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ABSTRACT: Optimal economic decisions under uncertain circumstances are usually made on the basis of
expected costs. For this kind of investment strategy the variance of costs is often quite large.When also considering
this variance, one is said to be risk averse.The impact of this type of decision-making is pointed out using the case
of dike-heightenings in the Netherlands. By application of the (non-homogeneous) Poisson process to describe
the uncertain occurrence of floods, the variance is calculated for the cost-benefit models for dike-heightening
by Van Dantzig and Eijgenraam. These results are used to show the effect of a more risk averse decision rule on
the outcomes in terms of crest levels and flood probabilities.

1 INTRODUCTION

About 60% of the surface of the Netherlands is located
below sea level and this area is protected by a system
of dikes. In 1953, a large flood in the southwest of the
country initiated new research into making optimal
decisions for flood risk reduction. Van Dantzig pre-
sented a risk-based cost-benefit analysis to determine
the optimal crest level of the dikes (Van Dantzig 1956).
Eijgenraam extended this cost-benefit analysis by tak-
ing future dike-heightenings (which are necessary due
to e.g. sea level rise) and their investment times as
decision variables in the model (Eijgenraam 2006). A
description of the two models is given in Section 2.

The problem of dike-heightening is similar to the
problem of maintenance optimization: the uncertain
occurrence of failures affects the planning and tim-
ing of preventive maintenance actions. When using
a risk-based decision rule, the optimal time between
repairs is often determined by the interval with the
lowest present value of the costs involved. Due to the
probabilistic nature of such an approach, this value is
uncertain and the expectation is used for decision mak-
ing. However, practical experience has shown that the
variance of this optimum is usually quite large; see,
for example, Van Noortwijk (2003). In these cases, it
is desirable to choose a maintenance interval which is
less optimal, but of which the outcome is less uncer-
tain. When making such a decision one is often said to
be risk averse.

A common problem is that the variance of the eco-
nomic costs of optimal decisions, is difficult to deter-
mine. In this paper, the (non-homogeneous) Poisson
process is used to represent the uncertain occurrence
of floods in the Netherlands. This approach allows the
calculation of the variance of the present value of total
costs in the optimal investment strategies in both the
Van Dantzig and the Eijgenraam models.This is shown
in Section 3. Since the probability of flooding within

these models is not constant over time (for example due
to sea level rise), the homogeneous Poisson process is
not sufficient for this purpose.

2 RISK BASED COST-BENEFIT MODELS
FOR DIKE-HEIGHTENING

2.1 The model by Van Dantzig

The principal idea in the model by Van Dantzig is to
write both the investment costs of dike-heightening
and the expected amount of damage caused by future
floodings as analytic functions of the crest level after
dike-heightening. The optimal dike height is deter-
mined through minimization of the total cost, which
is the sum of the investment costs and the expected
amount of flood damage. In the model it is assumed
that the initial dike-heightening is followed by peri-
odical augmentation of the crest level to compensate
for e.g. sea level rise and soil subsidence. The initial
dike-heightening (att D 0) is the decision variable in
the model.

2.1.1 Flood probability
To calculate the probability of flooding, it is assumed
that a flooding occurs when the sea level exceeds the
crest level of the dikes. The sea level is assumed to
follow an exponential distribution. The yearly flood
probability can then be written as:

where p(h, t) D yearly flood probability (1/year);
h= crest level after dike-heightening (mCnap); t D
time (years);p0 D initial flood probability before
dike-heightening (1/year);®D scale parameter of the
exponential distribution (1/m);h0 D initial crest level
(mCnap), and ´ D relative decrease in crest level
(m/year) due to, for example, sea level rise and soil
subsidence.nap D Normal Amsterdam Level.
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The time period between two dike-heightenings is
denoted by¿ (years). Each periodical augmentation
is executed to compensate for the relative decrease in
crest level and therefore equals´¿ meters.

2.1.2 Flood risk
The expected amount of damage each year (also called
the flood risk) is calculated by multiplying the yearly
flood probability and the damage caused by flooding.
The latter increases over time due to economic growth,
which increases the value of tangible assets within the
flood prone areas. It is assumed that the economic
growth can be written as an exponential function:

wherev(t) D damage caused by flooding (euro); v0 D
initial damage caused by flooding (euro), and° D
yearly economic growth (1/year).

Using Equations 1 and 2, we can calculate the
present value of the expected amount of flood dam-
age in the period between the initial dike-heightening
(at t D 0) and the first periodical heightening of the
crest level (att D ¿). It is given by:

where±D discount rate (1/year);s0 D p0²¢v0 D initial
yearly expected amount of flood damage (euro/year),
and¯ D ° C ®´ (1/year).

Equation 3 gives the present value of the expected
amount of flood damage over the first period. In the
same way it can be shown that the present value of
expected amount of flood damage over the (nC1)th
period is equal to this value multiplied with a fac-
tor exp{°´¿ } due to economic growth and a discount
factor exp{-±´¿}. The present value of the expected
amount of flood damage over an infinite time horizon
is therefore given by:

For this valueS(h) to be finite, it is necessary that
the discount rate± is greater than the yearly eco-
nomic growth° . This is an important restriction to
the model by Van Dantzig and one of the main rea-
sons for the extension to the model by Eijgenraam (see
Section 2.2).

If ± > ° Equation 4 reduces to:

and in the special case that± equals ¯ , the fac-
tor (1¡ exp{¡ (±¡ ¯ )¿)}/( ±¡ ¯ ) in Equations 4 and
5 is simply replaced by¿, which follows from the
Equations 4 and 5 by taking the limit±! >¯ .

2.1.3 Investment costs
For calculation of the costs of dike-heightening Van
Dantzig assumed that only the first heightening would
bring along fixed costs. The variable costs of dike-
heightening on the other hand, are calculated for
both the initial dike-heightening and the periodical
increasing of the crest level. The present value of the
investment costs for all dike-heightenings is therefore
given by:

wherecf D fixed costs of dike-heightening (euro),
andcv D variable costs of dike-heightening per unit
(euro/m). Note thatI (h), the present value of the invest-
ment costs for all dike-heightenings is a linear function
of h, the crest level after the initial dike-heightening.

2.1.4 Optimal dike-heightening
The optimal dike height is determined through mini-
mization of the present value of the total costs, which
are given by:

Figure 1 gives the present value of the investment costs
as well as the present value of the expected amount of
damage caused by future floodings and the total costs
as analytic functions of the crest level. The parameter
values used for this end are adopted from (Van Dantzig
1956) and given in Table 1. All values relate to the
situation in 1953 at Hoek van Holland near Rotterdam.

The crest level after dike-heightening that mini-
mizes the total costs given by Equation 7 is calculated
by substitution of Equations 5 and 6 and taking the
derivative with respect to the crest levelh:

Figure 1. Economic optimization of the crest level after
dike-heightening in the model by Van Dantzig.
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Table 1. Parameter values in the model by van dantzig.

Par. Description Value Unit

p0 initial yearly flood
probability

3:8 £ 10¡ 3 1/year

® scale parameter exp.
distribution

2.6 1/m

h0 initial crest level 4.25 mCnap
´ relative decrease in crest

level
0.01 m/year

¿ time period between
heightenings

75 year

v0 initial damage caused by
flooding

9:1 £ 109 euro

° yearly economic growth 0.02 1/year
± discount rate 0.04 1/year
cf fixed costs

dike-heightening
2:8 £ 107 euro

cv variable costs
dike-heightening

1:9 £ 107 euro/m

By setting the derivative equal to zero, the following
expression is found for the optimal crest level:

Since the second derivative of the total costs toh is
given by®2S(h), which is greater than or equal to zero,
it follows that the optimum found is in fact a minimum
of the total costs.

The parameter values given in Table 1 result in a
optimal crest level equal to 6.7 mCnap, which lowers
the flood probability at the time origin from 3.8£ 10¡ 3

(¼1/260) to 6.5£ 10¡ 6 (¼1/150,000), with the present
value of the total costs over time equal to roughly
83 million euro.

2.2 The extended model by Eijgenraam

In the model by Van Dantzig the crest level of the dike
is periodically restored to the same level after the initial
dike-heightening.As a result the yearly flood probabil-
ity, which increases over time, is periodically brought
back to the same value. This is shown in Fig. 2. The
potential flood damage (Eqn. 2) however, increases
over time, as a result of which the risk (yearly expected
flood damage) also increases over time and grows to
infinity (Fig. 3). To avoid this, Eijgenraam extended
the model by taking not only the first dike-heightening,
but also all future heightenings as decision variables
in his model.

In Eijgenraam's model, the initial heightening of the
dike does not necessarily occur att D 0. The moment
of the first augmentation of the crest level as well as
the moments of all the future heightenings are decision
variables in the model. Besides this there are also some
minor changes in the model:

± the damage caused by flooding does not only
increase due to economic growth, but also due to

Figure 2. Yearly flood probability as a function of time in
the optimal solution for the model by Van Dantzig.

Figure 3. Yearly expected flood damage (risk) as a function
of time in the optimal solution for the model by Van Dantzig.

the actual heightening in itself (since higher dikes
can lead to higher water levels during a flood, which
results in more flood damage);

± the investment costs of increasing the crest level
are no longer proportional to the extent of the dike-
heightening, but also depend on the number of
dike-heigtenings accomplished. The reason for this
adjustment of the model is that dike-heightening
will usually be executed with the use of a more
expensive technique when the dike already has a
higher crest level.

Eijgenraam showed that the optimal investment
strategy consists of an initial dike-heightening of size
xmeter at timet1 followed by a periodical augmen-
tation of the crest level withu meter every¿ years.
Although it was not presumed in advance that the dike-
heightenings after the initial increasing of the crest
level should happen periodically, it turned out to be
the optimal solution of the model.

Another important outcome of the model is that in
contrast with the solution given by Van Dantzig, it is
the flood risk, not the flood probability that should be
brought back periodically to the same value.

3 GENERALIZATION USING A
NON-HOMOGENEOUS POISSON PROCESS

In the cost-benefit analyses byVan Dantzig and by Eij-
genraam, optimal strategies for heightening the dikes
are calculated by minimization of the expected value
of the total costs. To investigate the variance of these
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total costs we use the Poisson process to represent the
uncertain occurrence of floods.

3.1 Expectation and variance of future
flood damage

Consider a continuous-time model with stochastic fail-
ure times.The following notation is used. Fork ¸ 1 the
stochastic variableTk represents the interval between
the (k-1)th and the kth failure event. Using:

the variableSk represents the time of the kth failure
event. The loss caused by such a failure is described
by a functiong(t), which gives the present value of the
costs in case of a failure at timet. Using this definition,
the present value of the total costs of failures up to time
t is given by:

It can be shown (appendix A) that under the assump-
tion that the failure events follow a non-homogeneous
Poisson process the following expressions hold for the
expectation and the variance ofC(t):

In Equations 12 and 13, the function¸ (t) represents
the intensity of the non-homogeneous Poisson process,
which can also be seen as the frequency of failures, that
is the expected amount of failure events per time unit
(at timet). When the intensity at which failures occur
is sufficiently small, the following approximation can
be used:

with p(t) the probability of (at least one) failure per
time unit (at timet). This will be used in the following
sections, where the Equations 12 and 13 are applied to
the models by Van Dantzig and Eijgenraam.

3.2 Application to the model by Van Dantzig

In this model the flood frequency is approximated by
the yearly flood probability and can be written as:

The functiong(t) equals:

Figure 4. Expectation, variance and coefficient of variation
of the present value of future flood damage as function of
the crest level after dike-heightening in the model by Van
Dantzig.

In the model by Van Dantzig the present value of costs
is calculated over an infinite time horizon. The expec-
tation and variance of the present value of future flood
damage are therefore given by:

Using Equations 15 to 18, the expectation and vari-
ance of the present value of future flood damage in the
model by Van Dantzig can be calculated. These cal-
culations are very similar and only the calculation for
the variance is shown. The calculation for the expec-
tation leads to the expression as given in Equation 5 in
Section 2.1.2.

Figure 4 gives the expectation and variance of the
present value of the future flood damage as a func-
tion of the crest level. The parameter values used are
those given in Table 1. Fig. 4 also gives the coefficient
of variation, which is defined as the square root of the
variance divided by the expectation.

One can see that both the expectation and the vari-
ance approach zero as the crest level increases, while
the coefficient of variation increases.
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3.3 Application to the model by Eijgenraam

3.3.1 Expectation and variance of flood damage
We now continue with the application of Equations 12
and 13 to the model by Eijgenraam. To make things
more comprehensible we use the fact that the opti-
mal investment strategy consists of an initial dike-
heightening of sizexmeter at timet1 followed by
periodically increasing of the crest level withumeter
every¿ years . In this case the flood frequency in the
model by Eijgenraam can be written as:

For the purpose of simplification, we also ignore the
increase of the potential flood damage as a result of
accomplished dike-heightenings. Then, the function
g(t) is the same as in the model by Van Dantzig, and
is given by Equation 16.

The expectation and variance of the present value
of future flood damage can be calculated with the help
of Equations 17 and 18. Again, the derivation looks
very similar to the one in Equation 19. Below only the
resulting equations are shown.

with » D ±-° -®´.

with » D 2(±-° )-®´.
Notice that Equation 21 is almost the same as Equa-

tion 22, but multiplied with the initial potential flood
damagev0 and with a slightly different definition of
the combination parameter».

3.3.2 Optimal investment strategy
The optimal dike-heightenings and corresponding
investment times are determined by minimization of
the present value of the total expected costs. These
expected costs consist of the present value of the
expected future flood damage (Eqn. 21) and the
present value of the investment costs, given by:

Unlike in the model by Van Dantzig, the fixed costs
for periodical dike-heightenings are also taken into
account. For reason of simplification the depen-
dence of the investment cost on the number of
dike-heigtenings accomplished was ignored.

When we substitute the parameter values given in
Table 1 in Equations 21 and 23, and use a numeri-
cal method for the minimization of the total costs, we
find the following optimal investment strategy:t1 D 0
years,x D 2:35 m, ¿ D 73 years andu D 1:29 m.

Figure 5. Yearly flood probability as function of time in the
optimal solution for the model by Eijgenraam.

Figure 6. Yearly expected flood damage (flood risk) as
function of time in the optimal solution for the model by
Eijgenraam.

Figures 5 and 6 give the yearly flood probability and
the risk (yearly expected flood damage) as functions
of time for this strategy. The yearly flood probability
has a negative trend, while the maximal risk is constant
over time.

The total costs for this optimal investment strategy
are equal to 83 million euro, consisting of 76 million
euro investment costs and 7 million euro expected
future flood damage. Using Equation 22 we can go
one step further and also calculate the variance of the
present value of the future flood damage for the opti-
mal strategy. The standard deviation in the optimum
turns out to be 179 million euro. It is interesting to see
that, although the expected value of the future flood
damage is small compared to the total costs in the opti-
mal strategy, the standard deviation is more than twice
the total expected costs.

4 THE IMPACT OF RISK AVERSION ON
OPTIMAL DIKE-HEIGHTENING DECISIONS

4.1 General formula

As we have seen, minimization of the total expected
costs in the models by Van Dantzig and Eijgenraam
leads to optimal investment strategies, but leaves a
large uncertainty for the actual costs of future flood-
ings. Therefore it can be desirable to choose an invest-
ment strategy which is less optimal, but of which the
outcome is less uncertain. To take this uncertainty into
account the variance of the total costs is included in the
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decision rule. Optimal heightenings and correspond-
ing investment times are calculated by minimization
of the following function:

whereK D present value of all future costs, consisting
of investment costs and flood damage (euro), andk D
risk aversion index. This cost function was also used
in, for example, Van Gelder & Vrijling (1998).

Now the formulas for the variance of the future
flood damage in the cost-benefit models by Van
Dantzig and Eijgenraam turn out to be very valuable,
since we can use them to calculate the optimal strategy
for different values of the risk inversion indexk. Of
course, Equation 24 contains the variance of the total
costs, but one should notice that this equals the vari-
ance of the future flood damage, since (within these
models) the investment costs are not uncertain.

4.2 Application to the model by Van Dantzig

The model by Van Dantzig was presented in Section
2.1. Equation 19 gives the formula for the variance
of the present value of future flood damage in the
model. With this information the value of the objective
function in Equation 24 can be calculated for different
values of the crest level (after dike-heightening) and
the risk aversion index. This is shown in Fig. 7. The
optimal crest level after dike-heightening (that mini-
mizes the objective function) for a range of values for
k is given in Table 2. This table also presents the cor-
responding total expected costs and the yearly flood
probability after dike-heightening.

It is clear from Table 2 and Fig. 7 that a higher value
of the indexk results in a higher crest level, which
gives a larger amount of total expected costs, but also
gives a much lower flood probability and consequently
a much lower flood risk. This illustrates the concept of
risk aversion; by investing a little more than the lowest

Figure 7. Objective function E[K]+k ¢
p

VAR[K] as a func-
tion of the crest level after dike-heightening in the model by
van dantzig for different values of the risk aversion indexk.

Table 2. Economic optimization of the crest level in the
model byVan Dantzig for different values of the risk aversion
index.

Optimal Flood
crest level Total costs probability

Index (mCNAP) (mln euro) (1/year)

k D 0:0 6.7 83 ¼ 1/150,000
k D 0:1 7.1 85 ¼ 1/430,000
k D 0:5 8.0 100 ¼ 1/4,500,000
k D 1:0 8.6 111 ¼ 1/21,000,000

possible amount, we become more certain about our
actual costs in the future. The extent to which one is
willing to incur higher costs in order to reduce the
risk, is represented by the risk aversion indexk (k D 0
corresponds to a risk-neutral situation).

For the model by Van Dantzig, even a small value
of the indexk results in a significantly greater dike-
heightening. If we takek D 0:1 as an example, the total
expected costs increase with less than 2.5%, but an
extra crest level of roughly 40 cm is needed, which low-
ers the flood probability (and consequently the flood
risk) by nearly a factor 3.

5 CONCLUSIONS

One of the main results of this analysis is the fact
that the assumption of a non-homogeneous Poisson
process to describe the occurrence of floodings over
time leads to elegant equations for both the expecta-
tion and the variance of the discounted costs (Eqns. 12
and 13). These formulas were used to (analytically)
calculate the standard deviation of the costs in the cost-
benefit models by Van Dantzig and by Eijgenraam. As
expected, the variance of the costs in the strategy with
the lowest expected costs, turns out to be quite large.

The conclusion above leeds to a more risk averse
type of decision rule, as given by Equation 24. Using
the model by Van Dantzig it was shown that even a
small value of the risk-aversion index can have a large
impact on the optimal decision. These results are valu-
able to anyone working on risk-based decision making
in various areas such as flood risk management and
management of infrastructure assets.
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APPENDIX A

In section 3.1 the non-homogeneous Poisson process
was introduced to describe the uncertain occurrence
of floodings over time. The present value of the flood
damage up to timet is given by:

In section 3.1 it was stated that under the assump-
tion that floods occur according to a non-homogeneous
Poisson process, the following holds for the expecta-
tion and the variance of the stochastic variableC(t):

A proof of this statement is given below.

Expectation
First of all, the expectation can be written as follows:

To prove that this is indeed equal to Equation A2, we
only need to prove that the intensity function¸ equals
the sum of the probability density functions of the
flooding timesSk. To do so, we start with the joint
probability density function ofS1 up to and including
Sn, given in Van Noortwijk et al. (2007):

with 0 < s1 < ¢ ¢ ¢< sn. The probability density
function forSn, the time ofnth flooding event, can be
calculated by taking the integral over this joint density

function with respect to all the preceding flooding
times (S1 up to and includingSn¡ 1):

To deal with the last integral in Equation A6 we make
use of the following lemma:

With the help of Equation A7 the probability density
function forSn(Eqn. A6) can be simplified to:

As stated before, we can conclude the proof of Equa-
tion A2 by showing that the sum of the probability
density functions of the flooding timesSn equals the
intensity functioņ :

Second moment
In order to calculate the variance, we first calculate the
second moment ofC(t). This :

The summation overncan be divided in a sum over
n>k, n D k andn < k. This gives:

The first part of this equation is easy to simplify, since
it is similar to the equation for the expectation, but
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with g2(Sk) instead ofg(Sk). Similar to the proof of
Equation A2, it can be shown that:

The double sum at the end of Equation A11 is more
difficult to simplify. For this purpose we make use of
the conditional probability density function ofSn given
Sk. The derivation of this function involves the follow-
ing steps. First we calculate the conditional probability
density function of all flood event times after the
kth flooding event given the times of all preceding
floodings. Using Equation A5 this equals:

Although we conditioned on all the preceding flood
event times, only the dependence on the last flooding
time remains in Equation A13. This is to be expected
because the non-homogeneous Poisson process is a
Markovian process.We can conclude that this equation
also gives the conditional probability density function
of all flood event times after thekth flooding event
given only the time of thiskth flooding event:

Now, we can also calculate the conditional proba-
bility density function ofSn givenSk, for n > k:

Where in the last step of Equation A15 the lemma
from Equation A7 was used again. The conditional
probability density function from Equation A15 does
not look very nice yet, but when we take the sum over
n > k the result is surprisingly simple:

Now that we have this result we return to the double
sum at the end of Equation A11.

The next step is to take the sum overn > k, where we
can make good use of Equation A16:

Finally we calculate the double sum from Equation
A11 the same way, this time using Equation A9:

Where in the last step of Equation A19 the lemma
from Equation A7 was used again. Combination of
Equations A11, A12 and A19 leads to the following
expression for the second moment ofC(t):

Variance

The variance ofC(t), the present value of the flood
damage up to timet, can now easily be derived from the
equations for the expectation and the second moment
(Eqns. A2 and A20):

Which concludes the proof of Equation A3.
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