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For quantitative flood risk estimates this implies that the probability of gully 

pot blockages and heavy rainfall is likely to be correctly estimated, while 

the probability of other causes of flooding is likely to be underestimated. 

The probabilities of road flooding and building are also likely to be correctly 

estimated. The magnitude of consequences likely to be underestimated; it is 

more sensitive to uncertainty because every flood event that goes unreported 

directly influences consequences magnitude. Contrarily, probabilities depend 

on only one report per class per event; they are not influenced if incidents 

within the same event are missed. 

Decision problem: need for urban flood reduction for the case of Breda

The influence of data uncertainty on quantitative risk analysis results and the 

consequences for decisions based on these results is investigated by analyzing 

a typical decision problem for a case study of flood risk management. Acquired 

insights are used to assess the impact of uncertainty in call data on flood risk 

analysis and related decisions in general. 

The urban drainage policy plan for the city of Breda states the following 

maximum acceptable flooding frequencies for roads: once or twice per year for 

residential areas, once per two years for commercial areas and the city centre 

(#Breda, 2007). Flooding of buildings is not explicitly distinguished from 

flooding of roads; protection levels of buildings therefore depend on the relation 

of their building level to street level: building levels above street level are likely 

to experience less flooding, those below street level more frequent flooding than 

roads. This aspect is not addressed in the urban drainage policy plan. 

Call data analysis for the city of Breda has shown that flooding frequencies 

exceed these maximum prescribed values and indicate a need for flood 

reduction. Table A.1 summarises the results of call data analysis, distinguishing 

between flooding of roads and buildings. The contribution of the three most 

important causes of flooding is also quantified.
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Table A.1 Outcome of call data analysis: flood risk in nr of calls/km sewer length/year, 

city of Breda, period 2003-2007
Flooded Roads Buildings
Locations/km/yr
Total all causes 0.3 0.03
Sewer overloading 0.003 0.002
Sewer blockage 0.003 0.004
Gully blockage 0.2 0.02
Total 0.206 0.026

Under the assumption that calls represent 2% to 30% of all real flood 

occurrences, the uncertainty range in real flood risk in terms of the number of 

calls per km sewer length per year is summarized in table A.2. 

Table A.2 Uncertainty range of quantified flood risk in nr of calls/km sewer length/

year, city of Breda, under the assumption that calls represent 2% to 30% of real flood 

occurrences. 
Flooded Roads Buildings

Locations/km/yr #calls Min real 
occurr

Max real 
occur

# calls Min real 
occurr

Max real 
occurr

Sewer overloading 0.003 0.01 0.15 0.002 0.007 0.10
Sewer blockage 0.003 0.01 0.15 0.004 0.013 0.20
Gully blockage 0.200 0.67 10.00 0.020 0.067 1.00

Total 0.206 0.69 10.30 0.026 0.087 1.30

If, based on these results it is decided that flood risk should be reduced, various 

actions can be taken to address these flooding causes. Table A.3 summarises 

actions that can be undertaken to reduce flood risk for three individual causes 

of flooding: sewer overloading, sewer blockage and gully pot blockage. 



203

Sensitivity analysis

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32

Table A.3 Actions to reduce flood risk, for each of the three analysed flooding causes. 

Costs are estimated based on investment and maintenance costs for 2 case studies; effect 

is estimated based on expert judgment  
Flooding cause Action to reduce 

associated flood risk
Estimated 
cost
M€/km/year

Estimated effect: flood risk 
reduction outcome
(locations/km/yr)

Sewer overloading Enlarge sewer pipe: 0.05* Reduction by 16.67% of sewer 
overloading-related events

Sewer blockage Increase cleaning 
frequency

0.05 Reduction by 14% of sewer 
blockage-related events

Gully blockage Increase cleaning 
frequency

0.05 Reduction by 10% of gully pot 
blockage-related events

* based on €1000/m sewer length replacement, 40 years amortization, interest rate 0.04

Sewer overloading is reduced by implementation of a structural measure, 

enlargement of a sewer pipe. Blockages are reduced by increasing maintenance 

frequencies. Three measures of similar yearly investment cost are used for 

comparison.  The effect of each of the measures is estimated based on expert 

judgment. The following assumptions are made with respect to the effects of 

measures in relation to investment costs:

−	 Enlargement of sewer pipe to reduce flooding due to sewer overloading: 

1 location at a time: 1000 m pipe enlargement by replacement with larger 

diameter; Investment cost: €1,000,000 or €50,000 per year; Effect: 

reduction of 1 flooded location per year (where capacity is enlarged) out of 

average 6 flooded locations per year: reduction 1/6 or 16.67%.

−	 Increase sewer cleaning frequency: yearly costs of sewer cleaning are 

€180,000. Increase cleaning costs with €50,000/yr: cleaning frequency 

increases by 28%. Effect: comparison of 2 cases with different cleaning 

frequencies shows that 2 times higher cleaning frequency corresponds 

with half the number of calls/year (50% reduction). It is assumed that 28% 

increase of frequency results in 14% reduction in the number of calls/year

−	 Increase gully pot cleaning frequency: yearly costs of gully pot cleaning 

are €150,000. Increase cleaning costs with €50,000/yr: cleaning frequency 

increases by 33%. Effect: no data are available to estimate the effect of 
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increased gully pot cleaning. The expected bandwidth of reduction induced 

by 33% frequency increase is 0-33%. It is assumed that 33% increase in 

cleaning frequency leads to 10% reduction in the number of calls. 

Table A.4 Uncertainty range of quantified flood risk in nr of locations/km sewer length/

year, city of Breda, as a result of 3 different flood reduction measures, for road flooding 

and for building flooding. 
Locations/km/yr

Road flooding
Enlarge sewer pipe Increase sewer 

cleaning frequency
Increase gully pot 
cleaning frequency

Min occur Max  occurr Min occur Max  occurr Min occur Max  occurr
Sewer overloading 0.008 0.125 0.010 0.150 0.010 0.150

Sewer blockage 0.010 0.150 0.009 0.129 0.010 0.150
Gully blockage 0.667 10.000 0.667 10.000 0.600 9.000

Total 0.685 10.275 0.685 10.279 0.620 9.300

Locations/km/yr
Building flooding

Enlarge sewer pipe Increase sewer 
cleaning frequency

Increase gully pot 
cleaning frequency

Min occur Max  occurr Min occur Max  occurr Min occur Max  occurr
Sewer overloading 0.006 0.083 0.007 0.100 0.007 0.100

Sewer blockage 0.013 0.200 0.011 0.172 0.013 0.200
Gully blockage 0.067 1.000 0.067 1.000 0.060 0.900

Total 0.086 1.283 0.085 1.272 0.080 1.200

The relation between actions and reduction of call numbers is summarized in 

table A.4. Comparison of the results in table A.4 with those in table A.2 shows 

that increasing gully pot cleaning frequency is most effective of the 3 strategies 

to reduce flood risk. Sewer pipe enlargement and increasing sewer cleaning 

frequency have only marginal effect on total flood risk. This follows from the 

small number of calls, thus flooded locations, related to sewer overloading and 

sewer blockage compared to gully pot blockage. 

Table A.5 summarises investment costs and minimum and maximum flood risk 

estimates in terms of the number of flooded locations per year for the current 

situation and after execution of each of the three flood reduction measures. 

Figure A.1 gives a graphical representation of the data in table A.5. It shows 

that for the same investment level, increasing gully pot maintenance is the most 
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effective measure to reduce flood risk. The effect of increased gully pot cleaning 

frequency is about 10 times higher than that of enlarging sewer pipe capacity or 

increasing sewer cleaning frequency. Uncertainty in flood risk results derived 

from call data does not influence this conclusion. It only influences absolute 

values of quantitative flood risk outcomes.

Table A.5 Summary of yearly investment costs and resulting flood risk in terms of 

the number of flooded locations/km sewer length/year, for 3 flood reduction measures. 

Uncertainty margins are based on the estimated representation of flood-related calls 

compared the real number of flooded locations 
Effect of investments;
nr. of flooded locations/km/yr

Do nothing Enlarge 
sewer pipe

Increase 
sewer cleaning 
frequency

Increase gully 
pot cleaning 
frequency

Investment €0/yr €50,000/yr €50,000/yr €50,000/yr
Road flooding
Min (calls represent 30% of 
real occurrences)

0.687 0.685 0.685 0.620

Max (calls represent 2% 
of real occurrences)

10.300 10.275 10.279 9.300

Building flooding
Min (calls represent 30% of 
real occurrences)

0.087 0.086 0.085 0.080

Max (calls represent 2%
of real occurrences)

1.300 1.283 1.272 1.200

Sensitivity of decisions to data uncertainty and data need for risk-based 

decisions on urban flooding

1.	 Identify most vulnerable components in sewer system with respect to 

causing flooding. Vulnerable components with respect to flooding are 

those components that are most likely to fail and contribute most to flood 

risk. Call data have shown to provide sufficient accuracy to identify gully 

pots as the most vulnerable component in sewer systems, with respect to 

flooding. Gully pot blockages stand out against other causes to such an 

extent that uncertainties in call data do not influence this conclusion. In 

order to distinguish between component vulnerabilities that differ less 
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conspicuously from others, more accurate and more complete data sets 

are needed. In particular the relative contributions of sewer blockages and 

heavy rainfall should be supported by additional data, since this distinction 

cannot be made by call data based on above-ground observations and ex 

post analysis by experts. 

2.	 Identify most vulnerable locations to flooding in catchment. 

The vulnerability of locations to flooding can be interpreted in various 

ways: locations that suffer flooding most frequently, those that suffer most 

severe consequences or those that raise most protest from citizens. The first 

two aspects are summarised in quantitative flood risk assessment, the latter 

is revealed in call texts and letters and petitions to local authorities. Flood 

risk assessments are typically aiming to be objective; citizens’ protests are 

subjective. The use of call data for flood risk analysis implies introduction 

of a degree of subjectivity into quantitative risk assessment outcomes. This 

effect is diminished by the large number of call data: the call database 

shows that the maximum number of calls per street represents 1% of the 

total number of calls. This indicates that the data are not susceptible to bias 

introduced by excessive calling of one or a few individuals and that call 

data are sufficiently representative to identify most vulnerable locations in 

a catchment.

3.	 Evaluate urban drainage systems respect to urban flooding standards.  

Urban flooding standards mostly define a maximum flooding frequency 

or a maximum surcharge frequency; some distinguish between different 

occupational land uses. Call data analysis results in an estimate of flooding 

frequencies and of flood risk; they provide a sufficient level of detail to 

distinguish between occupational land uses and even between road types 

and buildings uses. Call data provide a better basis to check compliance 

with standards than hydrodynamic model simulations or singular-event-

based evaluation, because they include a wider range of flooding causes and 

consequences. The main drawback of call data for risk quantification is that 

they represent a sample of unknown size of real flooding incidents. This 

means that quantitative flood risk based on call data always underestimate 
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the true flood risk, while the degree of underestimation is unknown. Still, it 

provides a risk estimate that is closer to reality than model simulations that 

focus on heavy rainfall events and do not include asset failures as a cause 

of flooding. 

4.	 Decision to prioritise locations for investments to reduce flood risk. 

This decision problem is similar to decision 2, if prioritisation takes 

place according to flood risk. If other aspects are taken into account, 

like possibilities to combine investments with other maintenance or 

construction activities in order to gain efficiency, additional data regarding 

these respects is needed.

5.	 Decision in what flood reduction measure to invest, for a certain location 

or area, in order to most efficiently reduce flood risk. Call data analysis can 

identify the main causes of flooding for a particular location. Besides this, 

information about the effect of flood reduction measures is needed. The 

effect of structural measures can be estimated based on model simulations; 

little information is available to estimate the effect of different maintenance 

frequencies. If differences between cause incidences are large, call data 

are sufficient to decide how flood risk can be most efficiently reduced. 

If differences are small, call data do not provide sufficient accuracy to 

distinguish between causes. Additional data must be collected to assess 

flood risk more accurately and to estimate the effect of flood reduction 

measures, especially varying maintenance frequencies.

Most decision problems require data collection in addition to call data to provide 

more accurate risk assessments and to allow distinctions between options that 

differ little. Ideally, data would provide a full sample of flood occurrences, 

including cause and consequence details. This would require a high temporal 

and spatial resolution of data collection. A dense sensor network, e.g. one that 

is constituted of sensors in gully pots and house connections could provide 

such information. The installation and operational costs of such of network 

are high and the reliability depends on the quality of the sensors, data transfer, 

storage and analysis. Alternatively, satellite images can provide high-resolution 
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spatial data, yet the temporal resolution is low, typically weekly or monthly 

data collection. Another drawback is that satellite images are disturbed by 

clouds, while satellite radar images are not well fit for interpretation of flooded 

surfaces, especially at the level of detail require for the urban scale. 

Since the aim of urban flood protection is to protect citizens and their 

possessions from the harmful effects of flooding, citizens’ observations are a 

valuable source of information to be used in flood risk analysis. The use of 

call centres to register citizens’ observations and complaints is widely spread 

among authorities; public, e.g. municipalities, as well as private, e.g. water 

companies. The quality of call data can be enhanced in several ways to improve 

the reliability of flood risk analyses. Additionally call data can be complemented 

with data from other sources. 

Call data have several advantages over other types of flood data, like data 

from water level sensors and ex post interviews with people affected by floods. 

Sensors have the advantage of providing more objective measurements; yet to 

collect details on flooding causes and consequences, a combination of sensors 

would be needed which results in an expensive monitoring set-up. Ex-post 

interview have the drawback of collecting information with a certain delay, 

which inevitably result in information loss, since interviewed people may have 

forgotten details of not have paid attention to certain information details.
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Introduction

In the past, comprehensive flood risk analyses have been limited by a lack 

of data or a lack of knowledge of the complex interactions between rainfall 

conditions and flooding consequences (Apel et al., 2006). Although it is widely 

recognised that hydrodynamic models are indispensable tools for successful 

flood management, the development of such models is to date limited by a 

lack of spatially distributed evaluation data (Werner et al, 2005; Schumann 

et al., 2008). Monitoring networks in urban drainage systems can provide 

the required information, if they have sufficient spatial density to detect all 

flood events throughout urban areas. In practice, monitoring locations are 

limited to pumping stations, overflow weirs and some additional points e.g. at 

special constructions. This density is largely insufficient to register in detail all 

flood incidents in an urban area. Additionally, monitoring networks in urban 

drainage suffer from data loss due to sensor failure, communication failures etc. 

(Dirksen et al., 2009).  

Municipal call centres register information on urban drainage problems observed 

by citizens. The network of callers is potentially dense since every citizen can 

be assumed to have access to a telephone. Though calls do not necessarily give 

complete coverage of flood incidents, because there is no guarantee that a call is 

made for every event, it is one of the best sources to provide indication of events 

unacceptable to citizens: citizens make calls to point out abnormal situations 

that they citizens want to see solved.

Calls related to urban drainage cover a variety of details on problem causes 

and consequences that traditional monitoring and modelling find difficult to 

address, such as details on in-house flooding and maintenance-related problems 

like pipe blockages. The drawback of this type of data is their unstructured 

nature: call texts vary in the level of detail and type of information provided, 

depending on what is provided by the caller and how much of that is reported 

at the call centre. To be able to use call information in flood risk analysis, calls 

must be screened and classified to obtain consistent output that can be used in 

quantitative analysis. 
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Even though many municipalities have a call register, 109 out of 190 

municipalities that took part in a recent inquiry in the Netherlands (RIONED, 

2007), few use it to analyse the occurrence of problems in their infrastructure. 

One reason is that manual classification of calls is time-consuming due to the 

large numbers of calls: hundreds or thousands per year per municipality. Yet 

call data have proven to provide valuable information to detect causes and 

consequences of urban flooding that cannot be provided by other types of 

monitoring data (Arthur et al., 2009, ten Veldhuis et al., 2009).  

This chapter examines the possibility of automatic call classification based on 

call texts for the purpose of urban drainage system analysis and quantitative 

risk assessment. To this end, some well-known classification routines are tested 

by application to two call databases containing about 6300 calls each. 

Automatic classification of municipal calls may be compared call routing 

where a call is routed to a destination based on words or grammar fragments 

in call texts (Garfield and Wermter, 2006; Gorin et al., 1997). The task of call 

classification differs from call routing for helpdesk applications where routing 

is preferably based on a minimum of information, e.g. only the first caller’s 

utterance. Call classification for application in risk assessment tries to retrieve 

as much information as possible from a call. Municipal calls typically contain 

natural spoken language (Gorin et al., 1997) that comes from one or two 

sources: call centre employees write down in telegram style what callers have 

actually said and in part of the databases technical employees enter text on how 

they handled calls. The information content of both texts differs and the second 

text may even contradict what was stated in the first, because a problem was 

found to be different from the one described upon on-site investigation.

This article is structured as follows: first, principles of classification pattern 

recognition are discussed in brief, followed by a description of the datasets that 

are used for automatic classification experiments. After that, the set-up is given 

of some initial automatic classification experiments that have been conducted. 
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The results are outlined, followed by a discussion and some additional notes and 

observations. Finally, conclusions derived from the outcome of our experiments 

are presented. 

Materials and methods

Pattern recognition

Call classification is a special case of pattern recognition, a research field that 

aims to assign observations to classes based on observations’ characteristics, 

expressed as a number of features. 

There are numerous books and other texts that provide a good introduction 

to the field of pattern recognition (e.g. Duda et al. (2001), Jain et al. (2000) 

and Bishop (2006)), while various more dedicated texts concerned with text 

categorization are also available (e.g. Sebastiani, 2002). Here we only provide a 

brief sketch of some of the essentials that should enable the reader to understand 

the illustrations given and the basic experiments carried out in this work.

One of the main questions in pattern recognition studies is how, and to what 

extent, one can decide on the class label of a new object, based on a comparison 

of object characteristics with those of objects with known labels? The basic 

idea is that particular, typically statistical patterns in the characteristics of an 

object provide weak or strong clues about the true class label of this object. E.g. 

a relatively high number of occurrences of the words “yellow” and “submarine” 

lowers the probability that a text is about Elvis. The initial collection of 

observations for labelled objects is used to try to find general patterns and 

relations that can subsequently be used to predict the label of new objects.

In pattern recognition language a label predictor is referred to as a classifier, 

the act as classification, the overall error made in this prediction is called the 

classification or generalization error (in a way this is the probability that a 

new object will be labelled with the wrong label), while finding the patterns 
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and relations in the training data is called learning or training. In addition, the 

different labels are called classes and the characteristics chosen to describe the 

objects are features. One important step in pattern recognition can accordingly 

be stated as devising features based on which successful classification can be 

performed. Another is the choice of the actual classifier that is to be trained 

using these features and the associated class labels. There is an immense amount 

of literature on various types of classification approaches and procedures. We 

discuss two simple schemes, first nearest neighbour (1NN) classification and 

nearest mean classification (NMC), that should give a good initial impression 

of how such classification could be performed.

Having measured N features for every object -- this could for example be word 

counts of “submarine”, “yellow”, “haze”, “purple” or any other word that might 

help us to distinguish different classes from each other -- we can represent 

every object as a vector in an N-dimensional space (the section on word counts, 

which can be found below, details our particular choice of features). Now, 

the 1NN classifier operates in this vector space and labels new objects with 

the same label as the object that is nearest to the new one and for which one 

knows the label. Nearest is in terms of the distance between the feature vectors 

in the vector space. The idea behind 1NN is simple and intuitive: the nearer 

features are to each other, the more similar the original objects probably are, 

and therefore chances are high that their labels are also the same. NMC, on 

the other hand, relies on more global statistics, but is no more complicated 

than 1NN. In the classifier training phase, one determines the mean of every 

class, i.e., the average feature vector for every category is computed, which 

again is an N-dimensional vector. In the classification phase, every new object 

is assigned to the class mean that is closest, i.e., it gets the label belonging to 

that class.
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A final concept that needs to be introduced is the learning curve. Learning 

curves plot the generalization error with varying training set size or feature set 

size. The first type of curves investigates how much there is to gain from adding 

more and more data to the training set and can be used to decide whether it is 

worth the effort to collect more labeled data. The latter type of curves provides 

insight into how a classifier behaves under a varying number of features for a 

particular fixed number of training objects. As it turns out, adding more and 

more features, and hence more and more information about the individual 

objects, does not necessarily mean that classification performance will improve. 

This maybe counterintuitive behavior of classification schemes is often coined 

the curse of dimensionality (Duda et al., 2001; Jain et al., 2000; Bishop, 2006).

Available datasets for classification

Two call databases were available for this study, including all calls related to 

urban drainage for 2 municipalities in the Netherlands: Haarlem and Breda. 

The datasets consist of 6991 and 6361 calls respectively over a period of 5 and 

10 years (Table 1). 

Table A2.1 Summary of data for two cities with available datasets: sewer system 

characteristics, call data in municipal call register
Data case study Haarlem Breda
Number of inhabitants 147000 170000
Length of sewer system (% combined) 460 km (98%) 740 km (65%)
Total surface connected to sewer system 1110 ha 1800 ha
Total number of gully pots 42500 80000
Period of call data 12-06-1997 to 

02-11-2007
31-01-2003 to 
23-10-2007

Total number of calls on urban drainage 6359 6980
Length of data series 3788 days 1726 days
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Table 2 gives some examples of call texts from the call datasets. The examples 

illustrate how the type of information and details vary between call texts. 

Features are selected from these call texts to be used for automatic classification.  

Table A2.2 Example of call texts
Date Call text
2-5-2002 On the Karel Doormanlaan near the apartment complex Spaarnhoven, 

much water remains on the street after a storm. Elderly people have trouble 
entering the building. Can this be solved? Action: 10/05, Gully pot cleaned.

25-10-2005 At the busstop on the Zuiderzeelaan and the busstop to the west 2 or 3 gully 
pots are blocked. The busstop is flooded. Action: 2 gully pots cleaned and 
flushed

15-5-2007 This caller on the Veenbergstraat nr 20 has problems with moisture under his 
residence. There are also rats in the residence. She thinks it has to do with 
the bad condition of the sewer in the street;  the street is full of pits and holes. 
Please contact caller and take a look in this street. Action: Solved by owner.

22-5-2007 Flooding of bicycle tunnel. 14-06-07 situation ok, problem solved

Definition of classes

We used sets of manually classified data from a quantitative flood risk analysis 

study (ten Veldhuis et al., 2009).  Class definitions were defined based on a fault 

tree analysis; this resulted in six classes that correspond with potential causes 

of urban flooding (table 3). The calls were manually classified by technical 

specialists based on the information in the call texts. The manually classified 

datasets provide the training and test sets for the development of an automatic 

classification procedure. 
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Table A2.3 Class definitions used in manual classification and manual classification 

results
Class definition # entries/class

Breda
# entries/class 
Haarlem

1 Blocked inflow process (gutters, gully pots, manifolds) 1767 2455
2 Sewer overloading by heavy rainfall 20 12
3 Blocked sewer pipe or pump 222 32
4 Blocked or broken house connection 131 61
5 Problem related to other urban water system 

components: groundwater/surfacewater/drinking water
47 124

6 Not relevant 1301 493

Selection of features

The basic features employed in this work are based on individual words in 

the call texts, a typical choice in text classification. More complex word 

combinations and grammatical constructions were not used.

To start with, call texts are split into separate words. This gives 216231 separate 

words spread over 8544 vocabulary units, i.e., unique words. In order to reduce 

the size of the database, all words that occur only once have been removed. 

This reduces the number of different words to 4489. Words of only 1 or 2 

characters have been removed as well since most of these are words with low 

information content like the Dutch definite article “de”. This results in a list of 

4378 words that are used to compile an initial dataset of word count features in 

the following way. Every single call text, of the total of 6359 and 6980 call texts, 

is represented by a 4378-dimensional feature vector in which every dimension, 

every feature, corresponds to the number of times a particular word, from the 

4378 words, occurs in the call text. This feature set size is very large, which 

implies that a very large number of training records is needed for training and 

calculation times for classifier training and testing are long. Additionally, a 

high-dimensional feature space may result in the earlier-mentioned curse of 

dimensionality. Therefore, latent semantic analysis was applied to reduce the 

initial number of features before starting the experiments. Latent semantic 

analysis is a multivariate analysis technique that is very similar to well-known 
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principal component analysis and it selects and combines features based on 

their (relative) importance (Manning et al., 2008). The result is a reduced list 

of 1024 features that are ranked according to decreasing importance. 

Classifiers for automatic call classification experiments

Three classifiers were tested to give a first idea of the applicability of 

automatic classification of municipal calls. Two of them have been introduced 

above, i.e., the nearest mean classifier (NMC) and the first-nearest neighbor 

(1NN) classifier. A third classical and well-known classifier we used in our 

experiments is Fisher’s linear discriminant (FLD), also referred to as linear 

discriminant analasis (LDA) (Bishop, 2006, Duda et al., 2001, Webb, 2002). 

These classifiers were chosen because of their straightforward structure and 

associated short calculation times, which facilitates our experiments. Moreover, 

results obtained employing these relatively straightforward classifiers, which 

can be seen as representatives from different parts of the classifier spectrum 

(Mansilla and Ho, 2004)., should give an indication of their potential use of 

pattern recognition in automatic call classification. 

Experimental set-up: Learning curves

For practical application of automatic call classification, classifiers are to be 

trained anew for each new call center dataset. The natural way to proceed is 

to provide a training set from the dataset for which calls have been classified 

manually. The smaller the size of the dataset that is needed for training, the fewer 

calls need to be classified manually and the less time-consuming application to 

new datasets will be. This in turn enhances the usefulness of automatic call 

classification for practical applications. Dataset size depends on the number 

of features needed for classification and on the number of records needed for 

classifier training. Classifier performance for different dataset sizes is tested in 

learning curve experiments. Three experiments have been conducted with the 

available datasets of 6359 and 6980 call records and 1024 features. 
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- Learning curve for feature set size

A learning curve of classification error as a function of the number of features 

shows how many features are needed to obtain a minimum classification error. 

As features set size increases, more information is available for classification; 

more features also require a higher number of training records

- Learning curve for training set size

A learning curve of classification error as a function of the number of training 

objects provides information to determine the required dataset size, for a given 

number of features, to obtain sufficient accuracy of the classification results. 

In practical applications, sufficient accuracy depends on the sensitivity of 

applications to classification errors. For new datasets the required dataset size 

determines the number of records that is to be trained manually. 

Application of automatic call classification results for quantitative fault tree 

analysis

The applicability of automatic call classification results in quantitative risk 

analysis is tested in a quantitative fault tree analysis for urban flooding. Figure 

1 shows the fault tree model that was used, including four failure mechanisms 

that can give rise to urban flooding. Three failure mechanisms are related to 

urban drainage systems and are represented as basic events in the tree: blockage 

of inflow processes, e.g. blockage of gully pots gully pot connections, hydraulic 

overloading as a result of heavy rainfall and blockage of sewer pipes and pumps. 

Problems in other water systems are not analysed in detail; failure related to 

these water systems are lumped into an undeveloped event, represented by a 

diamond symbol instead of a circle. More information on the construction of 

the fault tree can be found in (Sebastiani, 2002). The fault tree analysis results 

obtained based on automatically classified calls are compared to the results 

based on manual classification of the calls. 
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Figure A2.1. Fault tree model for urban flooding used to test sensitivity of quantitative 

fault tree analysis results to errors in automatic classification results.

Results

Learning curve number of features

Figure 2 shows learning curves for the Breda and the Haarlem datasets, for 

the three classifiers LDA, NMC and 1NN, for increasing feature set size. The 

classification error rate, i.e. the rate of wrongly classified calls out of the total 

number of calls, has a clear minimum for LDA and NMC as a results of the 

counter-intuitive effect of increasing error-rate with increasing feature set size. 

The error-rate in the 1NN curve is almost insensitive to the size of the feature 

set; error rates for all feature set sizes are above the minimum errors for LDA 

and NCM. The optimum number of features, based on these learning curves, 

is 200 for LDA and 300 for NMC. The plots also show that the minimum error 

rate for Breda is higher than for Haarlem. This will be explained later in this 

chapter. 
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Figure A2.2 Learning curves for feature number increasing from 100, with steps of 100 

to 1000, for the Breda and Haarlem datasets. 50% of the dataset is used for training and 

50% is used for testing. Boxplots are based on 10 repetitions of the training and testing 

procedures of the classifiers.

Learning curve training set size

Learning curves for increasing training set size were created by successively 

using 10% up to 90% of the dataset for training and the other 90% down to 

10% of the dataset for testing. Feature set sizes of 200 for LDA, 300 for NMC 

and 300 for 1NN were applied, based on the learning curves for feature set size.
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Figure A2.3 Learning curves for increasing fractions 0.1 to 0.9 of the dataset used 

for training; the remainder of the dataset is used for testing. Boxplots are based on 10 

repetitions of the training and testing procedures of the classifiers.

Figure 3 shows how error rates decrease with increasing training set size; the 

uncertainty in error rate increases as a result of smaller test sets as training 

set sizes grow. The lowest mean error rate for the Breda dataset is 0.18 and is 

obtained applying LDA, when 90% of the dataset is used for training, i.e. 6282 

training records. The lowest mean error rate for the Haarlem dataset is 0.13 

and is obtained applying LDA, when 60% or more of the dataset is used for 

training or at least 3815 training records. The lower error rate for the Haarlem 

dataset is explained by the presence of one large class that contains 77% of the 

call records. This implies that if all records were erroneously assigned to this 

largest class, the error rate would be 0.23. The Breda dataset is more balanced; 

the largest class contains 51% of the call records, corresponding with an error 

rate of 0.49 if all records were assigned to this class. 
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In order study the nature of the classification errors in more detail, class 

confusion matrices were created that show the results for all classes for both 

the true (manually classified) labels and the labels assigned through automatic 

classification. Table 4 shows the confusion matrix for LDA, for the Breda 

dataset; correctly labelled records are on the matrix diagonal, erroneously 

labelled records are off-diagonal. 

Table A2.4 Class confusion matrix for the results of LDA, for 200 features and 50% of 

the dataset used for training and for testing. Classification error rate: 0.20
True Assigned labels Sum Σcorrect
labels 1 2 3 4 5 6 True /Σtrue
1 Inflow process blocked 1503 19 30 27 2 186 1767 0.85
2 Overloading by heavy rainfall 7 7 0 1 0 5 20 0.35
3 Blocked sewer pipe or pump 36 1 108 9 2 66 222 0.49
4 House connection problem 12 6 11 79 0 23 131 0.60
5 Other water system problem 5 0 0 2 29 11 47 0.62
6 Not relevant 132 5 55 20 12 1077 1301 0.83

Sum assigned 1695 38 204 138 45 1368 3488 0.80

The matrix shows that the classifier has special difficulty in distinguishing 

records for the smallest class, class 2, which has the lowest correct/true ratio 

of 0.35. This is probably due to the lower number of available records for 

training in this class. Surprisingly, class 5, which also has a small class size, has 

a correct/true ratio of 0.62, higher than the ratio for the larger classes 3 and 4. 

The confusion matrix for NMC (not shown here) has a correct/true ratio above 

0.5 for all classes except class 2. For the Haarlem dataset, LDA gives a low ratio 

for class 2 of 0.08, while NMC gives a ratio of 0.58. Class 5 scores are good for 

LDA and NMC for both datasets, which implies that class 5 is easy to recognise 

for these classifiers. Classification results for class 1 are robust: correct/true 

ratios are above 0.85 for LDA and NMC for both datasets. This is a result of 

the large size of class 1 compared to other classes. 
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Sensitivity of fault tree analysis results to errors in automatic call 

classification 

Probabilities of occurrence of events in the fault tree were calculated based 

on manual and automatic call classification results for the events in the tree. 

Automatic classification results for LDA, 200 features are used. Probabilities 

are derived from the number of calls in each class, divided by the number 

of independent flooding events. Quantitative fault tree analysis is based on 

Monte Carlo simulation: the occurrences of basic and undeveloped events are 

simulated with the use of a random number generator. Each simulation that 

results in failure is stored, with the combination of causes that led to flooding. 

A Monte Carlo simulation for the case of Breda with manually classified calls 

results in a probability of flooding of 0.68 per event per 100 km sewer length. A 

Monte Carlo simulation with automatically classified calls results in a probability 

of flooding of 0.66/event/100km. Tables 5 and 6 show the contributions of the 

basic events to the overall probability of flooding for the 2 simulations. The 

results show that errors in the automatic classification procedure have only 

limited influence on the outcomes of the fault tree calculations. The overall 

probability of flooding remains approximately the same: the contribution of the 

main failure mechanism, blockage of inflow processes is 92% for both manual 

and automatic classification results. The contribution of the smallest failure 

mechanism, overloading, changes by 1%, from 2% for manual classification to 

3% for automatic classification. 

 

Table A2/5. Results of 10,000 Monte Carlo simulations with the fault tree model for 

Breda, manual classification
Flood causes Contribution to overall probability of failure
Inflow process blocked 9212 out of 10,000 (92%)
Overloading by heavy rainfall 156 out of 10,000 (2%)
Blocked sewer pipe or pump 1654 out of 10,000 (17%)
Other water system problem 344 out of 10,000 (3%)
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Table A2.6. Results of 10,000 Monte Carlo simulations with the fault tree model for 

Haarlem, automatic classification
Flood causes Contribution to overall probability of failure
Inflow process blocked 9153 out of 10,000 (92%)
Overloading by heavy rainfall 314 out of 10,000 (3%)
Blocked sewer pipe or pump 1572 out of 10,000 (16%)
Other water system problem 339 out of 10,000 (3%)

Discussion

Learning curves for varying feature set sizes show that LDC and NMC suffer 

from the “curse of dimensionality”: minimum error rates are obtained for 

feature set sizes of 200 and 300 and error rates rise rapidly for larger feature set 

size. 1NN is less sensitive to feature set size and error rates vary only little with 

varying feature set sizes. 

Error rates decrease as the training set grows, up to half the total dataset; larger 

training set sizes give only limited improvement of the error rate. This implies 

that a training set size of about 3000 records is needed for application of the LDA 

and NMC classification schemes to new call datasets. The 1NN classification 

scheme performs poorly for this classification task: it results in high error rates 

compared to LDA and NMC. In this case, error rates decrease more slowly 

with increasing training set size and have not yet reached a minimum when 

90% of the dataset is used for training. Potentially, the addition of more records 

could bring the performance of 1NN to the level of LDA or NMC, but in the 

current situation one of the latter classifiers is clearly to be preferred over 1NN.

Confusion matrices for LDA and NMC show that small classes are most 

sensitive to classification errors. This implies that classification accuracy for 

these classes could improve if data sets with larger numbers of calls in these 

classes were available. In practical applications, call numbers increase with 

time as a call centre stays in operation. As data set size grows, larger training 

and test sets become available and classifiers can be retrained to obtain higher 
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accuracy. It is more efficient, and possibly equally effective, to purposefully 

acquiring examples of the smaller classes only in order to improve their 

accuracy. Obviously, overall performance improvements might be obtained 

by choosing yet another classification technique from the large number of 

approaches that have already been proposed in the literature (see [referenties 

naar PR en ML literatuur]). What is potentially more powerful is to develop 

classifiers and construct features that are more dedicated to handling municipal 

call data as the integration of the correct prior information should generally be 

beneficial. Nonetheless, the power and potential of the presented methods and 

their variations should be apparent from the initial study we offered.

Minimum error rates of 0.18 and 0.13 are obtained for the datasets of Breda 

and Haarlem, for the LDA classification scheme. Application of classification 

results in quantitative fault tree analysis shows that error rates of 0.18 and 

0.13 for Breda and Haarlem do not distort the outcomes of the analysis: the 

ranking of failure mechanisms and their contributions to the overall probability 

of flooding change by at most 1%. 

For other applications in risk assessment absolute probabilities of occurrence 

of individual classes may be needed; in that case error rates of more than 30%, 

as obtained in the presented applications for small classes, are likely to be 

unacceptable. For such applications, larger data set sizes for smaller classes 

are required or alternative, more elaborate classification schemes could be 

explored to obtain lower error rates. The same is true if calls are used to identify 

vulnerable locations for flooding, for specific failure mechanisms. In that case, 

correct labelling of individual calls is important which is more sensitive to 

classification errors than the total number of calls per class. 

Instead of training a classifier for anew for each individual call database, the 

trained classifier of one database can be directly applied for classification of 

a new database. If the classifier has good portability from one database to 

another, it will provide acceptable classification results for the new database. 

This means no new classifier needs to be trained to classify new databases. This 
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offers opportunities for broad application of automatic call classification: once 

a classifier with good portability is found and trained, many databases can be 

trained with the same classifier. Whether classifiers with good portability can 

be found and trained is a topic for further research. 

Conclusion

The results of this study show that simple automatic classification schemes like 

LDA and NMC can classify call datasets with error rates below 0.2. Classifiers 

perform better for large class sizes than for small classes, probably due to the 

larger number of available training objects. The presence of one large class in the 

Haarlem dataset, containing 77% of the call records results in a low error rate of 

0.13; for the Breda dataset with a more balance distribution of calls over classes, 

an error rate of 0.18 can be obtained. Application of automatically classified 

datasets in quantitative fault tree analysis shows that obtained classification 

accuracy is sufficient to correctly rank failure mechanisms according to their 

contributions to the overall probability. 
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This appendix presents risk curves for all consequences of urban pluvial flooding 

used in the analysis of data from the municipal call centre of the city of Haarlem, 

over the period 1997 to 2007.
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Introduction

Risk assessment studies often present the expected value of risk as a summary 

value for a range of probabilities and consequences or they give a risk value for 

a given scenario, e.g. a certain return period. Risk curves go one level deeper 

and present risks for a range of probabilities and consequences (Kaplan and 

Garrick, 1981). Risk curves for urban flooding depict flood damages on the 

horizontal axis and their associated exceedance probabilities on the vertical 

axis. Figure A3.1 gives an example of a risk curve, for a flood damage xi varying 

from 0 to 100 on the horizontal axis and associated exceedance probabilities on 

the vertical axis. 

Figure A3.1. Example of a risk curve (based on: Kaplan and Garrick, 1981): a 

complementary cumulative distribution function (CCDF), i.e. the probability of 

exceeding a given damage 
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Risk curves for urban flooding depict flood damages on the horizontal axis and 

their associated exceedance probabilities on the vertical axis. The intersection 

of the curve with the vertical axis gives the probability of any damage at all; 

the intersection with the horizontal axis gives the maximum possible damage, 

with zero probability of exceedance. Values in between are interpreted as 

probabilities of at least damage xi; this probability increases or remains constant 

for decreasing damages. The staircase function is the plotted result of a series 

of points representing damage for scenario i and the exceedance probability 

for each scenario. The staircase function can be regarded as a discrete 

approximation of a continuous reality, represented by the smooth curve. The 

area below the risk curve is a measure of total risk; the further risk curves shift 

to the top-right-hand corner of the graph, the higher their associated total risk. 

The advantage of risk curves compared to one value for expected risk is that 

risk curves give insight into the contributions of small and large damages to 

flood risk. If flood risk is mainly associated with small damage incidents, the 

curve decreases steeply for small damages and more gently for high damages, 

as is the case of the example in figure A3.1. If large damages mainly compose 

risk, the curve is more or less flat for small damages and steeply decreases at 

large damage values.

Preparation of call data to construct risk curves

Table A3.1 summarises results of call classification for consequence classes of 

urban pluvial flooding, for the case of Haarlem. Sixteen consequence classes 

are distinguished, based on information in the call texts. Classified calls are 

subsequently assigned to independent rainfall events, as described in chapter 2 

of this thesis. This results in a matrix of events and consequence classes; each 

cell in the matrix gives the number of calls received per event per consequence 

class. For each consequence class, the incidence of numbers of calls per event is 

determined. The result is illustrated in table A3.2, where X is the number of call 

per event per consequence class. A small number of calls per consequence class 

per event means that the amount of associated flood damage is small. Table 

A3.2 shows that this is the case of most events: call incidence 1 per event per 
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class (X=1) occurs most frequently. Call incidence of more than 10 per event 

(X>=10) occurs only for 3 consequence classes. 

The results in table A3.2 are used to calculate probabilities of occurrence of 

consequence classes. The occurrence of events is assumed to be a Poisson 

process, which implies that the probability that an event will occur in any 

specified short time period is approximately proportional to the length of the 

time period. The occurrences of events in disjoint time periods are statistically 

independent. Under these conditions, the number of occurrences x in some 

fixed period of time is a Poisson distributed variable:

								        (A3.1)

Where:		  : probability of x occurrences in a period of time t

	 λ	 : average rate of occurrence of events per time unit	

Since failure occurs due to the occurrence of 1 or more events, the probability 

of failure can be calculated from:

								        (A3.2)

Where:	  	 : probability of one or more events

	  	 : probability of no events 

The time period t can be chosen at will; the longer t, the higher the probability 

of occurrence. The time scale is preferably chosen so as to fit the frequency of 

events. In the case of urban flooding flood events typically occur up to several 

times per month and the duration of events is in the order of several days. A 

time period of 1 week fits the event occurrence frequency and has been chosen 

for the construction of risk curves.
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Table A3.1 Call classification results for aggregated and for detailed flood consequence 

classes, for the cases of Haarlem, for a period of 10 years
Primary functions Consequence classes Nr. of calls/

class:Haarlem
(nr) (%)

Human health: 
physical harm or 
infection

Flooding with wastewater 61 3.4

Manhole lid removed 7 0.4
Protection of 
buildings and 
infrastructure: 
damage to public 
and private 
properties

Flooding in residential building (house/garage/shed) 116 6.5
Flooding in commercial building (shop/storage hall) 34 1.9
Flooding in basement 173 9.7
Water splashes onto building 26 1.5
Flooding of gardens/park 74 4.1

Prevention of road 
flooding: traffic 
disruption

Flooding in tunnel 13 0.7
Flooding at bus stop/taxi stand 18 1.0
Flooding in shopping street/place/commercial centre 117 6.5
Flooding in front of entrance to shop/bar/library/hospital 55 3.1
Flooding in front of entrance to residential building 65 3.6
Flooding on residential/main street 655 36.5
Flooding on cycle path 133 7.4
Flooding on sidewalk/footpath 73 4.1
Flooding on parking space 173 9.7

Total number of calls relevant for flooding 1793 100%
No consequence mentioned 3563
Consequence other than flooding 1005
Total number of calls 6361
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Table A3.2 Incidence of events with X calls per class, for consequence classes E0, E101 

to E116. Call incidence above 0 is shaded in grey.

X: number of events with X (for X 1 to 30) calls per class; E101: Flooding in residential 

building; E102: Flooding in commercial building; E103: Flooding in basements; E104: 

Flooding on streets; E105: Flooding of tunnel; E106: Flooding on cycle path; E107: 

Flooding on footpath; E108: Flooding on parking space; E109: Flooding at bus stop; 

E110: Flooding with wastewater; E111: Manhole lifted due to flooding; E112: Flooding 

of green areas (parks/gardens).
X E0 E101 E102 E103 E104 E105 E106 E107 E108 E109 E110 E111 E112
1 100 38 15 33 75 9 42 37 46 17 25 4 27
2 61 6 5 12 35 0 11 4 7 0 2 1 5
3 41 1 0 3 19 0 7 0 8 0 1 0 2
4 22 1 1 1 12 0 1 2 5 0 0 0 1
5 27 0 0 2 6 0 2 0 3 0 0 0 0
6 17 1 0 1 4 0 0 0 2 0 0 0 2
7 18 2 0 3 2 0 1 0 1 0 0 0 0
8 9 0 0 0 1 0 0 0 1 0 0 0 0
9 8 1 0 0 6 0 0 0 0 0 0 0 0

10 7 1 0 0 0 0 0 0 0 0 0 0 0
11 6 0 0 1 1 0 0 0 0 0 0 0 0
12 1 0 0 1 2 0 0 0 0 0 0 0 0
13 3 0 0 0 0 0 0 0 0 0 0 0 0
14 6 0 0 0 0 0 0 0 0 0 0 0 0
15 3 0 0 0 1 0 0 0 0 0 0 0 0
16 2 0 0 0 1 0 0 0 0 0 0 0 0
17 2 0 0 0 0 0 0 0 0 0 0 0 0
18 2 0 0 0 1 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0
20 4 0 0 0 1 0 0 0 0 0 0 0 0
21 1 0 0 0 0 0 0 0 0 0 0 0 0
22 3 0 0 0 0 0 0 0 0 0 0 0 0
23 1 0 0 0 0 0 0 0 0 0 0 0 0
24 2 0 0 0 0 0 0 0 0 0 0 0 0
25 2 0 0 0 0 0 0 0 0 0 0 0 0
26 1 0 0 0 1 0 0 0 0 0 0 0 0
27 3 0 0 0 0 0 0 0 0 0 0 0 0
28 1 0 0 0 1 0 0 0 0 0 0 0 0
29 1 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0

>30 17 0 0 0 0 0 0 0 0 0 0 0 0
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Risk curves for consequence classes of urban pluvial flooding

Figures A3.2 and A3.3 give 2 examples of risk curves for individual damage 

classes. Flood consequence severity on the horizontal axis is expressed as 

amount of calls per incident. The risk curves show that the maximum amount 

of calls for flooding on streets is more than twice as high as for flooding in 

residential buildings. The probability of at least 1 call is more than 3 times 

higher for flooding on streets than flooding in residential buildings. 

Figure A3.2. Risk curves (smoothed lines) and staircase functions for consequence class 

‘flooding on streets’, based on call amounts per incident as a measure for consequence 

severity
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Figure A3.3. Risk curves (smoothed lines) and staircase functions for consequence 

class ‘flooding in residential buildings’, based on call amounts per incident as a measure 

for consequence severity.

Risk graphs for other consequence classes (figures A3.4 to A3.7) show that for 

most consequence classes, the maximum number of calls per incident is below 

5. Probabilities of at least 1 call per event vary from 0.009 per week for lifted 

manholes to 0.13 per week for flooding on parking spaces. Most risk curves 

decrease steeply for increasing numbers of calls per event, indicating that flood 

risk for most consequence classes is associated with small events.  
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Figure A3.4. Risk curves for consequence classes related to flooding in buildings, based 

on call amounts per incident as a measure for consequence severity.
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Figure A3.5. Risk curves for consequence classes related to flooding of streets, based 

on call amounts per incident as a measure for consequence severity.
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Figure A3.6. Risk curves for consequence classes related to flooding with wastewater, 

lifted manholes, flooding of green spaces and flooding in front of entrances to residential 

buildings, based on call amounts per incident as a measure for consequence severity.








   


























   







   







   










            
           




245

Risk curves for urban pluvial flooding

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32

Figure A3.7. Risk curves for consequence classes related to flooding in front of 

entrances to commercial facilities, flooding in shopping streets, flooding of tunnels and 

flooding at bus stops, taxi stands and bus and train stations, based on call amounts per 

incident as a measure for consequence severity.
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              



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