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Background 
 

People use and modify landscapes. Within landscapes humans try to improve their 

livelihood by converting land cover, extracting resources and redirecting water flows. These 

actions indirectly influence underlying biophysical processes of the landscape (Vitousek et 

al., 1997). Intended or unintended changes of the landscape alter landscape functions 

(DeFries et al., 2004; Palmer et al., 2004; Kareiva et al., 2007). Landscape functions describe 

the ability of a landscape to provide goods and services to society. Such goods and services 

include, amongst others, food and timber production, fresh water supply, climate 

regulation, landscape aesthetics and recreational opportunities. These are all benefits of the 

landscape that contribute to human well-being. People thus depend on landscape functions 

and therefore good management of landscapes is essential for sustainable human 

development (MA, 2003). 

In this chapter background information is provided on the concept of landscape 

functions and it is explained why and how this concept needs to be studied more in depth. 

Then the objective and resulting research questions are presented and an overview of this 

thesis is given. 

 

Functions of landscapes 

The concept of landscape functions originates from Ecology. In the 1970s ecologists started 

to identify the benefits of natural ecosystems for society in order to promote nature 

conservation and to support spatial planning actions (Van der Maarel and Dauvellier, 1978; 

Van der Ploeg and Vlijm, 1978). Only in the 1990s the concept of ecosystem functions 

gained momentum in the scientific literature (e.g. De Groot, 1992; Costanza et al., 1997; 

Daily, 1997). Although currently many definitions are available, ecosystem functions are 

generally seen as characteristic of an ecosystem that provides goods and services to satisfy 

human needs. 

The term landscape function in this thesis is used in analogy with the concept of 

ecosystem functions: it indicates the capacity of the landscape to provide goods and services 

to society. The reason for specifically addressing landscapes and not ecosystems is because 

landscapes consist of different systems, arranged in specific spatial patterns. This thesis 

addresses land systems that are strongly modified by humans, such as agricultural and peri-

urban areas. Landscapes are considered holistic spatial systems in which humans interact 

with their environment (Naveh, 2001 ; Bastian, 2004), while ecosystems are often perceived 

as merely natural and semi-natural systems (e.g. Daily, 1997; Egoh et al., 2007; Cowling et 

al., 2008). As a product of landscape functions, landscape services are defined as the flow of 

goods and services provided by the landscape to society. These landscape services (short for 

landscape goods and services) are the connection between the landscape and human 
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benefits, i.e. the actual contributions to well-being (De Groot et al., 2010). Besides landscape 

services, also other terminologies have been introduced in the scientific literature to address 

services that are provided in natural and cultivated systems. These include, land-use 

functions (e.g. Pérez-Soba et al., 2008), land functions (e.g. Bakker and Veldkamp, 2008; 

Verburg et al., 2009) and environmental services (e.g. Barton et al., 2009; Turner II, 2010). 

However, as the term landscape explicitly includes the interplay between humans and their 

environment, we consider landscape functions and services in this thesis the most 

appropriate terms (as for example in Bastian et al., 2006; Gimona and Van der Horst, 2007; 

Lovell and Johnston, 2009; Termorshuizen and Opdam, 2009).  

Landscape service supply is not equally distributed over the landscape. The amount of 

service supply depends on location-specific and temporal landscape characteristics 

(Wiggering et al., 2006; Egoh et al., 2008). Landscape service supply of a location can be 

quantified by the actual service supply (e.g. quantity of food produced) or by its value. An 

assessment of the amount of supplied services always proceeds the valuation the service 

supplied by a location (Hein et al., 2006). Basically, three aspects drive the value of 

landscape services: ecological, socio-cultural, and economic (MA, 2003). The ecological 

aspects encompass the health status of a system, measured by ecological indicators such as 

diversity and integrity (De Groot et al., 2010). Socio-cultural measures relate to the 

importance people give to, for example, the cultural identity of landscape or recreational 

possibilities (e.g. Alessa et al., 2008). And last, the economic measures which relate to the 

goods and services consumed, or used as input in an economic production process (e.g. 

MA, 2003; TEEB, 2009). In order to calculate the overall value of landscape services a 

number of methods have been developed to also translate ecological and socio-cultural 

measures of landscapes into monetary terms (e.g. Costanza et al., 1997; Costanza and 

Farber, 2002 ; Hall et al., 2004; Hein et al.). The advantage of using a single value-unit (e.g. 

money) is that it can not only represent all different value-domains in one measure, but it 

can also be used to assess the overall value of multiple landscape services in a 

multifunctional landscape. 

 

Multifunctionality 

Landscapes provide often more than one service at the same time, resulting in 

multifunctional landscapes. A landscape could, for instance, be used for agricultural 

production, facilitate recreational activities and provide habitats for wildlife at the same 

time. The concept of multifunctional landscapes first appeared in scientific publications in 

the 1980s (e.g. Niemann, 1986). Nowadays, the scientific literature describes the concept of 

multifunctionality from different disciplinary backgrounds. Besides multifunctional 

landscapes (e.g. Brandt and Vejre, 2004), also multifunctional agriculture (e.g. Hall et al., 
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2004; Bills and Gross, 2005; Van Huylenbroeck et al., 2007), multiple services from natural 

areas (e.g. MA, 2003; Tallis et al., 2008a), and multifunctionality in relation to regional 

development (e.g. Heilig, 2003; Wiggering et al., 2003) are frequently studied. Although 

approached from different perspectives, all these studies relate to describing interactions 

between landscape functions. 

Over the last two decades, several international organisations included the concept of 

multifunctionality into their agricultural development strategies. In 1992, for example, the 

role of multifunctional agriculture in relation to rural development was addressed in 

Agenda 21 of the United Nations’ Rio Earth Summit (UNCED, 1992). Some years later, the 

Food and Agriculture Organisation of the United Nations (FAO) highlighted important 

multiple functions of agricultural areas for rural livelihood (FAO, 1999). The Organization 

for Economic Co-operation and Development (OECD) and European Union introduced 

the concept into their new conceptual approach for agricultural policy, recognising that 

‘agriculture’ does not solely include agricultural production but embraces a whole range of 

functions (OECD, 2001). And finally, the latest European Common Agricultural Policy 

reforms were also based on the concept of multifunctionality. These reforms gave policy 

makers the opportunity to shift the focus of subsidy programmes from a primarily 

production focus to a stronger attention to the social and environmental functions of 

agriculture (EC, 2004). Due to these reforms payment schemes and subsidies of farmers in 

the European Union relate now also to the non-commodity services they supply. 

The recognition of multifunctional landscapes also appeared in national political arenas. 

In regions with high pressure on land, the concept of multifunctional landscapes is expected 

to play a role in reducing conflicting claims on land while complying with societal needs for 

landscape services (Brandt and Vejre, 2004). In this way, the notion of landscape 

multifunctionality became a part of several comprehensive spatial planning strategies (see 

e.g. Dijst et al., 2005; VROM, 2006; Cairol et al., 2009; Vejre et al., 2009). One of the major 

reasons for policy makers to focus on multifunctionality is that the total service supply of 

multifunctional areas is assumed to exceed the service supply of mono-functional locations 

(Brandt and Vejre, 2004; De Groot, 2006). However, not all landscape functions can be 

combined without influencing the overall provision of landscape services because of trade-

off effects or conflicts between different stakeholder groups. 

 

 

Relevance of mapping and modelling landscape functions 
 

The concepts of landscape functions and multifunctionality are currently thus included in 

many different policy strategies. Additionally, efforts to include management of landscape 

services into planning practices have increased strongly (e.g. Daily and Matson, 2008; Tallis 
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et al., 2008a). Especially for areas with high pressure on land resources, good management 

of interacting functions within a multifunctional landscape seems crucial. Landscapes are 

spatially diverse and therefore landscape functions are unequally distributed over an area. 

In order to adequately manage landscape functions knowledge is needed on where and how 

much landscape services are being provided (Egoh et al., 2008). Also, to be able to make 

decisions regarding trade-offs at multifunctional sites we need to understand where and 

how much landscape functions interact with each other (De Groot et al., 2010). And finally, 

to evaluate management strategies information is needed on the location and quantity of 

landscape function dynamics within a changing landscape. However, to date, there appear 

to be no examples of complete spatial assessments of the quantity and value of service 

supply in multifunctional landscapes under different land management strategies (ICSU et 

al., 2008). Therefore, we assume that quantitative maps of landscape functions can support 

decision makers to design spatial policies, while spatially explicit models can be used to 

evaluate the effect of land management strategies.  

 

Why maps? 

Limited information is available on the spatial distribution of landscape functions. Current 

land-use maps relate primarily to the classic spatial policy focus on agricultural and urban 

development. These land-use maps are based on the directly observable land cover. 

However, it is hypothesised that many landscape functions cannot be directly linked to land 

cover. This limits the use of current maps in landscape function studies. This limitation is 

illustrated by an example in the central region of The Netherlands. The land-cover maps in 

Figure 1.1 indicate that mainly urban expansion has taken place between the years 2000 and 

2006. With an increase in urban area, changes in use of the surrounding rural landscape 

likely takes place. For example, more land in peri-urban areas will be used for outdoor 

recreation. The land-cover maps in Figure 1.1 do not show any change in landscape 

functions in agricultural areas, represented by the land-cover classes ‘arable land’ and 

‘pastures’. However, according to Dutch farm census data, an average growth of 8.3% in the 

number of farms that incorporated recreational activities into their operations occurred 

between 1999 and 2005. In the same period, an additional 11.3% of farms per year were 

participating in nature and cultural heritage conservation programs. So, even though the 

land cover does not show any change, the functions of the agricultural landscape did 

change. 

 



 12 

 
Figure 1.1 Land cover in the central part of The Netherlands in 2000 and 2006, reclassified from the 

CORINE dataset (Hazeu et al., 2008) 

 

When the distribution of landscape functions is made spatially explicit, potential conflicts 

between landscape functions can be identified and minimised. For example, in the last 

decade many modern windmills have been placed in the Dutch rural areas. This new 

function of the landscape to provide ‘green’ energy soon appeared to be in conflict with the 

bird habitat function, i.e. many birds died in a collision with the blades (Winkelman et al., 

2008). To better deal with these conflicting functions in planning strategies, the two 

landscape functions were quantified and mapped to indicate areas where wind energy 

production would least affect bird habitats (Aarts and Bruinzeel, 2009). This example shows 

that spatially explicit information on landscape functions can mitigate function conflicts.  

 

Why spatial models? 

Landscapes are continuously changing and therefore the provision of landscape services is 

subject to permanent change. Most of these dynamics in the landscape are induced by 

people and influence landscape functions directly (Vitousek et al., 1997; DeFries et al., 2004; 

Palmer et al., 2004). Scientists have intensively studied causes and impacts of human-

induced landscape dynamics. This resulted in a wide variety of spatial modelling 

approaches to describe, monitor and explore landscapes and their future changes (see 

overviews by Parker et al., 2003; Gutman et al., 2004; Verburg et al., 2004; Lambin and 

Geist, 2006). These research efforts however focus on land-use changes without explicitly 

including landscape functions or demand for such functions. For policy makers and 

planners the effect of management strategies on landscape functions is of great interest 
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(OECD, 2001; EC, 2003; VROM, 2006). Spatially explicit land-use models have proven to be 

valuable tools to explore future scenarios and to assess impacts of change in policy making 

(Uran and Janssen, 2003; Geertman and Stillwell, 2004; Kok et al., 2007; McIntosh et al., 

2007). Therefore, including landscape functions into spatial models is expected to further 

the understanding on their feedbacks and interactions which could improve decision 

making processes (Cowling et al., 2008; Carpenter et al., 2009; Paracchini et al.). Both the 

construction of such models and the interpretation of their results can enhance 

understanding of the landscape function dynamics (Parker et al., 2008; Claessens et al., 

2009). 

There are several reasons why landscape functions are mostly not included in current 

land-use change models. First, the land-use modelling approaches are mainly based on 

land-cover maps (e.g. Figure 1.1), while, as shown above, landscape functioning extends 

beyond land cover. We assume that landscape functions can be defined by a range of 

biophysical and socioeconomic characteristics, of which land cover is only one aspect 

(Figure 1.2). The quantitative relationships between these landscape characteristics and 

landscape functions however need to be defined (ICSU et al., 2008; Renting et al., 2009; De 

Groot et al., 2010). Second, few land-use models actually quantify the service supply or 

land-use outputs per area (Lambin et al., 2000). In order to account for the spatial variation 

of landscape functions within a landscape, the actual amount of service supply to society 

needs to be quantified. Third, human-induced changes in land-use models are usually 

driven by a demand for commodity goods like agricultural products and urban areas. 

Current land-use models do not take into account demands for non-commodity landscape 

functions such as cultural value of a region, recreational opportunities, and biodiversity 

support (Heilig, 2003). Demand for services is assumed to be a driver of land management 

decisions and spatial policies (Figure 1.2). The resulting societal actions adapt the landscape 

in such a way to ensure the continued flow of services (DeFries et al., 2004; Bastian et al., 

2006; Nelson, 2006). By explicitly including landscape functions into a spatial model, 

societal actions can be described and evaluated. Finally, many locations in the landscape are 

multifunctional. Because of possible interactions between landscape functions, these 

multifunctional locations need special attention when exploring dynamics of landscape 

functions (Figure 1.2). Present land-use modelling approaches cannot take into account the 

interactions at multifunctional locations as these approaches typically assign a single land-

use type to a specific location.  
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Biophysical and socioeconomic 
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Trade-offs 
multifunctional 
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Societal uses and 
management

 
Figure 1.2 Hypothesised relations and feedbacks in space and time of landscape processes influencing 

landscape functions. 

 

 

Contents of the thesis 
 

Objectives 

As people depend on landscape functions, effective management of landscapes is essential 

to safeguard the flow of landscape services. However, information on the spatial 

distribution and dynamics of landscape functions to support such management is limited. 

Current landscape research lacks methodologies to quantify and map landscape functions 

with the aim to explore the dynamics of multifunctional landscapes. The overall objective of 

this thesis is therefore to analyse and quantify spatial aspects of both landscape functions 

and multifunctionality and to develop a methodology in which landscape function dynamics 

are modelled. The methodological outcomes of this thesis should have the potential to 

support decision-making on future landscape management. 

 

To achieve this objective the following research questions are defined:  

1. How can landscape functions be described, quantified and mapped? 

2. How can interactions between landscape functions at multifunctional locations be 

identified and quantified? 

3. How can changes in landscape service supply and value be quantified to evaluate 

landscape management strategies? 

4. How can dynamics of multifunctional landscapes be modelled in space and time? 

 

The general focus of this thesis lies on the development of methodological approaches, 

rather than on presenting clear guidelines for landscape management. The resulting 

methodologies should have to potential to be applicable in other studies. An application of 

these methodologies is given based on data of a case study area, the Dutch Gelderse Vallei 

region. Additionally, this thesis addresses landscape functions as a result of spatial patterns 

of the landscape and regional socioeconomic characteristics. Individual decision making 
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processes (as in Pfeifer et al., 2009; Valbuena et al., 2010) or economic processes driving 

changes in landscape services supply are considered beyond the scope of this thesis.  

Making landscape functions spatially explicit adds an innovative component to research 

conducted in the field of quantification of multiple landscape services. While most other 

quantification methods lack a spatial component, this thesis aims at developing a 

methodology to quantify spatial variability of landscape functions. Furthermore, a 

methodological framework that explicitly includes quantitative and spatial information on 

landscape functions and their interactions, should lead to novel spatial modelling 

approaches to describe the dynamics of multifunctional landscapes.  

 

Study area 

All analyses presented in this thesis are based on data of the Gelderse Vallei region in The 

Netherlands (Figure 1.3). The Gelderse Vallei is a prominent agricultural region within the 

densely populated Netherlands. Because of the diverse biophysical characteristics and 

pressure of land resourses, multifunctionality is a key aspect in the current land-use 

planning for this region.  

The Gelderse Vallei is a shallow valley formed by a glacier that covered a part of The 

Netherlands in the Saale period (approximately 150 ka BP). In this period push moraines 

were formed which now border the valley. The difference in elevation in the study area 

causes a gradient in many biophysical conditions like in the hydrology and soils. This 

diversity in biophysical conditions forms a basis for diverse landscape functions. Total size 

of the study area is about 750 km2 of which currently 70% is under agricultural use, 17% of 

the land is covered by urban areas and the remainder of the area is composed of natural 

areas, infrastructure and water. Because of current spatial policy, ecological corridors are 

being created to connect two national parks located on both sides of the study area. These 

national parks enhanced the development of a large tourism sector in the region (some 300 

000 overnight stays per year: Provinces of Gelderland and Utrecht, 2005). Additionally, the 

region contains approximately 20% of the intensive livestock production (pork, poultry and 

eggs) of The Netherlands (CBS, 2008a). Through an increase in population and built-up 

areas, the Gelderse Vallei region is gradually transforming from rural to peri-urban. Based 

on the current trends, the population in the region of almost six hundred thousand 

inhabitants in the year 2000 is expected to increase with four percent by the year 2015 (CBS, 

2008a). Peri-urban developments can be observed from, for example, the increase of rural 

estates and hobby horses and stables, which are becoming a common aspect in this region 

(Van der Windt et al., 2007). 

At the end of the 20th century conflicts between different landscape functions led to 

several problems in the Gelderse Vallei. The region suffered from pollution and 
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eutrophication of the natural environment because of the intensive livestock production, 

losses of cultural-historical landscapes because of strong urban development and significant 

economic losses due to livestock diseases. With the intention of specifically solving these 

problems, a new spatial planning strategy was introduced in 2004. The Reconstruction Act 

focuses specifically on the multifunctionality of the Gelderse Vallei, aiming at separating 

conflicting functions and joining compatible functions as much as possible (Provinces of 

Gelderland and Utrecht, 2005). Therefore, policy makers in the study area could profit from 

a methodology to make landscape functions and multifunctionality spatially explicit and to 

explore future changes in landscape functions. This thesis explores how this need can be 

addressed. 

 

 
Figure 1.3 Study area of the Gelderse Vallei; within the inset the location of the study area in The 

Netherlands. 

 

Outline of the thesis 

The structure of this thesis follows successive steps to address the overall objective and 

research questions (Figure 1.4). Chapter 2 presents a methodological framework to quantify 

landscape functions and to make their spatial variability explicit. In this chapter three 

methods are presented to map and quantify landscape functions depending on the 

availability of spatial information. The results are subsequently used in Chapter 3 to define 

multifunctional areas and to identify and quantify interactions between landscape 

functions. Different aspects of the landscape function interactions are addressed including 

landscape characteristics that influence landscape function interactions, interrelations 
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between landscape function capacities and the effect of multifunctionality on landscape 

service supply. In Chapter 4 the change in landscape service supply and value under 

influence of policy measures are evaluated. Changes in service supply quantities are 

explored using a unit-less index related to the level of service provision and an estimation of 

the value of these services in monetary terms. In Chapter 5, a multi-scale modelling 

approach is proposed to analyse the spatial and temporal dynamics in landscape service 

supply based on the insights gained in the previous chapters. In this modelling approach we 

explicitly address, the multifunctional character of the landscape, the different spatial levels 

at which interactions between landscape service supply, demand and land management 

occur, and the trade-offs in service supply levels as a result of land management actions. To 

conclude, in Chapter 6 the presented methodologies and findings are discussed, together 

with the possible implications of landscape function mapping and modelling for sustainable 

land management.  

Chapters 2 to 5 are written as independent papers for scientific journals and can 

therefore also be read separately.  

 

Description Dynamic modelling

Change in quantified 
landscape functions (Ch. 4)

Values of landscape 
functions (Ch. 4)

Quantified landscape 
functions (Ch. 2)

Change in landscape 
function values (Ch. 4)

Multifunctionality and 
landscape function 
interactions (Ch. 3)

Dynamics of quantified 
landscape functions (Ch. 5)

Exploration

Current state Future states

 
Figure 1.4 Overview of successive methodological steps in the different chapters of this thesis; from 

describing landscape functions to a dynamic modelling approach. 



 

 

18 

 



 

 

 

Chapter 2 

 

Spatial characterisation of 

landscape functions  
 

 

 

 

 

 

 

 

 

 

 

 

Limited information is available on the spatial variation of landscape functions. We 

developed a methodological framework to map and quantify landscape functions depending 

on the availability of spatial information. In this framework three different methods were 

proposed (i) linking landscape functions to land cover or policy defined areas, (ii) assessing 

landscape functions with empirical models using spatial indicators and (iii) assessing 

landscape functions using decision rules based on literature reviews. The framework was 

applied to the Gelderse Vallei, a transitional rural area in The Netherlands. We successfully 

mapped and quantified the capacity to provide services of eight landscape functions 

(residential, intensive livestock, drinking water, cultural heritage, tourism, plant habitat, 

arable production, and leisure cycling function) for this region. These landscape function 

maps provide policy makers valuable information on regional qualities in terms of landscape 

functionality. Making landscape functions spatial explicit, adds an important component to 

research conducted in the field of quantification of landscape services.  

 

 

Based on: L. Willemen, P.H. Verburg, L. Hein, M.E.F. van Mensvoort 

Landscape and Urban Planning, 88 (2008), 34-43 
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Introduction 
 

Landscapes are able to fulfil many different functions. Based on the definitions of de Groot 

(1992) and the Millennium Ecosystem Assessment (2003) we define ‘landscape function’ as 

the capacity of a landscape to provide services to society. These include, for example, the 

provision of goods like harvested crops or timber, and services like landscape aesthetics, 

provision of habitat or regulation of water systems. Landscape functions are not evenly 

distributed over a region because of the socioeconomic and biophysical variation of the 

landscape and the spatial and temporal interactions between the different components of 

the landscape (De Groot, 1992; Wiggering et al., 2006; Syrbe et al., 2007).  

From the 1990s onwards, landscape functions and multifunctionality have become 

important concepts in policy making, in particular within the European Union (FAO, 1999; 

OECD, 2001; Hollander, 2004; Wilson, 2004; Bills and Gross, 2005). For example, the 

European Union’s Common Agricultural Policy (CAP) reforms of 2003 were strongly based 

on the concept of multifunctionality (EC, 2004). Additionally policy makers nowadays have 

to deal with an explicit demand for landscape services from local and national stakeholders 

(Hein et al., 2006). However, information on landscape functions is often lacking for policy 

making (Pinto-Correia et al., 2006; Vejre et al., 2007). Existing landscape models to support 

policy making mostly either deal with land-cover patterns (Geertman and Stillwell, 2004; 

Verburg et al., 2004) or are strongly sector-oriented (Heilig, 2003; Meyer and Grabaum, 

2008).  

In the last decades considerable progress has been made in analysing and quantifying a 

multitude of landscape functions. A large number of studies have focused on various 

aspects of landscape functions and its multifunctionality (Costanza et al., 1997; Costanza 

and Farber, 2002 ; Dijst et al., 2005; Potschin and Haines-Young, 2006b). However, an issue 

that is not yet sufficiently resolved is how the spatial heterogeneity of landscape functions 

can be accounted for (Troy and Wilson, 2006; Meyer and Grabaum, 2008). 

Spatial information of landscape functions is scarce as only some landscape functions 

directly relate to observable landscape features (e.g. built-up area and residential function, 

or forest and timber production). Spatial information of other landscape functions depends 

on additional intensive field observations or cartographic work.  

The objective of this chapter is to present a methodological framework to quantify 

landscape functions and to make their spatial variability explicit. We present three methods 

to map and quantify landscape functions depending on the availability of spatial 

information (i) linking landscape functions to land cover or spatial policy data, (ii) 

empirical predictions using spatial indicators and (iii) decision rules based on literature 

reviews. An application of the methodology is illustrated for the Gelderse Vallei region of 

The Netherlands 
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Data and methods 
 

Landscape functions 

In this study eight landscape functions were analysed, namely, the capacity of the landscape 

to provide, (1) areas for residential use, (2) locations for intensive livestock husbandry, (3) 

information on cultural heritage, (4) zones for drinking water extraction, (5) an attractive 

landscape for overnight tourism, (6) habitat for rare, endemic and indicator plant species, 

(7) arable agriculture production fields, and (8) an attractive landscape for leisure cycling. 

This selection of landscape functions was based on their different levels of spatial 

information availability and the current spatial planning policy focus of the case study 

region (Provinces of Gelderland and Utrecht, 2005). 

All eight functions were assigned a so-called function proxy variable which could be 

quantified. Where possible, these proxy variables presented the function capacity measured 

in units relating to the anthropogenic use, or services of the landscape (Table 2.1.). In this 

chapter when ‘landscape functions’ are mentioned, we actually refer to the measurable 

proxy variable for that specific function.  

 
Table 2.1. Overview of the selected landscape functions with their proxy variable and available 

delineation data. 

Landscape 

function 

Function definition 

The capacity of the landscape 

to provide: 

Function proxy for 

capacity measure 

Delineation level and 

data source 

Residential Areas for residential use Population per residential 

neighbourhood 

Complete, land-cover 

data 

Intensive livestock Locations for intensive 

livestock production  

Economic farm size (Dutch 

Standard Unit ) 

Complete, land-cover 

data 

Cultural heritage Information on cultural 

heritage 

Unchanged land-use in 

policy defined historical 

landscapes (%) 

Complete, policy 

documents 

Drinking water Zones for drinking water 

extraction  

Drinking water pumping 

license (m3/yr) 

Complete, policy 

documents 

Tourism An attractive landscape for 

overnight tourism 

Tourist accommodation 

suitability 

Partial, accommodation 

sites 

Plant habitat Habitat for rare, endemic and 

indicator plant species 

Conservation Value index  Partial, observation sites 

Arable production Crop production fields Yield (ton/ha) Partial, observation sites 

Leisure cycling An attractive landscape for 

leisure cycling 

Potential leisure cycling 

population 

Not available 
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Overall methodology 

The overall methodological framework is based on the available data on the location of the 

selected landscape functions. Driven by the link between landscape functions and 

observable landscape features or policy delineation, three different levels of landscape 

function delineation, in terms of location and extent, can be distinguished (Figure 2.1.): 

1. Complete delineation: Landscape functions are directly observable from the land 

cover or are defined by policy regulations. 

2. Partial delineation: Non-directly observable landscape functions whose 

delineations are non-comprehensive or based on sample point data. Function data 

originated mainly from field observations. 

3. No delineation: Not-directly observable landscape functions lacking any direct 

spatial referenced information on their location. 

These three levels of landscape function delineation form the basis of our different 

landscape function mapping approaches. In this framework, functions are quantified based 

on the actual or potential services they are providing.  

The first group consists of landscape functions with complete delineation data, so 

location and extent of each of these functions is exactly known. This spatial information is 

based either on directly observable cover data or on through policy delineated areas. 

Spatially referenced data were used to quantify the capacity of the function at that location.  

The second group consists of landscape functions with incomplete delineation data, so 

location and extent of these functions is only partly known. The lack of delineation data is 

related to the fact that these landscape functions can not directly be observed from the 

landscape. It is assumed that land cover, biophysical and socioeconomic landscape 

components can be used to describe the location and capacity of landscape functions. These 

different landscape components were translated into spatial indicators. Multivariate 

regression techniques were used to empirically quantify the influence of these spatial 

indicators on function variability. In the next section these techniques will be discussed in 

detail. Using the empirically derived relations, the partially delineated landscape function 

was extrapolated to a quantitative landscape function map covering the whole study area. 

After defining the function capacity a threshold was introduced to delineate the assumed 

presence of the landscape function for human use or policy making.  

The third group consists of landscape functions lacking any delineation data, so no data 

on function location and extent are available. In this case spatial indicators and literature 

based decision rules were used to come to a quantitative landscape function map. Here 

again a threshold value was determined to delineate the area in which the function was 

considered present for human use or policy making.  
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Figure 2.1. Overview of the presented methodology; from landscape function proxy to quantitative and 

delineated landscape function map. 

 

Analyses in this chapter are based on data for the year 2000, unless mentioned otherwise. 

All topographic data in this study were derived from the topographical 1: 10 000 map 

(TDK, 2005) and land-use data originated from the Soil Statistics survey (CBS, 2002). Data 

sources were converted to a raster format with a spatial resolution of 100 meter, at this 

resolution we conducted all spatial calculations and presented all maps. Spatial data 

processing was done using ArcGIS 9.2. All statistical calculations were carried out using the 

statistical package R 2.2. 

 

Quantifying and delineating landscape functions 

Delineated functions 

Four landscape functions were completely delineated for our study area. Using land-cover 

information the residential function was delineated by the location of residential 

neighbourhoods and quantified by the population per neighbourhood (CBS, 2000). The 

intensive livestock husbandry function was delineated by the location of intensive livestock 

farms and quantified by the economic farm size in Dutch Standard Unit, DSU (Alterra, 

2000b). Only farms larger than 20 DSU (gross production larger than €28 000 Euro per 

year) were taken into account, as agricultural production of smaller farms is too low to 

sustain a minimal income. 

The landscape function providing information on cultural heritage was delineated using 

the location of high value historical landscapes as defined by the province. As authenticity 

of the landscape is considered an important aspect of this landscape function (Daugstad et 

al., 2006), the percentage of unchanged land-use between the year 1900 and 2000 within 300 
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meter of each raster cell was used to quantify the function. The fourth complete delineated 

function in our study area was the drinking water extraction zone function. Here we used 

policy defined groundwater protection zones for function delineation. Within these 

protected areas water remains in the underground aquifer for approximately 25 years 

before being extracted. The permitted quantity of drinking of water that companies may 

extract (in m3/yr) at these locations was used to quantify this function. 

 

Partial delineated functions 

Tourism 

The capacity to provide an attractive landscape for overnight tourism was quantified by 

means of tourism suitability. Function data on tourism suitability were available through 

the current locations of rural accommodation sites. Delineation of this function was 

considered partial as the suitable landscape for tourism goes beyond the location of tourism 

accommodations. In this analysis accommodation types included camp sites, chalets and 

group accommodation sites (KvK et al., 2005). Hotels were not included as they are often 

located in urban areas and do not solely host tourists.  

In the study area 397 raster cells contained one or more tourist accommodations. The 

selection and quantification of the tourism function was based on a logistic regression. A 

logistic regression estimates the probability (0 to 1) of the occurrence of an event based on a 

set of independent variables. This regression type requires a binary dependent variable (in 

this case ‘presence’ and ‘absence’ of accommodation sites). Therefore, an equal number of 

absence cells (397) were randomly sampled from the study area. A mask of 500 m by 500 m 

around all presence locations was introduced to avoid ‘absence sampling’ in the direct 

neighbourhood of observed accommodation locations.  

The selection of potential indicators for suitable tourism locations was based on 

European studies carried out to identify attractive rural areas for tourism (Goossen et al., 

1997; Walford, 2001; EC, 2002; Roos-Klein Lankhorst et al., 2005). The most important 

landscape characteristics for tourism in the Dutch context were: land cover, level of 

disturbance, recreation possibilities and accessibility.  

Land-cover indicators, primarily related to landscape aesthetics, were included by taking 

the percentage of agriculture, built-up and natural areas surrounding the tourist locations. 

These three land-cover classes were chosen as they contributed most to landscape 

perception (Van den Berg et al., 1998; Roos-Klein Lankhorst et al., 2005). The built-up 

land-cover class included overall built-up area and land cover related to industrial activities. 

To take into account different scale levels at which land cover might influence tourism 

suitability a radius of 500 m and 5 km was used to describe the surrounding land cover. 

Besides the specific land-cover classes also the line of sight indicating the openness of the 

landscape was included (Weitkamp et al., 2007). The level of disturbance was expressed by 

the distance to a highway (the major source of noise in the study area) and distance to 
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intensive livestock farms indicating the level of smell disturbance. Recreation possibilities 

were indicated by the distance to natural areas large enough for recreation (> 1 km2), 

density of trails in natural areas, distance to swimming locations, presence of cultural 

historical elements in the neighbourhood and local road network for cycling recreation. 

Accessibility was calculated measuring distance to main roads and highways. 

A stepwise logistic regression in both directions (following Vernables and Ripley, 2002) 

was used to make a selection of predictive variables based on the Akaike’s information 

criterion (AIC) scores. A lower AIC indicated a better fit with a greater parsimony. To 

ensure independence among the variables, the variance inflation index (VIF) was 

calculated. The VIF indicates the effect of each other independent variable on the standard 

error of the regression coefficient (Hair et al., 1998). The performance of the final model 

was assessed by the area under the curve (AUC) of the relative operating characteristic, 

indicating the ratio of true positive and false positive predictions for an infinite number of 

cut-off values (Swets, 1988). The AUC values can vary between 0.5 (completely random 

prediction) and 1 (perfect discrimination).  

We cannot assume that all locations without tourism accommodation are simply not 

suitable. To account for this uncertainty in the tourism accommodation absence data, we 

repeated the random sampling of tourism accommodation absence points 100 times. The 

tourism suitability model was therefore calculated 100 times and the average regression 

results (beta estimates and AUC) are presented in this chapter. 

To validate the accuracy of the tourism model, regression models were fitted using only 

75% of the data. The remaining 25% was considered independent and used to test the 

prediction accuracy. This procedure was repeated based on the 100 different datasets. For 

each model the AUC, based on the 25% of the data, was calculated. After obtaining 

information on model behaviour by this split-sample validation the regression model (with 

average betas estimates) based on the full dataset was used to extrapolate the tourism 

function suitability for the whole study area. The probability, or suitability, value of 0.50 

was used as threshold to define the function delineation.  

 

Plant habitat 

The landscape function providing habitat for rare, endemic and indicator plant species was 

quantified using a nature value index. Delineation data came from a nature value inventory 

carried out and made available by the Province of Gelderland (Rijken, 2000). This inventory 

included point locations spread over the study area at which occurrence of plant species was 

recorded. Hertog et al. (1996) used these plant species occurrence data as input for the 

calculation of the biodiversity conservation value (CV). For each observation point this 

conservation value index was calculated taking into account characteristics of all plant 

species at that specific location. These species characteristics are national and international 
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rareness, trend in occurrence, vulnerability and importance of the species for a specific 

vegetation type. Based on these characteristics the conservation value was determined, 

ranging from a value from 0 to 10, with 10 being the locations with the highest plant nature 

value. To avoid over-representation and to reduce spatial autocorrelation, the conservation 

value of raster cells containing more than one observation was averaged, resulting in 738 

raster cells containing plant habitat data (from the period 1998 to 2001). Contrary to the 

binary tourism accommodation data, these plant habitat function data consisted of 

continuous sample data. Therefore, we used for the empirical analysis of this function a 

regression type for continuous metric dependent data: a multiple linear regression.  

The most important characteristics of landscape functionality for plant habitats were 

included in the plant habitat function assessment. These were soil type, groundwater level, 

nitrogen availability, and land cover (Noss, 1990; Van Ek et al., 2000; Wamelink et al., 

2003). The biophysical conditions were derived from soil (De Vries et al., 2003), modelled 

groundwater (Finke et al., 2004) and assessed excess nitrogen (Gies et al., 2002) maps. 

Land-cover indicators included the main land-cover classes (forest, open nature, arable and 

grass lands, urban area, and infrastructure) and their size and log distances. 

Variables were selected by a stepwise linear regression based on the AIC and tested for 

independence using the VIF. Performance of the final model was indicated by R-squared. 

The final regression model was used to extrapolate the conservation values for the whole 

study area, excluding all built-up areas. All areas with a conservation value higher than 5 

were considered areas where landscape has the capacity to provide good habitat for rare, 

endemic and indicator plant species (Hertog and Rijken, 1996) and was therefore used as a 

threshold for the function delineation. 

To test how well the plant habitat regression model was able to estimate conservation 

values, model accuracy was determined by a 10-fold cross-validation (Fielding and Bell, 

1997; Hair et al., 1998). Conservation value data were randomly split into ten approximately 

equal-sized groups. Each group was considered an independent validation data. The 

validation dataset was used to validate the model which was calibrated using the other 9/10 

of the data. The R-squared was computed for each of the ten validation groups. 

Additionally, the standard deviation of the beta estimates of the ten different calibration 

models was computed to derive information on the model’s stability. 

 

Arable production 

The third landscape function having a partial delineation dataset was the arable production 

function. Function delineation data were based on the location of arable production fields. 

Arable agriculture was considered not fully delineated by land cover because of rotation 

practices. Arable fields are not at the same location every year and therefore land-cover 

maps generally may not correctly display the spatial delineation of the arable production 

function. The arable production function was quantified based on the crop yield (ton/ha) 
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reported per postcode area (23 in total). Maize is the only commonly grown arable crop in 

the study area, therefore only maize production data were considered. Yield data came from 

a survey carried out by the Dutch Agricultural Economics Research Institute in 2005. Each 

maize field was assigned the value of the average maize production of the postcode area in 

which it was located. The final dataset contained 588 maize fields with production data.  

Important landscape characteristics to explain the spatial variation in arable production 

in the Netherlands are soil type, groundwater level (Wijk et al., 1988) and farm 

characteristics. In our study area maize is mostly cultivated by dairy farms as it serves as 

fodder crop for their cows. Farm characteristics of dairy farms, including average farm size 

in hectares and number of farms per postcode area, were derived from farm census data 

(Alterra, 2000b). Soil types (De Vries et al., 2003) and the modelled groundwater levels 

(Finke et al., 2004) were aggregated to field level.  

A multiple linear regression was used to analyse the relations between the arable 

production function and landscape data. Using a stepwise approach in both directions 

based on the AIC a selection of predictive landscape variables was made. To decrease the 

spatial autocorrelation effect in our analysis we applied regressions on 100 randomly 

sampled fields and repeated this 100 times. The average beta coefficients of the 100 

regression models were used to extrapolate the estimated crop yields to all areas under 

agriculture use in the study area. Afterwards a minimum yield threshold of 35 ton/ha was 

introduced to define the function delineation. This is the minimum estimated maize yield 

within the 95% interval for the case study region (CBS, 2000). Model accuracy and stability 

was determined by a cross-validation using the left-out data points of the repetitive random 

sampling procedure. Within each model run the R-squared of the validation data was 

calculated and averaged over the 100 model runs. 

 

Not-delineated function 

Leisure cycling 

To assess the leisure cycling function the following landscape characteristics were included: 

residential locations, population, average cycling distance, cycling facilities, and visual and 

noise disturbance elements like industry, business parks and highways (Goossen and 

Langers, 2000; Gimona and Van der Horst). The majority of leisure cycling primarily takes 

place in the direct neighbourhood of residential areas (Goossen et al., 1997; CBS, 2000). As 

leisure cycling requires cycling facilities, all areas with small local roads within a distance of 

5 km around each residential neighbourhood were included as leisure areas. All locations 

with highways, industry, business parks and waste dumps were excluded from the suitable 

leisure cycling areas. Based on the population that could reach the suitable cycling area, the 

leisure cycling function was quantified. The leisure cycling area was delineated by excluding 

all areas with a potential leisure population of smaller than 10 000. 
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Function map results 
 

Delineated functions 

The quantitative landscape functions maps of residential areas, intensive livestock farm 

locations, and drinking water extraction zones are presented in Figure 2.2a, b and d. To 

improve visibility of the intensive livestock point locations, we mapped the so-called ‘odour 

circles’ of 400 m around each farm location (VROM en LNV, 1985) with summed Dutch 

Standard Units. The assessed quantitative cultural heritage map is presented in Figure 2.2c. 

Based on secondary data we tried to validate the plausibility of this assessment. In The 

Netherlands several cultural landscapes are protected on national level by the so called 

Belvedere Act (OCW et al., 1999). One of these nationally protected landscapes is located in 

the study area. The location of this protected landscape was compared to the location of the 

highest values on our cultural heritage function map. Both showed a clear spatial overlap 

indicating that our assessment was reasonable, although more areas at our assessed map 

scored as high as the nationally protected cultural landscape.  

 

Partial delineated functions 

Tourism 

Resulting from the averaged regression outcomes of the 100 model runs ten variables 

significantly explained tourism accommodation locations (see Table 2.2). The variables 

distance to highway, high density of small local roads, a high percentage of accessible 

surrounding natural areas and a high percentage of clustered natural areas showed a 

positive relation with tourist accommodation locations. Areas further away from a highway 

and in a neighbourhood with many local roads that could facilitate recreational cycling 

together with accessible natural areas with a high amount of clustered natural areas led to a 

higher probability for tourism locations. A high percentage of natural areas became 

significant on a coarser spatial scale, i.e. natural areas in a radius of 5 km showed a positive 

correlation with suitable tourist locations. The variables openness, distance to natural areas 

larger than 1 km2, high percentage of industrial elements and homogeneous natural, 

agricultural and surroundings showed a negative relation with tourist accommodation sites. 

The negative influence of both a high percentage of natural and agricultural land cover in 

the direct surroundings (500 m) indicated that most tourist accommodations are located in 

heterogeneous land cover areas. The sign of the estimated beta coefficients of the predictive 

tourism suitability variables in our study coincided with earlier publications on favourable 

landscape characteristics in The Netherlands (Goossen et al., 1997; EC, 2002; Roos-Klein 

Lankhorst et al., 2005). 
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The average AUC of the 100 logistic regression models was 0.84 (Table 2.2) which in 

land-use studies is interpreted as “very good” (Hosmer and Lemeshow, 2000; Lesschen et 

al., 2005). The standard deviation in Table 2.2 indicates the stability of the beta estimates 

over the 100 runs. The VIF of all variables remained under 10, so all variables could be 

considered independent (Hair et al., 1998). From the validation datasets containing 25% of 

the data we obtained an average AUC of 0.85. This indicated that our models which based 

on only 75% were very well able to predict the location of tourist sites.  

Using the average betas of the 100 runs, the probability for a suitable landscape for 

tourist accommodations was estimated. All areas with a probability higher than 0.5 were 

considered areas where landscape has the capacity to provide an attractive landscape for 

tourist accommodations (Figure 2.2e). Interpreting the predicted tourism suitability map, 

tourism areas are mainly located on the border of our study area where a mix of natural and 

agricultural areas is found. 

 
Table 2.2 Multiple logistic regression results for the tourism suitability function (n=794). Means of the beta 

coefficients, AUC and standard deviations (S.D.) are based on 100 runs.  

Variable Mean beta estimate S.D. 

Intercept 1.3576 0.3103 

Agricultural land cover within 500m (%) -0.0195 0.0031 

Natural land cover within 500m (%) -0.0578 0.0039 

Clustered natural area within 5km (%) 0.0247 0.0087 

Openness (m) -0.0004 0.0000 

Distance to highway (m) 0.0001 0.0000 

Industrial elements, within 500m (%) -0.0343 0.0037 

Distance to natural area >1 km2 (m) -0.0002 0.0001 

Distance to swimming location (m) -0.0001 0.0000 

Accessible nature, within 500m (%) 0.0242 0.0000 

Local roads within 500 m (%) 0.0388 0.0048 

   

AUC 0.84 0.01 

 

Plant habitat 

Following the regression model, six variables could explain the variability in important 

plant habitat suitability (see Table 2.3) in our study area. Wetter areas in winter time, when 

the highest groundwater level occurs, further away from forest or open nature showed a 

lower conservation value. Sandy, sandy clay and peat soils had higher plant conservation 

value than other soil types (peaty sand, loam, heavy sandy clay, clay and heavy clay). So, 

variables related only to groundwater level, soil type and land cover. Two other variables 

(distance to highway and excess nitrogen) were found significant but were removed from 

the model as no processes could be linked to these. Their influence was contrary to what 
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was expected. Removal of these variables did not change the sign of the beta coefficients of 

any of the explanatory variables.  

The regression model showed an R-squared of 0.47, and independent explanatory 

variables (maximum VIF 2.7). A residual analysis did not reveal any high leverage data 

points. The 10-fold cross-validation resulted in an average model accuracy of R-squared 

0.46 and as the betas estimates did not show any large fluctuations, we considered our 

model stable. 

Using the regression model, conservation values were estimated and all areas with a 

conservation value higher than 5 were mapped (Figure 2.2f). Interpreting the function map, 

high conservation values were only present in natural areas. In The Netherlands cultural 

landscapes are perceived as important habitats for rare plant species (Kleijn et al., 2001), but 

this was not supported by our plant habitat map. To account for possible different habitat 

requirements and therefore spatial indicators for plant species in natural and agricultural 

areas two extra regression analyses were carried out. One analysis was based on 

conservation value observations in natural areas, and one on observations in agricultural 

areas. The R-squared was calculated for the complete study area based on the two land-

cover specific models and the overall model as presented in Table 2.3. The land-cover 

specific models performed less than the overall model (R2 0.26 vs. R2 0.47). This difference 

can partly be attributed to the high influence of the distances to natural land-cover 

variables. In the natural land-cover model the distance to natural areas was logically not 

found significant as all locations had the same value there, 0 m. Additionally, our landscape 

variables could not explain well the variation in nature values within the agricultural land 

cover. This could be due to variation in agricultural management practices which were not 

included in our analyses. 

To validate the plausibility of our plant habitat model, the predicted high nature value 

areas (conservation value less than 5) were compared with the location of the State Nature 

Monuments (LNV, 1998). These State Nature Monuments have a strict protective status 

because of their exceptionally high nature value. The spatial comparison showed that only 

two out of five State Nature Monuments appeared in the predicted high nature value 

function map. This discrepancy between predicted and observed values could be a result of 

the generalisation of landscape characteristics related to nature value. Different plant 

communities with different habitat requirements could have similar conservation values. 

Therefore our plant habitat model is very likely to be biased towards the most abundant 

plant community habitat requirements. 
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Table 2.3. Multiple linear regression results (p<0.001) for the plant habitat value function.  

Variable Beta estimate 

Intercept 8.5482 

Highest groundwater level (cm below surface) -0.0100 

Sandy soil (yes/no) 1.0465 

Sandy clay soil (yes/no) 1.1458 

Peat soil (yes/no) 0.8474 

Log distance to forest (m) -0.1984 

Log distance to open nature (m) -0.5378 

  

Residual standard error  1.506 

R2 0.47 

 

Arable production 

The production of arable crops could be explained by seven variables (Table 2.4). Areas 

with low groundwater levels in summer showed a negative relation with the yield versus 

areas with a low groundwater level in winter time showing higher yields. Sandy, sandy clay 

and peaty sand soils have a positive relation with maize yield, compared to peat, loam, 

heavy sandy clay, clay and heavy clay soils. Also two farm characteristics of the postcode 

areas showed a relation with the arable crop yield: postcode areas with more and larger 

sized farmed had higher yields. So, although agriculture in The Netherlands strongly relies 

on management, maize yields could still be partly predicted by spatial indicators related to 

land with expected most favourable characteristics.  

The 100 repetitions of the regression model based on 100 sampled fields showed an 

average R-squared of 0.40 and a maximum mean VIF of 3.4 indicating that all explanatory 

variables in the model can be considered independent. Additionally, no high leverage data 

points were detected in the regression models. As a result of the limited number of yield 

data (23 postcode zones), some variables (soil types) showed strong fluctuations in the beta 

estimates within the model runs (Table 2.4). However, comparing the mean beta 

coefficients resulting from the random sample models (n=100) with the betas of the 

regression model of the full data set (n=588), the betas did not show any large differences. 

The cross-validation of the 100 model runs resulted in an average model accuracy of R-

squared 0.36. 

Figure 2.2g shows the expected locations where the landscape provides suitable arable 

production fields. 
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Table 2.4. Multiple linear regression results for the arable production function. Means of the beta 

coefficients, R-squared and the standard deviations (S.D.) are based on 100 runs (n=100).  

Variable Mean beta estimate S.D. 

Intercept 31.1606 4.9134 

Lowest groundwater level (cm below surface) -0.0101 0.0119 

Highest groundwater level (cm below surface) 0.0100 0.0091 

Sandy soil (yes/no) 1.4325 1.2719 

Sandy clay soil (yes/no) 1.8912 2.8915 

Peaty sand soil (yes/no) 1.1766 3.1978 

Average farm size per postcode area (ha) 0.2649 0.0977 

Number of farms per postcode per km2 46149 11727 

   

R2 0.40 0.01 

 

Not-delineated function 

The not-delineated function - provision of an attractive landscape for leisure cycling 

activities - is presented in Figure 2.2h. Interpreting the delineated leisure cycling map almost 

the whole study area contains an attractive landscape for leisure cycling activities. However 

the potential leisure cycling population is especially concentrated around and between main 

residential areas.  
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Figure 2.2 Landscape function maps. a) Residential function, b) Intensive livestock function, c) Cultural 

heritage function, d) Drinking water function , e) Tourism suitability function, f) Plant habitat function, g) 

Arable production function, h) Leisure cycling function.  
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Discussion and conclusions 
 

Evaluation of the methodology 

The presented mapping methodology accounts for varying availability of information and 

different properties of landscape functions. The diverse choice of methods seems to be 

inherently linked to delineating and quantifying landscape functions. 

A first observation regarding the general validity of the methodology is that the 

subdivision based on available information could in some cases be argued: when using 

delineations of functions based on policy assignment, such as the case of cultural heritage 

areas in this study, it is not sure that the policy designated areas correspond with the areas 

that have the highest capacity in providing this function. Such policy function delineation 

can easily change due to changes in policy focus. 

Furthermore, in this chapter, functions described by partial delineation data were 

extrapolated using empirically quantified relations with spatial indicators. Using empirical 

models gives the researchers the possibility to identify and quantify site-specific relations 

between landscape functions and the environment. Empirical techniques are per definition 

data-driven. This implies that the scale of analysis is primarily defined by the scale of the 

input data. In regional scale studies, like ours, explanatory input data are generally available 

at a coarse scale. At this scale only overall patterns and relations between phenomena can be 

identified (Verburg and Chen, 2000). In our study, aggregated landscape data such as soil 

type, land-use and topographic features could already explain a large part of the spatial 

variability of the landscape functions. 

Several earlier studies have used spatial indicators together with decision rules to map a 

range of landscape functions or their supplied services (e.g. Haines-Young et al., 2006; 

Gimona and Van der Horst, ; Meyer and Grabaum, 2008). Like the leisure cycling function 

in this study, these authors reviewed the literature to define spatial requirements of 

landscape functions. Decision rules based on literature make best use of available 

knowledge and underlying theories. A drawback of this approach is that these decision rules 

are based on general assumptions not on site-specific quantified relations. 

By weighing spatial indicators within the decision rules, a gradient in landscape function 

suitability could have been obtained like, e.g. the recreation quality map in Haines-Young 

(2006). We decided not to use a weighing system because we lacked information to justify 

such a quantification of our spatial indicators. Instead we made a binary leisure cycling 

suitability map in which the gradient was determined by the potential usage. 

All functions in our study were quantified based on the provision of the actual or 

assessed services. Other, so-called valuation studies have been carried out trying to quantify 

the value of the supplied services (Costanza et al., 1997; Turner et al., 2003; De Groot, 2006; 

Hein et al., 2006). The valuation of services very much depends on demand and 
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appreciation of these benefits to humans (Turner et al., 2003). We decided not to focus on 

this human valuation but rather on the capacity of the landscape to provide these services. 

The quantitative landscape function maps resulting from our methodology could serve as 

an input for future valuation exercises. 

As in many landscape studies, proper validation data were lacking to validate the 

landscape function mapping exercise thoroughly. Only two maps could be validated for its 

plausibility of location using secondary data sources (plant habitat and cultural heritage 

function). Additionally three functions maps which were based on empirical extrapolation 

techniques could be cross-validated for model accuracy (tourism, plant habitat and arable 

production function). Due to this lack of validation data, uncertainty in the function maps 

could not be quantified. Therefore we consider a clear communication of data choice and 

all assumptions to end-users as an important aspect of the presentation of the results. 

 

General applicability 

Although the proposed methodology has been specified in detail for our case study area, the 

general approach should be applicable in other case studies as well. Undoubtedly, different 

areas will have different data availability, different function definitions and thresholds 

apply. But we believe that by following our framework best use can be made of available 

data and the inherent characteristics of different landscapes, also in other regions in the 

world. 

The quantitative landscape function maps resulting from this methodology could 

support policy makers and spatial planners by providing insight into the functional 

capacities of the landscape. Regional qualities in terms of functionality can easily be 

interpreted from the landscape function maps. Additionally, the selection and 

quantification of spatial indicators, which in this study were used to extrapolate functions, 

can give insight to important landscape components and underlying processes explaining 

landscape functionality, providing that these are based on causal relations. By showing 

where functions depend on and through what factors they could be enhanced, the identified 

landscape indicators can support land-use management, for instance when assessing the 

potential impact of policy implementations on landscape functionality (Groot et al., 2007; 

Meyer and Grabaum, 2008). Especially in regions where specific landscape function data are 

lacking or incomplete, but where spatial biophysical, socioeconomic and land-cover data 

are already available, the proposed methodological framework helps generating more 

information on the landscape without intensive new data gathering is necessary.  

In our study area many locations with multiple landscape functions were present. 

Possible interactions between landscape functions could be analysed by overlaying function 

maps and comparing spatial indicators. In this way, areas can be identified in which 
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function interactions lead to possible synergies or conflicts. Policy makers can use this 

information to design spatial policies and (ex-ante) evaluate the effect of their land-use 

strategies on the capacity of the landscape to provide services. Especially for areas with high 

pressure on land resources, good management of interacting functions within a 

multifunctional landscape could promote sustainable land-use. Within such a sustainable 

land-use, societal demands should be satisfied in the most optimal way (Wiggering et al., 

2006). 

Making landscape functions spatial explicit, adds an important component to research 

conducted in the field of quantification of services. While most other quantification 

methods lack a spatial component, we presented a first step in the methodological 

development to quantify spatial variability of landscape functions. Accounting for this 

spatial variation has large potentials to improve further quantification efforts. Furthermore, 

as the presented method explicitly considers the spatial heterogeneity and complexity of 

landscape characteristics, it contributes to an integrated policy support aiming at 

strengthening sustainable management of multifunctional areas.  
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Quantifying interactions between 

multiple landscape functions  
 

 

 

 

 

 

 

Rural landscapes are often multifunctional, meaning that at one single location different 

services are being provided. Multifunctionality is spatially heterogeneous as not all areas are 

equally suitable to supply multiple services. This suitability depends on favourable biophysical 

and socioeconomic conditions and interactions between landscape functions. The objective of 

this chapter is to identify and quantify interactions between landscape functions in a diverse 

and dynamic rural region, the Gelderse Vallei in The Netherlands. First, multifunctionality in 

the study region is identified and quantified. The results of these analyses are used to study 

three aspects of landscape function interactions (i) influence of landscape characteristics on 

function interactions, (ii) interrelations between landscape functions and (iii) effect of 

multifunctionality on the different landscape functions. Landscape functions do not equally 

interact with each other, some landscape functions are affected negatively by the presence of 

other functions while other landscape functions benefit from multifunctionality. At 

multifunctionality hot-spots different landscape functions are present that are enhancing each 

other. Additionally, in our study area it appears that mainly locations with landscape 

functions that sub-optimally provide services are strongly multifunctional. Quantification and 

an improved understanding of landscape interactions will help to design and evaluate spatial 

policies related to the provision of multiple services by the landscape.  

 

 

 

Based on: L. Willemen, L. Hein, M.E.F. van Mensvoort, P.H. Verburg 

Ecological Indicators, 10 (2010), 62-73
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Introduction 
 

In Europe, rural areas take up approximately 80% of land areas (OECD, 1994; EC, 2003). As 

rural landscapes contain different landscape functions, such as agricultural production and 

cultural functions, their space can be used for more purposes than just agricultural 

production alone (OECD, 2001). Based on the definitions of De Groot (1992) and the 

Millennium Ecosystem Assessment (2003) we use the term ‘landscape function’ to indicate 

the capacity of a landscape to provide services to society. These services are all benefits 

people obtain from landscape, such as food, fresh water and recreational benefits 

(Millennium Ecosystem Assessment, 2003). In multifunctional areas, more than one 

landscape function to provide these services is present at a single location. Barkman et al. 

(2004) define multifunctionality of the landscape as “the phenomenon that the landscape 

actually or potentially provides multiple material and immaterial ‘goods’ to satisfy social 

needs or meet social demands”. By including the landscape’s potential in this description, a 

landscape is by definition multifunctional. However, the capacity of a landscape to provide 

services might be below an acceptable quantity, leading to a negligible value for human use 

or policy making. In this study we only consider locations at which more than one 

landscape function has the capacity to provide sufficient services to be of interest for human 

use, as multifunctional landscapes. 

Not all areas and all combinations of landscape function are equally suitable for a 

multifunctional land-use. This spatial heterogeneity is caused by differences in biophysical 

and socioeconomic conditions supporting different landscape functions (De Groot, 1992; 

Wiggering et al., 2006; Syrbe et al., 2007; Metzger et al., 2008). Additionally, 

multifunctionality is influenced by interactions between landscape functions (Sattler et al., 

2006; Groot et al., 2007; Van Huylenbroeck et al., 2007). A landscape function interaction 

can be described as the effect of one landscape function on another landscape function. 

Such interaction can influence the capacity of the landscape to provide services. Landscape 

interactions can be ordered into three classes: (1) conflicts, the combination of landscape 

functions reduces a landscape function in its provision of services to society, (2) synergies, 

the combination of landscape functions enhances a landscape function, or (3) compatibility, 

landscape functions co-exist without reducing or enhancing one other. For example, 

intense residential use and provision of plant habitat are conflicting landscape functions as 

the presence of the residential function likely decreases or excludes the plant habitat 

function. In another case a landscape function directly provides favourable conditions to 

another landscape function and synergy takes place. For instance in areas with a nature and 

tourism function. Natural areas directly and positively influence the tourism function, as 

the tourism suitability of an area will increase by the presence of nature (Van den Berg et 

al., 1998; Roos-Klein Lankhorst et al., 2005). In case of compatibility landscape functions do 
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not reinforce nor reduce one another, even though these functions are present at the same 

location. 

Because of the current increase in societal demands for recreational space and 

conservation of the natural biodiversity along with agricultural production, the demand for 

services provided by rural areas has increased (Baudry et al., 2003; Hall et al., 2004; Buijs et 

al., 2006), while the total amount of rural areas in the European Union is decreasing due to 

urban sprawl (Reginster and Rounsevell, 2006). Therefore, recent spatial policies pay much 

attention to the multifunctional character of landscapes (OECD, 2001). The identification 

and subsequent understanding of landscape function interactions depends on the influence 

of landscape characteristics and the role of other landscape functions. Such understanding 

will help to design spatial policies and assess the effect of their land-use strategies on the 

capacity of the landscape to provide services (Sattler et al., 2006). Especially for areas with a 

high pressure on land resources, good management of interacting landscape functions 

could contribute to sustainable land-use.  

Interactions between landscape functions in multifunctional areas have been studied 

before (e.g. Gomez-Sal et al., 2003; O'Rourke, 2005; De Groot, 2006; Sattler et al., 2006). 

These studies focused on either a qualitative description of landscape function interactions 

or on quantitative landscape function trade-off analyses. All lacked, however, a strong 

quantitative spatial component. Only Chan et al. (2006) and Egoh et al. (2008) quantified 

spatial associations between ecosystem services but did not specifically focus on function 

interactions. The objective of this chapter is to identify and quantify interactions between 

landscape functions in a rural region, the Gelderse Vallei region in The Netherlands. This 

region has a high diversity of landscape functions and strong land-use dynamics and 

therefore provides and appropriate case study. We analyse three different aspects of the 

landscape function interactions: (1) What landscape characteristics influence landscape 

function interactions? (2) How do landscape function capacities interrelate? And (3) How 

does multifunctionality affect different landscape functions?  

 

 

Data and Methods 
 

Research approach 

The overall approach to study landscape interactions at multifunctional location consists of 

three steps. First, the variation of the current landscape functions is made spatially explicit 

by mapping all landscape functions using landscape indicators. Second, multifunctionality 

is quantified and mapped by combining the separate landscape function maps. Third, by 

using landscape indicators and the quantified multifunctionality maps, we analyse three 
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different aspects of landscape functions interactions. The analyses of interactions includes 

a) identification of landscape characteristics influencing landscape function interactions, b) 

calculation of correlations between landscape function and c) determination of the effect of 

multifunctionality on a single landscape function. Based on the analysis of 

multifunctionality effects, multifunctional hot-spots are identified. In these analyses we 

assume that the current spatial patterns of landscape functions result (partly) from the 

function interactions. Figure 3.1 schematically summarises our approach. 

 

Landscape indicators

Multifunctionality hot spots

Landscape 
indicator 
analysis

Multifunctionality maps

Landscape 
function 

correlations

Landscape 
function     
effects

Landscape 
function map

Landscape 
function map

Landscape 
function maps

Quantification & mapping of functions

Quantification of interactions

 
Figure 3.1. Overview of the research approach; from landscape indicators to multifunctional hot-spots. 

 

Following the current focus of spatial policies of the study region seven landscape functions 

are included in our analyses; the capacity of the landscape to provide, (1) residential use, (2) 

intensive livestock husbandry, (3) cultural heritage, (4) overnight tourism, (5) habitat for 

rare, endemic and indicator plant species, (6) arable agriculture production, and (7) leisure 

cycling (Provinces of Gelderland and Utrecht, 2005).  

All analyses in this chapter are based on data for the year 2000. Topographic and land-

use data for our study area are derived from the Dutch topographical map (TDK, 2005) and 

Soil Statistics Survey (CBS, 2002) which were both created at a scale of 1:10 000. All spatial 

data sources are converted to a raster format with a resolution of 100 by 100 meter, which is 

used to conduct all calculations, indicator definitions and map presentations. To avoid 

border-effects in our results we carried out our spatial analysis for the study area plus a 

buffer of approximately 20 kilometres. Spatial data processing is done using ArcGIS 9.2. All 

quantitative analyses are carried out using the statistical package R 2.2 (R Development 

Core Team, 2008). 
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Quantifying and mapping landscape functions 

Common techniques to observe the landscape focus on land cover and therefore do not 

provide enough information on the spatial variation of all landscape functions. For this 

reason alternative methods are needed when studying and mapping landscape functions 

(Brown, 2006; Haines-Young et al., 2006). In Chapter 2 we developed a methodological 

framework to spatially describe landscape functions using landscape indicators, 

representing a variety of biophysical and socioeconomic landscape elements and processes. 

Apart from land-use/cover data these landscape indicators are also based on alternative data 

sources including, among others, census data, spatial policy documents, and biophysical 

data. Key in this methodological framework is the availability of spatial information on the 

location and capacity of each landscape function. For some landscape functions the exact 

location is known because they can be directly observed (e.g. built-up area for residential 

function). While for other landscape functions the exact location needs to be assessed as 

direct observation from the landscape is not possible (e.g. the location of the tourism 

function can not be directly observed as this function relates to many different landscape 

characteristics). So based on the available landscape function delineation data an adequate 

mapping method needs to be chosen. In this chapter, when ‘landscape functions’ are 

mentioned, we refer to a measurable variable in units relating to the anthropogenic use or 

policy focus (e.g. yield in ton per ha) for that specific function. Table 3.1 lists the landscape 

function names and their quantified variables as used throughout this chapter. 

Following the methodology described in Chapter 2, three of the seven selected landscape 

functions (residential use, intensive livestock husbandry and cultural heritage) can be 

directly mapped based on indicators derived from land cover and policy documents 

describing their exact location. These three landscape functions are subsequently quantified 

using indicators reflecting the actual provision of services. The residential function is 

mapped using topographical data on residential areas together with demographic 

information on the population per postal code area. The intensive livestock husbandry 

function is delineated by the known location of intensive livestock farms and quantified by 

the farm size in standardised livestock units (Alterra, 2000b). The landscape function 

providing information on cultural heritage was delineated using the location of high value 

historical landscapes as defined by the province government. As authenticity of the 

landscape is considered an important aspect of this landscape function (Daugstad et al., 

2006), the percentage of unchanged land-use between the year 1900 and 2000 within 300 

meter of each raster cell was used to quantify the function. 

For the four other selected landscape functions no complete delineation data describing 

their exact location in our study area is present. For three of these landscape functions; 

overnight tourism, habitat for important plant species, and arable agriculture production, 
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point observations on the location of service provision is available. This allows us to 

empirically quantify and map these landscape functions based on regression analyses. Using 

a regression analysis, significant landscape indicators are selected that relate to locations at 

which services are provided by the landscape functions. These indicators are hereafter used 

to extrapolate these landscape functions to the complete study area. For example, the 

tourism function is assessed by regressing landscape characteristics to the locations of the 

current tourism accommodations. In our study area about 400 raster cells contain one or 

more tourist accommodations, which include camp sites, chalets/cottages and group 

accommodation sites. Hotels are not included in the analysis as they are often located in 

urban areas and do not solely host tourists. The selection of landscape indicators and 

quantification of the tourism function is based on a logistic regression. This regression type 

requires a binary dependent variable (in this case ‘presence’ and ‘absence’ of 

accommodation sites). Therefore, an equal number of absence cells are randomly sampled 

from the study area. A mask of 500 by 500 meter around all presence locations is 

introduced to avoid ‘absence sampling’ in the direct neighbourhood of observed 

accommodation locations. The selection of potential indicators for suitable tourism 

locations is based on European studies carried out to identify suitable rural areas for 

tourism (Goossen et al., 1997; Walford, 2001; EC, 2002; Roos-Klein Lankhorst et al., 2005). 

The most important landscape characteristics for tourism in the Dutch context are: land 

cover, level of disturbance, recreation possibilities and accessibility. All significant 

independent variables are included in the regression model and used to map the tourism 

probabilities for the study area. A similar approach was followed for the plant habitat and 

arable agriculture production functions. For the plant habitat analysis data are used from a 

large scale nature value inventory (Rijken, 2000). This inventory includes point locations 

spread over the study area at which occurrence of all plant species was recorded. Hertog et 

al. (1996) used these plant species occurrence data to calculate the suitability of a location to 

provide habitat to rare, endemic and indicator plant species. For our study area these 

species mostly relate to vegetation growing under mesotrophic wet conditions. The 

landscape characteristics to estimate suitable plant habitats included soil type, groundwater 

level, nitrogen availability, and land cover (Noss, 1990; Van Ek et al., 2000; Wamelink et al., 

2003). The plant suitability figures together with variables describing landscape 

characteristic are included in a linear regression analysis to explain and estimate the plant 

habitat function. The arable production function is assessed using land-use data combined 

with yield data from a survey carried out by the Dutch Agricultural Economics Research 

Institute. Landscape indicators describing soil type, groundwater level and farm 

characteristics are used to estimate the location and quantity of the arable production 

function using a linear regression model. 

One landscape function lacking any spatial information on the location and quantity of 

provided services, the leisure cycling function, is assessed and mapped based on landscape 
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indicators and decision rules derived from the literature. Using spatial information on 

residential locations, average cycling distance, cycling facilities, and visual and noise 

disturbance elements like industry, business parks and highways, the areas suitable for 

leisure cycling function are mapped (Goossen et al., 1997; Goossen and Langers, 2000; 

Gimona and Van der Horst). The leisure cycling function is quantified by the population 

that is within reach (i.e. closer than 5 km away) of the suitable cycling area (CBS, 2000). 

For all landscape functions maps thresholds indicating the minimum for occurrence are 

introduced to only present the locations at which landscape functions provide enough 

services to be of interest for human use. We refer to Chapter 2 for detailed information on 

the complete landscape function mapping methodology and internal validation analyses.  

 

Quantifying and mapping multifunctionality 

To quantify multifunctionality, the number of landscape functions at each location 

(represented by a raster cell) and the summed capacity of service provision of the 

overlapping landscape functions are calculated. This results in two quantified maps 

indicating the level of multifunctionality. In order to determine between which overlapping 

landscape functions interactions can take place, all landscape function combinations in our 

study area are listed and assigned a unique ID number. To quantify the total potential 

provision of services at multifunctional locations, the capacities of all landscape function 

are normalised and summed. A min-max normalisation is used to normalise landscape 

function capacities to a 0 to 1 scale, similar to the procedure used by Gomez-Sal et al. (2003) 

and Gimona and Van der Horst (2007). This normalisation technique is, however, very 

sensitive for minimum and maximum values. To avoid erroneous transformation due to 

outliers, all landscape function maps are first winsonised based on the 5-95 percentile of the 

assessed capacity range, i.e. all values outside the 5-95 percentile are respectively assigned 

the 5th or 95th value (Venables and Ripley, 2002). 

 

Quantifying landscape function interactions  

Following Figure 3.1 three methods are applied to describe the different aspects of 

interactions between landscape functions at multifunctional locations. 

 

Landscape indicator analysis 

Landscape indicators are the basis of our spatial definition of landscape functions. In this 

analysis we indentify what landscape characteristics influence landscape function 

interactions. A landscape function synergy can be found when a favourable landscape 

function indicator is directly linked to another landscape function. Like when, for instance, 

a landscape function contributes to landscape characteristic (e.g. plant habitat function 
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contributes to the creation of natural area) which positively relates to another function (e.g. 

the tourism suitability increases when it is in close proximity to natural areas). When the 

opposite is the case, a landscape function is negatively influenced by a landscape 

characteristic generated by another landscape function, these landscape functions could be 

conflicting. Finally, locations containing landscape characteristics that are beneficial for 

multiple landscape functions can support landscape function compatibility. 

The same landscape indicators that are used to spatially define landscape functions are 

included in this interaction analysis. In this analysis we list all indicators showing relations 

with more than one landscape function together with their possible effect on landscape 

function interactions. Landscape functions having similar landscape requirements could be 

joined in a multifunctional landscape. In case of conflicting landscape requirements, 

multifunctionality is not supported and might lead to a decreased provision of the total 

services. 

 

Landscape function correlations 

The second analysis quantifies the relations between landscape functions across the study 

area directly, in comparison with the first analysis that focuses on landscape function 

indicators. To test and quantify relations between each landscape function pair, Spearman’s 

rank correlations are calculated. We based the correlation analyses on a random sample 

representing approximately 10% of landscape function data to decrease spatial-

autocorrelation effects between observations. 

Likely, two landscape functions will not equally interrelate. For example, the relation 

plant habitat to tourism can be different from the relation tourism to plant habitat (positive 

versus negative). To account for these possible asymmetrical correlations, we select per 

landscape function all observations at which the landscape function is present. From this 

selection, correlation coefficients between all landscape functions are calculated. In case 

another landscape function is not present at that location, a capacity of 0 is assigned to that 

function observation. For example, to quantify the correlation between areas with a tourism 

function and arable production function, first, all locations with a tourism function are 

selected and correlated with the capacity of the arable production function, secondly, all 

locations with an arable production functions are selected and correlated with the capacity 

values of the tourism function. This approach results in an asymmetrical correlation matrix. 

The correlation figures indicate a trend in capacity between the landscape functions, 

from which landscape function interactions can be derived. For example, in case of a 

negative correlation a conflict between landscape functions can be assumed; the capacity of 

a landscape function decreases as the other landscape function gets stronger. 
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Multifunctionality effect analysis 

To quantify multiple function interactions we study the effect of the presence of different 

landscape function combinations on the capacity of a specific landscape function to provide 

services. Knowing this effect of multifunctionality on the capacity of a landscape function, 

combinations of landscape functions leading to high service provision can be identified. We 

consider all multifunctional locations at which combination of landscape functions results 

in an increased capacity for two or more landscape functions, a multifunctionality hot-spot 

(versus two or more conflicting landscape functions resulting in cold-spots). 

For this analysis, the effect of each combination of landscape functions on the different 

landscape functions is first tested using an ANOVA. In case the capacity of a landscape 

function differs among the landscape combinations, we define for which combination of 

landscape functions their capacity significantly deviates from the expected capacity. The 

expected capacity is calculated from the average capacity among all function combinations. 

The differences in capacity are tested using a Welch t-test, a type of t-test that does not 

assume equal variances in the two samples (Venables et al., 2003). These statistical analyses 

are carried out on a 10% random sample of our functions maps. Landscape function 

combinations that only occasionally appear in our data (falling in the > 97.5 percentile of 

the cumulative area distribution) are removed from our data set. To decrease the effect of 

large landscape function groups on the overall mean, the average values of the function 

capacity are calculated from the complete sample data set, that is to say, all values before 

rare landscape function combinations data are removed.  

 

 

Results 
 

Quantifying and mapping landscape functions 

Landscape indicators that are used to quantify and spatially describe landscape functions 

are listed in Table 3.1. The table also indicates the relative weight of each indicator to 

describe the capacity of landscape functions. For the three landscape functions that are 

quantified using regression analyses (tourism, plant habitat, and arable production), the 

standardised beta coefficients indicate the indicator weighting (Bring, 1994; Menard, 2004). 

In Table 3.1 also the landscape indicators that are used to define a boundary condition (not 

the capacity) of a landscape function are listed, these lack a quantified weighting. Figure 3.2 

shows all quantified and maps landscape functions for our study area.  
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Figure 3.2 Landscape function maps. a) Residential function, b) Intensive livestock function, c) Cultural 

heritage function, d) Tourism suitability function, e) Plant habitat function, f) Arable production function, 

g) Leisure cycling function. 
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Table 3.1 Landscape functions together with their weighted indictors for function quantification. Landscape 

indictors only defining function delineation are indicated with a weight ‘–‘ 

Landscape function Landscape indicator Weight 

Residential 

 

Residential area  

Number of residents per ha 

- 

1 

Intensive livestock 

 

Livestock farm zone  

Livestock production and farm size (Economic Units) 

- 

1 

Cultural heritage 

 

Policy indicated area  

Unchanged land-use/cover (% within 250 m radius) 

- 

1 

Tourism * Homogeneous agricultural land-use (% within 500m radius) 

Homogeneous natural area (% within 500m radius) 

Clustered natural areas > 1km2 (% within 5 km radius) 

Openness of landscape (line of sight m)1 

Distance to highway (m) 

Presence of business park / Industry (% within 500m radius) 

Proximity to natural areas (m) 

Proximity to accessible natural area (m) 

Presence of small roads (% within 500m radius) 

Proximity to recreation facilities (m) 

-1.13 

-3.08 

0.86 

-0.84 

0.36 

-0.40 

0.49 

1.04 

1.03 

0.53 

Plant habitat * Winter groundwater level (cm below surface) 

Sandy soil (no= 0 yes=1) 

Sandy clay soil (no= 0 yes=1) 

Peat soil (no= 0 yes=1) 

Proximity to open natural area (m) 

Proximity to forested natural area (m) 

-0.12 

0.23 

0.13 

0.14 

0.56 

0.26 

Arable production * Summer groundwater level (cm below surface) 

Winter groundwater level (cm below surface) 

Sandy soil (no= 0 yes=1) 

Sandy clay soil (no= 0 yes=1) 

Peaty sand soil (no= 0 yes=1) 

Average farm size (ha) 

Number of neighbouring farms (farms per km2) 

-0.10 

0.12 

0.15 

0.09 

0.08 

0.40 

0.69 

Leisure cycling Distance to residential areas < 5km  

Absence of highways  

Presence of small roads 

Absence of business parks/ Industry  

Potential number of visitors 

- 

- 

- 

- 

1 

* Landscape functions of which the weight indicates the standardised beta coefficients.  
1 See Weitkamp et al (2007) for a full description of the indicator calculations 
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Quantifying and mapping multifunctionality 

The multifunctionality map based on the number of overlapping functions shows a strong 

spatial variation in number of landscape functions in our study area (Figure 3.3a). The 

seven landscape functions make a total of 76 different function combinations (including 

both mono and multifunctionality) in our study area. The most abundant landscape 

function combinations, in terms of percentages of the total study area, are leisure cycling & 

arable production (8.1%), arable production & cultural heritage (6.9%) and leisure cycling & 

tourism & residential (6.4%). 

 

 
 
Figure 3.3 Multifunctionality in the study area based on a) assessed number of landscape functions, b) 

summed normalised capacity of the seven landscape functions. 

 

Figure 3.3b shows the summed capacity to provide services of all landscape functions, 

which varies in our study area from 0 to 3, out the maximal attainable capacity score of 7. 

Visual observation reveals a clear difference in pattern between the amount of landscape 

functions present (Figure 3.3a) and the summed function capacities (Figure 3.3b). The 

landscape function combination leisure cycling & arable production & intensive livestock & 

cultural heritage (covering 2.0% of the total area) showed with 1.52 the highest average 

summed capacity, followed by leisure cycling & arable production & tourism & intensive 

livestock (2.6% of the total area), with a capacity of 1.46, and leisure cycling & arable 

production & tourism & intensive livestock & cultural heritage (0.4% of the total area), which 

had a summed capacity of 1.45. Meaning that within our study area at these multifunctional 

locations the highest total capacity to provide services is present. 

a b 
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Quantifying landscape function interactions 

 

Landscape indicator analysis 

Landscape characteristics are identified that positively or negatively influence multiple 

landscape functions and therefore multifunctionality (Table 3.2). Four landscape indicators 

(proximity to natural areas, population, residential area and farm size) are directly related 

to landscape functions (plant habitat, residential, insensitive livestock and arable 

production functions, respectively) which provide favourable landscape characteristics for 

another landscape function. So at these locations a landscape function synergy is supported. 

For example, the plant habitat function generates natural areas, which are enhancing the 

tourism function (see Table 3.1). The opposite applies for the landscape indicator 

representing homogeneous agricultural land-use and large field sizes as in this case a 

landscape function generates unfavourable conditions for another landscape function. 

These indicators are related to large scale arable production but this characteristic will 

decrease tourism suitability (see Table 3.1) and therefore lower the multifunctional 

potential. All areas containing a landscape characteristic that has a similar effect on multiple 

landscape functions (all are either positively or negatively effected), support compatibility 

and therefore multifunctionality. For instance, areas far away from highways positively 

affect both the tourism and cycling leisure functions, therefore these locations could be 

suitable location for both landscape functions. Landscape indicators from Table 3.1 that are 

not listed in Table 3.2 indicate unique landscape function requirements and are therefore 

assumed to not directly influence landscape function interactions and multifunctionality. 

 

Table 3.2 Landscape indicators affecting landscape functions together with their possible landscape 

function interactions and effect on multifunctionality. (Table continues on the next page) 

Landscape indicator Positive effect Negative effect Interaction Multifunctionality 

effect 

Proximity to natural area Plant habitat, 

tourism 

 Synergy Positive 

Residential area Leisure cycling, 

residential 

 Synergy Positive 

Population Residential, 

leisure cycling 

 Synergy Positive 

Farm size Arable production, 

intensive livestock 

 Synergy 

 

Positive 

Field size/homogenous 

agricultural land-use 

Arable production Tourism Conflict Negative 

Presence sandy & sandy 

clay soils 

Arable production 

plant habitat 

 Compatible Positive 

Amount of small roads Tourism, 

leisure cycling 

 Compatible Positive 
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Distance to highway  Tourism, 

Leisure cycling 

Compatible Negative 

Presence of Business 

park/Industry 

 Tourism, 

Leisure cycling 

Compatible Negative 

Winter groundwater level Arable production Plant habitat  Negative 

Summer groundwater level Plant habitat Arable production  Negative 

(Table 3.2 continued) 

 

Landscape function correlations 

All significant Spearman correlations coefficients between landscape function pairs are 

given in Table 3.3. Between many pairs of landscape functions a significant correlation is 

found, however the small coefficients indicate that most of these correlations are not very 

strong. The strongest correlation is found between cultural heritage & tourism (-0.54), 

meaning that at locations with a high cultural heritage capacity a low tourism suitability is 

found (which can also be visually interpreted from Figure 3.2). This negative correlation is a 

result of the predominantly open grasslands far away from forested areas that characterise 

the highly valued cultural landscapes in our study area. These landscape characteristics do 

not coincide with the landscape requirements for the tourism function (Table 3.1). Table 

3.3 shows many negative correlations which are the result of the absence (i.e. zero values) of 

other landscape functions (5-18 % of landscape function observations are located in mono-

functional areas). For example, the negative correlation between valuable cultural 

landscapes and leisure cycling is related to absence of leisure cycling function in these 

cultural heritage areas. In our study area the cultural heritage landscapes are in general too 

far away from urban centres to have leisure cycling. The intensive livestock function, one of 

the known conflicting landscape functions of our case study area, shows (surprisingly) 

positive correlations with areas plant habitat and tourism. So, large intensive livestock farms 

are located in areas with high capacities for tourism and for plant habitat. This example 

indicates that the direction of the correlation coefficients can not in all cases be interpreted 

as a current function interaction. 

That two landscape functions do not have mirrored correlations is explicitly shown 

from the function pairs residential & tourism, and leisure cycling & tourism, as these 

landscape function pairs show opposite correlations. Locations with tourism show a 

positive correlation with leisure cycling capacity, while areas with leisure cycling show a 

negative relation with the landscape’s tourism capacity. So, tourism areas contain very 

suitable leisure cycling areas, but cycling areas are often not suitable for overnight tourism. 

The leisure cycling function has fewer landscape requirements compared to the tourism 

function. 
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Table 3.3 Spearman correlation coefficients between landscape functions (p< 0.01), between brackets the 

number of observations in the sample set. ‘NA’ indicates complete absence of a landscape function pair, ‘-‘ 

indicates not significant correlations. 

 Landscape functions including absence 

Landscape function presence 

(number of observations) 

Cultural 

heritage 

Intensive 

livestock 

Residential Tourism Plant 

habitat 

Arable 

prod. 

Leisure 

cycling 

Cultural heritage (2588)  -0.32 -0.07 -0.54 -0.15 -0.10 -0.14 

Intensive livestock (3196) -0.08  -0.09 0.11 0.06 - -0.14 

Residential (1123) - -0.18  -0.31 - NA  - 

Tourism (3387) -0.13 -0.06 0.12  -0.09 -0.27 0.07 

Plant habitat (538) - - NA -0.22  -0.29 -0.22 

Arable production (5665) -0.19 0.14 NA - -0.17  -0.04 

Leisure cycling (5221) -0.08 -0.19 0.14 -0.07 -0.16 -0.15  

 

Multifunctionality effect analysis 

After leaving out all rare landscape function combinations, 41 combinations were included 

in the multifunctionality effects analysis. The ANOVA results (p < 0.01) indicate that all 

seven landscape functions show a difference in capacity among landscape function 

combinations. So for each landscape function in our study area, the provision of services 

differs when other sets of landscape functions are present. Based on the t-tests results we list 

combinations of landscape functions that significantly deviate from the overall capacity 

mean of a landscape function. To simplify the presentation of the results, we only show the 

results for function combinations covering more than 1% of the total area in Table 3.4. As 

an illustration we plotted the results for the plant habitat function in Figure 3.4. The plant 

habitat function has a significant lower capacity when it is located in multifunctional areas 

with cultural heritage & leisure cycling, leisure cycling & tourism, arable production and 

arable production & cultural heritage. These function combinations, however, cover less 

than 1% of the total study area and are therefore not presented in Table 3.4. Locations only 

containing the plant habitat function (combination ID 29, this ‘combination’ includes one 

landscape function), clearly show a higher plant habitat capacity than all other function 

combinations. So, at mono-functional locations the best conditions are present to find 

important plant species. Actually, although not presented in the simplified Table 3.4, for 

almost all landscape functions (except for the intensive livestock function) mono-

functionality leads to a significantly higher capacity to provide a service.  
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Table 3.4 Landscape function combinations with a positive and negative deviation of the mean function 

capacity (Welch t-test, p < 0.01). Only function combinations covering more than 1% of the total area are 

displayed. 

Function 

(mean) 

Positive deviation Mean Negative deviation Mean 

Cult. 

heritage 

0.69 0.34 

(0.50) 0.67 0.30 

 

� Cult. heritage & arable prod.  

� Cult. heritage 

� Cult. heritage & arable prod. & 

leisure cycling  0.54 

� Cult. heritage & intensive livestock 

& arable prod. 

� Cult. heritage & leisure cycling & 

intensive livestock & arable prod.  

     
Int. 

livestock 

0.37  0.26 

(0.30) 0.36 0.23 

 

� Intensive livestock & leisure 

cycling & Tourism & arable 

prod.  

� Int. livestock & tourism & 

arable prod. 

� Int. livestock & arable prod.  

0.33 

� Int. livestock & leisure cycling & 

arable prod.  

� Int. livestock & cult. heritage & 

arable prod.   

     
Residential

(0.34) 

� Residential & Tourism  0.48 � Residential & leisure cycling & 

tourism  

0.29 

     
Tourism 

(0.45) 

0.57 0.41 

 0.55 0.38 

 0.51 0.36 

 0.51  

  0.34 

  0.32 

 

� Tourism & leisure cycling & 

residential  

� Tourism  

� Tourism & int. livestock  

� Tourism & leisure cycling 

 

� Tourism & arable prod. & int. 

livestock  

� Tourism & arable prod.  

� Tourism & leisure cycling & arable 

prod. & int. livestock  

� Tourism & residential  

� Tourism & leisure cycling & arable 

prod.   

     
Plant 

habitat 

� Plant habitat 0.39   

(0.22)     

     
Arable 

prod. 

0.68 0.50  

(0.56) 0.66 0.49 

 

� Arable prod. & int. livestock 

� Arable prod. & int. livestock & 

leisure cycling 

� Arable prod.  0.59 0.45 

   

� Leisure cycling & cult. heritage & 

Arable prod. 

� Arable prod. & leisure cycling & 

tourism 

� Arable prod. & tourism 

� Arable prod. & cult. heritage  

0.45 

     
0.58 Leisure 

cycling 0.52 

0.34 

(0.39) 0.47 

 

0.34 

 0.45 0.32 

 0.45  

  0.29 

   

 

� Leisure cycling & residential 

� Leisure cycling  

� Leisure cycling & tourism & 

residential 

� Leisure cycling & tourism 

� Leisure cycling & arable prod.  

 

� Leisure cycling & cult. heritage & 

arable prod.  

� Leisure cycling & int. livestock & 

arable prod.  

� Leisure cycling & tourism & arable 

prod.  

� Leisure cycling & tourism & Int. 

livestock  

� Leisure cycling & tourism & arable 

prod. & int. livestock  

0.19 
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Figure 3.4 Standardised plant habitat function per landscape function combination.  

 

To identify multifunctionality hot-spots, we selected from the landscape function 

combinations covering 97.5% of the total area those combinations that showed a positive 

deviance from the mean for two or more landscape functions. All these combinations of 

landscape functions, together with their assumed interactions, are listed in Table 3.5. For 

example, leisure cycling and tourism are affected positively by the presence of each other. 

Therefore we can conclude that at these locations a synergy between two landscape 

functions is taking place, resulting in a multifunctional hot-spot. This result differs from the 

correlation analyses in which we find a negative correlation between leisure cycling and 

tourism, as we here limit our analyses to locations at which both landscape functions are 

present. The landscape function combination leisure cycling & tourism & residential shows 

significantly higher capacities for both tourism and leisure cycling but a significantly lower 

residential function capacity. However, as two landscape functions show a function synergy 

all locations with this function combination are labelled as ‘multifunctional hot-spot’.  

 

10: Plant habitat & leisure cycling & tourism  
16: Plant habitat & leisure cycling  
25: Plant habitat & cult. heritage & leisure cycling  
29: Plant habitat  
37: Plant Habitat & arable prod.  
40: Plant habitat & tourism  
50: Plant habitat & cult. heritage  
55: Plant habitat & arable prod. & cult. heritage 
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Table 3.5 Multifunctional hot-spots and cold-spots landscape and the assumed interactions between these 

landscape function combinations. 

Landscape function combinations Interaction 

Hot-spots 

� Arable prod. & intensive livestock  

� Leisure cycling & tourism  

� Leisure cycling & tourism & residential  

Synergy 

Synergy 

Synergy & conflict 

Cold-spots 

� Leisure cycling & tourism & residential & intensive livestock 

� Leisure cycling & tourism & arable prod. & intensive livestock  

� Leisure cycling & cultural heritage & arable prod.  

� Leisure cycling & intensive livestock & arable prod.  

� Plant habitat & cultural heritage & arable prod.  

� Leisure cycling & plant habitat & cultural heritage  

� Leisure cycling & cultural heritage & arable prod. & tourism  

� Cultural heritage & intensive livestock & arable prod.  

� Cultural heritage & leisure cycling & intensive livestock & arable prod. & tourism  

� Tourism & intensive livestock & cultural heritage & arable prod.  

� Tourism & arable prod. 

� Cultural heritage & leisure cycling & intensive livestock  

� Leisure cycling & tourism & arable prod.  

� Tourism & cultural heritage & arable prod.  

Synergy & conflict 

Synergy & conflict 

Synergy & conflict 

Synergy & conflict 

Conflict 

Conflict 

Conflict 

Conflict 

Conflict 

Conflict 

Conflict 

Conflict 

Conflict 

Conflict 

 

The multifunctionality hot-spots of our study area are presented in Figure 3.5a. Figure 3.5b 

shows all locations at which multifunctionality leads to a lower capacity of at least two 

landscape functions, i.e. multifunctional cold-spots.  

 

 
Figure 3.5 Multifunctionality a) hot-spots and b) cold-spots. 

a b 
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Discussion  
 

Methodology for quantifying interactions 

The three methods to quantify landscape interactions can be seen as complementary to 

describe different aspects of multifunctionality. First, to obtain detailed information on the 

landscape requirements of each landscape function, landscape indicators are analysed. 

Knowledge on what landscape characteristics enhance or hamper landscape functions can 

be used to identify locations with suitable conditions for multiple functions. Secondly, to 

understand landscape function dynamics, we calculated correlations between all landscape 

function capacities. This method can be used to foresee trends resulting from landscape 

function dynamics; the direction of the correlation coefficient indicates the expected effect 

of an increase or decrease of a landscape function on another landscape function. Thirdly, 

the effect of multifunctionality on the capacity of individual functions is calculated from 

which multifunctional hot and cold-spots are identified. This improved understanding of 

landscape function interactions could be used to design and evaluate spatial policies aiming 

at enhancing multifunctionality or one specific landscape function within a multifunctional 

area. Stimulation of multifunctionality is likely to be successful at locations with favourable 

conditions for multiple functions in combination with synergising landscape functions. 

Spatial policies could therefore focus on changing landscape conditions or by promoting 

specific combinations of landscape functions. Knowledge on trends between function 

capacities can be used in policy questions regarding landscape function dynamics. The 

presented overall methodology is generic and could therefore be applied in other study 

areas or to study interactions with potential functions currently not provided in the area. 

A number of methodological issues need to be mentioned in order to ensure correct 

interpretation of the results. First of all, we assume that the current capacity of landscape 

functions is properly reflecting functions interactions. However, we cannot prove causality 

in any of the three methods used to define function interactions. Especially in the 

correlation and t-test methods the underlying relations are mainly unclear and therefore 

difficult to evaluate for assumed causality. Our results indicate that the intensive livestock 

function is positively correlated with plant habitat and tourism, which is very likely not a 

result of causality but rather a description of the current situation where both potentially 

conflicting functions are present in the same area. The effect of this conflict could become 

apparent in due course. The temporal scale at which changes in landscape functions and 

their related interactions show its effect is highly variable, some interactions take place 

immediately whilst others could take years (Lindborg and Eriksson, 2004). Time series data 

are needed to study these possible temporal effects, however due to data restrictions we 

could not carry out a time lag effects study. 
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Another issue relates to the landscape function interactions analyses which are all based 

on linear methods, indicating overall trends. A landscape function interaction could 

however become effective or even change when a certain threshold or optimum point is 

reached (Daugstad et al., 2006; Hein, 2006; Groot et al., 2007). However, too little 

information on such thresholds for our landscape functions is available to develop non-

linear models. 

Additionally, in this landscape function study we are dealing with data containing 

potentially high levels of uncertainty. The landscape function maps, on which all our 

analyses are based, are generated using different methods, all subject to different levels 

(location and nature) of uncertainty (Walker et al., 2003). Internal validation exercises on 

landscape function mapping were carried out (Chapter 2) but uncertainty throughout the 

modelling exercise has not been quantified. Before making a next step to communicate 

results from our approach to planners and policy makers the different dimensions 

uncertainty need to be better determined and understood. 

To aggregate the landscape functions maps to a map indicating multifunctionality, all 

landscape functions in this study are given an equal weight. By straightforwardly assigning 

equal weights to the different landscape function we did not include any preferences or level 

of importance. However, for policy purposes landscape functions could get different 

weights, related to policy objectives or economic values of landscape functions (Turner et 

al., 2003; Hein et al., 2006; Gimona and Van der Horst, 2007; Meyer and Grabaum, 2008). 

An economic valuation of landscape functions could then be used to study at which 

locations a multifunctional landscape provides the highest monetary benefits to society. 

A last methodological issue relates to our assumption that landscape functions only 

interact at overlapping function locations. Our landscape functions are delineated based on 

thresholds related to the minimum capacity of the landscape function at interest for policy 

making. Areas outside these landscape function boundaries are excluded in our analyses. 

Also the effect of scale or the distance to landscape function in our interaction analyses is 

not analysed in this chapter. This scale effect could however play in important role 

describing multifunctional areas (Hein et al., 2006; De Groot and Hein, 2007). 

 

Monofunctional versus multifunctional 

Multifunctional areas have often been stated to provide in total more services to society 

than mono-functional locations (FAO, 1999; OECD, 2001) Our data show indeed an 

increase in total landscape functionality with an increase in the number of landscape 

functions. However, our data show also a clear negative trend between the average capacity 

of a landscape function and the number of landscape functions (Figure 3.6). So, with 

multifunctionality the total function capacity increases while the average capacity of a 

landscape function decreases. Looking at the average maximum capacity values in Figure 
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3.6, multifunctional areas seem to contain multiple low providing functions rather than one 

dominant function with some very small functions. This could either indicate that mainly at 

marginal areas multifunctionality emerges or that multifunctionality goes at the expense of 

single functions. The landscape function correlations presented in Table 3.3 and landscape 

function effects in Table 3.4 also showed that most landscape functions provide more 

services at mono-functional than at multifunctional locations. 

 
Figure 3.6 Relation between the number of landscape functions and the average mean, maximum and 

summed capacity. 

 

 

Conclusions 
 

Our study presents a further step in exploring the complex system of interacting landscape 

functions in relation to spatially heterogeneous multifunctional landscapes. In this chapter 

we describe different aspects of landscape function interactions using quantitative and 

spatial explicit information on landscape characteristics and multifunctionality. Landscape 

functions interact with each other in different ways, some landscape functions are affected 

negatively by the presence of other functions (e.g. plant habitat function) while some other 

landscape functions seem to benefit from multifunctionality (e.g. leisure cycling and 

tourism functions). 
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Our research also supports the need for regional approaches rather than a sectoral focus 

in order to study benefits of the landscape for society. We show a trend that at 

multifunctional locations the total provided services by the landscape is higher than at 

mono-functional sites. On the other hand, single landscape functions at multifunctional 

locations seem to provide fewer services than at mono-functional locations, only at 

multifunctional hot-spots multifunctionality does not lead to a decrease of the expected 

capacity to provide landscape services. The presented quantitative and spatially explicit 

approach highlights interactions between landscape functions which hamper or stimulate 

the landscape to provide these multiple services. 
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In this chapter we analyse the potential impact of an integrated policy package for the 

Gelderse Vallei region in the Netherlands on seven landscape services (residential use, 

intensive livestock husbandry, drinking water supply, attractiveness for overnight tourism, 

habitat provision for rare, endemic and indicator plant species, arable agricultural 

production, and attractiveness for leisure cycling). The spatially explicit methodology focuses 

on the changes in landscape properties resulting from the implementation of these policies and 

its effects on the supply of landscape services and economic values of the landscape services. 

After the policy implementation the strongest increase in services supply is expected in rural 

areas while the strongest increase in value is expected to occur in (peri-) urban areas of the 

study area. Additionally, we conclude that the policy package leads to an increase in 

multifunctional areas. This study presents one of the first comprehensive methodologies to 

quantify and analyse spatial variation in economic value of landscape services in time, and 

therefore can contribute to well-informed management of landscapes. 

 

 

Based on: L. Willemen, L. Hein, P.H. Verburg 

Submitted 
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Introduction 
 

Besides producing agricultural commodities, rural regions provide a multitude of services 

that benefit people. Based on the definitions of ‘ecosystem functions’ (De Groot et al., 2002; 

MA, 2003), we use the term ‘landscape function’ to indicate the capacity of a landscape to 

provide services to society. These services include, amongst others, benefits such as food 

and timber production, fresh water supply, and recreational opportunities. The potential to 

provide such services depends on the spatial configuration and components of the 

landscape (Wiggering et al., 2006; Syrbe et al., 2007; Egoh et al., 2008). By changing 

landscape properties, human activities can directly or indirectly affect the supply of 

landscape services (Bastian et al., 2006; Nelson, 2006). Spatial policies are designed to 

influence the landscape in such a way that the provision of one or more landscape services 

is improved (Daily and Matson, 2008). For example, creating buffer zones around natural 

areas may improve wildlife habitats, land consolidation of arable land will enhance 

agricultural production, and creating access to natural areas can boost recreational 

activities. However, such changes in the landscape may affect each landscape function in a 

different manner leading to trade-off between different functions (Chan et al., 2006; Nelson 

et al., 2009). Such trade-offs challenge the design and implementation of regional spatial 

policies.  

An ex-ante evaluation of the consequences of spatial planning and policy on the supply 

of landscape services can support decision making (Bockstael et al., 1995; Verburg et al., 

2009). Landscapes are spatially diverse leading to unequal distribution of landscape services 

over an area. An evaluation of policy effects should therefore be spatially explicit as policies 

are likely to have a location-specific effect on the provision of landscape services. 

Additionally, changes in service supply need to be quantified to support decisions regarding 

possible trade-offs between landscape functions. To be able to compare service provision 

across different landscape functions, service supply should be standardised to the same 

units of value. Increasingly, economic valuation techniques are used to quantify landscape 

functions and their value for society (MA, 2005; Fisher et al., 2008; Schaeffer, 2008; 

Carpenter et al., 2009). Different approaches have been developed to value landscape 

services in monetary units (see for an overview e.g. MA, 2003; Turner et al., 2003; 

Zandersen and Tol, 2009). Monetary valuation can, for example be of use for analysing 

trade-offs in landscape service supply (Turner et al., 2003; Naidoo and Ricketts, 2006). 

Several studies have included economic values in spatial policy evaluations (Bateman et al., 

2005; Troy and Wilson, 2006; Grêt-Regamey et al., 2008). Alternatively, landscape functions 

can be valued in non-monetary measures representing standardised service supply (E.g. in 

Chapter 3 or in Gimona and Van der Horst, 2007; Nelson et al., 2009). Using these 

standardised measures, each landscape function can be evaluated by quantifying the relative 
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change in service provisioning, without explicitly considering the economic value of a 

landscape function. To date, studies tend to focus either on a detailed spatial description of 

service supply or on a valuation of landscape services without explicitly taking into account 

the spatial variation in service supply. To our knowledge, no earlier study has presented a 

spatially explicit economic valuation based on the quantified service supply for a broad 

range of landscape functions. 

The objective of this chapter is thus to analyse the change in landscape service supply 

and value under influence of policy measures in the rural Gelderse Vallei region of the 

Netherlands. In this chapter we analyse the impact of implementation of policy plans on 

seven landscape functions: residential use, intensive livestock husbandry, drinking water 

supply, attractiveness for overnight tourism, habitat provision for rare, endemic and 

indicator plant species, arable agricultural production, and attractiveness for leisure cycling. 

We quantitatively and spatially explore the changes in service supply using two measures; 

(i) a unit-less index related to the level of service provision and (ii) an estimation of the 

value of these services in monetary terms. We present a methodology that addresses three 

questions; (i) How will landscape properties change after policy implementation?; (ii) How 

will changed landscape properties affect the supply of landscape services? and (iii) How will 

a change in service supply translate into a change in economic value of the study area? We 

will show that the quantification, valuation and mapping of landscape services can support 

management and planning activities of multifunctional landscapes. 

 

 

Data and methods 
 

Study area  

In the Gelderse Vallei study area, tension exists between different land-uses as a result of 

simultaneous claims for space. In 2002, the Dutch national government introduced a new 

law to tackle competing land demands in the Dutch rural areas in an integrated manner: the 

Reconstruction Act. The integrated spatial policy plans evaluated in this chapter are based 

on the Reconstruction Act of which the implementation for the study area is defined by the 

provincial administrations. The policy plans envision regional development through 

improving the conditions for supplying multiple landscape services to fulfil the increasing 

demands of society (Provinces of Gelderland and Utrecht, 2005). Living conditions and 

economic development should benefit from the new spatial planning. The first policy 

measures based on the Reconstruction Act were implemented in 2005, and in 2015 all 

measures are foreseen to be put in place.  
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Figure 4.1 Location of the study area within the Netherlands and the intensive livestock 

regulation zones as defined by policy. 

 

The implementation and regulation of the Reconstruction Act in the study region is 

strongly based on spatial zones to separate conflicting landscape functions. As especially 

intensive livestock husbandry causes conflicts with other functions in the study area, three 

zones regulating the degree of development in intensive livestock sector have been defined; 

(i) Agricultural development zones, in which priority is given to growth and establishment 

of intensive livestock farms; (ii) Extensive agriculture zones, in which priority is given to 

nature development, residential use and recreation. In this zone the growth of intensive 

livestock farms is strongly regulated, but large profitable farms are eligible for a full 

financial compensation from the Dutch government to be reallocated to agricultural 

development zones; and (iii) Mixed zones, where residential and recreational uses, nature 

and agriculture should develop side by side. All urban areas are excluded from intensive 

livestock development zones (Figure 4.1). 

 

Methodological approaches 

To analyse the change in landscape service supply and value under influence of a set of 

spatial policies, three methodological steps were taken. The first step describes the effect of 

changes in land management on landscape properties as a result the implemented policies. 

Landscape properties include biophysical properties (e.g. soil type or groundwater level) 

socioeconomic properties (e.g. land-use or population pressure), and spatial characteristics 

(e.g. clustering or proximities measures). Landscape properties determine the presence of 

landscape functions and the spatial variability of their supply of landscape services (Chapter 
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2 and Diaz et al., 2007; Egoh et al., 2008; Tallis and Polasky, 2009). In the second step 

landscape properties are used to quantify and map the level of service provision of the 

different landscape functions, before and after policy implementation. In the third step, 

service supply is valued in monetary units, accounting for spatial variation of landscape 

service supply. Different valuation approaches are used to estimate the economic value of 

market and non-market landscape functions. As the focus of this chapter is on 

demonstrating an interdisciplinary approach to evaluate spatial policies, simplified methods 

are used to estimate economic values of landscape services.  

To quantify the changes in landscape service supply we compare the situation in 2000 to 

the expected situation in 2015, when the Reconstruction Act is planned to be completely 

implemented. In this study all spatial data sources are converted to a raster format with a 

spatial resolution of 100 by 100 meter. To facilitate the visual interpretation of the results, 

all landscape function maps are aggregated to 186 postal code zones and administrative 

neighbourhoods of the study area.  

 

Changes in land management 
due to spatial policies

Landscape functions

Biophysical and socioeconomic 
landscape properties

Landscape service supply

Landscape service value

Monetary valuation

Quantification relations

Applying thresholds

1

2

3
 

Figure 4.2 Three steps in the spatially explicit methodological approach; from landscape properties to 

landscape service value maps. 

 

Assessment of landscape properties 

The first step in our overall methodology is to assess the changes in landscape properties. In 

addition to the integrated policy plans a range of development trends are also evaluated for 

their spatial alterations of the landscape, both in socioeconomic and in biophysical terms. 

Including development trends is needed to adequately describe the future situation in 

which policy plans are put into effect. Therefore, we base the assessment of the changes in 

landscape properties on demographic and economic prognoses and trends, construction 

licenses, and environmental regulations. Translating spatial policy plans (e.g. construction 

sites for residential areas) to location-specific landscape properties can be done 

straightforwardly. On the other hand, (policy induced) development trends often lack 

detailed information on spatial variability, as these trends are mostly given for 
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administrative units (e.g. population growth per province). Therefore, translating these 

trends into landscape properties requires that these trends are made spatially explicit. In 

this section we briefly describe the translation of non-spatially defined trends and spatial 

policies into future landscape properties for the study area. 

 

Development trends 

Demographic trends on population growth are for the study area available at municipality 

level (CBS, 2008a). We included an increased spatial variation in these trends by 

distributing the expected population per hectare over all residential areas within the 

municipality in 2015, using the size of the residential area as weight. This results in the 

estimated population distribution map for 2015. Additionally, agricultural development 

trends are used to assess the spatial variation of the change in intensive livestock farms. 

Since a number of decades, there has been a negative trend in number of farms in the 

Netherlands. The Dutch Farm Accountancy Data Network includes development trends 

regarding the number and size of farms in the study area (Provinces of Gelderland and 

Utrecht, 2005). The prognosis for 2015 is an overall decrease in the number of intensive 

livestock farms of approximately 40% in the study area. However, among farm size classes 

this percentage differs. Based on the farm size and growth restrictions as defined by the 

intensive livestock development zones, we estimated the location and size of livestock and 

arable farms by 2015 (see Appendix).  

 

Spatial policies 

A spatially defined landscape change, as described in the regional Reconstruction Act, is the 

planned conversion of 3800 hectares of agricultural land into natural areas to create 

ecological corridors (VROM, 2006). Additionally, 560 hectares of new residential area are 

envisioned in housing construction plans for the study area (Nirov, 2007). Changes in 

infrastructure include the construction of a highway in the central part of the study area. In 

most cases these planned land-cover conversions take place at locations that are currently 

used as agricultural land. Combining the land-cover map of 2000 with these foreseen 

landscape changes, a new land-cover map for the year 2015 is constructed for the study 

area. Additionally, to reduce the chance of water stress for natural vegetation the 

Reconstruction Act states that the amount of extracted groundwater needs to decrease. 

Therefore the overall drinking water extraction in 2015 is foreseen to decrease to 94% of the 

overall amount of water extracted in 2000. Drinking water companies foresee that this 

reduction goes alongside with a similar expected decrease in water losses due to leakages 

(VEWIN, 2005).  
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Quantification of landscape service supply 

In the second step of the methodology, landscape service supply and its spatial distribution 

are assessed based on the spatially explicit landscape properties resulting from the first step 

(Figure 4.2). In Chapter 2 we quantified the relation between landscape functions and 

landscape properties. In this section we give a short description of the quantification 

method of service supply and mapping procedure for the years 2000 and 2015 per landscape 

function. Based on the situation in the reference year 2000 and the expected landscape 

properties in the year 2015, landscape function maps are created and subsequently 

compared. To allow for comparison between different landscape functions and years, all 

aggregated functions maps are normalised between 0 and 1 based on their minimum and 

maximum values for 2015.  

 

Residential 

Service supply of the residential function is quantified by means of the number of people 

living in a residential area. Based on the population statistics for the year 2000 and the 

growth prognoses for the year 2015, the population per residential area was estimated for 

both years. The population per hectare of the study area is mapped for the years 2000 and 

2015.  

 

Intensive livestock husbandry 

The provided services of this function are mapped based on intensive livestock production, 

measured in the Dutch Standard Unit (DSU). The location and size of each farm in the 

study area is derived from farm census data for 2000. Combining the assessed livestock 

farm distribution map for the year 2015 with the agricultural growth data, results in a map 

representing the DSU per livestock farm in 2015. On average a livestock farm in the study 

area possesses four hectares of land surrounding the farm. Therefore the supplied services 

of each farm are distributed over the four surrounding hectares. 

 

Drinking water 

Service supply of drinking water function is described by the amount of water extracted by 

drinking water companies per year. In the study area, all drinking water is extracted from 

protected groundwater extraction zones. Annual extraction volumes are used to quantify 

the function. According to reports of the extraction companies these volumes varied from 

3000 m3 per hectare to 14 000 m3 per hectare in 2000. This function is mapped based on the 

extraction volumes in cubic meter per extraction zone in 2000 and the expected volumes in 

2015. 
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Tourism 

The provided services for tourism are expressed as the suitability for overnight tourism. In 

Chapter 2 we described the location of tourism accommodations by ten landscape 

properties using a logistic regression model. These ten properties include land cover, level 

of disturbance, recreation possibilities and accessibility measures. The variables 

representing these landscape properties and their standardised beta coefficients are 

presented in Table 4.1. Using the logistic regression model the suitability for tourism in 

2000 was estimated. Some of the landscape properties describing the tourism function are 

expected to change by 2015. Using the expected land-cover changes, related properties (e.g. 

percentage of agriculture land) are redefined for the year 2015. This new set of landscape 

properties is put into the regression model to estimate the tourism suitability for 2015. All 

locations with a probability of 0.5 or higher are mapped as suitable locations for tourism. 

 

Plant habitat 

Service supply of the plant habitat function is quantified by an 1 to 10 index referring to the 

suitability of a location to provide habitat to rare, endemic and indicator plant species 

(Hertog and Rijken, 1996; Rijken, 2000). For our study area these species mostly relate to 

vegetation growing under mesotrophic and wet conditions. A linear regression model 

describes the relation between observations on plant habitat suitability and groundwater 

level, soil type and natural land cover, see Table 4.1 and Chapter 2. Based on the variables 

representing the landscape properties and the regression model, the plant habitat function 

is estimated for the year 2000. Only locations with a good plant habitat suitability (index 

value larger than 5) are included in the plant habitat map. By changing the independent 

variables of regression model according to the expected land-cover changes the plant 

habitat function is estimated and mapped for 2015. 

 

Arable production 

Service supply of the arable production function is mapped based on the production of the 

only common arable crop in the study region, fodder maize. By a linear regression on a set 

of selected maize plots, landscape properties explaining the yield per hectare were identified 

in Chapter 2, see also Table 4.1. Using this regression model the arable production for 2000 

is assessed. Only the locations with an estimated yield higher than 35 ton per hectare are 

included in the arable production map. Two of the seven landscape properties included in 

the model, the average farm size and farm density, are expected to change by 2015. The new 

set of independent variables and the regression model are used to assess the yield of maize 

per hectare for 2015. 
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Table 4.1 Landscape properties and their quantitative relation with service supply (based on Chapter 2). 

The landscape properties that are assumed stable over time are presented in Italic. 

Landscape function Landscape properties Quantified relation 

Residential 

 

Residential area  

Number of residents per ha 

 

1 

Intensive livestock 

 

Livestock farm location 

Livestock production and farm size (Economic Units) 

 

1 

Drinking water Extraction zones 

Water extraction (m3) 

 

1 

Tourism * 

 

Homogeneous agricultural area (% within 500m radius) 

Homogeneous natural area (% within 500m radius) 

Clustered natural areas (% within 5 km radius) 

Openness of landscape (line of sight in m) 

Distance to highway (m) 

Presence of business park / Industry (% within 500m radius) 

Proximity to natural areas (m) 

Proximity to accessible natural area (m) 

Presence of small roads (% within 500m radius) 

Proximity to recreation facilities (m) 

-1.13 

-3.08 

0.86 

-0.84 

0.36 

-0.40 

0.49 

1.04 

1.03 

0.53 

Plant habitat * 

 

Winter groundwater level (cm below surface) 

Sandy soil (no= 0 yes=1) 

Sandy clay soil (no= 0 yes=1) 

Peat soil (no= 0 yes=1) 

Proximity to open natural area (m) 

Proximity to forested natural area (m) 

-0.12 

0.23 

0.13 

0.14 

0.56 

0.26 

Arable production * 

 

Summer groundwater level (cm below surface) 

Winter groundwater level (cm below surface) 

Sandy soil (no= 0 yes=1) 

Sandy clay soil (no= 0 yes=1) 

Peaty sand soil (no= 0 yes=1) 

Average farm size (ha) 

Number of neighbouring farms (farms per km2) 

-0.10 

0.12 

0.15 

0.09 

0.08 

0.40 

0.69 

Leisure cycling 

 

Distance to residential areas <5 km  

Absence of highways  

Presence of small roads 

Absence of business parks/ Industry  

Potential number of visitors  

 

 

 

 

1 

* Relations are quantified based on a regression analysis 

 

Leisure cycling 

The service supply for leisure cycling is defined by the potential number of people visiting 

the location for cycling recreation. Of the Dutch population approximately 70 % 

participates in cycling recreation, making on average four trips in 2000 and an expected 

three trips per year in 2015 (CBS, 2008a). An average cycling tour starts at home and covers 

approximately 15 km in a 5 km radius, following small local roads through areas with little 
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disturbance from highways and industry ( see Chapter 2). Based on the suitability of the 

landscape and the potential leisure population, the leisure cycling function is quantified and 

mapped for 2000. To map leisure cycling in 2015, estimations of the change in the potential 

number of people recreating per year and infrastructure changes are included. 

 

Valuation of landscape services 

The economic valuation of landscape services for the years 2000 and 2015 is based on a 

selection of economic indicators that are linked to the landscape function maps. All 

landscape functions are valued in euro (€) per hectare per year. For each landscape service a 

value is estimated for both evaluation years based on (i) the amount of service supply per 

hectare and (ii) the price levels. Our valuation approach does not include market models to 

estimate supply and demand curves. Instead we use an approach based on market prices. 

For services with a market value our valuation is based on establishing the net value 

generated for each service, i.e. the gross value (price times quantify) minus the costs of 

producing the services (including cost of all inputs and depreciation of capital goods). 

Labour costs are however included in the net value. We are aware that these prices only 

reflect part of the value of a provided landscape service. Therefore the values assigned to 

landscape services can only be seen as an illustrative measure. For the year 2000, the prices 

are derived from different sources, including national statistics and company financial 

reports. For the year 2015, price levels are not available or price forecasts contain a high 

uncertainty. Therefore, we decided to base the 2015 price levels on the prices that occurred 

in the year 2007, i.e. the latest year for which the relevant national statistics are available. 

Hence, it is assumed that all prices in 2015 equal the prices in 2007. We are aware that this 

creates a bias, but further estimation of price developments is beyond the scope of this 

chapter. Landscape services of which a significant part of the values are not reflected in 

market transactions (e.g. recreation and tourism) are additionally valued by simplified 

monetary measures indicating the consumer surplus based on literature. All prices and 

consumer values are expressed in 2007 euros. Hence, the prices that were recorded in 2000 

are converted to 2007 euros, using a 2.2% annual inflation rate, the average inflation rate in 

the period 2000 to 2007 (CBS, 2008a).  

 

Residential use 

The residential service is valued based on the price of land under residential use. It is 

assumed that this value can be assessed based on the average house price and the number of 

houses per hectare of residential area. The house price is estimated based on the average 

real estate tax values per municipality of 2007, and the growth in house prices between 2000 

and 2007 (CBS, 2008a). For the study area the average value per house increased from 
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€211 500 in 2000 (€182 300 in 2000 euros) to €259 000 in 2007. The prices of 2007 are used 

to assess the house prices of 2015. To translate these house prices into a value per year, the 

by the Dutch government proposed maximum annual rent of 5.4% of the house value is 

taken (VROM, 2005). Because this study aims to estimate the value of land for residential 

purposes, the construction costs of the house are subtracted from the annual value. The 

construction costs normally are about 70 percent of the real estate value (Bouwfonds, 2006). 

For 2000 the land value per house is multiplied by the number of houses per residential 

area. For 2015 housing development plans are included to define the residential areas and 

number of houses (Nirov, 2007). The value of the residential service is mapped per hectare 

under residential use for both years. 

 

Intensive livestock husbandry 

The service supply of the intensive livestock function is valued based on the net value added 

(NVA) generated by a livestock farm. The Dutch farm size index DSU is used as starting 

point in these calculations. The DSU is included in Dutch farm census data and indicates 

agricultural production units expressed in a monetary term. The monetary term is obtained 

by taking gross farm revenues minus the costs for variable production inputs such as raw 

materials, fertilisers and pesticides (one DSU refers to €1390 in 2000 and is, based on 2007 

data, estimated to be €1400 in 2015 (LEI, 2008c)). To come to the net value added (NVA) of 

an intensive livestock farm, all depreciation and interest costs are subtracted from the DSU. 

Since the NVA of intensive livestock farms strongly fluctuates per year, the average annual 

NVA between 2001 and 2006 is used (LEI, 2008b). Based on the above, the NVA is 

estimated at 29% of the gross revenues for 2000 and 2015. For each (predicted) farm size 

and location the NVA is calculated and mapped for the year 2000 and 2015.  

 

Drinking water 

The value of the service supply of the drinking water function is estimated using the NVA 

of the drinking water companies and expressed per cubic meter water. Hence, the water 

extraction volumes for 2000 and 2015 are linked to the consumer prices of drinking water 

per cubic meter. These prices were €1.40 in 2000 and are estimated at €1.35 in 2015, based 

on 2007 prices (Hydron, 2004; Vitens, 2008). This decrease in real value of water relates to a 

lower price increase as compared to the inflation rate. The NVA as a percentage of the gross 

revenues is 20% for 2000 and is expected to be 23% in 2015 (Hydron, 2004; Vitens, 2008). 

Per drinking water extraction zone, the (expected) NVA generated by water extraction per 

hectare is mapped for the year 2000 and 2015. 
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Tourism 

The total value of the service supply of the tourism function is estimated by accounting for 

both the NVA generated by the tourism sector (producers) and the net benefits accrued to 

tourists (consumers). To estimate the value of the tourism service related to the tourism 

industry, the NVA of the economic turnover of the tourism sector is calculated for 2000 and 

estimated for 2015 based on 2007 values. In 2000 a total 4.5 million overnight stays in 

tourist accommodations (camping, holiday homes, group accommodations) were registered 

for our study area. On average, a tourist spent €23 per day during a stay (CBS, 2008a; 

NBTC, 2008). In 2015 a slight increase (to 4.6 million) in overnight stays and a small 

decrease in expenses (to €22.50) is expected (CBS, 2008a; NBTC, 2008). The NVA of a 

tourism accommodation equals on average 32% of the total turnover in 2000 and is 

expected to be 34% in 2015 (CBS, 2008b). To estimate the value for consumers of the 

tourism service, we consider a range of studies to assess the consumers’ surplus accruing to 

visitors of natural areas in The Netherlands. In particular, we considered the results of a 

travel cost method for wetlands (Hein et al., 2006) and a national park (Van der Heide, 

2005) and a contingent value method for a lake area (Van der Veeren, 2002). Based on the 

results of these studies we assume that visitors accrue a surplus of €2 per tourist per day in 

both evaluation years. For both evaluation years the sum of the two values is distributed 

over the area suitable for tourism (i.e. the area falling within a 5 km circle from a tourism 

accommodation) and weighed by the number of overnight stays per accommodation site. 

 

Plant habitat 

The service supply plant habitat function has no direct market value and is therefore valued 

based on an assessment of the purchase and management costs related to conserving plant 

habitat in the Netherlands. This valuation approach differs from the approaches used for 

other landscape functions in this chapter, as this valuation is based on costs instead of the 

net benefits (i.e. benefits minus costs). It is assumed that these costs indicate a minimum 

willingness to pay of the Dutch society for one hectare of natural land. In 2000 on average 

€38 250 per hectare (€33 000 in 2000 euros) was spent to purchase land for nature 

development (M&NC, 2005). In 2015 this value is estimated at €36 000 per ha, based on 

2007 data. To convert these figures to annual values, the maximum leasehold price for 

agricultural land is used, which set at 2% of the total value of the land (LEI, 2008a). To the 

land values the costs for nature development and maintenance are added. The Dutch 

government has defined a subsidies scheme per nature type to stimulate nature 

development in rural areas (LNV, 2008). These subsidy values vary between €26 and €1300 

per hectare natural land per year with a median at €130. The subsidy scheme is linked to the 

map representing an inventory of the nature types in the study area (LNV, 2003). These 

nature types include, amongst others, nutrient poor grasslands, peat lands, heather and 
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managed forests. Using the delineation of the plant habitat function maps for 2000 and 

2015, the costs of nature conservation are calculated and mapped for each nature type.  

 

Arable production 

The service supply of the arable production function is valued by linking the NVA of the 

crop market prices to the yield (ton per hectare) estimations of the function maps of 2000 

and 2015. For the year 2000 the average market price for one ton of fodder maize was 

€24.35 with a NVA of 30.5%. In 2015 the prices are estimated to be €27.60 with a NVA of 

28.8 %, based on 2007 values (LEI, 2008a). 

 

Leisure cycling 

The economic value of the service supply of the leisure cycling function consists of a value 

accruing to the recreational sector offering various services to cyclers as well as a value to 

the cyclers themselves. To estimate the value of the leisure cycling service related to the 

recreation sector, the potential leisure population is linked to the NVA of the turnovers of 

recreational expenses. In 2000 at national level these expenses were approximately €4.65 per 

person per biking trip (mainly on drink/food consumptions) and in 2015 on average €6.18 

is expected to be spent, based on 2007 statistics (CBS, 2008a). The NVA of total turnover of 

cafes and restaurants in the Netherlands in 2000 was 34% and estimated 36% in 2015 (CBS, 

2008a). The total value for the recreation sector (indicating the producer surplus) is 

therefore assumed to be the number of people times the expenditure per person times the 

NVA (as percentage). The surplus accrued to visitors by leisure cycling is assumed to be €2 

per person per day based on earlier recreation studies in a Dutch context (Van der Veeren, 

2002; Van der Heide, 2005; Hein et al., 2006). The sum of the NVA and WTP of the leisure 

cycling function is distributed over the area suitable for leisure cycling and weighed by the 

potential number of people recreating at that location. 

 

 

Results 
 

Assessment of landscape properties 

Based on policy plans and development trends we mapped the expected changes in land 

cover, drinking water extraction, intensive livestock and arable farms, and population for 

the year 2015. From these maps we subsequently derived the landscape properties to map 

and quantify landscape functions and their service supply. 
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Quantification of landscape service supply 

For the years 2000 and 2015 the provided services of the seven main landscape functions of 

our study region were mapped for each postal code area. In Figure 4.3 we present the 

landscape function maps for the year 2000 and the change in service supply between the 

years 2000 and 2015. Only postal code areas with a change in service supply of more than 

five percent of the average postal code service supply in 2000 are mapped as change. Smaller 

differences in change in service supply are indicated as ‘no change’. 

Several observations from the change maps as presented in Figure 4.3 can be made. 

First, all landscape functions, except for the drinking water extraction and arable 

production function, show an overall increase in service supply by 2015, with the largest 

gains for the plant habitat and tourism functions. Nevertheless, within the study area 

different patterns of change can be observed. Second, the foreseen effect of policy has a wide 

spread impact on some functions (plant habitat, tourism, arable production), while other 

functions are more locally affected (residential, cycling leisure). The planned policies to 

stimulate nature development (i.e., implementation of ecological corridors), clearly 

increases in spatial extent and quantity of the plant habitat function by the year 2015. Some 

postal code areas are foreseen to lose small patches of nature, which leads to a decrease in 

plant habitat. The tourism function is for a large part defined by the presence of natural 

areas and is therefore also expected to increase strongly in most areas. Third, around the 

residential centres, the leisure cycling function is foreseen to increase in service supply. This 

increase is not a result of an improved spatial configuration but is caused by an increase of 

population in nearby residential areas i.e., more people that can reach the location for 

cycling leisure. Fourth, the largest reduction in service supply is seen in the arable 

production function, as agricultural land is being converted to other land-uses. This land-

use conversion however did enhance the service supply of other functions (plant habitat, 

tourism, residential use). Other trade-offs can be observed near cities, where urban 

expansion is at the cost of the cycling leisure function. However these trade-offs are also 

spatially variable, as can be observed from Figure 4.3. For example, an increase of 

residential use leads not at all locations to a decrease in cycling leisure.  

The seven normalised function maps are summed to visualise the total service supply in 

2000 and the change by 2015 (Figure 4.3). As all landscape function maps are normalised to 

a 0 to1 scale, the maximal achievable index would be 7. However the service provision in 

the study area varies between 0 to 2.5. In 2000 the strongest providing multifunctional areas 

are located the east of the study area. In this part no changes in service supply are foreseen 

by 2015, while the overall picture of the study area shows an increase in overall service 

provision. A few postal code zones show a reduction in service supply. These areas are 

mainly the locations where agricultural production (arable and livestock) is foreseen to 

decrease.  
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Figure 4.3 Normalised service supply in 2000 and the normalised changes between 2000 and 2015 for each 

landscape function and the total service supply in the study area. Only areas with a difference >5% of the 

average service supply per postal code in 2000 are mapped as ‘change’. 

 

Valuation of landscape services 

The results of the valuation of the landscape functions are presented in Figure 4.4. Per 

function we show the value of the landscape service per hectare per year and its change 

between 2000 and 2015. Here again, we only classify the difference in service supply 

between the two evaluation years as ‘change’ when the service provision increased or 
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decreased with more than five percent of the average service supply per postal code in 2000. 

In Table 4.2 we present the average value per hectare of a landscape function before 

aggregation to postal code level, and the total value per landscape function for the study 

area as a whole. 

For the year 2000 monetary valuation maps show similar patterns as seen in service 

supply maps, because the valuation of services is directly linked to service supply. The 

economic value of all landscape functions is foreseen to increase by 2015, except for the 

arable production function (Table 4.2). However, at some locations an increase instead of a 

decrease in monetary value of arable production is found. This increase is a result of an 

increase in net value added per hectare, resulting from increased production efficiency and 

market prices, which outweighs the decrease due to loss in agricultural land. Next, the 

impact of the spatial zones regulating intensive livestock development is visible in the map 

indicating change in economic value of the intensive livestock function (Figure 4.4). This 

function shows a decrease in monetary value in the postal code zones located in the 

‘extensive agriculture zones’, in which the growth of intensive livestock farms is strictly 

regulated. In other zones, the overall economic value of the intensive livestock sector is 

foreseen to grow despite a decrease in intensive livestock farms, so the remaining farms 

become more intensive. Another observation from Figure 4.4 is that the tourism function 

shows a decrease in economic value by 2015 in many areas which had the highest economic 

value in 2000. This is a result of the expansion of the tourism function towards the central 

part of the study area, leading to lower average value per hectare, even though the overall 

value of tourism of the study area is expected to increase. 

 
Table 4.2 The average value per hectare per year before aggregation to postal code area, and the total value 

per landscape function of the study area. 

2000 2015* 
Landscape 

function 
Valuation indicator Mean value 

€/ha 

Total value 

millions € 

Mean value 

€/ha 

Total value 

millions € 

Residential Price residential land  76 278 700.5 108 366 995.2 

Livestock NVA per livestock farm 8 442 27.4 13 460 29.8 

Drinking water NVA per m3 water 4 663 1.9 4 848 2.0 

Tourism  NVA per accommodation 

+ WTP per tourist 

1 295 34.3 1 017 35.3 

Plant habitat Price of land 

 + nature subsidy 

922 3.3 1 046 10.3 

Arable NVA per arable farm 341 2.6 352 2.5 

Cycling leisure  NVA leisure sector 

 + WTP per tourist 

127 5.9 182 8.4 

NVA: Net Value Added, WTP: Willingness To Pay 

* Based on price levels of 2007 
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Figure 4.4 Economic values in euro per hectare in 2000 and the changes in value between 2000 and 2015 for 

each landscape function and the total economic value in the study area. Only areas with a difference >5% of 

the average economic value per postal code in 2000 are mapped as ‘change’. Note that the total value maps 

do not include plant habitat values. 

 

We summed all landscape function maps in order to visualise the spatial distribution of the 

total value. The plant habitat values are excluded from this summation as the different 

valuation measure of this function does not allow for a direct comparison with the other 

service values. Looking at the spatial distribution of the aggregated total value of the year 

2000 we clearly recognise the high value of urban areas (Figure 4.4). Therefore, mainly in 
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areas with urban expansion a strong increase in the total value of landscape services is 

expected in 2015. For most other areas no large changes in the economic value are 

observed. This means that at most locations the decreases in economic value are 

compensated by increases of other landscape functions. In Table 4.2 the total value per 

landscape function in euro per year for the study area and the average value per hectare is 

given for the year 2000 and 2015. In both years the capital intensive functions; residential 

use, tourism and intensive livestock contribute most to the total value of the region. 

 

 

Discussion  
 

Policy impact 

The integrated policy package that is addressed in this study aims to enhance regional 

development through an improved spatial structure for agriculture, nature, forests, 

landscape, recreation, water, environment and infrastructure (Provinces of Gelderland and 

Utrecht, 2005). In this section, we discuss the major policy impacts on the spatial pattern of 

service supply and value for our study area. 

From our results we can observe that by 2015 the strongest increase in services supply is 

found in rural areas while the strongest increase in value is foreseen to take place in and 

around urban centres. Also, we observe a general trend that the value of all studied 

landscape functions increases by 2015, except for the arable production function. So for our 

selection of landscape functions, the policy package will likely be successful in achieving its 

objectives. In Figure 4.5 the foreseen changes between 2000 and 2015 in normalised service 

provision and economic value (with 2015 values based on the price levels of 2007) are 

presented per landscape function. The percentage of change between the landscape 

functions in the study area clearly differs between the two methods for landscape service 

quantification. So the choice of quantification method likely influences the interpretation of 

the policy impact. For example, when looking at the cycling leisure function the change in 

service supply only increases a few percentages but the economic value is foreseen to 

increase by almost 50%. This strong increase in value is a result of the increasing demand 

and therefore economic value (prices) of the cycling leisure function. A similar effect of 

price development on the service value is seen for the residential function and to a smaller 

extent for drinking water supply and arable production functions. For the interpretation of 

our results it is important to realise that differences between the change in normalised 

service provision and the change in economic values are caused by a price effect, as a 

consequence of economic development. Hence, changes in economic value are not solely an 

effect of the evaluated policy package; the strong increases in the economic value of some 

services (residential, cycling leisure) would also have occurred without policy intervention.  
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Figure 4.5 Overall change in landscape function extent, service supply and economic value of each 

landscape function for the study area between 2000 and 2015. 

 

Quantifying change in service supply and value 

This study presents one of the first attempts to make the economic value of landscape 

functions spatially explicit by linking economic values to supplied landscape services on a 

detailed spatial resolution. This step is perceived crucial in land management and for 

planning purposes (De Groot, 2006; Daily et al., 2009; De Groot et al., 2010). Even though 

quantified services give a direct view on the relation between the landscape and the supplied 

benefits, for decision making purposes it is important to translate these benefits into a unit 

that allows for trade-off analyses and cost-benefit comparisons. An additional advantage of 

evaluating changes in landscape functions based on changes in economic value is that an 

economic valuation takes societal preferences, which are reflected in the price (and value) of 

the supplied services, into account. One should, however, be aware that an economic 

valuation based on service supply measures leads to an increased uncertainty in the 

outcomes, as a result of the strong data requirements and assumptions to make calculations 

possible. Additionally, carrying out an economic valuation can be challenging for landscape 

services without a use value or market value, it might therefore be more meaningful to 

express these functions in service supply in addition to their assessed economic value 

(Schaeffer, 2008; Daily et al., 2009). Obviously the economic valuation carried out in this 

study could be improved by more detailed valuation data and analyses (e.g. like in Bateman 

et al., 2005; Maler et al., 2008). By describing the economic value as a function of service 

supply and demand, for example, more accurate trade-offs calculations between the total 
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benefits for society (increase in services) and the losses in other landscape functions can be 

made (Fisher et al., 2008). 

To evaluate changes in service supply it is needed to account for factors on different 

spatial scales (Hein et al., 2006; Carpenter et al., 2009). In this study we included national 

and provincial policies, regional characteristics and location properties to describe the 

future location and quantity of landscape services. To reduce the complexity of our analysis 

we did not explicitly include global processes and individual choices in our assessment, 

even though processes on these scales are known to play an important role (O'Rourke, 2005; 

Nelson, 2006; Yadav et al., 2008). Different spatial scales also play a role in linking 

economic values to landscape services (Bateman et al., 2005). By using market prices to 

quantify the economic value of a landscape service, often point observations need to be 

linked to the complete spatial extent of a landscape function. For example, in our study the 

tourism service is partly valued based on tourist accommodation revenues. We showed that 

not only the location of the camp site generates the service value, the surrounding landscape 

also contributes to this value. To adequately distribute the economic value to the total 

function area, the spatial extent of each landscape function needs to be known (i.e. the area 

of the landscape that contributes to the tourism function). The spatial extent of landscape 

functions is also reflected in the value per hectare. The value per hectare will decrease with 

the total needed land per function in the study area. Depending on the evaluation level, a 

hectare or the complete study area, a different ranking in values can appear. In our study 

the value of one hectare with intensive livestock is much higher than one hectare land 

having a tourism function, while the total value of the tourism service for the study area 

overtakes the value of livestock. However, one should be aware that the actual spatial extent 

of some functions goes beyond the limits of the study area; the intensive livestock function 

uses land for fodder production outside the study area. Additionally, the negative 

externalities of livestock production are not accounted for in this study. 

 

 

Conclusions 
 

This study presents one of the first attempts to make the economic value of landscape 

functions spatially explicit by linking economic values to supplied landscape services on a 

detailed spatial resolution. In this chapter we assessed the changes in landscape service 

supply as a result of the implementation of an integrated policy package and regional 

development trends. We used a methodology to translate policy implementation into 

changes in landscape properties and subsequently assessed how these changes affect the 

location and supply of landscape services and their value in the study area. The resulting 

maps visualise trade-offs between different landscape functions and we were able to show 
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side-benefits as a result of policy implementation. Additionally, by taking into account the 

spatial scale of landscape functions we were able to show how non-overlapping functions 

can influence each other. These complex interactions often prove land management 

difficult. Also, as an addition to most policy evaluation studies so far, we included both the 

intensity and the extent of policy impact on the landscape to quantify the provisioning of 

landscape services. 

The uncertainties in extrapolation methods, model and value assumptions, render our 

study as a methodological scientific contribution rather than a complete ex-ante evaluation 

or feasibility study to be used by policy makers. Therefore the current outcomes need to be 

considered indicative, and a stepping stone for future research. By linking service supply to 

economic values an important step is taken in institutionalising landscape services and 

guiding decision making (Cowling et al., 2008; Fisher et al., 2008; Daily et al., 2009). As 

landscape services link to both natural and agricultural systems, an evaluation of policy 

based on landscape services can make an important contribution to regional integrated 

assessments.  
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Appendix chapter 4 
 

Changes in farm size and farm distribution 

Farm size is in the Netherlands commonly expressed in Dutch Standard Units (DSU) 

representing, amongst others, the size of a farm in number of livestock units (e.g. in 2000 

one DSU relates to three adult pigs or 385 chickens). In 2015 the number of livestock farms 

smaller than 50 DSU is expected to decrease by 55%, farms of size 50 to 70 DSU are 

foreseen to decrease by 45%, the class of farms between 70 and 100 DSU are expected to 

decrease by 19% while the number of farms larger than 100 DSU is expected to increase by 

2% (Provinces of Gelderland and Utrecht, 2005). The intensive livestock development zones 

as described in the Reconstruction Act are used to explore the future situation of the 

intensive livestock sector in the study area. To create a map with possible locations of 

intensive livestock farms in 2015, current farms within the ‘agricultural development zone’, 

‘mixed zone’ and outside the zones, are selected in an automated procedure. In this 

procedure farms are randomly selected based on their probability to continue farming given 

their current size and location. Subsequently, according to plans of the Reconstruction Act, 

all farms larger than 70 DSU within the ‘extensive agriculture zone’ are relocated to 

abandoned farms in the ‘agriculture development zone’. The final map of intensive farm 

locations in 2015 is based on 100 repetitions of this procedure. The growth in terms of DSU 

of intensive livestock farms is expected to follow a different trend. Almost all intensive 

livestock farms are envisioned to grow between 2000 and 2015. The prognosis on the 

amount of growth depends on the location of the farm within the different spatial zones 

(RPB, 2007). In the ‘agricultural development zone’ a farm is expected to grow with 51%, in 

the ‘mixed zones’ a growth in DSU of 33% is expected, within the ‘extensive agriculture 

zone’ farms are not foreseen to grow, and outside the spatial zoning areas a decrease of 3.3% 

in DSU is expected. Combining the estimated locations and growth of intensive livestock 

farms, a map of the intensive livestock sector of the study area is made for 2015. Based on 

similar calculations the change in arable production farms between 2000 and 2015 is 

estimated and mapped. Here again, the repeated random selection procedure based on an 

overall farm abandonment chance (of 43%) and growth prognoses derived from the Dutch 

Farm Accountancy Data Network of arable farms are used to assess the situation in 2015. 
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Chapter 5 

 

A multi-scale approach for 

analysing landscape service 

dynamics 
 

 

 

 

 

 

 

 

 

Landscapes and the provision of landscape services are continuously changing as a 

consequence of shifts in societal needs. This chapter presents a modelling approach to analyse 

the spatial and temporal dynamics in landscape service supply as a result of a changing 

landscape and societal demand. In this approach we explicitly address (i) the multifunctional 

character of the landscape, (ii) the different spatial levels at which interactions between 

landscape service supply, demand and land management occur and (iii) the trade-offs in 

service supply as a result of land management actions. We first conceptualise the system in 

which landscape service dynamics take place. Next, we implement the resulting 

conceptualisation into a comprehensive modelling framework. Finally, this framework is 

applied to successfully simulate changes in several landscape functions in a rural region of The 

Netherlands. The outcomes of the application illustrate the relevance of modelling landscape 

service dynamics for environmental management and decision making. The presented 

modelling framework is a first step towards a dynamic modelling approach to better identify, 

map and quantify the dynamics of landscape functions and their provided services in time.  
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Introduction  
 

Landscapes provide a multitude of services that benefit people. Landscape functions 

indicate the capacity of a landscape to provide these services to society. Such services 

include, amongst others, food and timber production, fresh water supply, and recreational 

opportunities. Globally, the demand and use of landscape services per capita has increased 

exponentially since the 1960s and landscapes providing these services are changing rapidly 

(MA, 2005). These strongly related trends have led to changes in landscape service supply 

and have increased the complexity of interactions between society and their surroundings 

(Schröter et al., 2005; Diaz et al., 2007; Carpenter et al., 2009). Changes in landscapes 

together with the demand for landscape services are driven by a range of demographic, 

economic, political, cultural, and biophysical processes (MA, 2005; Nelson, 2006). Through 

land management and spatial policies, society can adapt the landscape in such a way that 

the provision of one or more landscape services is improved (DeFries et al., 2004; Bastian et 

al., 2006; Nelson, 2006). However, most landscapes provide multiple services and 

adaptations of the landscape often affect individual landscape functions in different 

manners. This can lead to unintended trade-offs in service provision (DeFries et al., 2004; 

Chan et al., 2006; De Groot, 2006). By effectively governing and guiding land management 

actions, undesired trade-offs between landscape functions could be minimised.  

Landscapes are spatially diverse and therefore landscape service supply is unequally 

distributed over an area. Land management actions lead to location-specific effects and 

trade-offs, which makes it necessary to study changes in landscape service supply in a 

spatially explicit way (Chapter 3, Nelson et al., 2009). Additionally, policy and management 

actions often take place at other spatial levels than the local service supply and societal 

service demand, which increases the likelihood of conflicts in service supply and use (Evans 

and Kelley, 2004; Cash et al., 2006; De Groot, 2006). Therefore, processes and feedbacks 

between society and the environment at these different spatial levels should be understood 

and incorporated into decision making to support effective management actions (Kremen 

and Ostfeld, 2005; Carpenter et al., 2009).  

Spatial models play an important role to systematically describe and understand 

feedbacks and interactions between society and the environment (Parker et al., 2008). 

Spatial models which are currently available to support planning activities, relate primarily 

to land-cover patterns with the classic policy focus on provisioning services, or focus solely 

on single landscape services (Verburg et al., 2004; Tallis and Polasky, 2009). Models 

focusing on land-use changes are developed to describe complex feedbacks between society 

and environment (Verburg, 2006; Parker et al., 2008) but are less suited to explicitly deal 

with the multifunctional character of a landscape and the different consequences of 

management decisions on the service supply of landscape functions (Pinto-Correia et al., 
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2006; Daily et al., 2009; Verburg et al., 2009). More recently, spatially explicit (ecosystem) 

service provision modelling tools have become available that describe multiple service 

supplies and different function interactions (Boumans et al., 2002; Gund Institute, 2009; 

Tallis and Polasky, 2009; Villa, 2009). These modelling initiatives are able to assess the 

impact of human activities on the provision and value of multiple services in space and 

time. However, these models do not explicitly simulate spatial and temporal feedbacks in 

landscape service supply as a result of dynamics in land management in relation to service 

demand.  

The objective of this chapter is to present an innovative modelling approach that allows 

analysing the multi-scale dynamics in landscape service supply as a result of a changing 

landscape and societal demand. Drawing on the insights from land-use system and 

ecosystem modelling efforts, we explicitly address in this modelling approach (i) the 

multifunctional character of the landscape, (ii) the different spatial levels at which 

interactions between landscape service supply, demand and land management occur and, 

(iii) the trade-offs in service supply levels as a result of land management actions. In this 

chapter we focus on the exploration of possible spatial and temporal dynamics of landscape 

functions. Therefore our approach does not aim at finding an optimal configuration of 

landscape functions to maximise service supply for a region (e.g. Meyer and Grabaum, 

2008). In this chapter we first describe our conceptualisation of the system in which 

landscape function dynamics take place. Next, we implement the resulting 

conceptualisation into a modelling framework. We finally apply the modelling framework 

to simulate a number of landscape services of the rural Gelderse Vallei region in The 

Netherlands to illustrate its potential for analysing the dynamics in multiple service supply. 

 

 

A multi-scale system description 
 

Figure 5.1 conceptualises the main processes and feedbacks that form the basis of the 

modelling approach. Here, all processes and interactions take place at three interconnected 

spatial levels; local level, management unit level, and regional level. These spatial levels 

represent respectively the landscape service supply, land management institutions, and 

societal service demand. Interactions between the spatial levels each have a temporal 

dimension. Higher level trends and processes (e.g. climate change, or market dynamics) 

also affect local service supply (Schröter et al., 2005; Nelson, 2006). In this system 

description, effects of these processes are represented in local and region system levels. 

Following the processes and components of Figure 5.1, a detailed description is given per 

spatial level in this section. 
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Figure 5.1 Overview of the conceptual spatial and temporal interactions in landscape service supply. 

Dashed boxes indicate scenario specific components. 

 

Local level 

The local level relates the level at which landscape services are supplied. The supply of 

landscape services is not evenly distributed within a landscape as they relate to spatially 

variable location and surroundings characteristics (Chapter 2 and Diaz et al., 2007; Egoh et 

al., 2008; Tallis and Polasky, 2009). These characteristics can be summarised as the 

landscape properties of a location, and include biophysical properties (e.g. soil type or 

groundwater level), socioeconomic properties (e.g. land-use or population pressure), and 

spatial characteristics (e.g. clustering or proximities measures). Every landscape function 

relates to a different set of landscape properties. Spatially variable landscape properties can 

determine the boundary constraints of a function or influence the level of service supply. For 

example, accessibility of natural areas is a boundary constraint for recreation, while the 

number of visitors who can reach the area indicates the actual service supply. Landscape 

functions are in this research directly defined and quantified by their service supply. 

Landscapes are often multifunctional, meaning that at a location more than one landscape 

function is present. At multifunctional locations landscape properties are present that 

support the provision of a bundle of landscape services. At some locations service supply is 

too low to be beneficial or relevant for society (e.g. only a few people that can reach a 

specific recreation area). Therefore minimal levels of service supply are defined as 

thresholds to spatially delineate landscape functions (like in Chapter 2 and Bastian et al., 

2007), as shown in Figure 5.2. 
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Figure 5.2 Schematic overview of the concepts of landscape function thresholds and service supply limits. 

At location A, the landscape function is considered present as service supply is above the minimal service 

supply threshold. Service supply at location A can vary between the threshold level and dashed line. At 

location B service supply is below a minimal threshold, therefore the landscape function is considered 

absent. Landscape properties at location B can be changed is such a way that the service supply passes the 

threshold and the landscape function is assumed present (B + management). 

 

We consider landscape systems not static but flexible in terms of service provisioning. 

Therefore we do not describe service supply of a location by a fixed number but by a range 

of service provision. This range indicates an unused potential of landscape functions on top 

of their actual service supply. Due to these different levels of service usage, the level of 

landscape service supply can increase without a need of changing landscape properties. In 

this study we focus on the potential, maximal service supply. This upper limit of service 

supply differs per landscape function. When this limit is reached, the service supply is 

assumed maximal within the current spatial configuration of the landscape (Figure 5.2). 

The maximal level of service supply can represent the biophysical limits of a location, 

sustainable harvest levels (e.g. maximal amount of drinking water extraction without 

damaging the ecosystem), or societal preferences (e.g. maximal number of visitors for 

recreation areas without negatively changing the recreation function) (see e.g. Potschin and 

Haines-Young, 2006a). 

 

Regional level 

Services that are being provided at local level respond to the societal demand for services at 

regional level (Figure 5.1). Society is in this study defined as the total group of stakeholders 

within a region and has a certain (indirect) demand for landscapes services. This demand 

can change over time, for example due to increase in population. It is assumed that the total 

supply of landscape services of a region should meet this demand. The difference between 
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regional demand and service supply, taking into account the maximal total service supply, is 

indicated by the fulfilment of service demand. For example, an increased demand for 

recreation could be accommodated within a current landscape configuration. As long as the 

service demand remains under the maximal service supply (Figure 5.2), it is presumed that 

the system has enough buffer capacity to deal with an increase in landscape service demand.  

Through a range of options for land management society has the capacity to adjust 

landscape properties to ensure sufficient service supply. We assume that society will change 

landscape properties when service demand exceeds the maximal supply of services of a 

system (Termorshuizen and Opdam, 2009). Land management decisions that aim at 

improving service supply, take place based on a evaluation of management options, cost, 

and preferences and priorities (Groves et al., 2002; Tallis and Polasky, 2009). Management 

options include possible interventions to modify specific properties of the landscape (e.g. 

groundwater level or accessibility of natural areas). The selection of a management options 

is a result of societal willingness to pay for the conversion costs and preference for 

management locations. The preferred land management location differs per landscape 

function. For example, criteria to select locations to enhance habitat supply differ from the 

criteria to select the preferred sites to improve recreation possibilities. In case multiple 

functions have a shortage in service supply, landscape service with the highest societal 

priority are accommodated first. Priorities in landscape functions are based on, for 

example, the current policy focus, economic opportunities, or the highest shortage in 

service supply. Depending on the demand and valuation of goods and services, society will 

handle these priority and trade-off choices differently over time (MA, 2005; Nelson, 2006). 

Because of this large variety in choices we have summarised all land management options in 

as a ‘scenario specific component’ (Figure 5.1).  

 

Management unit level 

Human interventions as a result of a changing regional demand take place through land 

management at management unit level (Figure 5.1). We only address interventions that 

have a management institution within the system boundaries. The unit and therefore spatial 

extent at which land management actions take place, differs per landscape property that is 

considered to be changed. For example, groundwater is regulated by means of water 

management units, cattle density is controlled at farm level, and accessibility of nature is 

managed within park boundaries. This adaptive land management ideally takes place at 

locations where landscape service benefits or suitability can be maximised (Chan et al., 

2006). However, management actions often do not occur at the same spatial extent as the 

smaller preferred management locations. For example, to be able to change the 

groundwater level at a location, the groundwater level of the complete management unit in 

which that specific location falls need to be adjusted. Because of these differences in spatial 
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extent, land management can lead to trade-offs between functions not only at 

multifunctional locations, but also at locations within a similar management unit. In time, 

these trade-offs in service supply might influence the selection of most suitable land 

management locations or alter the ranking of function priorities. Therefore, land 

management can change all landscape functions and their service supply and might 

influence the complete feedback loop between local service supply and societal demand in a 

region (Figure 5.1). 

 

 

Towards a dynamic modelling framework 
 

To capture the system concepts and processes as presented in Figure 5.1, a spatially explicit 

modelling approach is needed in which the processes and interactions of the multi-level 

structure are described and quantified in time. Additionally, the modelling approach should 

deal with the multifunctional character of the landscape by quantifying possible trade-offs 

in service supply. In this section a step-wise description is given of the implementation of 

these system concepts and processes into a modelling framework. The modelling 

framework uses rasterised spatial data sources as input data. In the implementation of the 

system concept one raster represents the local level as described in Figure 5.1.  

 

Step 1. Quantifying service supply at local and regional level 

To quantify and map landscape service supply, spatial data representing landscape 

properties and their quantified relation with landscape services are used. Quantification of 

these relations is based on empirical techniques (logistic and linear regressions) and on a 

literature-based multi-criteria method as reported in Chapter 2. For example, linear 

regression models are used when field observations on service supply are present. In this 

case, service supply (SL,t) of a location (L) at time (t), i.e. a raster cell, is estimated by a set of 

quantified relations (β) with landscape properties of a location (xL), assuming zero error; see 

Equation 1:  

0... ,,110, ++++= tnLntLtL xxS βββ      (1) 

where n is the index for number of landscape properties, β0 is the service supply at reference 

locations, and SL is the service supply above the minimal threshold that defines the presence 

of a landscape function (Figure 5.2). 

In the case that no adequate field observations on service supply are available, decision 

rules are defined for a multi-criteria analysis. The actual service supply per location (SL,t) is 

then described by spatial data representing a number (n) of binary landscape properties 
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giving the boundary constraints (xc) and a number (m) of local landscape properties which 

define the amount of service supply (xL) (Equation 2). 

( )mLLcnctL xxxxS ++⋅⋅= ...... 11,      (2) 

Based on the calibrated formulas and spatially explicit data on landscape properties, the 

estimated service supply (SL) is mapped per landscape function for the complete region. 

Additionally, multifunctionality is quantified and mapped based on the number of 

functions present and the total service supply per location. To be able to aggregate service 

supply of landscape services measured in different units, the service supply is normalised to 

a 0 to 1 range, based on the minimum and maximum supply values. 

To quantify the maximal level of service supply for landscape functions which are 

estimated based on regression analyses (Equation 1), the deviations of field observations 

from the predicted value (SL) are calculated. We consider all values around the predicted 

service supply which fall within the 95% confidence interval of the regression model as 

likely supply values. So, the average upper value of the confidence interval (CIMAX) indicates 

the maximum service supply of a location (SL MAX,t) under the conditions set by the current 

(t) landscape properties (Equation 3).  

MAXtnLntLtL CIxxS
MAX

++++= ,,110, ... βββ     (3) 

For landscape functions of which the service supply is not quantified based on 

regression analyses (e.g. Equation 2) a different method is needed. Depending on the 

landscape function, the maximal supply limit SL MAX can in this case be defined based on 

literature reviews, field experiences, or questionnaires. Therefore, for these landscape 

functions we cannot provide a generic equation to calculate the maximum service supply. 

Service supply at the ith locations in the region is summed to define the aggregated 

regional service supply (SR) for each landscape function (Equation 4). Likewise, the maximal 

service supply within the current set of landscape properties (SL MAX) value is aggregated to 

the maximal service supply at regional level (SR MAX) for each landscape function (Equation 

5).  

∑=
i

itLtR SS ,,,        (4) 

∑=
i

itLtR MAXMAX
SS ,,,       (5) 

 

Step 2. Defining service demand at regional level 

The demand for landscape services is defined by a scenario indicating the regional demand 

(DR) at time (t). This demand includes both the demand from local actors as well as the 

demand coming from outside the region. An important aspect of ‘demand’ is that it relates 

to the provided services (e.g. ton/ha) rather than a certain amount of hectares. A yearly 

regional demand (DR,t) can be derived from a long term policy target (e.g. an increase in the 
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tourism services of 12% in ten years time). When dealing with such a pre-defined long term 

demand, the yearly demand for services (DR,t) is adjusted for trade-off effects in service 

supply resulting from conflicting land management actions. So, when service supply 

decreases because of trade-off effects, these supply losses (SRTO ) are added to the regional 

demand in the next time step to assure a matching service supply over multiple years. 

Regional demand derived from a multiple year target is therefore determined as follows: 

1,,, −+= tRTOtRtR SDD       (6) 

Similarly, gains from management synergies are subtracted from the regional demand 

(DR) in Equation 6. So, these adjustments are not made because of a change in the overall 

demand for a landscape service, but rather by a decrease of fulfilled of the demand by the 

landscape. 

 

Step 3. Allocating land management per management unit 

When the regional demand for a service (DR) exceeds the buffer defined by the maximal 

regional supply (SR MAX), landscape properties at management unit level are changed to 

enhance service supply. Service supply is increased by extending the areal of a landscape 

function, so new functions are added to locations. In this step, we decide on the location 

and magnitude of land management actions. For each landscape function land management 

options are indicated in scenarios. In an iterative simulation loop, landscape properties (x) 

are changed at preferred management units until service supply (SR) matches service 

demand (DR). The preferred management units are defined by rules relating to conversion 

cost (e.g. residential areas cannot be converted into nature), current policy and spatial 

plans, and locations with the highest suitability to extend a landscape function. Locations 

with the highest suitability are in our approach the locations with a service supply which is 

just under the threshold of minimal service supply (Figure 5.2). In case multiple functions 

have a shortage in service supply, the ranking in function priority defines the order in 

which changes are made. These function priorities are set for the complete region. After 

each time step in which management has taken place, the modelling framework recalculates 

all landscape functions (Equation 1 and 2, t+1). From the supply maps of t+1, the new 

service supply range is defined and it is monitored if land management led to an increased 

or decreased service supply and spatial extent for each landscape function.  
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Applying the modelling framework 
 

The application of the modelling framework is based on data from the Gelderse Vallei 

region in The Netherlands. This rural but highly populated region encounters multiple 

claims on land due to an increased demand for landscape services (Provinces of Gelderland 

and Utrecht, 2005). Three landscape functions; plant habitat provision, arable production, 

and information on cultural heritage, are included in the modelling framework to 

demonstrate a simulation of the dynamics in landscape functions and service supply over 

time. These three landscape functions are selected because of conflicting landscape property 

requirements (plant habitat versus arable production function) and the negative feedback 

on service supply due to changes in land-use (cultural heritage function). The landscape 

functions are characterised using data at a raster cell resolution of 100 x 100 meter for the 

year 2000 and the model simulations run for 15 years (in steps of one year). 

 

Plant Habitat 

Service supply of the plant habitat function is quantified by using an index referring to the 

suitability of a location to provide habitat to rare, endemic and indicator plant species 

(Hertog and Rijken, 1996; Rijken, 2000). In our study area these species mostly relate to 

vegetation growing under mesotrophic and wet conditions. As described in the first step of 

the modelling framework, field observations on service supply are used to build a linear 

regression model. The regression model describes the relation between plant habitat 

suitability and groundwater level, soil type and natural land cover (Chapter 2). In Table 5.1 

the quantified relations with landscape properties, the function threshold and the mean 

confidence interval limits of the plant habitat function are presented.  

For the second step, change in service demand for the plant habitat function is defined 

by a spatial policy to increase the natural area. This policy aims at an increase of natural 

areas area of 90% by 2015 in the study (Provinces of Gelderland and Utrecht, 2005). We 

translated this demand to an annual increase for plant habitat services of 6% of the habitat 

supply of 2000.  

Deep winter groundwater levels show a negative relation with plant habitat in our study 

area (Table 5.1).The preferred management option to enhance nature is to increase the 

winter groundwater with 10 cm per time step. Management actions (Step 3) are only 

allocated in non-built-up areas which are designated for nature development (VROM, 

2006). The spatial units at which groundwater is managed are defined within agricultural 

areas, the bordering parcels with similar hydrological soil properties. Outside agricultural 

areas the hydrological soil classes determine the management units (Alterra, 2000a, 2006). 

The plant habitat function is assigned the highest priority because of the strongest increase 

in demand of the three example functions. 
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Arable production 

Service supply of the arable production function is mapped based on the production of the 

only commonly grown arable crop in the study region: fodder maize. By carrying out a 

linear regression on a set of selected maize plots in the first step, the landscape properties 

explaining the yield per hectare are identified in Chapter 2. Details on the arable production 

function are given in Table 5.1.  

For the second step the service demand is arbitrarily set on an extrapolation of the trend 

in maize production between 1995 and 2005. This trend is translated into the model as 

growth in annual demand of 3% of initial service supply. When the regional demand 

exceeds the total supply, the management option to enhance arable production is the 

expansion of arable fields. The preferred management site to converted land into new 

production fields are the locations that are already under agricultural use which are 

bordering current arable fields (Step 3). Opposite to the plant habitat function, a high 

winter groundwater has a negative impact of the arable production function (see Table 5.1).  

 

Cultural heritage 

In the first step of the modelling framework, cultural heritage is mapped based on a multi-

criteria analysis. The cultural heritage function is delineated using the locations of high-

value historical landscapes as defined by the Dutch government. The percentage of 

unchanged land-use between the year 1900 and 2000 within 300 meter of each raster cell is 

used to quantify the service supply, as authenticity of the landscape is considered a key 

aspect of the cultural heritage function (Provinces of Gelderland and Utrecht, 2005; 

Daugstad et al., 2006).  

Because of the focus on preservation, service supply of this landscape function cannot be 

improved. Therefore, the demand for cultural heritage services is assumed not to increase 

over time and the function is not actively managed (Step 2 and 3). The cultural heritage 

function is negatively affected by changes in land-use (Table 5.1). So changes in arable 

expansion conflict with this landscape function. The cultural heritage function is assigned 

the lowest priority, implying that demand for the plant habitat and arable production 

services is accommodated without considering the effect on cultural heritage. 
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Table 5.1 Landscape properties, quantitative relation with service supply, and the mean upper confidence 

interval limit (CI Max). Quantified relations showing ‘–’, indicate a boundary constraint of the landscape 

function location. Landscape properties that relate to management actions are underlined. 

Landscape 

function 

Landscape properties Quantified 

relation 

Threshold CI 

Max 

Plant habitat * 

(0-9 index) 

 

Winter groundwater level (cm below surface) 

Sandy soil (no=0 yes=1) 

Sandy clay soil (no=0 yes=1) 

Peat soil (no=0 yes=1) 

Proximity to open natural area (m) 

Proximity to forested natural area (m) 

Absence of built-up area 

-0.12 

0.23 

0.13 

0.14 

0.56 

0.26 

- 

>=5 0.27 

Arable production* 

(0-60 ton/ha) 

 

Summer groundwater level (cm below surface) 

Winter groundwater level (cm below surface) 

Sandy soil (no= 0 yes=1) 

Sandy clay soil (no= 0 yes=1) 

Peaty sand soil (no= 0 yes=1) 

Average farm size (ha) 

Number of neighbouring farms (farms per km2) 

Land currently under agricultural use 

-0.10 

0.12 

0.15 

0.09 

0.08 

0.40 

0.69 

- 

>=35 1.54 

Cultural heritage 

(0-100%) 

 

Policy assigned cultural landscapes 

Percentage of unchanged land cover within a 300 

meter radius between 1900-2000 

- 

1 

>0 NA 

* Relations are quantified based on a regression analysis 

 

 

Results 
 

Figure 5.3 shows the regional changes in service supply for 15 years using the amount of 

service supply at t=0 as reference value. Trade-offs between nature development and arable 

production, and arable production and cultural heritage can be observed from the model 

results. On an aggregated regional level, these trade-offs differ over time, depending on the 

selection of management sites in a time step. An example of these temporal-spatial effects 

can be observed from the impact of arable expansion on the cultural heritage function. 

Arable expansion leads to changes in land-use. These changes decrease the authenticity of 

the area; the indicator used to quantify the cultural heritage function (Table 5.1). The first 

expansion of arable production fields (t=2) shows little effect on cultural heritage while 

from the second expansion (t=4) onwards, expansions are simulated to take place in or near 

cultural landscapes; this negative effect can clearly be observed from Figure 5.3. 
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Figure 5.3 Relative changes in service supply at regional level as a result of groundwater management and 

agricultural expansion. Service supply at t=0 is used as reference value (100). 

 

Figure 5.3 presents the net changes in service supply. In Figure 5.4 we show the trade-off 

relations between landscape functions a as result of the simulated land management 

actions, excluding the growth scenarios of service demand. Both relations are non-linear, 

with increasing trade-off effects with a higher regional service supply. So, trade-offs 

between landscape functions increase when more widespread management actions are 

needed to meet the demand for landscape services. 
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Figure 5.4 Trade-off relations in service supply at regional level, as a result of groundwater management 

and agricultural expansion, using the service supply at t=0 as reference value (100). 

 

Figure 5.5 illustrates the effects of the simulated management actions on the spatial 

distribution of the landscape functions and service supply. Several effects of multi-level 

spatial interactions can be observed. The first relates to management actions that also 

positively or negatively influence service provision at other locations. For example, arable 

production decreases not only at locations where the plant habitat function is increased. 

This also happens when arable production fields are present in the same groundwater 
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management unit as the selected site to improve plant habitat function. The grey areas on 

the plant habitat map in Figure 5.5 indicate the locations where service supply shows an 

unintended increase. Only locations where the plant habitat function is lacking can be 

selected to enhance nature. However, in Figure 5.5 also locations that already contained a 

plant habitat function show an increased service supply due to groundwater changes at 

management unit level. The second off-site effect can be observed from the cultural heritage 

functions maps The cultural heritage function is located in the policy assigned ‘cultural 

heritage landscapes’ and is affected by changes in land-use within a radius of 300 meter. In 

the southern part of the study area arable expansion is simulated, but the resulting changes 

in land-use leads to a decrease of in service supply of the surrounding cultural heritage 

function. So, changes in arable production lead to changes in cultural heritage up to 300 

meters away (Figure 5.5).  
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Figure 5.5 The spatial distribution of landscape services at the start of the simulations and the change in 

landscape function presence and service supply after 15 time steps 
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Figure 5.6 Multifunctionality maps expressed as the normalised and summed service supply at the start of 

the simulations, and the changes in number of landscape functions and service supply after 15 time steps. 

 

In Figure 5.6 changes in multifunctionality as a result of simulated land management 

actions are mapped. Multifunctionality at t=0 is quantified by the normalised and summed 

service supply of the three landscape functions. The change in multifunctionality after 15 

time steps is expressed as an increase or decrease in the number of functions and the total 

service supply. A decrease of the number of landscape functions or service supply indicates 

that at these locations management actions only lead to a decrease of land functionality. 

These areas (in light greys in Figure 5.6), can become hot-spots of conflicts between 

landscape functions. Comparing the Figure 5.6 with Figure 5.5 it can be observed that these 

hot-spot are mainly located in areas with a decreased agricultural production. 

 

 

Discussion 
 

Application of the modelling framework 

The application of the modelling framework for a Dutch multifunctional landscape 

illustrates the relevance of analysing service dynamics in a quantified and spatially explicit 

way. At the aggregated regional level, the model simulates an overall increase in service 

supply as a consequence of land management actions. However, the mapped effects of the 

land management actions on the spatial distribution of service supply show that some 

locations strongly increase in total service supply, while other locations lose service 

providing capacity. The output maps visualise locations at which trade-offs take place in 

service supply as a result of land management actions (i.e. locations where the 
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improvements in service supply lead to decreases in service supply of another landscape 

function). So, spatial patterns of trade-offs are made explicit for the study region using a 

spatial modelling framework.  

To illustrate the capabilities of the modelling framework, we only simulated simple and 

straightforward management options and societal demands in a scenario. Due to the 

obvious oversimplification of reality in the scenario assumptions, the presented results 

cannot be used as plausible futures of the study area. However, the modelling framework is 

flexible, allowing more complex scenarios to be implemented. For example, more landscape 

functions could be added to better reflect reality. In the current model application only 

three landscape functions are included. These do not capture all possible trade-offs (or 

synergies) in the case study region. Additionally, policy plans and management constraints 

could be defined more explicitly in the model scenarios. For example, multiple claims on 

land may make it impossible to fulfil the service demand from mono-functional locations 

only. Real-life management objectives therefore focus on stimulating service provision of a 

limited areal extent, or by optimising the multifunctional potential of the land (Provinces of 

Gelderland and Utrecht, 2005; Meyer and Grabaum, 2008; Parra-Lopez et al., 2008). This 

objective can be implemented in the modelling framework by selecting only locations where 

other landscape functions will not be negatively affected by interventions. Related to 

possible landscape limitations, management scenarios could also aim at improving service 

supply at locations that are already providing the landscape service. Currently, increased 

service supply is obtained by management actions that lead to an expansion of the service 

supply areas. By not constraining the model to look for these solutions, we explored a 

scenario in which potential negative effects of land management are neglected in decision 

making. 

 

Conceptual basis of the modelling approach 

Our modelling approach is based on the concept that landscape systems are not static but 

flexible in terms of service supply. Different levels of services can be provided and, after 

adjusting the spatial configuration of the landscape, the total supply of services can even be 

enhanced. This flexibility provides us information on the need to adapt the landscape in 

response to service demand. By explicitly incorporating maximal levels of service supply, 

insight is gained when societal demands cannot be met. This leads to, for example, 

unsustainable use of the landscape or needs for importing services from outside the system. 

Another conceptual characteristic of our modelling approach is that many interactions 

and feedbacks take place along different spatial and temporal scales. Temporal interactions 

are included in the path-dependency of interventions which affect service supply and the 

selection of sites for land management in the future. Spatial interactions take place at the 
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three interconnected levels, generally representing the supply, management and demand of 

landscape services (Figure 5.1). In this multi-level system description, service demand and 

decision making on adaptive land management, are defined at a regional level. However, 

demand for services is spatially variable within a region. Defining different stakeholders 

groups, and specifying their spatial distribution, would give a better representation of 

service demand and the related land management actions. Areas with the highest demand 

for landscape services are often not the areas having the highest capacity to provide this 

service. This discrepancy can lead to tension in planning management activities, especially 

when access to services is at stake (Chan et al., 2006; Tallis and Polasky, 2009). So, the 

selection of locations to manage service supply should ideally incorporate the location of 

the beneficiaries. The need to explicitly define the spatial distribution of the supply and 

demand for landscape service depends on the landscape function. An overall regional 

demand can be sufficient for landscape services that can relatively efficient be replaced or 

transported (i.e. agricultural goods or drinking water). However, land-based services, like 

recreation possibilities, should be provided at accessible locations for stakeholders (i.e. 

recreation opportunities need to be provided near residential areas). 

In our conceptual system description, management decisions are defined to take place 

homogeneously over the region. But management actions to regulate landscape services 

strongly depend on individual decision making processes (Pfeifer et al., 2009; Valbuena et 

al.). This means that land management actions are likely be to spatially variable; decision 

makers at management unit level can opt for different management activities. Including 

spatial variability in service demand and land management choices would increase the 

complexity of the system description. Additionally, the linear relations within the multi-

scale human-environment system are often more complex and include slow and fast 

variables, non-linear relations and abrupt or irreversible changes (Carpenter et al., 2009; 

Koch et al., 2009). Adding such complexity will better represent reality, but lowers the 

feasibility to translate the conceptual system into an operational modelling framework. 

The combination of concepts of flexible service supply, multi-level interactions, 

temporal feedbacks, and multifunctional location, distinguishes the presented approach 

from the current land-use and ecosystem models (see overviews Kienast et al., ; Verburg et 

al., 2004; MA, 2005; Matthews et al., 2007; Renting et al., 2009). 

 

Relevance for landscape service governance 

Good governance of landscape service is challenging because of the mismatch between 

human and environmental scales (Cash et al., 2006). Many scientists therefore called for 

internalising and explicitly incorporating service supply needs into policies and practices 

(Kienast et al., ; MA, 2005; Cowling et al., 2008; Daily et al., 2009; Fisher et al., 2009; Turner 

II, 2010). However, so far only few studies have investigated the impact of land 



 

 

Multi-scale approach for landscape service dynamics Chapter 5 

 

 105 

management actions and policy plans on the supply of multiple landscape services 

(Cowling et al., 2008; Carpenter et al., 2009; Paracchini et al.). The presented modelling 

approach contributes to the development of policy support models to explore management 

and spatial planning options. Such approaches could assess the effect of different scenarios 

of landscape development on future landscape service supply. Policy makers need to deal 

with a demand for a broad range of landscape services. Modelling tools can be used to 

explore the fulfilment of the future societal demand for landscape services of a region. 

Trade-offs in service supply can lead to social, economic or ecological conflicts between 

stakeholder groups and people at different locations (De Groot, 2006). By identifying, 

quantifying and visualising undesired trade-offs, policy support tools could help adjusting 

management plans. 

Currently, the modelling framework is based on service supply quantities and is not 

explicitly based on the value of landscape services as in other studies (see for an overview 

e.g. MA, 2003; Turner et al., 2003; Zandersen and Tol, 2009). Monetary values are 

important for cost-benefit analyses. Even though economic data could be added to the 

current modelling framework, the economic assumptions on management costs and 

economic effects of dynamics of service supply and value need to be improved in order to 

make the modelling framework suitable for supporting policy decisions on an 

environmental, societal and economic basis.  

 

 

Conclusions 
 

The presented modelling approach is a first step to better identify, map and quantify 

dynamic patterns of multiple landscape functions and their service supply. So far, land-use 

models could capture decision making, feedbacks and spatial and temporal dynamics, while 

ecosystem–based spatial models addressed complex processes relating to multiple service 

supply. We combined both approaches by explicitly addressing the interactions and 

feedbacks between landscape service supply, demand, and land management actions of the 

multifunctional landscape. The presented modelling framework is an example of new 

innovative landscape modelling approaches, which include multiple uses of the land, and 

which have a potential for quantitative assessments of ecosystem services provisioning for 

policy discussions on landscape management.  
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Mapping and modelling multifunctional landscapes 
 

The overarching methodological challenge addressed in this thesis is to develop new 

methods to describe the current and future spatial variability of multifunctional landscapes 

(Figure 1.4). The methodologies presented in previous chapters can be subdivided into two 

parts. The first part includes methodologies to describe, quantify, value and map the 

current state of landscape functions and multifunctionality. These methodologies help 

answering research questions with respect to the location and ‘productivity’ of landscape 

functions and assist in determining interactions between landscape functions at 

multifunctional locations. The second part includes methodologies to assess the future 

changes in multifunctional landscapes based on quantitative and spatially explicit 

information on landscape functions. These methodologies address questions in relation to 

monitoring landscape services as a result of new landscape management strategies and the 

dynamics of multifunctional landscapes in space and time  

The presented methodologies are discussed in this chapter based on this subdivision. 

The associated research questions are answered by pointing out the methodological 

contributions of this thesis in relation to other approaches that are described in the 

scientific literature. Then, it is discussed how these methodologies and studies on 

multifunctionality can contribute to sustainable landscape management. Finally, some 

perspectives for future research on mapping and modelling multifunctional landscapes are 

presented. 

 

Quantifying and mapping landscape functions  

Several studies have shown that landscape functions and multifunctionality are unequally 

distributed over the landscape (Naidoo and Ricketts, 2006; Troy and Wilson, 2006; Egoh et 

al., 2008; Naidoo et al., 2008). However, so far a general methodological framework to 

describe this spatial variation was still lacking. This thesis presents such a methodological 

framework and the presented applications can provide guidance in future research efforts to 

further quantify and map landscape functions and multifunctionality. The methodologies 

presented in this thesis address the quantitative relations between landscape characteristics, 

functions, services and values (Figure 6.1). This sequence embraces the most important 

relations for studying landscape functions in a spatially explicit manner (Hein, 2006; Tallis 

and Polasky, 2009; De Groot et al., 2010).  
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Landscape functions

Biophysical and socioeconomic 
landscape characteristics

Landscape service supply

Landscape service value

Monetary valuation

Quantification based on mixed approaches

Applying thresholds

Quantification 
multifunctionality  

Figure 6.1 Methodological sequence for spatially explicit quantification of landscape functions, services and 

multifunctionality. 

 

Overview of quantification and mapping approaches 

Several studies have dealt with the question on how to quantify and map landscape 

functions and multifunctionality. The resulting maps of these studies are abstractions of 

reality. However, the way in which this reality is presented is subject to the choice of the 

methodological approach (Soini, 2001). In general, methodologies to (spatially) quantify the 

multifunctional character of the landscape focus on a single methodological approach. The 

quantification of landscape functions can be based on (i) ecological processes, (ii) empirical 

relations or (iii) expert knowledge, while the valuation of landscape functions can be based 

on a (i) economic valuation or (ii) social valuation of the provided services. In this section 

the strengths and weaknesses of these different methodological approaches are discussed for 

their suitability to quantify and map multiple landscape functions.  

Methods that describe ecological processes of a landscape describe ecological indicators 

that represent landscape functions. Process-based relations with biodiversity, biophysical 

structures and processes of a landscape are used to quantify landscape functions (Kremen, 

2005; Chan et al., 2006; Bartholomeus et al., 2008; Egoh et al., 2008). In this way, landscape 

functions are described based on value-free measures, such as tons of carbon sequestrated 

or cubic meters of water stored. Landscape characteristics that feed the process-based 

models have a spatial dimension. This spatial dimension allows for presenting the 

quantified landscape functions in maps. Maps that are based on process-based 

quantification methods, normally cover a small spatial extent, but few examples of large 

scale studies exist (e.g. Metzger et al., 2006; Metzger et al., 2008; Naidoo et al., 2008). As 

landscape functions are expressed in different service related units, the landscape function 

maps are standardised to be able to quantify the multifunctionality of sites. The spatial 

dimension of the underlying processes and process-based relations with the landscape make 

that quantifying landscape functions based on ecological models are very strong in 
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quantifying and mapping biophysical landscape functions and services. A weakness of the 

ecological process-based methods is that they encounter difficulties when quantifying 

socio-cultural services like recreation and tourism (Kremen, 2005). Additionally, process-

based methods require a high amount of input-data. This makes it challenging to use this 

quantification and mapping approach in large regional or continental studies. Also, 

additional factors that influence service supply will start playing a role when up-scaling 

process-based relations (Mander et al., 2005). 

Landscape functions can also be quantified and mapped based on empirically derived 

relations with landscape components and processes. Empirical methods use statistical 

techniques to select and quantify landscape characteristics that explain observations on 

services supply of landscape functions (Diaz et al., 2007). So, contrary to process-based 

methods, empirical methods need observations on (proxies of) landscape functions to 

quantify the relation with landscape characteristics. The measurement unit of the 

observations of the landscape function determines the unit in which the quantification takes 

places (e.g. number of visitors, ton of crop produced). The found relations with these 

observations are spatially extrapolated to a larger region using the spatially continuous data 

on landscape characteristics. Here again, the units in landscape functions maps are 

expressed with different measures and are therefore standardised to quantify the 

multifunctionality of sites. The strength of empirical methods is that they can describe 

generalised complex relations without the need of including a precise understanding of 

underlying causal processes. Drawbacks, however, are that the observed relations do not 

necessarily indicate causality and empirical methods can only adequately describe what has 

been observed. The quantified relations are study area dependent, so extrapolation of the 

found relations introduces uncertainty. 

Another approach of to spatially quantify landscape functions is the usage of expert 

knowledge and literature. Such information is used to develop general rules on linking 

landscape characteristics and landscape functions. Landscape functions are in this way 

normally quantified using a unit-less relative index, which is subsequently mapped (e.g. 

Kienast et al., ; Haines-Young et al., 2006; Pérez-Soba et al., 2008; Reyers et al., 2009). As 

landscape functions are quantified in indices, multifunctional sites can be quantified based 

on a direct aggregation of the different landscape functions. The strength of quantifying and 

mapping landscape functions based on such expert knowledge is that it is based on an easy 

to implement and parsimonious methodology. Because of the low-data requirements, 

landscape function maps based on expert defined spatial relations are mainly seen in large 

scale studies. However, this quantification method is based on generic relations and can 

therefore not take into account area-specific relationships. Additionally the defined 

relations can be prejudiced and expert dependent. These weaknesses introduce uncertainty 

in the final outcomes.  
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The quantification and mapping of landscape functions is normally based on one of 

these three methods. All methods have clear advantages and disadvantages that relate 

mostly to data availability, existing knowledge on the spatial distribution of landscape 

functions and the spatial scale of the study. In studies aiming at describing multifunctional 

landscapes, combining the three methods can improve mapping efforts. Because of the 

diverse character of the different landscape functions, the selection of quantification 

methodology should be based on the strengths of each approach and targeted at a specific 

landscape function. For example, biophysical landscape functions are best quantified using 

process-based methods, while expert knowledge can be best used to quantify and map 

socio-cultural functions that are determined by societal preferences. Empirical methods can 

be used to improve the expert based quantification and mapping efforts, when observations 

are present or as a second-best option when insufficient data are available for process-based 

methods. A combined use of these methods does require standardisation of the different 

landscape function units. 

Besides quantifying landscape functions in terms of service supply (or expert based 

indices), quantified maps can be created based of the values of landscape functions. 

Valuation of landscape functions is generally speaking the domain of social and economic 

quantification studies. Most economic approaches value landscape functions, i.e. services, 

in monetary terms. The valuation can be based on the use and the non-use values of 

landscape services. Direct consumptive values, such as the current or future value of timber, 

fish or other resources, are included as use-values. The valuation can be extended by 

including non-use values that relate to the importance given to an aspect of the 

environment in addition to or irrespective of the use value, i.e. existence value (MA, 2003). 

Economic values need to be linked to landscape function maps in order to make them 

spatially explicit (Troy and Wilson, 2006; Nelson et al., 2009). These maps can directly be 

combined to quantify values of multifunctional locations, as all landscape functions are 

expressed in a single measure unit: money. Economic approaches are also often used in 

studies on the multifunctionality of agriculture (Groot et al., 2007; Van Huylenbroeck et al., 

2007; Renting et al., 2009; Wilson, 2009). In this perspective multifunctionality refers to the 

fact that one economic activity (e.g. food production) can have different social, cultural and 

natural capital outputs (Van Huylenbroeck et al., 2007). The most important strength of 

quantifying landscape functions based on economic values is that information becomes 

available to directly support cost-benefit analysis. Additionally, economic valuations help in 

developing mechanisms that can compensate landowners for the services that their lands 

provide. However, there are limitations to the assessment of economic values. A drawback 

of quantifying landscape functions in economic terms, for example, is the difficulty to 

quantify the complex of supply-demand processes that determine economic values (Farber 

et al., 2002; Turner et al., 2003). These processes determine that as fewer services are being 
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supplied or as the demand grows the value of the landscape service changes. Another 

drawback is that the economic valuation does not explicitly have a spatial dimension. This 

limits the mapping possibilities because of the difficulties of linking values to landscape 

characteristics that do have a spatial extent (Naidoo and Ricketts, 2006; Troy and Wilson, 

2006; Grêt-Regamey et al., 2008). Sufficient contextual variation in the valuation studies is 

often lacking to link landscape value data to high resolution data on landscape services 

(Troy and Wilson, 2006). A third shortcoming is the challenge to unambiguously translate 

non-market values, such as aesthetics values, into monetary values. Besides these 

conversion difficulties, non-market values are also strongly based on individual preferences 

(Naidoo and Ricketts, 2006). 

Valuation studies can also be based on qualitative socio-cultural measures. In these 

studies the description of landscape functions is normally based on stakeholder 

consultation. Information is gathered on people’s motivations, perspectives, preferences 

and values (Soini, 2001; Brown, 2006; Alessa et al., 2008). Different people attach different 

values to services. From this viewpoint the mapping of landscape services is done by taking 

stakeholder perceptions and views as starting point (Parra-Lopez et al., 2008; Snep et al., 

2009). Standardisation of social measures is needed to indicate the multifunctionality of the 

landscape (Alessa et al., 2008; Raymond et al., 2009). The strength of valuations based on 

social measures is the central focus on people. Social valuations support the research on 

motivations of socio-institutional entities, like land managers, in relation to decision 

making and management of multiple landscape functions (Renting et al., 2009). A 

drawback is the difficulty to make the measures spatially explicit. Participatory mapping is 

possible (Alessa et al., 2008; Raymond et al., 2009) but these mapping efforts cannot take 

into account the for the stakeholder invisible functions and function extents. Social 

valuations also centre on the socio-cultural functions like recreation and tourism, cultural 

diversity and identity (e.g. heritage value). Less obvious or indirect landscape services like 

biophysical landscape functions, frequently score low in social valuations (e.g. Raymond et 

al., 2009). Finally, the collection of data can be very time consuming and therefore costly 

(Cowling et al., 2008). 

Economic and social valuations both make the importance of landscape functions for 

society explicit. Such an economic and social valuation adds extra information to the value-

free measures of landscape function quantification in terms of service supply. As valuations 

typically are stakeholder dependent, clear information on the spatial distribution of values 

is often lacking. By linking the spatially explicit information on landscape service supply to 

service values, maps indicating landscape function values can be created. However, because 

of complex socio-economic processes that underlie valuations, a direct linkage might not be 

appropriate (Troy and Wilson, 2006; Spash, 2008). Assuming that landscape values are 

correctly represented in economic or social terms, ignoring this complexity can be a source 

of errors in the final landscape function maps. Unfortunately, an assessment of landscape 
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service values including the complex socio-economic processes was beyond the scope of 

this thesis. Therefore, landscape function maps expressed in service supply in this thesis 

likely have a lower level of error propagation, while landscape function maps expressed in 

values illustrate the relative importance of landscape functions. However the quantification 

and valuation methods are complementary as they describe different dimensions and 

variations in space and time of landscape services.  

So, the selection of quantification and valuation method determines the resulting 

descriptions, quantifications and mapping of landscape functions and multifunctionality. In 

this context, two additional methodological issues remain to be discussed, (i) the selection 

of landscape functions in relation to multifunctionality and (ii) the representation of the 

multi-level processes in quantifying and mapping of landscape service supply.  

 

Landscape function selection in relation to multifunctionality 

The selection and definition of landscape functions influences the identification of 

multifunctional locations. Ecological approaches have identified around twenty different 

functions of the landscape grouped in four categories: production, regulating 

supporting/habitat and cultural functions (MA, 2003; De Groot et al., 2010). Studies that 

focus on the multifunctionality of agriculture include in their definition of 

multifunctionality different economic activities on farms, like farm shops, on-farm care 

facilities and recreational facilities (Van Huylenbroeck et al., 2007). In this thesis the 

selection of landscape functions mostly relates to the functions as defined in the ecological 

approach but also includes more ‘anthropogenic’ functions (e.g. residential function) like in 

studies on the multifunctionality of agriculture. By including these latter functions the total 

service supply and number of landscape functions in peri-urban areas increases as 

compared with maps based on just ecological classifications, which are mainly based on the 

functions of natural areas. In this thesis, only eight landscape functions were selected that 

were mentioned in the regional spatial planning strategy (Reconstruction Act). If all defined 

landscape functions of the ecological classification would have been used, the 

multifunctionality of natural locations would inherently have increased.  

The choice of unit in which landscape functions are defined is also subject to discussion. 

Some studies only measure direct benefits or the services relating to these benefits (e.g. 

Boyd and Banzhaf, 2007; Wallace, 2007; Wallace, 2008), while others also include 

intermediate and final services (e.g. Costanza, 2008; Fisher and Turner, 2008). This 

difference will affect the calculated total supply of services at multifunctional locations. In 

this thesis only the direct benefits expressed in services are quantified and mapped. 
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Multi-level processes 

In the first part of this section, three methods to quantify and map service supply are 

presented. These methods relate service supply to spatial patterns of landscape components, 

which result from multi-scale processes. The spatial distribution and diversity of individual 

decision-making processes is not explicitly included in these mapping approaches. 

Information on land management, however, can additionally be considered to effectively 

capture multi-level processes that define landscape functions, as individual land managers 

influence landscape service supply (Yadav et al., 2008; Pfeifer et al., 2009; Piorr et al., 2009; 

Valbuena et al., 2010). For example, farmers manage a large collection of landscape 

elements (fields, margins, hedgerows, ponds etc.), which influence processes in the 

landscape at different spatial and temporal scales. Figure 6.2 illustrates landscape functions 

that are quantified and mapped based on a bottom-up land management and top-down 

landscape approaches. These maps relate individual management actions to landscape 

service supply. Figure 6.2a shows the percentage of farmers that participate in nature and 

landscape protection programmes (Pfeifer et al., 2009). This percentage is calculated per 

raster cell by aggregating the ten nearest farms. Aggregation of farm data gives an 

approximate of the ownership of land and was needed to protect the privacy of farmers. 

Figure 6.2b presents the top-down maps of the standardised plant habitat and cultural 

heritage functions (based on Chapter 2). Similar patterns between the maps can clearly be 

observed. Even though not all farmers had the option to enrol in protection programmes 

and not all land is owned by farmers so actions of other landholders are ignored, a relation 

between farm management and landscape functions seems present. Adequate data on 

individual land management are difficult to obtain, but when these data are available they 

can be used in empirical quantification and mapping efforts. Such efforts provide essential 

insights in the spatial patterns of the landscape multifunctionality.  

 

 
Figure 6.2 Bottom-up and top-down mapping approaches a) Extrapolation of farms 

participating in nature and landscape conservation programmes in 2005 (Pfeifer et al., 

2009) b) Landscape functions maps as presented in Chapter 2.  

a b 
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Modelling changes in landscape functions  

After the quantification and mapping of the current state of multifunctional landscapes, 

future changes can be modelled. Four methodological challenges to model changes in 

landscape functions are identified in Chapter 1. The first three all relate to the availability of 

quantified landscape functions and multifunctionality maps. The fourth challenge is that 

the landscape changes in the model should be driven by a societal demand and related 

management actions for both commodity and non-commodity landscape functions (Figure 

6.3). These challenges resulted in methodologies that address questions in relation to 

monitoring landscape services as a result of new landscape management strategies and the 

dynamics of multifunctional landscapes in space and time  

 

Trade-off analysis 
multifunctional sites

Modelling service 
demand and land 
managementLandscape functions

Biophysical and socioeconomic 
landscape characteristics

Landscape service supply

Landscape service value

Monetary valuation

Quantification based on mixed approaches

Applying thresholds

 
Figure 6.3 Methodological sequence for spatially explicit modelling of landscape functions, services and 

multifunctionality. 

 

Overview of modelling approaches 

Until recently, methodologies to measure changes of multiple landscape functions in space 

and time were scarce. However, research efforts on ecosystem and landscape service 

modelling are growing increasingly in numbers (e.g. Helming et al., 2008; TEEB, 2009, 

www.es-partnership.org). In general, modelling approaches to describe multifunctional 

landscapes can be subdivided in (i) location-oriented, (ii) market–oriented, (iii) actor-

oriented or (iv) governance-oriented approaches (Caron et al., 2008; Renting et al., 2009). 

The first three modelling approaches strongly relate to the mapping approaches described 

in the previous section. The governance-oriented approach is assumed to be an integration 

of these three approaches. In this section the different modelling approaches are evaluated 

based on their general objectives and spatial and temporal modelling methods. In Table 6.1 

the three modelling approaches and their characteristics are summarised.  
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Location-oriented modelling approaches are based on the land-unit concept from 

landscape ecology (Zonneveld, 1989). These modelling approaches quantify and map 

landscape (or ecosystem) services based on ecological process-based models (e.g. Metzger et 

al., 2006; Tallis et al., 2008b). So, location-oriented models describe multifunctional 

landscapes by ecological processes that result in biophysical functions. To capture all 

ecological processes fine scale data and analysis are required. As an illustration, Konarska 

and others (2002) showed that based on data at a 30-meter resolution the total value of 

landscape services in their study area was twice that as compared to a resolution of 1-

kilometer. In location-oriented models temporal changes in landscape service supply are 

driven by changes in land management, climate and population. Location-oriented models 

are strong in addressing spatial and temporal aspects of landscape functions. However, 

these models are limited in their ability to include socio-cultural functions and have heavy 

data requirements. Additionally, human decision making processes are only included in an 

exogenous and aggregated form (Renting et al., 2009).  

Actor-oriented models primarily describe decision-making processes. These models 

represent actors (individual or groups) which interact both with each other and with their 

environment, and make decisions and change their actions as a result of this interaction 

(Matthews et al., 2007). Actor-oriented models include information on the needs, values, 

norms and behaviours of individuals, institutions and organisations in an area (Cowling et 

al., 2008). An overview of change agents can be presented in a so-called actor framework, 

indicating interaction and responsibilities of the different stakeholders (Rindfuss et al., 

2004). Actor-oriented models include social and non-economic processes that influence on 

decision-making (Matthews et al., 2007). In many studies related to multifunctionality, 

these actors are farmers. Based on farming styles, including the motivation and activities in 

social and market networks, management actions can be modelled in such way that 

temporal changes in multifunctional landscapes are mimicked (Van der Ploeg et al., 2009; 

Valbuena et al., 2010). For example, Yadav and others (2008) developed an agent-based 

model to simulate agricultural decision making and biochemical changes related to land 

fertility. Actor-based models are strong in representing the diversity of individual decision 

making, but are weak in describing multifunctionality at aggregated and regional scales 

because of their lack of spatial scale.  

In market-oriented approaches, landscape functions are modelled based on multi-

objective optimisation (Rossing et al., 2007). Market-oriented approaches, like actor-

oriented models, mostly focus on farms. In this approach, activity and consumption choices 

are maximised by a farm household for expected utility (Pfeifer et al., 2009). The 

maximisation is subject to a set of constraints such as available budgets (also comprising 

farm profits), time, production technologies for commodity and non-commodity outputs 

(Jongeneel et al., 2008). Market-oriented approaches include economic models in which 

changes in optimisation, and therefore land management decisions, drive temporal changes 
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in landscape functions. However, these models also mostly lack complete spatial coverage in 

regional studies, as the unit of analysis is normally farms. Additionally landscape functions 

without a market mechanism cannot be directly included in these models. 

Because of the holistic aspect of multifunctional landscapes, most modelling efforts 

combine characteristics of the different modelling approaches (Wiggering et al., 2006). Such 

combinations can result in an integrated governance-oriented modelling approach. This 

approach aims at supporting policy planning and decision making by including location-

specific ecological, social and economic processes. In an integrated approach interactions 

between society and their environment can explicitly be modelled. By including these 

interactions, trade-offs can be made explicit as a result of changes in the socio-economic 

states on ecological processes and vice versa. Socio-economic and ecologic processes take 

place at different spatial levels (Veldkamp et al., 2001; GLP, 2005; Overmars and Verburg, 

2006). Therefore, an integrative approach should have a multi-level structure to capture all 

these processes. Temporal changes in landscape services supply are driven by changes in 

these processes or are defined in scenarios. In land-use change studies, different integrative 

models are present (see overviews by Verburg, 2006; Parker et al., 2008). Land-use models 

can describe complex feedbacks between society and environment. However these models 

are less suited to explicitly deal with the multifunctional character of a landscape and the 

different consequences of management decisions on the service supply of landscape 

functions (Pinto-Correia et al., 2006; Daily et al., 2009; Verburg et al., 2009). Currently, 

integrative modelling approaches to support governance dealing with multifunctional 

landscapes generally combine only two of the above-mentioned modelling approaches. For 

example, by including spatial aspects in actor and market-oriented approaches (Bockstael et 

al., 1995; Yadav et al., 2008) or by integrating a participatory valuation in location-oriented 

models (Gund Institute, 2009). Most integrative landscape function research, however, 

focus on combining location-oriented ecological production functions including some kind 

of market mechanism of landscape services (MA, 2003; Tallis et al., 2008b; Villa, 2009). 

Only a few studies consider social processes that affect the management of ecosystem 

services (Cowling et al., 2008).  

The methodologies developed in this thesis aim to follow an integrative governance-

oriented approach. As identified earlier, integrated approaches are currently lacking to 

support the application of the concept of landscape functions in planning, management and 

decision making (Cowling et al., 2008; Daily et al., 2009; Fisher et al., 2009; De Groot et al., 

2010; Turner II, 2010). To develop a fully integrated approach, existing modelling 

approaches need to be improved in order to capture ecological processes, individual 

decision-making processes and market mechanisms. To avoid integrated models becoming 

complex models with unfeasible data requirements, selection of the core aspects of these 

processes is needed. This thesis presents a modelling approach in which simplified societal 
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demand for services, multi-level interactions and management actions are combined to 

simulate changes in landscape service supply. This approach, therefore, presents a first step 

towards an integrated governance-oriented modelling approach. 

 
Table 6.1 General methodological characteristics of the four modelling approaches to study and support 

management of multifunctional landscapes.  

Characteristic Location-oriented Actor-oriented Market-oriented 

Input/output maps    

Unit of analysis Pixel Individuals, groups Enterprise/Farm 

Quantification measure Provided services  Cultural values Economic values 

Modelling    

Objective System description and 

understanding  

System description and 

understanding 

Optimisation of joint-

production 

Drivers of temporal changes Ecological processes Social processes Supply-demand 

functions 

Strengths Spatially explicit Decision making 

processes included 

Market mechanism 

included 

Limitations Data availability, 

aggregated decision 

making, lack of social 

processes and 

preferences 

Lack of spatial scale  Market-failure non-

commodity services, 

lack of spatial scale 

 Integrated governance-oriented 

Input/output maps  

Unit of analysis Pixel, management unit 

Quantification measure Multiple 

Modelling  

Objective Facilitating and monitoring policy making, explorative and goal optimisation 

Drivers of temporal changes Multi-level processes, Scenarios 

 

 

Methodological contributions and research findings 

The assumption that biophysical and socioeconomic characteristics of the landscape define 

landscape service supply is strongly embedded in this thesis. The challenge in quantification 

and mapping efforts of multiple landscape services arises from a lack of knowledge on 

landscape functioning (i.e. the processes behind the service supply) and data availability. In 

Chapter 2 these relations are quantified using different methods. Key to all methods is an 

effective use and integration of data sources that describe multiple scales of the landscape. 

In this thesis existing spatial data on biophysical and socioeconomic landscape properties 

are used to quantify and map landscape functions. Even though landscape functions cannot 

be directly observed from the land cover, landscape functions strongly relate to indictors of 

land cover or its derivative, e.g. distance to a land cover (Chapter 2). However, the 

combination of land-cover characteristics together with socioeconomic and underlying 
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biophysical factors explains better the spatial variation of landscape functions (Chapter 2). 

Land-cover data, as presented in the traditional land-cover based land-use maps, therefore 

remains an important source of information to define the spatial distribution of landscape 

functions. But, the spatial patterns of land cover, rather than the presence of land cover at a 

specific location, contributes most to spatial description of landscape functions.  

Very few studies have aggregated spatial information on individual landscape functions 

to multifunctionality maps (Gimona and Van der Horst, 2007; Alessa et al., 2008; Nelson et 

al., 2009; Reyers et al., 2009, are the few exceptions). This thesis shows that 

multifunctionality is an important aspect of the landscape. In fact, 75% of our study area is 

multifunctional because of the spatial overlap of at least two of the eight studied landscape 

functions. Multifunctionality is promoted in policy making because the total benefits of a 

location as compared to mono-functional locations is assumed to be higher (Brandt and 

Vejre, 2004; De Groot, 2006). We observed indeed an increase in total service supply at 

multifunctional locations, however, at these locations the average service supply per 

landscape function decreases. Multifunctionality is in this thesis seen as an emergent 

property of landscapes arising out of the interaction and linkage between the environment 

and society (Haines-Young and Potschin, 2004). However, multifunctionality can besides a 

description also be seen as an objective. The normative value of multifunctionality can play 

a role in defining the pathway of rural development (Van Huylenbroeck et al., 2007; 

Wilson, 2008; Renting et al., 2009). In Chapter 5 the potential to explicitly identify these 

pathways is briefly touched upon.  

The importance of identifying landscape characteristics to explain the spatial variation 

of landscape functions is discussed in Chapter 3. Indicators of landscape characteristics 

cannot only be used to map and quantify landscape functions, but these indicators can also 

be used to assess the potential of a location to contain multiple functions. Based on a 

comparison of these landscape characteristics, compatibility of different landscape 

functions at a single location can be indentified (Table 3.2). As spatially explicit data are 

used, locations at which possible interactions between landscape functions occurs can easily 

be mapped. This adds an innovative spatial dimension to the present studies on landscape 

function interactions and multifunctionality (Gomez-Sal et al., 2003; O'Rourke, 2005; 

Sattler et al., 2006).  

The methodologies presented in the Chapters 4 and 5 are used to assess future states of 

multifunctional landscapes. Using the methodologies that describe the relations between 

landscape characteristics – landscape functions – landscape services (Figure 6.3), changes in 

landscape functions and services are assessed. The methodology in Chapter 4 describes an 

impact assessment of spatial policies, while the methodology in Chapter 5 provides insight 

in how the trajectory towards a specific policy objective could look like. Changes in land-

use or management normally affect not just one specific landscape function but change 
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multiple landscape functions (Schröter et al., 2005; Diaz et al., 2007; Carpenter et al., 2009). 

The methodological approaches as presented in the Chapters 4 and 5 both quantify and 

map trade-offs between landscape functions as a result of management actions. Making 

changes of landscape functions spatially explicit thus allows for identifying trade-offs in 

space. An example of this ability is shown in Figure 4.2. Even though a management action 

can lead to an overall increase in landscape service supply in a region, the service supply in 

some areas within that region can actually decrease at the same time.  

 

 

Implications for sustainable landscape management 
 

Landscape services are directly linked to human well-being (MA, 2003). Because of this 

explicit link, the concept of multifunctionality is generally perceived as a means towards the 

broad objective of sustainable development (Bastian et al., 2006; Clark, 2007; Renting et al., 

2009). So, within the normative framework of sustainable development, the concept of 

multifunctionality can be used to explore how sustainability goals can be met. In the context 

of safeguarding the flow of landscape services, good governance plays an important role 

(Biermann, 2007; Daily and Matson, 2008). According to Cowling and others (2008) three 

phases are required to ensure landscape service supply in a dynamic but resilient social-

ecological system. These phases include (i) assessment, (ii) planning and (iii) management 

of the landscape. In the assessment phase information on landscape service supply and 

stakeholder characteristics is collected. In the second phase planning strategies are defined 

that determine the pathway towards policy goals. These strategies are based on stakeholder 

needs and biophysical landscape constraints. The last phase focuses on the coordination 

and execution of management actions to protect key locations that provide landscape 

services and to ensure the flow of landscape service to the beneficiaries. In the context of 

these three phases, the presented methodologies in this thesis contribute mainly to the first 

two actions and thus create a necessary basis for the management phase. More explicitly, 

this is achieved by visualising landscape functions, by making the effects of human actions 

explicit and by creating an understanding of functions and dynamics of the landscape 

system. 

Visualising the spatial distribution of landscape functions is needed to be able to 

adequately manage the landscape. As shown in Chapter 1, not all landscape functions are 

directly observable and are therefore generally excluded from the widely available land-

cover maps. Making regional landscape service supply and values visible therefore 

contributes directly to the assessment phase of the landscape. Strategies and management 

actions can be put in place, when conflicting landscape functions are spatially overlapping. 

Regulations can in this regard be effective tools to mitigate landscape function losses by 
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spatially separating conflicting functions. For example, in many countries drinking water 

extraction zones are strictly protected by numerous rules concerning land-use in these 

areas. Additionally, spatially explicit information on landscape service supply has improved 

the efficiency of payment schemes and subsidies to landowners for managing and 

maintaining the landscape functions (Barton et al., 2009). 

In the process of planning sustainable development strategies, the effects of changes in 

the landscape on the supply of landscape services need to be explored (Kates et al., 2001). In 

order to avoid mismatch in governance actions, processes at both environmental and 

management spatial levels need to be considered (Cash et al., 2006; Ostrom and Nagendra, 

2006). In this thesis different methodologies are presented to assess possible future states of 

landscape functions as a result of changes in multi-level biophysical and socioeconomic 

processes. The interactions of biophysical limits and social and economic values of a 

landscape indicate the ‘sustainability choice space’ in which the final management actions 

could take place (Potschin and Haines-Young, 2006a). In the planning phase, spatial models 

can also contribute to a better understanding of the relevant landscape processes. By 

visualising different futures and creating an understanding on landscape system 

functioning, models thus can be used as policy discussion tools (Haines-Young et al., 2006; 

Groot et al., 2007; Claessens et al., 2009). 

Nowadays, the concepts of landscape functions and multifunctionality are increasingly 

being included in policy strategies (see e.g. FAO, 1999; OECD, 2001; EC, 2004; VROM, 

2006). In addition many scientists have called for explicitly incorporating landscape 

functions into policies and practices (MA, 2005; Cowling et al., 2008; Daily et al., 2009; 

Fisher et al., 2009; De Groot et al., 2010; Turner II, 2010). In order to successfully transfer 

knowledge from science to society three issues play a role (i) credibility, (ii) salience, and 

(iii) legitimacy of the research to society (Cash et al., 2003; Tuinstra et al., 2006). Here, 

credibility relates to the scientific adequacy, salience deals with the relevance of the research 

to the needs of decision makers, and legitimacy reflects the perception that the generation 

of information has taken into account values and interests of all stakeholders (Cash et al., 

2003). Based on these requirements, two main constraints of the presented methodologies 

in their ability to support landscape management can be identified. 

First, the credibility of the research methods of this thesis cannot yet be defined, as the 

accuracy of the produced maps and model predictions have not been tested. Therefore the 

contribution of the presented methodologies and their outcomes to support sustainable 

landscape management remains uncertain. This is a major constraint that should be 

addressed with future research (see Future Research section). 

Second, the legitimacy of the research presented in this thesis to policy makers could be 

enhanced by involving stakeholders in the definition and valuation of landscape services. 

The selection of stakeholders of different landscape functions is, however, challenging. Not 
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all services are provided at the same location where the benefits are realised. Often a 

discrepancy exist between these locations and therefore stakeholder groups (Hein et al., 

2006; Fisher et al., 2009). With the current global markets for agricultural products, 

stakeholder groups that provide landscape services could be located in a different continent 

than the beneficiaries. However these different stakeholder groups should be involved to 

address sustainable landscape management and comprehensively assess trade-offs (Giller et 

al., 2008).  

 

 

Future research 
 

Future research should address methodologies to validate (predicted) landscape function 

maps. Mapping methodologies can be tested for sensitivity to the selection of input data 

(like in Chapter 2), but this does not cover a complete validation. The validity of the 

resulting landscape function maps is hard to quantify for several reasons. First, not all 

landscape functions can be directly observed. Landscape functions have different spatial 

and temporal scales, which makes the collection of field observations for validation in some 

cases not feasible. For example, point observations of recreation do not describe the full 

spatial extent of the recreation landscape function (as this depends on the temporal aspects 

and surrounding landscape characteristics). This lack of adequate ‘reality data’ makes the 

use of spatial models or landscape proxies unavoidable and the validation of the function 

maps based on field samples complicated. Second, in contrast to biophysical landscape 

services, socio-cultural functions are stakeholder, location and time specific (Hein et al., 

2006). This makes the validation of qualitative measures of, for example, cultural heritage 

and landscape aesthetics difficult. So far, very few studies have validated landscape function 

maps using independent data sources. Through validation the uncertainty of maps can be 

made explicit to policy makers (Heuvelink, 1999; Rae et al., 2007). A clear communication 

to possible end-users regarding the different dimensions of uncertainty could avoid 

misinterpretation of the maps (Walker et al., 2003; Janssen et al., 2005). Communicating 

these uncertainties can be done by presenting additional maps with ranges in which 

landscape services are likely supplied. Methods that can quantify the uncertainty and 

validity of landscape functions maps should therefore be further explored. 

Additionally, a better and more explicit integration of ecological, social and economic 

processes is needed to describe and model landscape functions. This includes an improved 

stakeholder involvement in identifying and valuing landscape functions and better 

assessments of the underlying individual decision-making processes. Stakeholder 

involvement should not only focus on farmers, but also on other land owners. For example, 

companies which strongly depend and have an impact on landscape services, should also be 
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included (Hanson et al., 2008). Next, including (simplified) ecological models could reduce 

uncertainties in the causality of empirical relationships. Furthermore market mechanisms 

should be explicitly included in the valuation. To fully integrate these processes, problems 

with matching information from different disciplines need to be overcome. Therefore 

additional work is needed to develop mechanisms that enable integrative use and exchange 

of disciplinary information (like in CFIR, 2004; Ostrom and Nagendra, 2006; Tapio and 

Willamo, 2009). 

Furthermore the saliency of the selection and the definition of landscape services needs 

to be further explored in the perspective of regional policy support. To better match policy 

needs, more attention seems needed to landscape functions providing services that are 

directly being used by society. For example, ‘food provisioning’ is a very broad concept to 

be distinguished as a single service. Types of food produced and therefore the underlying 

processes and interactions can differ strongly per location. The same is true for the 

‘recreation function’. Many types of recreations and recreation needs are present and this 

landscape function strongly depends on personal preferences. Additionally, for integrated 

assessments of regional landscape dynamics, one can wonder if it is appropriate to only 

consider landscape benefits. To make an overall assessment of all trade-offs also the 

opposite of landscape services should be defined; landscape harms or damages (or dis-

services, Zhang et al., 2007). Humans have domesticated and continue to change landscapes 

and ecosystems in ways that reduce exposure to natural dangers (e.g. predators of livestock, 

floods). Protecting against such harms has influenced and improved human well-being 

(Kareiva et al., 2007). Enhancing natural habitats to create a unique biodiversity that 

happens to be dangerous or otherwise harmful to humans creates additional conflicts. In 

the current framework of landscape or ecosystem services these trade-offs cannot be taken 

into account. 

A final future research challenge relates to analysing changes in multifunctionality on a 

larger scale such as continents or the globe. Importing agricultural products creates 

opportunities for increasing the level of multifunctionality of rural areas but in the same 

time decreases multifunctionality elsewhere. In many regions in The Netherlands the 

mono-functional agricultural landscapes of the twentieth century are now being changed 

into multifunctional areas with less agricultural focus. The current decrease in agricultural 

area can partly be explained by an increased intensification of agriculture, but there is also a 

trend of an increased import of agricultural goods from elsewhere (CBS, 2008a). The 

opposite function-changes are occurring in areas where agricultural areas are rapidly 

expanding. Here multifunctional (semi)-natural landscapes are converted into mono-

functional production areas (Foley et al., 2005). In the scope of global sustainability, these 

multi-scale and inter-regional trade-offs should also be made explicit.  
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Conclusions 
 

The objective of this thesis was to develop methodologies to analyse and quantify spatial 

aspects of both landscape functions and multifunctionality and to model future landscape 

function dynamics. Based on the work presented in this thesis it can be concluded that: 

1. Different landscape functions require specific methods and approaches for their 

spatial quantification, as result of inherent underlying processes and available data. 

2. Based on the identification of landscape characteristics that spatially define 

landscape functions and their service provision, it is possible to indentify synergies 

and conflicts at multifunctional locations. 

3. Assessments of changes in landscape services in both service supply quantities and 

monetary values lead to complementary information that contributes to a more 

comprehensive evaluation of landscape management strategies. 

4. Dynamic multifunctional landscapes models should account for multi-scale 

interactions and feedbacks in relation to landscape service supply and societal 

demands, in order to realistically explore the dynamics of landscape functions in 

space and time. 

Research conducted to quantify and model landscape services often lacks a spatial 

component. This thesis presents a first step in the necessary methodological development to 

map and model current and future spatial variability of landscape functions. Accounting for 

this spatial and temporal variation has a large potential to improve future landscape studies. 

The identification of the possible combinations of different landscape functions and the 

identification of potential conflicts between users, can lead to an improved planning of 

sustainable use of natural resources in a region. The presented research therefore 

contributes to the development of an integrated policy support approach, which aims at 

strengthening the sustainable management of landscape functions. 
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Summary 
 

Society benefits from a wide range of services provided through landscape functions. These 

landscape services include, for example, food and timber, fresh water supply, climate 

regulation, landscape aesthetics and recreational opportunities. To enhance the supply of 

some services, people selectively modify landscapes. A good example is the long history of 

agriculture in which people have converted natural areas into productions fields. These 

actions strongly improved the landscape function of ‘food production’, but decreased other 

functions like climate regulation, erosion protection, and the provision of genetic diversity. 

However, well-being of people depends on all landscape functions. Therefore effective 

management of all landscape functions is needed to safeguard landscape service supply to 

society. At many locations more than one landscape function is present. Especially on these 

multifunctional locations the choice of land management is important, since changes in the 

landscape will influence each of these landscape functions differently. 

Landscape functions are unequally distributed over the landscape. In order to 

adequately manage landscape functions policy makers need to know where landscape 

functions are located and how much landscape services are being provided. The problem is 

that currently no maps are available that contain this information for complete regions. 

This relates to the lack of general methodological frameworks to map different landscape 

functions. Additionally, there is limited knowledge on where and how much landscape 

functions change as a result of interactions with each other and with their surroundings. 

The objective of this thesis is therefore to develop methodologies to quantify and map the 

current state and to model future changes of landscape functions. Although the general 

focus of this thesis is on the development of methodological approaches, the outcomes are 

expected to have the potential to support decision-making on landscape management. This 

potential is illustrated by applying the developed methodologies to data of the Gelderse 

Vallei region in The Netherlands. The Gelderse Vallei is selected as case study area because 

of its prominent agricultural character within the highly populated Netherlands. Policy 

makers of the Gelderse Vallei have to deal with multiple, and often conflicting, claims on 

land resourses.  

The objective of this thesis is addressed in successive steps. After presenting the current 

state of knowledge on landscape functions in Chapter 1, a methodological framework to 

quantify and map landscape functions is presented in Chapter 2. This framework includes 

three methods that describe the quantitative relations between landscape characteristics, 

functions and services. Inherent to underlying processes and available data, different 

landscape functions require specific methods for their spatial quantification. By applying 

the methodological framework to the study area, we successfully quantified and mapped 
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eight selected landscape functions: residential use, intensive livestock husbandry, drinking 

water supply, information on cultural heritage, habitat provision for rare, endemic and 

indicator plant species, arable agricultural production, and attractiveness for overnight 

tourism and leisure cycling. By mapping landscape functions that are not directly 

observable from landscape, the landscape functions maps better represent the different 

benefits of the land than the traditional land-cover based maps. Additionally, the supply of 

landscape services is quantified and included in the maps. Therefore spatial variation of the 

‘productivity’ in the region is also made explicit. 

In Chapter 3 we use the defined spatial relations between landscape characteristics and 

landscape functions to study why some locations are more multifunctional than others. Our 

results indicate that favourable biophysical and socioeconomic conditions as well as the 

interactions between landscape functions explain these differences. When different 

landscape functions are enhancing each other, multifunctional hot-spots emerge. We also 

related the number of landscape functions to the total service supply of multifunctional 

locations. For our study area we found that mainly locations with landscape functions that 

sub-optimally provide services are strongly multifunctional.  

In Chapter 4 we show how a set of policy measures can be evaluated by assessing 

changes in landscape functions. In policy making, cost–benefit analyses play an important 

role. Therefore changes in landscape functions are not only assessed based on an index 

related to the level of service supply but also on an estimation of the value of these services 

in monetary terms. By linking economic values to landscape functions maps, the relation 

between the spatial distribution of landscape service supply and their value can be explored. 

As the quantification and valuation methods describe different dimensions and variations 

in space and time of landscape services, they can be considered as complementary. For the 

study area, the evaluation of a set of regional development policies indicated a strong 

increase in services supply in rural areas while the strongest increase in value is expected in 

and around urban areas. It is also shown that even though a policy action leads to an overall 

increase in landscape service supply in a region, the service supply in some areas within that 

region can actually decrease at the same time.  

Based on the insights gained in the previous chapters a modelling approach to analyse 

the dynamics in landscape service supply is proposed in Chapter 5. While the methodology 

in Chapter 4 is used to assess the impact of policies, the modelling approach in Chapter 5 

provides insight in how the trajectory towards a specific policy objective could look like. 

The modelling approach relates shifts in regional societal demand for landscape services to 

local land management actions. Consequently, we explicitly include different spatial levels 

at which interactions and feedbacks occur between landscape service demand, land 

management and service supply. Modelling these multi-level interactions and feedbacks 

allowed for an exploration of landscape function dynamics in space and time for our study 
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area. Additionally, the outcomes of the modelling approach visualised trade-offs between 

different landscape functions as a result of management actions.  

To conclude, in Chapter 6 the methodological contributions of this thesis are discussed 

in relation to other approaches and sustainable landscape management. As research 

conducted to quantify and model landscape services often lacks a spatial component, this 

thesis presents a first step in the necessary methodological development to map and model 

current and future spatial variability of landscape functions. The quantification and the 

improved understanding of landscape function interactions can help to design and evaluate 

spatial policies for multifunctional landscapes. The presented research therefore contributes 

to the development of integrated policy support approaches, which aim at strengthening the 

sustainable management of landscape functions. The presented applications can provide 

guidance in future research efforts to further quantify, map and model landscape functions 

and multifunctionality.  
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Samenvatting 
 

Karteren en modelleren van multifunctionele landschappen 
 

De maatschappij profiteert van een grote verscheidenheid van diensten die door 

landschapsfuncties geleverd worden. Deze diensten zijn onder andere de productie van 

voedsel en hout, de levering van drinkwater, klimaatregulatie, landschapsbeleving en 

recreatiemogelijkheden. Mensen gebruiken deze landschapsdiensten en veranderen het 

landschap dusdanig dat de levering van deze diensten versterkt wordt. Een goed voorbeeld 

hiervan is de lange geschiedenis van de landbouw waarin de mens de natuurlijke staat van 

het landschap heeft getransformeerd naar productievelden. Deze acties hebben ertoe geleid 

dat de voedselproductie sterk is gestegen maar tegelijkertijd zijn andere diensten zoals 

klimaatregulatie, bescherming tegen erosie en de diversiteit van genetische bronnen, sterk 

afgenomen. Het welzijn van mensen is echter afhankelijk van al deze landschapsdiensten. 

Daarom is een adequaat management van het landschap noodzakelijk om de toevoer van 

alle landschapsdiensten aan de maatschappij veilig te stellen. Op veel locaties in het 

landschap is meer dan één landschapsfunctie aanwezig. Juist op deze multifunctionele 

locaties spelen keuzes in landschapsmanagement een belangrijke rol, aangezien 

veranderingen in het landschap elke aanwezige landschapsfunctie op een andere wijze zal 

beïnvloeden. 

Landschapsfuncties zijn ongelijk verdeeld over het landschap. Om het landschap goed te 

kunnen managen is het belangrijk om te weten waar en hoeveel landschapsdiensten er 

geleverd worden. Het probleem is dat er op dit moment geen kaarten zijn die deze 

informatie voor volledige regio’s laten zien. Dit komt doordat geschikte methoden hiervoor 

ontbreken. Daarbij is ook de kennis beperkt over in hoeverre landschapsfuncties door 

elkaar en door hun omgeving worden beïnvloed. De doelstelling van dit proefschrift is 

daarom het ontwikkelen van methoden om de huidige en toekomstige staat van 

landschapsfuncties te kunnen kwantificeren en karteren. Hoewel de algemene focus van dit 

proefschrift ligt op het ontwikkelen van methodologische aanpakken, kunnen de 

uitkomsten van dit proefschrift mogelijk ook gebruikt worden om discussies over 

landmanagement te ondersteunen. Deze mogelijkheden worden geïllustreerd door 

toepassingen van de ontwikkelde methoden op een gebied in de provincies Gelderland en 

Utrecht, de Gelderse Vallei. We hebben de Gelderse Vallei uitgekozen als studiegebied, 

omdat deze regio een sterk agrarisch karakter heeft terwijl het in het dichtbevolkte 

Nederland ligt. De beleidsmakers van deze regio hebben hierdoor te maken met 

verschillende, vaak conflicterende, claims op land en bestaansbronnen. 
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De doestelling van dit proefschrift wordt behandeld in een reeks van opeenvolgende 

stappen. Ik begin met het beschrijven van de huidige kennis van landschapsfuncties in 

Hoofdstuk 1. In Hoofdstuk 2 presenteren we vervolgens een methodologisch raamwerk over 

hoe men kaarten kan maken van landschapsfuncties. Dit raamwerk bevat drie verschillende 

methoden om landschapsfuncties te kunnen kwantificeren en karteren, afhankelijk van de 

onderliggende processen en de beschikbare data. Door het raamwerk toe te passen op het 

studiegebied is het gelukt acht geselecteerde landschapsfuncties te karteren: wonen, 

intensieve veehouderij, drinkwatertoevoer, cultureel erfgoed, aantrekkelijk landschap voor 

toerisme, habitat voor zeldzame en endemische planten, akkerbouw, en een aantrekkelijk 

landschap voor fietsrecreatie. Door alle landschapsfuncties te karteren, ook deze die niet 

direct te zien zijn in het landschap, laten de nieuwe kaarten beter dan de traditionele 

kaarten, die slechts gebaseerd zijn op de landbedekking, zien wat de verschillende 

kwaliteiten van het landschap zijn. Doordat ook de hoeveelheid van de geleverde diensten 

in kaart zijn gebracht, is er ook meer inzicht gekomen in de ‘productiviteit’ van de regio.  

In Hoofdstuk 3 gebruiken we relaties tussen landschapskarakteristieken en 

landschapsfuncties om te onderzoeken waarom sommige locaties meer multifunctioneel 

zijn dan andere. Onze resultaten laten zien dat zowel gunstige biofysische en 

sociaaleconomische omstandigheden, als de interacties tussen landschapsfuncties hierin een 

belangrijke rol spelen. Als verschillende landschapsfuncties elkaar versterken, ontstaan er 

zogenaamde hot-spots van multifunctionaliteit. We hebben in dit hoofdstuk ook gekeken 

naar de relatie tussen het aantal landschapsfuncties en de hoeveelheid geleverde diensten op 

multifunctionele locaties. In ons studiegebied bleek dat voornamelijk locaties waar de 

individuele landschapsfuncties weinig landschapsdiensten leveren, juist heel 

multifunctioneel zijn in termen van het aantal aanwezige functies. 

In Hoofdstuk 4 laten we zien hoe beleidsplannen geëvalueerd kunnen worden op basis 

van de verwachte veranderingen in landschapsfuncties. In beleid spelen kosten-baten 

analyses vaak een belangrijke rol. Daarom hebben we de veranderingen in 

landschapsfunctie niet alleen geschat met een index die de levering van landschapsdiensten 

laat zien, maar ook aan de hand van een schatting van de monetaire waarden van deze 

diensten. Door deze economische waarden te koppelen aan de landschapsfunctiekaarten, 

kan de relatie tussen de ruimtelijke verspreiding van landschapsdiensten en hun waarden 

onderzocht worden. Doordat de evaluatiemethoden verschillende ruimtelijke en temporele 

dimensies beschrijven, kunnen de methoden als complementair worden gezien. Voor ons 

studiegebied liet een evaluatie van een pakket van regionale beleidsplannen zien dat in de 

landelijke gebieden een grote toename van landschapsdiensten verwacht kan worden, 

terwijl de sterkste toename van de waarden van de landschapsdiensten rond de steden 

verwacht wordt. We laten in dit hoofdstuk ook zien dat ondanks dat beleidsplannen over 
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het gehele gebied genomen tot een groei van landschapsdiensten zullen leiden, er binnen de 

regio gebieden zullen zijn waar de landschapsdiensten juist af zullen nemen.  

Gebaseerd op de nieuwe inzichten uit de voorgaande hoofdstukken, presenteren we in 

Hoofdstuk 5 een model waarmee de mogelijke dynamiek van landschapsdiensten 

geanalyseerd kan worden. In tegenstelling tot de methode uit Hoofdstuk 4, waarmee de 

effecten van beleid geschat worden, geeft het model uit dit hoofdstuk inzicht in hoe het 

traject tot een specifiek beleidsdoel eruit kan zien. Het model relateert veranderingen in de 

regionale vraag naar landschapsdiensten aan lokale landmanagementacties. Hierdoor 

houden we expliciet rekening met interacties die plaatsvinden tussen verschillende niveaus 

die de vraag naar landschapsdiensten, landmanagement en de levering van diensten door 

het landschap beïnvloeden. Door al deze interacties mee te nemen, kunnen we een schatting 

maken hoe de veranderingen in landschapsfuncties in ruimte en tijd plaatsvinden. De 

uitkomsten van het model laten ook zien waar en hoeveel de levering van 

landschapsdiensten afneemt als resultaat van landmanagementacties die gericht zijn op het 

verbeteren van andere landschapsfuncties. 

Ten slotte worden in Hoofdstuk 6 de methodologische bijdragen van dit proefschrift 

besproken in relatie tot andere wetenschappelijke methoden en duurzaam landbeheer. In 

onderzoek dat zich richt op het kwantificeren en modelleren van landschapsdiensten, 

ontbreekt vaak de ruimtelijke component. Dit proefschrift laat zien hoe methoden 

ontwikkeld kunnen worden om de ruimtelijke verspreiding van landschapsfuncties beter te 

kunnen karteren en modelleren. De kwantificatie en het verbeterde begrip van de 

interacties tussen landschapsfuncties kan helpen om ruimtelijk beleid voor multifunctionele 

gebieden beter te ontwerpen en te evalueren. Dit proefschrift draagt daardoor bij aan de 

ontwikkeling van methoden om geïntegreerd ruimtelijk beleid dat zich richt op het 

versterken van duurzaam beheer van landschapsfuncties te ondersteunen. De toepassingen 

van de methoden kunnen gezien worden als een richtlijn voor toekomstig onderzoek dat 

zich nader richt op het kwantificeren, karteren en modelleren van landschapsfuncties en 

multifunctionaliteit. 
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Epilogue 
 

In this thesis I have tried to find patterns and regularities to describe our landscape, 

continually realising that one will never be able to find that one formula that describes the 

complex world we are in. When I started my PhD research I expected to learn sophisticated 

analytical methods and complex theories and maybe even generating hard data on causal 

relations. If I can take the liberty to generalise my person experiences, I now think that 

obtaining a PhD isn’t about difficult methods, theories or finding that one formula, it is all 

about skills. In the last years I was trained to think logically, write consistently, identify 

problems, and learn from mistakes. I did this for four years all by myself but not alone. 

Therefore I would like to thank everyone who contributed to this thesis. 

First of all want to express my gratitude to my absurdly interdisciplinary group of 

colleagues I worked with during the last four years. You all proofed to be a valuable source 

of knowledge on agricultural practices, economics, GIS tricks, programming, statistics, 

soils, system dynamics, didactic methods, writing styles and administrative issues. Also I 

really appreciated your uncensored opinions on concepts, papers, presentations, politics, 

propositions and thesis lay-outs. Working on my PhD research wasn’t lonely at all, thanks 

to you. 

Next, I would like to acknowledge my team of supervisors for their initiative to combine 

land use modelling with the ecosystem services concept, and thank them for guiding me 

through all phases of growing-up in the academic world. During these phases I needed 

guidance, independence, discussion, time for personal development, and unfortunately for 

you, quite often all at the same moment. Peter Verburg, as daily supervisor you have been 

my first stop when getting into troubles. Thanks for your quick replies and ever to-the-

point feedback. Lars Hein, you showed me around in the, to me new, world of 

environmental-economics. Thank you for your clear explanations, good listing and critical 

comments on my manuscripts. Tini, Meneer, van Mensvoort, besides being a supervisor 

you have been my mental coach during these years. I have really appreciated your unlimited 

capacity of putting things into perspective. Tom Veldkamp, the discussions with you helped 

me a great deal in framing my research and finding the crux of landscape function 

dynamics. Rik Leemans, thanks for the freedom you gave me, the introduction to the 

academic world and thorough reviewing of my work. Besides my supervisors, I would also 

like to thank Dolf de Groot for giving me the opportunity to collaborate in different 

projects and initiatives and for introducing me to the ecosystem services community. 

In this thesis information from many different sources was used. I would like the 

acknowledge the people and institutes who provided data or expert knowledge; C. de Bont, 

S. Hennekes, E. Gies, J. Neefjes, Alterra, LEI, Provincie Gelderland, Provincie Utrecht, 
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Kenniscentrum Recreatie, Stichting Vernieuwing Gelderse Vallei, and the municipalities of 

Amersfoort, Ede, Eemnes, Leusden, Putten, Soest and Wageningen. 

My paranimfen deserve special thanks. Diego, from the beginning to the very end of this 

PhD journey you have been the best companion one could wish for. I hope our paths will 

keep on crossing. Erika, from Alora to the Aula it was great to have you as partner-in-

creative fieldwork/ exotic voyages/ strange obsessions/ PhD-ing. What’s next? And also 

thanks to Kathleen, for being a great all-in-one package deal and back-up. 

Furthermore, I would like to thank my family, (too far away) friends and amiguitos for 

their support and pleasant distraction. My house mates did a great job listing and 

commenting on my daily PhD woes. Ruud, fijn dat ik bij jou heb kunnen afkijken hoe je dat 

nu doet, dat promoveren. Diana, bedankt voor je hulp bij het maken van de omslag van dit 

proefschrift.  

En dan de man. Roel, het is goed te realiseren dat ik iemand heb die zo dicht bij me staat 

dat hij me alle ruimte kan geven. Bedankt voor het mee-lezen, mee-denken en mee-leven de 

afgelopen vier jaar.  

Ten slotte wil ik mijn ouders bedanken. Zij creëerden de basis voor dit proefschrift. 

PaMa, grote dank voor jullie cruciale levenslessen in ‘plezier te hebben in de zoektocht naar 
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° Advisory and participation in the launching workshops of the development project 

‘Realizing the agricultural potential of inland valley lowlands in sub-Saharan Africa while 
maintaining their environmental services 

° Organizing and activating the SENSE e-Network as on-line exchange community 

° Symposium coordinator/chair: ‘Ecosystem Services at a Landscape Scale’ at the European 
International Association of Landscape Ecology Conference, Salzburg, Austria 

° Panel member of a round table discussion on Cultural Diversity with Mr Kofi Annan, 
Wageningen, The Netherlands 

 
Oral Presentations: 

° Framing Land Use Dynamics II, April 2007, Utrecht, The Netherlands 

° Landscape Ecology World Congress, July 2007, Wageningen, The Netherlands 
° Conference on the Science and Education of Land Use: A transatlantic, multidisciplinary 

and comparative approach, September 2007, Washington DC, USA 
° Conference of Impact Assessment of Land Use Changes, April 2008, Berlin, Germany 

° European International Association of Landscape Ecology Conference, July 2009, Salzburg, 

Austria 
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SENSE Coordinator PhD Education and Research 



 

 152 

This research has been funded by the ‘Spatial development and society: integrating 

analytical and design approaches' programme of Wageningen University. This programme 

is a collaboration between the Wageningen graduate schools of Production Ecology and 

Resource Conversation (PE&RC), Mansholt, and Wageningen Institute for Environment 

and Climate Research (WIMEK). 

 

 


