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Abstract 
Knotters, M., G.B.M. Heuvelink, T. Hoogland & D.J.J. Walvoort, 2010. A disposition of interpolation techniques. Wageningen, 
Statutory Research Tasks Unit for Nature and the Environment, WOt-werkdocument 190. 90 p. 26 Figs.; 1 Tab.; 170 Refs.  
 
A large collection of interpolation techniques is available for application in environmental research. To help environmental 
scientists in choosing an appropriate technique a disposition is made, based on 1) applicability in space, time and space-time, 
2) quantification of accuracy of interpolated values, 3) incorporation of ancillary information, and 4) incorporation of process 
knowledge. The described methods include inverse distance weighting, nearest neighbour methods, geostatistical 
interpolation methods, Kalman filter methods, Bayesian Maximum Entropy methods, etc. The applicability of methods in 
aggregation (upscaling) and disaggregation (downscaling) is discussed. Software for interpolation is described. The 
application of interpolation techniques is illustrated in two case studies: temporal interpolation of indicators for ecological 
water quality, and spatio-temporal interpolation and aggregation of pesticide concentrations in Dutch surface waters. A 
valuable next step will be to construct a decision tree or decision support system, that guides the environmental scientist to 
easy-to-use software implementations that are appropriate to solve their interpolation problem. Validation studies are needed 
to assess the quality of interpolated values, and the quality of information on uncertainty provided by the interpolation method. 
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uncertainty, accuracy 
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Preface

We dance around in a ring and suppose,
But the secret sits in the middle and knows.

Robert Frost

This report is written to help environmental researchers at PBL (Netherlands En-
vironmental Assessment Agency) in choosing from the large variety of interpolation
techniques. These techniques are used to predict values at unvisited locations or
moments in time, using neighboring observations. We are not only uncertain about
the true value, but we might even be uncertain about the appropriateness of the
applied interpolation method. This report pays special attention to interpolation
techniques that quantify the first kind of uncertainty. Furthermore, this report aims
to help in reducing the second kind of uncertainty.

We are very grateful to all PBL employees who attended the lunch presentation on
19 November 2009. Their questions and remarks helped us a lot to improve the
manuscript. We are also grateful to Harm Houweling (WOt) and Peter Janssen
(PBL) for their support in all stages of the project, and to George van Voorn
(Biometris-WUR) and Piet Verdonschot (Alterra-WUR) for their helpful comments.

Wageningen, March 2010

Martin Knotters, Gerard Heuvelink, Tom Hoogland and Dennis Walvoort
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Summary

Introduction

Environmental scientists can choose from a large collection of interpolation tech-
niques. In choosing an appropriate interpolation method several criteria are rele-
vant, such as the applicability in space, time and space-time, the ability to quantify
the accuracy of interpolated values, the applicability to numerical and/or categorical
variables, the opportunity to incorporate ancillary information, the opportunity to
utilize process knowledge, the applicability for aggregation and disaggregation (up-
and downscaling), the complexity of application, level of required expertise, and
required computation time, the constraints on the size of the dataset and on the
conditions of the dataset, and the availability of easy-to-use software implementa-
tions. The aim of this report is to structure the volume of interpolation techniques,
with respect to these criteria. Because information on uncertainty is indispensable in
present-day environmental policy analysis and policy-focused research, we focus on
interpolation methods that provide quantitative information on the accuracy of the
interpolated values. The main disposition is based on 1) applicability in space, time
and space-time, 2) quantification of accuracy of interpolated values, 3) incorporation
of ancillary information, and 4) incorporation of process knowledge.

Interpolation in space

Kriging refers to a group of geostatistical interpolation methods in which the value
at an unobserved location is predicted by a –usually– linear combination of the val-
ues at surrounding locations, using weights according to a model that describes the
spatial correlation. The statistical basis of kriging enables to quantify the accuracy
of the predicted values by means of the kriging variance. Kriging methods that
do not incorporate ancillary information include widely applied methods such as
simple kriging, ordinary kriging, universal kriging with spatial coordinates or krig-
ing in the presence of a trend. To interpolate non-Gaussian distributed variables
adapted kriging methods can be applied such as indicator kriging, disjunctive krig-
ing, multiGaussian kriging, lognormal kriging and trans-Gaussian kriging. Kriging
methods are commonly based on straight line (Euclidian) distance. For interpolation
in stream networks kriging methods have been developed on the basis of hydrologic
distances, that is, the distance along the stream, in which the flow direction can be
taken into account. Other interpolation methods that quantify uncertainty and do
not use ancillary information include splines, methods based on Bayesian statistics,
regression methods and neural networks.
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Kriging methods in which ancillary information can be used include stratified krig-
ing, cokriging, principal component kriging, kriging combined with linear regression
(kriging with uncertain data), universal kriging (kriging with an external drift),
and regression kriging (kriging with a guess field, residual kriging). Other methods
that incorporate ancillary information and that quantify uncertainty are regression
methods such as regression trees and artificial neural networks, Bayesian Maximum
Entropy (BME) and Markov random fields. Process knowledge can be incorpo-
rated by calculating a ‘guess field’ with a physical-mechanistic model, followed by
geostatistical interpolation of residuals.

Methods for spatial interpolation that do not quantify uncertainty and that do not
incorporate ancillary information include inverse distance weighting, the nearest
neighbour algorithm, and triangular irregular networks. Ancillary information can
be utilized by stratification, i.e., by dividing an area into subareas. Process knowl-
edge can be utilized by using a physical-mechanistic model to construct a ‘guess
field’ of interpolated values.

Interpolation in time

Kriging methods can also be applied for interpolation in time. In modelling the
temporal dependence structure, e.g. a variogram, covariance function or correlo-
gram, it is important to be aware of the specific character of processes developing in
time. In particular, when secondary variables are used in the model causality should
be considered. Time series models such as autoregressive (integrated) moving av-
erage (AR(I)MA) models, transfer function-noise (TFN) models and intervention
models can be used for data filling, which can be seen as a form of interpolation
in time. These models can be used to model regularly observed time series. The
state-space approach with Kalman filtering and Kalman smoothing can be applied
to interpolate irregularly observed time series. Other methods for interpolation in
time that quantify uncertainty are Bayesian time series models and structural time
series models.

Interpolation methods that do not quantify uncertainty, such as inverse distance
weighting and the nearest neighbour algorithm, can be used for interpolation in
time. Physical-mechanistic models can also be applied for interpolation in time.

Interpolation in space and time

Three basic approaches for space-time interpolation with quantified uncertainty can
be distinguished: 1) time series models with a spatial extension, 2) geostatistical
models with a time extension, and 3) hybrid models. The first category includes
the STARMA (space-time ARMA) model, which is an extension to the univariate
ARMA model, accounting for correlations between time series observed at neigh-
bouring locations. The second category includes space-time (ST) simple kriging, ST-
ordinary kriging and ST-kriging with an external drift. The third category consists
of hybrid models combining time series modelling and geostatistical modelling, e.g.,
geostatistical interpolation of time series model parameters. Ancillary information
can be incorporated into ST-kriging methods and regionalized time series models.
The Bayesian Maximum Entropy (BME) approach, in which ancillary information is
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incorporated, can be extended to the space-time context. The state-space approach
can be extended to space-time, incorporating process knowledge. A physically based
regionalized time series model can be embedded in an ST-Kalman filter to enable
space-time interpolation. Process models (physical-mechanistic models) can be used
for space-time interpolation without (direct) quantification of uncertainty.

Aggregation and disaggregation

Aggregation, also referred to as upscaling, involves transferring information from
a smaller (detailed) scale to a larger (coarser) scale. Here, ’scale’ refers to the
’support’ as it is known in geostatistics, i.e. the size, volume and shape of entities
over which is aggregated. If the locations have been selected following a probability-
based sampling design, then unbiased estimates of the areal means or totals can
be calculated using the inclusion probabilities related to the sampling design. If
the observations have been collected at purposively selected locations or sampling
rounds, then the observed values need first to be interpolated to a dense grid and
next the interpolated values can be aggregated. In the interpolation a model of
spatial structure can be applied for weighing the observed values. Uncertainty can
be quantified by stochastic simulation of n realisations and next aggregating the
results of each realisation. The variance of the n aggregated values (e.g. areal
means) reflects the uncertainty about the true aggregated value. In linear kriging,
predictions and prediction error variances of space and/or time aggregates can also
be obtained with block kriging.

In disaggregation, or downscaling, the variation of a variable at a small (detailed)
scale is reconstructed, given the value at a larger (coarse) scale. If there is no
ancillary information that can be used to explain some of the unknown temporal or
spatial variation of the property at the small scale within the larger scale, and there is
also not a mechanistic model available describing this (unknown) temporal or spatial
variation, then information can be disaggregated using empirical functions. If the
average value at the larger scale is exactly known deterministic empirical functions
or conditional stochastic functions can be applied in disaggregation. Examples of
deterministic empirical functions are splines, linear functions and general additive
models. If only the probability function of the average value at the larger scale is
known, then unconditional stochastic functions can be applied in disaggregation.
Mechanistic models and fine scale ancillary information can be used in deterministic
and conditional and unconditional stochastic functions for disaggregation.

Brief overview of software

The ArcGIS Geostatistical Analyst provides tools for geostatistical interpolation and
analyses. In education, E{Z}-kriging can be used to explain the principles of ordinary
point kriging, block kriging and the semi-variogram. The statistical package Genstat
provides tools for regression analysis, analysis of the spatial correlation structure,
geostatistical interpolation and time series modelling. ISATIS is a comprehensive
geostatistical software tool developed by Geovariances in France. GSLIB (Geosta-
tistical Software LIBrary) is a collection of geostatistical programs developed at
Stanford University over the past 15 years. ILWIS (Integrated Land and Water
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Information System) is a stand-alone integrated GIS package developed at the In-
ternational Institute of Geoinformation Science and Earth Observations (ITC), En-
schede, the Netherlands. MATLAB R© is a high-level technical computing language
and interactive environment for algorithm development, data visualization, data
analysis, and numeric computation. Several (user-written) toolboxes on geostatis-
tics for MATLAB R© are available, as well as procedures for time-series analysis and
state-space modelling. R is a free software environment for statistical computing
and graphics. Many packages are available for spatial statistics. In addition, R also
contains packages for time-series analysis and state-space modelling. SAGA (System
for Automated Geoscientific Analyses) is an open source GIS developed in Germany
(Universität Göttingen, and since 2007 Universität Hamburg). It contains modules
for semivariogram analysis, ordinary kriging, universal kriging, and spline interpola-
tion. Surfer (produced by Golden Software) contains interactive tools for variogram
analysis and kriging. S+ is a commercial implementation of the S programming
language sold by TIBCO Software Inc.. Like its open source counter part R, it has
packages for spatial statistics and time-series analysis. Vesper (Variogram Estima-
tion and Spatial Prediction plus ERror, from the Australian Centre for Precision
Agriculture) is a program for variogram estimation/modelling and kriging. It is
capable of performing kriging with local variograms in an automatic way.

Case studies

The application of interpolation techniques was illustrated in two case studies: tem-
poral interpolation of indicators for ecological water quality, and spatio-temporal
interpolation and aggregation of pesticide concentrations in Dutch surface waters.
The first case study concerns eight irregularly spaced time series of unequal length of
‘multimetric scores’. These scores, ranging from 0 to 1, indicate the ecological water
quality in the district water board “Regge en Dinkel”. Inverse distance weighting,
ordinary kriging on untransformed data, ordinary kriging after logit-transformation,
MultiGaussian kriging and simple kriging with a known varying mean were applied
to interpolate in time. In simple kriging with a known varying mean a seasonal
trend was fitted and residuals were interpolated. The results of the various methods
show large differences, which confirms that choosing an appropriate interpolation
method is important.

The second case study concerns space-time interpolation of the concentrations of the
pesticide ‘metribuzin’ in Dutch surface waters (ditches). Point measurements were
aggregated in time to averages of growing seasons. These averages were interpolated
in space and time by regression kriging, among others using water surface type, pro-
portion of area under agriculture and concentrations predicted by a deterministic
pesticide distribution model as explanatory variables in a multiple linear regression
model. The residuals of this model were interpolated by space-time simple kriging.
Spatial aggregation was done with a a stochastic simulation procedure, sequential
Gaussian simulation. In this way uncertainty about the aggregated values could be
quantified and hence the statistical significance of the temporal trend in the aggre-
gated values. Comparison with ’naive’ upscaling showed meaningful differences.
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Concluding remarks

More information about the properties of the interpolation methods is needed to
support finding an appropriate interpolation technique for a given problem. In
particular, more information is needed about the performance, i.e. the accuracy,
of the interpolation methods. A summary of validation studies and comparative
studies will make clear for what situations information on accuracy of interpolation
methods is lacking. This can be a starting point for additional validation studies.
A valuable next step will be to elaborate the disposition of methods given in this
report to a decision tree or decision support system, that guides the environmental
scientist to easy-to-use software implementations that are appropriate to solve their
interpolation problem. Knowledge of the interpolation problems PBL-workers are
facing is crucial in constructing such a tree.

Statistical information on uncertainty or accuracy is used in methods from statisti-
cal decision theory, quantitative risk and policy analysis, and uncertainty assessment
inspired by post-normal science theory. The overall or global accuracy of results of
any interpolation method can be assessed by an independent validation study, in
which observations on the ‘field truth’ are preferably selected by probability sam-
pling. Local information on accuracy can only be obtained by applying stochastic
interpolation methods. The quality of this local information on accuracy depends
on model assumptions which cannot always easily be verified.

To assess the usefulness of information on uncertainty in decision making, the quality
of this information should be known. If information on global accuracy is obtained by
validation with an independent probability sample, the quality of this information
can easily be quantified. The quality of information on local accuracy, such as
the kriging variance, can be assessed by validation or cross-validation. Studies in
which the quality of local information on uncertainty has been validated are sparse,
however. We underline the need of such validation studies, the results of which can
be used to support a choice from the interpolation methods that quantify uncertainty
as described in this report.

It can be concluded that most interpolation methods can be used in aggregation.
Disaggregation is more delicate than aggregation, since assumptions need to be
made about the spatial or temporal variation at the smaller scale. A lot of work on
disaggregation techniques has been done in the field of climate research, from which
other fields of environmental research could benefit.
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Samenvatting

Inleiding

Milieuwetenschappers kunnen kiezen uit een grote verzameling interpolatietech-
nieken. Relevante criteria bij het kiezen zijn de toepasbaarheid in ruimte, tijd en
ruimte-tijd, de mogelijkheid om de nauwkeurigheid van de gëınterpoleerde waar-
den te kwantificeren, de toepasbaarheid op numerieke en/of categorische variabelen,
de mogelijkheid om gebruik te maken van hulpinformatie, de mogelijkheid om pro-
ceskennis te benutten, de toepasbaarheid voor aggregatie en desaggregatie (op- en
neerschaling), de complexiteit, het benodigd kennisniveau, de vereiste rekentijd, en
de beschikbaarheid van eenvoudig toepasbare computerprogramma’s. Het doel van
dit rapport is om interpolatietechnieken te ordenen op basis van deze criteria. Om-
dat informatie over onzekerheid tegenwoordig onmisbaar is in beleidsanalyses en
beleidsgericht onderzoek op het gebied van het milieu, richten wij ons op interpo-
latiemethoden die kwantitatieve informatie verschaffen over de nauwkeurigheid van
de gëınterpoleerde waarden. De hoofdstructuur is gebaseerd op 1) toepasbaarheid in
ruimte, tijd en ruimte-tijd, 2) kwantificering van nauwkeurigheid van gëınterpoleerde
waarden, 3) gebruik van hulpinformatie en 4) gebruik van proceskennis.

Ruimtelijke interpolatie

Kriging omvat een groep geostatistische interpolatiemethoden waarbij de waarde
op een niet-bezochte locatie wordt voorspeld met een (lineaire) combinatie van de
waarden op omliggende locaties, met een weging op basis van een model dat de
ruimtelijke correlatie beschrijft. De statistische basis van kriging maakt het mo-
gelijk om de nauwkeurigheid van de gëınterpoleerde waarden te kwantificeren met
de krigingvariantie. Algemeen toegepaste krigingmethoden waarbij geen hulpinfor-
matie wordt gebruikt zijn simple kriging, ordinary kriging en universal kriging met
ruimtelijke coördinaten (of kriging met een trend). Om niet-Gaussisch verdeelde
variabelen te interpoleren kunnen methoden worden gebruikt zoals indicator kriging,
disjunctive kriging, MultiGaussian kriging, lognormal kriging en trans-Gaussian krig-
ing. Krigingmethoden maken doorgaans gebruik van Euclidische afstanden. Voor
interpolatie in waterlopenstelsels zijn krigingmethoden ontwikkeld die zijn gebaseerd
op hydrologische afstanden (de afstand langs de loop), waarbij rekening kan worden
gehouden met de stromingsrichting. Andere interpolatiemethoden waarmee onzeker-
heid kan worden gekwantificeerd, en waarbij geen hulpinformatie wordt gebruikt, zijn
onder meer splines, methoden gebaseerd op Bayesiaanse statistiek, regressiemetho-
den en neurale netwerken.
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Krigingmethoden waarbij hulpinformatie kan worden gebruikt zijn onder meer strat-
ified kriging, cokriging, principal component kriging, kriging gecombineerd met li-
neaire regressie (kriging met onzekere gegevens), universal kriging (kriging with
an external drift), en regressiekriging (kriging with a guess field, residual kriging).
Andere methoden waarbij hulpinformatie wordt gebruikt en waarmee onzekerheid
kan worden gekwantificeerd zijn regressiemethoden zoals regressiebomen en artificial
neural networks, Bayesian Maximum Entropy (BME) en Markov random fields. Pro-
ceskennis kan worden benut door een veld te berekenen met een fysisch-mechanistisch
model, en vervolgens de residuen te interpoleren met een geostatistische interpo-
latiemethode.

Methoden voor ruimtelijke interpolatie waarmee geen onzekerheid kan worden ge-
kwantificeerd, en waarbij geen hulpinformatie wordt gebruikt, zijn inverse distance
weighting, het nearest-neighbour -algoritme en triangular irregular networks. Hulpin-
formatie kan worden gebruikt om het gebied in deelgebieden te verdelen (stratifi-
catie). Proceskennis kan worden benut door een gëınterpoleerd veld te construeren
met een fysisch-mechanistisch model.

Temporele interpolatie

Krigingmethoden kunnen ook worden gebruikt voor temporele interpolatie. Be-
langrijk is bij het modelleren van correlatiestructuren rekening te houden met de
wijze waarop een proces zich in de tijd ontwikkelt. Als hulpvariabelen worden ge-
bruikt moet rekening worden gehouden met causaliteit. Tijdreeksmodellen, zals au-
toregressive (integrated) moving average- (AR(I)MA)-modellen, transfer-ruis- (TFN-
)modellen en interventiemodellen kunnen worden gebruikt om ontbrekende waarden
te schatten, wat kan worden gezien als een vorm van temporele interpolatie. Deze
modellen kunnen worden gebruikt om reeksen met regelmatige waarnemingsinter-
vallen te modelleren. De state-space approach met Kalman filtering en Kalman
smoothing kan worden gebruikt om reeksen met onregelmatige waarnemingsinter-
vallen te interpoleren. Andere methoden voor temporele interpolatie, waarmee
onzekerheid kan worden gekwantificeerd, zijn Bayesiaanse tijdreeksmodellen en struc-
turele tijdreeksmodellen.

Interpolatiemethoden waarmee onzekerheid niet kan worden gekwantificeerd, zoals
inverse distance weighting en het nearest-neighbour -algoritme, kunnen ook worden
gebruikt voor temporele interpolatie, evenals fysisch-mechanistische procesmodellen.

Ruimte-tijdinterpolatie

Methoden voor ruimte-tijdinterpolatie waarmee onzekerheid kan worden gekwan-
tificeerd kunnen worden verdeeld in drie categorieën: 1) tijdreeksmodellen met een
ruimtelijke component, 2) geostatistische methoden met een temporele component
en 3) hybride modellen. De eerste categorie bevat onder meer het STARMA- (space-
time ARMA-)model, wat een uitwerking is van het univariate ARMA-model, waarbij
rekening wordt gehouden met correlaties tussen tijdreeksen die op verschillende lo-
caties zijn waargenomen. De tweede categorie bevat onder meer space-time (ST)
simple kriging, ST-ordinary kriging en ST-kriging with an external drift. De derde
categorie bestaat uit combinaties van tijdreeks- en geostatistische modellen, bijvoor-

12 WOt–werkdocument 190



beeld geostatistische interpolatie van tijdreeksmodelparameters. De Bayesian Max-
imum Entropy-benadering, waarbij gebruik wordt gemaakt van hulpinformatie, kan
worden uitgebreid naar ruimte-tijdinterpolatie. De state-space approach kan eve-
neens worden uitgebreid naar ruimte-tijd, waarbij gebruik kan worden gemaakt van
proceskennis. Een fysisch gebaseerd, geregionaliseerd tijdreeksmodel kan in combi-
natie met een ST-Kalman filter worden gebruikt voor ruimte-tijdinterpolatie. Pro-
cesmodellen (fysisch-mechanistische modellen) kunnen worden gebruikt voor ruimte-
tijdinterpolatie zonder (directe) kwantificering van onzekerheid.

Aggregatie en desaggregatie

Bij aggregatie, of opschaling, wordt informatie van een gedetailleerde (fijne) schaal
omgezet naar informatie van een grovere schaal. ‘Schaal’ heeft hier betrekking op
support in geostatistische zin, dat wil zeggen de omvang, het volume en de vorm
van eenheden waarover wordt geaggregeerd. Als de locaties zijn geselecteerd vol-
gens een kanssteekproef dan kunnen gemiddelden en totalen zuiver worden geschat
door gebruik te maken van de insluitkansen die samenhangen met de betreffende
steekproefopzet. Als de waarnemingen zijn verzameld op gericht geselecteerde lo-
caties of tijdstippen, dan moeten de waarnemingen eerst worden gëınterpoleerd naar
een fijn grid, en vervolgens kunnen de gëınterpoleerde waarden worden geaggregeerd.
Bij de interpolatie kan gebruik worden gemaakt van een model voor de ruimtelijke
samenhang om gewichten te berekenen. Onzekerheid kan worden gekwantificeerd
door n stochastische simulaties uit te voeren en per realisatie te aggregeren. De
variantie van de n geaggregeerde waarden geeft de onzekerheid aan. In geval van
lineaire kriging modellen kunnen de predicties en varianties van geaggregeerde waar-
den ook eenvoudiger met block-kriging worden verkregen.

Bij desaggregatie, of neerschaling, wordt de variatie van een variabele op een gede-
tailleerde schaal gereconstrueerd, gegeven de waarde op een grovere schaal. Als
er geen hulpinformatie of mechanistisch model beschikbaar is dat de onbekende
temporele of ruimtelijke variabele kan verklaren, dan kan informatie worden gedis-
aggregeerd met behulp van empirische functies. Als de gemiddelde waarde op de
grovere schaal exact bekend is kunnen deterministische empirische functies en con-
ditionele stochastische functies worden gebruikt. Als er slechts een kansverdelings-
functie van het gemiddelde op de grovere schaal bekend is, dan kunnen oncondi-
tionele stochastische functies worden gebruikt voor desaggregatie. Mechanistische
modellen en gedetailleerde hulpinformatie kunnen worden gebruikt in deterministis-
che en conditionele en onconditionele stochastische functies voor desaggregatie.

Kort overzicht van computerprogramma’s

ArcGIS Geostatistical Analyst bevat mogelijkheden voor geostatistische interpolatie
en analyses. Voor onderwijsdoeleinden kan E{Z}-kriging worden gebruikt om de
principes van ordinary point kriging, block kriging en het semivariogram uit te leggen.
Genstat biedt mogelijkheden voor regressieanalyse, analyse van de ruimtelijke cor-
relatiestructuur, geostatistische interpolate en tijdreeksmodellering. ISATIS is een
uitgebreid geostatistisch software-pakket dat is ontwikkeld door Geovariances in
Frankrijk. GSLIB (Geostatistical Software LIBrary) is een verzameling geostatisti-
sche programma’s, ontwikkeld aan de Stanford University gedurende de laatste 15
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jaar. ILWIS (Integrated Land and Water Information System) is een stand-alone
gëıntegreerd GIS-pakket dat is ontwikkeld door het International Institute of Geoin-
formation Science and Earth Observations (ITC) in Enschede. MATLAB R© is een
hogere technische programmeertaal en interactieve omgeving voor de ontwikkeling
van algoritmes, datavisualisatie, data-analyse en numerieke berekeningen. Er zijn
verschillende toolboxes voor geostatistiek in MATLAB R© beschikbaar, evenals pro-
cedures voor tijdreeksanalyse en state-space-modellering. R is een free-software-
omgeving voor statistische berekeningen en grafieken. Veel R-packages zijn beschik-
baar voor ruimtelijke statistiek. Daarnaast bevat R packages voor tijdreeksanalyse
en state-space-modellering. SAGA (System for Automated Geoscientific Analyses) is
een open source GIS, ontwikkeld aan de Universität Göttingen, en sinds 2007 Univer-
sität Hamburg (Duitsland). Het bevat modules voor de analyse van semivariogram-
men, ordinary kriging, universal kriging en interpolatie met splines. Surfer (gemaakt
door Golden Software) bevat interactieve tools voor variogramanalyse en kriging. S+
is een commerciële implementatie van de programmeertaal S (TIBCO Software Inc.).
Evenals de open source evenknie R, bevat S+ packages voor ruimtelijke statistiek
en tijdreeksanalyse. Vesper (Variogram Estimation and Spatial Prediction plus ER-
ror, van het Australian Centre for Precision Agriculture) is een programma voor
het schatten en modelleren van variogrammen en voor kriging. Het kan kriging met
lokale variogrammen automatisch uitvoeren.

Case studies

In twee case studies is de toepassing van interpolatietechnieken gëıllustreerd: tem-
porele interpolatie van indicatoren voor de ecologische waterkwaliteit, en ruimte-
tijdinterpolatie en aggregatie van concentraties van bestrijdingsmiddelen in Neder-
landse oppervlaktewateren. De eerste case study betreft acht tijdreeksen, met on-
regelmatige waarnemingsintervallen en ongelijke lengtes, van ‘multimetrische scores’.
Deze scores, met waarden tussen 0 en 1, geven de ecologische waterkwaliteit aan in
het waterschap ‘Regge en Dinkel’. Temporele interpolatie is uitgevoerd met inverse
distance weighting, ordinary kriging van niet-getransformeerde gegevens, ordinary
kriging na logit-transformatie, MultiGaussian kriging en simple kriging met een be-
kend variërend gemiddelde. Bij simple kriging met een bekend variërend gemiddelde
is een seizoenstrend gefit en zijn de residuen daarvan gëınterpoleerd. De resultaten
van de interpolatietechnieken verschillen onderling sterk, wat bevestigt dat het zin
heeft om te zoeken naar een geschikte interpolatiemethode.

De tweede case study betreft ruimte-tijdinterpolatie van concentraties van het gewas-
beschermingsmiddel ‘metribuzin’ in Nederlandse oppervlaktewateren (sloten). Punt-
waarnemingen zijn in de tijd geaggregeerd tot gemiddelden voor groeiseizoenen.
Deze gemiddelden zijn ruimtelijk en temporeel gëınterpoleerd met regressie-kriging.
Hierbij is een meervoudig lineair regressiemodel gebruikt met als verklarende vari-
abelen onder andere het type oppervlaktewater, de oppervlaktefractie landbouw-
grond, en concentraties die zijn voorspeld met een deterministisch model voor de ver-
spreiding van bestrijdingsmiddelen. De residuen van dit regressiemodel zijn gëınter-
poleerd met ST simple kriging. Voor ruimtelijke aggregatie is stochastische sim-
ulatie toegepast (sequentiële Gaussische simulatie). Zodoende kon de onzekerheid
over de geaggregeerde waarden worden gekwantificeerd, en de significantie van tem-
porele trends in de geaggregeerde waarden. De aldus verkregen temporele trend in
de landelijke gemiddelde concentratie bleek beduidend te verschillen van de trend
verkregen met ’näıeve’ opschaling.
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Concluderende opmerkingen

Om het vinden van een geschikte interpolatiemethode te kunnen ondersteunen, is
er meer informatie nodig over de eigenschappen van deze methoden. In het bijzon-
der is er meer informatie nodig over de nauwkeurigheid van interpolatiemethoden.
Een overzicht van validatiestudies en vergelijkende studies moet duidelijk maken
voor welke situaties informatie over de nauwkeurigheid ontbreekt. Dit kan het
vertrekpunt zijn voor aanvullende validatiestudies. Een zinnige volgende stap is
om het overzicht dat dit rapport geeft uit te werken tot een beslisboom of beslis-
singsondersteunend systeem, dat milieuwetenschappers de weg wijst naar eenvoudig
toepasbare software voor het oplossen van hun interpolatieproblemen. Bij het con-
strueren van een dergelijke beslisboom is het belangrijk inzicht te hebben in de
interpolatieproblemen waarmee medewerkers van PBL te maken hebben.

Statistische informatie over onzekerheid of nauwkeurigheid wordt gebruikt bij toepas-
sing van methoden uit de statistische beslissingstheorie, bij kwantitatieve risico- en
beleidsanalyse en bij onzekerheidsanalyses vanuit de theorie van post-normal science.
Voor elke interpolatiemethode kan de overall of globale nauwkeurigheid worden ge-
kwantificeerd met een onafhankelijk validatie-onderzoek, waarbij de veldwaarnemin-
gen bij voorkeur zijn verzameld middels een kanssteekproef. Lokale informatie over
de nauwkeurigheid kan alleen worden verkregen door stochastische interpolatieme-
thoden toe te passen. De kwaliteit van deze lokale informatie over nauwkeurigheid
hangt af van modelveronderstellingen die niet altijd eenvoudig kunnen worden ge-
verifieerd.

Om te kunnen beoordelen of informatie over onzekerheid bruikbaar is in beslispro-
cessen, moet de kwaliteit van deze informatie bekend zijn. Als informatie over
de globale nauwkeurigheid is gebaseerd op een validatie met een onafhankelijke
kanssteekproef, dan kan de kwaliteit van deze informatie eenvoudig worden ge-
kwantificeerd. De kwaliteit van lokale informatie over nauwkeurigheid kan wor-
den gekwantificeerd door middel van validatie of cross-validatie. Validatiestudies
naar de kwaliteit van lokale informatie over nauwkeurigheid zijn echter schaars. Wij
benadrukken de noodzaak van dergelijke studies, waarvan de resultaten kunnen wor-
den benut bij het ondersteunen van een keuze uit de interpolatiemethoden die in dit
rapport worden beschreven.

De meeste interpolatiemethoden kunnen worden gebruikt bij het aggregeren van
informatie. Desaggregatie is moeilijker dan aggregatie, omdat er veronderstellin-
gen moeten worden gemaakt over de ruimtelijke of temporele variatie op de meer
gedetailleerde schaal. In het klimaatonderzoek is veel ervaring met desaggregatie
opgedaan, waarvan andere gebieden van milieuonderzoek zouden kunnen profiteren.
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Chapter 1

Introduction

1.1 Background and problem definition

Environmental scientists can choose from a large collection of interpolation tech-
niques developed during the past decades. The methods vary from general algo-
rithms to specific methods tailored to specific applications, from simple to com-
plex algorithms, from strictly data-based methods to methods incorporating process
knowledge, from deterministic to stochastic methods, etc. Interpolation methods
have been reviewed and compared in several studies. Recently, Li and Heap (2008)
reviewed spatial interpolation methods for environmental scientists in Australia.
Denby et al. (2005) reviewed interpolation and assimilation methods for European
scale air quality assessment and mapping. Hengl (2007) summarized a variety of
methods for geostatistical interpolation of environmental variables in a practical
guide, and described available hands-on software. The performance of methods for
spatial interpolation have been compared by, e.g., Dubois et al. (2003) and Dubois
(2005). The INTAMAP project (www.intamap.org) provides methods and open
source software for real time, web-based automatic interpolation.

Choosing an appropriate interpolation method from this large variety of techniques
might be cumbersome. Several criteria are relevant in making a choice:

• applicability in space, time and space-time;

• quantification of accuracy of interpolated values;

• applicability to numerical and/or categorical variables;

• incorporation of ancillary information;

• incorporation of process knowledge;

• applicability for aggregation and disaggregation (up- and downscaling);

• complexity of application, level of required expertise, and required computa-
tion time;

• constraints on the size of the dataset and on the conditions of the dataset;

• availability of easy-to-use software implementations.
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1.2 Aim

The aim of this report is to structure the volume of interpolation techniques, with
respect to the criteria mentioned above. The underlying statistical models, the in-
terpolation algorithm as well as available software will be described. The suitability
for the Netherlands Environmental Assessment Agency (PBL) will be discussed.
Because information on uncertainty is indispensable in present-day environmental
policy analysis and policy-focused research (Morgan and Henrion, 1990; Van der
Sluijs et al., 2003) we focus on interpolation methods that provide quantitative in-
formation on the accuracy of the interpolated values. We emphasize that the overall
accuracy of interpolations (e.g., a map) can be assessed by an independent validation
study, whatever the applied interpolation method is. Local information on accuracy
can only be obtained by applying stochastic interpolation methods, however. The
quality of this local information on accuracy depends on model assumptions which
cannot always easily be verified.

The main disposition is based on 1) applicability in space, time and space-time,
2) quantification of accuracy of interpolated values, 3) incorporation of ancillary
information, and 4) incorporation of process knowledge. In the description of the
categories of methods the applicability to numerical and/or categorical variables,
the applicability for aggregation and disaggregation, complexity of application, re-
quired computation time, constraints on the size and conditions of the dataset and
availability of software implementations will be discussed.

We emphasize that this study is a review of interpolation methods rather than a text-
book that describes underlying theory in detail. Readers interested in background
information of methods are provided with references to relevant literature.

1.3 How to read this report?

Methods for interpolation in space, time and space-time are described in Chapters 2,
3 and 4, respectively. Methods that quantify uncertainty are described in the first
section of these chapters, methods that do not quantify uncertainty in the second.
Within these sections we describe methods that do not use ancillary information,
methods using ancillary information, and methods incorporating process knowledge,
respectively. Chapter 5 presents a table that summarizes the interpolation methods
described in the previous three chapters.

Chapter 6 discusses the applicability of interpolation methods for aggregation and
disaggregation (also referred to as up- and downscaling). Chapter 7 gives a brief
overview of available software for interpolation. Chapter 8 demonstrates the appli-
cation of interpolation methods in two case studies. The first case study concerns
temporal interpolation of multimetric scores for ecological surface water quality. In-
verse distance weighting (IDW) and four kriging methods are applied. The second
case study concerns the spatio-temporal interpolation and aggregation of pesticide
concentrations in Dutch surface waters. The report ends with a general discussion
and conclusions in Chapter 9, including a discussion on information on accuracy and
its quality.

18 WOt–werkdocument 190



Chapter 2

Interpolation in space

2.1 Methods that quantify uncertainty

2.1.1 Methods without use of ancillary information

Methods based on kriging

Kriging refers to a group of geostatistical interpolation methods in which the value
at an unobserved location is predicted by a linear combination of the values at
surrounding locations, using weights according to a model that describes the spa-
tial correlation. The statistical basis of kriging enables to quantify the accuracy of
the predicted values by means of the kriging variance. The kriging variance is a
measure of the accuracy of the interpolated values, or, in other words, a measure
of the uncertainty about the true values. For an introduction to kriging we refer
to Isaaks and Srivastava (1989), and for theoretical backgrounds to Cressie (1993)
and Goovaerts (1997). Kriging methods are widely applied for the interpolation of
spatially distributed environmental variables. The map of kriging variances char-
acterizes the local accuracy of the spatial predictions. It should be noted that the
kriging variance is based on various assumptions (e.g. the stationarity assumption)
and does not take the uncertainty about the model of spatial structure or variogram
into account. A model-free assessment of the global uncertainty about the interpo-
lation error can only be obtained by an independent validation study based on a
probability sample (e.g., Brus et al. (2010)).

Simple kriging (SK) is based on a stationary random function model

Z(s) = m+R(s) , (2.1)

with s being a vector of spatial coordinates, m the stationary mean or systematic
component, and R(s) the stochastic component with zero mean, constant variance,
and with spatial covariance C(h), the vector h representing the lag distance between
two locations. The random function Z is assumed to have generated the unknown
reality z, which is observed at a limited set of point locations and which needs to
be interpolated. See Figure 2.1 for a notional example in 1D of a realization of the
random function model in Eq. 2.1. The covariance C(h) is defined as

C(h) = E {Z(s + h)Z(s)} − [E {Z(s)}]2 , (2.2)
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Figure 2.1: Notional example in 1D of the random function model in Eq. 2.1. Solid line:
m. Dashed line: z(s).

where E is the expectation. Alternatively to the covariance, the variogram γ is
defined as half the variance of the increment {Z(s + h)− Z(s)}. For a stationary
random function the variogram is

2γ(h) = Var {Z(s + h)− Z(s)}
γ(h) = C(0)− C(h) , ∀s . (2.3)

The value of z at an unsampled location s0 is estimated on the basis of the values
Z(si at locations s1, . . . , sn by

ẐSK(s0) =
n∑
i=1

λi(s0)Z(si) +

[
1−

n∑
i=1

λi(s0)

]
m, (2.4)

in which λi(s0) are the kriging weights. These are determined by minimizing the
kriging variance or variance of spatial predictions, leading to the following conditions:

n∑
j=1

λj(s0)C(sj − si) = C(s0 − si) , ∀i = 1 . . . n . (2.5)

The corresponding minimized kriging variance is:

σ2
SK(s0) = C(0)−

n∑
i=1

λi(s0)C(s0 − si) . (2.6)

Simple kriging has been described in many textbooks on geostatistics, e.g., Journel
and Huijbregts (1978), Goovaerts (1997) and Diggle and Ribeiro (2007). Li and Heap
(2008) discussed simple kriging their review of interpolation methods. Pebesma
(2004) described the implementation of simple kriging in the software package gstat
(see Chapter 7). Brus and Heuvelink (2007) described the application of the simple
kriging algorithm in stochastic simulation.

In ordinary kriging (OK) the sum of the weights
∑n

i=1 λi(s0) is constrained to be
equal to 1. As a result the last term in Eq. (2.4) equals zero, which means that no
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Figure 2.2: Illustration of kriging weights for ordinary kriging. Based on the educational
program E{Z}-kriging, see Chapter 7.

   

Figure 2.3: Ordinary kriging of the drop in the level of the bottom of the ‘Wadden Sea’ (pe-
riod 1994-2004). Left: observations. Center: interpolated values. Right: kriging standard
deviation. See also Figure 2.5.

prior knowledge on the stationary mean m is needed. Figure 2.2 gives an example of
the kriging weights in OK, which is based on the educational software program E{Z}-
kriging, see Chapter 7. OK has been described in many textbooks, e.g. Journel and
Huijbregts (1978), Isaaks and Srivastava (1989) and Webster and Oliver (2007). Its
performance in spatial predictions has been assessed in many studies, e.g. Knotters
et al. (1995), Zimmerman et al. (1999), Schloeder et al. (2001), Erxleben et al.
(2002), Atkinson and Lloyd (2003), Jones et al. (2003), Pebesma (2004), Denby
et al. (2005), Savelieva (2005), He et al. (2005), Brus and Heuvelink (2007), Diggle
and Ribeiro (2007), Hengl (2007), Schuurmans et al. (2007), Li and Heap (2008), Luo
et al. (2008), Bargaoui and Chebbi (2009) and Kleijnen (2009). Mishra et al. (2009)
applied ordinary kriging to parameters of soil profile depth distribution functions,
and next estimated soil organic matter contents from the interpolated parameters.
Figure 2.3 gives an example of interpolation by ordinary kriging.
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Figure 2.4: Notional example of the random function model in Eq. 2.7. Solid line: m(s).
Dashed line: z(s).

Universal kriging with spatial coordinates (Matheron, 1969) is also referred to as
kriging in the presence of trend or ‘drift’ (Webster and Oliver, 2007) and kriging
with a trend model (Goovaerts, 1997, KT). The stationary mean µ in Eq. (2.1) is
replaced by a smoothly varying, deterministic trend component, the level of which
depends on the spatial coordinates s:

Z(s) = m(s) +R(s) . (2.7)

Figure 2.4 gives a notional example in 1D of this random function model. The trend
component can be defined as m(s) = E {Z(s)} and is modelled as a (local) function
from the coordinates vector, whose unknown parameters are fitted from the data:

m(s) =
K∑
k=0

ak(s)fk(s) . (2.8)

Here, the functions fk are so-called base functions and must be known. A trend in
two-dimensial space can be modelled, for example, by a linear model,

m(s) = m(x, y) = a0 + a1x+ a2y , (2.9)

(K = 2), or a quadratic model:

m(s) = m(x, y) = a0 + a1x+ a2y + a3x
2 + a4y

2 + a5xy , (2.10)

(K = 5).

The residual component R(s) is modelled as a stationary random function with zero
mean and covariance CR(h). The value of z at an unsampled location s0 is estimated
by

ẐKT(s0) =
n∑
i=1

λi(s0)Z(si) , (2.11)

and the KT system is:
∑n

j=1 λj(s0)CR(si − sj) +
∑K

k=0 µk(s0)fk(si) = CR(si − s0) , i = 1, . . . , n∑n
j=1 λj(s0) = 1∑n
j=1 λj(s0)fk(sj) = fk(s0) , k = 0, . . . ,K ,

(2.12)
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where the µk(s0) are Lagrange multipliers (Goovaerts, 1997, p. 140, Eq. (5.26)).
Kriging with a trend model has, amongst others, been described by Goovaerts (1997)
and Webster and Oliver (2007). Its performance has been assessed by, for example,
Caruso and Quarta (1998), Zimmerman et al. (1999), Pebesma (2004), Denby et al.
(2005), He et al. (2005), Diggle and Ribeiro (2007) and Luo et al. (2008).

In the kriging methods described above the target variable z is related to a point with
spatial coordinates s. Block kriging is applied if the target quantity is the average
value over a block of specific dimensions, for example the average Cd concentration
over a 1-hectare field if remedial measures are applied to 1-hectare areas (Goovaerts,
1997). It should be mentioned that the block can have any size or shape. For a
description of the block kriging estimator we refer to Isaaks and Srivastava (1989)
and Goovaerts (1997). Typically, block kriging does not affect the interpolated
values much, but it does decrease the kriging standard deviation, particularly in
cases with large short-distance spatial variation (Webster and Oliver, 2007). The
performance of block kriging has been assessed, for example, by Bio et al. (1999),
Van Horssen et al. (2002), Hengl (2007) and Li and Heap (2008).

In the kriging methods described above the value of the target variable is predicted
at unvisited locations, or average values for areas of interest are estimated, and
the accuracy is quantified by the kriging variance. In indicator kriging the kriging
algorithm is applied to indicator data:

I(s; z) =
{

1 if Z(s) ≤ z
0 otherwise . (2.13)

Indicator kriging provides estimates of the conditional cumulative distribution func-
tion (ccdf) of Z(s):

F (s; zk | (n)) = P {Z(s) ≤ zk | (n)} , (2.14)

in which zk, k = 1, . . . ,K indicates a set of threshold values discretizing the range
of variation of z, and (n) indicates the set of n neighbouring data values Z(si) =
z(si), i = 1, . . . , n. The performance of indicator kriging has been evaluated by,
for example, Atkinson and Lloyd (2003). Note that in indicator kriging the ccdf
is not described by its parameters, but that probabilities that threshold values zk
are exceeded are estimated at unvisited locations. For details on indicator kriging
we refer to Isaaks and Srivastava (1989), Goovaerts (1997) and Webster and Oliver
(2007). Indicator kriging may be applied 1) if the target variable has a non-Gaussian
distribution, 2) for interpolation of categorical variables. Recent examples of the
application of indicator kriging in spatial risk assessment are given by Goovaerts
(2008), who applied indicator kriging in the geostatistical analysis of health and
exposure data, and by Stelzenmüller et al. (2010), who predicted species occurrence
probabilities of fishes for the UK continental shelf.

Several kriging methods other than indicator kriging have been developed to inter-
polate non-Gaussian distributed variables. Like indicator kriging, disjunctive kriging
(Deutsch and Journel, 1998; Journel and Huijbregts, 1978; Webster and Oliver, 2007)
can be applied to derive ccdf models characterizing the uncertainty about z(s) at an
unvisited location. In indicator kriging the direct and cross indicator covariances are
inferred from the data. In disjunctive kriging, a parametric model of the bivariate
distribution with rather restrictive assumptions is used, which is characterized by
a transform of the original data and the covariance of those transforms. Deutsch
and Journel (1998) advised to apply a Multi-Gaussian approach or median indicator

A disposition of interpolation techniques 23



kriging instead of disjunctive kriging. Multi-Gaussian kriging with transformation
of the target variable (Goovaerts, 1997; Deutsch and Journel, 1998) is particularly
useful when the distribution of the z-data deviates from the normal distribution, as
is the case with many environmental variables. Multi-Gaussian kriging starts with a
transformation of the original z-data into y-values with a standard normal histogram
(the so called normal score transform). Next, the y-values can be interpolated to
any unvisited location by simple kriging, ordinary kriging or kriging with a trend
model. Inference of the normal ccdf G(s; y | (n)) can be obtained by estimating its
two parameters, mean and variance, at any unvisited location. It should be noted
that 1) the Multi-Gaussian assumption is hard to validate, and 2) the normal score
transform is not unbiased.

In lognormal kriging (Journel and Huijbregts, 1978) the target variable z is trans-
formed to the logarithmic scale before the values are interpolated using the kriging
system. After backtransformation to the original scale, the interpolated values are
median unbiased estimates. The exponentiation in the backtransformation might
make lognormal kriging sensitive to errors in the interpolation process, since these
errors are exponentiated. For that reason several geostatisticians prefer MultiGaus-
sian kriging and indicator kriging above lognormal kriging (Deutsch and Journel,
1998), although it must be noted that the normal score and indicator transforms
suffer from the same problems. Trans-Gaussian kriging (Cressie, 1993; Diggle and
Ribeiro, 2007) is a more general form of lognormal kriging and refers to kriging using
transformations to the Gaussian distribution such as Box-Cox-transformations:

z∗ =
{

(zλ − 1)/λ if λ 6= 0 ,
log(z) if λ = 0 . (2.15)

In factorial kriging (Goovaerts, 1997; Deutsch and Journel, 1998; Webster and
Oliver, 2007) a random function (RF) model with two or more independent stochas-
tic components or factors is considered:

Z(s) = Z0(s) + Z1(s) + · · ·+ ZL(s) , (2.16)

(note the difference with the RF model in Eq. (2.7)). The Z-covariance is the sum
of the L + 1 component covariances. Factorial kriging becomes interesting if one
wants to separate the factors (e.g., physical processes or human activity) causing
the spatial distribution of a variable. If these factors are related to different scales
and operate different from one another, then for each factor separately a variogram
can be considered.

Geostatisticians composed many variations on the kriging themes described above.
Often these methods are tailored to specific study areas and research aims. A com-
plete overview would be beyond the scope of this study. Kriging methods accounting
for ancillary information will be discussed in Subsection 2.1.2. A number of remain-
ing kriging methods that do not incorporate ancillary information will be discussed
briefly here. As in indicator kriging in Geostatistical classification and class kriging
(Allard, 2003) the range of variation of the z-variable is discretized by cutoffs, di-
viding the range of z into classes. The cutoffs are optimized by minimizing the sum
of products of within-class variance and number of elements within the class over all
classes. In Poisson kriging (Goovaerts and Gebreab, 2008) the variable of interest is
a rate, for instance the mortality rate (number of recorded mortality cases divided
by the size of the population at risk). Bayesian kriging has been applied by Biggeri
et al. (2006) to predict the risk of parasite infection. Robust kriging (Fournier and
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Furrer, 2005) has been developed to be less sensitive to erroneous measurements in
interpolation. Variation decomposition + kriging with a relative variogram and non-
stationary residual variance (Raty and Gilbert, 2003) shows some similarities with
factorial kriging since variation is considered at various scales. Detrending combined
with kriging (Genton and Furrer, 2003) is based on the RF-model given in Eq. (2.7).
The deterministic trend is described by a nonparametric surface, and after subtract-
ing this surface from the data, the residuals are kriged. Finally, the kriged values
are added to the deterministic trend surface. A similar approach is neural network
residual kriging, described in Demyanov et al. (2003), in which the deterministic
trend component is modelled by an artificial neural network. Modified residual krig-
ing (Erxleben et al., 2002) is also based on the RF-model given in Eq. (2.7). As
contrasted to kriging with a trend model the parameters of the trend model are not
estimated simultaneously with the calculation of the kriging weights, but separately.
First, a parametric model describing the deterministic trend surface is fitted. Next,
this surface is subtracted from the z-values and the residuals are kriged. Finally, the
kriged values are added to the deterministic trend surface. Walvoort and De Gruijter
(2001) developed compositional kriging, which aims to satisfy the constant sum and
nonnegativity constraints of compositional data, expressed as fractions or percent-
ages. Diggle and Ribeiro (2007) defined generalized linear models for geostatistical
data that provide a sound statistical basis for non-Gaussian spatially dependent
variables.

All kriging methods described above are based on Euclidian distance (straight line
distance). The Euclidian distance might not be appropriate to interpolate chemical
or biological variables that are dispersed within surface water systems such as stream
networks. Knotters et al. (2009) give an overview of kriging methods tailored to in-
terpolation within stream networks. Ver Hoef et al. (2006) and Peterson et al. (2007)
developed kriging methods based on the symmetric hydrologic distance (SHD). The
SHD is the distance between two points in a stream network, measured along the
stream segments connecting these two points. Peterson and Urquhart (2006) and
Peterson et al. (2006) developed a kriging method based on weighted asymmetric
hydrologic distance (WAHD), which is unidirectional because movement between
sites is restricted to either the upstream or downstream direction. Spatial weights
represent the relative influence of one site on another. Sites that are not connected
have zero spatial weight. The segment proportional influence (PI) of an incoming
stream segment is calculated by dividing its watershed area by the total upstream
watershed area at the confluence or survey site. The PI of one site on another is
the product of the segment proportional influences found in the path between the
flow-connected sites. Spatial weights are calculated by taking the square root of the
PI’s. Lyon et al. (2008) developed a kriging method that incorporates landscape
characteristics in an adjusted distance metric. This approach has similarities with
WAHD. The symmetric hydrologic distance between two points is weighted for the
similarity in characteristics of areas that contribute to the stream in which the points
are situated. Skøien et al. (2006) and Skøien and Blöschl (2007) presented topological
kriging (Top-kriging) for interpolation in stream networks based on ‘regularisation’
of the variogram from between-point to between-catchment level. Chokmani and
Ouarda (2004) and Guillemette et al. (2009) followed an approach in which a ‘phys-
iographical space’ is constructed using the results of principal component analysis
(PCA) and canonical correlation analysis (CCA). In this physiographical space the
target variable is interpolated by kriging.
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Splines

Spline functions are polynomials which are fitted in a flexible way through obser-
vations of z. The performance of splines, thin plate splines, thin plate smoothing
splines with tensions or Laplacian smoothing splines has been evaluated in many
studies (Voltz and Webster, 1990; Hutchinson, 1995; Guenni et al., 1996; Brus et al.,
1996; Schloeder et al., 2001; Saveliev et al., 2005; Hengl, 2007; Li and Heap, 2008;
Hofstra et al., 2008; Luo et al., 2008). Methods of radial basis functions (RBF)
based on splines have been discussed by Thieken (2003) and Denby et al. (2005).
Hofierka (2005) evaluated the Regularized Spline with Tension. If accuracy is quan-
tified locally interpolation based on splines tends to kriging. For a discussion on
the similarity between thin plate smoothing splines and kriging we refer to Dubrule
(1984) and Hutchinson and Gessler (1994).

Methods based on Bayesian statistics

The maximum entropy estimator has been described by, e.g., Lee (2003). For ap-
plications with ancillary information we refer to Section 2.1.2, under “Other meth-
ods”. The maximum entropy method is also used to model the spatial distribution
of species for which occurrence-only (or presence-only) data are available (Phillips
et al., 2006, Maxent). Other methods to interpolate occurrence-only data are the
Genetic Algorithm for Rule-Set Prediction (Stockwell and Peters, 1999, GARP),
Ecological Niche Factor Analysis (Hirzel et al., 2002, ENFA).

Bayesian automating fitting functions are described by, e.g., Palaseanu-Lovejoy
(2005), and hierarchical Bayesian models by Biggeri et al. (2006). Van de Kassteele
et al. (2005) applied geostatistical interpolation based on Bayesian inference to in-
terpolate the annual number of ozone exceedance days in the Netherlands.

Regression methods

Regression on spatial coordinates or trend surface analysis can be used in spatial
interpolation (He et al., 2005; Hengl, 2007; Li and Heap, 2008; Luo et al., 2008).
It should be noted that the residuals are assumed to be spatially independent in
trend surface analysis. In many situations this assumption will be too strong, and
universal kriging with spatial coordinates is preferred.

Methods based on neural networks

Methods based on neural networks are data-driven and do in general not incorporate
physical knowledge. Studies in which neural networks methods are evaluated are
Pisoni et al. (2008) (Artificial Neural Networks), Rigol-Sanchez (2005), Timonin
and Savelieva (2005), Dutta et al. (2005) and He et al. (2005) (Back-Propagation
Artificial Neural Networks and Radial Basis Functions Neural Networks).
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Other methods

Besides the methods described above, many other, less general, methods for spatial
interpolation exist to which we briefly refer here. Denby et al. (2005) and Uboldi
et al. (2008) evaluated Optimal Interpolation (Gandin, 1963) in mapping meteo-
rological variables (see also Subsection 4.1.3). Ingram et al. (2005) evaluated the
use of Sparse Gaussian Processes in spatial interpolation. Haskard et al. (2007)
described Anisotropic Matérn Correlation and Spatial Prediction Using REML for
interpolation of soil salinity data. Hofstra et al. (2008) evaluate the performance
of Conditional Interpolation (CI) which has specifically been developed for gridding
precipitation. Sadahiro (1999) compared four methods for areal interpolation, in
which data are transferred from one zonal system to another (in contrast to point
interpolation): areal weighting method, point-in-polygon method, kernel method
and ‘intelligent methods’ that use supplementary data such as satellite images or
landuse data in areal interpolation to improve estimation accuracy. Teegavarapu
(2009) combined Association rule mining (ARM) and ordinary kriging to estimate
missing precipitation records.

2.1.2 Methods using ancillary information

Stratified kriging

Ancillary information is often present in the form of so called choropleth maps, for
example a soil map or a land use map. If it is likely that the mean of the target
variable, its variance or both differ between the map units (strata), then a stratified
kriging approach might improve the accuracy of spatial predictions. Examples are
given by Hernandez-Stefanoni and Ponce-Hernandez (2006) and Brus and Heuvelink
(2007). The following aspects need attention in stratified kriging:

1. Are variograms estimated for each stratum separately or is one variogram
estimated for the whole study area?

2. How are discontinuous or gradual transitions at the stratum delineations dealt
with?

Ad 1: Accurate variogram modelling requires at least 100-150 observations (Webster
and Oliver, 1992), and short as well as long distances between the data locations. If
these requirements are not fulfilled at stratum level, then only a variogram for the
whole study area can be estimated.
Ad 2: Boucneau et al. (1998) described modifications of ordinary kriging to model
discontinuous or gradual transitions at the delineations of strata.

Cokriging methods

In cokriging (Isaaks and Srivastava, 1989; Goovaerts, 1997; Deutsch and Journel,
1998) the RF-model of Eqs. (2.1) and (2.7) are extended with more than one variable:

Zi(s) = mi(s) +Ri(s) , (2.17)
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with i, i = 1 . . . Nv indicating the ith variable. z1 is referred to as the primary
variable, zi, i = 2 . . . Nv as the secondary variables. In simple cokriging each local
mean mi(s) is considered to be known and constant in the entire study area. In
ordinary cokriging the means mi(s) are assumed to be constant but unknown within
local neighborhoods. Ordinary cokriging has two drawbacks, following from the
constraint that the weights for the secondary data have to sum to zero. The first
is that some of the weights may be negative, thus increasing the risk of getting
unacceptable estimates, e.g. negative metal contents. The second is that most of
the weights tend to be small, thus reducing the influence of the secondary data. As
a remedy standardized ordinary cokriging was introduced (Isaaks and Srivastava,
1989; Goovaerts, 1997), in which knowledge of the stationary means of both the
primary and secondary variables is used. These means can be estimated from the
sample means. In the standardized ordinary cokriging system the sum of the weights
for primary and secondary data is constrained to 1. The sample means are used
to rescale the secondary variables in advance so that their means equal that of the
primary variable. However, Papritz (2008) showed that using sample means to apply
standardized ordinary cokriging is in fact inferior to ordinary cokriging. In cokriging
with trend models the means mi(s) are modelled as linear combinations of known
functions fki(s), analogous to Eqs. (2.8) to (2.12) (also called universal cokriging
(Pebesma, 2004)). An alternative is modified residual cokriging (Erxleben et al.,
2002), in which the parameters of the trend model for the primary variable are not
estimated simultaneously with the calculation of the kriging weights, but separately.
First, a parametric model describing the deterministic trend surface is fitted. Next,
this surface is subtracted from the z-values and the residuals are interpolated by
cokriging, using secondary variable(s). Finally, the co-kriged residuals are added to
the deterministic trend surface.

A practical disadvantage of cokriging is the possible instability of the cokriging sys-
tem. More specifically, the matrix containing the covariances and cross-covariances
between the variables is sensitive to instability, in particular when the secondary
variables are much more densely sampled than the primary variable. A solution to
this problem is to use only the secondary datum closest to the location s0 to be
interpolated to, referred to as collocated cokriging (Goovaerts, 1997; Deutsch and
Journel, 1998). Cokriging can also be performed within strata, analogous to strati-
fied kriging (Hernandez-Stefanoni and Ponce-Hernandez, 2006; Li and Heap, 2008).
In several studies the performance of cokriging has been evaluated and compared
with methods in which kriging and regression are combined (Ahmed and de Marsily,
1987; Knotters et al., 1995; Brus and Heuvelink, 2007; Coulibaly and Becker, 2007;
Hengl, 2007; Luo et al., 2008).

Principal component kriging

Principal component kriging (Goovaerts, 1997) aims to reduce the cokriging of Nv

variables to the kriging of Nv principal components. This means that Nv variograms
of principal components are estimated, that each of the Nv principal components is
estimated separately at each location s, and that finally the estimate of zi at s is
reconstituted as a linear combination of the principal component estimates at that
location plus the mean mi. In contrast to cokriging, in principal component kriging
only those data locations where all Nv variables zi are observed can be considered.
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Combinations of regression and kriging

Kriging combined with linear regression (Delhomme, 1978), also reffered to as kriging
with uncertain data, is based on the RF-model for a primary variable in Eq. (2.1).
Two types of data on the primary variable are considered: errorless observations
and imprecise data obtained by linear regression with secondary variables. It is
assumed that the regression errors are 1) nonsystematic (i.e., random), 2) spatially
uncorrelated between themselves, and 3) uncorrelated with the variable. Next the in-
accuracy of the regression predictions can be accounted for by simply subtracting the
variance of prediction errors from the diagonal elements of the kriging (covariance)
matrix. Although cokriging has a better theoretical foundation, kriging combined
with linear regression showed a relatively good performance in comparative studies
by Ahmed and de Marsily (1987) and Knotters et al. (1995). As compared to cokrig-
ing, kriging combined with linear regression needs much less computational effort.
As compared to various methods to be described below, in kriging combined with
linear regression, data on the secondary variables do not need to be available at the
prediction points. Data on both the primary and the secondary variables need to
be available at a sufficiently large number of locations to fit the regression model.

Universal kriging, kriging with an external drift or kriging with a trend model (Ahmed
and de Marsily, 1987; Goovaerts, 1997; Deutsch and Journel, 1998) is based on the
RF-model in Eq. (2.7). Here the trend is not a function of spatial co-ordinates but
a function of secondary variables. Note that data on the secondary variables need
to be available at the prediction points. Universal kriging incorporating secondary
variables has been evaluated in several comparative studies, for example Ahmed and
de Marsily (1987), Denby et al. (2005), Attorre et al. (2007), Brus and Heuvelink
(2007), Coulibaly and Becker (2007), Hengl (2007), and Bargaoui and Chebbi (2009).
Heuvelink et al. (2007) described its application in digital soil mapping.

Kriging with a guess field (Delhomme, 1978; Ahmed and de Marsily, 1987), re-
gression kriging (Odeh et al., 1994, 1995, model B), (Hengl et al., 2004, 2007) or
residual kriging (Mardikis et al., 2005) are similar methods based on the RF-model
in Eq. (2.7). First, a trend surface or ‘guess field’ is constructed. This guess field
may result from a numerical model (Delhomme, 1978; Ahmed and de Marsily, 1987).
The guess field is subtracted from the observations on the primary variable, and the
residuals are interpolated by ordinary kriging. Spatial predictions of the primary
variable are obtained by adding the kriged residuals to the guess field. Kriging with
a guess field is related to Simple kriging with varying local means (Goovaerts, 1997;
Li and Heap, 2008) in which the stationary mean m in Eq. (2.4) is replaced with
known varying means that depend on secondary information. The guess field can
also result from a regression model (Odeh et al., 1994, 1995; Hengl et al., 2004,
2007; Mardikis et al., 2005) explaining the primary variable from secondary vari-
ables. After fitting the regression model, the regression residuals are interpolated by
simple kriging. Spatial predictions of the primary variable are obtained by adding
the kriged residuals to the regression predictions. Problems related to estimating
the residual variogram in regression kriging are addressed by Lark et al. (2006), who
present universal kriging with restricted maximum likelihood (REML-E-BLUP) to
estimate the spatial variance model. Hengl (2007) applied regression kriging to in-
dicator variables, using continuous memberships that are linearized using the logit
transformation. Pebesma et al. (2005) combined Poisson regression (a General-
ized Linear regression Model, GLM) and (co)kriging of residuals to map sea bird
densities over the North Sea, and assessed temporal changes by comparing spatial
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aggregates of consecutive years. Regression trees (CART, see below) can also be
applied in regression kriging (Bishop and McBratney, 2001; Erxleben et al., 2002;
Li and Heap, 2008). Bishop and McBratney (2001) also combined a Generalized
Additive regression Model (GAM) with kriging. Hengl et al. (2009) combined point
pattern analysis, Ecological Niche Factor Analysis (Hirzel et al., 2002, ENFA) and
regression-kriging to interpolate occurrence-only data.

Regression methods

If the variable of interest is related to one or more auxiliary variables for which ex-
haustive high resolution data are available, then a regression model describing this
relationship can be used in spatial interpolation, see, e.g., Chapter 3 in Denby et al.
(2005). An example of such an auxiliary variable is ground surface elevation, ex-
haustive data of which are available in a Digital Elevation Model (DEM). It should
be noted, however, that the regression residuals are assumed to be spatially indepen-
dent. If this assumption is too strong cokriging or one of the previously discussed
combinations of regression and kriging is advised. Odeh et al. (1994) applied a mul-
tiple linear regression model in the spatial prediction of soil variables. Wilks (2008)
applied local weighted regression in the spatial interpolation of weather generator
parameters. The weights are determined by the distances between the interpolation
point and the locations of the training data. Regression trees (CART) (Li and Heap,
2008) or binary decision trees use binary recursive partitioning whereby the data of
the primary variable are successively split along the gradient of the explanatory
variables into two descendent subsets or nodes. The data are split in a way that
at any node the difference between two split groups is maximized. The mean value
of the primary variable in each node can then be used to map the variable across
the region of interest. For a detailed description of regression methods, including
GAM, Ridge-regression, LASSO and artificial neural networks we refer to Hastie
et al. (2009).

Other methods

In classification (Li and Heap, 2008) an area is divided into subareas or strata
using choropleth maps such as soil maps, vegetation maps, or maps with adminis-
trative areas. Next these subareas are characterized by the mean and variance of
the attribute measured at locations within the area of interest. This method shares
the same assumptions as regression methods on the absence of spatial structure in
the residuals. In Stratified global mean estimation (Brus et al., 1996; Hernandez-
Stefanoni and Ponce-Hernandez, 2006) the uncertainty about the true global mean
can be quantified if block kriging is applied, the strata being blocks, see Subsec-
tion 2.1.1. See Chapter 6 for the use of block kriging in upscaling. Borak and
Jasinski (2009, PCM) estimated per-class means to replace missing observations, in
this way using global estimates as local estimates. Laplacian smoothing splines can
also be applied within strata (Brus et al., 1996).

The Bayesian Maximum Entropy (BME) method (Christakos, 2000; Brus and
Heuvelink, 2007; Brus et al., 2008) characterizes our uncertainty about spatial vari-
ables with probability distribution functions. The basic idea is to choose probability
distribution functions that have maximum entropy, while satisfying a number of
constraints. The entropy of a random variable is a measure of its uncertainty: the
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larger the entropy, the larger the uncertainty. Under the constraints that the mean,
variance and spatial correlation of the resulting probability distribution are known
and fixed, BME yields a normal distribution and the results are identical to those
of kriging. However, BME can also handle different and additional constraints and
thus is more flexible than kriging, but the price paid for this is an increased numer-
ical complexity. The two main steps in BME are first to compute the unconditional
probability distribution of the variable using a numerical technique known as itera-
tive scaling, and second to condition the distribution on the available observations.
The BME method can be applied to both numerical and categorical variables.

As kriging and BME, the Markov random field (MRF) approach (Besag, 1974; Nor-
berg et al., 2002; Wu et al., 2004; Kasetkasem et al., 2005; Hartman, 2006; Brus and
Heuvelink, 2007) aims to characterize random spatially distributed variables with
probability distribution functions. The starting point of MRF is defined in terms
of conditional probability distributions, in which case the probability of occurrence
of the variable of interest at some location is defined conditional to the value of
the variable at neighbouring locations. The key property of the MRF approach is
that it assumes that the local neighbourhood contains all information necessary to
characterize the probability distribution of the variable. In addition, it uses numer-
ical approaches, in particular Markov Chain Monte Carlo simulation, to compute
predictions and simulations of the random variable. MRF is not as well developed
as kriging and involves advanced mathematical statistical theories, but it appears
a promising technique that has recently drawn increased attention, simultaneously
with the development of Markov Chain Monte Carlo methods. As BME, the MRF
method can be applied to both numerical and categorical variables.

Barber and Gelfand (2007) formulated a log-linear model of coregionalization in a
Bayesian hierarchical framework to interpolate tree population sizes.

2.1.3 Methods incorporating process knowledge

A possible way to incorporate process knowledge in spatial interpolation is to con-
struct a guess field using a physical-mechanistic model, and next to interpolate the
residuals (see kriging with a guess field in the previous subsection and, e.g., Del-
homme (1978); Ahmed and de Marsily (1987)). Denby et al. (2005) applied radial
basis functions and Inverse Distance Weighting in interpolating the residuals of a
guess field constructed by physical-mechanistic models for prediction of atmospheric
concentrations. They also mention a Bayesian approach for combining measured and
modelled data, which distinguishes hard (measured) and soft (modelled) data, that
can be applied for spatial interpolation (Denby et al., 2005, p. 30). Matthijsen and
Visser (2006) interpolated particulate matter concentrations (PM10) using the model
OPS (Van Jaarsveld, 2004), and mapped the local uncertainties on the basis of an
uncertainty analysis.
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2.2 Methods that do not quantify uncertainty

2.2.1 Methods without use of ancillary information

Methods based on Inverse Distance Weighting

Inverse Distance Weighting methods (IDW) are based on the assumption that the
similarity of values of a spatially distributed numerical variable z decreases with
distance d or a power p of the distance. This decline of similarity is incorporated in
the interpolation as

ẑ(s0) =

∑n
i=1

z(si)
dp

i∑n
i=1

1
dp

i

, (2.18)

in which s0 indicates the location to be interpolated to, and si, i = 1 . . . n indicate
the n locations where z has been observed. Figure 2.5 (left) gives an example of
interpolation by IDW.

Inverse distance weighting in its most simple form with p = 1 has been compared
with alternative interpolation algorithms by Zimmerman et al. (1999), Caruso and
Quarta (1998), Schloeder et al. (2001), Erxleben et al. (2002), Jones et al. (2003),
Pebesma (2004), Denby et al. (2005), He et al. (2005), Mardikis et al. (2005),
Hernandez-Stefanoni and Ponce-Hernandez (2006), Coulibaly and Becker (2007),
Hengl (2007), Luo et al. (2008) and Spadavecchia and Williams (2009). The perfor-
mance of inverse squared distance weighting (p = 2) has been compared with the
results of alternative interpolation algorithms by Brus et al. (1996).

Several authors tailored the IDW-algorithm for application in specific cases: De-
trended inverse distance weighting (D-IDW; Attorre et al. (2007)); Gradient Plus
Inverse Distance Squared (Mardikis et al., 2005); Angular distance weighting (ADW;
Hofstra et al. (2008)); Anisotropic Inverse Distance Weighting (Tomczak, 2003);
Association rule mining (ARM) based spatial interpolation (IDW, Teegavarapu
(2009)), and Association rule mining (ARM) based spatial interpolation (modified
inverse-distance weighting method, Teegavarapu (2009)).

A refinement of the IDW method is natural neighbour interpolation (NNI; Jones
et al. (2003), Hofstra et al. (2008) and Li and Heap (2008)). In NNI the weights
depend not only on distance, but also on topological factors. For a description of
natural neighbour interpolation we refer to Webster and Oliver (2007).

The nearest neighbour algorithm

As in inverse distance weighting methods, the basic assumption is that values of
a spatially distributed variable at short distance are more similar than at larger
distance. In nearest neighbour methods the value of z at the nearest observation
point is assigned to z at the prediction point, s0. In fact, it is IDW interpolation
with the power p in Eq. (2.18) going to infinity. The pattern resulting from this
method is also referred to as ‘Thiessen polygons’. Nearest neighbour algorithms can
be applied to numerical as well as to categorical variables. Comparative studies in
which nearest neighbour algorithms are evaluated are reported by Brus et al. (1996),
Denby et al. (2005), He et al. (2005), Stahl et al. (2006) and Li and Heap (2008).
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Figure 2.5: Interpolation of temporal change in ground surface elevation in the ‘Wadden
Sea’ (see also Figure 2.3). Left: Inverse Distance Weighting. Center: Thiessen polygons.
Right: Triangular Irregular Network.

Other methods

There are many, less general, interpolation methods that do not quantify uncer-
tainty and that do not make use of ancillary information. We mention them briefly
here. The Triangular irregular network (TIN), also referred to as bilinear interpo-
lation, is the two-dimensional equivalent of linear interpolation (Denby et al., 2005;
Li and Heap, 2008). Teegavarapu (2009) applied association rule mining (ARM)
based spatial interpolation (coefficient of correlation weighting) to estimate missing
precipitation records. A method known from soil surveys is representative profile
description (Brus et al., 1996), which is applicable to numerical and categorical
variables. To each unit of the soil map a ‘representative’ soil profile is assigned on
the basis of expert knowledge. Caruso and Quarta (1998) compared Hardy’s Mul-
tiquadric Method and the Tension Finite Difference Method with inverse squared
distance weighting and kriging. Luo et al. (2008) applied local polynomial interpola-
tion to interpolate continuous wind speed in England and Wales. Perry and Niemann
(2008) applied Empirical Orthogonal Function (EOF) interpolation to generate soil
moisture patterns.

2.2.2 Methods using ancillary information

Methods based on stratification

Prior information such as soil maps or landuse maps can be used to divide an area
into subareas or strata. Next, interpolation algorithms can be applied within these
strata, adapted to the characteristics of variable to be interpolated within these
strata. Examples of deterministic methods in which stratification is applied are:

• Moving average (stratified) (Brus et al., 1996).

• Nearest neighbour algorithm (stratified) (Brus et al., 1996).

• Inverse squared distance (stratified) (Brus et al., 1996).

Other methods

Falke and Husar (1998) and Denby et al. (2005) described a deterministic method
to improve interpolations of observations on a variable z by using a more densely
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observed ancillary variable y, which is based on the following algorithm:

ẑ(s0) =

∑n
i=1wi

z(si)
y(si)∑n

i=1wi

 · y(s0) , (2.19)

where z(si) is the measured value in measuring points si, i = 1 . . . n, y(si) is the
ancillary variable in the measuring points si, y(s0) is the ancillary variable in the
interpolation point s0, and wi is the weight that depends on the distance of points
si, s0. Eq. (2.19) differs slightly from the equation given by Denby et al. (2005),
which obviously contained an error.

A spatial model based on classification, such as a traditional soil map, can be seen
as a special form of interpolation (Heuvelink and Webster, 2001; Hengl, 2007) for
categorical data.

2.2.3 Methods incorporating process knowledge

Analogous to the methods mentioned in Subsection 2.1.3 a guess field can be con-
structed using a physical-mechanistic model, see Denby et al. (2005) for a review.
The interpolations can possibly be improved by interpolating the residuals using a
deterministic algorithm as described in Subsection 2.2.1, and adding them to the
guess field.
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Chapter 3

Interpolation in time

3.1 Methods that quantify uncertainty

3.1.1 Methods without use of ancillary information

Methods based on kriging

The kriging methods described in Subsection 2.1.1 can also be applied for interpo-
lation in time. Examples are given in the case study described in Section 8.1. In
modelling the temporal dependence structure, e.g. a variogram, it is important to be
aware of the specific character of processes developing in time. In particular, when
secondary variables are used in the model (see subsection 3.1.2) causality should be
considered.

ARIMA modelling

Time series models can be used for data filling, which can be seen as a form of
interpolation in time. We discuss time series modelling briefly here, with a focus on
data filling.

The state of many phenomena in nature changes with time. This temporal variation
can be described by time-series models. One general class of models is that of time-
series models as described by Box and Jenkins (1976) and Hipel and McLeod (1994).

A process is said to be stationary if its statistical properties do not change with time.
Stationarity can only be assumed, given the length of the period and the length of
time intervals. Strong or strict stationarity means that all statistical properties are
time-independent, so they do not change after time shifts. It is often sufficient to
assume weak stationarity of order k, which means that the statistical moments up
to order k only depend on differences in time and not on time as such. Second-order
stationarity means that the mean, the variance and the autocorrelation function of
the process are time-independent. This is also called covariance stationarity.

We now consider a discrete-time second-order stationary stochastic process. Suppose
that we have an equidistant time series of n observations, z1, z2, z3, . . . , zn. The
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process cannot be exactly described, so zt is considered to be a realization of a
stochastic process Zt. For many environmental processes it is likely that the state
at a particular time is correlated with the state at previous times. These processes
are referred to as autoregressive (AR) processes. An autoregressive process of order 1,
an AR(1) process or Markov process, is given by

Zt − µ = φ1(Zt−1 − µ) + εt , (3.1)

where µ is the mean level, φ1 is the AR parameter, and εt is the error term with zero
mean and variance σ2

ε . εt is assumed to be identically and independently distributed
(IID), so

E[εtεt−k] =
{
σ2
ε if k = 0

0 if k 6= 0 (3.2)

for all t. Using the backward shift operator B, Eq. (3.1) can be written as

Zt − µ = φ1(BZt − µ) + εt , (3.3)

where BZt = Zt−1 . Eq. (3.3) can also be written as

φ(B)(Zt − µ) = εt , (3.4)

with φ(B) = 1− φ1B.

An autoregressive process of order p, an AR(p) process, is given by

Zt − µ = φ1(Zt−1 − µ) + φ2(Zt−2 − µ) + · · ·+ φp(Zt−p − µ) + εt , (3.5)

or using the backward shift operator:

φ(B)(Zt − µ) = εt , (3.6)

where φ(B) = 1−φ1B−φ2B
2−· · ·−φpBp is the autoregressive operator of order p. To

obey the assumption of stationarity, the values of the AR parameters are restricted.
For an AR(1) process, this restriction is |φ1| < 1.

In moving average processes the state at a certain time depends on a random shock
at that time and a random shock which occurred at one or more previous times. A
first-order moving average process, MA(1), is given by

Zt − µ = εt − θ1εt−1 . (3.7)

Here εt and εt−1 are random shocks which form part of a white noise process with
zero mean and finite and constant variance. Using the backward shift operator,
Eq. (3.7) can be written as

Zt − µ = θ(B)εt , (3.8)

where θ(B) = 1 − θ1B is the MA operator of order one. The process is invertible
if |θ1| < 1. For the meaning of invertibility we refer to Box and Jenkins (1976,
p. 49-51) and Hipel and McLeod (1994, p. 104). The process is stationary for all
values of θ1 since εt is stationary. Note that if |θ1| > 1, the current event Zt − µ
depends more on events that happened further in the past. This can be avoided by
the invertibility constraint |θ1| < 1.

An MA(q) process is given by

Zt − µ = εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q , (3.9)
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or
Zt − µ = θ(B)εt , (3.10)

where θ(B) is the MA operator of order q. The process is stationary for all values
of the MA parameters.

A time series may contain properties of an autoregressive process as well as a moving
average process. An autoregressive moving average ARMA(1,1) process is given by

Zt − µ = φ1(Zt−1 − µ) + εt − θ1εt−1 . (3.11)

The ARMA(p, q) process is given by

φ(B)(Zt − µ) = θ(B)εt , (3.12)

where φ(B) and θ(B) are the AR(p) and the MA(q) operator, respectively.

Calculating differences allows a trend to be removed from a series:

∇Zt = (Zt − µ)− (Zt−1 − µ) (3.13)

∇2Zt = ∇Zt −∇Zt−1 (3.14)

and so on, until a series of differences is obtained with a constant mean in time.

Basically, an Autoregressive Integrated Moving Average (ARIMA) model is an ARMA
model for stationary differences:

∇dZt − µ =
θ(B)
φ(B)

εt . (3.15)

A form of nonstationarity often encountered in environmental processes is periodicity
(e.g. seasonality or daily fluctuation). Besides periodicity in the mean, the variance
itself may also have periodic behaviour. For example, shallow water tables in the
wet season may vary more than deep water tables in the dry season, due to reduced
storage capacity of the unsaturated zone in the wet season. If the variance varies
in time, i.e., there is heteroscedasticity, the variance should be made constant by
an appropriate deseasonalization procedure or by a Box–Cox transformation of the
time series (Hipel and McLeod, 1994).

In the case of a seasonal autoregressive moving average process, differences are cal-
culated for the so-called seasonal distance, with the aim of removing a seasonal
trend. For example, the seasonal distance for monthly values is twelve. The general
notation of a SARIMA(p,d,q)×(P,D,Q) model is

∇d∇Ds Zt − µ =
θ(B)Θ(Bs)
φ(B)Φ(Bs)

εt , (3.16)

where s indicates the seasonal lag.

ARIMA modelling is based on equidistant time series. In this context interpolation
can be seen as data filling, i.e. replacing missing values by estimates. Data filling
techniques are back forecasting, seasonal adjustment and intervention analysis. For
a description of back forecasting and seasonal adjustment we refer to Hipel and
McLeod (1994). The climatological method of data filling described by Borak and
Jasinski (2009) (TC) is similar to seasonal adjustment. Data filling by intervention
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measurement, and the width of the prediction intervals hardly

decreases (see Figure 6b). In the limit the measurement error

would be infinitely larger than the (accumulated) system noise,

and in that situation the measurement correction would have no

effect at all. We should end with a graph that is identical to that

of the predictions and prediction intervals given in Figure 3.

Figures 7 and 8 present the results of applying the Kalman

smoother. The predictions are even closer to the measure-

ments, and the prediction intervals smaller, than the corre-

sponding ones obtained with the Kalman filter. This is

because for each point in time there are measurements ahead

having influence in addition to those of the past, and so there

is more information. Notice also that the width of the intervals

after correction to a measurement does not steadily increase

until the next measurement, but rather that the width is small

near measurement points and larger further away from them.

This is because when approaching a new measurement point,

the prediction can already benefit from it because future mea-

surements improve the prediction.

Patterns in which the prediction interval is widest far away

from measurement points bear much resemblance to those in

the kriging variances. They confirm the similarities between

kriging and Kalman smoothing. Unlike in kriging, however,

the prediction limits are neither smooth nor symmetric

between data points; see Figure 8. The reason is that the

predictions depend on the excess precipitation, which fluctu-

ates. An exception is the period around 1 December 1991, in

which precipitation excess was zero (see Figure 3) and where

the curve of the Kalman smoother and the associated predic-

tion interval indeed resemble what we normally observe when

applying kriging.

Autocorrelated noise

The model expressed in Equation (30) can be improved if

we allow the noise term "(t) to be correlated in time, as

follows:
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Figure 5 Predicted groundwater levels over the 6-month period after correction to the measurements by the Kalman filter.
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that the state estimates themselves have also changed. The

main reason for this is that the calibration procedure yielded

different values for the parameters a and b for the two models

(see Table 1).

Further considerations

As above, one has to start the Kalman filter by guessing the

value Z(0). Any reasonable value should serve because the

predictions provided by the filter soon bear no influence

from the initial value, particularly when the associated var-

iance �2(0) is assigned a large value. A more serious difficulty

is to obtain values for parameters for Equation (5). In our

example we assumed that the parameters are known – we

calibrated them using procedures described in the work of

Knotters & van Walsum (1997). Calibration procedures can

be cumbersome and do not always yield satisfactory results. In

addition one must have estimates of the noise in the process,

�2
"ðtÞ, and of the measurement error, �2

�ðtÞ. The first of these

will depend on general understanding and experience of the

way the process deviates from the relation expressed by the

deterministic terms in Equation (5).

The second, the variance of the measurement error, might be

known from past experience with the equipment being used for

measurement. If it is not then one can determine it experimen-

tally in a separate exercise or by building into the time series

repeated measurements of the same state on several occasions.

One would assume that the error did not depend on the

elapsed time, i.e. �2
� was no longer a function of t. Further,

in many instances one can assume that the coefficient c(t) in

Equation (6) is constant in time, as is Ksat in Equation (4) for

Darcy’s law. Or, indeed, we might simply have noisy measure-

ments of the state variable itself, in which case c ¼ 1. In both

of these circumstances, and provided that a(t) and �2" (t)

are constant in time, the Kalman gain, k(t), converges rapidly

to a constant value k, and it is accompanied by a convergence

of state variances, �2�(t) and �2þ(t), to �2� and �2þ

respectively.
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Figure 8 Predicted groundwater levels over the 6-month period after correction to the measurements by the Kalman smoother.
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Figure 3.1: Left: Kalman filtering. Right: Kalman smoothing of groundwater levels.
Dopts are observations, fat line represents prediction and thin lines the limits of the 95 per
cent prediction interval. Variance of measurement error = 1 cm2.

modelling will be described below. This method can be seen as a special form of
transfer function-noise (TFN) modelling. Statistical packages like Genstat (Payne,
2000) which estimate ARIMA model parameters by maximum likelihood or least
squares procedures provide also estimates for missing values. It should be noted
that the percentage of missing values should not be too large (say, not more than
10%), and that the missing values should not follow a systematic pattern in time.

State-space approach and Kalman filtering

In the state-space approach a stochastic residual is added to a deterministic model
to represent model error. Observations of the state are used in conjunction with
the dynamic behaviour of the system to make predictions at unobserved points
in time. Two equations are considered: the state equation and the measurement
equation. The state equation has the following general form (according to Heuvelink
and Webster (2001)) (note the similarity with an AR(1) process):

Zt = g {Zt−1}+ εt , (3.17)

and the measurement equation is

Yt = h {Zt}+ ηt, (3.18)

where Yt is the measurement, and ηt is the measurement error. The state equation
(Eq. (3.17)) is used to predict Zt. The accuracy of the prediction depends on the
variance in Zt−1 and on the variance in the system noise εt. If an observation Yt with
known accuracy is available, the original prediction can be updated in a way that
optimally weighs the uncorrected prediction with the observation. This procedure
is referred to as Kalman filtering (Kalman, 1960). In Kalman smoothing the present
state is predicted from past, present and future observations. Important advantages
of the state-space approach are 1) that irregularly observed series can be modelled,
and 2) that physically-mechanistic models can easily be incorporated into the system
(see Subsection 3.1.3). Figure 3.1 gives examples of Kalman filtering and Kalman
smoothing.
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Minimum mean absolute error linear interpolator (MMAELI)

Lu and Hui (2003) developed a minimum mean absolute error linear interpolator
(MMAELI) for missing data in time series which is less influenced by some atypical
observations than maximum likelihood and least squares procedures.

3.1.2 Methods using ancillary information

Methods based on kriging

The cokriging methods and combinations of regression and kriging described in Sub-
section 2.1.2 can also be applied in temporal interpolation. However, the specific
character of processes developing in time, in particular causality, should be consid-
ered.

Transfer function-noise (TFN) modelling

(After De Gruijter et al. (2006)). A class of time-series models which describe the
linear dynamic relationship between one or more input series and an output series
is that of the transfer function model with added noise (TFN) developed by Box
and Jenkins (1976). For applications to environmental series, we refer to Hipel and
McLeod (1994) and Heuvelink and Webster (2001).

If one input series {Xt} is considered, the TFN model is defined as

Zt = Z∗t +Nt , (3.19)

where

Z∗t =
r∑
i=1

δiZ
∗
t−i + ω0Xt−b −

s∑
j=1

ωjXt−j−b (3.20)

is the transfer component, and

Nt − µ =
p∑
i=1

φi(Nt−i − µ) + εt −
q∑
j=1

θjεt−j , (3.21)

is the noise component. The subscript b is a pure delay, which is the number of
time steps after which a reaction to an input change is observed in the output. The
extension to more input series is straightforward.

The transfer component in Eq. (3.19) can be written as

Z∗t = ν0Xt−b + ν1Xt−1−b + ν2Xt−2−b + · · ·
= ν(B)Xt−b .

(3.22)

The weights ν0, ν1, ν2, . . . form the impulse–response function ν(B):

ν(B) =
ω(B)
δ(B)

=
ω0 − ω1B − ω2B

2 − · · · − ωsBs

1− δ1B − δ2B2 − · · · − δrBr
. (3.23)
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The theoretical impulse–response function reflects the same autoregressive and mov-
ing average characteristics as the theoretical autocorrelation function.

We refer to Bierkens et al. (1999) for an application of the Kalman filter algorithm
in TFN modelling of irregularly observed series of water table depths.

Data filling using intervention models

Methods accounting for serial correlation include the intervention models, described
by Hipel and McLeod (1994). Intervention models form a special class of TFN
models. The general form of an intervention model is

Zt = Ii,t + Z∗j,t +Nt, i = 1, . . . ,m , (3.24)

where t = 1, . . . , n indicates the t-th element of a series of length n, Zt is the
process of interest, Ii,t , i = 1 . . .m is the intervention component, Z∗j,t , j = 1 . . . n are
possible n transfer components (see before) and Nt is a noise component describing
the part of Zt that cannot be explained from the intervention and the transfer
component. The noise component is usually taken as an ARMA model, see (3.12).
The intervention component It is a transfer function with the following general form:

It = δ1It−1 + δ2It−2 + · · ·+ δrIt−r + ω0S
(T )
t−b − ω1S

(T )
t−1−b − · · · − ωmS

(T )
t−m−b , (3.25)

where δ1 . . . δr are autoregressive parameters up to order r, ω0 . . . ωm are moving
average parameters up to order m, b is a pure delay parameter and T indicates the
time at which the intervention takes place. Using the backward shift operator B,
(3.25) can be written as

It =
ω(B)
δ(B)

BbS
(T )
t , (3.26)

with Bkzt = zt−k and k is a positive integer.

If S(T )
t is an input series indicating a step intervention, then

S
(T )
t = 0 if t < T,

S
(T )
t = 1 if t ≥ T .

(3.27)

Step interventions influence processes in different ways, which can be expressed by
different forms of the transfer function in Eq. (3.26), see Hipel and McLeod (1994)
for details. The intervention model can also be used for data filling. In this case T
is the time for which a value is missing, S(T )

t = 0 if t 6= T and S
(T )
t = 1 if t = T .

The intervention model for data filling reduces then to

It = ω0S
(T )
t . (3.28)

An estimate for the missing value at T is −ω0.

Other methods

Dekkers and Heisterkamp (2004) described a class of time series models based on
Bayesian statistics. As compared to ARIMA models and TFN models these Bayesian
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time series models can be applied to relatively short time series having a length of
8 to 10 observations. The computer program NPBats of Dekkers and Heisterkamp
(2004) can automatically estimate missing data and the model accounts for changes
in variation (heteroscedasticity). NPBats is applied to detect trends, to describe
relationships between time series and to analyse the influence of governmental policy
on people and environment.

A structural time-series model (Visser, 2002, 2005) has the following basic structure:

yt = trendt + cyclust + (influence of explanatory variables)t + noiset . (3.29)

The parameters of structural time-series models can be estimated with the Kalman
filter algorithm, see Subsection 3.1.3 for a brief description. For details of the esti-
mation procedure we refer to Visser (2002) and Visser (2005).

Dijkema et al. (2007) applied an additive mixed model which is basically a linear
regression + an ARMA model for the residuals. The model has similarities with the
structural time series model of Visser (2002) and Visser (2005).

3.1.3 Methods incorporating process knowledge

Time series models can have a physical basis, e.g. the ARMA model for annual
streamflow described by Salas and Smith (1981), the AR(1) model for soil water
content described by Parlange et al. (1992), the physically based TFN model for
the relationship between precipitation surplus and water table depth described by
Knotters and Bierkens (2000) (with Kalman filter application for fitting to irregularly
observed series), and the continuous-time transfer function-noise model (PIRFICT)
described by Von Asmuth and Knotters (2004).

3.2 Methods that do not quantify uncertainty

3.2.1 Methods without use of ancillary information

All interpolation algorithms described in Subsection 2.2.1 can also be applied in
the time domain, as will be demonstrated in Section 8.1. Borak and Jasinski (2009)
applied temporal linear averaging and temporal cubic splines to replace missing data
in time series of leaf area indices.

3.2.2 Methods incorporating process knowledge

Physical-mechanistic models can be applied to replace missing data in environmental
time series. Stauch and Jarvis (2006) combined multidimensional semi-parametric
spline interpolation with an assumed but unstated dependence of net CO2 flux on
light, temperature and time.
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Chapter 4

Interpolation in space and time

4.1 Methods that quantify uncertainty

4.1.1 Methods without use of ancillary information

Three basic approaches can be distinguished: 1) time series models with a spatial
extension, 2) geostatistical models with a time extension, and 3) hybrid models
combining time series modelling and geostatistical modelling, such as time series
models with regionalized parameters.

The first category includes the STARMA (space-time ARMA model) (Cliff and Ord,
1975; Pfeifer and Deutsch, 1980), which is an extension to the univariate ARMA
model, accounting for correlations between time series observed at various loca-
tions. Dalezios and Adamowski (1995) applied STARMA models in spatiotemporal
precipitation modelling. Epperson (2000) applied STARMA models to represent
theoretical models for ecological variation.

The second category includes the geostatistical approach to space-time (ST) mod-
elling, based on the following RF-model, described for example by Kyriakidis and
Journel (1999), Heuvelink and Webster (2001), Hengl (2007) and Spadavecchia and
Williams (2009):

Z(s, t) = m(s, t) +R(s, t) , (4.1)

where m(s, t) is a deterministic function of the space-time coordinates s and t, and
R(s, t) is a zero-mean stochastic component describing the space-time fluctuations
around m(s, t), with the following autocovariance function:

C(hS,hT) = Cov [R(s, t), R(s + hS, t+ hT)] . (4.2)

Spadavecchia and Williams (2009) compared ST-simple kriging, ST-ordinary kriging
and ST-kriging with an external drift using a residual variogram with spatiotempo-
ral lags in the interpolation of meteorological variables. Because of basic differences
between processes causing temporal variation and processes causing spatial varia-
tion, the residual R(s, t) will usually have space-time anisotropies. To overcome
this problem the Bilonick or metric model might be applied. The stochastic compo-
nent R(s, t) is divided in a S part RS(s), a T part RT(t) and a ST part RST(s, t).
Assuming that these three components are second-order stationary and mutually
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independent, the semivariogram of R(s, t) is the sum of three components:

γ(hS,hT) = γS(hS) + γT(hT) + γST(hST) , (4.3)

in which the ST lag hST is obtained by introducing a geometric anisotropy ratio α:

hST =
√

h2
S + αh2

T . (4.4)

The metric model has the advantage that its component can be interpreted phys-
ically. Estimation of the model parameters is complicated, however. Snepvangers
et al. (2003) compared ST-ordinary kriging and ST-kriging with an external drift
model of soil water content, using the metric model for spatiotemporal structure, and
Jost et al. (2005) applied these methods to soil water storage in a forest ecosystem.
A possible way to account for temporal trends is to include time, for instance Julian
day number, as a secondary variable into the trend component m(s, t) in Eq. (4.1)
(Hengl, 2007). The multivariate geostatistical model introduced by Rouhani et al.
(1992) and discussed by Denby et al. (2005) is based on a multi-scale temporal ap-
proach. The observations are considered as realizations of separate, but correlated
random variables. This collection of one-dimensional random variables can be con-
sidered as a set of correlated random functions. A disadvantage of this multivariate
geostatistical method is that a large number of variograms and covariance functions
need to be estimated. In the spatiotemporal random field, introduced by Christakos
and Vyas (1998) and discussed by Denby et al. (2005), the assumption of stationarity
is not necessary, in contrast to the multivariate geostatistical method.

The third category consists of hybrid models combining time series modelling and
geostatistical modelling. An example is the study on space-time estimation of grid-
cell hourly ozone levels by Meiring et al. (1998), in which ARMA-parameters, mean
field and prewhitened residuals are interpolated spatially. This method shows some
similarities with the Bayesian approach for spatiotemporal interpolation described
by Riccio (2005).

The fractal interpolation of rain rate time series, described by Paulson (2004) does
not fit into one of the three categories described above. This stochastic numerical
method is developed to interpolate point rain rate time series to shorter sampling
periods while conserving the expected first- and second-order statistics, and should
be applicable to the temporal interpolation of radar-derived rain rate maps.

4.1.2 Methods using ancillary information

Analogous to universal kriging, kriging with an external drift or kriging with a trend
model in the spatial context described in Subsection 2.1.2, the trend component
m(s, t) in Eq. (4.1) can be a function of secondary variables. Snepvangers et al.
(2003), Jost et al. (2005) and Spadavecchia and Williams (2009) refer to this method
as to ST-kriging with an external drift. Hoogland et al. (2008, 2010) applied this
method recently to the interpolation of fluctuation characteristics of water table
depths in the Netherlands. Kyriakidis et al. (2004) developed the hybrid model,
combining a model for temporal trend and regression with cokriging of residuals
using secondary variables, to simulate daily precipitation at regional scales. This is
basically a regionalized time series model. The Bayesian Maximum Entropy approach
(BME), briefly described in Subsection 2.1.2, can be extended to the space-time
context (Christakos et al., 2001).
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4.1.3 Methods incorporating process knowledge

The state-space approach described in Subsection 3.1.3 can be extended to space-
time, as described for example by Heuvelink and Webster (2001), Denby et al. (2005),
Heuvelink et al. (2006) and Wu et al. (2008). Large computational efforts are needed
to solve the Kalman filter equations, however, because of the large vectors and
variance-covariance matrices. Knotters and Bierkens (2001) incorporated physical
knowledge into regionalized time series models, by first constructing guess fields of
time series model parameters using the physical relationships described by Knotters
and Bierkens (2000), and next interpolating residuals by ordinary kriging. Bierkens
et al. (2001) and Knotters and Bierkens (2002) embedded the physically based re-
gionalized time series model in a ST-Kalman filter.

Optimal interpolation (Denby et al., 2005; Sen et al., 2006; Tombette et al., 2009)
shows similarities with kriging in calculating interpolation weights, and is equivalent
to data assimilation based on variational methods and the Kalman filter, which are
now considered to be more flexible and easier to apply. Variational methods (Denby
et al., 2005; Wu et al., 2008) are based on the minimization of a cost function for the
difference between model predictions and observations (Lorenc, 1986). Variational
methods are less flexible than Kalman filtering techniques, but the computational
effort is much lower.

4.2 Methods that do not quantify uncertainty

4.2.1 Methods incorporating process knowledge

Process models (also referred to as physical-mechanistic and deterministic models)
can be used for space-time interpolation of environmental variables. Numerous ex-
amples can be given. An example is given by Hoogland et al. (2006), who used
a process model for groundwater flow in interpolating water table depths. Global
information on the accuracy, such as space-time root mean squared interpolations
errors, can be obtained by validation.
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Chapter 5

Summary of interpolation
methods

Tables 5.1 to 5.3 summarize the interpolation methods described in the previous
chapters. The table indicates how the methods meet the criteria listed in Chapter 1.
The conditions on the size of the data set are, if possible, given by a minimum
number of observations needed to interpolate. The minimum of 100-150 observations
for kriging methods is recommended by Webster and Oliver (1992) to fit a model of
spatial structure. If such a model is already available, then the minimum number
of observations needed for kriging is much lower. In time series modelling, the
observation period should amply cover the correlation length in univariate modelling
(e.g., ARIMA models), or the response time in transfer function-noise modelling, see
De Gruijter et al. (2006, Chapter 13) for more details on the sampling aspects of
time series modelling.
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Chapter 6

Aggregation and disaggregation

6.1 Aggregation

Aggregation, also referred to as upscaling, involves transferring information from a
smaller (detailed) scale to a larger (coarse) scale. Here, ’scale’ refers to the ’support’
as it is known in geostatistics, i.e. the size, volume and shape of entities over
which is aggregated. For example, point observations of Cadmium concentration in
the topsoil inform at a point scale. To inform about the Cadmium concentration
at a field scale these point observations need to be aggregated in some way. The
most simple way is to compute the arithmetic average of the values observed in the
field. It should be noted, however, that this will result in unbiased estimates of
the areal mean only if the locations have been selected by Simple Random Sampling
(Cochran, 1977). In all other situations the observations should be weighted in some
way to obtain unbiased and optimal estimates of the areal mean. When locations or
sampling rounds have been selected following a probability-based sampling design,
then the weights are determined by the sampling design. For an overview of designs
for probability sampling we refer to Cochran (1977) and De Gruijter et al. (2006).
For a decision support system on up- and downscaling we refer to Bierkens et al.
(2000).

If the observations have been collected at purposively selected locations or sampling
rounds, then the observed values need first to be interpolated and next the interpo-
lated values can be aggregated. In the interpolation a model of spatial structure can
be applied for weighing the observed values. For instance, the spatial correlation
structure can be described by a semivariogram, see Chapter 2 for details and Chap-
ter 8 for applications. Basically, all interpolation methods described in Chapter 2 to
4 can be used in aggregation of purposively selected observations. A possible way
to aggregate from point scale to, e.g., field scale, is as follows:

1. Interpolate the observed values to a dense grid of interpolation points covering
the area of interest. In case of a geostatistical approach: construct a model of
the spatial structure of the variable, e.g., a semivariogram, and use this model
for weighing the observations. Eqs. (2.5) and (2.6) show how the weights
are calculated in Simple Kriging. For backgrounds on calculation of kriging
weights we refer to Isaaks and Srivastava (1989), Cressie (1993) and Goovaerts
(1997);
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2. Aggregate the interpolated values. For instance, an areal mean can be obtained
by arithmetic averaging of the interpolated values.

If the accuracy of the aggregated value needs to be quantified, the following geosta-
tistical approach can be followed:

1. Obtain an independent realisation of values for a dense grid covering the area
of interest, by conditional geostatistical simulation;

2. Aggregate the simulated values, (e.g., arithmetic averaging to obtain an areal
mean);

3. Repeat steps 1 and 2 a large number of times (say 500). The mean of the 500
aggregated values is a final estimate, the standard deviation is a measure of
its accuracy.

Conditional geostatistical simulation as used in step 2 above is a variant of kriging,
whereby the purpose is not to compute the best estimate at an unobserved location
but instead to generate a possible value from its conditional probability distribu-
tion. Many algorithms have been developed over the past decades, such as Cholesky
decomposition and sequential Gaussian simulation (Goovaerts, 1997).

In Section 2.1.1 block kriging was mentioned as a method that can be applied if the
target quantity is the average value over a block of specific dimensions, for example
the average Cd concentration over a 1-hectare field if remedial measures are applied
to 1-hectare areas (Goovaerts, 1997). It was mentioned that the block can have any
size or shape. In fact, block kriging aggregates point values to averages over areas
or volumes. Global kriging (Goovaerts, 1997) is a special case of block kriging. In
global kriging the block size equals the entire study area, and the block estimate is
an estimate of the global mean of the target variable over the study area. However,
according to Goovaerts (1997) it is not advised to apply the block kriging system to
estimate the global mean directly from the data for the following three reasons:

1. The covariance function can seldom be assumed to be stationary over the study
area.

2. Estimates of covariance values for large lag distances are inaccurate, since often
a few pairs of observations are separated by such large distances.

3. Using all data in estimation causes long computation time and a risk of an
unstable kriging matrix.

For these reasons Goovaerts (1997) advised a two-step procedure. First the study
area is discretized into small blocks and average values are estimated for each of these
blocks. Next the global mean is estimated as a linear combination of these block
estimates, weighting them proportional to the areal sizes of the blocks. Alternatively,
a declustered mean of the data can be computed, see also Isaaks and Srivastava
(1989, Chapter 10). Global kriging has been applied by Hofstra et al. (2008) in the
field of climate research. Global kriging is typically applied to estimate a global mean
if data locations have been selected purposively and if the number of observations
is large enough to fit a variogram (say, at least 100-150 observations, Webster and
Oliver (1992)). The term global kriging might be confusing, since this term is also
widely used to distinguish kriging using all data from kriging using data from a
restricted neighborhood (referred to as local kriging).
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6.2 Disaggregation

In disaggregation, or downscaling, the variation of a variable at a small (detailed)
scale is reconstructed, given the value at a larger (coarse) scale. The many ways of
disaggregation can be divided on the basis of answers to the following two questions
(Bierkens et al., 2000):

1. Is there ancillary information that can be used to explain some of the unknown
temporal or spatial variation of the property at the small scale within the larger
scale?

2. Is there a mechanistic model describing this (unknown) temporal or spatial
variation?

If the answer to both questions is no, then information can be disaggregated us-
ing empirical functions. If the average value at the larger scale is exactly known
deterministic empirical functions or conditional stochastic functions can be applied
in disaggregation. Examples of deterministic empirical functions are splines, linear
functions and general additive models. For a discussion and examples of the ap-
plication of conditional stochastic functions in disaggregation we refer to Bierkens
et al. (2000, Subsection 3.2.2). If only the probability function of the average value
at the larger scale is known, then unconditional stochastic functions can be applied
in disaggregation. The unknown variation at the smaller scale is described with
a stochastic function with parameters such as mean, variance and semivariogram.
Next realisations are generated at the smaller scale, and these realisations are aver-
aged over the larger scale. The parameters of the stochastic function are adjusted
such that the averages resemble the probability distribution of the property at the
larger scale.

Mechanistic models and fine scale ancillary information can be used in deterministic
and conditional and unconditional stochastic functions for disaggregation. For a
discussion and examples we refer to Bierkens et al. (2000, Sections 3.3 and 3.4),
respectively.

Disaggregation is relatively often applied in climate research, to generate weather
conditions at a more detailed temporal and spatial scale than the scale at which
observations are collected. For example, Mezghani and Hingray (2009) combine
generalized linear models (GLM’s) and K-nearest neighbour resampling to generate
multisite hourly time series of precipitation and temperature from daily observed
weather data, see also Buishand and Brandsma (2001) for the application of nearest
neighbour resampling. Marani and Zanetti (2007) use a stochastic point process
model in disaggregating daily rainfall observations to an hourly or subhourly scale.
For a review of stochastic disaggregation methods for climate data we refer to Srikan-
than and McMahon (2001).
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Chapter 7

Brief overview of software

This chapter gives a brief overview of both commercial and open-source software for
interpolation. Mentioning the trade name is only for technical information, not to
endorse the software products. The software packages are arranged in alphabetic
order.

ArcGIS, ArcGIS Geostatistical Analyst

ArcGIS is an integrated collection of GIS software products that enables spa-
tial analysis, data management, and mapping. The ArcGIS Geostatistical Ana-
lyst (www.esri.com) provides tools for exploring the data (e.g., histograms and
trend analysis), modelling the semi-variogram/covariance, geostatistical interpola-
tion, cross-validation (leave-one-out), map comparison, and mapping probabilities
of exceeding critical thresholds.

E{Z}-kriging

In education, E{Z}-kriging, developed by Dennis Walvoort, can be used to explain
the principles of ordinary point kriging, block kriging and the semi-variogram. The
software is available for free at www.ai-geostats.org. Figure 2.2 shows how E{Z}-
kriging demonstrates the calculation of kriging weights in ordinary kriging.

Genstat

The statistical package Genstat (Payne, 2000) provides tools for regression analysis,
analysis of the spatial correlation structure, geostatistical interpolation and time
series modelling. Regression analysis in Genstat includes simple and multiple linear
regression, polynomial regression, cubic smoothing splines, generalized linear mod-
els and nonlinear regression. Geostatistical analysis in Genstat includes fitting of
semi-variograms and ordinary point kriging. Time series analysis includes ARIMA
modelling and transfer function-noise modelling.
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ISATIS

ISATIS is a comprehensive geostatistical software tool developed by Geovariances
in France. It comprises modules for exploratory spatial data analysis, variogram
modelling, many of the kriging varieties described in this report, and conditional
and unconditional geostatistical simulation. It is shipped with a graphical user
interface and is available for several platforms.

GSLIB

GSLIB (Geostatistical Software LIBrary) is a collection of geostatistical programs de-
veloped at Stanford University over the past 15 years (Deutsch and Journel, 1998).
Programs are available for variogram modelling, geostatistical interpolation, simu-
lation and cross-validation. The kriging methods in GSLIB include simple kriging,
ordinary kriging, kriging with a trend model, kriging with an external drift, factorial
kriging, cokriging, lognormal kriging, multiGaussian kriging, disjunctive kriging, in-
dicator kriging and indicator cokriging, indicator principle component kriging and
block kriging. GSLIB is freely available as open source software at www.gslib.com.

ILWIS

ILWIS (Integrated Land and Water Information System) is a stand-alone integrated
GIS package developed at the International Institute of Geoinformation Science and
Earth Observations (ITC), Enschede, the Netherlands. The interpolation possibili-
ties in ILWIS enable variogram modelling, analysis of anisotropy in the data, inter-
polation by ordinary kriging and cokriging (with one covariable), universal kriging
with coordinates as predictors and linear regression. For a description and illustra-
tion of application in spatial interpolation we refer to Hengl (2007). ILWIS is freely
available as open source software at http://www.ilwis.org.

MATLAB R©

MATLAB R© is a high-level technical computing language and interactive environ-
ment for algorithm development, data visualization, data analysis, and numeric
computation. It is produced by ‘The MathWorks’ (www.mathworks.com). Several
(user-written) toolboxes on geostatistics for MATLAB R© are available. MATLAB R©
also provides procedures for time-series analysis and state-space modelling.

R

R (www.r-project.org) is a free software environment for statistical computing and
graphics. It runs on a wide variety of UNIX platforms, Windows and MacOS. Many
packages are available for spatial statistics, for instance gstat (www.gstat.org),
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geoR (leg.ufpr.br/geoR), geoRglm, (gbi.agrsci.dk/~ofch/geoRglm), fields
(www.image.ucar.edu/GSP/Software/Fields), RandomFields, sgeostat, and
spatial. In addition, R also contains packages for time-series analysis and state-
space modelling.

SAGA GIS

SAGA (System for Automated Geoscientific Analyses) is an open source GIS de-
veloped in Germany (Universität Göttingen, and since 2007 Universität Hamburg).
It contains modules for semivariogram analysis, ordinary kriging, universal kriging,
and spline interpolation. It can be downloaded from www.saga-gis.org.

Surfer

Surfer contains interactive tools for variogram analysis and kriging. It is produced
by Golden Software (www.goldensoftware.com) and ships with a graphical user
interface.

S+

S+ is a commercial implementation of the S programming language sold by TIBCO
Software Inc. (spotfire.tibco.com). Like its open source counter part R, it has
packages for spatial statistics and time-series analysis.

Vesper

Vesper (Variogram Estimation and Spatial Prediction plus ERror) is a program for
variogram estimation/modelling and kriging. It is capable of performing kriging with
local variograms in an automatic way. Vesper runs on Windows, and has a graphical
user interface. It is available for free from the site of the Australian Centre for Preci-
sion Agriculture (www.usyd.edu.au/agriculture/acpa/software/vesper.shtml).

54 WOt–werkdocument 190



Chapter 8

Case studies

8.1 Temporal interpolation of indicators for ecological
water quality

8.1.1 Data

Ecological water quality is summarized in multimetric scores, ranging from 0 to 1.
The ecological water quality is indicated by these scores, to which we refer as ‘indi-
cators’. Eight irregularly spaced time series of unequal length have been observed in
the district water board “Regge en Dinkel” in the eastern part of the Netherlands.
Table 8.1 summarizes the dataset. Figure 8.1 shows the time series plots of the
indicators.

8.1.2 Application of interpolation methods

From the set of eight series we selected a series of short, intermediate and extensive
length: 611, 400 and 643, respectively. To these series we applied the following
selection of interpolation methods:

• Inverse distance weighting (IDW) with powers p = 1, 2 and 3 (see Eq. (2.18)),
as examples of interpolation methods that do not quantify uncertainty;

• The following kriging methods, as examples of interpolation methods that
quantify accuracy:

– Ordinary kriging on untransformed data;
– Ordinary kriging on data after logit-transformation;
– MultiGaussian kriging (normal-score transform);
– Simple kriging with a known varying mean (a seasonal trend).

Kriging was performed using the GSLIB software (Deutsch and Journel, 1998). The
time series models described in Section 3.1 are not considered, because the sampling
intervals are of irregular length.
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Table 8.1: Summary of dataset of indicators for ecological water quality in “Regge en
Dinkel”.
Location Start date End date Number of observations
400 11-4-1983 8-10-2007 20
611 12-10-1992 7-5-2008 6
623 5-11-1981 1-10-2008 42
637 8-3-1982 8-10-2007 29
638 16-9-1980 15-10-2007 19
640 6-8-1980 1-10-2008 42
643 21-4-1981 20-10-2008 44
644 6-12-1982 15-10-2007 22
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Figure 8.1: Time series plots of indicators for ecological water quality in “Regge en Dinkel”.

8.1.3 Results

Figure 8.2 shows results of IDW for series 611, for p = 1, 2 and 3 (see Eq. (2.18)).
The pattern for p = 1 is rather spiky, which might not reflect reality. The larger the
power, the more smooth is the interpolated pattern, because observations at short
distance become more important.

Series 400 was interpolated by ordinary kriging. First, the temporal structure was
analyzed by plotting a sample semivariogram, and next the temporal structure was
modelled. Figure 8.3 shows the sample semivariogram and the fitted model of tempo-
ral structure. Because sample semivariogram does not reflect a temporal structure,
a pure nugget model was fitted. Ordinary kriging using a pure nugget model and all
data (i.e., global kriging) results in the mean level of the data as predicted values,
see Figure 8.4. Although ordinary kriging has the advantage that uncertainty can be
quantified, the results in Figure 8.4 are unsatisfying since the interpolated pattern
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Figure 8.2: Interpolation by Inverse Distance Weighting for location 611, with power p = 1,
2 and 3 (see Eq. (2.18)).
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Figure 8.3: Sample semivariogram for the time series observed at location 400, and fitted
pure nugget model.

does not reflect reality. It is well known that kriging has a smoothing effect. If a
pure nugget variogram is applied this smoothing effect is most extreme.

We applied several kriging methods to interpolate the time series observed at loca-
tion 643. First, we applied ordinary kriging to the untransformed data. Figure 8.5
shows the sample semivariogram and the fitted model. Due to the limited number
of observations the results of automatic fitting of a semivariogram were unsatisfy-
ing. Therefore, we fitted the following exponential model manually to the sample
semivariogram:

γ(h) = 0.003 + 0.007 ·
[
1− e(− h

1400)
]
, (8.1)

with h being the lag distance in days. All 44 data were used in the interpolation,
i.e. global kriging. Figure 8.6 shows the results of interpolation of untransformed
scores by ordinary kriging. The interpolated values are clearly smoothed. The irreg-
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Figure 8.4: Interpolated values for location 400, obtained by ordinary kriging using the
pure nugget semivariogram in Figure 8.3. Predicted values, lower and upper limits of the
95% prediction interval.
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Figure 8.5: Sample semivariogram for the time series observed at location 643, and fitted
exponential model.

ular pattern of the 95% prediction intervals can only be explained from numerical
artefacts such as roundings.

Because the indicators range from 0 to 1, the limits of the 95% prediction intervals
can theoretically fall outside this range if kriging is applied to the untransformed
data. To prevent for this we applied a logit-transformation to the scores, and next
interpolated the transformed values and calculated the 95% prediction intervals.
Finally the interpolated values and the lower and upper limits of the 95% prediction
interval were back-transformed. The logit-transformation is given by

z∗ = ln
(

z

1− z

)
, (8.2)
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Figure 8.6: Interpolated values for location 643, obtained by ordinary kriging using the
exponential semivariogram in Figure 8.5 and Eq. (8.5). Predicted values, lower and upper
limits of the 95% prediction interval.

Figure 8.7: Histograms of indicators for ecological water quality at location 643, before
logit-transformation (left) and after (right).

and the back-transformation to the original scale by

z =
ez

∗

1 + ez∗
. (8.3)

Figure 8.7 shows histograms of the untransformed and transformed scores.

Figure 8.8 shows the sample semivariogram of the logit-transformed scores, and the
exponential model that was manually fitted. The next exponential model was used
in ordinary kriging:

γ(h) = 0.1 + 0.15 ·
[
1− e(− h

1400)
]
. (8.4)

Figure 8.9 shows the interpolated series and 95% prediction intervals, obtained by
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Figure 8.8: Sample semivariogram for the time series observed at location 643 after logit-
transformation, and fitted exponential model.
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Figure 8.9: Interpolated values for location 643, obtained by ordinary kriging of logit-
transformed indicators, using the exponential semivariogram in Figure 8.8 and Eq. (8.4).
Predicted values, and lower and upper limits of the 95% prediction interval, after backtrans-
formation to the original scale.

ordinary kriging of logit-transformed scores. The results are very similar to those
obtained by ordinary kriging of the untransformed scores, see Figure 8.6. However,
it should be noted that the 95% prediction intervals are not symmetric, in particular
in the left hand side of the graph in Figure 8.9. The interpolated values are median
unbiased at the original scale, see De Oliveira (2006).

A possible way to interpolate non-Gaussian data is multi-Gaussian kriging
(Goovaerts, 1997; Deutsch and Journel, 1998), see Subsection 2.1.1. First the orig-
inal data are transformed into values with a standard normal histogram (the so
called normal score transform). Next, the transformed values can be interpolated
to any unvisited location by simple kriging, ordinary kriging or kriging with a trend
model. Figure 8.10 illustrates the normal score transform of the indicators observed
at location 643. Figure 8.11 shows the sample semivariogram of the transformed
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Figure 8.10: Normal score transform of the multimetric scores observed at location 643 in
‘Regge en Dinkel’
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Figure 8.11: Sample semivariogram for the time series observed at location 643 after
normal-score transformation, and fitted exponential model.

data and the fitted exponential model:

γ(h) = 0.3 + 0.72 ·
[
1− e(− h

1300)
]
. (8.5)

Figure 8.12 shows the interpolated series and 95% prediction intervals, obtained
by ordinary kriging of indicators after normal score transformation. In back-
transformation, linear interpolation is applied between the values in Figure 8.10.
For the upper tail extrapolation by a hyperbolic model with ω = 1.5 is applied
(Deutsch and Journel, 1998). It is clear that extrapolation results in unrealistic
values of the upper limit of the 95% prediction interval.

It is known that the indicators vary following a seasonal pattern. This seasonal trend
can be described as a deterministic component in the following random function
model:

Z(t) = m(t) +R(t), (8.6)
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Figure 8.12: Interpolated values for location 643, obtained by ordinary kriging of mul-
timetric scores after normal score transformation, using the exponential semivariogram in
Figure 8.11 and Eq. (8.5). Predicted values, and lower and upper limits of the 95% prediction
interval, after backtransformation to the original scale.

with t indicating the day number, Z(t) the variable of interest, i.e., indicator of
ecological water quality, m(t) the seasonal trend and R(t) the temporally corre-
lated residual component. We fitted the following regression model, describing the
seasonal trend in the data (standard errors in parentheses):

m(t) = 0.2870 +0.05759 · sin( 2π
365 · t +1.311)

(0.0164) (0.0308) (0.232) , (8.7)

The percentage of variance accounted for is 8.7 %. The residuals R(t) are correlated.
Figure 8.13 shows the semivariogram describing the temporal correlation structure.
The following exponential model has been fitted:

γ(h) = 0.002 + 0.006 ·
[
1− e(− h

1400)
]
. (8.8)

Next, simple kriging with varying local means (Sects. 2.1.1, 2.1.2) is applied using
the semivariogram given in Eq. (8.8) and Figure 8.13. Figure 8.14 shows the results
of interpolation. The seasonal trend clearly dominates the interpolated pattern.

8.1.4 Discussion

This case study shows only a small selection of a large number of interpolation meth-
ods that can be applied for interpolation in time. The time series models described
in Section 3.1 could not be applied because of the irregular interval lengths. The
application of geostatistical methods was limited to series with sufficient data to
estimate the model of temporal correlation accurately. The various interpolation
methods lead to quite different results, which confirms that choosing an appropriate
interpolation method is important. For a discussion on the plausibility of results
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Figure 8.13: Sample semivariogram for the residual term in Eq. (8.6).
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Figure 8.14: Interpolated values for location 643, obtained by simple kriging with a varying
mean. The varying mean is described by a regression model of the seasonal variation in
multimetric scores. Predicted values, and lower and upper limits of the 95% prediction
interval.

more knowledge of the underlying ecological processes is needed. It would be inter-
esting to validate the accuracy of the interpolation by using a set of independent
validation data or by cross-validation.

8.2 Spatio-temporal interpolation and aggregation of pes-
ticide concentrations in Dutch surface waters

This section reports on a methodology and case study that are described in much
more detail in Heuvelink et al. (2010).
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8.2.1 Objective

The Dutch surface waters are routinely sampled and analysed on the concentration
of pesticides and other crop protection chemicals. Several hundreds of locations
are sampled several times each year and analysed on hundreds of substances. The
data are stored in a common database and partially presented to the public in the
‘bestrijdingsmiddelenatlas’ (www.bestrijdingsmiddelenatlas.nl).

The measurements stored in the database are point observations in space and time,
whereas the interest of policy and decision makers is in averages over larger areas
and longer time periods. Here, we restrict ourselves to the situation where aver-
ages are needed for the growing season (March 1 to October 1) for the whole of
the Netherlands. Consequently, the point observations need to be aggregated to the
larger support. We present a method that uses a simple method for temporal aggre-
gation and a more complex method for spatial aggregation. The methods are briefly
described, with reference to relevant sections in previous chapters and illustrated
with results for one substance, ‘metribuzin’.

8.2.2 Interpolation and aggregation methods

Temporal aggregation of point measurements of concentrations during the growing
season at measurement locations is done as follows. First, monthly averages are
computed by unweighted averaging of all measurements within the given month.
Next, these monthly averages are averaged for the growing season by taking their
(unweighted) arithmetic mean. This two-step procedure ensures that the influence
of clustered measurements within a single month dominates less than would be the
case with direct averaging of all measurements. A missing value is generated when
three or more months have no measurements. The interpolation may be classified
as a temporal interpolation method that does not quantify uncertainty and uses no
ancillary information (Subsection 3.2.1) and comes close to ‘temporal linear averag-
ing’.

The so-obtained averages for the growing season are log-transformed and next spa-
tially interpolated with regression kriging (Subsection 2.1.2), whereby first the rela-
tionship with explanatory variables, such as water surface type, proportion of area
under agriculture and the concentration of the substance as predicted by a deter-
ministic pesticide distribution model, is quantified and used in a linear multiple
regression model. Next, the residuals of the regression are interpolated using simple
kriging. Here, space-time simple kriging was used because growing season aver-
ages are available for a sequence of years and can be both spatially and temporally
correlated (i.e. between years). The sum of the regression predictions and kriged
residuals is back-transformed by taking the antilog.

Spatial aggregation was done by repeated sampling from the conditional probability
distribution of the regression residuals using sequential Gaussian simulation. This
yields multiple realizations (‘possible realities’) of the residual. These were added
to the regression predictions, back-transformed and averaged over the entire Dutch
surface water (using the amount of water at each prediction location (i.e. grid cell)
as a weight). If this procedure is done for a sufficiently large number of realizations
(say 100 or more), then the histogram of the averages approaches the probability
distribution of the average concentration for the Dutch surface water and growing
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Figure 8.15: Number of years in between 1997 and 2006 for which a growing season average
could be computed at measurement locations.

season. Means and lower and upper limits of prediction intervals can be computed
from the sample and plotted for a series of years, thus allowing to derive temporal
trends in the country and growing season average concentration and quantify their
statistical significance.

8.2.3 Results for metribuzin

The space-time interpolation and aggregation was done for metribuzin for the time
period 1997 to 2006. Figure 8.15 shows the locations in the Netherlands for which
averages of the concentration during the growing season could be computed. It also
shows the number of years for which the average was computed. A histogram of all
seasonal averages thus computed is presented in Figure 8.16 (left). Note the slightly
skewed distribution, even though these are log-transformed seasonal averages. The
multiple linear regression that was applied to these data yielded significant corre-
lations with the predictions of the deterministic pesticide distribution model, the
year number and several environmental variables (e.g. slope angle, drainage and
areal proportion agriculture). The regression explained 37 % of the variation in the
log-transformed seasonal average, which was somewhat disappointing. Indeed, the
histogram of the regression residuals (Fig 8.16, right) shows a substantial spread,
although it is smaller than that of the observations (Figure 8.16, left). Note also
that the residuals are more symmetrically distributed.

The space-time experimental semivariogram of the regression residual is given in
Figure 8.17 (left). A semivariogram model was fitted to it using a weighted least
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Figure 8.16: Histogram of ‘observed’ seasonal averages of metribuzin (left) and regression
residuals (right) during the 1997-2006 period.

squares criterion. The result is given in Figure 8.17 (right). Both spatial and
temporal correlation are present, with a spatial range of about 5 km and a temporal
range of about 2 years. Regression and space-time interpolation of the residuals
was done for all years at a spatial grid resolution of 1 km. Since the type of surface
water is also used as an explanatory variable, the results depend on the surface water
category too. Here, for illustration purposes, only results for 2006 and surface water
category 1 (ditches) are presented. The observed residuals for 2006 are shown in
Figure 8.18. Figure 8.19 (left) gives the result of regression only, whereas Figure 8.19
(right) shows the result of the regression kriging. The maps are similar, which
indicates that the influence of the kriged residual is small compared to that of the
regression. Crisp boundaries are apparent. These are caused by crisp boundaries on
the map of agricultural regions in the Netherlands, which was one of the explanatory
variables used in the regression. The kriging standard deviation map is given in
Figure 8.20. It confirms that interpolation errors are small in the neighbourhood of
observation locations and large further away from them. Some spotted areas with
smaller standard deviations appear that do not correspond with the locations given
in Figure 8.18. These areas correspond with locations where observations were taken
in the previous year 2005 (and possibly in 2004).

The result of the spatial aggregation is given in Figure 8.21. Most striking is the large
predicted average concentration for 1998, and the smaller peak in 2004. Also, the
very narrow width of the confidence interval draws attention. Apparently, a large
portion of the variability (and uncertainty) at point locations average out when
spatial aggregates are computed. The narrow band indicates that the computed
averages are very accurate and that the peaks in 1998 and 2004 are highly significant.
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Figure 8.17: Experimental (left) and fitted (right) space-time semivariogram of residual
metribuzin.

Figure 8.18: Spatial plot of metribuzin residuals in 2006.

Figure 8.21 also shows the result obtained with ’naive’ upscaling, in which simply the
unweighted average of all growing season concentrations at measurement locations
is taken as a representative of the country average. The patterns of both curves are
simular, although meaningful differences occur (particularly in years 2004 and 2005)
that cannot be explained by uncertainty about the regression kriging result, since
the naive result is not contained within the boundaries of the prediction interval.
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Figure 8.19: Regression predictions (left) and regression kriging predictions (right) of
metribuzin for 2006 and watertype category 1.

8.2.4 Discussion

Space-time aggregation of concentrations of pesticides and other crop protection
chemicals can be done using space-time regression kriging. Results are meaningfully
different from those obtained with ’naive’ upscaling, whereby the unweighted aver-
age of growing season concentrations at locations is taken. Indeed, ’naive’ upscaling
may be criticized because it ignores relationships between the dependent and ex-
planatory variables and ignores spatial correlation. Moreover, the locations are not
selected with probability sampling and can be highly concentrated in some regions
and entirely missing in other regions (e.g. see Figure 8.18).

Space-time regression kriging seems a viable alternative to ’naive’ upscaling that
has a sound mathematical-statistical basis and can quantify the uncertainty of the
interpolated and aggregated values. However, application of the method is cum-
bersome and requires much expertise. Also, independent validation of the results
would be necessary to objectively evaluate the performance of the method. It is
important to be aware that regression kriging makes various assumptions, some of
which may not be realistic for a given case. For instance, in this case it was assumed
that the regression residual is second-order stationary. Assumptions are inevitable
when a model-based approach is used, but it is important to critically analyse the
assumptions made. In fact, in this study it turned out that several steps in the
procedure should be criticized and require modification. For instance, many of the
measured concentrations of metribuzin were taken as half the detection limit, in a
case where the substance could not be measured in the laboratory. This is all right
as long as the detection limit is sufficiently small. However, a substantial part of the
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Figure 8.20: Standard deviation of errors in regression kriging predictions of metribuzin
for 2006 and watertype category 1.

measurements had very large detection limits. These ’measurements’ had a large
negative impact on the results of the analysis, which is unrealistic. Also, the data set
used to calibrate the regression model did not contain combinations of explanatory
variables that were present in the application data set, meaning that extrapolation
beyond the ranges of the calibration set were made. Therefore, the results presented
here are not the final results and should be treated with caution. Improved results
are presented in Heuvelink et al. (2010).

This case study demonstrated that ’naive’ upscaling is inappopriate when conve-
nience sampling was employed and resulted in strongly over- or undersampled re-
gions (or regions that are not sampled at all). In such a case, naive upscaling will be
biased towards the values at densely measured regions. Since probability sampling
was not employed, a model-based alternative (e.g. space-time regression kriging) to
interpolation and aggregation was the only viable alternative. However, application
of space-time regression kriging is cumbersome and requires specific skills. These
problems can partly be resolved by developing a detailed step-by-step procedure
and associated software solutions, but expertise and experience remain necessary
ingredients to obtain satisfactory results. In particular, expertise and experience
are essential for critical analysis of model assumptions and their implications.
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Figure 8.21: Time series of the metribuzin concentration averaged over the growing season
and Dutch surface waters. Solid blue line represents the predicted value, dashed blue lines are
the boundaries of the 90% prediction interval. Solid red line represents the result obtained
with ’naive’ upscaling.
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Chapter 9

Concluding remarks

9.1 Choosing an interpolation method

In this study a large number of interpolation methods was listed from which environ-
mental scientists can choose. According to the criteria mentioned in Chapter 1 we
arranged the methods to interpolation in space, time and space-time. Within each
of these three categories we distinguished methods that quantify uncertainty and
methods that do not quantify uncertainty. Further distinction was made between
methods without use of ancillary information, methods using ancillary information,
and methods incorporating process knowledge. This disposition of interpolation
methods will help environmental scientists in finding a method that is appropriate
to solve their interpolation problem. In the summary table in Chapter 5 the com-
plexity of the methods and the conditions on the size of the data set are indicated.
A list of easy-to-use software implementations in Chapter 7 will be of further help
in solving the interpolation problem.

Although this disposition can be useful in finding an appropriate interpolation
method, more information about the properties of the interpolation methods is
needed to support a choice. In particular, more information is needed about the
performance, i.e. the accuracy, of the interpolation methods. Methods are often
validated in specific situations, which may not correspond with the problem to be
solved. A summary of validation studies and comparative studies such as described
by Dubois et al. (2003) and Dubois (2005) will be very helpful. Such a summary
will make clear for what situations information on accuracy of interpolation meth-
ods is lacking. This can be a starting point for additional validation studies. To
this purpose, case studies from the field of environmental scientists at PBL will be
very useful. In the next section we discuss validation with respect to the quality of
information on accuracy obtained by stochastic interpolation methods.

A valuable next step will be to elaborate the disposition of methods given in this
report to a decision tree or decision support system, that guides the environmental
scientist to easy-to-use software implementations that are appropriate to solve their
interpolation problem. Knowledge of the interpolation problems PBL-workers are
facing is crucial in constructing such a tree.
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9.2 Information on uncertainty

Statistical information on uncertainty is used in methods from statistical decision
theory, e.g., Berger (1985) and Liese and Mieschke (2008), quantitative risk and pol-
icy analysis, e.g., Morgan and Henrion (1990), and uncertainty assessment inspired
by post-normal science theory (Funtowicz and Ravetz, 1993; Van der Sluijs et al.,
2003). Uncertainty in a statistical sense can be defined as the reciprocal of accuracy,
while accuracy is defined as the level to which predictions or estimates resemble the
true values.

The overall or global accuracy of results of any interpolation method can be assessed
by an independent validation study, in which observations on the ‘field truth’ are
preferably selected by probability sampling (Stehman, 1999). Local information on
accuracy can only be obtained by applying stochastic interpolation methods. The
quality of this local information on accuracy depends on model assumptions which
cannot always easily be verified.

Perfect information on accuracy (or uncertainty) would imply that the true values
are exactly known, which means that there is no need for interpolation. Information
on accuracy is based on a limited number of observed differences between true and
interpolated values. Thus, information on accuracy or uncertainty is seldom per-
fect. To assess the usefulness of information on uncertainty in decision making, the
quality of this information should be known. If information on global accuracy is
obtained by validation with an independent probability sample, the quality of this
information can easily be quantified. Standard errors of, e.g., map purities or root
mean squared errors can be calculated using the inclusion probabilities related to
the applied sampling design (De Gruijter et al., 2006). The quality of information
on local accuracy, such as the kriging variance (Subsection 2.1.1), can be assessed
by validation or cross-validation. A possible way is to calculate reduced residuals for
the nv validation points (Isaaks and Srivastava, 1989, p. 514):

r′(sv) =
r(sv)
σ̂K(sv)

, (9.1)

in which r(sv) is the observed difference between the true and the interpolated
value at location sv, v = 1 . . . nv, and σ̂K(sv) is the kriging standard deviation. The
standard deviation of r′(sv) can be used as a measure of the quality of the kriging
variances: if the kriging variances σ̂K(sv) are accurate estimates of the true error
variances, then the standard deviation of r′(sv) should be close to 1.

Studies in which the quality of local information on uncertainty has been validated
are sparse. We underline the need of such validation studies, the results of which can
be used to support a choice from the interpolation methods that quantify uncertainty
as described in this report.

9.3 Aggregation and disaggregation

Besides interpolation, aggregation and disaggregation was discussed (Chapter 6).
It can be concluded that most interpolation methods can be used in aggregation.
Disaggregation is more delicate than aggregation, since assumptions need to be made
about the spatial or temporal variation at the smaller scale. Once these assumptions
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have been made, many of the interpolation algorithms described in this report can
be used for disaggregation. A practical problem is that there is to our knowlegde no
easy-to-use software for disaggregation. A lot of work on disaggregation techniques
has been done in the field of climate research. It would be interesting to extrapolate
these techniques to other fields of environmental research.
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