared 

SMUF: [Ca] = 9.0, [Mg] = 3.2, [Na] = 18.3, [K] = 39.2, [Pi] = 11.6, [Cl] = 

33.5, [Citrate] = 9.6, [SO4] = 1.0; ionic strength of SMUF was 0.069 mol/kg 

water  (calculated); pH of SMUF was 6.63. 
b Values shown as ( ) were calculated concentrations (mmol/kg water) of ion 

species in a typical milk diffusate by Holt et al. (1981), in which  [Ca] = 10.2, 

[Mg] = 3.4, [Na] = 22.0, [K] = 38.0, [Pi] = 12.4, [Cl] = 32.3, [Citrate] = 9.4, 

[SO4] = 1.2; ionic strength was 0.073 M and pH was 6.70.  
c Concentration shown as: - < 0.01 mmol/kg water 

 

3.4 Conclusion 

 

Freshly prepared SMUF is a solution that is thermodynamically unstable and 
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over time results in calcium phosphate precipitation. The thermodynamically 

based ion speciation model EIS appears to be able to successfully predict ion 

equilibria in the presence of calcium phosphate precipitate in equilibrated 

SMUF and SMUF to which CaCl2 and Na2HPO4 are added. The DIS model 

on the other hand was found to be able to predict the ion composition of 

freshly prepared SMUF and that of SMUF on its way to equilibrium by 

incorporating the ongoing calcium phosphate precipitation by means of 

apparent solubility products. The DIS model was also able to calculate ion 

composition in freshly prepared SMUF to which CaCl2 and Na2HPO4 were 

added.  Also, the salt equilibria of freshly prepared SMUF by DIS are in 

good agreement with literature results.  Nevertheless, the ion speciation 

model has some limitations. This model is only validated at room 

temperature. It does not yet take into account temperature effects on ion 

equilibria due to lack of availability of association constants and solubility 

products at various temperatures. In addition, the kinetics of calcium 

phosphate precipitation is, for the time being, only dealt with in an empirical 

way in the DIS model. To turn this into a mechanistic model, much more 

detailed research is required on crystallization and transformation of various 

forms of calcium phosphate. The current paper does not address the effects of 

other conditions (addition of HCl, ionic strength and polyphosphates), as it is 

subject to the accompanying paper (part II). An important conclusion is that 

SMUF at equilibrium has a significantly different ion composition from that 

of freshly prepared SMUF. It does not represent salts in milk serum if 

allowed to reach equilibrium. 
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Abstract 

This study aims to determine whether the Dynamic Ion Speciation (DIS) 

model, as introduced in part I, can predict the ion composition in freshly 

prepared simulated milk ultrafiltrate (SMUF) under various conditions, e.g. 

pH, ionic strength and presence of various polyphosphates. Experiments were 

carried out in freshly prepared SMUF enriched with different salts. The 

model predictions were in satisfactory agreement with experimental results 

for all conditions.  Moreover, specific ion effects were taken into account in 

the model, where sodium ions were not counted as equivalent to potassium 

ions due to differences in hydration properties. Polyphosphates, in particular 

sodium hexametaphosphate (SHMP), were well integrated into the DIS 

model with reasonable association constants and solubility products. The DIS 

model suggests that SHMP displays chain polyphosphate properties, which 

provides better understanding of its interaction with cations. The DIS model 

appears to be a robust and versatile tool to describe ion equilibria in SMUF.  

 

Keywords: Ion equilibria, ion speciation model, pH, KCl, NaCl, 

polyphosphate, SMUF 
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4.1 Introduction 

 

Ion equilibria, particularly the distribution of calcium and phosphate between 

the colloidal phase and serum phase of milk, play an important role in the 

conformation and stability of casein micelles (Fox & McSweeney, 1998; Holt, 

1997; Walstra & Jenness, 1984). They have significant impact on the 

physicochemical properties of milk: namely heat stability, gelation induced 

by rennet and acid, fouling and sedimentation, thereby affecting the 

production and stability of products such as cheese, yoghurt and evaporated 

milk (Fox & McSweeney, 1998; Huppertz, 2007; Huppertz & Fox, 2006). 

Alterations of ion equilibria lead to significant changes in the micellar 

composition and structural integrity of casein micelles.  

 

Acidification of milk solubilises the colloidal calcium phosphate and to some 

extent this can be accompanied by dissociation of casein from the micelle 

(Dalgleish & Law, 1989; Van Hooydonk, Hagedoorn & Boerrigter, 1986).  

 

Increase in ionic strength by adding NaCl, has a significant effect on ion 

speciation in milk such as a decrease in pH, an increase in Ca2+ concentration, 

a decrease in the activity coefficient of ionic species and an increase in the 

hydration of casein micelles (Gaucheron, 2005; Huppertz & Fox, 2006). As a 

result, several properties of milk are changed, e.g. the rennet coagulation time 

of milk is increased (Famelart, Le Graet & Raulot, 1999; Van Hooydonk et 

al., 1986) and the ethanol stability is reduced (Huppertz & Fox, 2006). Up to 

now, little attention has been paid to the effect of increase in ionic strength by 

adding KCl since potassium ions are commonly regarded as equivalent to 

sodium ions.  However, recent studies (Collins, 1997; Collins, Neilson & 

Enderby, 2007) show that potassium ions behave differently from sodium 
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ions in aqueous solutions due to differences in charge density and hydration 

properties. Such specific ion effect should be investigated in milk systems 

because adding NaCl or KCl may lead to significant differences in ion 

composition, such as Ca2+ activity and pH.  

 

In addition, polyphosphates are widely used in dairy industry, particularly in 

the manufacturing of processed cheese products. Polyphosphates can 

influence the physicochemical properties of milk and dairy products because 

they can complex calcium and magnesium ions, leading to alteration of the 

ion equilibria and micellar structure. The regular polyphosphates used in 

dairy products are: tetrasodium pyrophosphate Na4P2O7 (TSPP), sodium 

tripolyphosphate Na5P3O10 (STPP) and sodium hexametaphosphate (NaPO3)6 

(SHMP). These polyphosphates behave differently in milk systems in terms 

of calcium complexation, pH modification and direct interaction with the 

casein micelles (Shimp, 1983). Therefore, it is very important to choose the 

right phosphate for a given application. In spite of the wide application of 

polyphosphates, their ionic properties in multi-component systems have 

rarely been studied due to lack of knowledge of their ionic association 

constants and the solubility products of their salts. In particular, little is 

known of the molecular structure of SHMP and its ionization behaviour in 

solutions. Thus, it is of great practical importance to develop a 

comprehensive and predictive model of ion equilibria in milk under various 

conditions.  

 

Previous work (Gao et al., 2010) has shown that the dynamic ion speciation 

(DIS) model adequately describes the ion equilibria in freshly prepared 

simulated milk ultrafiltrate (SMUF). The present investigation aims to 

validate the model in freshly prepared SMUF under conditions of changing 
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pH, ionic strength and added polyphosphates. Experiments were carried out 

to determine the ion composition in freshly prepared SMUF enriched with 

different electrolytes (HCl, NaCl, KCl, TSPP, STPP and SHMP). The work 

thus includes: (i) specific ion effects (e.g. Na+ and K+) in SMUF and their 

integration into the DIS model; (ii) the ionic behaviour of polyphosphates, 

particularly SHMP, and the concomitant quantification of their various ion 

association and precipitation reactions.  

 

4.2 Materials and Methods 

 

4.2.1 Experimental Setup 

All experiments were carried out at 20 ± 1.0 ºC. Glassware was washed in 

phosphate-free detergent, soaked in 1.4 M nitric acid and rinsed in deionized 

water (Millipore, Amsterdam, The Netherlands). All chemicals were 

purchased from Fluka with purity 99.0 %, except for SHMP (purum) and 

STPP (≥ 98%). SMUF without lactose was prepared according to Jenness & 

Koops (1962).  

 

4.2.1.1 Addition of HCl 

The SMUF samples were acidified with 6M HCl from pH 6.6 to 4.5. The pH 

was measured using a pH electrode (Orion 8172BNWP, Thermo, Beverly, 

USA). Free Ca2+ activity was determined using a calcium ion selective 

electrode (Orion 97-20, Thermo, Beverly, USA). Free Ca2+ and Mg2+ ion 

concentrations were determined by Donnan Membrane Technique (DMT) as 

described by Gao et al. (2009). The DMT experiment was carried out in 

triplicate, and the calcium electrode measurement was repeated six times.  

 

4.2.1.2 Addition of NaCl and KCl 
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NaCl or KCl was added to SMUF samples in the range between 0 and 0.3 

mol/kg water. Same procedures for measuring pH, free Ca2+ activity and 

concentration were used as described in section 4.2.1.1. Each experiment was 

repeated six times. 

 

4.2.1.3 Addition of polyphosphate 

Three polyphosphates were used with various concentrations, as shown in 

Table 1. Adding TSPP and STPP resulted in precipitate formation in SMUF. 

The procedure of analyzing precipitates was described in the earlier work on 

the kinetics of calcium phosphate precipitation in SMUF (Gao et al., 2010).   

 

Table 1 Characteristics of polyphosphates  

0 – 0.50 %(NaPO3)n·Na2OSodium hexametaphosphate (SHMP)

0 – 0.50 %Na5P3O10Sodium tripolyphosphate (STPP)

0 – 0.36 %Na4P2O7Tetrasodium pyrophosphate (TSPP)

Concentration (w/w)Molecular formulaPolyphosphate

0 – 0.50 %(NaPO3)n·Na2OSodium hexametaphosphate (SHMP)

0 – 0.50 %Na5P3O10Sodium tripolyphosphate (STPP)

0 – 0.36 %Na4P2O7Tetrasodium pyrophosphate (TSPP)

Concentration (w/w)Molecular formulaPolyphosphate

 

 

4.2.2 Determination of ionic calcium using a calcium ion selective 

electrode 

Ionic calcium was determined using an Orion 97-20 ion-plus calcium 

electrode (Thermo, Beverly, USA). Calibration was carried out with freshly 

prepared standard solutions in the range between 10-4 and 3·10-2 M CaCl2. All 

the standard solutions were adjusted to ionic strength 0.09 M with KCl. The 

calibration curve plots potential (E) as a function of logarithm of calculated 

calcium activity. The time necessary for a stable reading was approximately 5 

min, referring to a potential change less than 0.1mV per minute. Interference 

due to ions such as Na+ and K+ (section 4.3.2), are taken into account on the 

basis of the Nikolsky-Eisenman equation (Umezawa, Umezawa & Sato, 
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1995).  

...)ln( 2
Na

2
KCa

Ca

0
NaCa,KCa,2

++++=
+

akaka
Fz

RTEE           (1)           

where +2Ca
z  is the charge of calcium ion; Caa , Ka  and Naa  are the 

activities of Ca2+, K+ and Na+ ion, respectively; kCa, K and kCa, Na are the 

selectivity coefficients of the calcium electrode with respect to K+ and Na+, 

which were determined according to the matched potential method 

(Umezawa et al., 1995) and were found to be 6.25×10-4 and 2.5×10-3, 

respectively.  

 

4.2.3 The model 

The DIS model introduced in previous paper (Gao et al., 2010) was tested for 

its prediction of ion composition in freshly prepared SMUF at all the applied 

conditions described in section 4.2.1. This requires inclusion of another group 

of association constants of SHMP into the DIS model, as shown in Table 2. 

Incorporation of these pKass values did not affect the outcomes of the model 

as presented in the previous paper (Gao et al., 2010).  

 

Table 2 pKass of cation-hexametaphosphate complexes used in the DIS model  

Ion complex pKass Ion complex pKass 

HP6O19
7- 8.88 d NaP6O19

7- 3.7 b 

H2P6O19
6- 6.7 d Na2P6O19

6- 2 b 

CaP6O19
6- 10 a KP6O19

7- 3.7 c 

Ca2P6O19
4- 7.5 d K2P6O19

6- 2 d 

MgP6O19
6- 9 a NaHP6O19

6- 2.9 d 

Mg2P6O19
4- 6.5 d KHP6O19

6- 2.3 d 
a Van Wazer et al. (1950) 



Chapter 4 

 
 
- 92 - 

b Kura et al. (1972) 
c Kura et al. (1976) 
d Estimated from model fitting in this research 

 

4.3 Results and Discussion 

 

4.3.1 Addition of HCl 

With addition of HCl, anions such as citrate and phosphate are more strongly 

protonated, giving rise to the dissociation of ion complex species such as 

CaCitrate-, MgCitrate- and CaHPO4. On the other hand, addition of HCl leads 

to some increase in the formation of ion pairs such as CaCl+. As a net result, 

the concentrations or activities of free Ca2+ and Mg2+ ions in SMUF increase 

as shown in Figure 1.  The experimental data show general agreement with 

the concentrations or activities calculated by the DIS model. In particular, the 

DMT results for calcium were well predicted by the DIS model, but the DMT 

data for magnesium were slightly lower than the calculated concentration. 

This is probably due to some uncertainty in association constants of 

magnesium ion species, such as MgCitrate-. In the range of pH between 5.20 

and 6.63, the Ca-ISE results for calcium activity were somewhat lower than 

the DMT results and the model. The difference is probably caused by some 

weak interference from one or more components in SMUF (Holt, Dalgleish 

& Jenness, 1981).  
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Figure 1 Effect of HCl addition on ion concentrations or activities in SMUF. 

(a) Comparison of calculated and experimental free Ca2+ activity in SMUF:  

(□) Ca-ISE; (△) DMT; (—) DIS model calculation. (b) Comparison of 

calculated and experimental free Ca2+ and Mg2+ concentration in SMUF: (×) 

and (+) free Ca2+ and Mg2+ concentration by DMT, respectively; (– –) and (---) 

free Ca2+ concentration by DIS model calculation, respectively. The DMT 

experiment was repeated in triplicate and the Ca-ISE measurement was 

repeated six times. 

 

4.3.2 Addition of KCl and NaCl 

Figure 2 shows that adding KCl or NaCl has several consequences for the 

ion composition in SMUF, such as variation of concentration and activity of 

cations, pH and ionic strength. There are significant differences between KCl 

and NaCl in their impact on ion composition of SMUF.  

 

4.3.2.1 Effect of KCl and NaCl 

Figure 2a shows that the Ca2+ activities, determined by DMT, tend to remain 

constant within experimental error throughout the concentration range of 

added KCl, as indicated by one-way ANOVA. The Ca2+ activities, calculated 

by the DIS model, were generally consistent with the DMT results. However, 

(a) (b) 
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the Ca2+ activities, measured by Ca-ISE, initially increased with the 

concentration of KCl and tend to become constant in the concentration range 

of KCl from 0.1 to 0.3mo /kg water. In general, the values of Ca2+ activities 

were in the order Ca-ISE ≤ DMT ≈ model. At lower concentration of KCl, 

the Ca-ISE results were significantly different from the DMT and model 

results. Figure 2b shows that the Ca2+ activities increased with addition of 

NaCl to SMUF. The DMT values and Ca-ISE values showed similar trend, 

but there were significant differences of the Ca2+ activities between the two 

methods at lower ionic strength, which appeared to generate problems similar 

to those found for KCl. Perhaps the calibration procedure on the basis of the 

Nikolsky-Eisenman equation (Eq. 1) is not working perfectly at lower ionic 

strength. At higher concentration of KCl or NaCl, the Ca2+ activities 

determined by Ca-ISE matched well with those by DMT and model.  

 

Adding KCl or NaCl increases the ionic strength of SMUF and decreases 

ionic activity coefficients (Figure 2f). However, the concentrations of free 

Ca2+ or Mg2+ might increase due to increased competition of potassium in ion 

pair formation with citrate and others: 

M + NCitrate- ↔ MCitrate2- + N  

(M = K+ or Na+; N = Ca2+ or Mg2+)                               (2) 

 

Figure 2c shows that the calculated Ca2+ concentrations are in good 

agreement with the DMT results.  The calculated Mg2+ concentrations differ 

from the DMT data, though the trends are similar (Figure 2d). The 

discrepancy could be caused by the association constants e.g. MgCitrate- and 

CaCitrate-. By adjusting the association constant of MgCitrate-, the calculated 

Mg2+ concentrations can be matched well with experimental results, albeit at 

the cost of some loss in quality of the modelled Ca2+ concentrations. 



Modelling ion composition in SMUF II. 

 
 

- 95 - 

Considering the great importance of calcium ions, the DIS model was 

primarily optimised to match with experimental Ca2+ activities and 

concentrations.  

 

Addition of KCl or NaCl significantly decreased the pH of SMUF (Figure 

2e). The K+ or Na+ replaces the proton from H2PO4
- to form ion pair KHPO4

- 

and releases H+:  

M + H2PO4
- ↔ MHPO4

- + H+ (M = K+ or Na+)                      (3) 

The increase of H+ concentration outweighs the decrease of the proton 

activity coefficient, resulting in a net decrease in the pH of SMUF. The 

calculated pH was well comparable to the experimental results.  
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Figure 2 Effect of NaCl or KCl addition on ion composition in SMUF. (a) 

and (b) Comparison of calculated and experimental free Ca2+ activity in 

SMUF at different concentrations of KCl and NaCl, respectively:  (□) DMT; 

(△) Ca-ISE; (—) DIS model calculation. (c), (d) and (e) Comparison of 

calculated and experimental free Ca2+ and Mg2+ ion concentration and pH in 

SMUF, respectively: (▲) and (■) represent experimental results for addition 

of NaCl and KCl, respectively; (– –) and (---) represent DIS model prediction 

for addition of NaCl and KCl, respectively. (f) The ionic strength of SMUF 

with additional NaCl or KCl. All data were collected six times. 

(a) (b) 

(c) (d) 

(e) (f) 
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4.3.2.2 Differences between KCl and NaCl 

NaCl and KCl had significantly different effects on ion composition as 

expressed by pH, activity and concentration of Ca2+ and Mg2+ ions (Figure 2). 

The differences can be explained in terms of the dependence of hydration 

strength on charge density, as proposed by Collins (1997) and Collins et al. 

(2007). Briefly, their theory treats charge density as a central determinant of 

the structure and function of ion species in aqueous biological systems. It 

specifies the strength of water-water interactions and accurately describes 

simple ion-specific behaviour such as the tendency to form ion pairs. Small 

ions of high charge density (positive Jones-Dole viscosity B coefficient), 

named kosmotropes, bind water molecules tightly; on the other hand, large 

ions of low charge density (negative B), called chaotropes, bind water 

molecules relatively weakly compared to the strength of water-water 

interactions in bulk solution. This explains how oppositely charged ions 

preferentially interact to form ion pairs in solution. Specifically, oppositely 

charged ions in free solution form inner sphere ion pairs only when they have 

matched water affinities. Ion water affinity can be described by means of 

Jones-Dole viscosity B coefficient. Table 3 shows that Na+ and K+ differ in 

their hydration features. Major anions in SMUF such as phosphate and citrate, 

are strongly hydrated due to their high charge densities. Na+ is better matched 

to phosphate and citrate than is K+ (Table 3), indicating that Na+ interacts 

stronger with these anions to form ion pairs. In order to successfully model 

the impact of adding NaCl or KCl on the ion composition in SMUF, 

associated constants for ion pairs such as NaCitrate2- and KCitrate2- must be 

different from reported values (Holt et al., 1981). The latter values are only 

slightly different for NaCitrate2- and KCitrate2- and cannot explain the 

observed differences between Na+ and K+. Therefore, the association 

constants of NaCitrate2- and KCitrate2- were re-estimated to the new pKass 
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values of 1.9 and 1.53, respectively, as resulting from the best fit to 

experimental results.  

 

Table 3. Jones-Dole viscosity B coefficients 

Cations Jones-Dole B Anions Jones-Dole B 
H+ 0.068 PO4

3- 0.59 
Mg2+ 0.385 HPO4

2- 0.382 
Ca2+ 0.285 Citrate3- 0.27 
Li+ 0.15 SO4

2- 0.208 
Na+ 0.086 Cl- -0.007 
K+ -0.007 NO3

- -0.046 
a H+, HPO4

2- and Citrate3- from (Chaplin, 2009) and the rest from (Robinson 

Jr, Strottmann & Stellwagen, 1981).   

 

4.3.3 Addition of polyphosphates 

 

4.3.3.1 Effect of TSPP and STPP 

In SMUF, TSPP or STPP form insoluble Ca-polyphosphate compounds, 

resulting in a decrease in Ca2+ activity and an increase in pH (Figure 3). 

Figure 3b shows TSPP increases pH in SMUF more than does STPP because 

TSPP is more basic. Both the measured Ca2+ activity and the pH were 

predicted well by the DIS model.   
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Figure 3 Effect of polyphosphates on ion composition in SMUF. (a) and (b) 

Comparison of calculated and experimental free Ca2+ activity and pH in 

SMUF, respectively: (□), (△) and (×) represent the experimental results for 

SHMP, STPP and TSPP, respectively; (—), (– –) and (---) represent the model 

prediction of the effect of SHMP, STPP and TSPP, respectively.  All data 

were collected in triplicate.  

 

TSPP and STPP differ in their characteristics of complexing and precipitating 

divalent cations. In SMUF, TSPP precipitates Ca2+ and Mg2+ ions, but STPP 

only precipitates Ca2+ ions. This finding was in accordance with the results by 

Van Wazer and Callis (1958).  For the precipitates formed by TSPP, both the 

Ca/P molar ratio and Mg/P molar ratio were found to be around 1, 

representing the formation of calcium pyrophosphate (Ca2P2O7) and 

magnesium pyrophosphate (Mg2P2O7) (Table 4). These precipitates are 

indeed predicted by the DIS model when applying the right solubility 

products. For the precipitates formed by STPP, the Ca/P molar ratio was 

approximately 0.66, suggesting the formation of dicalcium sodium 

tripolyphosphate (Ca2NaP3O10) or dicalcium potassium tripolyphosphate 

(Ca2KP3O10) (Table 4). Generally, STPP precipitates in two forms: 

Ca5(P3O10)2 and Ca2NaP3O10. According to Zhou and Carnali (2000), 

(a) (b) 
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Ca5(P3O10)2 is formed for Ca/TPP ratios of 8 and 4 whereas Ca2NaP3O10  is 

formed if the ratio is 2. This indicates that the higher the Ca/TPP ratio, the 

stronger is the preference for Ca5(P3O10)2 precipitation. The ratio of Ca/TPP 

in SMUF varied from 0.66 to 6.6, but no Ca5(P3O10)2 was found in the 

precipitates when the Ca/TPP ratio was higher than 2. This is not in 

agreement with the results reported by Zhou et al. (2000), which is probably 

due to differences in pH and the presence of other cations in SMUF and their 

different type of buffer system.   

 

Table 4 Characteristics of different polyphosphates precipitates in SMUF 

–no precipitateno precipitateSHMP

Ca2NaP3O10 & Ca2KP3O10no precipitate0.66 (0.03) aSTPP

Ca2P2O7 & Mg2P2O71.01 (0.07) a1.01 (0.07) aTSPP 

PrecipitateMolar ratio Mg/PMolar ratio Ca/PPolyphosphate

–no precipitateno precipitateSHMP

Ca2NaP3O10 & Ca2KP3O10no precipitate0.66 (0.03) aSTPP

Ca2P2O7 & Mg2P2O71.01 (0.07) a1.01 (0.07) aTSPP 

PrecipitateMolar ratio Mg/PMolar ratio Ca/PPolyphosphate

a n=3 

 

4.3.3.2 Effect of SHMP 

In contrast with TSPP and STPP, SHMP does not generate precipitation in 

SMUF. It does form soluble Ca/Mg-HMP complexes. Like other 

polyphosphates, SHMP significantly binds divalent metal ions, such as Ca2+, 

leading to a decrease of Ca2+ activity (Figure 3a). Furthermore, SHMP 

decreases the pH in SMUF (Figure 3b), indicating the release of protons. De 

Kort, Minor, Snoeren, Van Hooijdonk and Van Der Linden (2009) and Vujicic, 

Batra and Deman (1967) indicated that the cause of pH drop is due to the 

replacement of hydrogen by calcium from the polyphosphates.  However, 

according to De Kort et al. (2009), SHMP has been recognized as a cyclic 

compound with six metaphosphate monomers (NaPO3)6, as shown in Figure 

4a. Given such molecular structure, SHMP would not release any protons; 
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instead, SHMP would rather bind protons to achieve protonation equilibrium 

between hexametaphosphate (P6O18
6-) and protonated hexametaphosphate 

HnP6O18
n-6. Thus, SHMP with the cyclic structure could not explain the 

decrease of pH in SMUF. SHMP (purum) as supplied by Sigma-Aldrich is 

labelled as (NaPO3)n·Na2O, indicating SHMP is not cyclic. According to  

Zhang (1998), the actual molecular structure of SHMP is a chain 

polyphosphate (Figure 4b) and SHMP is regarded as a mixture of condensed 

phosphates, with a general formula (Na, H)n+2PnO3n+1. Therefore, SHMP used 

in the experiments was considered to be a mixture of Nan+2PnO3n+1 and 

NanH2PnO3n+1.  
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Figure 4 Molecular structures of sodium hexametaphosphate. (a) cyclic 

structure,  (b) chain structure (Zhang, 1998).  

 

In order to model the influence of SHMP on ion composition in SMUF, two 

assumptions were made: (i) SHMP contains six phosphorus atoms, which 

consists of Na8P6O19 and Na6H2P6O19; (ii) The mass percentage of Na8P6O19 

and Na6H2P6O19 in SHMP was approximately 90 % and 10 % (w/w), 

respectively to obtain the best fit of the DIS model to experimental data.   

 

(a) (b) 
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Association constants of cation-hexametaphosphate complexes were 

employed as listed in Table 2. According to Van Wazer and Holst (1950), one 

strongly ionized hydrogen exists for every phosphorus atom and one weakly 

dissociated hydrogen was present at each end of a polyphosphate chain. 

Figure 4b shows that the SHMP molecule has two weak acid end groups. 

The two pKass values were estimated to be 8.88 and 6.70 for HP6O19
7- and 

H2P6O19
6-, respectively, based on the pKass values of STPP or TSPP. SHMP 

could complex two or more cations because of the available binding sites. 

However, due to lack of experimental data on pKass values of 

cation-hexametaphosphate complexes, some of the pKass values, such as, 

Ca2P6O19
4- and Mg2P6O19

4- were estimated for the best fit to the measured 

data. Figures 3a and 3b, respectively, show that the calculated Ca2+ activity 

and pH are in good agreement with the experimental data. The slight 

differences are probably due to the uncertainties in some of the Kass values 

adopted. 

 

4.4 Conclusion 

 

The dynamic ion speciation (DIS) model satisfactorily predicts ion 

composition in freshly prepared SMUF under most applied conditions at 

room temperature. However, deviations (within 15%) exist in Mg2+ 

concentration between predicted values and experimental values in the case 

of adding NaCl/KCl to SMUF. The DIS model distinguishes between Na+ 

and K+ taking into account their different hydration properties. Addition of 

sodium ions leads to higher Ca2+ activity and lower pH than does addition of 

potassium ions, and this has consequences for the stability of casein micelles. 

Therefore, it is important to realize these differences when using NaCl and 

KCl in dairy product development. Polyphosphates are integrated in the ion 
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speciation model, with realistic values for association constants for 

cation-polyphosphate complexes and solubility products for the precipitates. 

Polyphosphates have different calcium binding capacities and lead to 

different pH, implying the need to choose the appropriate polyphosphate for a 

specific dairy product. SHMP displays properties of a chain type 

polyphosphate with equilibrium between protonated and deprotonated forms. 

This feature is a necessary element in the proper understanding of its 

interaction with metal species in SMUF.  
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Abstract 
The mean spherical approximation (MSA) theory is used to explain the 

impact of sugars on ion properties in milk-based systems by taking into 

account electrostatic interactions and volume exclusion effects. This study 

first focuses on the changes in Ca2+ activity and pH in a solution consisting of 

CaCl2, KCl and K3Citrate, as a function of sucrose concentration. MSA 

model calculations were compared with experimental results and the model 

satisfactorily describes the ion properties. The excluded volume effects 

appear to account for a considerable increase in activity coefficient of the 

ions.  This offers a sufficient explanation for the increase in Ca2+ activity 

and the decrease in pH in milk-based systems with added disaccharides. 

Besides, hydration of milk proteins seems to enhance ion pair formation in 

milk. All disaccharides lead to similar modification of the thermodynamic 

properties of milk-like systems, confirming that the observed effects are 

primarily due to volume exclusion effects. 

 

Keywords: Sucrose, Lactose, Maltose, Trehalose, Calcium, pH, Activity 

coefficient, Milk, Mean spherical approximation 
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5.1 Introduction 

 

Sugars are commonly added to food to contribute to physical-chemical, 

sensorial and microbial properties, such as controlling viscosity and texture, 

adding bulk, retaining moisture, reducing water activity and improve softness 

(Fennema, 1996; Lindsay, 1996). Studies show that sugars affect protein 

properties such as thermal stability, conformation, self- association, surface 

activity and hydration (Arakawa & Timasheff, 1982; Lee & Timasheff, 1981; 

Semenova, Antipova & Belyakova, 2002). Studies involving sugars and 

caseins suggest that addition of sugars leads to preferential hydration of the 

caseins (Mora-Gutierrez & Farrell H.M, 2000; Mora-Gutierrez, Kumosinski 

& Farrell Jr, 1997). The alteration of physico-chemical properties of casein 

micelles may have effects on the ionic equilibria, thereby changing the 

stability of milk products enriched with sugars, such as dairy desserts, and 

sweetened condensed milk which may contain sugar content up to 40 %. 

Therefore, it is of great practical importance and relevance to study the 

effects of addition of sugars on the ion properties in milk-based systems. 

 

In milk, dynamic ion equilibria exist between the dissolved salts in milk 

serum and colloidal calcium phosphate in casein micelles. Ion equilibria play 

an essential role in the conformational stability of casein micelles (Fox & 

McSweeney, 1998). It has been found that addition of sucrose or glucose 

ranging from 0 to 6.5 mol/kg water, has an impact on thermodynamic 

properties of ions in solution, such as a decrease in pH in phosphate buffer 

solutions with a decrease of 0 and 0.7 pH unit (Bell & Labuza, 1992; Chuy & 

Bell, 2006) , and an increase in Ca2+ activity in milk (Geerts, Bekhof & 

Scherjon, 1983), but an explanation was not offered.  The changes in Ca2+ 

activity and pH are crucial to dairy products during processing such as heat 
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stability and coagulation. As non-electrolytes, sugars are, in the first instance, 

not expected to affect the pH and ionic activities. The classical 

Debye–Hückel (DH) theory is not able to explain the observed phenomena. 

Addition of sugar can decrease the dielectric permittivity of water, and this 

causes a decrease in the activity coefficient of the ions in electrolyte solutions 

according to the DH theory, predicting a decrease in Ca2+ activity and H+ 

activity (Bell & Labuza, 1992; Geerts et al., 1983). This is thus inconsistent 

with the literature results. Moreover, it has been shown that the water activity 

reduction upon addition of sugars cannot explain the decrease in pH in the 

buffer solutions (Chuy & Bell, 2006).  Additionally, other effects, such as 

whether addition of sugar affects ionic strength, still remain unclear.  

 

A more recent theory, the mean spherical approximation (MSA), has been 

developed for the description of thermodynamic properties of electrolyte 

solutions (Fawcett, Tikanen & Henderson, 1997; Simonin, Blum & Turq, 

1996; Tikanen & Fawcett, 1997). Compared to the DH model, the MSA 

approach is better suited to describe non-ideality of electrolyte solution in 

concentrated systems (ionic strength > 0.1M). In the MSA approach, all the 

solute species, charged or uncharged, have finite size (Fawcett et al., 1997). 

This allows one to take into account the excluded volume effects, e.g. via the 

hard sphere contribution, which reveals how space can be occupied by 

spheres (van Boekel, 2008). Also, the decrease in dielectric constant of the 

solution with increasing concentration of electrolyte or non-electrolyte is 

considered. This leads to an increase in the strength of ion-ion interactions 

with increasing ionic strength (Fawcett et al., 1997).  

 

The aim of this paper is to investigate the applicability of the MSA theory to 

describe ion properties in milk-based systems enriched with disaccharides. 
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For this purpose, we developed a mathematical model based on the MSA to 

calculate the changes in Ca2+ activity and pH as a function of sucrose 

concentration in a multi-electrolyte solution containing CaCl2, KCl and 

K3Citrate. To validate the model, experiments were carried out in 

CaCl2-KCl-K3Citrate solutions with different sucrose concentrations. 

Subsequently, the MSA theory was used to qualitatively explain the increase 

in Ca2+ activity and decrease in pH in milk-based systems upon addition of 

sugars. In parallel, the influence of sugars on ion pair formation, conductivity, 

water activity and ion equilibria of milk were also studied and compared.  

 

5.2 MSA theory 

 

The MSA theory has been extensively applied to describe the thermodynamic 

properties of electrolytes and non-electrolytes (Fawcett & Tikanen, 1996; 

Simonin, 1997). MSA theory is used here to learn more about the molar 

activity coefficient of ion species i (yi). Generally, the thermodynamic 

properties can be derived from the excess Helmholtz free energy ∆AEX, which 

is made up of two contributions: 
HSESEX AAA Δ+Δ=Δ                                            (1) 

∆AES, the electrostatic part due to the ionic atmosphere, and ∆AHS, the hard 

sphere part due to the finite size of the solute species.  

 

The electrostatic contribution to the single ion activity coefficient can be 

written as follows (Tikanen & Fawcett, 1997) 
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where e0 represents the fundamental electronic charge, εS the relative 
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permittivity of solution, ε0 the permittivity of free space, and β = 1/kT. The 

parameters di and ρi represent the effective diameter and number density of 

certain solute species, respectively. Г is the MSA screening parameter which 

replaces the screening parameter κ in the Debye–Hückel theory. Г becomes 

0.5κ in the limit of zero ionic strength. The estimation of the model parameter 

ζ and screening parameter Г are described by Tikanen and Fawcett (1997). 

∆UES is the excess internal energy due to ion-ion interactions. Once the 

screening parameter Г has been determined, the values of ζ and ∆UES are 

found by solving a series of equations described by Tikanen and Fawcett 

(1997).  

 

In the CaCl2-KCl-K3Citrate solution with various sucrose contents, the only 

species changing the solution permittivity is sucrose. As a result, the value of 

∂εs/∂ρi is assumed to be zero for estimation of ln yi
ES for the calcium and 

hydrogen ion species. The solution permittivity depends on the concentration 

of the solutes. Table 1 gives the tabulated permittivity of solution for 

different concentrations of sucrose (Malmberg & Maryott, 1950). Besides 

sucrose, the electrolytes CaCl2, KCl and K3Citrate contribute to a decrease in 

permittivity of the solution. This means that the CaCl2-KCl-K3Citrate 

solution enriched with sucrose should have lower permittivity than the 

aqueous solution containing only sucrose. The permittivity of the 

CaCl2-KCl-K3Citrate solution on the basis of the relationship (Tikanen & 

Fawcett, 1997) is: 

2/3
eSeS0SS δ cbc +−= εε                                          (3) 

where εS0 is the relative permittivity of pure water (78.45 at 25°C), εS is the 

relative permittivity of the solution, ce is the electrolyte concentration, δS is 

the dielectric decrement for the given electrolyte and bS is a parameter 
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describing the nonlinear part of this dependence. Due to lack of information 

about δS and bS of calcium and citrate ions, we assume that the decrease in 

permittivity of pure water is completely caused by KCl. δS and bS for KCl 

solution are 14.7 mol-1L and 3.0 mol-3/2L3/2, respectively (Tikanen & Fawcett, 

1997). The concentration of KCl was estimated to be 0.073 mol/kg 

representing the same ionic strength of the CaCl2-KCl-K3Citrate solution, 

which corresponds to a decrease in permittivity of water by approximately 

1.01. The resulting permittivities are shown in Table 1.   

 

Table 1. Relative Permittivity (εS) at 25 °C of aqueous CaCl2-KCl-K3Citrate 

solution enriched with sucrose.  

Sucrose 

(%) (w/w) 

Sucrose 

(mol/L) 

εS of sucrose 

solution a 

Estimated εS of the 

CaCl2-KCl-K3Citrate-Sucrose solution b

0 0 78.45 77.44 
10 0.304 76.19 75.18 
20 0.632 73.65 72.64 
30 0.988 70.86 69.85 
40 1.376 67.72 66.71 
50 1.798 64.2 63.19 

a data were taken from Malmberg & Maryott (1950) 
b used in the MSA model calculation and estimated from equation (3) as 

explained in the text 

 

The unrestricted hard sphere contribution to ln yi for unequally sized solute 

spheres is written as follows (Tikanen & Fawcett, 1997) 
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dρπη = ,    i
i

i
η

ρ
ρη ∑= ,    ∑=

i
iρρ                                             

The parameters introduced in equation (4) were described by Tikanen and 

Fawcett (1997).  

Combination of equation (2) and (4) yields the expression for the single ion 

molar activity coefficient 

HS
i

ES
ii lnlnln yyy +=                                           (5) 

In addition, cations and anions can associate to form ion pairs, which 

contribute to the single ion activity coefficient. Only 1:1 ion pair formation is 

taken into account. The association constant (Kass) can be written as   

−++ ⋅
⋅

−
=

⋅
=

yy
y

caa
a

K ip
2-

ip
ass

)1( 
α

α                                     (6) 

where aip, a+ and a- are the activity of ion pair, cation and anion, respectively. 

(1 - α) is the fraction of cations forming ion pairs, c is the molar 

concentration of the electrolyte, y+, y- and yip represent molar activity 

coefficient of cation, anion and ion pair, respectively.  

 

The MSA model for the description of the thermodynamic properties of 

electrolyte solutions has been developed at the so-called McMillan-Mayer 

(MM) level (Simonin, 1999). Briefly, the MM framework considers the 

solvent as a continuum, not as consisting of discrete particles/molecules, and 

the solvent is characterized only by its permittivity (van Boekel, 2008). That 

means that only solute-solute interaction potentials are considered in the MM 

framework. The ion activity coefficients calculated by MSA cannot be 

directly compared to experimental values which are described in the 

Lewis-Randall (LR) framework unless a conversion is made from MM level 

to LR level. The LR description of a solution considers the excess Gibbs 

energy, the energy state function defined with temperature (T), pressure (P), 
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number of moles (n) as the independent variables (which are the three natural 

variables in a chemical experiment) (van Boekel, 2008). The effect of the 

conversion was negligible at relatively low concentrations, but it became 

significant in highly concentrated electrolyte solutions, typically above 1-2 

mol/kg water (Simonin, 1996). In this study, the concentrations of the salts 

were far below 1 mol/kg water. However, there was a large amount of sucrose 

present in some of the systems. Therefore, the conversion of ion activity 

coefficient would be needed so that the modeled activity coefficient can be 

compared to the experimental results. The way to do this conversion has been 

described by Simonin (1997). Briefly, the first step is to convert the molar 

activity coefficient from the MM to LR level:  

∑
=

=

⋅−=
ij

1j
jW

)LR(
Wln mMa φ                                      (7) 

where ϕ (LR) is the osmotic coefficient at the LR level. Equation (7) is taken 

from the literature (Blandamer, Engberts, Gleeson & Reis, 2005). aw is the 

water activity. Water activity data at different concentrations of sucrose were 

obtained from Robinson and Stokes (2002). Mw is the molecular weight of 

water and mj is the molal concentration of the solute.  

)1()MM()LR(
±⋅−⋅= VCφφ                                         (8) 

i
)MM()MM(

i
)LR(

i lnln VCyy ⋅⋅−= φ                                   (9) 

where ϕ (MM) is the osmotic coefficients at the MM level, respectively. C is 

the total solute concentration (mol/L). V± is the mean partial molal volume of 

the solute, and Vi is the partial molal volume of species i.  yi
(MM) and yi

(LR) 

are the molar activity coefficients at the MM and LR level, respectively. yi
(MM) 

is calculated by eq (5).  
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The next step is to convert the molar activity coefficient to molal activity 

coefficient within the LR level: 

W
)LR(

i
)LR(

i dVy ⋅⋅= γ                                           (10) 

γi
(LR) is the molal activity coefficient of species i at LR level. V is the volume 

of the solution per mass solvent in the LR system. dW is the density of water. 

The obtained values of γi
(LR) for Ca2+ ions were compared to the experimental 

activity coefficients of SMUF and skim milk enriched with sugars. 

 

5.3 Materials and Methods 

 

5.3.1 Materials 

All the salts (> 99.5% purity) used were obtained from Fluka (The 

Netherlands).   Sucrose, maltose monohydrate and trehalose dihydrate 

(HPLC grade) were obtained from Sigma (The Netherlands). Lactose 

monohydrate (HPLC grade) was purchased from Merck (Germany). The low 

heat pasteurized skim milk powder (Nilac) was obtained from NIZO (The 

Netherlands).  

 

5.3.2 Experimental Setup 

Table 2 shows the experimental set-up. Three systems of increasing 

complexity were employed: (i) a solution consisting of CaCl2 (5 mM), KCl 

(55 mM) and K3Citrate (4 mM) (ii) lactose-free simulated milk ultrafiltrate 

(SMUF) (iii) reconstituted skim milk. SMUF was prepared according to 

Jenness and Koops (1962). The reconstituted skim milk was prepared from 

low heat skim milk powder as described by Gao et al. (2009). Four 

disaccharides were separately added to each system except for the 

CaCl2-KCl-K3Citrate system where only sucrose was used. Prior to analyses, 
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the systems with added lactose and maltose were kept at 25 °C for 24 hours 

to allow the reducing sugars reaching their mutarotation equilibrium. The 

systems with added sucrose and trehalose were directly measured. 

Physico-chemical properties, pH, Ca2+ activity, water activity, conductivity 

and Ca2+ concentration of selected samples were measured as described in the 

methods section. Moreover, the MSA model was used to calculate the pH and 

Ca2+ activity in the CaCl2-KCl-K3Citrate solution with various sucrose 

contents.  

 

Table 2. Overview of the experimentally studied systems 

  Analyses a DMT c 

Sugars 
% 

(w/w) 
CaCl2-KCl-

K3Citrate b SMUF
Skim 
Milk 

CaCl2-KCl-
K3Citrate SMUF 

Skim 
Milk 

None 0 x x x x x x 
Sucrose 5 - d x x - - - 
 10 x x x - x x 

 20 x x x x x x 
 30 x x x - x x 
 40 x x x - - - 
 50 x - - - - - 

Lactose 5 - x x - - - 
 10 - x x - x x 
 15 - x x - - - 
Maltose 5 - x x - - - 

 10 - x x - x x 
 15 - x x - - - 
 20 - x x - - - 
Trehalose 5 - x - - - - 

 10 - x - - x - 
 15 - x - - - - 

 
a pH, Ca2+ activity (Ca-ISE), conductivity and water activity measurements 
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b The MSA theory was applied to calculate the effect of sucrose on Ca2+ and 

H+ ion activity in the system CaCl2-KCl-K3Citrate.  
c Donnan membrane technique (DMT) was used to determine the 

concentrations of free Ca2+ and Mg2+ ions.  
d - not measured 

 

5.3.3 Methods 

 

5.3.3.1 pH measurement 

The pH values of selected samples were measured at 25 °C using a pH meter 

(Orion 720A+, Thermo, Beverly, USA) equipped with a Ross pH electrode 

(Orion 8172BNWP, Thermo, Beverly, USA). The pH electrode was 

calibrated at 25 °C using two buffer solutions (Thermo, USA) having pH 

values of 4.00 and 7.00.  

 

5.3.3.2 Calcium activity measurement 

Ionic calcium activity was determined as described by Gao et al. (2009) using 

an Orion 720A+ meter equipped with an Orion 9720 calcium ion selective 

electrode (Ca-ISE) (Thermo, Beverly, USA).  

 

5.3.3.3 Donnan membrane technique (DMT) 

The Donnan membrane technique (DMT) was applied to determine the 

concentrations of free Ca2+ and Mg2+ ions in the selected samples (Table 2). 

The details of the DMT methodology were described by Gao et al. (2009) 

and Temminghoff et al. (2000). Briefly, the sample solution, also named the 

donor, is separated from the acceptor solution by a cation exchange 

membrane (BDH Laboratory Supplies, Poole, UK). The negative electric 

potential of the membrane allows cations to pass through and restricts anions 
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from crossing the membrane. Within certain time, Donnan equilibrium is 

reached for the free metal ion activities between donor and acceptor. If both 

sides have the same ionic strength, the free metal concentration in donor is 

equal to it in acceptor. In this research, the acceptor solution had the same 

amount and type of sugar and the same ionic strength as the donor solution 

did. This eliminated the differences in osmotic pressure and excluded volume 

between the donor and the acceptor. Samples taken from both sides were 

measured by inductively coupled plasma atomic emission spectrometer 

(ICP-AES) (Varian, Mulgrave, Australia).   

 

5.3.3.4 Conductivity 

Conductivities were measured to check for ion pair formation upon addition 

of sugar. Sugar molecules can bind free water molecules, leading to a 

decrease in water activity. Addition of sugar molecules to electrolyte solution 

may even cause dehydration of ions due to strong hydration of sugar, 

implying that ion pair formation may be promoted. This would then affect the 

conductivity of the electrolyte solution.  

 

Conductivity (G) can be expressed as follows (Atkins & de Paula, 2006) 
zuvcFG =                                                    (11) 

a
ze

u
sπη6
0=                                                   (12) 

By combining equations (11) and (12),  

sr
vcFez

G
ηπ
1

6
0

2
×=                                             (13) 

where z, the charge of the ion, u, the mobility of the ion, νc, the molar 

concentrations of the ion, F, Faraday’s constant, r is the radius of ion and ηs 

is the viscosity of solution. 
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Adding sugar increases the viscosity of electrolyte solutions, which in itself 

causes a decrease in conductivity. Equation 13 is therefore split into two parts. 

The left part accounts for the ion pair formation and the right part represents 

the influence of viscosity on conductivity. When a linear relationship is 

obtained between G and 1/ηs, the left part apparently remains constant, 

meaning that ion pair formation would be insignificant. The viscosity data of 

a series of sucrose solutions were obtained from literature (Weast, Astle & 

Beyer, 1987). The viscosity of milk samples enriched with sucrose was 

measured as described in the section of viscosity measurement. 

 

The conductivities of selected samples were measured using a conductivity 

meter (WTW Inolab Cond Level 2, Weilheim, Germany) equipped with a 

conductivity electrode (WTW TetraCon 325, Weilheim, Germany). The 

conductivity probe was calibrated at 25 °C using a 0.01 M KCl solution 

having conductivity values ranging between 1411 and 1423 μS/cm.  

 

5.3.3.5 Viscosity 

The viscosity of skim milk samples enriched with sucrose was determined by 

using a Anton Paar MCR 300 rheometer and a double gap geometry (DG 

26,7 mm). Shear rate ranged from 0.01 - 500 s-1. The viscosity was 

determined between the shear rate 10 and 500 s-1. The measurements were 

made in duplicate. The temperature of the samples was 25 °C.  

 

5.3.3.6 Water activity 

The water activity of selected samples (Table 2) was measured using an 

AquaLab CX3 (Decagon Devices, Washington, USA).  
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5.3.3.7 Ultracentrifugation 

The skim milk samples enriched with sugars were ultracentrifuged (at 100 

000 g, 25 °C for 1 hour) in a Beckman L-60 ultracentrifuge with a 70 Ti rotor 

(Beckman Instruments Inc, California, USA). The concentrations of total Ca, 

Mg, K, Na and P in milk serum were measured by ICP-AES (Varian, 

Mulgrave, Australia).  

 

5.4 Results and discussion 

 

5.4.1 Addition of sucrose to CaCl2-KCl-K3Citrate solution 

Figure 1a and 1c show that the addition of sucrose (0 – 50 % w/w) causes a 

considerable increase in Ca2+ and H+ ion activities, respectively, in the 

CaCl2-KCl-K3Citrate solution. The Ca2+ activity and pH calculated by the 

MSA model were in general agreement with the experimental data after using 

the values of the diameters of cation (dcation), anion (danion), ion pair (dip) and 

sucrose (dsucrose) and the association constants (Kass) in Table 3 and the 

dielectric permittivity data in Table 1. The estimated diameters of the species 

were chosen on the basis of the agreement between model prediction and 

experimental results. The diameters for individual ions and ion pairs are in 

fair agreement with the values from literatures (Corti, 1987; Pazuki & 

Arabgol, 2006; Simonin, 1999; Tikanen & Fawcett, 1997). However, 

differences in Ca2+ activity and pH between calculation and measurement 

became larger at higher sucrose concentrations (Figure 1a and 1c). Ions may 

behave far more non-ideally in such highly concentrated systems so that the 

MSA model may also be no longer applicable. The diameter of hydrated 

cations decreases as sucrose concentration increases, and may decrease 

considerably in the high sucrose concentration solutions. Such changes in 

cation diameter were not taken into account in the MSA model due to the 
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lack of diameter data for cations in sucrose solutions.  

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

0 0.5 1 1.5 2
Sucrose concentration (mol/L)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2
Sucrose concentration (mol/L)

C
a2+

 a
ct

iv
ity

 c
oe

ff
ic

ie
nt

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2
Sucrose concentration (mol/L)

(a) (b)

(d)

C
a2+

ac
tiv

ity

6.6

6.7

6.8

6.9

7

7.1

0 0.5 1 1.5 2
Sucrose concentration (mol/L)

pH

(c)

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0 0.5 1 1.5 2
Sucrose concentration (mol/L)

Io
ni

c 
st

re
ng

th
 (m

ol
/L

)

20.0%

21.0%

22.0%

23.0%

24.0%

25.0%

26.0%

27.0%

0 0.5 1 1.5 2
Sucrose concentration (mol/L)

M
ol

e 
Fr

ac
tio

n 
of

 fr
ee

 C
a2+

(%
)

(f)(e)
H

+
ac

tiv
ity

 c
oe

ff
ic

ie
nt

 

Figure 1. Influence of sucrose on ionic properties in CaCl2-KCl-K3Citrate 

system. (a) and (c) represent Ca2+ activity and pH, respectively, as a function of 

sucrose concentration (■) measured Ca2+ activity by Ca-ISE, (—) calculated Ca2+ 

activity by MSA model,   pH as a function of sucrose concentration (▲) 

measured pH, (▬) calculated pH by MSA model. (b) and (d) represent the 

calculated Ca2+ and H+ activity coefficient by MSA model, respectively. (---), (– 

–) and (—) represent activity coefficient of the electrostatic part, the hard sphere 

part and the overall, respectively. (e) represents the calculated ionic strength 

(mol/L). (f) represents the calculated mole fraction of free Ca2+ as a function of 
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sucrose concentration by the MSA model.  

Table 3. Values of the association constants Kass and the diameters of cation 

(dcation), anion (danion), ion pair (dip) and sucrose (dsucrose) employed in the MSA 

model to calculate Ca2+ activity and pH in the CaCl2-KCl-K3Citrate solution.    

Reactants Kass
a
  dcation (pm) danion (pm) dip (pm) dsucrose (pm) 

K+, Cl- 1 350 350 350 - 

Ca2+, Cl- 7 480 350 415 - 

Ca2+, Citrate3- 1.66·105 480 400 440 - 

H+, Citrate3- 2.51·106 400 400 400 - 

Sucrose  - - - - 700 
a the association constants were taken from literature (Gao et al., 2010a) 

 

The changes in Ca2+ activity and pH rely on the free ion concentrations and 

single ion activity coefficients. Figure 1b and 1d reveal that the increase in 

activity coefficient is the main contribution to the increase in Ca2+ or H+ 

activity in the CaCl2-KCl-K3Citrate solution enriched with sucrose. The 

addition of sucrose contributes to the changes in ion activity coefficient in 

two ways. Firstly, on the one hand, the decrease in permittivity of the solution 

causes a decrease in the ion activity coefficient due to enhanced electrostatic 

interaction. On the other hand, the calculated ionic strength decreased from 

0.069 to 0.044 mol/L due to an increase in volume (Figure 1e), which 

enlarged the ion activity coefficient. Figure 1b and 1d show the summation 

of the two effects. The calculated yCa
ES and yH

ES decreased from 0.390 to 

0.355 and from 0.782 to 0.764, respectively. Secondly, the system is occupied 

by many sucrose molecules, leading to an increase in excluded volume effect. 

This accounts for the considerable departure from ideality of the ions in the 

concentrated sucrose solutions. Figure 1b and 1d show that the calculated 

yCa
HS and yH

HS remarkably increase from 1.025 to 3.859 and from 1.022 to 
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3.298, respectively, as a function of sucrose concentration. By combining the 

electrostatic and hard sphere contribution, it turns out that the single ion 

activity coefficient still increases significantly, for yCa from 0.400 to 1.369, 

and for yH from 0.799 to 2.519 (Figure 1b and 1d). Additionally, the molar 

fraction of free Ca2+ ions was calculated by the MSA model (Figure 1f) and 

it was found to slightly increase from 22 % to 26 % throughout the range of 

sucrose concentrations. Consequently, the increase in activity coefficient, 

particularly the excluded volume effect, is the main reason for the increase in 

ion activity in the CaCl2-KCl-K3Citrate solution enriched with sucrose. The 

MSA theory appears to offer a satisfactory explanation for the observed ion 

behaviors in electrolyte solutions at very high content of sucrose. In addition, 

the effect of using the MM-to-LR conversion (Eq.(7)-(10)), that is from 

yCa
(MM) to γCa

(LR), was examined. Table 4 shows that the difference between 

yCa
(MM) and γCa

(LR) increases as the concentration of sucrose increases，which 

indicates that the effect of this conversion is not negligible, particularly at 

very high sucrose contents. Thus, the values of obtained γCa
(LR) were used to 

compare with experimental molal Ca2+ activity coefficient of milk-based 

systems in the presence of sugars. In the following section, MSA theory was 

used to qualitatively explain the ion properties in milk-based systems upon 

addition of sugars.  

 

Table 4. Ca2+ activity coefficients at the MM and LR level in 

CaCl2-KCl-K3Citrate solution enriched with sucrose using equations (7) – (10). 

Sucrose (%) (w/w) yCa
(MM) yCa

(LR) γCa
(LR) 

10 0.47 0.46 0.43 

20 0.56 0.55 0.48 

30 0.70 0.69 0.54 

40 0.94 0.91 0.64 
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5.4.2 Addition of sucrose to SMUF and skim milk 

 

5.4.2.1 Excluded volume effect 

Like in the CaCl2-KCl-K3Citrate system, the addition of sucrose increases the 

Ca2+ and H+ ion activities in SMUF and skim milk (Figure 2b and 2e). The 

Ca2+ activity coefficient, which was calculated from the experimental free 

Ca2+ concentration and activity, increased considerably throughout the range 

of sucrose concentration (Figure 2c). It stands to reason that the excluded 

volume effect accounted for the increase in Ca2+ and H+ activities.  The 

increase in Ca2+ activity coefficient in skim milk was larger than it was in 

SMUF. This is probably because skim milk contains proteins and lactose, 

which account for stronger excluded volume effects.  

 

However, the experimentally derived values of Ca2+ activity coefficients of 

SMUF and skim milk in the absence of sucrose were far too low compared to 

the value commonly calculated by Davies equation, which is 0.40 for both 

SMUF and skim milk (Table 5). On the one hand, we speculate that a 

systematic deviation is generated by the Ca-ISE methodology at lower ionic 

strength (I < 0.09 mol/kg water) for the Ca2+ activity measurement, since 

these results are consistent with earlier observations (Gao et al., 2009; Gao et 

al., 2010b). On the other hand,  the calculated Ca activity coefficient by the 

Davies equation may overestimate the actual value in a multi-component 

solution (Butler, 1968). We are in the process of analyzing the causes of the 

large differences in individual Ca ion activity coefficient between 

experimental and calculated results and will discuss the issue in a separate 

publication.  



Chapter 5 

 
 
- 126 - 

4.5E-04

5.0E-04

5.5E-04

6.0E-04

6.5E-04

7.0E-04

7.5E-04

0 10 20 30
Sucrose concentration (%)

1.4E-03

1.6E-03

1.8E-03

2.0E-03

2.2E-03

2.4E-03

2.6E-03

0 10 20 30
Sucrose concentration (%)

0.20

0.25

0.30

0.35

0.40

0.45

0 10 20 30
Sucrose concentration (%)

5.0E-04

5.5E-04

6.0E-04

6.5E-04

7.0E-04

7.5E-04

8.0E-04

8.5E-04

0 10 20 30
Sucrose concentration (%)

y = 6.4454x + 0.2681
R2 = 0.9996

y = 10.283x - 0.1937
R2 = 0.9714

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1 1.2
1/Viscosity (mPa-1 s-1)

C
a2+

co
nc

en
tra

tio
n 

(m
ol

/k
g 

w
at

er
)

M
g2+

co
nc

en
tra

tio
n 

(m
ol

/k
g 

w
at

er
)

(a) (b)

C
a2+

ac
tiv

ity

C
a2+

ac
tiv

ity
 c

oe
ff

ic
ie

nt

(d)

6.30

6.40

6.50

6.60

6.70

6.80

0 10 20 30
Sucrose concentration (%)

pH

(e)

(c)

C
on

du
ct

iv
ity

 (m
S/

cm
)

(f)

 
Figure 2. Influence of sucrose on ion properties, (▲) and (■) represent 

SMUF and Skim milk, respectively. (a) Ca2+ concentration measured by 

DMT, (b) Ca2+ activity measured by Ca-ISE, (c) Ca2+ activity coefficient 

calculated from experimental data, (d) Mg2+ concentration measured by DMT 

and (e) pH in SMUF and skim milk measured by pH electrode. (f) Relation 

between conductivity and viscosity at different sucrose concentrations. 

 

A correction was made to adjust the experimental Ca2+ activity coefficients in 

SMUF according to the method described by Geerts et al. (1983). Briefly, the 
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experimental Ca2+ activities were plotted as a function of the added sugar 

concentration. The Ca2+ activities were found to correlate linearly with the 

amount of sugar added (Table 6). Since the free Ca2+ concentration of SMUF 

is not influenced by the additional sugar (Figure 2a and Table 8), this 

indicates that the increase in Ca2+ activity coefficient is the same as the 

increase in Ca2+ activity after addition of sugar. That is, the ratio of Ca2+ 

activity coefficient in the presence and absence of sugar should be equal. 

Table 6 gives the adjusted Ca2+ activity coefficients in the presence of sugars 

in SMUF. Interestingly, the adjusted Ca2+ activity coefficients in SMUF are 

nearly same as the calculated values (γCa
(LR)) of the CaCl2-KCl-K3Citrate 

solution enriched with sucrose by the MSA model (Table 4). This implies 

that the approach used by Geerts et al. (1983) gives good prediction in Ca2+ 

activity coefficients in electrolyte solutions. For skim milk, the Ca2+ activity 

also increased linearly with the content of sugar (Table 6). However, the free 

Ca2+ concentration decreased with the added sugar, e.g. sucrose (Figure 2a). 

Thus, the Ca2+ activity coefficients (Table 6) need to take into account the 

change in the Ca2+ concentration and can be calculated as follows: 

(B),2Ca

(S),2Ca

(B),2Ca

(S),2Ca

(B),2Ca

(S),2Ca

+

+
⋅

+

+
=

+

+

γ

γ

m

m

a

a
                          (14) 

Equation 14 can be rearranged as follows:  

(S),Ca

(B),Ca

(B),Ca

(S),Ca
(B),Ca(S),Ca

2

2

2

2

22
+

+

+

+

++ ⋅⋅=
m

m

a

a
γγ                          (15) 

γCa
2+

, (S)
  represents the adjusted molal Ca2+ activity coefficient at certain 

sugar concentration. γCa
2+

, (B) is molal Ca2+ activity coefficient of milk in the 

absence of sugar (Table 5). mCa
2+

, (S) and aCa
2+

,(S) are the molal Ca2+ 

concentration and the calculated Ca2+ activity of milk in the presence of sugar, 

respectively (Table 6 and 8). mCa
2+

, (B) and aCa
2+

,(B) are the Ca2+ concentration 
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and the calculated Ca2+ activity of milk in the absence of sugar, respectively 

(Table 6 and 8). For the milk samples without measuring the Ca2+ 

concentrations, the same correction method was used as described for SMUF.   

 

Table 5. Ca2+ activity coefficients (γCa
2+) (SD)a of SMUF and skim milk in 

the absence of sugar 

 SMUF b Skim milk b Theoretical c 

γCa
2+ 0.32 (0.00) 0.26 (0.01) 0.40 

a n=2  
b Activity coefficients were calculated from the Ca2+ activity (Ca-ISE method) 

(Table 6) and Ca2+ concentration (DMT method) (Table 8) 
c Value was calculated by the Davies equation.  
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5.4.2.2 Hydration effect 

Figure 2a and 2d show that the concentrations of free Ca2+ and Mg2+ ions in 

SMUF do not change significantly throughout the range of sucrose 

concentrations, whereas in skim milk they appear to decrease as the sucrose 

concentration increases. It seems that ion pairs are formed in skim milk, but 

not in SMUF in the presence of sucrose. Figure 2f depicts that the 

conductivity has a linear relationship with the inverse of viscosity in SMUF, 

so there is no evidence for ion pairs formation in this case. However, this is 

less clear for milk. These results indicate that the effect of sucrose on ionic 

properties of skim milk differ from those for SMUF, which apparently can 

not be explained solely by excluded volume effects.  

 

Sucrose can bind free water molecules and decrease water activity. This leads 

to a change in hydration properties of solutes. The differences in solute-water 

interactions and changes to the hydration sphere around solute species (Chuy 

& Bell, 2006) may account for the difference in ion pair formation between 

SMUF and skim milk. The major compositional differences between SMUF 

and skim milk are the proteins, namely casein micelles and whey proteins, 

and lactose. Studies suggest that the preferential exclusion of sugar molecules 

from the casein domain results in preferential hydration of the caseins 

(Considine & Flanagan, 2009; Mora-Gutierrez & Farrell H.M, 2000; 

Mora-Gutierrez et al., 1997) and of the globular proteins (Considine & 

Flanagan, 2009; Semenova et al., 2002).  The increase in hydration of milk 

proteins, and the ability of sucrose to bind water, can cause considerable 

dehydration of ions, resulting in ion pair formation in milk. Although MSA 

theory does not directly consider the solute-water interaction, it is possible to 

integrate the hydration properties of ions into MSA model, for instance, by 

taking into account the dependence of the size of hydrated ions on sucrose 
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concentration. This would require experimentally determining the change in 

diameters of hydrated ions as an increase in sucrose concentration. Thus, the 

MSA model may possibly describe the changes in free ion concentrations in 

case of changes in hydration. 

 

In addition, the ion equilibria between aqueous phase and colloidal phase are 

not significantly affected throughout the range of sucrose concentration as 

shown by the concentrations of ions in milk serum (Table 7). The influence 

of sucrose on ion speciation in milk appears to occur only in milk serum.  

 

Table 7. Concentration (mmol/kg water) of major ions in milk serum a  

16.2 (0.4)21.5 (0.2)4.0 (0.2)48.8 (0.4)11.5 (0.3)10Maltose

16.6 (0.2)21.4 (0.4)3.9 (0.1)48.8 (0.9)11.4 (0.2)10Lactose

16.0 (0.6)19.9 (0.8)3.6 (0.1)44.3 (1.4)11.1 (0.4)30

15.4 (1.2)19.9 (0.4)3.7 (0.1)45.4 (1.0)10.9 (0.1)20

15.9 (0.2)20.4 (0.8)3.8 (0.3)46.4 (1.0)10.7 (0.7)10Sucrose

15.8 (0.5)20.7 (0.3)3.9 (0.1)45.8 (1.1)11.1 (0.2) 0None

(mmol/kg water)% (w/w)Sugars

[P]c (SD)[Na] (SD)[Mg] (SD)[K] (SD)[Ca] (SD) b

16.2 (0.4)21.5 (0.2)4.0 (0.2)48.8 (0.4)11.5 (0.3)10Maltose

16.6 (0.2)21.4 (0.4)3.9 (0.1)48.8 (0.9)11.4 (0.2)10Lactose

16.0 (0.6)19.9 (0.8)3.6 (0.1)44.3 (1.4)11.1 (0.4)30

15.4 (1.2)19.9 (0.4)3.7 (0.1)45.4 (1.0)10.9 (0.1)20

15.9 (0.2)20.4 (0.8)3.8 (0.3)46.4 (1.0)10.7 (0.7)10Sucrose

15.8 (0.5)20.7 (0.3)3.9 (0.1)45.8 (1.1)11.1 (0.2) 0None

(mmol/kg water)% (w/w)Sugars

[P]c (SD)[Na] (SD)[Mg] (SD)[K] (SD)[Ca] (SD) b

a Concentrations (mmol/kg water) of the major ions in skim milk: [Ca] = 36.4, 

[Mg] = 5.8, [Na] = 22.1, [K] = 50.2, [Pi] = 22.6, [Cl] = 34.0, [Citrate] = 11.2, 

[SO4] = 1.1;  
b n=2  
c [P] represents the sum of the concentration of inorganic phosphate and 

organic phosphate in milk serum, which is measured by ICP-AES.  

 

5.4.3 Comparison among sugars 

With respect to the four disaccharides, sucrose and trehalose are 



Chapter 5 

 
 
- 132 - 

non-reducing sugars, while lactose and maltose are reducing sugars. Table 

6-8 summarize the influence of the four disaccharides on the thermodynamic 

properties of SMUF and skim milk. Generally, all sugars give rise to similar 

effects on pH, Ca2+ activity and concentration, Ca2+ activity coefficient, 

conductivity, water activity and ion equilibria. This suggests that it is the 

excluded volume effect, which is the main factor in the impact on 

thermodynamic properties of ions in the solution, rather than the type of 

sugars. Still, slight differences in solution properties remain. First, the 

reducing sugars resulted in slightly lower pH than the non-reducing sugars in 

SMUF, which is possibly due to a release of hydrogen ions from the active 

hydroxyl group at their reducing end. Second, trehalose causes slightly lower 

water activities and higher Ca2+ activities than did the other sugars in SMUF. 

This may be due to its binding a larger number of water molecules than do 

maltose and sucrose, thus affecting the structure of water to a greater extent 

(Lerbret, Bordat, Affouard, Descamps & Migliardo, 2005).  
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Table 8. Comparison of the influence of disaccharides on electrolyte 

properties of SMUF and skim milk 

-0.990 (0.001)-4.12 (0.01)-6.53 (0.01)--15

-0.992 (0.001)-4.94 (0.01)-6.58 (0.01)-1.84 (0.03)10

-0.996 (0.001)-5.81 (0.01)-6.62 (0.01)--5Trehalose

0.984 (0.001)0.986 (0.001)2.54 (0.06)3.49 (0.05)6.56 (0.03)6.49 (0.02)--20

0.987 (0.001)0.992 (0.001)3.59 (0.06)4.21 (0.05)6.59 (0.01)6.50 (0.02)--15

0.992 (0.001)0.995 (0.001)4.35 (0.07)4.99 (0.06)6.61 (0.01)6.55 (0.05)2.15 (0.10)1.73 (0.05)10

0.994 (0.001)0.997 (0.001)5.07 (0.06)5.81 (0.06)6.64 (0.01)6.60 (0.04)--5Maltose

-0.993 (0.001)-4.19 (0.04)-6.49 (0.02)--15

0.992 (0.001)0.994 (0.001)4.33 (0.08)4.98 (0.04)6.61 (0.01)6.55 (0.04)2.21 (0.12)1.80 (0.03)10

0.994 (0.001)0.997 (0.001)5.07 (0.06)5.83 (0.04)6.63 (0.01)6.61 (0.01)--5Lactose

0.952 (0.001)0.962 (0.001)1.02 (0.03)1.34 (0.02)6.52 (0.02)6.36 (0.05)--40

0.970 (0.001)0.977 (0.001)1.92 (0.06)2.32 (0.03)6.54 (0.01)6.43 (0.04)1.86 (0.09)1.74 (0.08)30

0.982 (0.001)0.987 (0.001)2.59 (0.08)3.58 (0.04)6.58 (0.01)6.50 (0.04)1.91 (0.04)1.74 (0.04)20

0.990 (0.001)0.995 (0.001)4.37 (0.10)5.05 (0.05)6.61 (0.01)6.60 (0.04)2.10 (0.16)1.77 (0.06)10

0.994 (0.001)0.997 (0.001)5.09 (0.05)5.85 (0.07)6.63 (0.01)6.65 (0.04)--5Sucrose

0.996 (0.001)0.999 (0.001)5.96 (0.09)6.74 (0.04)6.66 (0.02)6.68 (0.02)2.16 (0.23)1.73 (0.08)0None

Skim MilkSMUFSkim 
MilkSMUFSkim MilkSMUFSkim MilkSMUF% 

(w/w)Sugars

aW (SD)aConductivity
(mS/cm) (SD)apH (SD)aCa2+ concentration

(mmol/kg) (SD)b

-0.990 (0.001)-4.12 (0.01)-6.53 (0.01)--15

-0.992 (0.001)-4.94 (0.01)-6.58 (0.01)-1.84 (0.03)10

-0.996 (0.001)-5.81 (0.01)-6.62 (0.01)--5Trehalose

0.984 (0.001)0.986 (0.001)2.54 (0.06)3.49 (0.05)6.56 (0.03)6.49 (0.02)--20

0.987 (0.001)0.992 (0.001)3.59 (0.06)4.21 (0.05)6.59 (0.01)6.50 (0.02)--15

0.992 (0.001)0.995 (0.001)4.35 (0.07)4.99 (0.06)6.61 (0.01)6.55 (0.05)2.15 (0.10)1.73 (0.05)10

0.994 (0.001)0.997 (0.001)5.07 (0.06)5.81 (0.06)6.64 (0.01)6.60 (0.04)--5Maltose

-0.993 (0.001)-4.19 (0.04)-6.49 (0.02)--15

0.992 (0.001)0.994 (0.001)4.33 (0.08)4.98 (0.04)6.61 (0.01)6.55 (0.04)2.21 (0.12)1.80 (0.03)10

0.994 (0.001)0.997 (0.001)5.07 (0.06)5.83 (0.04)6.63 (0.01)6.61 (0.01)--5Lactose

0.952 (0.001)0.962 (0.001)1.02 (0.03)1.34 (0.02)6.52 (0.02)6.36 (0.05)--40

0.970 (0.001)0.977 (0.001)1.92 (0.06)2.32 (0.03)6.54 (0.01)6.43 (0.04)1.86 (0.09)1.74 (0.08)30

0.982 (0.001)0.987 (0.001)2.59 (0.08)3.58 (0.04)6.58 (0.01)6.50 (0.04)1.91 (0.04)1.74 (0.04)20

0.990 (0.001)0.995 (0.001)4.37 (0.10)5.05 (0.05)6.61 (0.01)6.60 (0.04)2.10 (0.16)1.77 (0.06)10

0.994 (0.001)0.997 (0.001)5.09 (0.05)5.85 (0.07)6.63 (0.01)6.65 (0.04)--5Sucrose

0.996 (0.001)0.999 (0.001)5.96 (0.09)6.74 (0.04)6.66 (0.02)6.68 (0.02)2.16 (0.23)1.73 (0.08)0None

Skim MilkSMUFSkim 
MilkSMUFSkim MilkSMUFSkim MilkSMUF% 

(w/w)Sugars

aW (SD)aConductivity
(mS/cm) (SD)apH (SD)aCa2+ concentration

(mmol/kg) (SD)b

 
a n=3 
b n=2 

 

5.5 Conclusion 

 

In conclusion, the MSA theory appears to satisfactorily explain the influence 

of disaccharides on the thermodynamic properties of ions in 

CaCl2-KCl-K3Citrate solution, and to qualitatively describe ion properties in 

SMUF and skim milk upon addition of disaccharides. The large increase in 

ion activity coefficient, which is caused by excluded volume effects, accounts 

for the significant increase in Ca2+ activity and decrease in pH in milk 

systems. However, the excluded volume effect is not the only explanation for 

the decrease in free Ca2+ and Mg2+ concentration in skim milk enriched with 

sucrose. The finding that sucrose addition causes preferential hydration of 
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milk proteins may provide insights to understand the decrease in free Ca2+ 

and Mg2+ concentrations in milk. All the disaccharides do not appear to 

significantly alter the original ion equilibria between serum and colloidal 

phase. The influence of disaccharides on the free ion concentrations seems to 

happen only in milk serum. Last, but not least, no significant difference is 

found among sugars since all the sugars have similar impacts on the 

thermodynamic properties of ions in milk systems  

 

Further details of the calculation in MathCAD of Ca2+ and H+ ion activity 

coefficients in the CaCl2-KCl-K3Citrate-Sucrose solutions can be obtained 

from the authors upon request. 
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Abstract 

This study presents a model to calculate the ion partitioning in milk and milk 

to which electrolytes are added. The model, named milk ion speciation (MIS) 

model, is an extension of the earlier published dynamic ion speciation (DIS) 

model which describes the ion equilibria in the aqueous phase of milk. The 

micellar phase, which contains colloidal calcium phosphate (a mixture of 

acidic and basic calcium phosphate and magnesium phosphate) and casein 

bound cations, is included in the MIS model. Experiments were carried out 

with milk and milk to which HCl, NaCl, KCl, CaCl2 and Na2HPO4 were 

added. The modelled results were in general agreement with experimental 

results and literature data for all conditions. Thus, the MIS model appears to 

be able to predict and explain the behaviour of ions in milk systems. This 

model can be further implemented in dairy industry as a useful tool for new 

product development.   

 

Keywords: Ion equilibria, colloidal calcium phosphate, milk, pH, NaCl, KCl, 

CaCl2, phosphate, ion speciation model 
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6.1 Introduction 

 

The milk mineral fraction is a minor fraction in terms of milk composition, 

but plays a crucial role in the conformation and stability of casein micelles 

(Fox & McSweeney, 1998; Holt, 1997; Walstra & Jenness, 1984). Milk salts 

are distributed between the aqueous phase and colloidal phase. The ions in 

the aqueous phase are dissolved in the form of either free ion such as Ca2+ or 

ion complexes such as CaCitrate-. The ions in the colloidal phase are mainly 

in the form of solid calcium phosphates and cation-protein complexes. As a 

result, ion equilibria are slowly formed between the aqueous phase and 

colloidal phase. Alterations of the ion equilibria induce significant changes in 

the ionic compositions between the colloidal phase and aqueous phase. This 

has effects on the physico-chemical properties of casein micelles and further 

on the stability of products during processing and storage (De La Fuente, 

1998; Fox & McSweeney, 1998; Huppertz & Fox, 2006). Therefore, it is of 

great practical importance to develop a suitable model to describe ion 

equilibria in milk. 

 

Models that describe the ion equilibria of milk-like systems have been 

developed since the 1980s. Wood et al. (1981) attempted to calculate the ion 

concentrations in a simulated milk salt solution. For the ease of calculation, 

assumptions were made in the model such as no presence of magnesium, 

phosphate esters and proteins, and potassium ions equivalent to sodium ions. 

Lyster (1981) extended the model from Wood et al. (1981), and provided the 

possibility to calculate a solid phase in equilibrium at different temperature 

and pH values. Holt et al. (1981) developed a model to describe the ionic 

composition in milk diffusate, including all the relevant components in milk 

diffusate except milk proteins, and the calculated free Ca2+ and Mg2+ 
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concentrations were in reasonable agreement with experiment. These models 

have been used for many years as useful tools to describe ionic compositions 

in the aqueous phase of milk or dairy products (Gaucheron et al., 2000; Kent 

et al., 1998; Le Graët & Gaucheron, 1999; Morris et al., 1988; Philippe et al., 

2003), in order to understand the interrelationship of the major ions with 

physico-chemical properties of casein micelles. However, these models did 

not include the colloidal calcium phosphate (CCP) and casein bound cations 

in casein micelles. Thus, their application in the prediction of ion partitioning 

in milk and dairy products is still limited. More recently, Holt (2004) 

developed an equilibrium thermodynamic model for calculation of the ion 

partitioning in milk in which the colloidal calcium phosphate is assumed to 

be present in the form of calcium phosphate nanoclusters. A generalized 

empirical formula for the calcium phosphate nanoclusters was used to define 

the molar ratios of small ions (Ca, Mg, Pi and citrate) to a casein 

phosphorylated sequence (Holt, 2004). This model provided a reasonable 

prediction of ion partitioning in milk in comparison with the experimental 

results of White and Davies (1958, 1963). However, this model requires 

further validation with more ion compositional data of milk samples at 

different conditions. Mekmene et al. (2009) presented a model to predict the 

ion partitioning between the micellar phase and aqueous phase in milk and 

mineral-enriched milks such as addition of NaCl, CaCl2, Na3Citrate and 

Na2HPO4. This latter model is based on the earlier model of Holt et al. (1981) 

by integrating interactions of cations in casein micelles and taking into 

account the solubility of calcium phosphate in the micellar phase. The model 

was validated to give predictions that generally agreed with literature 

experimental results, though differences in the order of 10 to 20 % still 

remain between model and experimental results. Moreover, this model is 

used to predict ion partitioning in milk at constant pH value of 6.75. However, 
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in reality, addition of electrolytes to milk induces changes in pH. Very 

recently, Mekmene et al. (2010) presented a model to simulate the ion 

equilibria of milk upon acidification. The model gave reasonable predictions 

of ion equilibria compared to experimental results. However, their model is 

not a generic model to describe the ion equilibria of milk at various 

conditions. Moreover, magnesium is considered to exist in the micellar phase 

as Mg3citrate2, which is an incorrect assumption since Mg is not present in 

the form of Mg3citrate2 as reported by Alexander and Ford (1957). 

Consequently, a generalized model to describe the ion equilibria of milk 

under various conditions should be developed. 

 

The aim of our work is to present a model to accurately predict ion 

partitioning in milk and milk samples with addition of electrolytes. For this 

purpose, the previous model of Gao et al. (2010), which describes the ion 

speciation in simulated milk ultrafiltrate (SMUF) at equilibrium as well as at 

non-equilibrium state, will be extended to build a model for milk. All the 

major components of aqueous phase are included, and the colloidal calcium 

phosphate and interactions between cations and casein proteins are integrated 

in this model. To validate the model, experiments will be carried out in milk 

at different conditions such as pH, the addition of NaCl, KCl, CaCl2, and 

Na2HPO4. The results of the model calculation are compared with 

experimental results and also with literature data.   

 

6.2 Materials and Methods 

 

6.2.1 Description of the model 

The computer program AESolve (Halotec Instruments, The Netherlands) was 

used as the basis to calculate the ion speciation in milk at various conditions. 
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The model is named milk ion speciation (MIS) model and is an extension of 

the DIS model described by Gao et al. (2010), which is used to calculate the 

ion speciation in simulated milk ultrafiltrate (SMUF) under different 

conditions. The MIS model includes all the components of SMUF, phosphate 

ester fraction (regarded as glucosyl-1-phosphate2-) and organic acid (regarded 

as lactate-) representing the serum phase, and colloidal calcium phosphate 

(CCP), and casein phosphoserine residues (CN-SerP2-) as the micellar phase. 

The CCP is considered as a group of undissolved and amorphous calcium 

phosphate precipitates. However, components such as lactose, carboxyl 

groups of glutamic and aspartic acids on caseins, casein micelles and whey 

proteins were left out of the MIS model. In addition, micellar citrate is not 

included in the micellar phase of the MIS model. One reason is that its exact 

location in the micellar phase is not yet established (Holt, 2004). Another 

reason is that inclusion of micellar citrate leads to exceeding computation 

capacity of the program. Rather, the focus of the MIS model was on 

calculation of the ion partitioning between the salts dissolved in the serum 

phase and CCP and cations bound to CN-SerP2- residues in the micellar phase. 

All the relevant association constants (Kass) and solubility products (Ksp) 

employed in the MIS model are listed in Table 1 and 2, respectively.  

 

The nature of colloidal calcium phosphate in milk, which is mainly 

determined based on the molar ratio (Ca/Pi) between the non-diffusible 

calcium and micellar inorganic phosphate (Mekmene et al., 2009), has been 

the subject of debate over many years. Some studies have suggested that CCP 

is a more acidic phase, such as some brushite-type structure (CaHPO4·2H2O) 

(Chaplin, 1984; Holt, 1985). Other studies reported the Ca/Pi ratio about 2 by 

McGann et al. (1983), and about 1.75-1.84 by Dalgleish and Law (1989). 

Moreover, Lucey and Horne (2009) suggested that the form of CCP is a basic 
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form based on various titration studies, the real pKa values for phosphate in 

milk and the distinctive acid-base properties of milk. Our experimental result 

of Ca/Pi molar ratio gave a mean value of 1.84 ± 0.10. Thus, we consider 

CCP to be of a more basic nature consisting of a mixture of acidic and basic 

calcium phosphate as well as trimagnesium phosphate. At pH near 6.70 

different calcium phosphate phases may actually coexist as it is a pH of phase 

transition for acidic and basic calcium phosphates (Van Kemenade & De 

Bruyn, 1987). Since the experimental Ca/Pi ratio does not correspond to any 

known calcium phosphate phase, it must be a mixture of calcium phosphate 

phases with Ca/P ratio above and below 1.84. In the MIS model, the CCP is 

considered to contain CaHPO4·2H2O and Ca4(PO4)2(OH)2 as well as 

Mg3(PO4)2 as shown in Table 2. The CaHPO4·2H2O is the likely acidic form 

of calcium phosphate according to Chaplin (1984) and Holt (1985). The basic 

form Ca4(PO4)2(OH)2, which appears similar to hydroxylapatite, is an 

assumed calcium phosphate phase.  

 

For calculation of ion speciation, the ionic composition of milk is required as 

the input data. In the MIS model, the total concentrations (mmol/kg water) of 

the major components are used: [Ca] (32.1), [Mg] (5.6), [K] (47.4), [Na] 

(21.0), [Cl] (37.4), [Pi] (23.0), [Glc-1-P] (3.7), [CN-SerP] (3.7), [Citrate] 

(10.9), [SO4] (1.1), [Lactate] (2.0), which are obtained from our experimental 

measurements as shown in Table 3. The mass balance equation for each 

component is constructed and consists of a sum of the concentrations of 

various forms. The ensuing equations are nonlinear algebraic equations, 

which can be solved numerically to obtain activities and concentrations for 

all the ions and ion complexes. Other properties such as the ionic strength, 

pH, ion activity coefficients and water activity can also be calculated.  
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Table 1 Logarithm of association constants (pKass) of ions and ion complexes 

used in the MIS model  

  H+ Ca2+ Mg2+ K+ Na+ 
Citrate3- 6.4a 5.15a 5.15a 1.20a 1.30a 
HCitrate2- 4.76a 3.3c 2.7a 1a 1a 
H2Citrate- 3.13a 1.45a 1.18a 0a 0a 
PO4

3- 12.67b 6.46a 4.92a 1.7e 2a 
HPO4

2- 7.22b 3.0a 2.92a 1.4e 1.7e 
H2PO4

- 2.17b 1.04a 1.08a 0a 0a 
Cl- - 0.8d 1.1e 0a 0a 
HCO3

- 6.35a 1.26b 1.28a 0a 0a 
SO4

2- - 2.31a 2.23a 0.85a 0.7a 
Glc-1-PH- - - - - - 
Glc-1-P2- 6.50a 2.50a 2.47a 0.78a 0.85a 
Lactate- 3.86a 1a 1a 0.7a 0.7a 
Casein- SerPH- 2.30e - - - - 
Casein-SerP2- 6.40a 4.75e 4.5e - - 

a Holt et al. (1981) 
b Smith and Martell (1981) 
c Martell and Smith (1979) 
d Davies (1962) 
e Estimated 
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Table 2 Solubility products (Ksp) of colloidal calcium phosphate (CCP) and 

other likely formed solid precipitates in the MIS model.  

Solid precipitates Chemical formula Solubility Product Ksp

Colloidal calcium phosphate:   
Calcium phosphate (Acidic type) CaHPO4·2H2O 6.76 · 10-7 d 
Calcium phosphate (Basic type) Ca4(PO4)2(OH)2 7.24 · 10-46 d 
Trimagnesium phosphate Mg3(PO4)2 1.74 · 10-29 d 
   
Other solid precipitates:   
Amorphous tricalcium phosphate Ca3(PO4)2·xH2O 6.17 · 10-28 d 
Octacalcium phosphate Ca4(HPO4)3·5H2O 1.26 · 10-49 b 
Tricalcium citrate tetrahydrate Ca3Citrate2·4H2O 5.01 · 10-18 a 
Magnesium phosphate MgHPO4 1.51 · 10-6 c 
a Walstra & Jenness (1984) 
b Johnsson & Nancollas (1992) 
c Taylor et al. (1963) 
d Estimated 

 

6.2.2 Experimental Set-up  

All experiments were carried out at 20 ± 1.0 ºC and all glassware was washed 

in phosphate-free detergent, soaked in 1.4 M nitric acid and rinsed in 

deionized water (Millipore, Amsterdam, The Netherlands). All chemicals 

used were purchased from Fluka, with 99.5 % purity. Skim milk was 

reconstituted by dissolving 1 portion of low heat skim milk powder (Nilac, 

NIZO, the Netherlands) in 9 portions of deionized water, as described by Gao 

et al. (2009). The skim milk samples with added electrolytes were stored and 

equilibrated under continuous stirring for 24 hours before measurement. 0.02 

% (w/w) sodium azide was added to each milk sample to prevent microbial 

growth.  
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6.2.2.1 Addition of hydrogen chloride (HCl) 

Skim milk samples were acidified with 6 M HCl from pH 6.7 to 4.5. The 

experiment was repeated in triplicate.  

 

6.2.2.2 Addition of sodium chloride (NaCl) or potassium chloride (KCl) 

NaCl or KCl as solid was added to skim milk samples in the range between 0 

and 0.3 mol/kg water. The experiment was carried out in triplicate. 

 

6.2.2.3 Addition of calcium chloride (CaCl2) 

Skim milk samples were enriched with 5 M CaCl2 solution up to a 

concentration of 0.01 mol/kg water. All data were collected in triplicate.  

 

6.2.2.4 Addition of disodium phosphate (Na2HPO4 · 2H2O)  

Disodium phosphate (DSP) as solid was added to skim milk samples. The 

concentration of DSP in milk samples was in the range 0 – 0.6 % (w/w). The 

experiment was conducted in triplicate.  

 

6.2.3 Methods 

 

6.2.3.1 Total concentration of major ions 

Total concentrations of Ca, Mg, K, Na, and P in skim milk were measured by 

first diluting skim milk samples 100 times and then diluting 10 times with 1.4 

M HNO3 (final concentration 0.14 M HNO3). The diluted samples were 

analyzed by inductively coupled plasma-Atomic emission Spectrometry 

(ICP-AES) (Varian Vista-Pro radial system, Mulgrave, Australia). For the 

concentrations of anions in skim milk, the skim milk samples were diluted 

with deionized water 1000 times. The total concentration of chloride, 

sulphate, citrate, and phosphate were determined by anion exchange 
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chromatography according to the method described by Gaucheron et al. 

(1996).  

 

Milk serum was obtained by ultracentrifugation of skim milk samples 

(100,000 g, 20 °C for 1 hour) in a Beckman L-60 ultracentrifuge with a 70 Ti 

rotor (Beckman Instruments Inc, Germany). The total concentrations of ions 

in milk serum were determined by ICP-AES and anion exchange 

chromatography. A similar procedure of dilution was used for milk serum as 

described for milk.  

 

6.2.3.2 Determination of free Ca2+ and Mg2+ ions 

The concentrations of free Ca2+ and Mg2+ ions in skim milk samples were 

determined by the Donnan Membrane Technique as described by Gao et al. 

(2009). Free Ca2+ ion activity was determined by a calcium ion selective 

electrode (Orion 9720, Thermo, Beverly, USA) as described by Gao et al. 

(2010).  

 

6.2.3.3 pH measurement 

The pH of skim milk samples was measured by a pH electrode (Orion 

8172BNWP, Thermo, Beverly, USA). The pH electrode was first calibrated in 

standard buffer solutions pH 4.00 and pH 7.00. Subsequently, the pH 

electrode was immersed in the samples and a stable reading was obtained 

after approximately 3 minutes.   

 

6.3 Results and Discussion 

 

6.3.1 Ion partitioning between aqueous and micellar phase at pH 6.7  

Table 3 shows the experimental results of the distribution of the major ions 
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between milk serum and micellar phase at pH 6.7. The results are in general 

agreement with literature data (Gaucheron, 2005; Holt, 1985; Walstra & 

Jenness, 1984). Sodium, potassium, chloride and sulphate ions are present 

only in the serum phase, while nearly 1/3 calcium, 2/3 magnesium, 1/2 

inorganic phosphate and 95 % citrate ions are present in the serum phase, and 

the rest exists in the micellar phase as colloidal calcium phosphate or bound 

to casein phosphoserine residues. Only a small fraction of Ca and Mg 

remains free. The concentrations of free Ca2+ and Mg2+ ions are 2.05 and 0.68 

mmol/kg water, respectively (Table 3), again in line with literature results 

(Gao et al., 2009; Geerts et al., 1983; Holt, 1985) and modelled results (Holt 

et al., 1981).  
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Table 3. Minerals distribution between milk serum and micellar phase at pH 

6.7 a, b, c.  

2.0 Organic acid Total45.9 (1.2)Free K+

47.4 (3.5)Potassium Total

1.1 (0.1)Sulphate Total

18.8 (0.5)Free Na+

37.4 (2.1)Chloride Total21.0 (1.0)Sodium Total

95 %% soluble citrate68 %% soluble Mg

0.5Micellar Citrate0.68 (0.05)Free Mg2+

10.9 (0.1)Serum Citrate 3.8 (0.2)Serum Mg

11.4 (0.3)Citrate Total1.8Micellar Mg

5.6 (0.5)Magnesium Total

49 %% soluble Pi

3.7Serum ester P33 %% soluble Ca

11.3 (0.1)Serum Pi2.05 (0.16)Free Ca2+

11.7 (0.8)Micellar Pi10.6 (0.6)Serum Ca

3.7Casein seryl P21.5Micellar Ca

30.4 (1.9)Phosphate Total32.1 (2.2)Calcium Total

Concentration 
(mmol/kg water)Constituents

Concentration 
(mmol/kg water)Constituents

2.0 Organic acid Total45.9 (1.2)Free K+

47.4 (3.5)Potassium Total

1.1 (0.1)Sulphate Total

18.8 (0.5)Free Na+

37.4 (2.1)Chloride Total21.0 (1.0)Sodium Total

95 %% soluble citrate68 %% soluble Mg

0.5Micellar Citrate0.68 (0.05)Free Mg2+

10.9 (0.1)Serum Citrate 3.8 (0.2)Serum Mg

11.4 (0.3)Citrate Total1.8Micellar Mg

5.6 (0.5)Magnesium Total

49 %% soluble Pi

3.7Serum ester P33 %% soluble Ca

11.3 (0.1)Serum Pi2.05 (0.16)Free Ca2+

11.7 (0.8)Micellar Pi10.6 (0.6)Serum Ca

3.7Casein seryl P21.5Micellar Ca

30.4 (1.9)Phosphate Total32.1 (2.2)Calcium Total

Concentration 
(mmol/kg water)Constituents

Concentration 
(mmol/kg water)Constituents

a ( ) represents standard deviation (n = 10)  
b Serum ester P is considered to be glucosyl-1-phosphate 
c Organic acid is considered to be lactic acid, which is present as lactate at pH 

6.70; the concentration is estimated.   

 

Table 4 shows the calculated ion partitioning between the serum phase and 

micellar phase using the MIS model. The results are in line with the 

experimental results except for inorganic phosphate shown in Table 3. The 

MIS model predicts an amount of inorganic phosphate in micellar phase 

(13.4 mmol/kg water) slightly higher than the experimental data (11.7 



Chapter 6 

 
 
- 152 - 

mmol/kg water). The solubility products of calcium phosphate phases used in 

the model may account for more phosphate ions to form CCP. Meanwhile, 

without the presence of citrate ions in the micellar phase, calcium and 

magnesium ions complex more phosphate ions to form CCP. Besides the 

calculated ion distribution, the ion composition in milk serum was also 

calculated by the MIS model, as shown in Table 5. The Ca2+ and Mg2+ ions 

were mainly complexed by citrate3- and to a lesser extent by HPO4
2-, while 

the Na+ and K+ ions were mainly present in the free form. The calculated 

concentrations of free Ca2+, Mg2+, Na+ and K+ ions were comparable to the 

experimental results reported in Table 3. Moreover, the calculated 

concentrations of ions and ion complexes are generally in accordance with 

the modelled data by Holt et al. (1981) and Mekmene et al. (2009). However, 

the concentrations of some ion species, such as CaCitrate-, Cl-, HPO4
2-, K+ 

and KHPO4
- are different from the data of Holt et al. (1981). This could be 

due to the fact that the total concentrations of these ions used in the MIS 

model are different from those reported by Holt et al (1981). In addition, the 

calculated ionic strength of milk serum had a value of 0.08 mol/kg water, 

which was a bit higher than the reported value of 0.073 mol/kg water (Holt et 

al., 1981). The higher concentrations of potassium and chloride ions in the 

MIS model may account for the difference.  
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Table 4. MIS model calculation of salts partition (mmol/kg H2O) between 

serum phase and micellar phase. 

 Total Serum Micellar phase 
Ca 32.1  10.6  21.5  
Mg 5.6  3.75  1.85  
Na 21.0  21.0  0.0  
K 47.4  47.4  0.0  
Pi 23.0  9.6  13.4  

Glucosyl-1-P 3.7  3.7  0.0  
Citrate 10.9  10.9  0.0  

Cl 38.4  37.4  0.0  
SO4 1.1  1.1  0.0  

Lactate 2.0  2.0  0.0  
Casein seryl P 3.7  0.0  3.7  
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Table 5 Calculated concentrations (mmol/kg water) of ions and complexes in 

milk serum by the MIS model a, b, c versus literature values from Holt et al. 

(1981) 

    Cation complex  

Anion Free ion Ca2+ Mg2+ K+ Na+ 

Citrate3- 0.50 (0.26) 7.51 (6.96) 2.67 (2.02) 0.05 (0.04) 0.03(0.03) 

HCitrate2- 0.08 (0.04) 0.04 (0.01) - (-) 0.01 (-) 0.01 (-) 

H2Citrate- - (-) - (-) - (-) - (-) - (-) 

PO4
3- - (-) - (-) - (-) - (-) - (-) 

HPO4
2- 2.45 (2.65) 0.67 (0.59) 0.20 (0.34) 1.05 (0.52) 1.04 (0.39) 

H2PO4
-  4.00 (7.50) 0.03 (0.07) 0.01 (0.04) 0.11 (0.18) 0.05 (0.10) 

Glc-1-PH- 1.02 (0.50) - (-) - (-) - (0.01) - (0.01) 

Glc-1-P2- 2.10 (1.59) 0.18 (0.17) 0.06 (0.07) 0.22 (0.14) 0.13 (0.10) 

Lactate- 1.93 (2.98) 0.01 (0.03) - (0.02) 0.04 (0.04) 0.02 (0.02) 

Cl- 36.8 (30.9) 0.17 (0.26) 0.12 (0.07) 1.00 (0.68) 0.50 (0.39) 

HCO3
- 0.04 (0.32) - (-) - (-) - (-) - (-) 

SO4
2- 0.89 (0.96) 0.05 (0.07) 0.02 (0.03) 0.11 (0.10) 0.04 (0.04) 

Free ion - 1.91 (2.00) 0.68 (0.81) 44.9 (36.3) 19.2 (20.9) 
a  Concentrations (mmol/kg water) of the major ions in milk serum: [Ca] = 

10.6, [Mg] = 3.8, [Na] = 21.0, [K] = 47.4  [Pi] = 9.6, [Cl] = 38.4, [Citrate] = 

10.9, [SO4] = 1.1; ionic strength of milk serum was 0.08 mol/kg water 

(calculated); pH of SMUF was 6.70.  
b Values shown as ( ) were calculated concentrations (mmol/L) of ion species 

in a typical milk diffusate by Holt et al. (1981), in which  [Ca] = 10.2, [Mg] 

= 3.4, [Na] = 22.0, [K] = 38.0, [Pi] = 12.4, [Cl] = 32.3, [Citrate] = 9.4, [SO4] 

= 1.2; ionic strength was 0.073 M and pH was 6.70.  
c Concentration shown as: - < 0.01 mmol/kg water 
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6.3.2 Addition of HCl  

Skim milk was acidified by adding HCl in the pH range between 4.5 and 6.7. 

The measured concentrations of free Ca2+ and Mg2+ ions were found to 

increase up to 19.3 mmol/kg water and 3.1 mmol/kg water, respectively at pH 

4.5 (Figure 1). Similarly, the Ca2+ ion activity increased over 10 fold (from 

5.7E-04 to 6.2E-03) as the pH decreased from 6.7 to 4.5. The model 

calculation suggests that the addition of HCl causes protonation of anions 

such as citrate3- and HPO4
2- in serum phase. This leads to remarkable 

dissociation of ion complexes such as CaCitrate-, CaHPO4 and MgCitrate- to 

release free Ca2+ and Mg2+ ions. The other reason is the solubilization of the 

CCP and the release of the bound Ca and Mg by phosphoserine residues into 

the serum phase as the pH drops. The ionic strength was therefore calculated 

to increase from 83 mmol/kg water to 137 mmol/kg water (Table 6). The 

calculated concentrations and activities of free Ca2+ and Mg2+ ions are 

generally in accordance with the experimental data, although the calculated 

Mg2+ concentrations are a bit higher (around 10%) than the experimental 

results (Figure 1). This is probably due to some uncertainty in the Ksp value 

of the solid trimagnesium phosphate (Mg3(PO4)2). The model calculation 

suggests that trimagnesium phosphate completely solubilizes at pH above 6.3, 

resulting in a higher free Mg2+ concentration than experimental results. 

Changing the Ksp values can improve the fit of modelled data to experimental 

results, but will reduce the fit of the modelled Ca2+ concentrations and 

activities. Due to the great importance of calcium ions, the model was 

primarily optimized to match with the measured calcium activities and 

concentrations.  
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Figure 1. Effect of pH on ion composition of milk. (a) Free Ca2+ 
concentration as a function of pH: (□) Ca2+ concentration measured by DMT; 

(—) Model calculation. (b) change of Ca2+ activity with pH: (△) DMT 

(activity coefficients used from the model calculation); (×) Ca-ISE; (▬) 
Model calculation. (c) Free Mg2+ concentration as a function of pH: (▲) 
DMT; (– –) Model calculation.  
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Table 6. The predicted ionic strengths (I) (mmol/kg H2O) of milk enriched 

with different electrolytes.  

1430.6%95103483001374.52

1330.5%917.53072501334.83

1230.4%8752652001265.23

1120.3%8642221501085.53

1020.2%8421771001005.85

920.1%81113150926.27

800.0%800800806.7

I

Addition of
Na2HPO4·2H2O

(%) w/wI

Addition of
CaCl2

(mmol/kg H2O)I

Addition of
NaCl or KCl

(mmol/kg H2O)I
pH

(addition of HCl)

1430.6%95103483001374.52

1330.5%917.53072501334.83

1230.4%8752652001265.23

1120.3%8642221501085.53

1020.2%8421771001005.85

920.1%81113150926.27

800.0%800800806.7

I

Addition of
Na2HPO4·2H2O

(%) w/wI

Addition of
CaCl2

(mmol/kg H2O)I

Addition of
NaCl or KCl

(mmol/kg H2O)I
pH

(addition of HCl)

 
 

Figure 2 shows the calculated distribution of some major ions in the pH 

range between 4.5 and 8.0. The model calculation suggests that four zones 

can be identified to describe the Ca, Mg and Pi ions distribution throughout 

the pH range. In zone I (pH 8.0 – 6.77), the model indicates that acidification 

resulted in a decrease in micellar Ca, Mg, and Pi and an increase in serum Ca, 

Mg and Pi. This can be explained by the fact that acidification leads to the 

solubilization of the CCP. In zone II (pH 6.77 – 6.59), surprisingly, the model 

suggests that micellar Pi increases, and serum Pi decreases as pH decreases, 

which shows an opposite effect compared to that in zone I. Micellar Ca and 

serum Ca behaved similarly as in zone I, but the change in concentrations of 

micellar Ca and serum Ca was sharper than that in Zone I. The model 

suggests that a phase transition occurs to different calcium phosphates in 

CCP in this narrow pH range. That is, the basic form calcium phosphate 

(Ca4(PO4)2(OH)2 is completely solubilized at pH 6.59; the acidic form 

calcium phosphate (CaHPO4·2H2O) is formed at pH 6.77. It is interesting to 

see such a dramatic change of Ca and Pi partition in this narrow pH range. 

According to Van Kemenade and De Bruyn (1987), at a pH near 6.7, a phase 



Chapter 6 

 
 
- 158 - 

transition occurs for basic and acidic calcium phosphate phases. This 

indicates that our formulation of CCP in terms of calcium phosphate in the 

model may be correct to explain the partitioning of calcium and phosphate, 

but it still requires further experimental validation. Besides, the model 

suggests that serum Mg sharply increases since a large amount of 

trimagnesium phosphate is solubilized. However, literature data showed a 

less sharper increase of serum magnesium (Le Graët & Brule, 1993). A 

possible reason is, again, some uncertainty of the solubility product of 

trimagnesium phosphate. Another reason can be due to inaccurate 

formulation of micellar Mg in the micellar phase. According to Holt (1985), 

micellar Mg is partly bound directly to casein and partly associated with 

micellar calcium phosphate. However, little is known of the association 

between micellar Mg and micellar calcium phosphate at neutral pH of milk. 

Apparently, trimagnesium phosphate may not be the right form of micellar 

Mg in the micellar phase. More work on the form of micellar Mg in the 

model should be done. In zone III (pH 6.59 – 5.23), acidification leads to an 

enormous increase in serum Ca, Mg and Pi, and a significant decrease in 

micellar Ca, Mg and Pi. The model calculation suggested that the micellar Ca 

and Pi was completely solubilized at pH 5.23, which is in general agreement 

with literature data (Le Graët & Brule, 1993; Le Graët & Gaucheron, 1999). 

As the pH falls below 5.23 (zone IV), the serum Pi does not change any more. 

However, the protein-bound cations, especially Ca2+
, start to dissociate and 

are released to the serum phase. The model shows a slower increase in serum 

Ca as the pH decreases from 5.23 to 4.5. Meanwhile, there was still around 2 

mmol/kg water protein-bound Ca at pH 4.5, which is comparable to literature 

results (Le Graët & Brule, 1993).  
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Figure 2.  Model simulation of effect of pH on major ions partition between 

serum and micellar phase: (—) serum Ca; (---) micellar Ca; (– - –) serum 

inorganic phosphate (Pi); (– --) micellar inorganic phosphate (Pi); (▬) serum 

Mg; (– –) micellar Mg.  

 

6.3.3 Addition of NaCl or KCl 

Figure 3a and 3b show an increase in concentrations of free Ca2+ and Mg2+ 

ions upon addition of NaCl or KCl throughout the concentration range. 

Specifically, the concentrations of free Ca2+ increased from 2.05 to 5.10 

mmol/kg water with added NaCl and from 2.05 to 3.91 mmol/kg water with 

added KCl. The concentrations of free Mg2+ increased up to 1.22 and 1.08 

mmol/kg water with added NaCl and KCl, respectively. Meanwhile, the 

model calculation was in accordance with the experimental results. The 

increase in Ca2+ and Mg2+ concentrations is, in the first place, due to the 

replacement of Ca2+ and Mg2+ ions from ion complexes in the serum phase 

Micellar Ca 
 
 
 
 
 
Micellar Pi 
 
 
Serum Pi 
Serum Ca 
Serum Mg 
Micellar Mg 
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such as CaCitrate- and MgCitrate- by Na+ or K+ ions. Secondly, the addition 

of NaCl or KCl leads to solubilization of colloidal calcium phosphate due to 

an increase in ionic strength and also induces ion exchanges of Ca2+ and Mg2+ 

bound by casein phosphoserine residues with Na+ or K+. Thirdly, the addition 

of NaCl and KCl resulted in a decrease in pH with 0.13 and 0.09 units, 

respectively (Figure 3d), leading to slight solubilization of CCP. According 

to Gao et al. (2010), Na+ or K+ ions may form ion complexes with HPO4
2-, 

causing the deprotonation of H2PO4
-. Moreover, Na+ or K+ may also displace 

the protons bound by milk proteins (Gaucheron et al., 2000; Huppertz & Fox, 

2006). Figure 3c shows an increase in Ca2+ activity with addition of NaCl or 

KCl. Salting increases the ionic strength and decreases the Ca2+ ion activity 

coefficient. Apparently, the increase in concentration of Ca2+ outweighed the 

decrease in Ca2+ activity coefficient. The Ca2+ activity determined by DMT 

and Ca-ISE were generally agreeable in spite of some difference at lower 

ionic strength. The calculated Ca2+ activities matched with the experimental 

data within 10 % difference.  

 

The addition of NaCl was observed to induce higher concentrations and 

activities of Ca2+ and Mg2+ ions, and lower pH than the addition of KCl 

(Figure 3). Similar phenomena were observed in simulated milk ultrafiltrate 

(SMUF) solution enriched with NaCl or KCl by Gao et al. (2010). According 

to the theory of the dependence of hydration strength on charge density 

(Collins, 1997; Collins et al., 2007), the affinity of Na+ ions towards citrate3- 

and HPO4
2- is higher than that of K+ ions. The same case applies to the 

affinity of Na+ or K+ with CN-SerP2-. The difference between Na+ and K+ was 

also reflected in the model calculation, where different pKass values were 

employed (Table 1).  
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Figure 3．Effect of addition of NaCl or KCl on ion equilibria in milk. (a) 

NaCl Effect: (□) free Ca2+ concentration measured by DMT; (—) Calculated 

Ca2+ concentration; (△) free Mg2+ concentration measured by DMT; (– - –) 

Calculated Mg2+ concentration. (b) KCl Effect: (■) free Ca2+ concentration 

measured by DMT; (—) Calculated Ca2+ concentration; (▲) free Mg2+ 

concentration measured by DMT; (– –) Calculated Mg2+ concentration. (c) 

NaCl or KCl effect on Ca2+ activity: (◆) DMT method (NaCl); (◇) Ca-ISE 

method (NaCl); (—) Model calculation (NaCl); (-) DMT method (KCl); (×) 

Ca-ISE (KCl); (---) Model calculation (KCl). (d) pH as a function of added 

NaCl or KCl concentration: (□) measured (NaCl); (—) Model calculation 

(NaCl); (△) measured (KCl); (---) Model calculation (KCl).  
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Figure 4 shows the model calculation of ion partitioning after addition of 

NaCl and KCl. The ionic strength of milk was calculated to increase from 80 

to 348 mmol/kg water with addition of 0 to 0.3 mol/kg water NaCl or KCl 

(Table 6). The addition of NaCl or KCl increased the concentrations of serum 

Ca, Mg and Pi and decreased the concentration of micellar Ca, Mg and Pi, 

which was in general agreement with literature data (Famelart et al., 1999; 

Mekmene et al., 2009). The increase in serum Ca and Mg is contributed 

partly by the solubilization of CCP and partly by the displacement of casein 

bound Ca2+ and Mg2+ by Na+ or K+ ions, since the increase in ionic strength 

leads to a decrease in activity coefficient and an increase in the stoichiometric 

solubility product of colloidal calcium phosphate and an increase in the 

dissociation of CN-SerPCa and CN-SerPMg. However, other studies 

(Gaucheron et al., 2000; Grufferty & Fox, 1985; Huppertz & Fox, 2006) 

reported that the addition of NaCl preferentially solubilized micellar Ca and 

Mg, but hardly influenced micellar Pi. The reason is that the aqueous phase is 

still saturated with calcium phosphate so that the increase in serum Ca 

restrains the solubilization of colloidal calcium phosphate (Gaucheron et al., 

2000). Our model shows a reduction of CaHPO4·2H2O and an increase in 

Ca4(PO4)2(OH)2 of colloidal calcium phosphate, indicating that not all of the 

solubilized CaHPO4·2H2O goes to the serum phase. But the reduction of 

CaHPO4·2H2O is larger than the increase in Ca4(PO4)2(OH)2 in the micellar 

phase, resulting in a net increase in serum Pi. 
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Figure 4.  Model simulation of the effect of added NaCl or KCl on major 

ion partitioning between serum and micellar phase: (—) serum Ca; (---) 

micellar Ca; (– - –) serum inorganic phosphate (Pi); (– --) micellar inorganic 

phosphate (Pi); (▬) serum Mg; (– –) micellar Mg.  

 

6.3.4 Addition of CaCl2 

Figure 5a shows that the concentrations of free Ca2+ and Mg2+ ions, 

respectively, increase up to 5.02 mmol/kg water and 1.23 mmol/kg water 

upon addition of CaCl2 to a level of 10 mmol/kg water. The addition of CaCl2 

leads to an increase in the ionic strength from 80 to 95 mmol/kg water (Table 

6), which induces a small decrease in the Ca2+ ion activity coefficient by 

approximately 0.03. The net result is that the Ca2+ activity increased up to 

1.83E-03 (DMT results) or 1.68E-03 (Ca-ISE result) with the addition of 10 

mmol/kg water CaCl2 (Figure 5b). The changes in the concentrations and 

activities of free Ca2+ and Mg2+ ions were in accordance with the literature 

results (Tessier & Rose, 1958; Udabage et al., 2000). The model calculation 

is in agreement with the experimental results of the concentrations and 

activities of free Ca2+ and Mg2+ (Figure 5a and 5b), and also gives similar 

predictions to the modelled results by Mekmene et al. (2009) and Philippe et 

al. (2003). The addition of 10 mmol/kg water CaCl2 was observed to lower 
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the pH of milk from 6.70 to 6.33 (Figure 5c), which was in line with the 

literature data (Philippe et al., 2003). The decrease in pH also contributes to 

an increase in the concentrations and activities of free Ca2+ and Mg2+ ions in 

serum. However, the model calculation was 0.15 pH unit higher than the 

measured pH results at the highest level of added CaCl2. Though the 

predicted trend follows the experimental results, we are not yet able to 

explain this deviation.   
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Figure 5. The influence of added CaCl2 on ion equilibria of milk. (a) Effect 

of addition of CaCl2 on free Ca2+ and Mg2+ concentration: (□) Ca2+ 

concentration measured by DMT; (—) Calculated Ca2+ concentration; (△) 

Mg2+ concentration measured by DMT; (– –) Calculated Mg2+ concentration. 

(b) Ca2+ activity as a function of added CaCl2 concentration: (■) DMT 

method; (×) Ca-ISE; (—) Calculated Ca2+ activity. (c) Effect of added CaCl2 

on the pH of milk: (▲) measured by pH electrode; (---) Model calculation.  
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The ion distribution of milk after addition of CaCl2 was calculated as shown 

in Figure 6. In general, micellar Ca and Pi as well as the serum Ca increase, 

but the serum Pi decreases as CaCl2 is added to milk. After addition of 10 

mmol/kg water CaCl2, the changes in the concentration of micellar Ca and Pi 

and serum Ca and Pi are +5.2, +4.4, +4.8 and -4.4 mmol/kg water, 

respectively (Figure 6). The model suggests that part of the added calcium 

precipitates the serum inorganic phosphate to preferentially form 

CaHPO4·2H2O since the milk is saturated with respect to calcium phosphate. 

The basic form Ca4(PO4)2(OH)2 slightly decreases and the casein-bound Ca 

slightly increases. Our model also suggests that part of the added calcium 

remained in the free form and in the ion complex form such as CaCitrate- in 

the serum phase. The calculation does not predict a reduction of citrate3- ions 

in serum phase, whereas Tessier & Rose (1958) and Philippe et al. (2003) 

reported a reduction of 1.3 mM and 0.5 mM citrate3- ions, respectively, in 

serum phase with addition of 10 mM CaCl2. It seems that the citrate3- ions 

might be saturated by the calcium ions. The discrepancy between the model 

and literature results is most likely due to the solubility product of Ca3Citrate2 

used in the model. The model suggests the citrate3- ions are still not saturated 

by Ca2+ ions after addition of CaCl2 of 10 mmol/kg water. Instead, the model 

did find an increase in CaCitrate- ion complex, which is in agreement with 

the calculated results by Philippe et al. (2003). Figure 6 also shows a small 

decrease in micellar Mg of 1.2 mmol/kg water, suggesting partly due to the 

exchange between Ca and Mg, and partly due to a decrease in pH. Generally, 

the model calculation is in good agreement with literature data (Mekmene et 

al., 2009; Tessier & Rose, 1958; Udabage et al., 2000) in terms of Ca, Mg 

and Pi ions distribution.  
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Figure 6.  Model simulation of the effect of added CaCl2 on major ions 

partition between serum and micellar phase: (—) serum Ca; (---) micellar Ca; 

(– - –) serum inorganic phosphate (Pi); (– --) micellar inorganic phosphate (Pi) 

(▬) serum Mg; (– –) micellar Mg.  

 

6.3.5 Addition of disodium phosphate (DSP) 

The addition of disodium phosphate decreased the concentrations and 

activities of free Ca2+ and Mg2+ ions and increased the pH of milk (Figure 7). 

The addition of 0.6 % DSP led to a decrease of free Ca2+ concentration from 

2.05 to 0.54 mmol/kg water, and Mg2+ concentration from 0.68 to 0.19 

mmol/kg water (Figure 7a). Similarly, the free Ca2+ activity decreased from 

7.58E-04 to 1.74E-04, and the pH increased from 6.70 to 7.11 after addition 

of 0.6 % DSP (Figure 7b and 7c). Addition of DSP also increased the ionic 

strength of milk from 80 to 143 mmol/kg water (Table 6). The calculated 

results were generally in line with the experimental results (Figure 7), 

although the calculated pH had a deviation (< 0.1 pH unit) from the 
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experimental results at the higher concentrations. Furthermore, a comparison 

of our results was made with literature results. For instance, Udabage et al. 

(2000) mentioned that the free Ca2+ activity was 3.3E-04 after addition of 30 

mM phosphate at pH 6.65. Vujicic et al. (1968) reported that the pH of skim 

milk increased to 7.08 after addition of 0.5 % of disodium phosphate. 

Mekmene et al. (2009) calculated that the ionic strength increased from 73 to 

109 mM after 20 mM DSP was added. In general, the experimental and 

calculated results were in line with these literature data. 
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Figure 7. Effect of added Na2HPO4·2H2O on ion equilibria of milk. (a) Effect 

of addition of Na2HPO4·2H2O on free Ca2+ and Mg2+ concentration: (□) Ca2+ 

concentration measured by DMT; (—) Calculated Ca2+ concentration; (△) 

Mg2+ concentration measured by DMT; (– –) Calculated Mg2+ concentration. 

(b) Ca2+ activity as a function of added Na2HPO4·2H2O concentration: (■) 
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DMT method; (▲) Ca-ISE; (—) Calculated Ca2+ activity. (c) Effect of added 

Na2HPO4·2H2O on the pH of milk: (◆) measured by pH electrode; (---) 

Model calculation.  

 

The model calculation shows not only the concentrations of free Ca2+ and 

Mg2+, but also the concentrations of serum Ca and Mg decrease upon 

addition of DSP (Figure 8). It is suggested that the addition of phosphate 

precipitates the free Ca2+ and Mg2+ ions, thereby resulting in an increase of 

calcium phosphate and magnesium phosphate in colloidal calcium phosphate. 

However, some researchers (Udabage et al., 2000) reported that the serum 

Mg did not change after addition of DSP. The discrepancy can be explained 

by the difference in pH between the literature data (Udabage et al., 2000) and 

the present study. The milk samples were kept constant pH at 6.65 in the 

literature, while the pH of milk samples increased from 6.70 to 7.11 in our 

study. The more alkaline environment promotes the formation of solid 

magnesium phosphate. Furthermore, the model shows that the casein-bound 

Ca and Mg tend to decrease, suggesting the competition between inorganic 

phosphate and casein phosphoserine residues. Figure 8 also shows that most 

of the added phosphate remains in the serum phase, which is in accordance 

with literature results (Gaucher et al., 2007; Mekmene et al., 2009; Udabage 

et al., 2000; Vujicic et al., 1968).  
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Figure 8. Model simulation of the effect of added Na2HPO4·2H2O on major 

ions partition between serum and micellar phase: (—) serum Ca; (---) 

micellar Ca; (– - –) serum inorganic phosphate (Pi); (– --) micellar inorganic 

phosphate (Pi) (▬) serum Mg; (– –) micellar Mg.  

 

6.4 Conclusion 

 

The milk ion speciation (MIS) model has been shown to give satisfactory 

predictions of ion equilibria in milk and milk enriched with different 

electrolytes in comparison with our experimental results and literature data, 

even though the pH prediction is less accurate. One important characteristic 

of the MIS model is that the formulation of the colloidal calcium phosphate is 

defined as a mixture of acidic and basic type of calcium phosphate, which 

distinguishes it from the composition of CCP in the previous models. Another 

feature is that the MIS model calculates the ionic composition of milk at 

different pH values, resulting in a more realistic simulation closer to the 

practical situations. Moreover, a very interesting feature revealed by the 
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model is that there is a sharp transition range in CCP in between pH 6.59 and 

6.77, which still requires further research. However, the MIS model still has 

some limitations. This model is for the moment only validated at room 

temperature. It is not yet capable to describe the ion equilibria at different 

temperatures due to lack of association constants and solubility products. 

Another limitation is that the MIS model does not include all milk 

components. Constituents, such as casein carboxyl groups, and micellar 

citrate are not included. The absence of these compounds may induce an error 

in predicting the buffering capacity and interactions between cations and 

proteins, but the results of model calculation do not appear to influence the 

concentrations and activities of calcium and magnesium ions at various 

conditions. Nevertheless, with the available model, it becomes possible to 

explain and to predict behaviour of ions in milk systems. By implementing 

this model, a significant step can be made in transferring fundamental 

knowledge to the R&D environments of dairy industry, but also that of the 

food industry in general. There, this knowledge can be applied in new 

product development, such as new types of cheese and new formulations of 

liquid dairy products, and also can be used to deliver solutions to problems in 

existing dairy products.  
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 Accurate determination of the Ca2+ activity in 

milk-based system by Ca-ISE: effects of ionic 

composition on the single Ca2+ activity coefficient 

and liquid junction potentials 
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Abstract 

Calcium ion selective electrode (Ca-ISE) was found to underestimate the 

actual Ca2+ ion activity in simulated milk ultrafiltrate (SMUF) and milk. It is 

shown that the ionic compositional difference between conventional 

calibration solutions and milk type samples had a significant effect on the 

single Ca2+ activity coefficient, which generates the erroneous estimate of 

Ca2+ activities in SMUF and milk. This study tests new standards with ionic 

profiles similar to SMUF, aiming at the reduction of the errors generated by 

the compositional difference between conventional standards and milk 

samples. As a result, the new standards showed a significant improvement in 

the accuracy of Ca2+ activity and Ca2+ activity coefficient over the 

conventional standards. The systematic error is reduced from 20 % to 5 % for 

SMUF and from 44 % to 15 % for milk. In addition, the new standards 

generate liquid junction potentials that are practically insignificant.  

 

Keywords: Ca-ISE, Ca2+ activity, Ca2+ activity coefficient, liquid junction 

potential, SMUF, skim milk 
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7.1 Introduction 

 

Ionized calcium (Ca2+) is well known to play a crucial role in 

physicochemical properties of casein micelles, such as stabilization, gelation 

induced by acid and rennet, heat stability, ethanol stability, surface and 

rheological properties (Fox & McSweeney, 1998; Walstra & Jenness, 1984). 

Therefore, it is of great importance in practice to accurately measure the 

activity of free Ca2+ ions in milk.  

 

The calcium ion selective electrode (Ca-ISE) has been widely used to 

determine free Ca2+ ion activity in milk, having the advantage of speed, ease 

of analysis and repeatability (Fox & McSweeney, 1998; Geerts, Bekhof & 

Scherjon, 1983; Holt, Dalgleish & Jenness, 1981; Lin, Lewis & Grandison, 

2006; Muldoon & Liska, 1969; Silanikove, Shapiro & Shamay, 2003; 

Tsioulpas, Lewis & Grandison, 2007). However, Holt et al. (1981) indicated 

that the Ca-ISE technique suffers from the disadvantage that calibration 

solutions do not contain all of the components of milk or milk diffusate and 

hence interfering substances may give rise to erroneous estimates. So far, the 

conventional standards, which consist of different concentrations of CaCl2 

and KCl, and have similar ionic strength to milk, have been used for 

calibration of Ca-ISE for the measurement of Ca2+ activity in milk systems. 

Looking back on the previous studies, Silanikove et al. (2003) mentioned that 

the presence of casein micelles could remarkably affect determination of Ca2+ 

ion activity in milk, resulting in lower Ca2+ ion activity by the Ca-ISE.  Holt 

et al. (1981) indicated that the phosphate ester fraction possibly interfered 

with ionic calcium activity measurement. Gao et al. (2009; 2010a; 2010c) 

reported that the experimental Ca2+ ion activities and activity coefficients of 

simulated milk ultrafiltrate (SMUF) and reconstituted skim milk by Ca-ISE 
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were significantly lower than both the model calculated results and the 

experimental data determined by Donnan membrane technique (DMT). These 

problems have already been observed by Butler (1968) who demonstrated 

that the differences in ionic composition between calibration solutions and 

samples generate differences in the Ca2+ ion activity coefficient, even if the 

solutions have the same ionic strength. To overcome the problems, the 

calibration solutions should be as similar as possible to milk or milk serum 

rather than only match their ionic strength. Since still significant quantities of 

sodium, magnesium, phosphates, citrate, metal-anion complexes and milk 

proteins (casein micelles) are present in milk, they may have a significant 

effect on the Ca2+ activity coefficient. Moreover, the difference in ionic 

composition between the conventional standards and milk samples may also 

affect the liquid junction potential of the electrode, which will contribute to 

an erroneous estimate of the Ca2+ activity coefficient and the measurement of 

Ca2+ activity. More recently, Lin et al. (2006) used calcium standard solutions 

containing imidazole to calibrate the Ca-ISE for the measurement of Ca2+ 

activity in milk samples. However, the standard solutions still have a large 

difference in ionic composition from milk. That is, the error still remains in 

the measurement. Not much research has been carried out to develop 

calibration solutions similar to milk or milk serum for the measurement of 

Ca2+ activity in milk. The difficulty is to obtain the Ca2+ activities of the 

calibration solutions when these solutions have similar composition to milk 

or milk serum. Recently, an ion speciation model (DIS) was developed by 

Gao et al. (2010a; 2010b) and gave satisfactory predictions of the ion 

composition in freshly prepared simulated milk ultrafiltrate (SMUF). With 

the aid of this DIS model, the Ca2+ activities in calibration solutions can be 

calculated so that development of calibration solutions similar to milk serum 

may be possible.  
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The objective of this study is to formulate new calibration solutions for the 

measurement of Ca2+ activity in milk-like systems using Ca-ISE, with the 

purpose to reduce the effect of ionic composition on the Ca2+ activity 

coefficient and liquid junction potential. New calibration solutions were 

defined according to the composition of SMUF, thereby similar to milk 

serum. The Ca2+ ion activities measured by the new standards will be set 

against conventional data and evaluated in terms of the resulting Ca2+ ion 

activity coefficients and liquid junction potentials. 

 

7.2 Materials and Methods 

 

All experiments were carried out at 20 ± 1.0 ºC and all glassware was washed 

in phosphate-free detergent, soaked in 1.4 M nitric acid and rinsed in 

deionized water (Millipore, Amsterdam, The Netherlands). All chemicals 

used were purchased from Fluka, with 99.5 % purity. Simulated milk 

ultrafiltrate (SMUF) was prepared according to Jenness & Koops (1962). 

Skim milk was reconstituted with low heat skim milk powder (Nilac, NIZO, 

The Netherlands), as described by Gao et al.(2009).  

 

7.2.1 Determination of free Ca2+ ion activity by Ca-ISE 

 

7.2.1.1 Preparation of standards for calibration of Ca-ISE 

Conventional standards and new standards were prepared for the calibration 

of the calcium ion selective electrode. Table 1 shows that the new standards 

are formulated to have an ionic composition similar to SMUF. Each new 

calibration solution was composed of CaCl2, KCl plus a stock solution 

containing K3Citrate, Na3Citrate, KH2PO4 and MgCl2, as shown in Table 1 

and 2. The major ions in SMUF are Ca, Mg, Na, K, phosphate, citrate and 
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chloride, the concentrations of which are 9, 3.2, 18.3, 39.2, 11.6, 9.6 and 33.5 

mmol/kg water, respectively. The compositions of the new calibration 

solutions are in general agreement with SMUF. The procedure of preparation 

of new calibration solutions was briefly described as follows. The stock 

solution was first prepared by weighing and dissolving the four chemicals 

specified in Table 2. Subsequently, CaCl2 and KCl were separately weighed 

and added into stock solution to constitute one calibration solution. In 

addition, both the conventional standards and the new standards have the 

same effective ionic strength with of 90 mmol/kg water.  

 

Table 1.  Concentrations (mmol/kg water) of CaCl2 and KCl used in 

conventional and new standards for calibration of Ca-ISE for milk systems.  

 

Calibration Standards

Conventional 

Calibration Standards 

New 

Calibration solutions CaCl2 KCl CaCl2 KCl 

 1 0.3 93.9 6.6 46.3 

 2 1.0 92.4 8.9 43.2 

 3 3.0 86.1 10.6 39.6 

 4 5.0 80.6 12.2 36.0 

5 10.0 66.5 13.6 32.6 

 

Table 2. Composition of the stock solution for new calibration solutions 

Component Concentration (mmol/kg water) 

K3Citrate 3.0 

Na3Citrate 7.0 

KH2PO4 10.0 

MgCl2 3.0 

 



Accurate determination of Ca2+ activity in milk-based systems. 

 
 

- 183 - 

7.2.1.2 Determination of free Ca2+ activity in SMUF and skim milk 

Free Ca2+ activity was measured using an Orion 720A+ meter (Thermo, 

Beverly, USA) equipped with a calcium ion selective electrode (Orion 97-20 

ion plus, Thermo, Beverly, USA). Calibration was carried out with freshly 

prepared standard solutions in the range between 10-4 and 10-2 mol/kg water 

CaCl2. The effective ionic strength for each calibration solution was kept 

constant, as mentioned at 90 mmol/kg water. The Ca2+ ion activity of each 

calibration solution was theoretically calculated using the dynamic ion 

speciation model (DIS) (section 7.2.2). The calibration curve was obtained by 

plotting the measured potential (mV) as a function of theoretically calculated 

calcium activity. The time necessary to reach a stable reading was 

approximately 5 min, referring to electric potential change less than 0.1 mV 

per minute.  

 

7.2.1.3 Ca2+ activity coefficient (γCa
2+) 

The Ca2+ activity coefficients of SMUF and milk were calculated using the 

following equation 

+

+

+ =
2

2
2

Ca

Ca
Ca m

a
γ                                               (1) 

where aCa
2+ and mCa

2+ are the measured activity and concentration of Ca2+ 

ions of SMUF or milk, respectively.  

 

Moreover, the Ca2+ activity coefficient can be calculated based on the Davies 

equation as follows:  

)2.0
1

()(5.0)log( 2
CaDavies,Ca 22 I

I
Iz −

+
⋅⋅−= ++γ                      (2) 

where γCa
2+

, Davies refers to the Ca2+ activity coefficient in a solution containing 
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only CaCl2, zCa
2+ is the charge of calcium ions and I is the effective ionic 

strength.  

 

According to Butler (1968), the ionic composition will influence the single 

ion activity coefficient in spite of constant ionic strength for different 

solutions. Butler determined the mean activity coefficients of CaCl2 in the 

solution containing various concentrations of NaCl and CaCl2. Based on the 

assumption of Guggenheim, the single Ca2+ activity coefficient was 

expressed as follows: 

2
)(CaClButler,Ca )(

22 ±=+ γγ                                      (3) 

where γCa
2+

, Butler represents the single Ca2+ activity coefficient in NaCl-CaCl2 

solution and γ±(CaCl2) is the mean activity coefficient of CaCl2 in the 

NaCl-CaCl2 solution. When the NaCl-CaCl2 solution had an ionic strength of 

0.07 mol/kg water, the γ±(CaCl2) was shown to be 0.62 (Butler, 1968). The 

resulting γCa
2+

, Butler was then compared with γCa
2+

, Davies and the experimental 

activity coefficient (γCa
2+), as shown in the section 7.3.2. 

 

7.2.2 Liquid junction potential (Ej) 

The Ca-ISE (Orion 97-20 ion plus, Thermo, Beverly, USA) employs a salt 

bridge and reference electrode of fixed potential. The potential of the Ca-ISE 

is given by 

jCaCaCa )ln(
2

)ln(
2

constant 22 E
F

RTm
F

RTE +++= ++ γ                     (4) 

where mCa
2+ is the concentration of free Ca2+ ion, γCa

2+ is the activity 

coefficient of free Ca2+ ion, and Ej is the diffusion potential resulting from the 

liquid junction between the salt bridge solution and the test solution.  To 

estimate the liquid junction potential (Ej), the Henderson equation (Eq. (5)) 

was employed (Fry & Langley, 2001) 
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where ui, zi and ci are the mobility, valence and concentration of ion i, ci(1) 

and ci(2) are the molar concentration of ion i in the salt bridge solution and 

sample solution, respectively, and |zi| is the modulus of zi, which is always 

positive.  

 

When calculating the Ej generated from the contact between salt bridge 

solution and SMUF, the concentrations of the major ions and ion 

pairs/complexes were obtained as computed by the DIS model (Gao et al., 

2010a) and the mobilities of the major ions and ion complexes were taken 

from literature (Bazinet, Castaigne & Pouliot, 2005; Fry & Langley, 2001). 

The same procedure was applied for the liquid junction potentials with the 

conventional standards and new standards. In addition, the Ej obtained 

between bridge solution and SMUF can also be regarded as Ej between 

bridge solution and skim milk, since SMUF represents the ionic composition 

of milk serum.  

 

7.2.3 DIS model 

The DIS model has been shown to satisfactorily predict the ion composition 

in freshly prepared SMUF solution (Gao et al., 2010a; Gao et al., 2010b). 

Briefly, all the major components of SMUF (Ca, Mg, Na, K, chloride, citrate, 

phosphate, sulphate and carbonate) are included in the DIS model. The 

components are supposed to react with each other, resulting in the formation 

of free ions, ion pairs or complexes, and solid precipitates. Moreover, the 

model includes a pool of association constants and solubility products, and 

mass balance equations for each component. The resulting equations 
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describing ion speciation are nonlinear algebraic equations that were solved 

numerically to obtain activities, concentrations and activity coefficient for all 

the components and their complexes. In this paper, the DIS model was used 

to calculate the free Ca2+ ion activities and concentrations in both 

conventional and new standards.  

 

7.3 Results and Discussions  

 

7.3.1 The calibration standards for the Ca-ISE  

The conventional standards for calibration of Ca-ISE have a free Ca2+ 

concentration ranging from 0.1 to 10.0 mmol/kg water, as shown in Table 3. 

The model calculation shows that the free Ca2+ concentration of each 

calibration solution is lower than the concentration of CaCl2 used for the 

corresponding calibration solution (Table 1), which is due to the formation of 

CaCl+ ion pairs. Similarly, the free Ca2+ concentration varies from 1.0 to 5.0 

mmol/kg water in the new standards, which is much lower than the total 

calcium concentration used for the new standards (Table 1). This is because a 

large fraction of calcium ions forms ion complexes with citrate, phosphate 

and chloride ions. The pH values of the new calibration solutions were 

calculated and compared with the measured pH values. Table 3 shows that 

the DIS model provides a satisfactory prediction in pH of the new standards, 

which implies the calculated Ca2+ activities and concentrations are quite 

reliable.   

 

 

 

 

 



Accurate determination of Ca2+ activity in milk-based systems. 

 
 

- 187 - 

Table 3. The calculated concentrations (mCa
2+) (mmol/kg water) and activities 

(aCa
2+) of free Ca2+ ion, and pH of the calibration solutions for Ca-ISE a.  

 

Calibration Standards 

Conventional 

Calibration Standards  

New 

Calibration 

Solutions mCa
2+ aCa

2+ mCa
2+ aCa

2+ pHCalc 

pHMeas 

(SD)b 

1 0.25 9.36E-05 1.0 3.72E-04 5.92 5.92 (0.02) 

2 0.84 3.12E-04 2.0 7.40E-04 5.81 5.82 (0.01) 

3 2.54 9.41E-04 3.0 1.11E-03 5.75 5.75 (0.02) 

4 4.26 1.58E-03 4.0 1.48E-03 5.70 5.71 (0.02) 

5 8.54 3.16E-03 5.0 1.85E-03 5.66 5.68(0.02) 
a The free Ca2+ concentration and activity, and pHCalc of each calibration solution 

are calculated by the DIS model. pHMeas is the experimental values, measured by 

a pH electrode. 
b n=3.  

 

7.3.2 The effect of calibration standards on Ca2+ activity measurement  

The calcium ion selective electrode was calibrated separately with the 

conventional standards and new standards. Calibration curves were obtained 

by plotting electric potential (ECa) versus the calculated calcium activities 

(-log aCa
2+). Figure 1 displays that the electrode is generally well calibrated 

in both standards with the slope 29.6 mV for the conventional standards and 

29.3 mV for the new standards. It appeared that the conventional calibration 

curve was nearly in parallel with the new calibration curve, but with an 

intercept gap of 7.4 mV.  Regarding the measurement of Ca2+ activity in 

milk, the ECa of milk had a mean value of 36.9 mV using the conventional 

standards, and a mean value of 31.8 mV using new standards. Moreover, the 

ECa of milk serum obtained using the new standards, was 32.5 mV on average. 
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The ECa values were subsequently converted into Ca2+ activity and expressed 

as aCa
2+

,C for milk using conventional standards, aCa
2+

,N for milk using new 

standards and aCa
2+

,N
* for milk serum using new standards as shown in Figure 

1. All the values of  aCa
2+

,C, aCa
2+

,N and aCa
2+

,N
* of milk are given in Table 4, 

which displayed an order aCa
2+

,N
*

 > aCa
2+

,N > aCa
2+

,C。The same applies for Ca2+ 

activity in SMUF solution, as shown in Table 4.   

 

y = -29.3 x + 125.8
R2 = 1.0

y = -29.6 x + 133.2
R2 = 1.0

10.0

20.0

30.0

40.0

50.0

60.0

2.0 2.5 3.0 3.5 4.0 4.5
-log (a Ca

2+)

E
C

a (
m

V
)

 
Figure 1 Calibration curves for Ca-ISE:  (□) represents conventional 

calibration standards, and (×) represents the new calibration standards. The 

symbols a and b, respectively, represent the Ca2+ activity of milk serum 

(aCa
2+

,N
*) and milk (aCa

2+
,N) determined by the new calibration standards; the 

symbol c represents the Ca2+ activity of milk (aCa
2+

,C) measured by the 

conventional standards.  

 

Table 4 also shows the various Ca2+ activity coefficients of SMUF and skim 

milk: γCa
2+

,C and γCa
2+

,N represent the γCa
2+ for SMUF or skim milk obtained 

by the conventional standards and the new standards, respectively, and 
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γCa
2+

,N
* represents the γCa

2+ of milk serum obtained by the new standards. The 

activity coefficients γCa
2+

,N and γCa
2+

,N
* were significantly higher than the 

γCa
2+

,C for both SMUF and skim milk. However, significant differences still 

remain between γCa
2+

,N and γCa
2+

, Davies or between γCa
2+

,N
* and γCa

2+
, Davies 

(Table 4). A question is therefore raised on the accuracy of the γCa
2+

, Davies for 

SMUF and skim milk. Butler (1968) reported that the mean activity 

coefficient of CaCl2 in a solution mixed with NaCl and CaCl2 (experimental 

data) was lower than it was in a solution of the same ionic strength but 

containing only CaCl2 (calculated data according to the modified 

Debye-Hückel equation by Guggenheim) when the ionic strength was below 

0.3 mol/kg water. As a result, the single Ca2+ ion activity coefficient (γCa
2+

, 

Butler ) in the NaCl-CaCl2 solution was found to be 8 % lower than the value of 

γCa
2+

, Davies at the ionic strength similar to SMUF or skim milk (Butler, 1968), 

as shown in Table 4. This indicates that there is an error in the estimation of 

the Ca2+ activity coefficient in the NaCl-CaCl2 solution by the Davies 

equation even though no difference in ionic strength exists between the 

NaCl-CaCl2 solution and the solution containing only CaCl2. Thus, it makes 

sense that Ca2+ activity coefficients of SMUF and skim milk differ from the 

γCa
2+

, Davies. The presence of many components may cause a larger difference 

in Ca2+ activity coefficient between SMUF or skim milk and the γCa
2+

, Davies. 

Moreover, the γCa
2+

,N and γCa
2+

,N
* were found in satisfactory agreement with 

γCa
2+

, Butler, particularly for SMUF (Table 4). This reveals that the individual 

ion activity coefficient is sensitive to ionic composition, rather than overall 

ionic strength which is a too global parameter. 
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The conventional standards contain only Ca, K and Cl ions, which have an 

ionic strength similar to that of SMUF or skim milk. However, the 

conventional standards lead to substantially erroneous estimations of Ca2+ 

activity. It can be seen that the errors are for SMUF 20 % and for milk 44 % 

by comparing aCa
2+

,C with aCa
2+

,Davies (Tables 4 and 5). The aCa
2+

,Davies 

represents the Ca2+ activity calculated using the Ca2+ concentration (mCa
2+) 

(Table 4) multiplying by the activity coefficient (γCa
2+

, Davies) based on the 

Davies equation.  The error is due to the difference in ionic composition 

between the standards and the samples, which causes the calcium electrode 

suffering from a so-called matrix effect (Holt et al., 1981; Neville, Zhang & 

Allen, 1995). This means that other components in SMUF or skim milk, such 

as calcium complexing anions (phosphate and citrate), macromolecules 

(casein micelles and whey proteins) and lactose, are likely to interfere with 

the measurement of Ca2+ activity. The new standards resemble SMUF or milk 

serum. This largely reduces the errors generated from the ionic compositional 

differences between the calibration standards and sample solution (Table 4). 

Thus, Table 5 shows the difference between aCa
2+

,N (aCa
2+

,N
*) and aCa

2+
,Davies is 

12 % and 24 % for SMUF and milk serum, respectively. However, aCa
2+

,Davies 

may not be the suitable reference to be compared since the γCa
2+

, Davies does not 

represent the calcium activity coefficient in SMUF or milk serum. The γCa
2+

, 

Butler is better suited to simulate the calcium activity coefficient in SMUF or 

milk serum since it describes the non-ideality of Ca2+ ions in a mixture 

solution. As a result, the Ca2+ activity aCa
2+

,Butler is obtained using the Ca2+ 

concentration (mCa
2+) (Table 4) multiplying by the activity coefficient (γCa

2+
, 

Butler) as shown in Table 5. Thus, the Ca2+ activity aCa
2+

,N (aCa
2+

,N
*) by the new 

standards is in general agreement with the aCa
2+

,Butler for SMUF (< 5 % 

difference),  while a relative large difference still exists for skim milk (< 15 

% difference). It can be concluded that the new standards significantly 
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improved the accuracy of Ca2+ activity measurement in milk-like systems. 

 

Table 5 Comparison of Ca2+ activity of SMUF and skim milk determined by 

the conventional, the new calibration standards to the theoretical calculation a, 

b.  

 aCa
2+

,Davies ,CCa

Davies,Ca

2

2

+

+

a

a

N,Ca

Davies,a

2

2

+

+

a

aC

aCa
2+

,Butler N,Ca

Butler,Ca

2

2

+

+

a

a
 

SMUF 6.5E-04 1.20 1.12 6.0E-04 1.03 

Skim milk 8.1E-04 1.44 1.24 7.4E-04 1.14 
a The aCa

2+
,Davies and aCa

2+
,Butler mean the calcium activity calculated by using 

the calcium concentration mCa
2+ (Table 4) multiplying calcium activity 

coefficient γCa
2+

, Davies and γCa
2+

, Butler, respectively (Table 4). 
b The aCa

2+,N for skim milk in this table is the value of calcium activity of 

milk serum indicated as aCa
2+,N* in Table 4. 

 

7.3.3 Liquid junction potential (Ej) 

Liquid junction potentials arise when two solutions of different composition 

come into contact. A concentrated equitransference electrolyte solution 

containing KCl and KNO3 is used as salt bridge solution in this Ca-ISE, 

which may lead to no significant changes in Ej. Table 6 shows the calculated 

liquid junction potentials of the Ca-ISE in contact with calibration solutions 

or sample solutions. The liquid junction potentials are small and generally in 

the same order, all of which are below 1 mV. Moreover, the liquid junction 

potential appears not to change significantly from the calibration solution to 

the sample solution. This indicates that the liquid junction potential of the 

Ca-ISE is rather stable, and hence will not generate significant errors in the 

measurement of Ca2+ activity in milk systems.  
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Table 6 The calculated liquid junction potential Ej (mV) of Ca-ISE in 

calibration standards and SMUF a.  

 Ej (mV) 

Conventional standards  0.60 

New standards  0.70 

SMUF 0.53 
a The Ej is calculated by Henderson equation (Eq.(5))  

 

7.4 Conclusions 

 

The results for the proposed new calibration solutions have demonstrated the 

great importance of calibrating the Ca-ISE in solutions with compositions 

similar to those of the samples. The new standards remarkably improve the 

accuracy of determination of Ca2+ activity in milk-like systems by Ca-ISE. 

Their features are summarized as follows: 

i) The compositional difference between calibration solutions and sample 

solution has large influence on estimation of Ca2+ activity coefficient and 

hence on Ca2+ activity. The new standards have ionic profiles nearly the 

same as SMUF and similar to milk serum. The difference in Ca2+ 

activity or activity coefficient between the measured data and the actual 

value is 5 % for SMUF, and 15 % for milk. Further improvement on 

determining Ca2+ activity in milk, if necessary, should be possible by 

including components such as lactose and phosphate ester in even more 

dedicated calibration standards.   

ii) The effect of ionic composition on the liquid junction potential appears 

not significant within random error of ± 0.2 mV.  The liquid junction 

potential of Ca-ISE remains stable due to well controlled composition of 

salt bridge solution for the reference electrode.  
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iii) The dynamic ion speciation (DIS) model appears to be helpful in 

developing new calibration solutions for calibration of Ca-ISE to 

determine Ca2+ ion activity in milk-like systems. Ion speciation models 

thus show their power, provided they have been validated extensively, as 

we have done in previous work. While we have used milk-like systems 

in this work, it is anticipated that this approach is also helpful for other 

systems with a complex ion composition.  
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8.1 Introduction 

 

The behaviours of ions in milk and milk-derived systems at different 

conditions have been extensively studied in this thesis. The ion equilibria of 

milk-like systems, particularly the concentrations of free Ca2+ and Mg2+ ions, 

have been successfully measured by the Donnan Membrane Technique 

(DMT). DMT has shown its advantages of good accuracy, no distortion of 

original equilibria and simultaneous determination of free metal ions. 

However, DMT also shows relatively long time span to obtain Donnan 

equilibrium compared to the other technique of the calcium ion selective 

electrode (Ca-ISE). Moreover, the Ca-ISE measurement is performing well 

when using the right calibration standards (Chapter 7). The Ca-ISE method 

was found to underestimate the Ca2+ activity in milk-like systems when using 

the simple prescribed standards, due to the so-called matrix effect. The ionic 

compositional difference between the conventional standards and the 

measured milk-like systems appeared to induce unexpected deviations in the 

Ca2+ activity coefficient and hence on Ca2+ activity. With development of new 

standards that have ionic composition close to milk serum, the deviations 

generated by the ionic composition difference are largely reduced. Besides 

the quantification of ion equilibria, ion speciation models have been 

developed to predict the ion behaviours in milk-like systems, namely 

equilibrium ion speciation (EIS), dynamic ion speciation (DIS) and milk ion 

speciation (MIS). The models have been demonstrated to give satisfactory 

predictions of ion composition in milk-like systems enriched with different 

electrolytes. In addition, sugars were observed to substantially influence ion 

activities in milk-like systems. Rather than using the well-known 

Debye-Hückel theory, the more recent developed Mean Spherical 

Approximation (MSA) theory has been successfully applied to explaining the 
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effects of sugars on ion behaviours. The MSA theory suggests that the 

excluded volume effects mainly account for a large increase in ion activity 

coefficient, thereby causing an increase in ion activity. MSA theory has 

shown its ability to describe ion properties in practical concentrated systems.  

In this thesis, the main objective has been to develop ion speciation models to 

describe ion equilibria in milk-like systems. This chapter will focus on 

evaluation of the ion speciation models on the one hand, and a case study of 

applying the developed ion speciation models to cheese on the other hand to 

challenge and test the predictive capability of the models.  

 

8.2 Evaluation of the ion speciation models 

 

8.2.1 Equilibrium ion speciation (EIS) model and dynamic ion 

speciation (DIS) model  

As shown in Chapters 3 and 4, both EIS and DIS model give satisfactory 

prediction of ion compositions in simulated milk ultrafiltrate (SMUF) at 

different conditions. The EIS model is a thermodynamic ion speciation model, 

which reveals the ion composition of SMUF at equilibrium. The DIS model 

on the other hand describes the ion composition in freshly prepared SMUF. 

The advantages of the DIS model are: (i) simulation of ion composition of 

milk serum; (ii) taking into account specific ion effects (Na+ not being 

equivalent to K+); (iii) prediction of the effect of various polyphosphates on 

ion equilibria in SMUF. However, the DIS model was developed using an 

apparent solubility product for CaHPO4·2H2O as a function of time to tackle 

the calcium phosphate precipitation kinetics. It is a purely empirical approach. 

There are many physico-chemical reactions happening during calcium 

phosphate precipitation, such as crystal nucleation, crystallization and 

transformation between precipitates. For instance, Van Kemenade and De 
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Bruyn (1987) reported that the calcium phosphate precipitation sequence 

below pH 6.7 starts from octacalcium phosphate (OCP) followed by DCPD 

(CaHPO4·2H2O). The DIS model does not describe such a transformation of 

the two precipitates. Hence, a logical follow-up would be to study 

precipitation kinetics in more detail to be able to turn the empirical DIS 

model into a mechanistic model. If that is achieved, the DIS model can not 

only calculate the ion composition of fresh SMUF, but also can simulate the 

changes in ion equilibria of SMUF on its way to equilibrium. Such a model is 

needed and relevant because of calcium phosphate precipitation occurring in 

several processes, e.g., the fouling problem due to such precipitation is of 

great practical importance in dairy industry.   

 

8.2.2 Milk Ion Speciation (MIS) Model 

The MIS model deals with the ion equilibria between the salts present in the 

aqueous phase and micellar phase of milk, as described in Chapter 6. The 

MIS model has shown to give satisfactory prediction of ion composition in 

milk upon addition of different electrolytes. Very recently, Mekmene et al. 

(2009, 2010) presented two models to simulate the ion equilibria of milk at 

fixed pH and upon acidification, respectively. The models gave reasonable 

predictions of ion equilibria compared to experimental results, though 

differences in the order of 10 to 20 % still remain between model and 

experimental results. The main differences between Mekmene’s model and 

the MIS model are, in the first place, the MIS model is a generic model 

because it describes the ion equilibria of milk at various conditions. Secondly, 

a difference remains in the assumption of the nature of CCP. In the MIS 

model, CCP is considered to be a more basic type of calcium phosphate since 

the molar ratio of micellar Ca/micellar Pi is 1.84 for milk at neutral pH. In 

Mekmene’s models, two molar ratios of Ca/Pi are used: 1.4 (Mekmene et al., 
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2009) and 1.83 (Mekmene et al., 2010), implying that the nature of CCP 

varies in the two models. Moreover, magnesium is considered to exist in the 

micellar phase as Mg3citrate2 by Mekmene et al. (2010), which is an incorrect 

assumption since Mg is not present in the form of Mg3citrate2 as reported by 

Alexander and Ford (1957). Consequently, the MIS model appears better to 

describe the ion equilibria of milk under various conditions since it is a 

generalized model and the assumption of the nature of CCP sounds more 

reasonable. However, the MIS model has some disadvantages, such as 

neglecting of citrate in the micellar phase and association between cations 

and amino acids with carboxyl groups of casein proteins (CN-RCOO-). To 

solve the first problem, full understanding of the nature of the colloidal 

calcium phosphate is required, while for the second problem, the used 

software program AESolve reached its limits in terms of calculating capacity 

when including association between cations and CN-RCOO- groups. 

Moreover, the effects of addition of polyphosphates on ion compositions of 

milk systems cannot be completely described by the model either. Being able 

to do that is of great practical relevance to understand physico-chemical 

properties of products, such as processed cheese, sweetened condensed milk, 

and UHT milk. That is because the mechanism of interactions between 

polyphosphates and salts in milk is not completely known yet, as discussed in 

this chapter and possible solutions are proposed.  

 

8.2.2.1 The nature of colloidal calcium phosphate (CCP) 

Until now, no solid experimental results have shown the exact composition of 

colloidal calcium phosphate. In the MIS model, the colloidal calcium 

phosphate is defined as a mixture of acidic and basic calcium phosphate 

phases, but tends to have more basic characteristics. This is based on several 

facts: 
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(i) The molar ratio of micellar Ca to the micellar inorganic phosphate (Ca/Pi) 

is often used to determine the nature of CCP. The experimental molar 

ratio Ca/Pi is 1.58 in the pH range 5 – 6.7 if we assume, for the moment, 

that the depicted relation is linear (Figure 1). Particularly, the Ca/Pi ratio 

has a mean value of 1.84 ± 0.10 at pH 6.7 (Chapter 6). This is in general 

agreement with literature results reported by McGann et al. (1983) and 

Dalgleish and Law (1989).  

(ii) Lucey and Horne (2009) suggested that the form of CCP is a basic form 

based on various titration studies.  

(iii)  At pH near 6.70 different calcium phosphate phases may actually 

coexist because at this pH phase transition occurs for acidic and more 

basic calcium phosphates (Van Kemenade & De Bruyn, 1987). 
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Figure 1 Concentrations of micellar Ca and micellar Pi in milk in the pH 

range 5.0 to 6.7 at 20 °C. The line is obtained via linear regression and the 
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slope represents the Ca/Pi molar ratio in micellar calcium phosphate.  

Therefore, CCP is considered to contain Ca4(PO4)2(OH)2, CaHPO4 and 

Mg3(PO4)2 in the MIS model. As Chapter 6 showed, the modeled results 

with such composition of CCP were generally in line with experimental 

results. However, differences still remain between calculated results and 

experimental data in solubilization of CCP, particularly for Mg3(PO4)2 and 

micellar Pi, during acidification and addition of NaCl or KCl. In the first 

place, the MIS model suggests that Mg3(PO4)2 is totally solubilized at pH 

6.59, which is not in accordance with literature data (Le Graët & Brule, 1993). 

Second, the model shows that addition of NaCl or KCl induces complete 

solubilization of Mg3(PO4)2, whereas literature showed only a slight increase 

in serum Mg (Le Graët & Brule, 1993). This suggests that the form of 

Mg3(PO4)2 used in the model is not completely correct, which may affect the 

accuracy of model predictions in Mg, Ca and Pi partitioning. Apart from the 

difficulties with Mg3(PO4)2, the model shows that the concentrations of 

micellar Pi and serum Pi have irregular behaviours between pH 6.77 and 6.59 

during acidification (Figure 2 in Chapter 6). The model suggests that a 

transition between CaHPO4 and Ca4(PO4)2(OH)2 occurs in this pH range. 

This finding shows the power of modelling: such a transition over a narrow 

pH range would probably have gone unnoticed otherwise. However, whether 

it is a model artifact or a real phenomenon requires further validation. 

Consequently, such questions about the actual composition of CCP need to be 

addressed to be sure that the model gives accurate predictions of in ion 

partitioning in milk.  

 

From the activities of Ca2+, Mg2+, citrate3- and phosphate ions calculated by 

the MIS model, we could obtain the ion activity products of insoluble 

compounds that are probably present in the micellar phase. According to 
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Chaplin (1984), if the ions in the aqueous phase are in an equilibrium with 

those of the solid phase, the ion activity product should be constant, 

independent of pH, and a graph of -log (ion activity product) should be a 

horizontal line. First of all, it is evident that the ion activity product of each 

solid compound is not constant throughout the pH range from 5.0 to 8.0 

(Figure 2). This indicates that CCP does not have an invariant composition in 

this pH range. Second, the acidic calcium phosphate CaHPO4 exhibits 

constant ion activity products in the pH range 5.0 to 6.8. On the contrary, the 

basic calcium phosphate Ca5(PO4)3(OH)2, Ca4(PO4)2(OH)2 and Ca3(PO4)2 

show constant ion activity products in the pH range from 6.6 to 8.0. 

Interestingly, there is an overlapping pH region 6.6–6.8 for the ion activity 

products of the acidic and the basic calcium phosphates. This suggests that it 

is indeed likely to have the acidic and basic forms coexisting in CCP between 

pH 6.6 and 6.8, in which a phase transition between calcium phosphates 

occurs. In contrast, Holt (1982) reported that the Ca/Pi ratio was not affected 

by the pH within the range 4.8–8.4, suggesting that the micellar calcium 

phosphate is uniform in composition in this pH range. However, the nature of 

CCP cannot only be judged based on the Ca/Pi ratio. A mixture of calcium 

phosphates may also have a constant Ca/Pi ratio at different pH. Moreover, 

the plot shown in Figure 1 does not seem to be completely linear, particularly 

at high or low concentration of micellar Ca and Pi, implying that the 

composition of CCP may, in fact, change with pH. Therefore, it is reasonable 

to assume basic and acidic calcium phosphates existing in CCP. We propose 

that the basic form has a molecular structure similar to hydroxylapatite 

(Ca5(PO4)3(OH)2), such as Ca4(PO4)2(OH)2 used in the MIS model. This is in 

agreement with literature data by Lyster (1976) who reported that micellar 

calcium phosphate resembled hydroxylapatite to some extent. The acidic 

form should be CaHPO4 since another acidic form, octacalcium phosphate 



General discussion. 

 
 

- 205 - 

(Ca4H(PO4)3), should be excluded in CCP due to its changing ion activity 

product throughout the pH range (Figure 2). Third, magnesium phosphates 

behave similarly as calcium phosphates in the micellar phase. The acidic 

form MgHPO4 is preferably present in the acidic pH range 5.0–6.8, while the 

basic form Mg3(PO4)2 prefers to stay in the more basic pH range 6.6–8.0. As 

mentioned earlier, the model does not give satisfactory prediction of the 

change in magnesium in milk by using Mg3(PO4)2. This suggests that it 

would be more reasonable to use the acidic form of magnesium phosphate 

(MgHPO4) in the model. Moreover, the model also suggests that an ion 

activity product is constant in the range 5.0–6.8 for a molecular formula 

Ca0.83Mg0.17HPO4 (Figure 2). It makes sense to have such a formula since Mg 

is partly associated with CCP as reported by Holt (1985). As pH increases, 

the acidic magnesium phosphate will be converted to the basic form 

Mg3(PO4)2. Last but not least, micellar citrate was found to be associated 

exclusively with CCP (Holt, 1985). Ca3Citrate2 will be the most probable 

form present in CCP since no magnesium citrate was found in the micellar 

phase (Alexander & Ford, 1957). Figure 2 shows that the ion activity product 

of Ca3Citrate2 remains nearly constant below pH 6.7. In summary, the most 

realistic composition of CCP used in the MIS model is that Ca4(PO4)2(OH)2, 

CaHPO4, MgHPO4 and Ca3Citrate2. An alternative composition is a mixture 

of Ca4(PO4)2(OH)2, Ca0.83Mg0.17HPO4 and Ca3Citrate2. These suggestions can 

be further tested and compared to experimental results.  
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Figure 2. The dependence of –log (ion activity product) for (a) 

hydroxylapatite (Ca5(PO4)3OH), octacalcium phosphate (Ca4H(PO4)3), 

Ca4(PO4)2(OH)2, amorphous trimagnesium phosphate (Mg3(PO4)2), 

amorphous tricalcium phosphate (Ca3(PO4)2); (b) tricalcium citrate 
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(Ca3Citrate2); (c) MgHPO4; (d) CaHPO4 and (e) Ca0.83Mg0.17HPO4 in milk on 

pH. Values are calculated from the ion equilibria in milk by the MIS model.  

 

8.2.2.2 Effect of addition of tetrasodium pyrophosphate (TSPP) 

In milk, TSPP (Na4P2O7·10H2O) can complex free Ca2+ and Mg2+ ions, and 

can further form solid precipitates with Ca2+ and Mg2+ ions if sufficient 

pyrophosphate is present. As the concentration of TSPP increased from 0 to 

0.4 %, the concentrations of free Ca2+ and Mg2+ ions decreased from 1.91 to 

0.55 mmol/kg water for Ca2+ ions and from 0.69 to 0.08 mmol/kg water for 

Mg2+ ions (Figure 3a). The pH of milk increased from 6.70 to 7.08 as shown 

in Figure 3b. Moreover, Figure 3c shows that addition of TSPP changes the 

ion partitioning in milk. Interestingly, the concentrations of serum Ca and 

inorganic phosphate (Pi) initially increased and then decreased over the range 

of added TSPP. This is different from the observed phenomena in SMUF with 

added TSPP, where the total Ca and Pi decreased throughout the whole range 

of TSPP because of the formation of solid precipitate Ca2P2O7 (Chapter 3). 

This indicates that TSPP induces changes in the equilibria between the 

colloidal calcium phosphate and dissolved Ca and Pi ions. Mizuno and Lucey 

(2007) studied the formation of TSPP induced-gelation from milk protein 

concentrate (MPC) solutions. The authors proposed a possible gelation 

mechanism, in which the addition of TSPP induces dispersion of casein 

micelles, followed by the formation of calcium pyrophosphate (Ca2P2O7). As 

a result, the calcium pyrophosphate may crosslink caseins to facilitate protein 

gelation. However, excessive TSPP concentration weakens the gelation due 

to an increase in electrostatic repulsion via calcium pyrophosphate (Mizuno 

& Lucey, 2007). Our experimental results of the changes of the 

concentrations of serum Ca and Pi with added TSPP in milk appeared to be in 

line with this mechanism. Initially, addition of TSPP disperses the casein 
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micelles because TSPP can complex the soluble Ca2+ ions in milk serum, 

leading to solubilization of colloidal calcium phosphate. As a result, the 

concentrations of serum Ca and Pi increase. As the TSPP concentration 

increases, the Ca2+ ions may form solid calcium pyrophosphate. The latter 

can crosslink casein proteins, resulting in a decrease in serum Ca and Pi.  

The effect of addition of TSPP to milk was also simulated by the MIS model 

(Figure 3). All the relevant association constants (Chapter 2) were employed 

in the MIS model. The solubility products of calcium pyrophosphate and 

magnesium pyrophosphate were included as well. The model calculation is in 

line with experimental results in terms of free Ca2+ and Mg2+ concentrations 

and the serum Na concentration (Figure 3a and c). However, the model does 

not give satisfactory prediction in pH, serum Ca and Pi (Figure 3b and 3c), 

but it does follow the trend. The measured pH increased nearly linearly, while 

the model shows a non-linear relationship between pH and added TSPP. The 

calculated serum Ca shows a similar trend to the measured results, but it 

significantly departures from the experimental data. Also, the calculated 

serum Pi increases in the range of added TSPP, which is different from 

experimental results. An attempt to change the solubility product of Ca2P2O7 

did not lead to improvement. We cannot yet give a satisfactory explanation 

for the discrepancy between the model calculation and experimental results. 

We suggest that it is related to the nature of CCP, and that further testing with 

the model needs to be done using the CCP composition suggested in section 

8.2.2.1.  
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Figure 3. Effect of addition of TSPP on ion composition in milk (n=3). (a) (■) 

free Ca2+, (□) measured free Mg2+ (––) MIS model; (b) (▲) pH, (––) MIS 

model; (c) (△) Serum Na, (––) Calculated Na, (×) Serum inorganic phosphate 

(Pi), (– –) Calculated Pi, (-) Serum Ca, (---) Calculated Ca 

 

8.3 Application of the models in simulation of ion equilibria in cheese 

 

8.3.1 Calculation of ion composition in one-month old cheddar cheese 

juice 

The pH and mineral content have a major influence on the structure and 

texture of cheese (Everett & Auty, 2008; Johnson & Lucey, 2006; Lucey & 

Fox, 1993; Lucey et al., 2005). Rather than the total Ca content, the 

proportion of colloidal calcium phosphate (CCP) plays an important role in 

controlling the functionality of cheese (Johnson & Lucey, 2006; Lucey & Fox, 
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1993). For cheeses with similar total Ca concentration, the concentration of 

undissolved calcium phosphate of the two cheeses may be significantly 

different due to different pH or different aging stages, thereby resulting in 

different functional properties, such as melting, stretching and firmness. 

Therefore, the dynamic calcium ion equilibria between undissolved Ca and 

dissolved Ca are crucial in relation to the functionality of cheese. By using an 

ion speciation model, we are able to simulate the ion composition in cheese 

in order to correlate the changes of calcium equilibria with cheese 

functionality during cheese ripening. The dynamic ion speciation (DIS) 

model was used for two reasons. One reason is that cheese juice is similar to 

simulated milk ultrafiltrate (SMUF), which is supersaturated with calcium 

phosphate. Second, the DIS model can simulate the changes of ion 

composition during aging of cheese. The experimental mineral composition 

of one-month Cheddar cheese juice was taken from Morris et al. (1988) for 

this simulation study.  

 

Table 1 shows the calculated ion composition of one-month old Cheddar 

cheese juice by the DIS model. The divalent cations, especially the dissolved 

Ca mainly exists in the form of CaLactate+, CaCl+ and free Ca2+ ions. There 

are also several undissolved Ca compounds present. The DIS model suggests 

that three solid compounds are formed in cheese juice, namely CaHPO4, 

Ca3Citrate2 and CaLactate2 (Table 1). This is based on the observation that 

the calculated ion activity products of all the three compounds give 

horizontal lines in the pH range 5–6 (Figure 4). These solid compounds were 

also experimentally identified in cheese juice by Morris et al. (1988). 

Apparently, our modeled results are in line with literature. Besides, the 

concentrations of CaHPO4, Ca3Citrate2 and CaLactate2 are calculated to be 

247, 12.9 and 6.3 mmol/kg of water, respectively for the one-month old 
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cheese juice (Table 1). The modeled results were compared to literature data 

by Morris et al. (1988) (Table 1), who used the model of Holt et al. (1981) to 

calculate the concentrations of dissolved ion species and pH of the same 

sample. It turns out that our modeled results are in general agreement with 

those calculated by Morris et al. (1988), which shows the predictive capacity 

of the DIS model. 

 

Table 1 Calculated concentrations (mmol/kg water) of ions and complexes in 

one-month old cheddar cheese juice by the DIS model a versus literature 

values from Morris et al. (1988) b indicated between brackets. 

    Cation complex  

Anion Free ion Ca2+ Mg2+ K+ Na+ 

Citrate3- - (0.3)  3.6 (11.1) 0.5 (1.1) - c (-) 0.2 (0.2) 

HCitrate2- 0.1 (0.3) 0.3 (0.6) - (-) - (-) 0.6 (0.5) 

HPO4
2- 0.6 (0.3) 0.9 (0.5) 0.2 (0.1) 0.1 (0.1) 1.7 (0.9) 

H2PO4
-  18.8 (19.2) 2.4 (2.2) 0.4 (0.4) 0.4 (0.5) 5.3 (6.5) 

Glc-1-PH- 16.8 (11.1) - (1.1) - (0.2) - (0.3) - (3.8) 

Glc-1-P2- 1.6 (1.7) 1.2 (1.4) 0.2 (0.2) 0.1 (0.1) 2.1 (2.0) 

HLactate 7.6 (10.2) - (-) - (-) - (-) - (-) 

Lactate- 331 (337.7) 86.5 (80.5) 16.8 (15.2) 4.4 (5.3) 59 (69.2) 

Cl- 638 (610) 36.5 (58.4) 11.5 (5.4) 13.6 (14.6) 180.2 

SO4
2- 1.1 (1.1) 0.5 (0.6) 0.1 (0.1) 0.1 (0.1) 1.0 (0.9) 

HAcetate 2.0 (1.5) - (-) - (-) - (-) - (-) 

Acetate- 11.2 (6.3) 1.9 (1.0) - (0.2) - (0.1) - (1.5) 

Free ion - 44.8 (49.7) 7.1 (5.8) 54.2 (51.8) 719 (681) 
a  The total concentration (mmol/kg water) of ions used in the DIS model 

calculation was taken from Morris et al. (1988) in one-month old cheddar 

cheese juice, in which [Ca] = 471, [Mg] = 36.7, [Na] = 972, [K] = 72.8, [Pi] = 

278, [Cl] = 880, [Citrate] = 31.1, [SO4] = 2.8, [Lactate] = 518, [Acetate] = 
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15.1, [Glc-1-P] = 22.0. The DIS model suggests that various solid precipitates 

are formed, which are DCPD = 247 mmol/kg water, Ca3Citrate2 = 12.9 

mmol/kg water, and Ca(Lactate)2 = 6.3 mmol/kg water. The calculated ionic 

strength is 1.088 mol/kg water, and the calculated pH is 5.24.  
b pH of cheese juice was measured to be 5.23 by Morris et al..  
c Concentration shown as: - < 0.01 mmol/kg water 
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Figure 4. The dependence of –log (ion activity product) for amorphous 

tricalcium phosphate (Ca3(PO4)2), tricalcium citrate (Ca3Citrate2), CaHPO4 

and CaLactate2 in one-month old cheddar cheese juice on pH. Values are 

calculated from the ion equilibria in the cheese juice by the DIS model.  

 

8.3.2 Simulation of the effect of pH on ion equilibria in cheese juice 

Ion equilibria will change during the ripening of cheese due to the 

pH-induced solubilization of colloidal calcium phosphate and ongoing 

biochemical processes. The influence of pH (pH range 5–6) on the mineral 
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composition in one-month old cheese juice was simulated by the DIS model 

as shown in Figure 5 (keeping all other factors unchanged). The model 

suggests that the undissolved CaHPO4 decreases as pH drops, while the solid 

Ca3Citrate2 is hardly influenced by pH (Figure 5a and b). Figure 5c shows 

that the concentration of free Ca2+ ions increases as pH decreases, while that 

of free Mg2+ ions remains independent of pH as suggested by the model. 

Moreover, Figure 6 shows that the proportion of undissolved Ca in the 

one-month old cheese juice decreases from 65 % to 58 % of the total cheese 

Ca as pH is decreased from 6 to 5. Hassan and Lucey (2001) measured the 

proportion of undissolved Ca in cheddar cheese juice, which decreased from 

64 % to 56 % of total cheese Ca during the first 4 weeks. This indicates that 

the model calculation of the proportion of undissolved Ca is in agreement 

with literature data for one-month old cheddar cheese. A reduction in the ratio 

of undissolved Ca to dissolved Ca leads to an increase in cheese meltability 

(Everett & Auty, 2008). Applying Horne’s dual-binding model (Horne, 1998), 

a reduction in pH decreases the amount of CCP crosslinking with casein 

particles. This leads to a decrease in the casein-casein interaction and an 

increase in electrostatic repulsion, which can weaken the cheese structure and 

increase cheese meltability (Lucey et al., 2003). Therefore, we can apply this 

model to explain difference in meltability and firmness between Cheddar 

cheese and Gouda cheese. Gouda cheese (pH 5.8) has a higher pH than 

Cheddar cheese (pH 5.2). The proportion of undissolved Ca should be higher 

in Gouda cheese than in Cheddar cheese, leading to stronger casein-casein 

interaction in the former. The model was also applied to calculate the amount 

of undissociated lactic acid which plays an important role in inhibiting the 

growth of Listeria Monocytogenes in Gouda cheese. The model suggests that 

the amount of lactic acid decreases from 11.9 to 1.3 mmol/kg of water as pH 

increases from 5 to 6. The minimum content of undissociated lactic acid 



General discussion. 

 
 

- 215 - 

needed to inhibit Listeria Monocytogenes growth is 3.6-5.7 mmol/kg of water 

(Coroller et al., 2005). At the pH of Gouda cheese (pH 5.5), lactic acid 

concentration was calculated to be 4.1 mmol/kg water. This implies that the 

growth of Listeria Monocytogenes in Gouda cheese may be inhibited, but we 

cannot exclude the risk since the calculated concentration is much close to 

the lower concentration range proposed by Coroller et al. (2005). Moreover, 

the presence of other acids such as acetic acid and citric acid may have the 

same inhibiting effect. We recommend full studies of the mineral composition 

of Gouda cheese juice and development of dedicated microbial growth 

models for the growth of Listeria Monocytogenes and our developed DIS 

model can be helpful in this respect.  
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Figure 5.  Model calculation of ion composition as a function of pH in 
one-month old Cheddar cheese juice. (a) (■) solid CaHPO4; (b) (□) solid 

Ca3Citrate2; (c) (▲) free Ca2+, (×) Mg2+, (△) Lactic acid.  
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Figure 6. Proportion of undissolved Ca (%) in one-month old Cheddar 

cheese juice as a function of pH as calculated by the DIS model.  

 

8.3.3 Simulation of CaLactate2 crystal formation in cheese juice 

Calcium lactate (CaLactate2) crystal formation on the surface of aged 

Cheddar cheese is a widespread problem for the cheese industry (Kubantseva 

et al., 2004). Ca2+ ions and lactate- may form ion complexes CaLactate+. If 

there is sufficient amount of Ca2+ and lactate ions, exceeding their solubility 

product, crystallization may occur (Kubantseva et al., 2004). It was attempted 

to simulate the CaLactate2 crystallization in one-month old cheese juice by 

using the DIS model (keeping other factors unchanged). The negative 

logarithm of solubility product (Ksp) of CaLactate2 for its crystalline form is 4, 

which is taken from literature (Walstra & Jenness, 1984). Apparent solubility 

products (Ksp, app) of CaLactate2 were employed in the model to mimic the 

kinetic process of calcium lactate from amorphous form to crystalline form as 

shown in Figure 7. This is the same approach as described in Chapter 3 for 
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simulation of the kinetics of calcium phosphate precipitation in SMUF. The 

model suggests that the nucleation of CaLactate2 occurs at –log(Ksp, app) near 

3.2. During the aging of cheese, amorphous calcium lactate will be converted 

to the crystalline form. That is, the solubility of calcium lactate continues to 

decrease. By changing the solubility products from 3.2 to 4.0, the model 

shows that the amount of calcium lactate increases from 6.3 to 125.2 

mmol/kg of water. The increase in the concentration of CaLactate2 induces a 

decrease in colloidal calcium phosphate (CaHPO4) and free Ca2+ ions (Figure 

7). Moreover, the pH increases from 5.24 to 5.45, while the ionic strength 

decreases from 1.088 to 0.956 mol/kg of water. Kubantseva et al. (2004) 

unravelled that the main factors influencing the solubility of CaLactate2 are 

the concentration of lactate ions and temperature. Therefore, the lactose 

content in the cheese milk should be controlled to prevent calcium lactate 

formation. Meanwhile, we could also use the model to calculate the 

maximum amount of lactose in the cheese milk that can be used to prevent 

such problems.  
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Figure 7. Simulation of the development of crystallization of CaLactate2 and 

its effect on other species during aging of cheddar cheese by the DIS model. 

(△) solid CaHPO4, (■) CaLactate2, (▲) free Ca2+, and (□) solid Ca3Citrate2. 

The negative logarithm of solubility product (Ksp) of CaLactate2 crystal form 

is 4.0, taken from Walstra and Jenness (1984).  

 

8.3.4 The effect of ionic strength 

The Cheddar cheese juice is a concentrated system containing many 

electrolytes. The ionic strength of cheese juice was calculated to be 1.088 

mol/kg of water (Table 1). Such high ionic strength may induce an error in 

the prediction of the value of activity coefficients of ion species for the 

current model based on two factors. One is the relative permittivity of the 

cheese juice and the other one is the commonly used Davies equation. First of 

all, in the current model calculation, the relative permittivity of water has 

been used as a constant parameter for the activity coefficient calculation. It is 
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still valid to use it for systems having lower ionic strength. However, systems 

having higher ionic strength (e.g. cheese juice) have relative permittivities 

significantly lower than that of pure water. Second, the Davies equation is not 

suitable for the concentrated systems since it does not take into account 

excluded volume effects. There will be an error of prediction in ion activity 

coefficient. In Chapter 5, the MSA theory was successfully applied to 

describe the ion properties in concentrated systems (Gao et al., 2010). The 

excluded volume effect accounts for the non-ideal behaviours of ion species. 

Therefore, a MSA model was developed to calculate the Ca activity 

coefficient in more concentrations systems. Due to the complexity of cheese 

juice, we simplified it to be a simple solution containing NaCl, CaCl2 and 

NaLactate with the concentration 0.514, 0.234 and 0.518 mol/kg of water, 

respectively. This solution has its ionic strength of 1.102 mol/kg water as 

calculated by MSA model (Table 2), which is similar to that of cheese juice 

calculated by the DIS model (Table 1). The MSA model is developed within 

McMillan-Mayer (MM) framework on the molarity scale (van Boekel, 2008). 

The DIS model was developed on molality scale at Lewis-Randall (LR) level. 

In order to compare the results, conversions were made from MM to LR 

followed by conversion to activity coefficients on the molarity scale (symbol 

y) to that on the molality scale (symbol γ) according to the procedure as 

shown in Chapter 5. Table 2 shows that the Ca2+ activity coefficient 

calculated by the MSA model is about 10% higher than that calculated by the 

Davies equation. As the ionic strength increases, the difference becomes 

larger between γCa, MSA
LR and γCa, Davies

LR (Table 2), although both γCa, MSA
LR and 

γCa, Davies
LR increase as the ionic strength increases. The excluded volume 

effects account for the difference. Therefore, it is more suitable to use the 

MSA model in future to describe ion properties in concentrated systems. 

However, the DIS model, which currently employs the Davies equation, still 
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can be used as a first approximation of ion composition in concentrated 

systems. It would not be a difficult task to incorporate the MSA model in our 

developed models and it is recommended to do that in future work. 

 

Table 2. Comparison of Ca activity coefficients (y on the molarity scale, γ on 

the molality scale) calculated by the DIS model and MSA model in 

one-month old cheddar cheese juice a.  

Ionic strength (mol/kg H2O) yCa, MSA
MM yCa, γCa, γCa, 

1.102 0.31 0.29 0.28 0.25 

1.404 0.43 0.40 0.37 0.29 

1.751 0.61 0.55 0.51 0.36 
a MSA model is developed to describe the Ca activity coefficient in a solution 

containing NaCl, CaCl2, and NaLactate with the concentration 0.514, 0.234 

and 0.518 mol/kg of water, respectively. This solution is a simplified system 

of cheese juice, and has an ionic strength of 1.102 mol/kg water.  
b γCa, Davies

LR is the Ca activity coefficient of the cheese juice calculated by the 

DIS model using the Davies equation.  

 

8.4 Main conclusions and Recommendations 

 

Looking back on the project aims, we conclude our work in a twofold 

manner:  

(i) For a number of milk-based systems under various conditions, the 

ion compositions have been successfully determined. The Donnan 

membrane technique (DMT) has been demonstrated to be an accurate 

method to determine the concentrations of free metal ions in 

milk-based systems. Calcium ion selective electrode (Ca-ISE) suffers 

from matrix effects due to the compositional difference between 
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calibration solutions and milk samples. Standards solutions with 

compositions similar to milk serum have been developed and the use 

of them remarkably improves the accuracy of Ca2+ activity 

measurement by Ca-ISE.  

(ii) Ion speciation models (EIS, DIS and MIS) give satisfactory 

descriptions of the ion compositions in milk-based systems for all 

applied conditions. Disaccharides affect the ion properties through 

excluded volume effects, which can be successfully explained by the 

MSA theory. Moreover, the MSA theory is a more suitable tool to 

describe ion properties in concentrated systems than the Davies 

equation.  

 

Regarding future research, the limitations of the developed models should be 

dealt with in order to make the models more robust and complete. Moreover, 

modelling the effect of temperature on ion equilibria in milk-based systems is 

another interesting and important topic to focus on. A few points are 

suggested to achieve this goal. The first is to build an ion speciation model 

for SMUF as a simplified system of milk at different temperatures. Next, the 

SMUF model can be extended to describe milk system as was done in this 

thesis. Experiments need to be carried out to determine the ion compositions 

in SMUF and milk systems over a range of temperatures. The free metal ion 

concentrations can be measured by DMT method since Ca-ISE cannot work 

at high temperatures. The concentrations of ions in milk serum at different 

temperatures can be determined by using the ultrafiltration method as 

described by Pouliot et al. (1989). Moreover, the association constants and 

solubility products of the major ion complexes and solids should be 

determined at different temperatures. A good example for determination of 

solubility product is given for CaHPO4 at 90 °C as described by Mooney and 
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Meisenhelter (1960). The amount of experimental work to be carried out 

seems impressive, but the present success of our ion speciation models 

justifies the expectation that they can be developed to a powerful tool for 

predicting ion compositions in milk-like systems for a broad range of 

conditions.  
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Summary 

Ion equilibria of milk, particularly the distribution of calcium phosphate 

between casein micelles and milk serum, play a crucial role in the 

conformation and stability of casein micelles. Alterations of ion equilibria 

can have marked influences on the stability of casein micelles during 

processing and storage of dairy products, leading to changes in the 

physicochemical and sensorial properties of the product. The aim of this PhD 

research was to quantify and model ion composition in terms of 

concentrations and activities of ions and ion complexes in milk systems. To 

study the consequences of varying processing steps on ion equilibria, the 

following conditions were varied: pH, ionic strength (by adding NaCl and 

KCl), calcium fortification (by adding CaCl2) and calcium complexation (by 

adding Na2HPO4, Na4P2O7, Na5P3O10 and Na8P6O19), and addition of sugars 

(sucrose, lactose, maltose and trehalose). All these changes reflect what can 

happen in various production processes, such as fermentation (pH change), 

addition of salts in cheese making, complexation agents (in heat-treated 

concentrated milks and in processed cheese) while sugars are added in 

dessert products and sweetened condensed milk. The rationale behind this 

research is discussed in Chapter 1. 

 

A prerequisite for modelling ion equilibria is to accurately measure the 

activities and concentrations of ions, in particular Ca2+ and Mg2+ ions, which 

are the major cations and are essential to the structural stability of casein 

micelles (Chapter 2). Some 50 years ago cation exchange techniques and the 

murexide method were the standard for measuring Ca2+ ions; later on the 

calcium ion selective electrode (Ca-ISE) was developed and became the 
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standard. Because we wanted another independent method next to ISE, we 

investigated the potential of the so-called Donnan Membrane Technique 

(DMT), developed for soil systems. DMT was successfully applied to 

determine free Ca2+, Mg2+, Na+ and K+ ions in milk systems. Specific 

characteristics of DMT are: (1) simultaneous determination of various free 

metal ions; (2) minimal distortion of sample equilibrium; (3) minimal 

interferences from other components. Moreover, DMT might be suitable to 

measure free Ca2+ ion concentration at elevated temperatures (up to 90 °C), 

which is important to understand ion speciation at high temperature for milk 

products (but this was not investigated in the present study).  

 

To model ion speciation in milk, a simplified system named simulated milk 

ultrafiltrate (SMUF) was studied first (Chapter 3 and 4). SMUF is a solution 

to mimic mineral composition of milk serum, without the presence of casein 

micelles, which contain colloidal calcium phosphate and organic 

phosphoserine calcium complexes. SMUF has been proposed as a model 

system since 50 years and is used very often in dairy research. It appeared, 

however, that freshly prepared SMUF is a solution that is supersaturated with 

respect to various calcium phosphate phases, and hence is not in equilibrium. 

A significant difference in ionic composition appeared to exist between 

freshly prepared SMUF and SMUF that has reached equilibrium. Two ion 

speciation models were developed to describe these two situations: the EIS 

model (Equilibrium Ion Speciation, describing the ion composition for 

SMUF at equilibrium) and the DIS model (Dynamic Ion Speciation, 

describing the ion composition of freshly prepared SMUF). Both models deal 

with the major ions, ion complexes and solid precipitates formed in SMUF. 

The mass balance equation for each component was constructed and a group 

of intrinsic association constants and solubility products were employed, 
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partly taken from literature and partly estimated. The resulting equations 

describing electrolyte equilibria (called ion speciation) are non-linear 

algebraic equations that were solved numerically to obtain activities and 

concentrations for all the components and their complexes. A dedicated 

commercially available software program was used for the calculations 

(AESolve). 

 

Both of the models were validated by experiments in which CaCl2 and 

Na2HPO4 were added to freshly prepared SMUF solution. The EIS model 

gave predictions in ion concentrations and activities, pH and solids 

precipitation at equilibrium for SMUF, which were in line with the 

experimental results. The precipitates formed were investigated by X-ray 

diffraction and the outcomes were in line with the composition predicted by 

the ion speciation model. The DIS model was able to predict the ion 

composition of fresh SMUF and SMUF enriched with CaCl2 or Na2HPO4 at 

the initial stage; the difference with the EIS model is that empirical kinetics 

was added to account for the metastable situation in SMUF. Additional 

conditions, e.g. pH, ionic strength and calcium chelating agents (various 

polyphosphates) were used and the modelling results were in general 

agreement with experimental data. Moreover, sodium ions were found not to 

be equivalent to potassium ions since they resulted in different Ca2+ and Mg2+ 

concentrations and activities, and pH in SMUF. This could be well explained 

by the difference in their hydration properties. In addition, the developed 

model suggests that sodium hexametaphosphate (Na8P6O19) displays chain 

polyphosphate properties (not a ring structure as is proposed in literature), 

which provides better understanding of its interaction with cations.  

 

As a next step, it was studied how addition of non-electrolytes such as sugars 
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would influence ion properties (Chapter 5). Sugars, as non-electrolytes, were 

found to increase Ca2+ ion activities and decrease pH in aqueous solutions 

(CaCl2-KCl-K3Citrate solution, SMUF) and milk if sugars were added to 

these systems. The so-called mean spherical approximation (MSA) theory 

was used to explain the impact of sugars on ionic properties in milk systems 

by taking into account electrostatic interactions and volume exclusion effect. 

The effect of sucrose on ionic properties in an electrolyte solution consisting 

of CaCl2, KCl and K3Citrate was calculated using a MSA model. It appeared 

that the excluded volume effect accounted for a considerable increase in 

activity coefficient of the ions, implying that the activity increases even when 

the concentration remains the same. This offered a sufficient explanation of 

the observed increase in Ca2+ activity and the decrease in pH in milk systems 

enriched with sugars. Addition of various sugars (sucrose, maltose, lactose, 

trehalose) resulted in similar thermodynamic properties of milk-like systems, 

in line with the suggestion that the observed effect is due to a non-specific 

volume exclusion effect.  

 

As a final step, a model describing ion speciation in milk was developed 

based on the EIS and DIS models (Chapter 6). This Milk Ion Speciation 

(MIS) model includes not only all the components of SMUF, but also 

colloidal calcium phosphate (CCP) and phosphoserine calcium complexes of 

casein micelles. The nature of CCP at pH 6.70 was considered to be basic 

since the molar ratio of Ca/Pi was measured as 1.84. The model suggests that 

the composition of CCP is a mixture of a basic calcium phosphate 

(Ca4(PO4)2(OH)2) and an acidic calcium phosphate (CaHPO4.2H2O). 

Moreover, the composition of CCP may change as a function of pH. 

Experiments were carried out to determine the ionic properties of milk under 

varying conditions, such as pH, ionic strength (NaCl or KCl), CaCl2, calcium 
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chelating agents (Na2HPO4, and Na4P2O7). The model predictions were in 

general agreement with experimental results for all conditions (within 15% 

deviation). 

 

From the many measurements of Ca2+ activity measurement during this PhD 

study, we observed a significant difference in Ca2+ activity measurement 

between Ca-ISE method and DMT technique at lower ionic strength (I < 0.1 

mol/kg water). It was shown in Chapter 7 that the ionic compositional 

difference between conventional calibration solutions and milk-based 

samples had a significant effect on the single Ca2+ activity coefficient, which 

generates erroneous estimates of Ca2+ activities in SMUF and milk. To 

overcome this problem, we developed new calibration standards which have 

similar compositions to milk serum by means of the DIS model. 

Consequently, the new standards showed a significant improvement in the 

accuracy of Ca2+ activity and Ca2+ activity coefficient over the conventional 

standards. After having implemented this correction, the difference in Ca2+ 

activity between the Ca-ISE method and DMT technique was within 

experimental error.  

 

Finally, the ion speciation models (EIS, DIS and MIS) were carefully 

evaluated and a case study of applying the developed ion speciation models 

to cheese was carried out to challenge and test the predictive capability of the 

models, as described in the general discussion (Chapter 8). Particularly, the 

nature of colloidal calcium phosphate (CCP) was intensively discussed. We 

suggest that CCP is a mixture of calcium phosphates with acidic form 

(CaHPO4) and basic form (Ca4(PO4)2(OH)2, HAP-like) together with 

MgHPO4 and Ca3citrate2. Moreover, calculation of the ion composition in 

skim milk enriched with polyphosphate (TSPP) was attempted. Unfortunately, 
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the model calculation did not give satisfactory predictions in pH, 

concentrations of serum Pi and Ca in this case, for which we cannot yet 

explain this discrepancy. Another important trial was to use the models to 

calculate ion equilibria in cheese juice. The models were demonstrated to 

give satisfactory predictions of ion composition in concentrated systems (i.e., 

cheese juice). The message is, therefore, that the developed models offer 

great potential and can be a powerful tool to correlate behaviour of ions to 

physicochemical, microbial and sensorial properties of cheese. The 

limitations of the developed models have been discussed and should be dealt 

with in order to make the models even more powerful tools to describe ion 

composition in milk for a broad range of conditions. 

 

In conclusion, the developed models appear to be robust and versatile tools to 

describe ion speciation in milk-like systems. Based on this approach, a 

significant step can be made in transferring fundamental knowledge to the 

R&D environments of the dairy industry in particular, but also to that of the 

food industry in general. There this knowledge can then be applied in new 

product development and also can be used to deliver solutions to problems in 

existing products.  

 

 

 

 

 

 

 

 



 

Samenvatting 

Ion-evenwichten in melk spelen een belangrijke rol in de conformatie en 

stabiliteit van caseinemicellen, met name de verdeling van calciumfosfaat 

over caseïnemicellen en melkserum,. Veranderingen in ion-evenwichten 

tijdens bewerking en opslag kunnen van grote invloed zijn op de stabiliteit 

van caseinemicellen in zuivelproducten en daarmee op de fysisch-chemische 

en sensorische eigenschappen van de producten. 

 

Het doel van het onderzoek beschreven in dit proefschrift was om de 

ionsamenstelling in melk en daarvan afgeleide systemen te kwantificeren en 

te modelleren d.m.v. wiskundige modellen in termen van concentraties en 

activiteiten van ionen en ioncomplexen. De gevolgen van verschillende 

bewerkingsstappen op ion-evenwichten werden bestudeerd door de volgende 

condities te varieren: pH, ionsterkte (door NaCl and KCl toe te voegen), 

CaCl2 toevoeging, het toevoegen van calciumbinders als Na2HPO4, Na4P2O7, 

Na5P3O10 and Na8P6O19, en het toevoegen van suikers (sacharose, lactose, 

maltose en trehalose). Deze veranderingen weerspiegelen wat er kan 

gebeuren in allerlei bewerkingen, zoals fermentatie (leidend tot pH 

verandering), toevoegen van zouten bij de kaasbereiding, het toevoegen van 

calciumbinders aan te verhitten geconcentreerde melk en smeerkaas, terwijl 

suikers worden toegevoegd aan allerlei dessert producten en gesuikerde 

condens. De achtergrond, de verantwoording en de opzet voor het onderzoek 

is beschreven in Hoofdstuk 1. 

 

Een voorvereiste om ion-evenwichten te kunnen modelleren is het 

nauwkeurig kunnen meten van activiteiten en concentraties van ionen, met 
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name de tweewaardige ionen Ca2+ and Mg2+, de voornaamste kationen die 

essentieel zijn voor de structuur en de stabiliteit van caseinemicellen 

(Hoofdstuk 2). Zo’n 50 jaar geleden waren technieken als ionenuitwisseling 

en de murexide methode de standaard voor het meten van Ca2+ ionen; 

ongeveer 10 jaar daarna kwam de ion-selectieve calcium electrode ter 

beschikking (Ca-ISE) en werd deze de standaard. Niettemin werd het in dit 

onderzoek nodig bevonden om de beschikking te hebben over nog een andere 

onafhankelijke methode en die is gevonden in de zogenaamde Donnan 

Membraan Techniek (DMT), in eerste instantie ontwikkeld voor het 

bestuderen van ionevenwichten in de bodem. DMT bleek een uitstekende 

methode om vrije Ca2+, Mg2+, Na+ and K+ ionen in melksystemen te bepalen. 

Enkele specifieke karakteristieken van DMT zijn: (1) het simultaan kunnen 

bepalen van verschillende vrije metaal ionen; (2) een minimale verstoring 

van de ion-evenwichten tijdens de bepaling; (3) minimale interferentie van de 

andere  aanwezige componenten op de analyse. Bovendien zou DMT het 

mogelijk moeten maken om de vrije Ca2+ ion concentratie te meten bij 

verhoogde temperatuur (tot 90 °C), hetgeen van belang is om het gedrag van 

ionevenwichten en hun associaties te begrijpen in verhitte melk producten, 

maar dit is niet bestudeerd in dit proefschrift.  

 

Het mathematisch modelleren van iongedrag werd eerst bestudeerd in een 

systeem dat de ion-samenstelling van melkserum imiteert, in het Engels 

genaamd simulated milk ultrafiltrate (SMUF). Het onderzoek aan dit systeem 

wordt beschreven in Hoofdstukken 3 and 4. SMUF is dus een waterige 

oplossing zonder caseinemicellen en colloïdaal calciumfosfaat. SMUF wordt 

al 50 jaar intensief gebruikt als modelsysteem in het zuivelonderzoek. Het 

bleek echter dat een vers bereide SMUF oplossing niet in evenwicht is en 

oververzadigd is t.a.v. verschillende vormen van calciumfosfaat. Als men een 
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SMUF oplossing de tijd geeft om wel evenwicht te bereiken ontstaan 

precipitaten en er blijkt dan een aanzienlijk verschil te bestaan in 

ionsamenstelling tussen vers bereid SMUF en tot evenwicht gekomen SMUF. 

Daarom zijn er uiteindelijk twee mathematische modellen ontwikkeld: het 

EIS model (Equilibrium Ion Speciation) dat de ionsamenstelling beschrijft 

van SMUF in evenwicht, en het DIS model (Dynamic Ion Speciation) dat de 

ionsamenstelling van vers bereid SMUF beschrijft maar ook beschrijft hoe de 

ionevenwichten veranderen als het systeem op weg is naar evenwicht. Beide 

modellen beschrijven de voornaamste ionen, ioncomplexen en precipitaten in 

SMUF. De modellen bestaan uit wiskundige vergelijkingen die een 

massabalans voor elke component beschrijven, alsmede de verschillende 

dissociaties en associaties voor de ionevenwichten, gekarakteriseerd door 

intrinsieke associatie constanten en oplosbaarheidsproducten. Deze 

parameters werden gedeeltelijk uit de literatuur gehaald en gedeeltelijk zelf 

geschat. De resulterende vergelijkingen zijn niet-lineaire algebraïsche 

vergelijkingen die numeriek werden opgelost om aldus activiteiten en 

concentraties voor alle componenten en hun complexen te kunnen berekenen. 

Dit werd gedaan met een daartoe speciaal (commercieel beschikbaar) 

software programma, AESolve geheten. 

 

Beide modellen werden gevalideerd door middel van experimenten waarin 

CaCl2 en Na2HPO4 werden toegevoegd aan vers bereide SMUF oplossingen. 

Het EIS model voorspelde aldus ion concentraties en activiteiten, de pH en 

gevormde precipitaten voor SMUF in evenwicht en de voorspellingen waren 

in overeenkomst met experimentele resultaten. De gevormde precipitaten 

werden verder onderzocht d.m.v. X-ray diffractie en de uitkomsten kwamen 

overeen met de door het EIS model voorspelde samenstelling. Het DIS model 

bleek in staat om de ionsamenstelling te voorspellen van vers bereid SMUF 
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en ook van SMUF waaraan CaCl2 of Na2HPO4 was toegevoegd. Het verschil 

met het EIS model is dat het DIS model rekening moet houden met een 

metastabiel systeem; dit werd bereikt door een empirische kinetische 

vergelijking toe te voegen die de tijdsafhankelijke precipitatie beschreef en 

de daarmee samenhangende veranderingen in ionevenwichten. Experimentele 

condities werden gevarieerd d.m.v. pH verandering, verandering van ion 

sterkte, en toevoeging van calcium-bindende agentia (polyfosfaten); de door 

het model voorspelde resultaten kwamen in het algemeen goed overeen met 

de experimentele resultaten. Verder kwam duidelijk naar voren dat natrium 

ionen zich niet hetzelfde gedragen als kalium ionen omdat het toevoegen van 

deze ionen aan SMUF tot verschillende Ca2+ and Mg2+ concentraties en 

activiteiten en pH bleek te leiden. Dit werd verklaard uit het verschil in 

interactie van deze ionen met water. Ook voorspelt het ontwikkelde model 

dat natrium hexametafosfaat (Na8P6O19) zich als een keten gedraagt en niet 

als een ring zoals in de literatuur wordt gesuggereerd. Deze bevinding gaf 

een beter inzicht in de interactie van Na8P6O19 met kationen.  

 

De volgende stap was om te bestuderen of en hoe suikers, als ongeladen 

moleculen, invloed kunnen hebben op het gedrag van ionen (Hoofdstuk 5). 

Het bleek dat suikers de Ca2+ ion activiteit verhogen en de pH verlagen in 

waterige zout oplossingen als CaCl2-KCl-K3Citraat en SMUF. Om dit 

onverwachte effect te verklaren werd de zogenaamde mean spherical 

approximation (MSA) theorie toegepast op de gebruikte systemen. Deze 

theorie brengt zowel electrostatische interacties van geladen moleculen als 

volume-uitsluiting van geladen én ongeladen moleculen in rekening. 

Berekeningen met sacharose in CaCl2-KCl-K3Citraat oplossing toonden aan 

dat volume-uitsluiting door sacharose resulteert in aanzienlijke verhoging van 

de activiteitscoefficient van ionen, hetgeen betekent dat bij gelijkblijvende 
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concentratie de activiteit toch toeneemt, hetgeen experimenteel ook werd 

waargenomen. De modelberekeningen toonden aan dat de waargenomen 

effecten ook kwantitatief konden worden verklaard. Het toevoegen van 

verschillende soorten suikers (sacharose, maltose, lactose, trehalose) 

resulteerde in dezelfde thermodynamische eigenschappen, hetgeen als een 

bevestiging gezien kan worden dat het hier gaat om niet-specifieke 

volume-uitsluiting effecten.  

 

Op basis van de hierboven genoemde modellen EIS en DIS werd een 

wiskundig model ontwikkeld om het gedrag van ionen in melk te kunnen 

beschrijven, het zogenaamde Milk Ion Speciation (MIS) model (Hoofdstuk 

6). Naast alle SMUF componenten werden hier nu ook colloïdaal 

calciumfosfaat (CCP) en calcium-serinefosfaat complexen (beide aanwezig in 

caseïnemicellen) in meegenomen. De aard van CCP bij pH 6.70 werd 

beschouwd als basisch vanwege de gemeten molaire verhouding van Ca/Pi 

als 1.84. Uit het model werd afgeleid dat de samenstelling van CCP 

beschouwd kan worden als een mengsel van een basisch calciumfosfaat 

(Ca4(PO4)2(OH)2) en een zuur calciumfosfaat (CaHPO4.2H2O), maar ook dat 

deze samenstelling verandert als functie van de pH. Experimenten werden 

uitgevoerd om de veranderingen in iongedrag te bestuderen als functie van 

variërende omstandigheden zoals pH, ionsterkte (bewerkstelligd door het 

toevoegen van NaCl of KCl), CaCl2 toevoeging, calcium bindende agentia 

(Na2HPO4, Na4P2O7). De model voorspellingen kwamen in het algemeen 

goed overeen met de waargenomen resultaten (binnen 15%), hetgeen gezien 

kan worden als een validatie van het MIS model. 

 

Uit de vele Ca2+ activiteit metingen verricht in dit onderzoek kwam een 

significant verschil naar voren in Ca2+ activiteit metingen tussen de Ca-ISE 
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methode en de DMT techniek bij lage ionsterkte (I < 0.1 mol/kg water). In 

Hoofdstuk 7 wordt beschreven dat dit te wijten is aan verschillen in 

ionsamenstelling tussen de aanbevolen simpele ijkoplossingen (bestaande uit 

CaCl2 en NaCl) en de te meten oplossingen (melk-achtige systemen in dit 

geval), leidend tot een significant effect op de Ca2+ activiteits coefficient en 

bijgevolg tot fouten in Ca2+ activiteitsmetingen in SMUF en melk. Dit 

probleem verdwijnt als nieuwe ijkoplossingen worden gebruikt die een 

vergelijkbare ionsamenstelling hebben als de te meten oplossingen. Deze 

nieuwe ijkoplossingen werden samengesteld op basis van het DIS model. 

Door deze correcties verdwenen de verschillen in Ca2+ activiteit tussen de 

Ca-ISE methode en de DMT techniek binnen de experimentele meetfout.  

 

In de algemene discussie (Hoofdstuk 8) werden de ontwikkelde modellen 

EIS, DIS en MIS kritisch geëvalueerd en op hun waarde geschat. Bovendien 

werden de modellen getest op systemen die niet waren gebruikt bij het 

ontwikkelen van de modellen. In het bijzonder werd aandacht besteed aan de 

aard van het colloïdale calciumfosfaat (CCP). Geconcludeerd werd dat het 

calciumfosfaat in CCP als een mengsel beschouwd kan worden van een zure 

vorm (CaHPO4) en een basische vorm (Ca4(PO4)2(OH)2, lijkend op 

hydroxyapatiet, HAP) terwijl daarnaast ook MgHPO4 and Ca3Citraat2 

aanwezig zijn. Ook werd getracht de ionsamenstelling te berekenen van 

ondermelk waaraan polyfosfaat (TSPP) was toegevoegd. Hier bleef het 

model deels in gebreke omdat geen bevredigende voorspelling van de pH en 

concentraties van fosfaat en calcium in het serum werd gevonden. Er kon 

geen verklaring worden geboden voor deze discrepantie. De beperkingen van 

de modellen zijn bediscussieerd en suggesties zijn gegeven om de modellen 

verder te ontwikkelen voor een breed scala aan condities.  
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Verder werden de modellen nog ingezet om de ionsamenstelling in de 

waterige fase van kaas te berekenen en de berekeningen kwamen goed 

overeen met de experimentele resultaten. Dit werd als een belangrijk resultaat 

beschouwd omdat dat betekent dat de modellen ook voorspellende waarde 

hebben voor systemen waarvoor de modellen in eerste instantie niet waren 

ontwikkeld. 

 

Als algemene conclusie uit dit werk kan gesteld worden dat de ontwikkelde 

modellen behoorlijk robuust blijken en flexibel inzetbaar blijken te zijn. De 

modellen zijn gebaseerd op heel fundamentele wetenschappelijke kennis en 

gewapend met deze kennis blijkt dat daarmee ook hele praktische problemen 

kunnen worden benaderd op een kwantitatieve manier. Er kan dus een 

significante stap worden gemaakt van fundamenteel naar toegepast 

onderzoek in R&D omgevingen van de levensmiddelenindustrie en de 

zuivelindustrie in het bijzonder. De modellen zijn bijzonder krachtige 

hulpmiddelen en productontwikkeling kan aldus rationeler worden gedaan bij 

het ontwikkelen van nieuwe producten maar ook in het verbeteren van 

bestaande producten. 
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