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Preface 

 

This report is written as a part of my thesis for the Master in Geo-Information Science at Wageningen 

University. Already at secondary school I’ve learned that the central question in geography is: What, 

where and why there? This was the first as well as the last thing I learned from that teacher, because 

she was unable to cope with teenagers and thus she got fired after half a year, but the lesson turned 

out to be inspiring enough for me to start this master. A few weeks ago I realized that my interest 

may have been enhanced by my passion for a certain computer game I used to play at that time. This 

insight appeared when I was reading an interesting article by Oswald Devisch (2008), titled ‘Should 

Planners Start Playing Computer Games? Arguments from SimCity and Second Life’. SimCity is a game 
in which a new build-up area has to be created in an environment in such a way that it returns the 

investment, preferably with interest. The game requires strategy and especially patience. My friends, 

who liked shooting and adventure games, could never understand why I liked it, but they were 

unable to convince me of their point of view. So now, everything has come together: I’ve built my 

own application, in which new urbanization is allocated, thereby focusing on the question ‘What, 

where and why there?’. The minor difference with playing SimCity is that it’s on a scientific basis. As 

a result no giant monsters appear from time to time, to demolish all the new build-up areas. But in 

return, you get other creatures, just as frustrating: bugs. But, playing SimCity has taught me to have 

patience and conquer the monsters. This report is a result of that patience, some hard work and a lot 

of fun, because science can be just as exciting as playing games. 
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Summary 
 

This research explores the use of Bayesian Networks to improve on the representation of decision 

making in an agent based multi-actor spatial planning model. The problem in spatial planning 

comprises a consensus conflict: actors have different desires, often concealed, but aiming at the 

same goal, namely to produce a plan for a certain environment. Current agent-based spatial 

modeling approaches lack a sound decision making framework that can handle learning and 
adaptation in order to find mutual gain. A Bayesian Network provides a general framework, 

consisting of variables and their interrelations, of which the case-specific parameters can be easily 

set according to the considered case. In this thesis, a Bayesian Network is coupled with every agent 

in an agent-based spatial planning model, in such a way that the network can represent the different 

beliefs and make them dynamic. This approach allows the agents to learn about each others’ desires 

by taking into account experience acquired throughout their cooperation. The agents adapt their 

spatial beliefs, using this information, in order to anticipate the optimum between reciprocity and 

fulfillment of their own desires. The learning and adaptation capabilities of the Bayesian networks 

thus make the agents proactive. A simulation of a regional spatial planning case illustrates the 

evolution of the networks during the decision making process and the resulting convergence of their 
beliefs. When the agents concentrate on a certain area for too long, this convergence becomes too 

extreme. As a result the agents become ‘narrow-minded’ and fail to find new solutions. Despite this, 

the decision making is more effective with added Bayesian functionalities, since the consensus is 

established faster and the area agreed on becomes larger. The Bayesian Networks have proved to 

provide a sound general decision making framework that is independent of the case specific 

parameters and includes the interdependencies of social complexity. Although a complete 

representation of multi-actor negotiation is still lacking, the added learning and self-adaptation 

functionalities of the agents offer a more accurate representation of the decision making process in 

spatial planning. 
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1. Introduction 
 

This thesis brings together the domains of spatial planning, Multi-Agent Systems, decision making  

and Bayesian Networks. The current chapter introduces the research by defining the problem, 

objective and structure of the thesis. 

1.1 Problem definition 

 

Spatial planning aims at adjusting the environment to the needs of society. ‘Planning’ is not just 

producing a plan, but also the process of gaining an understanding of the current and future 

problems, and the nature of the process, in order to make better decisions (Faludi, 2000). Spatial 
panning is a complex process due to the involvement of various spatial levels, temporal scales and 

multiple actors (Ligtenberg, 2006). The number of involved tasks and people in spatial planning has 

increased in the last decade (Geertman, 2006) which in turn has made decision making more 

difficult. The actors all have their own semantics, strategies and desires regarding the environment. 

Since the interactions between the actors are the main element of a spatial planning process, it is 

convenient to start building a computer model by defining those actors. A modeling concept 

therefore under interest in the spatial modeling community, is the Agent Based Model (ABM) or 

Multi-Agent System (MAS) (O'Sullivan, 2008, Parker et al., 2003, Sengupta and Sieber, 2007). Such a 

model draws on computational entities, agents,  with their own characteristics, to represent humans 

in a social process (Weiss, 1999). An agent can autonomously observe and perceive its environment 
and decide how to behave accordingly. Multiple agents can interact with each other. This interaction 

ranges from simple, like passing on a message, to complex, like negotiating to solve a common 

problem (O'Sullivan, 2008). A MAS is suitable for gaining an understanding of the spatial planning 

process, since different decision making scenarios can be analyzed, something not usually possible 

with human experiments (Holland and Miller, 1991, Batty and Torrens, 2005).  

 

Many current spatial MASs maintain a decision making mechanism based on expert systems, often 

combined with cellular automata, distance decay functions and utility functions (Bousquet and Le 

Page, 2004, Parker et al., 2003). The main drivers behind these approaches are maximization of 

utility and minimization of risk. Utilities in this context represent an agent-specific value for an 
environmental aspect. Communication and negotiation among agents require common 

understanding of these values and a constant representation of the environment. During interactive 

spatial planning however, decision making is often based on a highly subjective valuation of the 

environmental aspects (Ligtenberg et al., 2009). Moreover, in most models agents have either 

complete information of other agents’ value or no information at all, while in reality the 

development of knowledge about the beliefs of others is a dynamic process. Through observing 

other agents’ actions additional information is gained and included into the decision making process. 

A related problem is that spatial beliefs of agents are static in current models, i.e. their beliefs do not 

change as a result of gaining experiences over time. But concessions are needed to reach consensus 

(Choi et al., 2001). Faludi (2000, p. 304) points out that ‘Only after learning has taken place, after 
consensus has been established, can the switch be made to formulating plans for selected projects’. 

So, for a realistic depiction of decision making, the learning about other agents’ behavior and the 

simultaneous adaptation of their actions for anticipating cooperation need to be implemented. 

Various researchers stress the importance of improving the representation of human processes in 

spatial models (e.g. Agarwal et al., 2002, Ligtenberg, 2006). This thesis aims at including learning and 

adaptation into the multi-actor spatial planning decision making process.  
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A technique capable of learning and adapting is a Bayesian Network (BN), also called Belief network, 

knowledge map or probabilistic causal network (Charniak, 1991). Simply put, it models variables and 

their causal relationships into a network. The causal relationships are encoded with probabilities that 
represent the extent to which one variable is likely to affect another. A Bayesian Network allows the 

change of the state of those parameters every time new evidence is presented. Therefore, it is 

expected that Bayesian Networks provide a suitable technique for modeling a learning and feedback 

mechanism in the spatial planning decision making process.  

 

Bayesian Networks have been applied in spatial modeling, for example to maximize utility (Lei et al., 

2005) or calibrate cellular automata transition rules (Kocabas and Dragicevic, 2007); but not yet to 

add a learning component to spatial decision making. BNs have been used to simulate decision 

making and negotiation among agents in non-spatial models, primarily in the domain of Artificial 

Intelligence (e.g. Nielsen and Parsons, 2007, Ren et al., 2002, Zeng and Sycara, 1998). But 
communication, negotiation and decision making in these cases have assumed a common 

understanding of the negotiated objects. However, as it has been mentioned before, during decision 

making within an interactive spatial planning process the perception of the environment is highly 

subjective and thus requires a different modeling approach. So, although the concept of using BNs to 

simulate decision making  is not new, it will be a challenge to apply it in a spatial planning context. 

1.2 Research objective and research questions 

 

The main objective of this research is to explore the use of Bayesian Networks as a means to improve 
on the representation of the decision making process in an agent based multi-actor spatial planning 

model.  

 

A Multi-Agent System for multi-actor spatial planning has already been developed by Ligtenberg 

(2006). The actors have different perceptions of the current environment and different desires about 

the future environment. He asserts however that ‘techniques to describe and implement forms of 

communication, strategies of negotiation and attitudes of decision-makers are still lacking’ 

(Ligtenberg, 2006, p. 58). This model will therefore be extended with Bayesian Networks to reduce 

this limitation. 

 
The research assumption is that the use of BNs can assist in improving the representation of the 

agents’ decision making, so that it comes closer to the complex behavior of actual decision making 

actors. In the previously developed model, their behavior is described by deterministic rules that 

remain the same throughout the run-time of the simulation. This ignores the fact that in reality 

humans gain knowledge during a cooperation process and adapt their beliefs as a result. The static 

behavior impedes the achievement of a consensus. Therefore, agent behavior and planning 

outcomes could both profit from a more dynamic and self-adaptive representation of beliefs. A 

Bayesian Network will be implemented in the agent based multi-actor spatial planning model as a 

proof-of-concept. A case study will demonstrate the model. 

 
The following research questions are defined to achieve the main objective: 

 

I. What are the limitations in current approaches of decision making in multi-agent spatial 

models? 

II. How are Bayesian Networks currently used in computer models? 

III. How can decision making among spatial planning actors be modeled using BNs? 

IV. What is the added value of BNs in a multi-actor spatial planning model? 
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Four main research domains emerge from these questions: spatial planning, Multi-Agent Systems, 

decision making, and Bayesian Networks. The utility of MASs to model spatial processes is already 

acknowledged; this will be discussed briefly. But the application of Bayesian Networks to implement 
learning and self-adaptation within such a model is the new challenge. The focus of this thesis is 

therefore on coupling the existing multi-agent spatial planning model with a Bayesian Network 

structure. 

1.3 Structure of the thesis 

 

The structure of this thesis follows the research questions posed in the previous section. The first 

two questions are answered by a literature review in Chapter 2, the theoretical background. First, 

descriptions of spatial planning, Multi-Agent Systems and decision making are provided in three 
subsequent sections. These three sections are brought together by a discussion on the limitations of 

current actor representations in agent based spatial models in section 2.4.  Section 2.5 presents an 

explanation of Bayesian Networks and explains why they are expected to be able to improve on the 

representation of decision making among agents. Section 2.6 shows how Bayesian Networks have 

been used in other models, especially ABMs and what can be learned from those implementations. 

The final section of this chapter synthesizes the information on the different theory topics and draws 

conclusions for the required modeling concepts, contents and methods. 

 

Chapter 3 provides the modeling methodology and thereby aims to answer the third research 

question. First, the multi-actor spatial planning model that was developed by Ligtenberg (2006) is 
described. Then the adaptations are presented in relation to the existing framework. Next, the 

implementation of the model is explained, thereby focusing on the Bayesian part, which is the newly 

added component. Some scenarios are carried out for a spatial planning case in the ‘Land van Maas 

en Waal’, a region in the Netherlands, for the assessment of the model. The scenarios are outlined in 

the final section of Chapter 3. 

 

In Chapter 4 the results of these scenarios are presented. The results are discussed in relation with 

the theory and the model behavior in the first section of Chapter 5. This section thereby also 

provides an answer to the final research question, related to the added value of the Bayesian 

Networks to the model. Based on this discussion the answers to all research questions are 
summarized and suggestions for further research are posed in section 5.2. 
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2. Theoretical background  
 

In order to integrate spatial planning, Multi-Agent Systems, decision making, and Bayesian Networks, 

a more detailed scope, definition and description of those domains is needed. This chapter provides 

the concepts within those domains and the tangencies between them to provide a sound basis for the 

conceptual model in the subsequent chapter. The starting point is the broader scope of the process to 

be modeled, spatial planning, and the general framework it is modeled in, a Multi-Agent System. The 

second part of the chapter concentrates on the focal part of this process being decision making, and 

its aimed modeling concept, Bayesian Networks. 

2.1   Spatial Planning 

 

Spatial planning is the search for modifications of the environment that meet the needs of society. It 

takes place at various spatial scales, ranging from international to local, and at various temporal 

scales, ranging from less than one year to more than thirty years (Ligtenberg, 2006). The traditional 

practice of land-use planning, centralized and controlling, has changed into a more decentralized and 

managing process in the last decades, often referred to as participatory planning or communicative 

planning (Geertman, 2006). Spatial planning is a perpetual process, since both the physical 

environment and the requirements of society change continuously. Therefore ‘planning’ is not just 

producing a plan, but also gaining an understanding of the current and future problems in order to 

make better decisions (Faludi, 2000). The decision making process has changed along with the 
decentralization: the role of governments of the only or primary actor transformed to that of 

planning team member or even an observer (Wegener, 2001). The tasks and involved people in the 

process have grown both in number and diversity (Geertman, 2006). This more pronounced 

involvement of multiple actors, also referred to as stakeholders, has made the planning process more 

democratic, but also more difficult, because of their diversity (see Ligtenberg, 2006, Samsura et al., 

2010): 

 

• Actors have different intentions, usually based on more than one goal.  

• Semantics vary among actors, leading to different perceptions of spatial objects. 

• Actors hold different strategies for achieving their goals. 

 

Despite all these differences, actors involved in interactive spatial planning have the joint objective to 

produce a spatial plan. In a consensus building approach planning ends when all participating actors 

consider this plan as righteous (Cammen van der and Lange de, 1998, in Ligtenberg, 2006). Or, as put 

by Innes and Booher (1999, p. 414), such a result is ‘more likely not only to be fair, but also to be 

regarded as fair’. Simon (1996) stresses that the purpose of planning should be to ‘satisfy instead of 
optimize’. Both quotes signify that a satisfactory result for all actors is more important than finding 

the optimum result, because a satisfactory plan is more sustainable2.  

 

Due to the complexity of and interdependencies between the above described processes spatial 

planning can be regarded as a Complex Adaptive System (CAS) (Ligtenberg, 2006, Innes and Booher, 

1999). Such a system shows ‘emergence’, meaning that patterns arise from a multiplicity of 

interactions.  

                                                           
2 The word ‘sustainable’ here does not refer to environmental sustainability, but to feasibility, solidity and 

achievability of the plan depending on the support of the stakeholders 
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According to Holland (2006), a CAS has the following properties:  

 

• Parallelism – multiple processes taking place simultaneously. 

• Conditionality – processes depending on each other 

• Modularity – different coupled components at different levels 

• Adaptation and evolution – changes over time, usually to increase performance 

 

Spatial planning is embedded in society’s ongoing stream of political and social action, collective 
learning and change (Innes and Booher, 1999). It can never be tracked precisely how one action 

results in another. To give some specific examples of the CAS properties in spatial planning, 

parallelism is found in the various physical changes in the environment as well as in the social 

processes of reasoning and anticipation continuously taking place in the minds of the actors. Both 

conditionality and modularity can be seen in the many interconnected factors influencing the 

planning process, like policy model, characteristics of the available information, political context and 

actor characteristics (Geertman, 2006). At a more evident level, conditionality is at hand in the 

actors’ actions and reactions on each other. Modularity is caused by the different spatial, temporal 

and organizational scales involved. Adaptation and evolution of the actors are experienced in the 

above described feedback of converging or diverging beliefs. Now, only a few examples of CAS 
properties in spatial planning are given, but many more can be thought of and even more will be 

present unidentified. All the mentioned CAS properties of the spatial planning process are somehow 

related to the environment and the actors. Emergence arises from the interaction between these 

actors and their interaction with the environment. Therefore, a modeling technique that starts with 

the definition of the individual participants and their environment could assist in gaining a better 

understanding of the complexity of the spatial planning decision making process. 

2.2   Multi-Agent Systems 

 
Spatial planning, or, more broadly defined, land use change has been simulated within a variety of 

modeling approaches, including regression, econometric, linear planning, and discrete finite state 

(Agarwal et al., 2002). Those approaches, however, all somehow fit a function through changes in 

land use states. If enough data are available (which is usually a problem in the first place), this 

function fitting might yield adequate results, especially at a large scale. The great disadvantage of 

this approach is that the separate entities of the Complex Adaptive System which are the forces 

behind the changes remain hidden. The effects of the decisions of a single spatial planning actor 

cannot be derived from those kinds of models, which makes the model of limited use for simulation 

of the process in a different setting. If the process is to be studied at the individual actor level, a 

function through the emergent patterns of land use change is thus not sufficient. Therefore, a 
bottom-up approach is needed, that models the CAS by the interaction (parallelism and 

conditionality) of the entities (modularity) in the system and their development (adaptation and 

evolution) throughout the process.  

 

A model that uses computational entities, called agents (Weiss, 1999), to fulfill this criterion is an 

Agent Based Model (ABM) or a Multi-Agent System (MAS). The two terms have a similar meaning, 

but MAS is used in the remaining of this thesis, because it stresses the interaction between different 

agents, required for decision making. An agent can autonomously view and perceive its environment 

and decide how to behave accordingly. The term ‘autonomously’ refers to the agent’s ability to 

control its behavior without intervention of humans or other systems. This behavior consists of 
executing some kind of task given a certain performance measure. To accomplish this, agents should 
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be ‘intelligent’ (Weiss, 1999). This does not mean that they are omniscient or omnipotent, but that 

they are flexible and rational.  

 

To make agents perform actions various architectures are developed, mainly in the domain of 
Artificial Intelligence. Four agent architectures can be distinguished (Weiss, 1999): 

 

• Logic based 

• Reactive 

• Belief-Desire-Intention (BDI) 

• Layered architectures 
 

The behavior of logic based agents is related to the environment by logical deduction rules. The rules 

are given by formulae. Furthermore, axioms are used for theorem proving and a model theory for 

provision of the semantics. The behavior of reactive agents results directly from their perception of 

the environment. This method is less complex, faster and more flexible than the logic approach. BDI 

agents have predefined desires about their environment. They relate these to their perceptions to 

form beliefs that result in intentional behavior (tasks). So, where the first two architectures only 

respond to the environment (reactiveness), BDI agents make a plan and thus anticipate 

(proactiveness). Layered architectures combine these two approaches, using different software 
layers to simulate both reactiveness and proactiveness. A problem of the layers is that the actions 

resulting from them can be conflicting. And as humans are often unable to cope with a conflict 

between intuition and ratio, agents have even more trouble with it. A more extensive explanation of 

agent architectures and their advantages and disadvantages can be found in Weiss (1999).  

 

Spatial planning was explained before as ‘gaining an understanding of the current and future 

problems’. This learning from the past and anticipating on the future indicates that a proactive 

architecture is needed to model the process. This fact, together with the different semantics, goals 

and strategies held by the actors, matches best with the Belief-Desire-Intention (BDI) architecture.  
 

MASs are used for many applications, ranging from managing human-computer interaction to 

simulating social interactions (Sengupta and Sieber, 2007). The ability to couple social and 

environmental interactions has made agent-based modeling a popular technology in Geographic 

Information Science (Hare and Deadman, 2004). In spatial planning the actors, modeled as agents, 

together form a MAS, where cooperation must take place to resolve some planning issue. To be able 

to find a framework for this focal part of the process, decision making in real life spatial planning and 

in current models are discussed in more detail in the next section. 

2.3   Decision making 

 

Planning with multiple actors can be seen as a social conflict. There are two major types of social 

conflict: consensus conflict and scarce resource competition (Aubert, 1962, in Thompson and Hastie, 

1990). Consensus conflict arises when persons trying to reach an agreement have incompatible 

beliefs, while scarce resource competition occurs when persons compete for the same limited 

resource. Multi-actor spatial planning is an example of a consensus conflict, because the actors have 

multiple different beliefs about the future state of the environment, but they must decide on a plan 

together. They have to agree on locations for certain land use type, so, in fact, they have to allocate 

resources together, instead of competing for them. The funding behind it could be considered scarce 

resource competition, but funding issues are not within the scope of this research. Therefore, spatial 
planning is seen as solemnly a consensus conflict. 
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A framework developed to describe the interactive multi-actor spatial planning process at a regional 

scale is the ‘regional dialogue approach’ (Mansfeld, 2003). It distinguishes four phases: socialization, 

externalization, internalization, and combination (te Brömmelstroet and Bertolini, 2008, Nonaka and 

Takeuchi, 1995). Socialization serves to create trust among the participating actors as well as to get 
some insight in the desires, beliefs and preferences of each participating actor. Externalization refers 

to the process of making implicit (or tacit) knowledge explicit, while internalization refers to the 

process of accepting explicit knowledge as part of the joint stock of knowledge of participating 

actors. Combination means using internalized information to build new concepts together. The 

regional dialogue approach thus clearly defines the phases of decision making in spatial planning and 

shows that knowledge develops throughout the process. This learning process influences the 

decisions of the actors (Samsura et al., 2010). A positive atmosphere, characterized by trust among 

the actors, results in convergence of opinions so that in the end the actors reach consensus (Laurian, 

2009). But if the differences among actors are too strong, the feedback can also enhance division, so 

that a consensus becomes out of reach (Laurian, 2009).  
 

The decision on a plan, within the spatial planning procedure, consists of two components: the 

individual3 decisions of the actors and the model that determines the result of a certain configuration 

of individual decisions, the joint decision (Nyerges and Jankowski, 1997). This model is usually 

determined by the power structure among the cooperating actors. It can be hierarchical, the 

decisions of the actors have an unequal effect on the joint decision, or democratic, all decisions have 

equal weight. Actors know this structure on forehand and will therefore take it into account when 

doing proposals or taking decisions, so that they can estimate whether the total result is agreement 

or disagreement. The learning process, described by the regional dialogue approach, facilitates a 
better estimation of the joint outcome as the decision making process develops. And even if no plan 

is produced, the process can be a success. Or, as put by Innes and Booher (1999), intangible products 

can be more important than the tangible ones. They mean by this that the change in the attitudes 

and the knowledge gained by the actors are in itself important long-term results of spatial planning. 

 

Individual decision making in spatial MAS is usually based on maximization of a utility function 

(Parker et al., 2003). The function describes the preference of an actor, based on his multiple desires 

and their relative weights. The construction of such a utility function is ambiguous in the first place, 

since the attributes have different units and their interrelations are often non-linear (Lai et al., 2006). 

Those interrelations determine which attribute might be ‘given up’ in exchange for another in the 
negotiation process. But the function characterizes only personal preferences and does not include 

any anticipation on the joint outcome. In addition, desires and beliefs are in reality not static. One 

reason for this is the learning throughout the process, as described by the regional dialogue 

approach. Another is that actors have to do concessions in order to reach consensus. These 

concessions are often modeled by the concept of bargaining, where a seller tries to maximize his 

earnings and a buyer tries to minimize his costs. This concept is straightforward and is often used in  

MAS (e.g. Arentze and Timmermans, 2003, Choi et al., 2001, Moulet and Rouchier, 2008). However, 

for the spatial planning problem this concept is this not suitable, because spatial planning is a 

consensus conflict and thus not only one’s own gain should be considered, but also the joint 

outcome. The ‘best’ consensus can be calculated, based on all utility functions; this is called a Pareto 

optimal solution (Weiss, 1999). The total utility is maximized, i.e. it is not possible to make one player 

better without making any other worse. This Pareto optimum can be calculated when all utility 

functions are known, while in reality desires often remain concealed to the other actors. In addition, 

it was already argued before that it is more important that all participating actors consider the plan 

                                                           
3
 Note that the individual mentioned here can also represent a group, like an organization, a company or a 

political party. The decision making in fact consists of two levels: first agreement within the group, then 

agreement between the groups. The fist level is not modeled; it is assumed that the within-group agreement is 

already reached and can not be deviated from. 
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as satisfying or righteous, than that the optimum is reached. So, utility maximization alone is not 

sufficient to represent individual decision making, because it does not account for concealed, 

dynamic beliefs and the objective to satisfy instead of optimize. 

 
Therefore, another approach for individual decision making is needed, taking into account the joint 

result. The study of joint decision making in social conflict situations is captured in two main theories: 

game theory and behavior theory (Hausken, 1997). Because the theories are developed by computer 

scientists and social scientists respectively, who come from quite distinct research branches, they 

show a very different approach. Game theory assumes that participants in the game are fully 

rational, and thus always chose what seems to be the best strategy to them. But in reality, people are 

never fully rational. Social aspects, like trust, stereotypes and emotions, can be just as important in 

decision making as rational arguments (Pruyn and Wilke, 2001).These social aspects are the domain 

of the behavior theory. Behavior theory is not discussed within this thesis, firstly because it is 

descriptive and thus very hard to capture in an algorithm, and secondly because it is focused on the 
influence of the individual personality on decision making, while the agents modeled in this research 

represent groups rather than single persons. 

 

The game theory approach applies a mathematical description of behavior and is thus relatively easy 

to implement in models. The theory states that all types of social conflict situations can be 

conceptualized as different kinds of games with three basic elements: a set of courses of action, 

preferences for the players among the possible outcomes and relationships between those two, i.e. 

how actions lead to certain outcomes (Anumba et al., 2003). The games are based on three 

assumptions: players are rational (and expect others to be), they try to maximize their own gain and 
have complete information of their own and each other’s possibilities to do so (Anumba et al., 2003).  

 

Games can be divided into zero sum and non-zero sum games, depending on whether there is a 

predetermined set of available payoffs, i.e. a fixed treasury (Anumba et al., 2003). A simple example 

of a zero sum game is cutting a cake; if one player takes a larger piece, the amount of cake available 

for  the others reduces. This illustrates that any result of a zero-sum situation is Pareto optimal. Zero 

sum games are strictly competitive, no strategic interaction is involved, in contrast to non-zero sum 

games where the size of the treasury depends on the choices of the players. Spatial planning is a 

non-zero sum situation; there is no predefined set of available plans on forehand. 

 
The most famous example of a non-zero sum game is the Prisoner’s dilemma. In its simplest version, 

the Prisoner’s dilemma involves two players, representing two prisoners arrested together for a 

crime and separated so that they cannot communicate. Each prisoner has two options: remain tacit 

(cooperate with the other prisoner) or testify against the other (defect). If one testifies and the other 

remains silent, the betrayer goes free and the other receives a five year sentence. If both remain 

silent or both defect, they get the same sentence: one and three years for the respective cases. An 

overview of all combinations is given in Table 1. In contrast to a utility function, a payoff matrix takes 

into account the effect of the decisions of others on the result. In the Prisoner’s dilemma, defecting is 

for each individual the most safe option (zero or three years), but if both cooperate they are better 

off together (one year per prisoner results in a total of two years instead of six). An eminent work on 
the Prisoner’s dilemma is the Robert Axelrod tournament (Axelrod, 1984). He and after him many 

others have studied what the best strategy is when the game is played iteratively.  

 
Table 1: Payoff matrix for prisoners A and B 

  B cooperates B defects 

A cooperates A = 1, B = 1 A = 5, B = 0 

A defects A = 0, B = 5 A = 3, B = 3 
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Although some result of studies about the Prisoner’s dilemma can be used to explain strategies for 

spatial decision making, there is a clear difference. In the iterated Prisoner’s dilemma the behavior of 

the others is studied in order to improve one’s own gain, while in spatial planning gaining 

information about the others’ desires helps to find the best mutual plan, satisfactory for all actors. In 
other words, the Prisoner’s dilemma is a scarce resource competition, whereas spatial planning is a 

consensus conflict. If only one’s own gain is considered no consensus will be reached or the resulting 

plan will not be sustainable. So, in contrast with the prisoners, spatial planning actors aim at 

balancing their own interest with the common interest. In addition to this deficit learning is not 

simulated; the same problem as encountered with the use of utility functions. Finally, the payoff 

matrix is not very suitable to handle multiple issues, since it would become very large. Although 

including multiple issues is possible, it would be better if a different approach could be found to 

divide the total payoff matrix into multiple separate ones, being somehow interlinked.  

 

In summary, a payoff representation is needed, in which multiple issues can be considered. Individual 
decision making should be based on the combined outcome of this representation and the 

anticipation on decisions of the other actors and a mutually acceptable solution (compromise). Since 

the beliefs of other actors are not known at the start of the process, they should develop through 

socialization. This indicates that learning should be implemented. In Table 2 it is summarized 

whether the required decision making aspects are present (+) or lacking (-) in the utility maximization 

(by bargaining or Pareto optimization) and the game theory approach. The utility maximization 

approach can handle multiple issues, but lacks anticipation capacity, while with game theory it is the 

other way around. The best approach for this research would therefore be a combined utilization of 

utility functions and game theory with an additional learning mechanism and search for a 
compromise. 

 
Table 2: Required decision making aspects 

 multiple issues anticipation others search compromise learning 

Utility maximization + - - - 

Game theory - + - - 

2.4   Lessons learned from existing spatial MAS 

 

The former three sections have described three main subjects of this thesis: spatial planning, MAS 
and decision making. Fusion of those three components is not new, and lessons learned from past 

attempts should be taken into account. This section investigates spatial MAS reviews and 

summarizes important limitations and recommendations. 

 

Several authors have already carried out assessments of multi-agent spatial models (e.g. Hare and 

Deadman, 2004, O'Sullivan, 2008, Parker et al., 2003, Sengupta and Sieber, 2007). They have 

classified the models in different ways. O’Sullivan (2008) identifies three classes of environmental 

MASs based on increasing realism. The first is defined as ‘simple, abstract models as thought 

experiments’. These models are used ‘as a vehicle for exploring the implications of assumptions 
about the ways in which actors in a social setting behave and interact’ (O'Sullivan, 2008, p. 543). The 

second class contains ‘mid-range regionally or locally specific models’. In these models the agents as 

well as the environment are more realistic. Agents employ more advanced reasoning about 

geospatial data representing real places and landscapes. The final class comprises ‘highly detailed, 

realistic simulations’, very large scale models that represent interactions among many agents. At the 

moment, such models are mainly used in the domain of big-budget, policy driven projects (O'Sullivan, 

2008).  
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Such a detailed and realistic representation is not the aim of this research. This research specifically 

focuses on the decision making process in spatial planning, instead of trying to represent a full, 

realistic spatial planning situation. Parker et al. (2003, p. 325) have found a suitable metaphor to 

clarify these two different approaches, which draws on the difference between a photographic 
portrait and a Picasso portrait: ‘one attempts to mimic reality; the other, while capturing parts of 

reality, focuses on particular aspects in the hopes of emphasizing fundamental features’. In addition 

to this argument, the followed spatial planning approach, the regional dialogue approach, embodies 

a regional and not a global process (Mansfeld, 2003, Valk van der, 2002), in which real places and 

landscapes are to be considered, so the second category is the one of interest for this thesis. The 

problem with this category, according to O’Sullivan, is how to draw general lessons from those 

regional models, with their location and process specific foci. The model framework should therefore 

exist of general economic, interpersonal and intrapersonal relationships. These relationships are 

namely comparable at different places and scales. The case specific variables, varying at different 

places and scales, must be included in such a way that they can be set according to the situation to 
be modeled. In this way, general lessons can be learned by using the model for different case studies. 

 

A similar complexity study of multi-agent land use change models is carried out by Agarwal et al. 

(2002). They have, however, defined complexity much more precisely. A framework was developed 

in which models are evaluated in three dimensions: space, time and human decision making. 

Especially the last dimension is interesting, because it is the aspect that is to be revised in the spatial 

planning process for this thesis. Six levels of human decision making are distinguished by Agarwal et 

al. (2002), as shown in Table 3.  

 
Table 3: Human decision making complexity levels (adopted from Agarwal et al., 2002) 

Level Explanation 

1 No human decision making — only biophysical variables in the model 

2 Human decision making assumed to be related determinately to population size, change, 

or density 

3 Human decision making seen as a probability function depending on socioeconomic 

and/or biophysical variables beyond population variables without feedback from the 

environment to the choice function 

4 Human decision making seen as a probability function depending on socioeconomic 

and/or biophysical variables beyond population variables with feedback from the 

environment to the choice function 

5 One type of agent whose decisions are modeled overtly in regard to choices made about 

variables that affect other processes and outcomes 

6 Multiple types of agents whose decisions are modeled overtly in regard to choices made 

about variables that affect other processes and outcomes; the model might also be able to 

handle changes in the shape of domains as time steps are processed or interaction between 

decision making agents at multiple human decision making scales 

 

Since decision making is the main focus in this research, it is aimed to reach complexity level six, but 

only by fulfilling the main requirement to include multiple agents and feedbacks; modeling decision 

making among multiple scales is not the objective in this research. Out of the nineteen models 

examined by Agarwal et al. (2002), only one was found to exhibit human decision making at 

complexity level six. A high spatial and temporal complexity was respectively found in 79% and 31% 

of the examined models. Although this research report considers only land use change models and 
was conducted already eight years ago, it points to the focus of environmental scientists on the 

representation of the environment, which is understandable because of their background. But, the 

human component in this environment is also important and should not be underestimated.  

 

It can be concluded from this section that a general decision making framework is needed, valid 

independently of the case specific parameters. To simulate the decision making process at an 
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advanced level of social complexity multiple agents should make decisions thereby taking into 

account their own and others’ past decisions and related outcomes. A Bayesian Network is a general 

framework, consisting of variables and their interrelations, of which the case specific parameters (i.e. 

the states of the variables) can be easily set according to the considered case. A BN learns from 
experience and is therefore expected to be able to improve agent reasoning and thus social 

complexity. This research explores whether the summarized expected improvements can be 

achieved by the implementation of Bayesian Networks in a MAS. The next sections examine Bayesian 

Networks and their current applications more closely to get a better understanding of their 

capabilities. 

2.5   Bayesian Networks 

 

The usage of Bayesian Networks to represent Complex Adaptive Systems (e.g. Potgieter, 2004) and 
learning agents (e.g. Zeng and Sycara, 1998, Lei et al., 2005) has been previously defended by other 

authors. Still, a justification for the application of BNs within this research is convenient. Therefore, 

this section explains Bayesian Networks in more detail and provides arguments for their expected 

added value to spatial planning decision making by agents.  

 

A Bayesian Network (BN), also called Belief network, knowledge map or probabilistic causal network 

(Charniak, 1991), is a graphical representation of set of variables, nodes, and their cause-effect 

relationships, links. These cause-effect relationships are encoded with probabilities that represent 

the extent to which one variable is likely to affect another. The statistical rule behind this probability 

is what the network is named after. Thomas Bayes (1702–1761) proved a special case of this rule, 
which is now called Bayes' theorem. However, it was Pierre-Simon Laplace (1749–1827) who 

introduced a general version of the theorem and used it to approach problems in several scientific 

domains (Malakov, 1999). 

 

Before going deeper into the statistics, the following example illustrates the usage of Bayes' 

theorem. One of the most famous examples to teach someone about probability theory is the jar 

with black and white balls. The ratio between the two colors is known and one has to depict the 

probability that a black will be drawn. In contrast, Bayes reasons the other way around. If the ratio 

between black and white balls in a jar is unknown, what can be said about it when some balls are 

drawn? Those balls provide evidence for what the ratio in the jar could be. The reasoning thus infers 
the causes (ratio) from the effects (balls that are drawn). The more balls are drawn, the more one 

gets to know about the ratio. 

 

A probability (P), on an event (A) given some evidence or condition (B), can be depicted as P(A|B). 

This is called a conditional probability. Sometimes one wants to know it the other way around, the 

chance on a condition, given an event, P(B|A). The two are related by the following formula (Freund, 

2004): 

 

 
 

This notation is only meaningful when there is a (causal) relation between A and B. If not so, P(A) 

would be same as P(A|B), i.e. condition B tells noting about A; the two are independent and P(B|A) 

equals P(B). Undirected graphical models, also called Markov Random Fields or Markov networks, 

have a simple definition of independence: two (sets of) nodes A and B are conditionally independent 

given a third set, C, if all paths between the nodes in A and B are separated by a node in C (Murphy, 

2001). By contrast, Bayesian Networks, which are directed graphical models, have a more 
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complicated notion of independence, which takes into account the directionality of the arcs, as 

explained below.  

 

In a directed graphical model, an arc from A to B can be interpreted as ‘A causes B’. Consider the 
example of the Bayesian Network in Figure 1 with four nodes and four links.  In this BN all nodes 

show two different situations, called states. A node can hold more than two states, but the states 

must always be separate categories; a continuous scale is not possible. One of the nodes is 

‘WetGrass’ with two states: ‘True’ and ‘False’. The fact that the grass is wet (W=true) has two 

possible causes: either the water sprinkler is on (S=true) or it is raining (R=true). R and S are referred 

to as the parents of child W. The strength of this relationship is shown in the table belonging to W, 

it’s Conditional Probability Table (CPT) (Murphy, 2001). The probabilities in a row of the CPT must 

sum to one, because it is assumed that the linked causes are the only possible causes for the grass to 

be wet. The probability on a certain state, when no information is available about which state a node 

is currently in, is called the prior probability.  

 
Figure 1: Example of a Bayesian Network (adopted from Murphy, 2001) 

 
By the use of the CPTs it can be calculated how likely it is that wet grass is caused by rain. In this case, 

the wetness of the grass is the evidence and rain is the event the probability is required for. If 

Equation 1 is to fill in, first the total probability that the grass is wet, P(W=true), has to be known. 

This can be calculated by summing the probabilities belonging to all single ‘paths’, i.e. combinations 

of states, that lead to wet grass. These are given in Table 4. True and false are denoted as 1 and 0 

respectively.   

 
Table 4: All paths resulting in wet grass 

C R S W Calculation Result 

0 0 0 1 0.5*0.8*0.5*0.0 0 

0 0 1 1 0.5*0.8*0.5*0.9 0.1800 

0 1 0 1 0.5*0.2*0.5*0.9 0.0450 

0 1 1 1 0.5*0.2*0.5*0.99 0.0495 

1 0 0 1 0.5*0.2*0.9*0.0 0 

1 0 1 1 0.5*0.2*0.1*0.9 0.0090 

1 1 0 1 0.5*0.8*0.9*0.9 0.3240 

1 1 1 1 0.5*0.8*0.1*0.99 0.3726 

Sum 0,6471 
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From the same table the numerator of Equation 1 can derived, i.e. all cases in which the wet grass is 

(at least partly) caused by rain (W=1 and R=1). The sum of the probabilities belonging to these cases 

is 0.4581. Thus: 
 

 
 

The probability that the wetness of the grass is caused by rain is thus 0.71. This is called a posterior  

probability, because the state of the grass is already known (Murphy, 2001) and the calculation is 

called inference (Heckerman, 1996). When the posterior probability for the sprinkler is calculated, it 

appears to be 0.43; hence, the two do not sum up to one. The reason for this is that the sprinkler can 

also be on when it rains. Thus the two are not mutually exclusive, but they do depend on each other, 
given their common child W.  

 

This dependence is caused by conditionality, the difference between a directed and undirected 

graph, mentioned before. It is clear that conditionality is required in modeling a Complex Adaptive 

System, because it is one of the four CAS properties, explained in section 2.1. More of the explained 

Bayesian Network properties give arguments why they provide a suitable way to model decision 

making in a spatial planning context.  

 

Two types of data are used by the spatial planning actors: data about the environment they are 

supposed to produce a plan for (spatial data), and data about each other (perceptions). Spatial data 
are often continuous (e.g. distances and elevations), while information on actors (e.g. cooperation 

among them) is Boolean (they do or do not agree). Continuous input data are only possible in a 

Bayesian Network  when they are discretized, i.e. grouped into separate ranges that represent the 

states of the node. Anticipating on the model set up, discussed in the next chapter, presume that the 

Bayesian Network will be the interpretation of the events encountered by the agent. The agent 

represents a human and humans happen to categorize information according to preset schemas 

(Pruyn and Wilke, 2001). So, the discretization of information by the Bayesian Network is not a 

drawback in this case. 

 

The combination of prior probabilities and evidence facilitates the fusion of domain knowledge and 
data (Heckerman, 1996). But this is also the most often encountered critic about Bayesian Networks; 

two people analyzing the same evidence can arrive at different answers if they start with different 

prior probabilities (Malakov, 1999). The method is subjective. Heckerman (1996, p. 3) states that  

‘Whereas a classical probability is a physical property of the world, a Bayesian [prior] probability is a 

property of the person who assigns the probability’. But in this research, that is exactly the reason 

why Bayesian Networks are used. Two collaborating spatial planning actors, examining a map of the 

area under interest, will have different proposals for change, because they have different 

perceptions and desires, i.e. different prior probabilities. A distinct feature of Bayesian analysis is that 

it does not yield a single prediction but a distribution of probabilities over a set of states. If a simple 
‘yes’ or ‘no’ decision is required, this can be a drawback. But in less deterministic situations these 

probabilities can be used to generate expected utilities associated with various possible issues.  

 

The spatial data are likely to be completely available from the start of the decision making process, 

because the current state of the environment is known. Perceptions of the actors however, are 

uncertain or unavailable at the beginning, since these data are learnt from the interaction, for 

example what the other actor puts forward over time. A Bayesian network can start with prior 

probabilities (predefined knowledge) and adapt the relations (CPTs) during the process when new 

data arrives (experience). It can thus start without data, and learn continuously, along with the 
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arrival of data; a process not many other techniques facilitate (Malakov, 1999). In addition, a BN can 

anticipate on a certain event (e.g. cooperation) using evidence. The more data comes in, the more 

established the CPTs get, the better the BN will become in inferring the effects from the causes or 

the other way around. Actors learning the results of their actions and thereby developing the ability 
to anticipate on the results of their future actions can be simulated in this way. 

 

In summary, the possibility to incorporate prior probabilities, handle uncertainty, facilitate 

continuous learning and cope with both continuous and discrete data are the desired features that 

together give reason for using BNs to improve on the representation of the decision making process 

in an agent-based spatial planning model. However, no structure for this representation has been 

found yet. Different applications of Bayesian Networks are examined in the next section in order to 

obtain a suitable structure. 

2.6   Applications of Bayesian Networks 

 

The probably most omnipresent Bayesian application in everyday life is Microsoft's animated 

paperclip, which offers help to users of its Office software. It is designed to predict what users will 

ask next by keeping track of prior questions. Eric Horvitz of Microsoft Research in Redmond, 

Washington, claims that they even could have avoided that problem the paperclip pops up when it 

isn't wanted if they ‘went all the way with Bayesian’ (Malakov, 1999, p. 8). The paperclip is an 

example of the use of a Bayesian Network for continuous learning, since every time the user poses a 

question it will learn about his or her interests and become better at anticipating on the next 

question.  
 

Bayesian Networks are often applied to discern patterns in large datasets where many variables may 

be influencing an observed result. Genomics researchers, for instance, use prior knowledge about a 

DNA sequence to identify other sequences that have a high probability of coding for proteins with 

similar functions (Malakov, 1999). The resulting networks are commonly used as a decision tree, in 

order to infer the causes from the observed effects by the learnt relations. The most common 

application field of Bayesian decision nets is medical diagnosis (Charniak, 1991). An example is 

PATHFINDER (Heckerman, 1990), developed to diagnose diseases of the lymph node (a small organ 

of the immune system). A patient suspected of having a lymph node disease has a lymph node 

removed, which is then examined under a microscope. The information gained thereby, possibly 
together with information from other tests, is entered into PATHFINDER. The network provides the 

probabilities of the diseases given the evidence so far. Based on this it can be decided which test to 

perform next (which has the highest probability to give more certainty about the possible disease) 

when the current tests are not sufficient. However, these Bayesian decision net applications are 

static. When an effect is encountered, the probable cause can be derived. But the network is not 

updated when the truth comes about, e.g. the DNA sequence does or does not turn out to have the 

expected property or the medical diagnosis was found to be right or wrong. This feedback can 

improve the Bayesian Network. It might not be done in the examples mentioned above, because the 

users of the network are not the developers.  

 
Bayesian Networks in Multi-Agent Systems provide an excellent framework to include this feedback 

and thus continuous learning. Both evidence and network persist in the same ‘world’, being the MAS. 

The experience of an agent can automatically be incorporated in the network as a new case, like the 

paperclip’s (agent’s) experience with the questions (evidence) of the user. Bayesian Networks for 

agent learning are for example already applied to simulate bargaining (Zeng and Sycara, 1998) and 

argumentation schemes (Nielsen and Parsons, 2007). However, the approaches of those researches 

cannot be used, because they assume common semantics for the objects under negotiation. 
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The use of Bayesian Networks in environmental models is quite limited (Alexanderidis and 

Pijanowski, 2005). They have been applied in remote sensing (Qin et al., 2006), watershed 

management (Borsuk et al., 2001), land-use change (Kocabas and Dragicevic, 2009) and urban 
development (Arentze and Timmermans, 2003). But, the only environmental model found in the 

literature that uses a continuously learning Bayesian Network for agents is the Multi-Agent-Based 

Behavioral Economic Landscape Model (MABEL) (Lei et al., 2005). It is a land-use change model 

driven by BDI agents that can buy sell or keep land. The Bayesian Network is a decision network that 

calculates the transaction utility based on biophysical (comparable to ‘spatial’ in this thesis), 

economic and social attributes. An example of a decision net from MABEL is given in Figure 2. The 

social attributes are only attributes of the agent itself, thus the Bayesian Network does not contain 

perceptions of other agents. A transaction takes place when one agent decides to buy a certain type 

of land and another decides to sell it and the buyer finds the seller via a list. The transaction result is 

fed back into the BN. 

 
Figure 2: Bayesian decision network from MABEL (adopted from Lei et al., 2005) 

 

There are several similarities between MABEL and the spatial planning model required in this 

research. In both a Bayesian Network makes the desires related to the environment and other 

attributes dynamic. The other attributes differ in the two approaches. MABEL agents have economic 
and social attributes. The first is not really relevant for spatial planning actors, because they do not 

always own or attempt to buy the concerned land. It is about assigning a new functionality of the 

land in need of the society. The second attribute is not relevant because the spatial planning actors 

primarily represent groups of people (e.g. companies) which as a result cannot be assigned a single 

age, gender or education level. In addition not much is known about the influence of such attributes 

on the decision making process. What does matter in the decision making process, and is not 

included in MABEL, is the behavior of the other actors. It is not only important to feed the agent’s 

own actions back into the network, but also the actions (reactions) of the others, in order to be able 

to find mutual gain. So, the Bayesian Network in MABEL is a good start to realize the objective in this 
thesis, but its methodology needs some additional functionality like the ones found in the Microsoft 

Paperclip or Bayesian bargaining and argumentation frameworks. 
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2.7   Conclusions 

 

Several subjects have been discussed in this chapter, resulting in many concepts and requirements 
for the model contents and modeling techniques. The spatial planning process is found to comprise a 

Complex Adaptive System. In this system, with multiple interdependencies and feedbacks, actors try 

to find a mutually acceptable plan for the environment, despite their multiple different desires, 

semantics and tactics. In addition to the problem that these differences result in disagreement, the 

desires are usually concealed and thus difficult to work out. This situation is best represented by 

Belief-Desire-Intention agents, linked together in a Multi-Agent System. The problem they face is a 

consensus conflict: they have different desires, but aim at the same goal, to produce a sustainable 

plan for the considered environment. The agents must formulate beliefs and make proposals about 

the future state of the environment, thereby taking into account the expected reactions of the other 
agents. In addition they must account for their original desires; otherwise the result will not be 

satisfactory for them. The decision making structure herein consists of two components: the 

individual decisions of the agents and the model that relates them into the joint result. In order to be 

able to anticipate on the joint outcome, thus to exhibit proactiveness, the agents must know this 

model and must learn each others’ concealed beliefs by experience. Two commonly used decision 

making approaches were revised: utility maximization and game theory. The first can handle multiple 

issues, but lacks anticipation capacity, while for the second it is the other way around. The best 

approach for this research would therefore be a combined implementation of utility maximization 

and game theory with an additional learning mechanism and search for a compromise instead of 

individual gain. From previous research on spatial MAS, it was recognized that a general decision 
making framework is needed, that is valid independently of the case specific parameters, but at the 

same time able to include the interdependencies of social complexity. 

 

A Bayesian Network is a general framework, consisting of variables (nodes) and their interrelations 

(links), of which the case specific parameters (states) can be easily set according to the considered 

case. It is able to combine prior knowledge with data gathered later on and to handle the uncertainty 

resulting from the lack of data at the start. The spatial planning decision making process is therefore 

expected to be represented in a suitable way by the synergy of Bayesian Networks and MASs. A BN 

learns from experience and could therefore improve agent reasoning and thus social complexity. An 

example of a fusion of BNs and a MAS, in which the network is implemented as the ‘mind’ of the 
agent, has been found to be a suitable approach, because it can represent the different beliefs and 

make them dynamic. The advantages of utility maximization and game theory, consideration of both 

multiple issues and the behavior of the others, can be implemented within this BN structure. The 

links between those two can facilitate learning and anticipation on the joint outcome as explained in 

the next chapter. 
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3. Methodology 
 

This chapter explains how a model is created from the gained knowledge, presented in  the former 

chapter. First, the conceptual model is outlined, to show the general ideas behind and procedures 

within the model. Next, the used software and model implementation are explained, to give a better 

insight in the simulation procedures and the learning mechanisms of the agents.  Finally a case study, 

used to demonstrate the model, is outlined. 

3.1 Conceptual model 

 
To explore the application of a BN to improve on the representation of decision making an agent 

based spatial planning model, MASSA, of Ligtenberg (2006) was extended. This model simulates an 

interactive multi-actor spatial planning process at a regional scale, inspired by the regional dialogue 

approach (Mansfeld, 2003), as previously described in section 2.3. MASSA mimics a number of 

actors, representing groups rather than individuals, who have to allocate new urbanization in an 

environment. They have the common goal to produce a mutually acceptable spatial plan. However, 

they have different desires about the location of this new urbanization. MASSA did, until now, not 

allow any updating of those desires, meaning there was no feedback between the result and the 

drivers of agents’ actions. For more detailed information on the original decision making procedures 

see Ligtenberg (2006, 2009). 
 

MASSA was previously focused on externalization, internalization and combination phases (te 

Brömmelstroet and Bertolini, 2008, Nonaka and Takeuchi, 1995). The Bayesian Networks aim to add 

to the socialization component, which serves to create trust among the participating actors as well as 

to get insight in the desires, beliefs and preferences of each participating actor. In section 2.3 two 

approaches that represent decision making in a situation with belief conflicts were described; utility 

maximization and game theory. Utility maximization was originally used in MASSA. This approach is 

able to handle multiple issues, but lacks anticipation capacity, or, in agent jargon, proactiveness. This 

anticipation was implemented, inspired by game theory and adapted for consensus conflict, which 

means that cooperation is desired. A learning mechanism was added to simulate the development of 
knowledge about each other’s beliefs. While the planning process advances through time the actors 

become better at anticipating reciprocity. Both the knowledge development and anticipation are 

provided by Bayesian Networks, which were proved to be very suitable for learning and inference in 

section 2.5. 

 

In section 2.6 an example of a fusion of BNs and a MAS by Lei et al. (2005) was reviewed. The use of 

the network as the ‘mind’ of the agent, such as the one employed in MABEL, is a good approach 

because it can represent the different beliefs. So, every agent will have its own BN, with its own 

beliefs and semantics. However, if only the actors own beliefs are considered, the consensus conflict 

will not be resolved. And, since the actors usually don’t reveal their beliefs, they must be learned. 
Accordingly, the actors adapt their beliefs towards those of the others. Nevertheless, they will not let 

their beliefs shift too much from their original ones, i.e. they will not completely let go their desires. 

Therefore, the fulfillment of the original desires, thus satisfaction, is also important. To include both 

its own and the others’ beliefs in individual decision making, the actor’s ‘mind’ should also contain its 

perceptions of the other actors. These perceptions should become more accurate throughout the 

planning process, so that the agent can find locations that exhibit the best equilibrium between its 

own desires and those of the others. While the things to be learned are thus different than in MABEL, 



20 

 

the feedback loop between the agents´ beliefs and their actions has the same conceptualization. The 

main conceptual elements of the BDI decision model of MABEL, displayed in Figure 3, are therefore 

used as a framework. The BDI level and the cognitive level were already present in MASSA: desires 

are translated into beliefs by a utility function and the optimization of this function with respect to 
the environment leads to intentions (proposals), which in turn, lead to decisions. What needed to be 

implemented was the recording of experience (learning) and feedback (adaptation) of this 

experience into the beliefs of the agent. The experience box in Figure 3 is implemented using 

Bayesian Networks.  

 
Figure 3: The main conceptual elements the MABEL BDI decision model (adopted from Lei et al., 2005) 

 

In the proposed BN structure, the nodes represent on the one hand the agents’ beliefs, thereby 

comprising the inputs for the utility function, and on the other hand the cooperation of the other 

agents and their own satisfaction. Cooperation is, like in the Prisoner’s dilemma, simply whether an 

agent says ‘yes’ or ‘no’ to a proposal. This decision is based on comparison of their initial utility for 

the proposed cell, with their threshold, the lowest acceptable utility. Satisfaction is also a Boolean 

property. It indicates if the initial utility of the proposed cell is above the threshold. Initial utilities are 
used here, because if the new utilities were used, the BN would not be able to learn. It would then 

have to learn a changing parameter and would thus always be ‘one step behind’. Cooperation and 

satisfaction are related to the beliefs by CPTs. Those CPTs denote components that together are 

forming the payoff matrix as found in the game theory approach. This separated representation 

solves the problem of a large payoff matrix when multiple issues are considered. A feedback loop 

between the BN and the agents’ behavior facilitates learning and adaptation to find a possible 

consensus by revision of the beliefs. An example of the network structure and this feedback loop will 

be given in the next section. 

 
The adapted conceptual framework of Ligtenberg (2006) of multi-actor spatial planning is shown in 

Figure 4 in order to make the connection between the previous MASSA version and the framework of 

Figure 3 more comprehensible. Two systems are represented: the spatial and the social system. 

Between them is the represented spatial system, which is a simplified version of the environment 

that is easier to interpret (it can be thought of as a geographic map). In the social system the actors 

are present. They observe and perceive the environment and formulate proposals regarding its 

desired future state. In the previous version of MASSA, a proposal consisted of several cells, while in 

the new model a proposal is a single cell. This is done, because deriving characteristics from a group 

of cells is more difficult, since every cell has its own properties. All actors decide whether they want 

to accept or reject the proposed cell. The model that relates their individual decisions into the joint 
result is indicated as ‘joint fact finding’. That is the moment when actors learn in order to become 

able to make proposals in the next round that are satisfactory for all of them, so that an agreement 

becomes more likely. A cooperative attitude is assumed, meaning that agents are willing to learn 

from each other and find solutions with mutual gain. Thus inside the social system, a feedback loop is 

included between the joint fact finding and the actors (adapt arrow in Figure 4), which represents the 
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learning and resulting anticipation on cooperation in the consensus conflict.  

 
Figure 4: Conceptual framework of multi-actor spatial planning 

 

The main inputs for the multi-actor spatial planning model are a cell-based representation of the 
current environment and the desires of the actors regarding the future state of this environment. 

The desires, made explicit in utility functions, are the basic elements that drive the decision making 

process. Based on the concepts illustrated in Figure 4, the model is implemented according to the 

following sequence, as shown in Figure 5: 

 

1. Agents generate beliefs about the current state of the environment based on their 

perception of it. They observe the environment and acquire information about its aspects 

related to a specific desire (‘observe and perceive’ arrow in Figure 5). This results in a set of 

beliefs accounting for the current state of the environment according to an individual agent. 

For example, a desire to realize new urbanization near existing urbanization requires 
information about the distance of each location (cell) to existing urbanization (object). This, 

in its turn, requires information on the areas that are regarded as urbanized by the agent 

(semantics). 

2. The set of beliefs is evaluated by the agents using a utility function (‘apply utility function’ 

arrow in Figure 5). This utility function combines the values of each cell (for the distances to 

all considered objects) with the attached weight of the desire.  

3. The agents take turns in proposing a cell they want to be changed into a new urbanization 

cell. They accomplish this by selecting the cell with the highest utility (‘select cell with 

maximum utility’ arrow in Figure 5), given that is was not accepted before or already 

proposed in the former round. If more cells hold this maximum utility, one of them is 
randomly picked. This proposal is communicated to the other agents. 

4. The proposer examines his initial utility for the proposal (before the beliefs were changed by 

the BNs) to assess his satisfaction. All other agents decide whether they accept this proposal 

by examining their own initial utility for that cell and comparing it with their threshold, the 

lowest acceptable utility (‘compare initial utility with threshold’ arrow in Figure 5). These 

decisions are brought forward and the proposal is agreed on when all agents decide to 

cooperate. 

5. The reactions on and characteristics of the proposed cell serve together as a new case for the 

BN of the agents (‘evaluate reactions’ and ‘evaluate characteristics’ arrows in Figure 5). The 
CPTs of the nodes in the BN are updated, so that the relation between the values and the 

decisions becomes clearer throughout the simulation. 

6. The Boolean nodes are set to the desired state, the situation in which everyone cooperates 

and the agent itself is satisfied. The utility functions are updated using the new beliefs (again 

the ‘apply utility function’ arrow Figure 5). Utilities of the agents will now be higher in areas 
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where cooperation is anticipated. Additionally utilities for the neighboring cells are increased 

by 10% to favor a clustered over a scattered pattern. Steps two to six are repeated every 

round as illustrated by the loop in Figure 5. 

7. The simulation stops when the objective is reached, i.e. the required area of new 
urbanization is allocated, or when a deadlock is reached, i.e. in a predefined number of 

subsequent rounds no proposal is unanimously accepted. 

 
Figure 5: Model sequence 

 

The above described MAS was implemented in Repast (Repast, 2010). The BNs were implemented in 

Netica (Norsys Software Corp., 2010) and coupled with the MAS via Netica Java-APIs. The utilized 

software and implementation are discussed in more detail in the next section. 

3.2 Implementation 

 

The main modeling platform used in MASSA was the Repast, which stands for Recursive Porous 
Agent Simulation Toolkit (Repast, 2010). This is a Java-based open source toolkit created at the 

University of Chicago. Repast was used to implement the agents with their available behaviors and a 

schedule that states the sequence in which the agents execute their actions. The environment was 

also created in Repast, using a grid representation in which each cell consists of a Java object that can 

store information about that location, for example land use type and distances to other spatial 

objects. The desires of the agents, concerning this environment, were stored in an Access database 

that communicates with Repast via a JDBC-ODBC bridge. Since this part of the model already existed 

in the previous model version, it will not be further elaborated on. 

 

The newly added features to MASSA are the Bayesian Networks. Those were not implemented 
directly by mathematical rules in Repast, since the construction of large networks by hand is very 

time consuming and prone to errors. Several software packages are available that overcome these 

problems. Some examples include Bayesia (www.bayesia.com), Netica (www.norsys.com) and Hugin 

(www.hugin.com). An additional advantage of these software tools is that the graphical construction 
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of the network is straightforward and thus easy to learn also for users without much knowledge of 

the statistics behind it. This can, however, also be a drawback, since a network can ‘look nice’ but 

that does not mean it gives valuable information. The Netica software was chosen to implement the 

BNs because it provides a clear tutorial and is operational via a graphical interface as well as with 
Application Program Interfaces (APIs), which are available for several programming languages, 

including Java. This last functionality is a profound advantage, as the existing MASSA model was 

programmed in Java.  

 

For all agents a separate Bayesian Network is created. Bayes’ theorem is originally developed to 

handle discrete variables. In Netica however, it is possible to use continuous variables. To be able to 

work with them, they have to be discretized into ranges, so that they resemble discrete variables. 

The difference with true discrete variables is that the input data can be continuous. So, the beliefs of 

the agents, which are preferred distances to certain spatial object and thus continuous, are best 

represented by continuous nodes. The cooperation of the other agents, which is a Boolean property 
(they do agree or they do not), is represented by discrete nodes. The CPTs between those two types 

of nodes represent the relation between proposal characteristics and the reactions of the agents on 

this proposal. These relations will be learned throughout the simulation (recall the BN box in Figure 

5).  

 

The continuous and Boolean nodes and the links between them were ‘drawn’ with Netica’s graphical 

interface. The CPTs were not filled in, because they should be calculated automatically in every 

round, as described above. Figure 6 shows an example of the initial configuration of one of the 

Bayesian Networks used in the case study, which will be outlined in section 3.3. In this case, the 
agents have belief nodes about roughly the same objects, but with different semantics. If one agent 

considers very distinct objects from the others, this would complicate learning. It would be 

interesting to study this complication, but this first implementation of the BN concept is kept 

straightforward, in order to prove the learning concept. So, three different spatial objects were 

considered: urbanization, nature and villages. All agents have the method to infer those objects, but 

they have different semantics and desires regarding them. The structure of the network can easily be 

altered for another case study by adding or removing nodes.  

 

The network in Figure 6 belongs to an agent representing farmers involved in a spatial planning 

procedure with two other agents (i.e. citizens and nature-culture conservationists). The lower three 
nodes, which are the continuous nodes, show the values of the Framers agent attached to certain 

distance ranges from a spatial object, i.e. the beliefs. The node ‘DistanceVillages’ for example 

indicates that the farmers prefer new urbanization to be located far away from patches regarded as 

villages. The upper three nodes, which are discrete, relate the distance distributions to the 

satisfaction of the network owner (Farmers agent), and the level of cooperation by the other agents 

(Citizens and NatureCulture). The possibilities for these nodes are a-priori evenly distributed, since 

the simulation has not started yet, so the agent has no data available yet about the rates of 

cooperation and satisfaction.  
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Figure 6: Initial Bayesian Network of the farmer agent 

 

The network is updated when a proposal is made by an agent. The reactions of all agents and the 

characteristics of the proposed cell together form a case. A case, in this denotation, consists of 

several pieces of evidence of a certain place and time for the variables in a network. In Netica, 

several cases can be fed to the network at once, in one large case file, or case by case. In the second 

approach the Bayesian Network starts off with presumed CPTs as prior probabilities and every time a 
case is encountered, the network becomes more consistent. So, one uses the network in parallel 

with the data collection. In this way the network is dynamic, because it learns continuously. This 

approach is used in this research. In every round a case is recorded for every agent. Separate cases 

are needed for the agents, because they have different semantics and thus derive different 

characteristics from the proposal.  The cases are saved by Repast in CAS files, which are ASCII files 

structured in a way Netica accepts. An example of how such a file is structured is given in Figure 7. 

The first line contains the string ‘// ~->[CASE-1]->~’. This informs Netica that the format is in Netica 

Case file format #1. This is currently the only possible format, but in the future there might be more 

advanced formats possible (Norsys Software Corp., 2009). The second line contains the names of the 

nodes for which evidence is provided in the file, and the third line contains those evidences (the 
actual case). When more cases are included in one file, the subsequent lines can also contain 

evidence. 

 

 
Figure 7: Case file of round 1 for the farmers 

 

When the case files are saved, Repast calls Netica via APIs to incorporate them and to recalculate the 
CPTs. This means that the characteristics of the proposed cell (the distances to the considered spatial 

objects) are related to the decisions and satisfaction regarding that proposal. Consequently, the CPTs 

change. The Bayesian Network for the farmers from Figure 6 with incorporation of the case from 

Figure 7 is shown in Figure 8. By default the initial configuration counts as one case. This is why, for 

example, satisfaction is now 25% true, which is the average between the initial 50% and the ‘false’ 
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case (0% true). The probabilities for the distances encountered in the case file have increased. 

However, from the displayed network in Figure 8, the new beliefs cannot be derived.  

 

For the new beliefs, posterior probabilities are required, so the evidence has to be set in the 
network. The upper three nodes are set to the desired situation, i.e. the agent itself is satisfied and 

the others cooperate. In this occurrence, the evidence does not come from an encountered (present) 

situation, but from an anticipated (future) situation. The distance distributions, i.e. the event, 

belonging to that situation are calculated by Netica using Bayesian inference. The mean and standard 

deviation of these posterior distributions, which can be seen in Figure 8 at the bottom of the nodes, 

are recorded every round and displayed in graphs, so that the change in beliefs throughout the 

simulation can be visualized. The probabilities for the states are imported by Repast via a Netica API 

and exported to the Access database via  the JDBC-ODBC bridge. Then, they are used to calculate the 

new utility maps. These utilities represent values for the optimum between reciprocity and 

fulfillment of their own desires, thus mutual gain. The inference of this optimum becomes better 
when more cases are incorporated. 

 

 
Figure 8: Bayesian Network of the farmers after one round 

 
An additional functionality in Netica with learning case by case is fading (Norsys Software Corp., 

2009).  Fading means that the Bayesian Network excludes cases learnt long ago. As a result, the CPTs 

have a bias towards the most recent cases. A fading degree from zero to one can be set; where a 

degree of zero has no effect, whereas a degree of one results in CPTs with no experience, thereby 

showing only the most recent case. This feature was implemented in MASSA, but it was turned off 

for the case study in order to be able to clearly show the effects of gaining experience in the BNs on 

the model output. In future research, fading might be used. 

3.3 Case study 

 

A hypothetical planning process is simulated for a study area in the ‘Land van Maas en Waal’, which 

is located in the Eastern part of the Netherlands (Figure 9). The area roughly consists of 66% pasture 

and 26% agriculture. In addition, orchards are a prominent feature in the area. The ‘Land van Maas 

and Waal’ has a number of small towns. Part of the ‘Land van Maas en Waal’ belongs to the nodal 

point ‘Arnhem-Nijmegen’. This generates pressure to supply new urban areas. Therefore, the 
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question where to locate new urbanization is relevant. For the simulation a land use raster map with 

cells of 100 by 100 meter is used.  

 

 
Figure 9: Study area 

 

In this case study, three agents have been implemented, representing farmers, citizens and nature-

culture conservation organizations. The agents’ votes have equal effects on the joint decision, and 

proposals are only accepted unanimously. Table 5 shows the desires that have been assigned to each 

agent. Based on these desires the agent observes and specifies its beliefs for new urbanization makes 

them explicit on the environment using its utility function. In the Bayesian Network the beliefs are 

represented in three generalized classes about which can be learned (Table 5), as explained in the 

previous section. A simulation is carried out in which these three agents have the objective to 
allocate 200 cells (representing 200 hectares) of new urbanization. A deadlock is assumed to occur 

when the agents are unable to accept a proposal in 30 subsequent rounds. These ‘rounds’ do not 

have an concrete time dimension; they are just iterations without a temporal scale. 

 
Table 5: Desires of the agents 

Role  Desires Category 

citizens new urbanization around present urbanized areas 

near forest and nature 

urban 

nature 

farmers new urbanization around existing urbanized areas 

not near present agriculture 

not near small villages 

urban 

nature 

villages 

nature-culture conservationists new urbanization not near nature areas 

new urbanization as less as possible around 

‘historical’ villages 

nature 

villages 
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The agents are presented three different parts of the Land van Maas en Waal (Figure 9) to see the 

effect of different land use settings on the decision making process. The parts are equal in size, 

approximately 5300 hectares, and vary mainly in current urbanization degree. The first scenario 

(Rural) concerns a rural area with only some small villages. The second (Intermediate) has some 
moderate size towns (including a small part of a larger town). The third scenario (Urbanized) encloses 

the city of Nijmegen, the ninth city in the Netherlands, with 150.850 inhabitants (Wikipedia, 2010). 

The three scenarios were carried out twice, once with and once without the Bayesian Networks (with 

and without coupling with Netica) in order to assess the BN impact on the results. 

 

In addition, the second scenario was run 100 times for the assessment of the uncertainty in the 

model. The resulting maps were summed on a cell by cell basis. This means that a cell that is never 

selected will get a value of zero, and a cell always selected will get a value of one hundred. For the 

display of this and all other maps the software ArcMap was used, a component of ArcGIS (ESRI, 

2010), which is an integrated collection of geo-information software products. 
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4. Results 
 

This chapter provides the simulation results for a case study area in the ‘Land van Maas en Waal’, 

located in the Netherlands. The spatial plans, utility maps and Bayesian Networks are presented and 

described. Next, the result of the uncertainty assessment is presented. 

4.1 Scenarios 

 

Only in the first scenario, the agents were able to reach the objective to assign 200 new urbanization 

cells. In the other two scenarios a deadlock was reached. This counts for both the situation with and 

without agent learning by Bayesian Networks, but the conditions for the consensus and deadlock 

were different (Table 6). Without Netica it has always taken more rounds to reach the end situation 

(which is either the objective or a deadlock). The number of cells agreed on without BNs is higher in 

scenario 2 and lower in scenario 3. The resulting maps for the three scenarios are displayed in Figure 

10, Figure 11 and Figure 12. It is apparent that the new urbanization is chosen in approximately the 
same areas with and without BNs. In scenarios 2 and 3 the simulations without BNs have resulted in 

a scattered urbanization pattern, while in the simulations with BNs all new urbanization cells were 

grouped together in one cluster (Figure 11 and Figure 12). In scenario 3 this cluster is interceded by 

existing urbanization, but the result is still one large urban cluster. In the scenario 1 the result map 

consists of several small and somewhat larger urbanization clusters (Figure 10). In this scenario, the 

result for the simulation with BNs is more scattered than the simulation without BNs, which is 

opposing to the other two scenarios. 

 
Table 6: Conditions in end situations for the three scenarios 

Scenario BN Agreed Cells Nr of Rounds 

1. Rural without 200 201 

 with 200 215 

2. Intermediate without 19 143 

 with 25 107 

3. Urbanized without 46 157 

 with 43 109 

 

 
Figure 10: New situation for the rural area (scenario 1) without (left) and with (right) Bayesian Networks 
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Figure 11: New situation for the intermediately urbanized area (scenario 2) without (left) and with (right) 

Bayesian Networks 

 
Figure 12: New situation for the urbanized area (scenario 3) without (left) and with (right) Bayesian 

Networks 

 

In the following the initial and final utility maps of the three agents are displayed in separate figures 

for the three scenarios. The differences between the initial and final utility maps illustrate the effect 

of the learning process in the Bayesian Networks. The utility maps are only shown for the situation 

with Bayesian Networks; without them the utilities do not change throughout the simulation. The 

initial utility map with Bayesian Networks is the same as the initial and final utility map of the same 

simulation without BNs, which makes it useless to show them all.  
 

The difference between the upper (a, b, c) and the lower (d, e, f) utility maps of Figure 13 illustrates 

that the citizens have learned that the others do not like new urbanization to be allocated close to 

existing villages. The utilities around the villages have decreased for them. The farmers, on the 

contrary have softened in regard of this desire, thereby coming closer to the citizens desires. Figure 

14 shows a similar effect regarding the desire category urban. The citizens have become less 

determined to allocate cells directly alongside existing urbanization, while the nature-culture 

conservationists have learned this desire. Concerning the nature category, new urbanization on 

agriculture (primarily located in the centre of the study area) is now more negotiable for the farmers 
than at first. When in Figure 15 the initial utilities (a, b, c) are compared to the final utilities (d, e, f) a 

focusing, i.e. a cluster of high utilities, on the area in the North-East corner is evident for all three 

agents. This effect could also be found in the other two scenarios, but not as profound. Utilities on 

the rest of the map have become very low. Agreement on more cells in the area under interest, 

however, is not possible, because it is enclosed by existing urbanization.  
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Figure 13: The rural area (scenario 1). Initial utilities (t = 1) for the citizens (a), farmers (b) and nature-culture 

conservationists (c). And final utilities (t = 201) the citizens (d), farmers (e) and nature-culture 

conservationists (f). Values range from zero (dark grey) to one (light grey). Black indicates existing 

urbanization. 

 

 
Figure 14: The intermediately urbanized area (scenario 2). Initial utilities (t = 1) for the citizens (a), farmers 

(b) and nature-culture conservationists (c). And final utilities (t = 107) the citizens (d), farmers (e) and nature-

culture conservationists (f). Values range from zero (dark grey) to one (light grey). Black indicates existing 

urbanization. 
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Figure 15: The urbanized area (scenario 3). Initial utilities (t = 1) for the citizens (a), farmers (b) and nature-

culture conservationists (c). And final utilities (t = 107) the citizens (d), farmers (e) and nature-culture 

conservationists (f). Values range from zero (dark grey) to one (light grey). Black indicates existing 

urbanization. 

 

All described phenomena can be observed in all scenarios when looking at the maps more closely. 

The reasons behind the utility changes can be derived from the resulting Bayesian Networks. They 

show the cooperation and satisfaction of the agents averaged over the total simulation time and the 
belief distributions resulting from that. As an example, the networks of scenario 2 are examined in 

Figure 16; the networks for the other two scenarios are given in Appendix 1. From the networks in 

Figure 16 it can be derived that the farmers and nature- culture conservationists often cooperate 

with each other and with the citizens (67% and 82% of the time), while the citizens are less 

cooperative towards them (47% for both), which denotes that the citizens were not willing to accept 

their proposals. This is also indicated by the fact that the citizens are on average 46.5% less satisfied 

with the generated proposals than the other actors. The inferred distance distributions are 

comparable for the three agents, meaning that they have learned to generate proposals with similar 

spatial characteristics. Cells that exhibit the combination of the distances with the highest 

possibilities are considered most probable to be agreed on.  
 

One prominent difference between the nature-culture conservationists’ and the other agents’ 

networks can be seen in the ‘DistanceNature’ node. For the nature-culture conservationists it shows, 

in addition to the peak for the short distance, a peak at the range 700 to 1100 meter away from 

nature. The reason for this can only be seen when the nodes for satisfaction and cooperation are set 

to their desired state, which is ‘true’, since agents want to be satisfied with the proposal themselves 

and want others to accept it. From Figure 17, in which the satisfaction and cooperation nodes are 

separately set to the desired states, it appears that this second peak is a result of the large 

inconsistency between the beliefs fulfilling the agent’s own satisfaction and the beliefs resulting in 

cooperation of the other agents. If the difference in belief distributions for the two situations is 
smaller, the effect becomes less evident; the ‘DistanceUrban’ node of the nature-culture 

conservationists also exhibits different distributions for the two situations, but since the distance 

state with the highest probability is the same for both, this effect disappears in the combined 
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situation. The appearance of a second peak can be discerned at a less evident level in the 

‘DistanceVillages’ nodes for all three agents in Figure 16. 

 

 
Figure 16: Final Bayesian Network for the intermediately urbanized area (scenario 2) for, from top to bottom, 

the farmers, the citizens and nature-culture conservationists. 
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Figure 17: Bayesian Networks for the nature-culture conservationists set to ‘true’ for cooperation (left) and 

satisfaction (right). 

4.2 Uncertainty 

 

The map that is the result of the cell by cell summation of 100 runs of scenario 2 is displayed in 

Figure 18. The current urbanization is left out. It appears that the result from Figure 11 is an often 
obtained result; it is within the lightest colored area of Figure 18. The most frequently chosen cell is 

selected in 88% of the runs. Beside the commonly selected area above the city of Wijchen, an area 

below the city of Beuningen is sometimes selected. The row of grey cells East of Nijmegen, is the 

result of only one run, and thus an exception. What cannot be derived from this map, but was 

observed additionally in the 100 separate maps, is that the result most often consisted of one cluster 

of cells. When the agents start ‘building’ somewhere, they extend the area until expansion is 

somehow restricted. The result from this path-dependency is that the average number of cells 

selected around Beuningen is much larger than that the average number of cells selected around 

Wijchen: 48 against 19. The location of the first cell, thus effect on the outcome location as well as on 
the outcome cluster size. 

 
Figure 18: Summation of 100 simulation results 
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5 Discussion and conclusions 
 

In the preceding chapters the use of Bayesian Networks to improve on the representation of decision 

making in a Multi-Agent System of an interactive spatial planning process was explored. The results 

of the developed model, presented in the former chapter, are discussed in this chapter. The 

advantages as well as the problems and shortcomings of the model are described. Finally, the 

conclusions are summarized in relation to the research questions. 

5.1 Discussion 

 
The initial and final utility maps illustrate that the agents have learned each others’ beliefs and that 

their utilities converge, as they do concessions. This conclusion is supported by the mean values of 

the distributions of the three belief nodes. Graphs with the evolution of those mean values 

throughout the simulation for scenario 2 are shown in Figure 19 for the nature nodes, in Figure 20 for 

the urban nodes, and in Figure 21 for the village nodes. The graphs for the other scenarios have 

similar characteristics and thus only the curves for scenario 2 are elaborated on. It can be seen that 

the curves are saw tooth shaped at the beginning of the simulation. This has two reasons. The 

steepness results from new cases having much influence on the average since not much evidence 

was gained yet. And, the curve jumps up and down, because proposals with different characteristics 

are ‘tried out’ before some insight is gained in the beliefs of each participating agent. When those 
become more evident, the curves slowly converge, indicating that the agents gradually find a way to 

generate proposals that satisfy themselves as well as the others. In this process they do some 

concessions towards each other. When the desires of the others and the agents own desires are too 

far apart, convergence is impeded. This happens for the distance to nature (Figure 19) of the nature-

culture conservationists. The large discrepancy between the distances fulfilling the agent’s own 

satisfaction and the distances resulting in cooperation of the other agents, supporting this 

statement, was already shown in Figure 17. The fact that the mean distance values of the agents 

diverge again at the end of the simulation (for example evident in the farmer’s curve in the ‘Villages’ 

graph going up at the end) is a result of their incompetence to agree in the last 30 rounds. This 

makes the agents search for new possibilities, thereby returning to their original beliefs. In the 
networks the following happens: proposals with characteristics (distances) that were found to result 

in a high degree of cooperation are now continuously turned down, which diminishes the percentage 

of cooperation connected with those distances and thereby increases the possibilities of cooperation 

for other distances. The agents return to their original beliefs in this case by the influence of the 

satisfaction node. 

 

Although the actors reach an agreement on a new urban area, the objective of allocation of 200 

hectare is only reached in the scenario 1, given the current set of desires. The implemented topology 

rule, which accomplishes that neighbors of already selected cells get a higher probability of being 

selected, makes the agents concentrate on a certain area. When the agents concentrate one area for 
a number of rounds, the networks converge towards the characteristics this area exhibits. The 

standard deviation becomes very low, which results in a narrow distribution over the distance states 

of nodes. This could be metaphorically explained as the agents becoming ‘narrow-minded’. 

Consequently, all cells in the study area that do not have those particular characteristics obtain a 

very low utility. When expansion of the cluster is for some reason restricted, the allocation of new 

urbanization in a different place has become almost impossible. It was tested whether it was better 

to turn off the topology rule, but then a deadlock was reached after agreement on only a few cells, 
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since the beliefs had not converged yet. At least in the beginning, the rule is thus needed to ‘get the 

networks going’. Turning it off when enough experience is gained, would be a solution. Creating 

topology rules by means of links between the belief nodes would also be an interesting attempt. 

Another solution for the narrow-mindedness would be resetting the network when a deadlock tends 
to be reached, or making the networks gradually forget some of what they have learned by use of 

the fade function.  

 
Figure 19: Mean distances of nature nodes throughout scenario 2 

 
Figure 20: Mean distances of urban nodes throughout scenario 2 
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Figure 21: Mean distances of village nodes throughout scenario 2 

 

The fact that a consensus is reached in scenario 1 can be explained by the fact that in the rural area 

no urbanization is present. As a result, the distribution in this node does not change throughout the 

simulation (see Figure 22 in Appendix 1), because nothing is learned about this desire. Since there 

was no disagreement about the desire in the first place, (both the farmers and the citizens prefer 

new urbanization close to existing urbanization and the nature-culture conservationists have no 

opinion about it,) the inertness of this node is an advantage. Only two of the three node distributions 

become narrow, which places fewer restrictions on the location of agreeable cells. This conclusion is 

supported by the fact that the agreed cells on the result map (Figure 10) are grouped into several 

clusters, instead of the one urbanization cluster found in the other two scenarios. From this 
observation it can be concluded that it will become even more difficult to reach a consensus, when 

more desires are implemented (which would be more realistic). In future research, it is important to 

find a sound solution for the narrow-mindedness problem. 

 

The innovation of the presented approach is the incorporation of Bayesian Networks in an agent 

based spatial planning model. This incorporation has resulted in a more natural representation of the 

decision making process. The beliefs of the agents are not static, but dynamic, and not deterministic, 

but probabilistic, thus allowing for uncertainty. A solution has been found for the problem of the 

opponent’s payoff openness in game theory. In the concerned games the payoffs of the other agents 
are always known on forehand (Anumba et al., 2003). In this research agents have no information 

about each other’s beliefs at the start of the simulation. A method was developed in which the 

agents learn by taking into account experiences from the past. Consequently they adapt their spatial 

beliefs in such a way that the optimum between reciprocity and fulfillment of their own desires is 

anticipated. So, the agents have become self-adaptive. This adaptation capacity accounts better for 

the Complex Adaptive System they are part of. This conclusion is supported by the fact that the social 

complexity of the model is now upgraded to what Agarwal et al. (2002) refer to as level 6, the highest 

level. This means that multiple types of agents are modeled, whose decisions are influenced by 

choices made in the past by themselves and others. To be more specific about the modeled planning 
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process, it can be said that the socialization component of the regional dialogue approach (Mansfeld, 

2003) is added to an existing spatial planning model, that already contained the other components of 

this approach. This is accomplished by the incorporation of learning and anticipation on reciprocity 

using Bayesian Networks. Now, all four components of the regional dialogue approach are present, 
so that the full spatial planning process is modeled. The developed BN decision framework is general 

and flexible, and can thus easily be applied to different planning cases. 

 

Another positive result of the Bayesian networks is the effectiveness of the decision making process, 

appearing from two observations (see Table 6). First, it took fewer rounds to reach the end situation 

in all three scenarios with the BNs. Second, the total number of cells agreed on is larger. The reason 

for these two observations can be found when studying the model products additional to the result 

maps, BNs and graphs more closely. Two additional products are the case files, in which the reactions 

on all proposals are stored and intermediate result maps. Those two products proved that, in the 

simulation of scenario 2 and 3 without the BNs, whenever proposals were accepted, they were 
always posed by the citizens; proposals of the others were constantly rejected. In reality, it is not 

plausible an actor will continue to cooperate if his proposals are continuously rejected, while he 

himself does accept the proposals of another. This means one actor doing concessions and the other 

being rigid. Such a situation would be regarded unfair, especially in even power settings, and thus be 

unsustainable. The Bayesian Networks made the other agents learn how their proposals could be 

accepted, by incorporating the successful proposals and their characteristics in the networks. The 

result is that in the simulations with Bayesian networks proposals of all agents were regularly 

accepted and thus a more sustainable situation is created. 

 
However, when comparing the new model with the previous MASSA version (Ligtenberg et al., 2009), 

the decision-making process has not become more effective. This results from a change in the 

proposal method. Previously, a proposal consisting of a group of cells was possible, while the current 

model does not allow this. This change was made, because the characteristics of the proposal, 

needed as an input for the BN, are more easily derived from a single cell. For a group characteristics 

would need to be averaged. Nevertheless, the previous way of proposing was more realistic as well 

as more effective. This approach should thus be made suitable for the BN model. 

 

Effects of the Bayesian Networks are now mainly descriptive. To assess the influence of the BNs 

numerically additional steps have to be taken. The batch run, of which the combined results are 
presented in Figure 18, proves the uncertainty and path-dependency of the model. It was explained 

that these two features have effect on the outcome location as well as on the outcome cluster size. 

The uncertainty partly results from the method of Bayesian inference and partly from the fact that if 

more cells have the same utility, one is chosen randomly as a proposal. Bayesian inference 

introduces one path-dependency by the learning functionality. The implemented topology rule, that 

neighbors of already selected cells get a higher probability to be chosen, enhances this path-

dependency. Thus, a different proposal at the beginning of the simulation can have a pronounced 

effect on the result. An additional batch run of the model without the Bayesian Networks could give 

more insight in the individual effects of the BN and the rest of the model in both phenomena. 

Subtraction of the batch result without BNs from the batch result with BNs, would give the 
percentual influence of the BNs on the total model uncertainty. Additionally, assessment of the 

networks themselves can be carried out. It is possible to let Netica calculate the relative effect of a 

new piece of evidence on a certain node. This hereby gathered information from several moments 

during the simulation could assist in giving insight in the possible ‘saturation point’ of the network, 

i.e. the moment when new evidence loses effect on the state distributions. This is the moment to 

reset the network or implement forgetting.  
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Even though the model has implemented learning and anticipation, and social complexity is 

increased, the social processes in the model are still far from realistic. The agents only learn ‘silently’ 

as they do not communicate about what they want and cannot give arguments for their proposals. In 

addition they will never be able to infer each others’ desires completely, because they hold different 
semantics (for example, from which size onwards becomes a village a city). The agents’ behavior is 

completely rational, while in reality actors’ decisions are sometimes based on irrational things, such 

as trust, impatience and anger (Laurian, 2009). Abrupt changes, like bringing concessions to a halt or 

even terminating cooperation entirely, do also not appear in the model. A suitable concept for and 

realistic model of a multi-actor negotiation process is thus still lacking and is a topic for further 

research.  

 

The spatial reasoning of the agents within the Bayesian Network could be improved by facilitating 

the creation of new nodes when a new type of information becomes available. This is, however, a far 

more difficult kind of learning, since the agents would not have the methods to reason about the 
new feature and will therefore need an adapted modeling approach. Another way to improve the 

reasoning is to calculate the total utility for certain distance combinations within the network. The 

advantage of this is that utility functions are not needed anymore, which resolves the issue that the 

weights for the different desires are now still static.  

 

Due to the explorative character of the research, the use of hypothetical actor stereotypes and an 

invented case objective, validation of the proposed model was not accomplished. When the model is 

further developed, calibration and validation against an existing spatial planning case will become 

necessary. It is demonstrated however, that the use of Bayesian Networks offers an interesting and 
innovative approach to represent learning and anticipation in a spatial planning decision making 

process. 

5.2 Conclusions and further research 

 

The main objective of this research was to explore the use of Bayesian Networks as a means to 

improve on the representation of the decision making process in an agent based multi-actor spatial 

planning model. In section 1.2 the following research questions were posed to structure this 

exploration: 

 
I. What are the limitations in current approaches of decision making in multi-agent spatial 

models? 

II. How are Bayesian Networks currently used in computer models? 

III. How can decision making among spatial planning actors be modeled using BNs? 

IV. What is the added value of BNs in a multi-actor spatial planning model? 

 

The answers to these questions, which were presented throughout this report, are summarized 

below. In addition some guidelines for further research are given. 

 

What are the limitations in current approaches of decision making in multi-agent spatial models? 

Two commonly used decision making approaches were revised: utility maximization and game 

theory. The first can handle multiple issues, but lacks anticipation capacity, while for the second it is 

the other way around. Both methods lack the ability to handle two important characteristics of the 

Complex Adaptive System spatial planning is represented by: to learn and adapt to find mutual gain, 

in agent terminology referred to as proactiveness. The fact that common decision making 

approaches are unable to cope with those features, results in a lack of social complexity in spatial 
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models. A framework is required that exhibits those features and has a general form, so that it is 

applicable for different cases. 

 

How are Bayesian Networks currently used in computer models? 

Bayesian Networks were found to serve mainly as a data mining method, with the objective to find 

relations between measured variables. The use of Bayesian Networks in environmental models is 

limited.  They are for example applied in remote sensing, watershed management, land-use change 

and urban development. But, only one spatial model was found to use Bayesian Networks as a 

learning method for agents. In this model, networks serve as the ‘minds’ of agents. They learn about 

the effectiveness of their actions, which fulfils the first requirement for the decision making 

framework as outlined in the previous question. However, adaptation is needed in order to include 

the second required feature of finding mutual gain instead of only personal gain. 

 

How can decision making among spatial planning actors be modeled using BNs? 

The Bayesian Networks are implemented in the model as the ‘minds’ of the agents, so that the nodes 

can represent the different beliefs, concerning the future state of the environment, and make them 

dynamic. The combination of the advantages of utility maximization and game theory, consideration 

of both multiple issues and the behavior of the others, is implemented within this structure. The links 

between those two facilitate learning and anticipation on the joint outcome. By taking into account 

experience gained throughout their cooperation agents learn about each others’ desires. 

Accordingly, the agents adapt their spatial beliefs to anticipate the optimum between reciprocity and 

fulfillment of their own desires. 

 
What is the added value of BNs in a multi-actor spatial planning model? 

The incorporation of Bayesian Networks in an agent based spatial planning model has resulted in a 

more natural representation the actors’ behavior. The beliefs of the agents are not static anymore, 

but have become dynamic. The agents learn by taking into account experiences from the past and 

adapt their spatial beliefs in such a way that the optimum between reciprocity and satisfaction with 

their own desires is anticipated. As a result, the decision making procedure has become more 

effective, because all agents have learned to generate acceptable proposals. This self-adaptive 

behavior of the agents accounts better for the Complex Adaptive System they are part of. The social 

complexity of the model has increased and the addition of socialization makes that now all four 

components of the regional dialogue approach are present, so that the entire spatial planning 
process is modeled. 

 

Based on the above, a number of issues were identified requiring improvement. First, a problem in 

the decision making process occurs when the agents concentrate on a certain area for a number of 

rounds. The Bayesian Networks converge towards the characteristics this area exhibits, which results 

in a narrow distribution over the states of the concerning nodes. This ‘narrow-mindedness’ strongly 

limits the number of agreeable locations. The importance of this problem becomes clearer when 

focusing on the second issue: the limited spatial reasoning capacity of the agents. More advanced 

spatial reasoning, for example additional reasoning about topological relations and shapes, would 

also result in more desires. More desires further limit the possible solution space and thus enhances 
the narrow-mindedness problem. A third issue, also related to the behavior of the agents, is that a 

suitable representation of the full negotiation process is still lacking. In addition to decision making, 

negotiation requires communication with arguments and a larger range of possible actions and 

tactics. Further research should find a way to include those aspects. And last, but not least, validation 

of the proposed model was not accomplished. This is a common problem with Multi-Agent Systems, 

since their complex behavior and emergent properties are by definition hard to validate. This is, 

however, more an argument in favor of than against undertaking an effort to tackle this problem, 

because finding a solution would be a major scientific breakthrough.  
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 Appendix 1: Resulting Bayesian Networks 

 
Figure 22: Resulting Bayesian Network for the rural area (scenario 1) for, from top to bottom, the farmers, 

the citizens and nature-culture conservationists. 
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Figure 23: Resulting Bayesian Networks for the urbanized area (scenario 3) for, from top to bottom, the 

farmers, the citizens and nature-culture conservationists. 
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