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Chapter 1 

 

General introduction 

The necrotrophic fungus Botrytis cinerea, commonly known as grey mould, is one of the 

world’s most devastating plant pathogens. It colonizes a wide range of economically 

important crops including fruits, vegetables, ornamental plants and cut flowers, and causes 

major postharvest losses (Jarvis, 1977). B. cinerea belongs to the class of Deuteromycetes 

(imperfect stage), order Moniliales and family Moniliaceae. The fungus predominantly 

disperses by massive production of grey brown clusters of macroconidia. The perfect stage, 

found quite rarely in nature, is known as Botryotinia fuckeliana (de Bary), belonging to the 

Ascomycetes, order Helotiales and the family Sclerotiniaceae (Jarvis, 1977).  

The fungus requires high relative humidity on the plant surface for germination, temperatures 

between 15°C and 25°C, damp weather for optimal infection, growth, sporulation and spore 

release. B. cinerea is also active at low temperatures, and can cause problems on vegetables 

stored for weeks or months at temperatures ranging from 0 - 10°C. Infection rarely occurs at 

temperatures above 25°C but once the infection occurs, the fungus can grow over a range of 

0-35°C (Babadoost, 2000).  

The symptoms of Botrytis diseases vary greatly depending on the host and plant part 

attacked. General symptoms include a grey to brown discoloration, water soaking, and a fuzzy 

whitish grey to tan mould (mycelium and spores) growing on the surface of affected areas. 

The host tissue becomes soft and rots. The conidiospores produced are the inoculum for the 

next round of infection. One infection cycle may be completed in 3 to 4 days, depending on 

the environmental conditions and type of host tissue attacked. 

 

Enzymes and metabolites involved in disease development 

Virulence of B. cinerea requires a set of enzymes and (secondary) metabolites that serve as 

weapons for attack, as well as mechanisms to overcome the host defence responses. The 

pathogen penetrates into the host via wounds, natural openings or even intact surfaces, and 

rapidly colonizes dead or senescing tissues. To penetrate intact host surface, the fungus has to 

deal with physical barriers including the cuticle and the epidermal cell wall. During 

penetration, B. cinerea produces and secretes enzymes like cutinases and lipases (Salinas and 

Verhoeff, 1995; van Kan et al., 1997; Comménil et al., 1998; Gindro and Pezet, 1999; Reis et 

al., 2005), however, none of these have been shown to be essential in the penetration process. 
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Cell wall degrading enzymes such as pectinases and cellulases are suggested to act in the 

breakdown of the cell wall, resulting in tissue destruction and the release of nutrients to the 

fungus. B. cinerea possesses multiple copies of genes encoding these enzymes. At least three 

genes encoding pectin methylesterases are present in the B. cinerea genome. Replacement of 

the Bcpme1 and Bcpme2 genes, either separately or in combination, in the strain B05.10, 

yielded mutants that were fully virulent on tomato and grapevine leaves. In vitro growth 

assays demonstrated that pectin demethylation by these two enzymes is not important for 

growth on highly methylated pectin (Kars et al., 2005b). There are six endopolygalacturonase 

(Bcpg) genes in the B. cinerea genome (Wubben et al., 1999) and these genes are expressed 

differentially during infection in several hosts (ten Have et al., 2001). Five BcPG enzymes 

were produced in a heterologous host and shown to possess macerating and necrosis-inducing 

activity (Kars et al., 2005). Deletion of Bcpg1 and Bcpg2 resulted in strong reduction in 

virulence on different hosts (ten Have et al., 2001; Kars et al., 2005a). 

Once B. cinerea has penetrated the plant surface, it kills the underlying epidermal host cells 

before the hyphae invade (Clark and Lorbeer, 1976). B. cinerea culture filtrates contain low 

molecular weight compounds with phytotoxic activity, named botrydial and botcinic acid 

(Calvo et al., 2002; Pinedo et al., 2008). Botrydial has been demonstrated to accumulate in B. 

cinerea-infected leaves (Deighton et al., 2001). The Bcbot1 gene encoding a P450 

monooxygenase is essential in the biosynthesis of this metabolite. Mutants of three different 

B. cinerea strains lacking a functional copy of the Bcbot1 gene did not produce any botrydial 

(Siewers et al., 2005). Bcbot1 deletion mutants were tested for their virulence on different 

host plants. Bcbot1 deletion mutants in strains ATCC 58025 and SAS56 did not show any 

alteration in virulence, because they were still producing botcinic acid. By contrast, mutants 

in strain T4, which is not able to produce botcinic acid, displayed a significant reduction in 

virulence on bean leaves, tomato leaves and tomato fruits. Therefore, botrydial must be 

regarded as a strain-dependent virulence factor  (Siewers et al., 2005). 

Necrotrophs by definition cause plant cell death, which triggers a spectrum of local and 

systemic defense responses in the host plant, some of which include an oxidative burst and the 

production of antifungal metabolites and proteins. B. cinerea must be able to evade such plant 

defences to successfully colonize the host. The presence of an array of enzymes capable of 

metabolizing hydrogen peroxide such as intra- and extracellular peroxidases, superoxide 

dismutase (SOD) and catalase (Gil-ad et al., 2000), shows that B. cinerea is equipped to cope 

with active oxygen species produced by the host during early stages of infection (Schouten et 
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al., 2002a). A BcSOD1-deficient mutant showed reduced virulence on French bean and an 

enhanced accumulation of extracellular hydrogen peroxide was observed at the plant-

pathogen interface (Rolke et al., 2004). Furthermore, enzymes like laccases have been 

reported to be involved in the detoxification of phenolic compounds (Adrian et al., 1998; 

Mayer et al., 2001). B cinerea is able to protect itself from the action of resveratrol, a 

phytoalexin from grapevine leaves, by its detoxification through laccases (Adrian et al., 

1998). Schouten (2002a) however reported that resveratrol is not toxic to B. cinerea by itself, 

but the resveratrol oxidation product (named viniferin) generated by the action of laccase 

BcLCC2 is the active compound that causes the toxicity. However, deletion of the laccase 

genes Bclcc1 and Bclcc2 in strain B05.10 did not affect the virulence on several hosts 

(Schouten et al., 2002b). Recently it became clear that the B cinerea genome contains eleven 

laccase-encoding genes (www.broad.mit.edu), suggesting that they may have overlapping 

functions (Schouten et al., 2008). Another mechanism by which B. cinerea manages to deal 

with growth-inhibiting compounds is by the activity of ATP-binding cassette (ABC) 

transporters and Major Facilitator (MFS) proteins that mediate the efflux of a range of 

antifungal compounds. Several studies have been performed on the role of transporter proteins 

in conferring resistance against industrial fungicides, plant defense compounds and a natural 

antibiotic produced by Pseudomonas fluorescens (Vermeulen et al., 2001; Schoonbeek et al., 

2003; Schouten et al., 2008a).  

 

NLPs 

The Necrosis and Ethylene-inducing Protein Nep1 was purified from culture filtrates of  

Fusarium oxysporum f.sp. erythroxyli (Bailey, 1995) and was the first representative of what 

is currently known to be a large family of necrosis-inducing proteins. Nep1-Like Proteins 

(NLPs) are present in a spectrum of microorganisms including bacteria, actinomycetes, 

oomycetes and fungi but not in higher organisms (Pemberton and Salmond, 2004). NLPs are 

present in Gram-negative and Gram-positive bacteria with saprophytic or pathogenic life 

styles. In fungi and oomycetes, NLPs are especially present in species interacting with plants, 

and predominantly in species that display a hemibiotrophic or necrotrophic life style on plants 

(Qutob et al., 2006). NLPs are secreted proteins that share a conserved heptapeptide motif in 

the central region of the protein, but they do not contain any previously recognized enzymatic 

domain. The presence of two or more conserved cysteine residues, predicted to form disulfide 

bridges, has been used to classify the NLPs in two subgroups. Group I comprises proteins that 
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harbour only the two first conserved cysteines and group II proteins that contain four 

cysteines (Gijzen and Nürnberger, 2006). The molecular weight of NLPs ranges from 24 to 26 

kDa and they can occur as monomers as well as dimers (Garcia et al., 2007).  

Responses to NLPs are restricted to dicotyledonous plants; all monocotyledonous plants or 

other organisms tested so far are insensitive to NLPs (Bailey, 1995; Keates et al., 1998; Staats 

et al., 2007; Schouten et al., 2008b). Sensitive plants exposed to NLPs respond by production 

of H2O2, nitric oxide, ethylene, accumulation of transcripts encoding pathogenesis-related 

proteins, calcium influx, release of phytoalexins, activation of MAP kinases and necrotic 

lesion formation (Keates et al., 1998; Fellbrich et al., 2002; Bae et al., 2006). Qutob et al 

(2006) demonstrated that NLPs have affinity for lipid bilayers and their phytotoxic activity 

and specificity for dicots do not require the presence of a cell wall. The mode of action and 

target site of NLPs in plants however are unknown. 

 

The role of host plant processes in B. cinerea pathogenesis 

Ethylene is present in trace amounts in nature and it is produced by almost all living 

organisms, either biologically or chemically by the incomplete combustion of hydrocarbons. 

The activity of ethylene as a plant hormone was discovered in the nineteenth century (Abeles, 

1992). The plant physiologist Nelbujov (1879-1926) observed that etiolated pea seedlings 

grew horizontally in the laboratory but upright in outside air and he showed that the abnormal 

growth habit was caused by contaminating illuminating gas. In 1901, he proved that the active 

principle in illuminating gas was ethylene (Bleecker and Kende, 2000). Since then, the study 

of ethylene as a plant hormone has been extensive. Ethylene is now known to regulate seed 

germination, seedling growth, leaf and floral abscission, ripening in climacteric fruits, 

senescence of plant organs, plant growth. Furthermore it acts as a stress hormone during 

biotic (pathogen infection) and abiotic (wounding, hypoxia, freezing) stress conditions 

(Mattoo and Suttle, 1991). 

In higher plants, ethylene biosynthesis occurs through the conversion of methionine via S-

Adenosyl-L-Methionine, into 1-aminocyclopropane-1-carboxylic acid (ACC) and proceeds to 

ethylene by oxidation (Fig.1). This process is tightly regulated at the level of ACC synthase 

(ACS). Both positive and negative feedback regulation of ethylene biosynthesis have been 

reported in different plant species (Kende, 1993; Nakatsuka et al., 1998; Barry et al., 2000). 

For example, in tomato, Le-ACS2 and Le-ACS4 are positively regulated, and Le-ACS6 is 

negatively regulated by ethylene synthesized during fruit ripening (Nakatsuka et al., 1998). 
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Once ethylene is synthesized, it is perceived by membrane-localized receptors that are 

homologous to the bacterial two-component histidine kinases (Bleecker and Kende, 2000). 

Arabidopsis thaliana contains five receptors (ETR1, ETR2, ERS1, ERS2 and EIN4) that act 

as negative regulators of ethylene responses and they are inactivated by ethylene binding 

(Guo and Ecker, 2004). Transduction of the ethylene signal is achieved through a series of 

phosphorylations that are carried out by a cascade of MAP kinases, resulting in the activation 

of transcription factors that bind to promoters of ethylene-responsive genes. 

An increase in ethylene production by plants occurs as an early response to pathogen 

infection (Boller, 1991). Ethylene treatment of plants increases either susceptibility or 

resistance, depending on the plant-pathogen interaction and environmental conditions. Elad 

(1993) showed that covering pre-inoculated tomato plants with polyethylene bags in order to 

accumulate ethylene, promoted B. cinerea infection. On the other hand, pre-treatment of 

tomato plants with exogenous ethylene prior to inoculation, resulted in an increased, partial, 

resistance to B. cinerea (Díaz et al., 2002). The complex physiological responses to ethylene 

in different tissues and during development, as well as the positive and negative feedback 

mechanisms make it difficult to generalise. For example, ripening makes tomato fruit more 

susceptible to B. cinerea and the ripening is stimulated by ethylene (Cantu et al., 2008). 

However, ethylene is not required for the increased susceptibility to B. cinerea during fruit 

ripening (Cantu et al., 2009). Thus, ethylene stimulates B. cinerea disease in an indirect way.  

 

Cell death in plant-pathogen interactions 

Plant cell death can occur during the interaction with pathogens that attempt to colonize the 

host (Greenberg, 1997). Cell death processes may occur by at least two distinct pathways: one 

that resembles apoptosis that is observed in programmed cell death (PCD) in animal systems 

and one that resembles necrotic cell death.  

Apoptosis is an active process that includes the fragmentation of DNA into so-called DNA 

ladders, membrane blebbing, cell shrinkage, chromatin condensation, nuclear fragmentation 

with nucleic acids found in membrane-bound vessels (apoptotic bodies) and cytoplasmic 

condensation. Some of the hallmarks for apoptotic cell death have been observed in plant-

pathogen interactions during the occurrence of the hypersensitive response (Heath, 1998). The 

PCD-eliciting mycotoxins AAL toxin or fumonisin B1 (FB1) (Gilchrist et al., 1995; Gilchrist, 

1997; 1998) have been used as models for the study of plant cell death in pathogen response 

pathways. AAL toxin is secreted by the tomato pathogen Alternaria alternata f. sp. 
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lycopersici, while the structurally related toxin FB1 is secreted by the maize pathogen 

Fusarium moniliforme. These toxins induce apoptosis-like cell death in tomato. DNA ladders 

were observed during cell death in toxin-treated tomato protoplasts and leaflets.  

Necrosis in plants is caused by extrinsic factors, such as mechanical damage or phytotoxic 

accumulation of specific molecules after a stress event. Thus, plant cell death through necrosis 

is considered a “passive” process. Swelling is the defining feature of the morphological 

changes during necrosis. Swelling is due to the cell losing the ability to osmoregulate, 

resulting in water and ions flooding into the cell and culminating in cellular lysis (Lennon et 

al., 1991). Generation of ROS, ATP depletion and mitochondrial and chloroplast dysfunction 

are also characteristic of necrosis. Several fungal toxins are known to cause necrosis in plant. 

For example two naphthazarin phytotoxins (dihydrofusarubin and isomarticin) produced by 

Fusarium solani caused cell necrosis in veins, plasmolysis or collapse of spongy mesophyll 

cells, collapse of phloem, depletion of starch, swelling of chloroplasts and disruption of 

cellular organization in leaves of rough lemon seedlings (Achor et al., 1993). 

The most widely studied cell death response in plants is the hypersensitive response (HR), 

which occurs when a biotrophic pathogen produces an effector that is recognized by a host 

plant with a corresponding resistance gene, resulting in Effector-Triggered Immunity (ETI). 

HR resembles PCD in animals and results in the killing of host cells at the site of attempted 

infection. Cells are sacrificed at the point of pathogen entry to avoid further spreading of 

(hemi)-biotrophic microbes; however this strategy is not effective against necrotrophic 

microbes  since cell death facilitates the infection by necrotrophs (Govrin and Levine, 2000). 

Many studies have been performed on the role of plant genes in HR and disease symptom 

development. Such studies were supported by the finding of lesion mimic mutants, such as 

Arabidopsis mutant acd5, that spontaneously forms disease-like lesions (Greenberg et al., 

2000; Pilloff et al., 2002), and shows more severe disease symptoms and allows increased 

growth of P. syringae. The Acd5 gene encodes a ceramide kinase (CERK) that is induced 

during P. syringae infection (Liang et al., 2003). Ceramides are bioactive lipids that activate 

apoptosis in animals (Hannun and Obeid, 2002), while its phosphorylated derivative (the 

product of the CERK reaction) can partially block PCD in Arabidopsis protoplasts (Greenberg 

and Yao, 2004). Ceramides are part of the sphingolipid family of bioactive lipids (Hannun 

and Obeid, 2002). Some fungal pathogens secrete cerebrosides, which are derived from 

sphingolipids that induce HR-like cell death in rice (Koga et al., 1999). Additionally, a 

number of fungal pathogens secrete related mycotoxins that cause PCD and disrupt 
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sphingolipid metabolism (Abbas et al., 1994). Transient expression of cpr22 (constitutive 

expresser of PR 22) induces cell death in Nicotiana benthamiana leaves (Yoshioka et al., 

2006). This cell death resembles the HR seen in an incompatible plant-pathogen interaction. A 

microscopic analysis of cpr22-induced cell death revealed strong similarities to pathogen-

induced as well as developmental PCD (Fukuda, 2000; Lam, 2004) including retraction of the 

plasma membrane from the cell wall, vesicle formation and degradation of the tonoplast. 

Anti-apoptotic genes have been identified in viruses, animals and humans. The transgenic 

expression of several of these genes (Op-IAP, CED-9, Bcl-2, Bcl-xL,) in tobacco plants 

conferred heritable disease resistance to necrotrophic fungi, including B. cinerea and 

Sclerotinia sclerotiorum (Dickman et al., 2001).  

 

Ethylene production and perception by microorganisms 

Microorganisms can synthesize ethylene by one of three possible pathways. A few fungi 

produce ethylene from methionine via ACC, alike the pathway described for plants (Figure 

1A) (Sharon et al., 2004). In the second pathway, α-keto-γ-(methylthio)butyric acid (KMBA), 

resulting from deamination of L-methionine, is converted to ethylene by enzymatic 

conversion (Figure 1B) or by spontaneous oxidation of KMBA in the presence of light (Yang, 

1969). In the third pathway, 2-oxoglutarate is converted to ethylene by the ethylene-forming-

enzyme (Figure 1C) (Fukuda et al., 1986). The second and third pathways occur much more 

frequently in microorganisms than the first one.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Biosynthetic pathways in microorganisms for synthesis of ethylene using either methionine (A), 
KMBA (B) or 2-oxoglutarate (C) as precursors. 
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Microorganisms cannot only produce ethylene, they can also respond to it. It has been 

reported for several fungi that ethylene may stimulate conidial germination, germ tube 

elongation and appressorium formation (Kepczynska, 1994; Sharon et al., 2004). The 

phenomenon of ethylene perception by microorganisms has been study mainly in fungi but 

there is no description of the molecular mechanisms involved in the perception.  

 
 
Outline of the thesis 

The aim of the research presented in this thesis was to obtain insight in the roles that ethylene 

production and perception, both by the pathogen and the plant, plays in the interaction 

between B. cinerea and crop plants, using tomato as a model. Furthermore, functional analysis 

was performed of two B. cinerea necrosis-inducing NLPs, called BcNEP1 and BcNEP2, with 

emphasis on their role in virulence and their mode of action. 

Chapter 2 describes studies on the effects of ethylene on B. cinerea either in vitro or during 

pathogenesis. Lesion development on tomato genotypes with a reduced or an enhanced 

ethylene production level was monitored. Furthermore, reports that the transcript levels of 

certain B. cinerea genes are induced by exposure to ethylene (Chagué et al., 2006), led us to 

characterize the role of the fungal histidine kinase BcHHK5, which structurally resembles 

plant ethylene receptors.  

Chapter 3 describes the functional analysis of the two NLPs from B. cinerea. Expression of 

Bcnep genes and production of the corresponding proteins during infection was investigated. 

Single knock out mutants were made for Bcnep1 and Bcnep2 and their role in virulence was 

tested. Additionally, experiments were conducted to study whether ethylene induced in plants 

during B. cinerea infection results from a response to BcNEP proteins.  

Chapter 4 investigates whether the conserved heptapeptide motif, the disulfide bonds, as well 

as posttranslational modification motifs in the BcNEP proteins influence their necrosis-

inducing activity. Transient agro-infiltration assays were performed in Nicotiana benthamiana 

and N. tabacum to express site-directed mutant proteins. 

Chapter 5 describes a study on the role of the plant in the response to BcNEP proteins. The 

inhibition of necrosis-inducing activity by polyclonal antibodies raised against BcNEP 

proteins was analysed. Genetic tools and pharmacological inhibitors were used to elucidate 

plant pathways required for the necrosis-inducing activity of BcNEP proteins.  

Chapter 6 provides a general discussion of the thesis. 
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SUMMARY 

Ethylene regulates several developmental processes in plants and plays an important role in 

plant-pathogen interactions. Chagué et al. (2006) reported that exposure of Botrytis cinerea to 

ethylene in vitro leads to reduction of growth and the induction of expression of two genes, 

one of which encodes a phytotoxic protein. These results led to the hypothesis that B. cinerea 

for its infection takes advantage of ethylene released by the plant. We did not observe the 

previously reported growth reduction upon exposure to ethylene. We investigated possible 

effects of ethylene on B. cinerea during pathogenesis by monitoring lesion development on 

tomato genotypes with either a reduced or an enhanced ethylene production level. The lesion 

sizes on mutant genotypes and their respective wild type progenitors did not differ.  

The genome of B. cinerea contains a gene encoding a histidine kinase receptor, BcHHK5, 

which structurally resembles ETR1, the best characterized ethylene receptor in plants. Gene 

replacement mutants were made to study the function of the Bchhk5 gene. The mutants were 

neither affected in growth in vitro nor in virulence. Furthermore, the expression of the two 

genes reported by Chagué et al. (2006) to be ethylene-responsive was not influenced by 

exposure to ethylene in the B. cinerea wild type strain nor in a ΔBchhk5 mutant. Altogether 

we obtained no evidence that B. cinerea indeed senses ethylene, nor that the Bchhk5 gene 

product acts as an ethylene receptor.  
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INTRODUCTION 

Ethylene perception has been studied in detail in plants. In Arabidopsis thaliana, ethylene 

sensing and signaling occurs in the endoplasmic reticulum through a family of five receptors 

(ETR1, ETR2, ERS1, ERS2 and EIN4) that share similarity with bacterial two component 

phosphorelay signaling systems (Chang and Stadler, 2001). The receptors function as 

negative regulators of ethylene responses and are inactivated by ethylene binding (Guo and 

Ecker, 2004). ETR1 is the best characterized ethylene receptor; mutations in the A. thaliana 

etr1 gene result in an ethylene-insensitive phenotype, indicating that ETR1 must be a 

dominant receptor (Bleecker et al., 1988). Other proteins downstream in the signaling cascade 

can integrate signals from other plant hormones, like jasmonic acid, to modulate the response 

to biotic and abiotic stress. Hundreds of A. thaliana genes are induced or repressed by 

ethylene (Alonso et al., 2003).  

A well known effect of ethylene on plant growth is the triple response of etiolated 

dicotyledonous seedlings. This response is characterized by the inhibition of hypocotyl and 

root cell elongation, radial swelling and exaggerated curvature of the apical hook (Ecker, 

2004). This morphological response allowed rapid screening of mutant populations based on 

ethylene response defects. Multiple mutations affecting ethylene perception have been 

identified. In A. thaliana, a series of mutants (etr1, ein1, ein2, ein3, ctr1) has been obtained 

that are characterized by an altered ethylene response, sometimes leading to changes in 

developmental processes (Bleecker et al., 1988; Gúzman and Ecker, 1990; Kieber et al., 

1993). In tomato, mutants affected in ethylene responses have been identified but their 

phenotypes only become evident during fruit ripening and flower abscission. The natural 

tomato mutant Never Ripe (Nr) is insensitive to ethylene (Lanahan et al., 1994) and 

presumably lacks the feedback mechanism that normally abolishes ethylene production once 

high concentrations are reached. As a consequence, the Nr mutant overproduces ethylene. The 

tomato Nr mutant does not display a triple response and shows only little differences in 

morphology and development, other than a late flower abscission and an incomplete fruit 

ripening (Lanahan et al., 1994). The severity of the fruit ripening defect caused by the Nr 

mutation in tomato varies between genetic backgrounds (J. Díaz & J. van Kan, unpublished). 

In order to block or reduce ethylene production, different approaches have been reported. The 

expression in a transgenic plant of an antisense construct of the tomato ACC oxidase gene 

reduced ethylene production and extended the shelf life of tomato fruit after harvest 

(Hamilton et al., 1990). Tomato plants expressing a bacterial ACC deaminase, which 
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degrades the ethylene precursor ACC, showed a reduced ethylene biosynthesis throughout the 

vegetative parts of the plant and the fruit (Klee et al., 1991). 

In fungi, there are few reports of ethylene perception. Ethylene produced by ripening 

climacteric fruit induces spore germination and appressorium formation in Colletotrichum 

gloeosporioides and C. musae, but not in other Colletotrichum species that normally infect 

non-climacteric fruit (Flaishman and Kolattukudy, 1994). In Aspergillus nidulans, aflatoxin 

production and ascus development are inhibited by ethylene in a dose-dependent manner 

(Roze et al., 2004). Chagué et al. (2006) have previously reported that the radial growth of 

Botrytis cinerea in vitro is affected by ethylene and the transcript levels of two genes, Bcspl1 

and Bchsp30, are induced at 24 h after exogenous ethylene application. The Bcspl1 gene 

(Kunz et al., 2006) is homologous to a gene from Phaeosphaeria nodorum that encodes a 

phytotoxic protein produced during infection on wheat (Hall et al., 1999). The Bchsp30 gene 

encodes a heat shock protein (Chagué et al., 2006), which in S. cerevisiae is induced by heat 

shock, ethanol and weak acid (Panaretou and Piper, 1992; Piper et al., 1997). 

B. cinerea infection induces the expression in the host plant of ethylene biosynthetic genes, 

ACC synthase and ACC oxidase (Benito et al., 1998; Diaz et al., 2002). A correlation was 

reported between the level of ethylene produced by flower petals and leaves from different 

rose cultivars and the severity of grey mould symptoms (Elad and Volpin, 1988). In 

strawberry, B. cinerea establishes a primary infection that stays quiescent until the initiation 

of fruit ripening, which coincides with a burst of ethylene synthesis (Williamson, 1994). 

Effects of ethylene on disease development can be caused by direct action of the gas on the 

pathogen or by indirect action via modifications in the host metabolism, which predispose the 

plant to fungal invasion (Brown and Burns, 1998). We set out to evaluate the hypothesis by 

Chagué et al. (2006) that ethylene may act as a signal for B. cinerea to begin the colonization 

on weakened and senescent tissues. Responses to ethylene were studied in vitro and B. 

cinerea transformants were generated in which we attempted to alter ethylene perception. 

Furthermore tomato mutant lines with altered ethylene production levels were inoculated with 

B. cinerea. We found no evidence that ethylene is important for B. cinerea to colonize tomato. 

 

RESULTS 

Ethylene does not affect B. cinerea in vitro growth 

The effect of ethylene on the growth of B. cinerea strain B05.10 was determined by 

inoculating mycelium plugs on agar plates. The cultures were grown in sealed desiccators 
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either in ethylene-free atmosphere or in the presence of ethylene at a concentration of 200 

ppm. The radial growth of mycelia in the presence of ethylene was similar to that of the 

control (Table 1). The experiment was repeated several times, in the presence of different 

concentrations of ethylene ranging from 0.1 to 200 ppm, and in three different media. In all 

experiments, growth rates in the presence of ethylene did not differ from that in ethylene-free 

air (data not shown).  

 

Table 1. Effect of ethylene on radial growth of B. cinerea strain B05.10. 

Colony radius (mm ± standard deviation; n=3)  

24 h 65 h 90 h 

Ethylene (200 ppm) 6 ± 1.4 26.5 ± 3.5 37.5 ± 0.7 

Control 6 ± 0 24.5± 0.7 35.5± 2.1 

 

Ethylene production by plants does not affect B. cinerea lesion size  

To investigate whether ethylene produced by the host plant affects disease development, B. 

cinerea was inoculated on detached leaves from mutant tomato lines that have altered levels 

of ethylene production, i.e. the transgenic line UC8338, an ethylene non-producer and Nr, a 

natural ethylene-insensitive mutant that overproduces ethylene. After 72 h, the lesion sizes on 

line UC8338 and Nr were similar and did not differ from the lesion sizes in the corresponding 

wild type control lines (Figure 1). These observations suggest that the levels of ethylene 

produced by the host plant do not affect B. cinerea lesion size. 
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Fig. 1. Lesion diameters of B. cinerea inoculated on detached leaves from mutant and wild type 
tomato lines at 72 hpi. Diameters (given in mm) are the average of 20 inoculation points per 
genotype; the standard deviation is indicated by an error bar. The experiment was repeated 3 
times with similar results. 



 
  Ethylene perception by Botrytis cinerea 

 

   27

The Bchhk5 gene encodes a protein homologous to the ethylene receptor ETR1  

The genome of B. cinerea contains a family of 20 genes encoding histidine kinase receptors, 

belonging to two-component phosphorelay signaling systems (Catlett et al., 2003). One of the 

B. cinerea histidine kinases, named BcHHK5 (BC1G_08461), is the only family member that 

contains transmembrane domains (Catlett et al., 2003) and shares structural features with 

Arabidopsis thaliana ETR1, the best characterized ethylene receptor in plants (Figure 2). 

Most notable structural similarities of the BcHHK5 protein to ETR1 are the presence of an N-

terminal hydrophobic region with three predicted membrane-spanning domains, followed by a 

histidine kinase domain and a C-terminal response regulator domain (Figure 2). Furthermore, 

the second membrane-spanning domain of ETR1 contains a Cysteine residue at position 65 

which is essential for ethylene binding  (Bleecker et al., 1988; Chang et al., 1993). A cysteine 

residue is also present in the second membrane-spanning domain of BcHHK5 at position 66. 

These features would make BcHHK5 a candidate to be involved in ethylene binding.  

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Structural similarity of A. thaliana ETR1 and BcHHK5. The black boxes are membrane-spanning 
domains. The conserved Cysteine (C) residue in the second membrane-spanning domain is indicated. Conserved 
Histidine (H) residues in the kinase domain and aspartic acid (D) residues involved in phosphorelay signaling in 
the regulatory domain are indicated. The GAF domain, which in some proteins is involved in cGMP binding 
(Aravind and Ponting, 1997) has an unknown function in ETR1 (Chang and Stadler, 2001). The HAMP domain 
is found in bacterial sensor and chemotaxis proteins, and in eukaryotic histidine kinases (Aravind and Ponting, 
1999).  
 

In order to study the role of the Bchhk5 gene in virulence and in ethylene perception, gene 

replacement mutants were made by homologous integration of a hygromycin resistance 

cassette (Figure 3A). Three independent mutants were obtained. Southern analysis after 

digestion with BsrDI showed that BsrDI fragments of 1.2 kb and 1.7 kb in the wild type were 

replaced by a 3.1 kb fragment in the mutant, as expected when correct homologous 

recombination has occurred (Figure 3B).  
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The phenotypic behavior of knock out mutants was analyzed. The growth rate and 

appearance of the ΔBchhk5 mutants were indistinguishable from that of the wild type B05.10 

and were not affected by the presence of ethylene (not shown). Virulence assays of ΔBchhk5 

mutants on detached tomato leaves did not show any difference in lesion sizes (Table 2) or in 

the appearance of symptoms when compared with wild type B05.10 (not shown). 

 

Table 2. Lesion diameter by B.cinerea B05.10 and ΔBchhk5 mutants on tomato genotypes at 72 hpi. 

Lesion diameter (mm ± standard deviation, n=32) 

Control Ethylene non-
producer mutant 

Control Ethylene over-
producer mutant 

 

UC82B UC8338 Pearson Never Ripe 

B05.10 17.8 ± 1.4 17.5 ± 1.6 17.3 ± 2 17.9 ± 1.5 

ΔBchhk5 17.1 ± 1.5 17.3 ± 1.4 16 ± 0.8 16.9 ± 1.3 

 

3.1 

Fig. 3. Gene replacement of the Bchhk5 gene. 
A: Organization of the Bchhk5 locus before 
and after integration of a hygromycin 
selection marker cassette by homologous 
recombination. The translation start (arrow) 
and stop codons (diamond), the introns (grey 
boxes) and restriction sites used for Southern 
analysis are indicated. The dotted box 
represents the hygromycin selection cassette. 
B. Southern analysis of DNA from the wild 
type B05.10 (WT) and two  independent 
ΔBchhk5 transformants (1, 2) digested with 
BsrDI. The large arrow indicates the 
recombinant fragment. The two small arrows 
indicate the BsrDI fragments of 2.2 kb and 
3.6 kb, which border the Bchhk5 gene. 
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Expression analysis of Bcspl1 and Bchsp30 in wild type and ΔBchhk5 mutants 

The expression of the ethylene-inducible genes Bcspl1 and Bchsp30 (Chagué et al., 2006) was 

analyzed in wild type strain B05.10 and in one of the ΔBchhk5 mutants in the absence or 

presence of ethylene during 48 h (Figure 4). The level of actin (Bcact1) transcript in the wild 

type and the ΔBchhk5 mutant strain decreased between 24 h and 48 h in both cultures, 

presumably related to reduced growth of the fungus due to medium depletion. Transcript 

levels of Bcspl1 increased very strongly between 24 and 48 h both in the wild type and the 

ΔBchhk5 mutant. At 24 h, Bcspl1 transcript levels in the ΔBchhk5 mutant culture grown in the 

presence of ethylene were slightly lower as compared with the culture grown in air. This 

decrease was not observed in the wild type culture in this experiment, but it was observed in 

at least one biological replication (not shown). The Bchsp30 transcript level in the wild type 

strain slightly decreased between 24 and 48 h in absence of ethylene, but slightly increased in 

the presence of ethylene. By contrast the Bchsp30 transcript level in the ΔBchhk5 mutant 

slightly decreased between 24 and 48 h in the presence of ethylene, but remained constant in 

the absence of ethylene. The Bchsp30 transcript profiles were consistently observed in other 

experiments (not shown).   

 

 

Fig. 4. Bcspl1 and Bchsp30 expression in B. cinerea wild type B05.10 and a ΔBchhk5-mutant during 
growth in ethylene-free atmosphere (-) or in the presence of 200 ppm ethylene (+). Hybridization intensity 
with the actin probe Bcact1 is a measure for the amount of mRNA in the total RNA sample. Hybridization 
with an rDNA probe was used as measure for equal lading.  
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DISCUSSION 
 
We aimed to unravel the role of ethylene during the interaction of B. cinerea with tomato 

plants, and specifically to elucidate whether ethylene influences the fungus. Our results 

showed that ethylene, in a range of concentrations and on different media, did not affect to 

any discernible degree the radial growth or the mycelium morphology of B. cinerea strain 

B05.10 in vitro. This result contrasted with the report by Chagué et al. (2006), that the 

application of 200 ppm ethylene to the same strain reduced the mycelium surface by 24-30 %. 

The experiment was repeated several times in the same way as described by Chagué et al. 

(2006) and we never observed any growth reduction.  

Experiments were conducted in planta to study whether ethylene production by the host plant 

affects disease development, by inoculating detached leaves from tomato mutant plants with 

altered ethylene production with B. cinerea. The lesion diameters on the ethylene over-

producing mutant Nr were similar to those on the ethylene non-producing mutant UC8338 

and on their respective wild type lines. These results are in agreement with those reported by 

Diaz et al. (2002), who used the same tomato genotypes, but inoculated intact 3 week-old 

plants instead of detached leaves. We conclude that even if B. cinerea were able to sense 

ethylene produced by the host, it does not affect disease development to any detectable 

degree. Interestingly pre-treatment of tomato plants with exogenous ethylene prior to 

inoculation with B. cinerea partially reduced their susceptibility (Diaz et al., 2002), 

suggesting that ethylene responses affect predisposition of tomato to B. cinerea infection.  

The genome of B. cinerea contains the Bchhk5 gene, encoding a protein that shows structural 

similarity to A. thaliana ETR1, the best characterized ethylene receptor in plants. The 

BcHHK5 protein is the only of the 20 B. cinerea histidine kinases that contains membrane-

spanning regions in the N-terminal part of the protein. Furthermore BcHHK5 contains a 

cysteine residue in the second membrane-spanning domain, in a position that is very similar 

to the cysteine residue which, in ETR1, is essential for ethylene binding (Bleecker et al., 

1988; Chang et al., 1993). Virulence assays and gene expression studies in ΔBchhk5 mutant 

did not provide any indication that the gene product is involved in ethylene perception or 

important for virulence of B. cinerea. Lesion diameters caused by ΔBchhk5 mutants were 

similar to those of the wild type recipient strain and there were no differences in lesion 

diameters between the tomato genotypes tested, regardless of whether or not they differed in 

their capacity to produce ethylene.  
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The observed expression profiles of the presumed ethylene-inducible genes Bchsp30 and 

Bcspl1 (Figure 4) were not in agreement with the profiles previously published by Chagué et 

al. (2006), who reported a strong (at least 10-fold at 24 h) increase in Bchsp30 transcript in 

ethylene-treated cultures of strain B05.10 and a moderate (approx. 2- to 5-fold) induction of 

Bcspl1 transcript at 24 and 48 h. In our experiments, the effects of ethylene treatment were 

small and in some cases a decrease rather than an increase was observed. The Bcspl1 

transcript level dramatically increased between 24 and 48 h, regardless of the presence of 

ethylene. The concomitant reduction of actin mRNA between 24 and 48 h was indicative of 

cessation of growth, possibly related to starvation caused by nutrient depletion in the medium.  

Taken together, our results do not support the earlier report by Chagué et al. (2006) that B. 

cinerea is able to sense ethylene and induce the expression of Bchsp30 and Bcspl1. The 

reasons for this discrepancy remain unclear. Secondly, we have not found any indications that 

the Bchhk5 gene product acts as an ethylene receptor, in spite of its structural similarity to the 

A. thaliana ethylene receptor ETR1. Thirdly, inoculations of B. cinerea on various tomato 

genotypes with altered ethylene production levels have not provided any indication that 

ethylene production by the plant influences disease development to any visually detectable 

degree. Most reported effects of ethylene on grey mould development are related to flowers or 

fruit (El Kazzaz et al., 1983; Elad, 1988; Kepczynska, 1993; Govrin and Levine, 2000). Much 

more than leaves, flowers and fruit undergo tremendous physiological changes by exposure to 

ethylene. Disassembly of tomato fruit cell walls during ripening by a cooperative action of 

expansins and polygalacturonases contributes to fruit softening, thereby increasing the fruit 

susceptibility to B. cinerea (Cantu et al., 2008). We propose that the stimulation of grey 

mould disease by ethylene treatment exclusively results from ethylene-induced senescence 

and ripening processes in the host and not from effects of ethylene on the pathogen.  

 

MATERIALS AND METHODS 

 

Plant material 

The tomato (Solanum lycopersicum) lines used in this experiment were cv. Moneymaker, cv. 

Pearson, the homozygous mutant Nr/Nr in the cv. Pearson background, the transgenic line 

UC8338, expressing a bacterial ACC deaminase and its non-transgenic progenitor UC82B 

(Klee et al., 1991). All plants were grown in potting soil for 6 weeks in the greenhouse at 

23°C with a 16 h photoperiod, in soil supplemented with nutrients (ten Have et al., 1998). 
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Fungal growth conditions 

Botrytis cinerea wild-type haploid strain B05.10 was used for all experiments. To grow 

mycelium or isolate conidia, malt extract agar plates (Difco) were inoculated with conidia and 

incubated at 20°C. Plates, which were completely covered with mycelium, were placed under 

near-UV light for 16 h to induce sporulation. Conidia were harvested from sporulating plates 

one week later, using sterile water. The suspension was filtered through glasswool, conidia 

were pelleted by centrifugation at 800 rpm during 5 minutes and re-suspended in sterile water. 

 

Culture growth for RNA analysis 

5x106 conidia of wild type and transformed B. cinerea isolates were inoculated in 25 ml 

potato dextrose broth medium in 150 ml bottles that were sealed with an aluminium lid with 

rubber septum. Ethylene was injected through the septum to a final concentration of 200 ppm 

and the culture was incubated for 24 h at 20°C in a rotary shaker at 180 rpm. A sample was 

taken; ethylene was added again to 200 ppm. Incubation was continued for 24 h and another 

sample was taken. The mycelium was separated from culture filtrate over Miracloth 

(Calbiochem), collected in tubes and rapidly submerged in liquid nitrogen and freeze dried. 

 

Ethylene treatment 

Mycelia plugs of 3 mm in diameter from wild type strain B05.10 and ΔBchhk5 mutants were 

inoculated on plates containing malt extract agar (Oxoid), potato dextrose agar (Oxoid) or 

oatmeal agar (Sigma) and placed in a 10 L desiccator. Ethylene was injected through a sealed 

rubber lid to a final concentration of 200 ppm. The control was placed under the same 

conditions in a desiccator in ethylene-free atmosphere. The colony diameter was measured 

every day over four days, until the colony reached the edge of the Petri dish. After opening 

the desiccator for colony diameter measurement, ethylene was readjusted to 200 ppm. 

 

Construction of the gene replacement cassette 

Three fragments were generated (5’-HHK5, 3’-HHK5 and the hygromycin selection marker 

cassette) and individual fragments were joint by a single step overlap-extension PCR. Based 

on genomic DNA sequences, two sets of primers were designed to generate 5’HHK5 and 3’ 

HHK5 fragments (Table 3). The 5’ HHK5 fragment (500 bp) was amplified using primers 

HHK5_5for and HHK5_5SOE. The 3’ HHK5 fragment (500 bp) was amplified using primers 

HHK5_3SOE and HHK5_3rev. The HHK5_5SOE and HHK5_3SOE primers contain an 
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extension of around 20 nucleotides (underlined in Table 3) which are complementary to the 

primers that amplified the hygromycin cassette from vector pLOB1. Approximately 50-100 

ng of genomic DNA from the strain B05.10 was used as template in 50 μl PCR reactions.  

The hygromycin cassette (2700 bp) - abbreviated as HYG- consists of the hygromycin B 

phosphotransferase (hph) gene from E. coli under control of the OliC promoter from 

Aspergillus nidulans and a terminator fragment from B. cinerea. HYG was amplified using 

primers 20 and 21 (Table 3) and as template 20 ng of a HYG-containing plasmid. The PCR 

conditions were as described by Kars et al. (2005). The three PCR products were analyzed by 

gel electrophoresis and joint to a single fragment by overlap extension PCR using nested 

primers HHK5-5Nfor and HHK5-3Nrev. The resulting fragment was cloned into PCR-BluntII 

TOPO® vector and transformed in One Shot®TOP10 competent E. coli (Invitrogen). 

  

Table 3. Primers used to generate the gene replacement fragments. 

Gene Fragment Name Sequence 

HHK5_5for GGCCTGGTTGTCCTGGTGGCTG 
5’HHK5 

HHK5_5SOE TACTAACAGATATCAAGCTTCGCCTAGGAAAGCGGGCTGG 

HHK5_3SOE GGGTACCGAGCTCGAATTCCTCCCAGTTAGCAGGCCTTATGGG
3’HHK5 

HHK5_3rev GCCTCCTGCCCATCCTTGGCGACC 

HHK5_N5 CCATTGATTGTGCTCGCTCTCGCTACC 

Bchhk5 

Construct 
HHK5_N3 GGCGACCACCACGTCATACACGTCTTC 

20 GAATTCGAGCTCGGTACCC 
cassette HYG 

21 AAGCTTGATATCTGTTAGTA 

 

Underlined sequences indicate primer extensions complementary to the primers that amplified the hygromycin cassette. 

 

Transformation of B. cinerea 

Protoplast preparation, transformation, selection of transformants and single spore 

purification of homokaryotic mutants were performed as described (Kars et al., 2005). 

 

Southern analysis 

Genomic DNA from 4-day-old cultures was isolated with a Puregene DNA purification kit 

(Gentra systems) from monospore isolates of transformants and the control B05.10. The DNA 

yield was determined by electrophoresis. 1.5 µg of genomic DNA from ΔBchhk5 mutants and 

B05.10 was digested with BsrDI, size separated on a 1% agarose gel and blotted onto 

Hybond-N+ (Amersham) as described (Sambrook et al., 1989). Blots were hybridized in 
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Church buffer at 65°C for 48 h in the presence of probe labeled with α-32P-dCTP (Amersham) 

and a Prime-a-Gene labeling kit according to manufacturer’s manual (Promega). The blots 

were washed twice in 2X SSC/0.5 % (w/v) SDS and once in 0.5XSSC/0.5% (w/v) SDS at 

65°C. Autoradiograms were made using Kodak Scientific Imaging film X-OMAT AR with an 

intensifying screen at -80°C overnight. The probe used for Southern blots was a 3.5 kb 

fragment containing the hygromycin cassette flanked by 500 bp from the Bchhk5 gene.  

 

RNA analysis 

Total RNA was isolated using TRIzol (LifeTechnologies) according to the manufacturer’s 

recommendations. Electrophoresis under denaturing conditions, blotting and hybridization 

were performed as described previously (Prins et al., 2000). Fragments of the Bcspl1, 

Bchsp30 and BcactA genes, used as probes in RNA hybridization, were obtained by PCR 

amplification from B. cinerea genomic DNA using primer combinations listed in Table 4. 

 

Table 4. Primers used to generate Bcspl1, Bchsp30 and BcactA fragments used as probes. 

Gene Name Sequence 

Bcspl1- for ATGCAATTCCCAACTCTCGC 
Bcspl1 

Bcspl1- rev AAGCACTCTTATCGACTTGGGCG 

Bchsp30- for GTCTTTCTTCCCACGACACTACA 
Bchsp30 

Bchsp30- rev GGTGATTTTGCGGCCTTCTTGC 

BcactA- for CCCAATCAACCCAAAGTCCAACAG 
BcactA 

BcactA- rev CCACCGCTCTCAAGACCCAAGA 

 

Infection assay 

Conidia of sporulating B. cinerea cultures, wild-type strain B05.10 and ΔBchhk5 mutants 

were harvested, resuspended in Gamborg’s B5 medium (Duchefa), supplemented with 10 mM 

glucose and 10 mM potassium phosphate, pH 6.0 (106 conidia/ml). The conidial suspension 

was applied in 3 droplets of 2 µl each onto tomato leaflets on both sides of the central vein. 

The compound leaves were incubated with their stem inserted in wet florist’s foam oasis, in 

closed plastic boxes with a transparent lid to obtain a humidity of 100 %. The boxes were 

placed at 20°C with a diurnal cycle of 16 h light and 8 h darkness. At 72 h post-inoculation, 

the diameter of the spreading lesions was measured. Statistical analysis was performed using 

Student’s t-test (two-tailed distribution, two-sample unequal variance) on each leaf. 
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SUMMARY 

Nep1-like proteins (NLPs) have been described in bacteria, oomycetes and fungi and have 

been proposed to act as phytotoxins in dicotyledonous plants. The Botrytis cinerea genome 

contains two genes encoding NLPs, named Bcnep1 and Bcnep2. The genes are differentially 

expressed during infection of tomato and Nicotiana benthamiana leaves. Bcnep1 is 

predominantly expressed during the formation of primary lesions, whereas the expression of 

Bcnep2 starts at the onset of lesion expansion and increases with the fungal biomass. Single 

knock-out mutants of either Bcnep1 or Bcnep2 gene showed no reduction of virulence on 

tomato or N. benthamiana. Ethylene emission by leaves inoculated with ΔBcnep mutants was 

not significantly different from the parental wild type strain. From this study we conclude  that 

BcNEP proteins are not essential in the infection process of B. cinerea. 
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INTRODUCTION  

The main determinant of Botrytis cinerea to be a successful necrotroph is the production of 

secreted metabolites and proteins, able to kill the host (Durán-Patrón et al., 2000; Colmenares 

et al., 2002; Kars and van Kan, 2004; Reino et al., 2004). B. cinerea isolates can produce two 

chemically different phytotoxic metabolites (botrydial and botcinic acid) and there are 

differences in the types and amounts of phytotoxins produced by individual isolates (Reino et 

al., 2004). Deletion of a cytochrome P450 gene, named Bcbot1, led to a deficiency in 

botrydial production. The mutation resulted in a reduction in virulence in strain T4, but not in 

strains B05.10 and ATCC 58025 (Siewers et al., 2005). This was explained by the 

observation that strains B05.10 and ATCC 58025 still produce botcinolide whereas T4 does 

not produce botcinolide, suggesting functional overlap between the phytotoxins.  

The B. cinerea genome sequence revealed the presence of a number of genes encoding 

phytotoxic proteins, including a protein designated as SPL1 (Kunz et al., 2006) and two 

paralogous proteins, BcNEP1 and BcNEP2, members of the NLP protein family (Staats et al., 

2007; Schouten et al., 2008). Both proteins induce necrosis when infiltrated into leaves of 

dicot plants (Figure 1), and when expressed by agro-infiltration (Schouten et al., 2008). 

 
 
 

 

 

 

NLPs, first discovered in Fusarium oxysporum f.sp. erythroxyli, are present strictly in 

bacterial, fungal and oomycete microbes, including pathogens and non-pathogens (Bailey, 

1995; Gijzen and Nürnberger, 2006). Purified NLPs in low concentrations can induce callose 

apposition, accumulation of reactive oxygen species and ethylene, activation of genes 

involved in stress and defence responses (Veit et al., 2001; Qutob et al., 2002; Pemberton and 

Salmond, 2004) and at higher concentrations induce localized cell death. NLPs are only 

phytotoxic to dicotyledonous plant cells (Gijzen and Nürnberger, 2006; Staats et al., 2007). In 

spite of all these observations the importance of NLPs in pathogenesis remains elusive. 

Disruption of nep1 in F. oxysporum f.sp. erythroxyli did not affect its ability to cause wilting 

on coca plants (Bailey et al., 2002). The only evidence of a role of NLPs in virulence is in the 

soft-rot bacteria Erwinia carotovora subsp. carotovora (syn. Pectobacterium carotovorum) 

and E. carotovora subsp. atroseptica. Disruption of nipecc and nipeca genes reduced virulence 

Fig. 1. Response of Nicotiana benthamiana leaf infiltrated 
with purified BcNEP1 (left hand side of the leaf) and BcNEP2
(right hand side of the leaf), expressed in Pichia pastoris. The 
concentrations applied range from 0.4 to 4µM for BcNEP1 and 
from 4 to 40 µM for BcNEP2 as indicated. Control leaves 
infiltrated with 10 mM phosphate buffer, pH 7, showed no 
symptoms. (From Schouten et al., 2008) 
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on potato (Pemberton et al., 2005). Virulence of P. carotovorum mutants could partially be 

restored by complementation with NLPs from the oomycetes Phytophthora parasitica and 

Pythium aphanidermatum (Ottmann et al., 2009). Gene expression studies have demonstrated 

that NLP genes are differentially expressed during infection. In Phytophthora sojae, a 

hemibiotroph that causes root and stem rot on soybean, the gene encoding PsojNIP is 

expressed exclusively during late stages of the infection, corresponding with the transition to 

the necrotrophic phase (Qutob et al., 2002). Moniliophthora perniciosa, a basidiomycete that 

causes witches broom disease of cacao, possesses two NLP genes. Mpnep1 is expressed in the 

biotrophic and saprophytic phases whereas Mpnep2 is expressed only in the biotrophic phase 

(Garcia et al., 2007). The aim of this study was to investigate the expression pattern of Bcnep 

genes during colonization and their contribution to the virulence of B. cinerea on different 

hosts. We generated mutant strains deficient in Bcnep1 and Bcnep2 and tested the virulence of 

mutants on tomato and Nicotiana benthamiana leaves.  

 
RESULTS 
 
BcNEP1 and BcNEP2 are differentially expressed during infection 

Bcnep transcripts and the release of BcNEP proteins in culture medium could not be detected 

during growth of B. cinerea B05.10 in vitro in any medium tested (not shown). Expression of 

Bcnep genes during infection was investigated on detached tomato leaves. Leaflets inoculated 

with B. cinerea were collected in a time course. Total RNA was extracted, separated on gel, 

blotted onto a nylon membrane and hybridized with Bcnep1 or Bcnep2 cDNA as probes 

(Figure 2). Bcnep1 transcript was detected as early as 8 h post inoculation (hpi) and its level 

increased until 48 hpi, corresponding with the formation of primary lesions and the 

subsequent lag period that occurs in tomato leaf infection (Benito et al., 1998). Bcnep1 

transcript levels declined from 56 hpi onwards. Transcripts of Bcnep2 were first detected 

around 40 hpi and increased over time with lesion expansion, which starts between 40 and 64 

hpi (Benito et al., 1998). The transcript profile of Bcnep2 was similar to that of Bcact1 (not 

shown), used as a measure of B. cinerea biomass during infection (Benito et al., 1998). 

  

 

 

 

 

 

Bcnep1
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RNA loading
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Bcnep1Bcnep1

Bcnep2Bcnep2

RNA loadingRNA loading

0 8 16 32 40 48 56 64 72 96 120 14424h.p.i. 0 8 16 32 40 48 56 64 72 96 120 14424h.p.i. Fig. 2. Bcnep1 and Bcnep2 expression 
during tomato leaf infection by B. cinerea. 
Samples were taken at different times until 
144 hpi. Blots were hybridized with 
Bcnep1 or Bcnep2 cDNA. The lower panel 
shows an image of one of the rRNA bands 
in the ethidium bromide-stained gel.
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Gene replacement 

Single gene knock-out mutants were generated by transforming B. cinerea with PCR 

fragments containing a hygromycin cassette (2.4 kb) flanked at both sides by ± 400 bp from 

the target gene. A total of five and nine transformants were obtained for Bcnep1 and Bcnep2, 

respectively. Hygromycin-resistant colonies were screened by PCR to detect transformants in 

which homologous recombination had occurred. Recombinants were subjected to monospore 

isolation to resolve heterokaryons and Southern hybridization performed on genomic DNA 

from single-spore transformants. For each gene, one independent mutant was obtained in 

which homologous recombination had occurred and no additional ectopic integrations were 

detected. A 5.8 kb EcoRI fragment, containing the Bcnep1 gene in wild type strain B05.10, 

was replaced by 5.8 kb and 2.4 kb fragments in the mutant. A 5.9 kb EcoRI fragment in the 

wild type strain, containing the Bcnep2 gene, was replaced by 5.3 kb and 3.0 kb fragments in 

the mutant (Figure 3). A 2.1 kb HindIII fragment, containing the Bcnep1 gene in wild type 

strain B05.10, was replaced by 1.4 kb and 3.1 kb fragments in the mutant (not shown). A 5.5 

kb HindIII fragment in the wild type strain, containing the Bcnep2 gene, was replaced in the 

mutant by 0.8 kb and 7.1 kb fragments (not shown). An additional ectopic insertion was 

detected in mutants ΔBcnep1-2 and ΔBcnep2-1 after digestion with HindIII (not shown). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Fig. 3. A: Organization of the Bcnep1 and Bcnep2 locus before and after disruption by integration 
of a hygromycin selection marker by homologous recombination. The translation start codons 
(arrow) and stop codons (diamond), as well as the EcoRI and HindIII restriction sites used for 
Southern analysis are indicated. The dotted box represents the hygromycin marker cassette. 
B. Southern analysis of the ΔBcnep1 and ΔBcnep2 mutants. Genomic DNA from the wild type 

strain B05.10 and the mutants (ΔBcnep1-2, ΔBcnep1-4, ΔBcnep2-1 and ΔBcnep2-4) was digested 
with EcoRI, and hybridized with cDNA from Bcnep1 or Bcnep2 genes. 
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Protein detection  

Total protein was extracted from N. benthamiana leaves inoculated with B05.10, ΔBcnep1 or 

ΔBcnep2 mutant strains at 24, 48 and 72 hpi. Infection on N.benthamiana progressed faster 

than on tomato leaves; the lag phase reported by Benito et al. (1998) to occur on tomato 

between 16 and 48 hpi was not observed on N. benthamiana, and the lesions expanded from 

16 hpi onwards. Proteins were concentrated and analyzed by Western blot using polyclonal 

antibodies against BcNEP1 and BcNEP2. Purified BcNEP proteins (200 ng) and total protein 

from non-inoculated leaves were used as controls. BcNEP1 was detected only in the samples 

collected at 24 hpi from leaves inoculated with the wild type strain B05.10 and the ΔBcnep2 

mutant. The protein band detected in these samples had an apparent molecular weight of 75 

kDa, whereas BcNEP1 produced in P. pastoris has an apparent molecular weight of 27 kDa. 

No BcNEP1 protein was detected at any time point in the samples isolated from leaves 

inoculated with the ΔBcnep1 mutant. BcNEP2 was detected in samples collected at 48 and 72 

hpi from leaves inoculated with B05.10 and the ΔBcnep1 mutant and this protein had the 

same apparent molecular weight as the purified BcNEP2, produced in P. pastoris (Figure 4). 

No BcNEP2 protein was detected at any time point in the samples isolated from leaves 

inoculated with the ΔBcnep2 mutant. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Immunological detection of BcNEP proteins during colonization of Nicotiana benthamiana leaves 

(indicated by the arrow). Total protein was extracted from N. benthamiana leaves at 1, 2 and 3 dpi with a 
conidial suspension from B05.10, ΔBcnep1-4 and ΔBcnep2-4 mutant strains. Control lanes marked as C1 contain 
purified protein (200 ng), while control lanes marked C2 contain total protein from uninoculated leaves. The 
lanes marked as M contain a molecular size standard. Arrows indicate positions of proteins detected on the blot. 
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Virulence assay 

Conidial suspensions of B05.10, ΔBcnep1 or ΔBcnep2 strains were inoculated on detached 

tomato and N. benthamiana leaves and infection progress was monitored over several days. 

Both mutants formed primary lesions at the same rate as the wild type strain B05.10. Lesion 

diameters caused by the mutants were not significantly different from those caused by the 

wild type in both plants at 72 hpi (Figure 5, Table 1) or any other time point (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Diameter of lesions by B. cinerea wild type and mutant strains on tomato and Nicotiana 
benthamiana leaves (sizes given in mm ± standard deviation). 

 B05.10 ΔBcnep1-4 B05.10 ΔBcnep2-4 

Tomato (n= 26) 14.5 ± 1.3 15.1± 1.3 14.8± 1.4 15.6 ± 1.3 

N. benthamiana (n= 14) 12.4 ± 1.9 12.4 ± 2.7 13.2 ± 1.8 13.1 ± 2.6 

 

 

Ethylene production by leaves inoculated by ΔBcnep mutant strains 

B. cinerea-infected plants release large amounts of the plant hormone ethylene. In order to 

evaluate whether ethylene induced during B. cinerea infection is a consequence of a response 

to BcNEP proteins, detached N. benthamiana leaves were inoculated either with the wild type 

strain B05.10, ΔBcnep1 or ΔBcnep2 mutants and placed in bottles at high humidity. At 

various times the bottles were closed for 1 h and ethylene production was measured, over a 

Fig. 5. Virulence assays. The 
wild type strain B05.10 and 
the mutants ΔBcnep1-4 and 
ΔBcnep2-4 were inoculated 
on detached tomato leaves 
(Moneymaker Cf4) (A), or 
on N. benthamiana (B). 

A

B
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time span of five days (Figure 5, Table 2). At 16 hpi, ethylene was detected even though no 

disease symptoms were visible yet; at this time point, the ethylene production following 

inoculation with wild type strain B05.10 was twice as high as the level following inoculation 

with the mutants. By 24 hpi, the leaves inoculated with all three strains produced similar 

amounts of ethylene. At 48 hpi, disease symptoms became evident and ethylene production 

increased rapidly, reaching maximum levels at 72 hpi. At this time point, more than 50% of 

the leaf surface was colonized and lesions started to converge. At later time points, lesion 

growth rate declined and ethylene production decreased. At 120 hpi, the leaf surfaces were 

completely colonized and only low levels of ethylene were produced. Leaves inoculated only 

with PDB showed a transient ethylene production and never reached levels above 2 nl/ h/ leaf. 

 

Fig. 5. Ethylene production induced by B. cinerea wild type strain and mutants on N. benthamiana leaves. Five 
droplets of 2 µl of conidial suspension from each strain (wild type B05.10, mutants ΔBcnep1-2 and ΔBcnep2-4) 
were inoculated on N. benthamiana leaves. Leaves inoculated with PDB medium were used as control. The 
amount of ethylene produced in one hour was measured at different time points using gas chromatography. The 
means of four replicates are shown. Error bars represent standard errors of the means. On the fifth day, leaf 
surfaces were almost completely colonized by B. cinerea.  

 

Table 2. Ethylene production rates in N. benthamiana inoculated with B. cinerea wild type and mutant 
strains (given in nl per hour per infiltrated leaf). 
 

Ethylene (nl/ h/leaf, n=4) Strain 

hpi 0 16 24 48 72 96 120 

Controla 0 0.8 1.4 0 0 0 0 

B05.10 0 2.5 4.1 15.8 20.2 9.8 7.0 

ΔBcnep1  0 1.2 3.3 16.1 21.1 9.1 6.9 

ΔBcnep2 0 1.3 3.8 13.7 18.3 9.3 5.3 

a leaves inoculated with PDB medium. 
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DISCUSSION 

The presence of NLP-encoding gene families in phytopathogenic fungi and oomycetes 

(Qutob et al., 2006) suggests that NLPs may play a role in the plant–pathogen interaction, 

especially for pathogens that have a hemibiotrophic or necrotrophic lifestyle. In this study we 

report the expression and functional analysis of two NLP-encoding genes in B. cinerea, 

designated Bcnep1 and Bcnep2. The expression patterns of Bcnep genes suggest that they may 

play different roles during pathogenesis. Transcripts of Bcnep1 were detected very early after 

inoculation, coinciding with the formation of primary lesions whereas transcripts of Bcnep2 

were detected from the onset of lesion expansion and increased with the fungal biomass. 

Interestingly, the Bcnep1 promoter region contains multiple sequence motifs that, in 

Aspergillus nidulans, act as binding sites for transcription factor AbaA, which is crucial for 

the initiation of conidia development in this fungus (Andrianopoulos and Timberlake, 1994). 

The genome of B. cinerea contains a gene homologous to A. nidulans AbaA, but its role in 

regulating the expression of the Bcnep genes remains to be studied.  

Immunological detection demonstrated the transient presence of  BcNEP1 in B. cinerea-

infected N. benthamiana leaves at 1 dpi, whereas BcNEP2 accumulated during disease 

progression at 2 and 3 dpi (Figure 4). The timing of protein accumulation in N. benthamiana 

(Fig. 4) slightly differed from the timing of mRNA accumulation in tomato (Fig. 2) due to 

differences in disease progress between the hosts used. B. cinerea infection in N. benthamiana 

appears to skip the lag phase that was observed in tomato (Benito et al., 1998) and 

immediately proceeds from primary lesion induction to the stage of lesion expansion. 

Remarkably, in protein samples collected from B. cinerea-infected N. benthamiana, BcNEP1 

migrated as a protein with an apparent molecular weight of 75 kDa, while BcNEP1 produced 

in P. pastoris has an apparent molecular weight of 27 kDa, which is in agreement with the 

amino acid sequence. One of the two NLPs from Moniliophthora perniciosa, MpNLP1, was 

also reported to show aberrant migration in non-denaturing protein gels due to its ability to 

form dimers or trimers (Garcia et al., 2007). Oligomerization was suggested to be mediated 

by intermolecular cysteine bridges as the MpNLP1 protein migrated as a 25 kDa protein in 

denaturing gels (Garcia et al., 2007). The aberrant migration of BcNEP1 cannot be due to 

intermolecular cysteine bridges, as protein samples from B. cinerea-infected N. benthamiana 

were denatured prior to electrophoresis and separated on denaturing gels. It is unknown 

whether the aberrant migration of BcNEP1 is due to a posttranslational modification that 

specifically occurs in B. cinerea but not in P. pastoris, or by a plant-mediated modification.  
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The fact that Bcnep1 was expressed very early during infection could indicate that the 

BcNEP1 protein is involved in the initial breakdown of plant membranes and in triggering 

plant cell death during primary lesion development (Schouten et al., 2008). Bcnep2 transcript 

levels increased from the initiation of the lesion expansion phase onwards and followed the 

increase of fungal biomass, suggesting that BcNEP2 could be responsible for killing plant 

cells at the plant-fungus interface in the expanding lesions. The observed expression profile of 

the Bcnep genes during pathogenesis would predict that ΔBcnep1 mutants might possibly be 

disturbed or delayed in primary lesion formation, whereas ΔBcnep2 mutants might be affected 

in the lesion expansion rate. Gene replacement of Bcnep1 or Bcnep2, however, showed that 

these genes are not important for either early or late stages of the infection process. Single 

mutants did not show any reduction in virulence when compared with the parental strain on N. 

benthamiana and tomato plants. Attempts to generate double mutants were unsuccessful for 

unknown reasons. The loss of BcNEP-mediated necrotizing activity in the mutants could be 

compensated by the production of phytotoxic secondary metabolites (e.g. botrydial and 

botcinic acid) or other phytotoxic proteins (Deighton et al., 2001; Brito et al., 2006; Tani et 

al., 2006), which could be masking any phenotype that ΔBcnep mutants might display.  

Ethylene emission by leaves inoculated with ΔBcnep mutants or the wild type strain was not 

significantly different. Therefore, we conclude that BcNEP1 and BcNEP2 do not significantly 

contribute to the induction of ethylene production during B. cinerea infection. 

 

MATERIAL AND METHODS 
 

Northern blot analysis 

Total RNA was extracted from B. cinerea-inoculated tomato leaves that were harvested at 

different intervals following inoculation by spraying a suspension of conidia (106/ml) of B. 

cinerea strain B05.10 onto detached leaves as described (Benito et al., 1998). RNA from 

uninoculated leaves was used as control. Leaves frozen in liquid nitrogen were disintegrated 

in a 12 ml centrifuge tube by vortexing with a pre-cooled spatula in liquid nitrogen at high 

speed. To the powder, 1 ml Trizol was added and incubated for 1 h at room temperature and 

inverted regularly. The mixtures were centrifuged at 14000 rpm for 10 min to precipitate non-

dissolved material and polysaccharides. The supernatant was transferred to clean tubes, mixed 

with 0.2 ml chloroform, shaken for 2 to 3 min at room temperature and centrifuged at 14000 

rpm for 15 min. After centrifugation the aqueous phase containing total RNA was transferred 

to a 1.5 ml tube and 0.5 ml iso-propanol was added to precipitate RNA. The tubes were 
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inverted several times, incubated 10 min at room temperature and centrifuged at 14000 rpm. 

Pellets were washed twice with 1 ml 75% (v/v) ethanol. The centrifugation between washes 

was at 8000 rpm for 5 min. The pellets were air dried and dissolved in 0.2 ml RNAse free 

water and incubated for 10 min at 55°C. All centrifugation steps were performed at 4°C. 

Northern blotting and hybridization were performed as described (Prins et al., 2000). cDNA 

fragments from Bcnep1 and Bcnep2 genes were used as probes. 

 

Generation of gene replacement mutants 

B. cinerea mutants in which the Bcnep1 or the Bcnep2 gene was disrupted were generated as 

described by Kars et al. (2005) with some modifications. Three fragments were generated 

(5’NEP, 3’NEP and the hygromycin selection marker cassette), and the individual fragments 

were joint by a single step overlap-extension PCR. Two sets of primers were designed to 

generate 5’NEP and 3’NEP fragments (Table 3). The 5’NEP1 fragment (807 bp) was 

amplified using NEP1_5for and NEP1_5SOE primers. The 3’NEP1 fragment (791 bp) was 

amplified using NEP1_3SOE and NEP1_3rev. The 5’NEP2 fragment (850 bp) was amplified 

using the primer pair NEP2_5for and NEP2_5SOE and the 3’NEP2 fragment (964 bp) was 

amplified using the primer pair NEP2_3SOE and NEP2_3rev. The NEP1_5SOE, 

NEP1_3SOE, NEP2_5SOE and NEP2_3SOE primers contain an extension of around 20 nt 

(underlined in Table 3) complementary to primers that amplified the hygromycin cassette. 

Approximately 50-100 ng of genomic DNA from B. cinerea strain B05.10 was used as 

template in 50 μl PCR reactions, using 2.6 U Expand High Fidelity polymerase (Roche), 1X 

Expand High Fidelity buffer, 0.2 mM of each dNTP, and 1 μmol of each specific primer 

(Sigma Aldrich). The hygromycin cassette (2403 bp) - abbreviated as HYG- used as selection 

marker contains the hygromycin B phosphotransferase (hph) gene from Escherichia coli 

under the control of the OliC promoter and the TrpC terminator from Aspergillus nidulans. 

HYG was amplified in a similar reaction using primers 20a and 30 (Table 3) and as template 

20 ng of a HYG-containing plasmid. The PCR conditions for all reactions were as follows: 1 

cycle of 94ºC for 2 min; 10 cycles of 94 ºC for 15 sec, 50 ºC for 30 sec and 68 ºC for 3 min; 

20 cycles of 94 ºC for 15 sec, 50 ºC for 30 sec and 68 ºC for 3 min increasing with 5 sec/ 

cycle, and a final extension at 68 ºC for 7 min. The PCR products were analyzed by agarose 

gel electrophoresis and purified using GFX PCR purification kit (Amersham Pharmacia). 

The respective 5’NEP and 3’NEP fragments were joint with HYG by overlap extension PCR 

using nested primers (Table 3). The PCR conditions were as described above, and 40 ng of 
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each purified product were used as templates. The resulting amplified fragments were 3210 

bp and 3188 bp respectively and were cloned into PCR-Blunt II TOPO® vector and 

transformed in One Shot®TOP10 chemically competent E. coli (Invitrogen). 

Botrytis cinerea protoplast preparation, transformation, selection of transformants and single 

spore purification of heterokaryotic transformants to obtain homokaryotic mutants were 

performed as described by Kars et al. (2005). 

 

Table 3. Primers used to generate the gene replacement fragments. 

Gene Fragment Primer name Primer sequence 

NEP1_5for GGTCCATCGCATGTCGTATTCGGA 
5’NEP1 

NEP1_5SOE GCGCGCCGAGAGAGAAGCTTCATAGGTTTGGCCCTTGCTC 

NEP1_3SOE TCCCCGGGTACCGAGCTCGAATTCGGCTGGTCTGGAGGTCGCTATGG 
3’NEP1 

NEP1_3rev CAATGCGGAGGACCGCGCGTGGTG 

NEP1_n5 CTATCCTCGCTGCTGCTGCAGCAG 

Bcnep1 

Construct 
NEP1_n3 GAGGTTGTTGTTGAAGTTTGCGTC 

NEP2_5for GGACCCGCTTGCAATCTATTGTCTCC 
5’NEP2 

NEP2 5-SOE GCGCGCCGAGAGAGAAGCTTGACCGGTACTGCTGCTGCAACC 

NEP2_3SOE TCCCCGGGTACCGAGCTCGAATTCGGATCAAACTACGCCATCATGTAC
3’NEP2 

NEP2_3rev GATCTGAATTGCGGTAGCAGGGGG 

NEP2_n5 GGTCTTGGCATCTACAGTCATTGCC 

Bcnep2 

Construct 
NEP2_n3 GTAGCCTTCGCAAGATTGTCTGTG 

20a GAATTCGAGCTCGGTACCCGGGGA 
Cassette HYG 

30 AAGCTTCTCTCTCGGCGCG 

Underlined sequences are primer extensions complementary to primers that amplified the hygromycin cassette. 
 

Southern analysis 

Genomic DNA was isolated with GenElute™ Plant Genomic DNA Miniprep Kit  (Sigma) 

from transformants and wild type strain B05.10. 1.5 µg genomic DNA was digested with 

EcoRI, separated on a 1% agarose gel and blotted onto Hybond-N+ (Amersham) as described 

(Sambrook et al., 1989). Blots were hybridized  in 0.25M Na-phosphate, pH 7.2, 1 mM 

EDTA, 7% SDS, 1% BSA (Church and Gilbert, 1984) at 65°C for 48 h in the presence of a 

probe, radioactively labeled with α-32P-dCTP (Amersham) and a from Bcnep1 and Bcnep2 

genes were used as probes. The blots were washed twice in 2X SSC/0.5 % (w/v) SDS and 

once in 0.5XSSC/0.5% (w/v) SDS at 65°C. Autoradiograms were made using Kodak 

Scientific Imaging film X-OMAT AR with intensifying screen at -80°C overnight. 
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Virulence assay of mutants 

Conidia of sporulating B. cinerea cultures of wild type strain B05.10, ΔBcnep1 and ΔBcnep2 

mutants were harvested and suspended in 12 g/l of Potato Dextrose Broth medium (106 

conidia/ml). The conidial suspension was applied in 3 droplets of 2 µl each onto both halves 

of the tomato leaflets on opposite sides of the central vein. The compound leaves were 

incubated with their stem inserted in wet florist’s foam oasis, in closed plastic boxes with a 

transparent lid to generate high humidity. The boxes were placed at 20°C with a diurnal cycle 

of 16 h light and 8 h darkness. The disease development was followed every day. At 72 h 

post-inoculation, the diameter of the spreading lesions was measured. Statistical analysis was 

done by Student’s t-test (two-tailed distribution, two-sample unequal variance).  

 

Ethylene induction in Nicotiana benthamiana  

Four detached leaves of N. benthamiana (5 week-old) were inoculated each with five droplets 

of 2 μl of conidia suspended in 12 g/l PDB (106 conidia/ml) of B05.10, ΔBcnep1 or ΔBcnep2 

mutants. Leaves inoculated with PDB medium were used as control. Every inoculated leaf 

was dried at room temperature and subsequently inserted into opened 60 ml bottles. Bottles 

were placed into boxes containing wet filter paper and covered with plastic lids to generate 

high relative humidity. Air samples were taken at 0, 16, 24, 48, 72, 96 and 120 hpi for 

ethylene measurements. At each time point, the bottles were taken from the boxes and closed 

with rubber tight caps for exactly 1 h. Subsequently, 2 ml air samples were taken from each 

bottle and injected with a syringe into a gas chromatograph (Shimadzu 17A). Then, bottles 

were opened and placed back into the boxes until the next sampling. 

To calculate the amount of ethylene produced per hour per leaf in each treatment, the average 

of ethylene concentrations from each treatment was multiplied by a calibration factor and by 

the volume of the bottles. The calibration factor was calculated from the average of several 

ethylene measurements from pure ethylene of known concentration.  
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SUMMARY 

Botrytis cinerea produces two phytotoxic proteins that are members of the family of Nep1-

Like Proteins (NLPs). These proteins are designated BcNEP1 and BcNEP2, and contain a 

conserved heptapeptide motif, typical for NLPs, as well as a number of cysteine residues, 

which are predicted to form disulfide bridges. They also possess several potential 

posttranslational modification motifs for phosphorylation, N-glycosylation, O-glycosylation. 

Furthermore there is a potential signal for endocytosis at the C-terminus of BcNEP1. In order 

to study which amino acid residues and motifs are important for the necrosis-inducing activity 

of B. cinerea NLPs, site directed mutagenesis was performed. Wild type and mutant proteins 

were expressed in Nicotiana tabacum and N. benthamiana by means of Agrobacterium-

mediated transient transformation. Substitution of the heptapeptide motif, or of either of the 

two cysteine residues in the N-terminal part of the protein completely abolished the necrosis-

inducing activity of both BcNEP proteins.  Substitution of cysteine residues in the C-terminal 

part of the protein (one in BcNEP1, two in BcNEP2), as well as the substitution of 

posttranslational modification motifs or endocytosis signals did not lead to loss of function. 
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INTRODUCTION 

NEP1 like proteins (NLPs) are 24-26 kDa proteins that have been identified in a wide range 

of microorganisms, including pathogenic and non pathogenic species (Bailey, 1995) All these 

proteins share a conserved hepta-peptide (‘GHRHDWE’) in the central region that is not 

found in other proteins (Pemberton and Salmond, 2004). NLPs are divided into two 

subgroups, called type I and type II, based on the presence of either two or four conserved 

cysteine residues (Gijzen and Nürnberger, 2006). Both types may occur in a single species. 

Botrytis cinerea contains two genes, representative of each type, called BcNEP1 and 

BcNEP2. The overall sequence similarity between both proteins is 39% (Schouten et al., 

2008). BcNEP1 contains three cysteine residues and it is predicted that the two most N-

terminal cysteine residues, which are also conserved in BcNEP2, form a disulfide bridge 

(Staats et al., 2007b). Both BcNEP proteins contain a secretion signal peptide and several 

potential posttranslational modification motifs, but these motifs differ between the two 

proteins. BcNEP1 contains several N-glycosylation motifs but no O-glycosylation motifs, 

whereas BcNEP2 contains exclusively O-glycosylation motifs.  

The focus of this study was to elucidate whether the heptapeptide motif, the disulfide bonds 

and posttranslational modifications in the BcNEP proteins are important for their necrosis-

inducing activity. Transient agro-infiltration assays were performed in Nicotiana benthamiana 

and N. tabacum to express site-directed mutant proteins. The use of Agrobacterium 

tumefaciens infiltration for transient assays (ATTA) has become an established method for 

studying processes related to gene function, regulation and promoter element analysis. The 

majority of experiments have been conducted in N. benthamiana and N. tabacum, which are 

particularly suited to this method. ATTA has recently been optimized for other species, 

including, Lactuca sativa (lettuce), L. serriola (wild lettuce), Solanum lycopersicum (tomato) 

and Arabidopsis thaliana. Vegetative tissues have typically been used for agro-infiltration, 

although tomato fruit and hairy root cultures have also been used (Shang et al., 2007). 

ATTA was used to test the effects of amino acid substitutions in BcNEP proteins on their 

necrosis-inducing activity.  

 

RESULTS 

To determine which amino acids are essential for the necrosis-inducing activity of the 

BcNEP proteins, several constructs were generated to introduce amino acid substitutions in 

the heptapeptide motif, in the cysteine residues or in potential glycosylation sites (Figure 1).  
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Fig.1. Schematic representation of BcNEP1 and BcNEP2; the amino acid residues targeted for substitution are 
indicated, dashed lines represent the predicted disulfide bonds.  
 

Two amino acids (DW) in the heptapeptide motif were substituted by alanine residues (AA). 

Each cysteine residue was individually substituted by serine, which is chemically most 

closely related to cysteine. Furthermore, constructs were generated in which several cysteines 

were substituted. The N-glycosylation motif NXS/T was present twice at positions N79 and 

N89 in BcNEP1 while no N-glycosylation motif was present in BcNEP2. These two motifs 

were mutated by substituting the asparagine residue by glutamine. No O-glycosylation motif 

was detected in BcNEP1 while in BcNEP2, O-glycosylation motifs are present at T80, T87 

and T243. The first two motifs were mutated by substituting residues T80 or T87 by valine.  

BcNEP1 and BcNEP2 can enter plant cells and accumulate in the nuclear envelope (Schouten 

et al., 2008). The sequence motif KARI, at the C-terminus of BcNEP1, was predicted to act as 

a potential motif for endocytosis (MotifScan) and thus might be important in uptake of the 

protein into the plant cell. The sequence motif KATF, at the C-terminus of BcNEP2, was not 

predicted to act as endocytosis motif. We deleted the C-terminal four amino acids from both 

proteins by introducing stop codons at the positions of residue K243 (BcNEP1) or K241 

(BcNEP2). The latter mutation also removed the O-glycosylation motif T243 in BcNEP2.  

Agrobacterium tumefaciens strains containing constructs encoding wild type or mutant 

BcNEP1 or BcNEP2 proteins were infiltrated in N. benthamiana and N. tabacum. As negative 

controls, A. tumefaciens containing the empty vector pMOG800 were infiltrated. The results 

are presented in Table 1. The wild type BcNEP1-encoding construct caused cell collapse and 

chlorosis between 24 and 48 h progressing to a severe necrosis at 72 h post-infiltration. 
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Infiltration of the wild type BcNEP2-encoding construct needed more than 48 h to cause cell 

collapse which progressed in a patchy necrosis (Schouten et al., 2008). Constructs encoding 

BcNEP1 and BcNEP2 proteins carrying amino acid substitutions in the conserved 

heptapeptide region, in the C68 residue or the C94 residue did not cause necrotic symptoms in 

the infiltrated leaves. Constructs encoding BcNEP1 protein carrying a substitution in the 

C230 residue, or encoding BcNEP2 proteins carrying a substitution in the C157 or C166 

residues caused necrotic symptoms similar to the wild type constructs. Constructs encoding 

BcNEP1 proteins carrying a substitution in the N-glycosylation motifs (N79 and N89), or 

encoding BcNEP2 proteins carrying a substitution in the O-glycosylation motifs (T80, T87) 

caused necrotic symptoms similar to the wild type constructs (Figure 2). Constructs encoding 

truncated proteins in which the four C-terminal amino acids were lacking (KARI in BcNEP1, 

KATF in BcNEP2) caused necrotic symptoms similar to the wild type constructs. 

 

Table 1. Necrosis on N. benthamiana and N. tabacum after agro-infiltration of BcNEP constructs. 

BcNEP Substitution Feature Necrosis formation 

none Wild type + 

GHRHDWE → GHRHAAE Heptapeptide motif - 

C68S - 

C94S - 

C230S + 

C68S C94S - 

C68S C230S - 

C94S C230S - 

C68S C94S C230S 

Disulfide bonds 

- 

N79Q + 

N89Q 
N-glycosylation 

+ 

BcNEP1 

K243stop Endocytosis motif + 

none Wild type + 

GHRHDWE → GHRHAAE Heptapeptide motif - 

C68S - 

C94S - 

C157S + 

C166S + 

C68S C94S 

Disulfide bonds 

- 

T80A + 

T87A + 

BcNEP2 

K241stop 

O-glycosylation 

+ 
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DISCUSSION 

The transient expression of site-directed mutant forms of BcNEP proteins by agroinfiltration 

in N. benthamiana and N. tabacum was used to determine whether specific amino acids are 

essential for the necrosis-inducing activity of these proteins. We confirmed that the conserved 

heptapeptide motif is essential for necrosis-inducing activity, as was also reported for other 

NLPs (Ottmann et al., 2009). Furthermore we analysed the role of cysteine residues which are 

potentially involved in disulfide bond formation, and of asparagine and threonine residues 

that may be subject to post-translational N- and O- glycosylation, respectively. Finally, we 

studied the importance of the four C-terminal amino acids, that in BcNEP1 were predicted to 

act as a potential signal for endocytosis.  

Recently, the crystal structure of NPP1 has been elucidated (Ottmann et al., 2009). The 

conserved motif GHRHDWE in NLPs was shown to be important for the necrosis-inducing 

activity and is exposed to the protein surface where it presumably binds Ca2+. Scavenging 

extracellular calcium by a membrane-impermeable Ca2+ chelator, BAPTA, abolished the 

plasma membrane-disintegrating activity of NLPPP and NLPPcc from Phytophthora parasitica 

and Pectobacterium carotovorum, respectively. Substitution of three amino acid residues in 

this motif (H101, D104, E106) and another highly conserved residue (D93) in NLPPP and 

NLPPcc suggested that these residues are required for the binding of a divalent cation within 

this cavity (Ottmann et al., 2009). We tested the effects of the ion chelator EDTA (in 1000-

fold molar excess) on the necrosis-inducing activity of BcNEP1 and BcNEP2, but observed 

no effect (not shown). Simultaneous site-directed mutagenesis in BcNEP1 and BcNEP2 on 

two residues (DW) in the heptapeptide motif, showed that this core is indeed essential for 

necrosis-inducing activity. Interestingly, non-pathogenic microbes like Streptomyces 

coelicolor and Bacillus halodurans produce NEP-like proteins with an intact heptapeptide 

domain, that nevertheless do not show cytolytic activity (Qutob et al., 2002). 

Fig. 2. ATTA to study the effect of amino acid 
substitutions on the necrosis-inducing activity of 
BcNEP2. N. tabacum leaves were agro-infiltrated, 
as indicated, with BcNEP2 constructs carrying a 
substitution in O-glycosylation motifs (T80, T87) or 
in the conserved heptapeptide region GHRHDWE. 
Symptoms were observed after 2 days. 
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Disulfide bonds stabilize the native conformation of a protein and maintain protein stability 

by protecting it from oxidative and proteolytic attack in the extracellular environment. The 

function of some secreted soluble proteins and cell-surface receptors is controlled by cleavage 

of one or more of their disulfide bonds (Hogg, 2003). The two N-terminal cysteines are 

conserved among all NLPs (Gijzen, 2006) and have been shown to form a disulfide bond in 

NLPPya from Pythium aphanidermatum (Ottmann et al., 2009). Moreover, they are essential 

for necrosis-inducing activity of NLPPP from P. parasitica. Substitution of either of the two 

cysteine residues impaired the ability of NLPPP to trigger phytoalexin production and cell 

death in parsley protoplasts and necrotic lesion formation in tobacco leaves (Fellbrich et al., 

2002). The substitution of BcNEP1 and BcNEP2 residues C68 and C94, or substitution of any 

combination of cysteine residues that included either C68 or C94, resulted in the loss of 

necrosis-inducing activity (Table 1). It remains to be determined whether the loss of disulfide 

bridge formation merely reduces protein stability and accumulation, or whether it affects the 

protein conformation required for recognition by the plant. The cysteine residues C230 (in 

BcNEP1), and C157 and C166 (in BcNEP2) are not required for necrosis-inducing activity.  

Glycosylation has been suggested to play a role in modulating the function of secreted 

proteins by enhancing stability and solubility, or by protecting against proteolytic attack 

(Goto, 2007). The predicted structures of BcNEP1 and BcNEP2 (Staats et al., 2007b) were 

compared to the crystal structure of NLPPya (Ottmann et al. 2009). The sequence elements of 

BcNEP1 or BcNEP2 that contain the glycosylation motifs were predicted to be located on the 

protein surface and are potentially accessible for glycosylation. Transient expression of 

BcNEP1, carrying a substitution in the N-glycosylation motifs or BcNEP2 carrying a 

substitution in the O-glycosylation motifs, did not show any alteration of necrosis-inducing 

activity compared with the wild type protein. If BcNEP proteins are glycosylated following 

agroinfiltration, such a modification seems not to be essential for their biological activity.  

In conclusion, besides the conserved heptapeptide domain and the two N-terminal cysteine 

residues, no residues could be identified that are crucial for activity of BcNEP1 or BcNEP2. 

 

MATERIALS AND METHODS 

Plant material 

N. benthamiana and N. tabacum plants were grown from seeds in a peat-moss mixture 

(Jiffy) and maintained in a greenhouse at 21°C (day), 19°C (night), 75% humidity and 16h/8h 

day/night photoperiod under natural light for 4-6 weeks. 
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Site-directed mutagenesis of Bcnep cDNAs and agroinfiltration 

Site-directed mutagenesis was performed using as template Bcnep1 or Bcnep2 cDNA, 

lacking the signal peptide region (Schouten et al., 2008). cDNA constructs containing the 

respective mutation were generated by PCR. Forward primers NEP1+65for or Nep2+68for 

were combined with the corresponding reverse primers that contain the nucleotide substitution 

to generate the N-terminal fragments. Analogously, C-terminal fragments were generated 

through the combination of forward primers that contain the nucleotide substitution(s) and 

reverse primer NEP1+907rev or Nep2+898rev (Table 2).  

Table 2. Primers used in site-directed mutagenesis. 

The underlined sequences correspond to the restriction sites SalI and SacII introduced for cloning purposes. 
Sequences in bold represent the nucleotides that generate the mutations. 

Gene 
Feature 

Mutation 
Primer 
name 

Primer sequence 5’ → 3’ 

Nep1+65for ACGCGTCGACAATTGAGGAGAGCACCATTCAAGCTCGCGCC  
Nep1+907rev TCCCCGCGGCTGACAGGCCAAACTTCCAGATTCTCC 
DWfor CCGTCACGCTGCAGAGTATGTCGTCGCTTGGGTC Heptapeptide 

DW→ AA DWrev CATACTCTGCAGCGTGACGGTGACCTCCGACGAC 
C68for CACATTGCTCATGGTTCTCAACCTACAGTGCCGTTGATGG 
C68rev CTGTATGGTTGAGAACCATGAGCAATGTGAAGATATGG 
C94for GTCTCAGCCGGCTCCCGTGATCAGAGCAAGGGCCAAACC 
C94rev CTTGCTCTGATCACGGGAGCCGGCTGAGACATTGCCAGTATC
C230for GGAAAGGCAAACTCCCCATTCAATGACGCAAACTTC 

Disulfide bridge 
C→ S 

C230rev GCGTCATTGAATGGGGAGTTTGCCTTTCCAAAGTTGGTG 
N79for GGTAATGGTCAGACCAGTGGTG GACTCCAAG 
N79rev  CACCACTGGTCTGACCATTACCATCAACG 
N89for GATACTGGCCAGGTCTCAGCCG GCTGCCGTG 

Bcnep1 

N-glycosylation 
N→ Q 

N89rev CGGCTGAGACCTGGCCAGTATCTTGGAGTC 
 Truncation  

endocytosis 
motif, ΔKARI 

K243stop TCCCCGCGGCTAGGCGAGGTTGTTGTTGAAGTTTGCGTC 

Nep2+68for ACGCGTCGACTACACCATCACAACTTGAGTCTCGGG  
Nep2+898rev TCCCCGCGGCCAATAGACTCCCAGAATATAGCCCCT 
DW2for CACCGTCACGCTGCAGAAGGTGTAATTGTCTGGCT Heptapeptide 

DW→ AA DW2rev CCTTCTGCAGCGTGACGGTGACCAATACCG 
C68for CGTAAATGGATCCGTACCATTCCCTGCCGTCGA 
C68rev GGGAATGGTACGGATCCATTTACGACTTTAAGGA 
C94for GTGGTTCCAGCAGCAGTACCGGTCAAGTA 
C94rev GGTACTGCTGCTGGAACCACCATTGCTACTGCCAG 
C157for CTTAGCCGTTTCTCCTTCCGCCCACGGAGGCTGG 
C157rev GCGGAAGGAGAAACGGCTAAGATGTTGTCGG 
C166for GGCTGGGATTCTTCCACGGATGGCTATTCCCT 

Disulfide bridge 
C→ S 

C166rev TCCGTGGAAGAATCCCAGCCTCCGTGGGCGGA 
T80for CGGGTAACGTAGGTGGTGGTTTGTCACCAAC 
T80rev ACCACCACCTACGTTACCCGATGCATCGACGG 
T87for GTCACCAGTAGGCAGTAGCAATGGTGGTT 

Bcnep2 

O-glycosylation 
T→ V 

T87rev GCTACTGCCTACTGGTGACAAACCACCACCTG 
 Truncation K241stop TCCCCGCGGCTAGGCGAGGTTGTTGTTGAAGTTTGCGTC 
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PCR was carried out in volumes of 50 µl containing 1U Taq polymerase (Roche), 0.2 mM of 

each dNTP, 1X Taq PCR buffer, 1µM of specific primers (Sigma–Aldrich) and 20-50 ng 

DNA. PCR conditions were: 1 cycle of 95°C for 4 min; 10 cycles at 95°C for 1 min, 50°C for 

2 min, 72°C for 4 min; followed by 20 cycles of 95°C for 1 min, 60°C for 2 min, 72°C for 5 

min. Finally, each pair of fragments was fused using a single-step overlap extension PCR with 

the conditions described above but using the primer combination NEP1+65for/ NEP1+907rev 

or Nep2+68for/ NEP1+907rev. Constructs in which the last four codons are deleted were 

generated in one step using PCR primers NEP1+65for/K243stop or Nep2+68for/K241 stop. 

Fragments were extracted from agarose gel with GFX PCR purification kit (Amersham 

Pharmacia), cloned and characterized as described by Schouten et al. (2008). Validated 

mutant constructs were cloned into binary expression vector pMOG800, transformed into A. 

tumefaciens and used in agroinfiltration as described by Schouten et al. (2008). 
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SUMMARY 

The contribution of the plant to the necrosis-inducing activity of Botrytis cinerea NLPs was 

investigated. Infiltration of purified BcNEP1 and BcNEP2 into Nicotiana benthamiana leaves 

induced ethylene emission and necrosis in a dose-dependent manner. For BcNEP2 a higher 

protein concentration was required to induce ethylene emission as compared to BcNEP1. 

Necrotic symptom development in response to BcNEP1 was generally faster than in response 

to BcNEP2, indicating that BcNEP1 is more active than BcNEP2. The necrosis-inducing 

activity of BcNEP1 was independent of light, whereas necrosis-inducing activity of BcNEP2 

was transiently compromised when plants were incubated in darkness following infiltration.  

Arabidopsis thaliana mutants altered in ethylene, jasmonate or salicylate production or in 

signalling, as well as tomato plants affected in ethylene production or signalling, developed 

normal necrotic lesions following infiltration with BcNEP proteins, demonstrating that 

phytohormone production and hormone signalling pathways are not required for responses to 

these proteins. Virus-induced gene silencing in Nicotiana benthamiana of genes that are 

required for the necrotic response to an effector from Phytopthora infestans did not affect the 

necrotic response to BcNEP1 or BcNEP2. Pharmacological inhibitors that have been reported 

to interfere with various cellular processes (endocytosis, cytoskeleton function, vesicle 

trafficking, apoptotic cell death, necrotic cell death, protein kinase activity and cell energy 

supply) did not affect the necrotic response of plants to BcNEP1 or BcNEP2. We have not 

been able to identify any cellular process or pathway in plants that is required for the necrosis-

inducing activity of B. cinerea NLPs.  
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INTRODUCTION  

The induction by Botrytis cinerea of cell death in host plants constitutes an important 

component of its virulence (van Kan, 2006; Choquer et al., 2007) and has been proposed to 

represent a type of hypersensitive response (HR) (Govrin and Levine, 2000). HR has been 

extensively studied in the context of resistance responses to biotrophic pathogens triggered by 

pathogen effectors (Kliebenstein and Rowe, 2008). Plant genes involved in effector 

recognition and the activation of downstream HR-induced defence responses have been 

studied in many plant–pathogen interactions (Chisholm et al., 2006). HR is accompanied by 

an oxidative burst, membrane perturbation leading to calcium influx, pH changes, phytoalexin 

biosynthesis, the induction of pathogenesis-related protein synthesis, and reinforcement of 

cell walls, all of which processes occur in B. cinerea-plant interactions (e.g. van Baarlen et 

al., 2007). HR also leads to an increase in  phytohormone biosynthesis. A surge of ethylene 

production occurs at the onset of tissue necrosis in B. cinerea-infected tomato plants 

(Cristescu et al., 2002). Enzymes secreted by B. cinerea may directly generate reactive 

oxygen species (Rolke et al., 2004) and the fungus also secretes phytotoxic metabolites and 

proteins that induce an oxidative burst in host plants, factors that collectively have been 

implicated in the initiation of plant cell death by B. cinerea (Choquer et al., 2007). Among the 

phytotoxic, necrosis-inducing proteins produced by B. cinerea are Nep1-like proteins (NLPs), 

named BcNEP1 and BcNEP2 (Staats et al., 2007; Schouten et al., 2008). Bcnep1 and Bcnep2 

genes are expressed during infection of tomato and Nicotiana benthamiana leaves, albeit with 

different temporal expression patterns (Chapter 3). Production of BcNEP1 and BcNEP2 

coincides with ethylene emission in B. cinerea-infected N. benthamiana leaves (Chapter 3).  

Microbial effectors that either induce ethylene emission, such as the xylanase EIX from 

Trichoderma viride (Avni et al., 1994), or induce HR, such as the AVR proteins of 

Cladosporium fulvum (Stergiopoulos and de Wit, 2009) are proposed to interact with plant 

receptors and activate signalling cascades that trigger the downstream responses in the host 

(Ron and Avni, 2004; Chisholm et al., 2006). Whether microbial NLPs also act as effectors 

that are recognized by a receptor and activate a signal transduction pathway that culminates in 

the activation of cell death pathways, however, was unknown. We aimed to investigate the 

contribution of the plant to the necrosis- and ethylene-inducing activity of purified B. cinerea 

NLPs. We used tomato, Arabidopsis and Nicotiana benthamiana and performed 

physiological, genetic and pharmacological studies to unravel the contribution of cellular 

processes in the plant in the response to BcNEP proteins.  
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RESULTS 

Dose-dependent induction of necrosis and ethylene production 

Nicotiana benthamiana leaves were infiltrated with BcNEP1 in a concentration range from 

0.04 to 1.2 μM, and BcNEP2 from 0.4 to 4 μM. The appearance of symptoms was evident 

after a few hours and was monitored during the following three days. For BcNEP1, a 

concentration as low as 0.04 μM was able to induce discoloration in the infiltrated zone after 

8 h, whereas BcNEP2 required 24 h and at least 0.4 μM to induce the same type of symptoms 

(Figure 2). Three days after infiltration, the tissues infiltrated either with BcNEP1 (0.4 μM) or 

BcNEP2 (4 μM) were completely necrotic. Control leaves infiltrated with phosphate buffer 

did not show any symptom during the three days (data not shown). 

NLPs have been reported to induce expression of genes encoding ethylene biosynthetic 

enzymes (Qutob et al., 2006). In order to quantify the amount of ethylene that can be induced 

by BcNEP proteins in plants, different concentrations of BcNEP1 and BcNEP2 were 

infiltrated into individual N. benthamiana leaves. The leaves were subsequently enclosed in 

bottles with rubber caps and the ethylene concentration in the bottle was monitored every 30 

minutes. After each sampling, bottles were opened to release the remnant ethylene and refresh 

the air. BcNEP1 and BcNEP2 induced ethylene production in a dose-dependent manner 

(Figure 1). Both BcNEP proteins induced a sharp increase in ethylene production that peaked 

at 1.5 h after infiltration. BcNEP1 induced ethylene production at the lowest concentration 

tested (0.04 μM). Interestingly, this concentration of BcNEP1 did not induce any visible 

symptom in this experiment (not shown). For BcNEP2 the highest concentration tested (4 

μM) induced an ethylene production comparable with the highest concentration tested for 

BcNEP1 (1.2 μM), showing that BcNEP2 is less active or phytotoxic than BcNEP1. 

  

 Fig. 1: Ethylene production in N. benthamiana following infiltration with BcNEP1 (A) or BcNEP2 (B) at 
different concentrations (µM). Proteins were infiltrated (100 µl of each concentration) in N. benthamiana leaves. 
10 mM phosphate buffer, pH 7 was used as control. The amount of ethylene produced during 30 min intervals 
was measured over a period of 3.5 h. The means of three replicates are shown. Error bars represent standard 
errors of the means.   
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Inhibition of necrosis-inducing activity by antibodies 

Polyclonal antibodies raised against purified BcNEP1 and BcNEP2 were tested for their 

ability to inhibit BcNEP-induced necrosis. The antibodies against BcNEP1 showed slight 

cross-reactivity towards BcNEP2 and vice-versa (not shown). When antibodies were co-

infiltrated with BcNEP proteins in different ratios, BcNEP1- and BcNEP2-induced necrosis 

was reduced when the corresponding antibodies were added at equimolar concentration and 

abolished when 3-fold or 10-fold excess of antibody was added (Figure 2). The antibody 

raised against BcNEP1 could not reduce necrosis-inducing activity of BcNEP2 or vice versa. 

 

  

  

Fig. 2. Effect of co-infiltration of BcNEP proteins with polyclonal antibodies. N. benthamiana leaves were 
infiltrated on the left hand-side of each leaf with different concentrations of the BcNEP protein as indicated 
(μM). The right hand side of each leaf was infiltrated with a mixture of BcNEP protein (in the same 
concentration as on the left hand side) and a polyclonal antibody raised either against BcNEP1 or BcNEP2, as 
indicated at the top of the image. The BcNEP protein and the antibodies were mixed at different molar ratios 
(1:10, 1:3 or 1:1) as indicated on the right hand side of each leaf. 
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Necrosis-inducing activity of BcNEP2 is light-dependent  

Based on the observation that the induction of necrosis by NLPPP from Phytophthora 

parasitica is an active light-dependent process (Qutob et al., 2006), we also tested whether 

BcNEP-induced necrosis would be affected by light. N. benthamiana plants were placed in 

total darkness for one day and subsequently infiltrated in a dark room with BcNEP1 or 

BcNEP2. Immediately after infiltration, one plant infiltrated with each protein was transferred 

to a growth chamber with light (16 h/day). Other plants were transferred to the growth 

chamber at one day intervals over a week. Symptoms were evaluated 8 days post infiltration 

(dpi). As controls, one plant infiltrated with each protein was kept in the growth chamber 

before and after infiltration, while one plant infiltrated with each protein was kept in darkness 

before and after infiltration. All the plants infiltrated with BcNEP1 showed similar necrotic 

symptoms, regardless how long they had been incubated in darkness after infiltration (Figure 

3A). In contrast, the response to BcNEP2 was affected by the duration of the incubation in 

darkness following infiltration. In plants that were transferred from darkness to light at 1, 2 

and 3 dpi, the symptoms at 8 dpi were clearly less pronounced (Figure 3B). Remarkably, 

plants that were transferred from darkness to light at 4 and 5 dpi showed necrotic symptoms 

comparable to the control plant that was transferred to light immediately after infiltration. 

  

 

Fig. 3. Effect of light on the necrosis-inducing activity 
of BcNEP1 (A) and BcNEP2 (B). N. benthamiana plants 
were preconditioned in total darkness for one day and 
subsequently infiltrated in a dark room with BcNEP1 or 
BcNEP2. One plant infiltrated with each protein was 
immediately transferred to a growth chamber. Other 
plants were transferred to the growth chamber at one day 
intervals. As a control, one plant infiltrated with each 
protein was kept in permanent light before and after 
infiltration. 
 

 

 

 

This experiment was repeated two more times; for each time point, BcNEP proteins were 

infiltrated in three plants and in several leaves per plant. The results were not always 

consistent between leaves and plants. The trend was in all cases that the response to BcNEP2 

was reduced in the first days of incubation in darkness, whereas plants that were incubated in 

darkness for longer times showed typical necrotic responses similar to the controls.  
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Is ethylene required for the response to BcNEP proteins? 

In order to determine whether ethylene production or perception by the plant is required for 

the necrosis-inducing activity of BcNEP proteins, tomato mutants that are altered in ethylene 

biosynthesis or perception were tested (Figure 4). Different concentrations of BcNEP1 were 

infiltrated into the leaves of UC8338, an ethylene non-producing transgenic tomato that 

expresses ACC deaminase. The non-transgenic progenitor UC82B was tested as control. 

BcNEP1 was infiltrated into the leaves in a concentration range of 0.04-0.4 μM. BcNEP1 

induced necrosis in a dose-dependent manner in both tomato lines. At the lowest 

concentration, the response was restricted to the zone where the syringe was placed on the 

leaf, even though the area that was infiltrated with the protein sample extended well beyond 

this zone. No important difference was observed between mutants and wild type in severity of 

symptom development (Figure 4), nor in timing (not shown). 

A similar experiment was conducted to study whether ethylene perception is required for the 

necrosis-inducing activity. In this case, the tested plants were Never Ripe (Nr) and its wild 

type progenitor Pearson. Nr is a natural mutant that carries a mutation in the ethylene receptor 

LeETR1, making the plant less sensitive to ethylene (Lanahan et al., 1994). No important 

differences were observed between Nr and its wild type progenitor Pearson (Figure 4). 

In addition, 1-methylcyclopropene (MCP), which irreversibly binds to the ethylene-binding 

domain of ethylene receptors (Blankenship and Dole, 2003) was used to inactivate the entire 

set of (five) ethylene receptors present in tomato (Bleecker et al., 1998). 

Half of the leaves were pre-treated with 1-methylcyclopropene (MCP), while the other half 

of the leaves remained untreated. MCP-treated and untreated leaves were infiltrated with 

BcNEP1 at concentrations of 0.04 and 0.12 μM. No differences were observed between 

treatments or between plant genotypes. All leaves showed very similar necrotic symptoms as 

observed in the previous experiment with the transgenic UC8338 genotype.  

  

 

 
 
 
 
 
 

Fig. 4. Role of ethylene in the necrosis-inducing
activity of BcNEP1. Tomato mutants that are altered 
in ethylene biosynthesis (UC8338) or perception 
(Never Ripe) and their respective wild types were 
infiltrated with BcNEP1 at different concentrations
as indicated (µM). Symptoms were recorded after 5 
days. 



 
Mode of action of BcNEP proteins 

 

   71

Plant pathways involved in the response to BcNEP proteins  

In order to investigate whether different defense-related pathways play a role in the necrosis-

inducing activity of BcNEP proteins, leaves of Arabidopsis mutant genotypes were infiltrated 

with BcNEP1 (0.04 and 0.12 μM) or BcNEP2 (1.2 μM). Genotypes tested included the 

ethylene-insensitive mutants ein2, ein3, etr1; the jasmonate-insensitive mutant jin4; the 

salicylate-dependent defense pathway mutants mpk4, npr1 and NahG; the camalexin-deficient 

mutant pad3. All mutant plants tested developed necrotic lesions similar to the progenitor line 

Col-0 at all NLP concentrations tested (0.04 and 0.12 BcNEP1; 1.2 μM BcNEP2). 

Gabriëls et al. (2006) described tomato genes that are involved in responses to effectors. 

Silencing these genes by Tobacco Rattle Virus-based VIGS constructs severely compromised 

the necrotic response to Phytopthora infestans  INF1, as well as the resistance gene-mediated 

hypersensitive response to Cladosporium fulvum effector AVR4 (Gabriels et al., 2006). To 

study whether the plant genes required for these responses are also involved in the necrotic 

response to BcNEP1, VIGS constructs were introduced into N. benthamiana using TRV-

based vectors in A. tumefaciens along with three control constructs (Table 1). Symptoms of 

viral infection were observed 12 days post agroinfiltration and resembled phenotypes 

described by Gabriels et al. (2006). At this time, the plants were either infiltrated with A. 

tumefaciens containing a construct encoding the P. infestans protein INF1 or with purified 

BcNEP1 protein. Plants that were first inoculated with TRV:LeHsp90-1, TRV:nGTPase and 

TRV:rL19 displayed a strongly compromised necrotic response to INF1 (score= 1). Plants 

infected with TRV:EDS1, TRV:NRC1, TRV:MEK2, TRV:RAR1, TRV:SGT1 and 

TRV:NDR1 showed less pronounced symptom development in response to INF1 (score= 2). 

BcNEP1 induced severe necrosis in the entire infiltrated area in leaves of all plants in 3-5 

days (Score =3; Figure 5). No differences were observed between BcNEP1 concentrations 

used, 0.04 and 0.12 µM (not shown). 

 

 
 
 
Fig. 5. Responses of TRV-inoculated (silenced) Nicotiana benthamiana plants to phytotoxic proteins were 
scored from 3 to 1, with 3 = full necrosis, 2= chlorosis with mild necrosis, 1 = chlorosis. 
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Table 1. Response in TRV-inoculated plants to INF1 and BcNEP1. 
 

Construct a Phenotype b INF1 c BcNEP1 d 

TRV:EDS1 Severe viral symptoms 2 3 

TRV:NRC1 Compact/ Fragile 2 3 

TRV:MEK2 Severe viral symptoms 2 3 

TRV:RAR1 Severe viral symptoms 2 3 

TRV:SGT1 Stunted/ branched 2 3 

TRV:NDR1 None 2 3 

TRV:LeHsp90-1 Stunted 1 3 

TRV:nGTPase Compact/ Curly leaves 1 3 

TRV:rL19 None 1 3 

TRV:Cf4 None 3 3 

TRV:00 None 3 3 

a VIGS construct inoculated in young plants 
b Phenotype in TRV-inoculated plants at moment of effector infiltration   
c Response to INF1 in TRV-inoculated plants, scored on scale 1-3 as shown in Fig. 5 

d Response to BcNEP1 in TRV-inoculated plants, scored on scale 1-3 as shown in Fig. 5  
 

Pharmacological analysis of processes involved in the response to BcNEP proteins 

To determine which cellular processes are required for the necrosis-inducing activity of 

BcNEP proteins, N. benthamiana leaves were pre-treated with several inhibitors and then 

infiltrated with BcNEP1 protein. Inhibitors (Table 4) were selected that have been reported to 

interfere in endocytosis, cytoskeleton function, vesicle trafficking, apoptotic cell death, 

necrotic cell death, protein kinase activity and cell energy supply. Of the inhibitors tested, all 

except dynasore and ikarugamycin (both inhibitors of endocytosis in mammals) were tested 

and confirmed to be effective in plants. A concentration range of each inhibitor was infiltrated 

in N. benthamiana leaves to determine whether they caused any visible phytotoxic effect in 

the leaves. For each inhibitor, the highest concentration that did not cause any visible damage 

was either infiltrated simultaneously with BcNEP1 (0.04 μM or 0.12 μM) into the same area, 

or the inhibitor was infiltrated 3 h or 8 h prior to infiltration with BcNEP1. Of all inhibitors 

tested, only dynasore (>100 µM) was able to reduce the necrosis-inducing activity of BcNEP1 

(0.04 μM) when compared with the control (Figure 6). Dynasore was not able to reduce the 

necrosis-inducing activity of recombinant NLPPP from Phytopthora parasitica (Figure 6),  nor 

was it able to reduce the necrosis-inducing activity of BcNEP1 at 0.12 μM or of BcNEP2 at 

any concentration tested (up to 4 μM, not shown). 
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Fig 6. Effects of the dynamin-mediated endocytosis inhibitor Dynasore on response of Nicotiana benthamiana 
leaves to NLPs. BcNEP1 was infiltrated on both sides of the central vein at 0.04 μM in phosphate buffer, pH 7. 
Recombinant NLPPP was infiltrated on both sides of the central vein at 0.1 μM in phosphate buffer, pH 7. In the 
left side of the leaf, Dynasore (100 μM) was co-infiltrated with the protein. The dotted circle marks the area of 
the leaf which was infiltrated.  
 
  

DISCUSSION 

Here, we studied the contribution of the plant in the necrosis-inducing activity of BcNEP 

proteins in an attempt to unravel their mode of action and/or molecular target(s). Both 

BcNEP1 and BcNEP2 were able to induce necrosis and ethylene production in dose-

dependent manner, but their dose-response profiles were different. The fact that BcNEP1 is 

able to cause necrosis in shorter time than BcNEP2, and the differences in the amount of 

protein that is  required to induce ethylene production, lead us to conclude that BcNEP1 is 

more phytotoxic than BcNEP2. The transcription profile described in Chapter 3 shows that 

Bcnep1 is transiently expressed during the first 40 h of the infection process, while Bcnep2 

expression is first detected when the infection is already established and the lesion is 

expanding. This observation suggested that these proteins may have different functions or 

have a similar function albeit at different stages of the infection. 

Remarkably, necrosis-inducing activity of BcNEP1 was independent of light, whereas 

necrosis-inducing activity of BcNEP2 was compromised when the protein was infiltrated in 

leaves of dark-adapted plants and the infiltrated plants were kept in darkness. Light-dependent 

necrosis-inducing activity was also reported for other NLPs (Qutob et al., 2006), the ToxA 

+ Dynasore (100 μM)  - Dynasore

BcNEP1 (0.04 μM)

NLPPP (0.1 μM)
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protein from Pyrenophora tritici (Sarpeleh et al., 2008), as well as the sphingoid-like AAL 

toxin (Gechev et al., 2004). All these toxins may require an active photosynthetic apparatus to 

cause necrosis. Chloroplasts play a major role in ROS-dependent lipid peroxidation occurring 

during the HR (Mur et al., 2009). Liu et al. (2007) reported that the pathogen-responsive 

NtMEK2-SIPK/Ntf4/WIPK cascade plays an active role in promoting ROS generation in 

chloroplasts by inhibiting the carbon fixation reaction, which can create a situation of excess 

excitation energy in plants under illumination. In the absence of light, chloroplast-generated 

ROS is inhibited and cell death delayed. It remains unclear why the reduced response to 

BcNEP2 in dark-adapted plants was transient.  

Plant hormone signaling pathways are important key regulators in plant cell death processes 

and defense against microbial pathogens. Ethylene and jasmonate (JA) are important in 

determining disease severity caused by a range of necrotrophic microorganisms, while 

salicylate (SA) is important for resistance against biotrophs (Glazebrook et al., 1996). 

Protoplasts from Arabidopsis mutants in phytohormone biosynthesis or signaling pathways 

were less responsive to the toxin Fumonisin B1 (Asai et al., 2000). Arabidopsis mutants 

altered in ethylene, JA and SA production or signalling, as well as tomato mutants altered in 

ethylene production or signalling, when infiltrated with BcNEP proteins, showed necrosis 

development indistinguishable from the wild type progenitor. Moreover plants pre-treated 

with MCP in which all the ethylene receptors are irreversibly inactivated, developed necrosis, 

demonstrating that ethylene perception is not required for responses to  BcNEP proteins. 

None of the Arabidopsis mutants tested showed any alteration in sensitivity to BcNEP1 or 

BcNEP2 as compared to the wild type, as was also reported by Qutob et al. (2006) for 

responses to NLPPP. Also the silencing of several genes, previously shown in N. benthamiana 

to be required for the necrotic response to P. infestans protein INF1 (Gabriels et al., 2006) did 

not affect the response to BcNEP1. Silencing of hsp90, mek2, nrc1, rar1 and sgt1 in N. 

benthamiana compromised the necrosis-inducing activity of the P.infestans elicitor INF1, but 

the plants still displayed an unaltered response to BcNEP1.  

Previously, it was reported that BcNEP proteins can induce a combination of apoptotic and 

necrotic cell death mechanisms in tomato cell cultures (Schouten et al., 2008). BcNEP1 and 

BcNEP2 have been found to associate in vivo with cell membranes and even accumulate in 

the nuclear envelope (Schouten et al., 2008). To further study their mode of action, 

pharmacological inhibitors were co-infiltrated with BcNEP proteins. Of all tested compounds, 

only dynasore was able to consistently reduce the phytotoxic effect of BcNEP1. Dynasore 
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acts by blocking coated vesicle formation and thereby inhibits endocytotic pathways known to 

depend on dynamin. Dynasore was reported to partially protect human cells against the action 

of Shiga-toxin (Romer et al., 2007). The observed partial inhibition of BcNEP1-mediated 

necrosis induction suggested that BcNEP1 may enter the plant cell by a dynamin-mediated 

endocytosis pathway. However, dynasore was not effective when higher concentrations of 

BcNEP1 were applied and it was totally ineffective against BcNEP2 and NLPPP. Moreover, a 

different endocytosis inhibitor, ikarugamycin, did not influence necrosis-inducing activity of 

BcNEP1. It should be noted that dynasore and ikarugamycin have been successfully used in 

animal systems, but have not yet been reported to be functional in plants. We have not 

verified that these compounds indeed affect the same process(es) in plants as they were 

reported to inhibit in the organism for which they were previously developed.  

In conclusion, the mode of action of BcNEP proteins remains unresolved. We were not able 

to identify any cellular process or pathway that is required for their necrosis-inducing activity. 

Our results are consistent with the mechanism recently proposed by Küfner et al. (2009), that 

NLPs act as pore-forming cytolytic toxins that permeate and disintegrate membranes without 

the need for active recognition by putative receptors in the plant cell. 

  

MATERIALS AND METHODS 

Plant material 

N benthamiana plants were grown from seeds in a peat-moss mixture (Jiffy) and maintained 

in a greenhouse at 21°C (day), 19°C (night), 75% humidity and 16h/8h day/night photoperiod 

under natural light for 4-6 weeks. Transgenic N. benthamiana plants containing the Cf-4 

resistance gene from tomato against C. fulvum were grown for four weeks under greenhouse 

conditions at 22 °C under a 12/12 h light/ dark regime with 200 watt mercury vapor lamps. 

The plants were agroinfiltrated and kept in a climate chamber at 22 °C and 70% of RH. 

The tomato (Solanum lycopersicum) lines used were cv. Moneymaker, cv. Pearson, the 

homozygous mutant Nr in the cv. Pearson background, the transgenic line UC8338, 

expressing a bacterial ACC deaminase and its non-transgenic progenitor UC82B (Klee et al., 

1991). All plants were grown in potting soil as described by ten Have et al. (1998). 

Eight mutant genotypes of A. thaliana were used to investigate whether these genes were 

involved in the necrotic response of the plant to BcNEP proteins (Table 2). Ten 4-5 week old 

plants of each mutant were tested. As controls wild type Columbia (Col-0) and Landsberg 

erecta (Ler) were used, both of which are susceptible to B. cinerea (Thomma et al., 1998). 
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 Table 2. Arabidopsis mutant genotypes used in this study 

Plants Feature Reference 

Col-0 

Ein2 

Ein3 

Etr1 

Jin4 

Mpk4 

NahG 

Npr1 

Pad3 

Wild type 

Ethylene signaling pathway 

Ethylene signaling pathway 

Ethylene signaling pathway 

Jasmonate insensitive 

MAP kinase involved in SA pathway 

SA depletion 

No PR protein accumulation 

Camalexin synthesis 

 

Alonso (1999) 

Chao et al.(1997) 

Chang et al.(1993) 

Berger et al.(1996) 

Sundaresan et al.(1995) 

Delaney et al.(1994) 

Chao et al.(1997) 

Zhou et al.(1999) 

  

Protein preparation and infiltration 

Heterologous expression, purification and quantification of BcNEP1 and BcNEP2 were 

described by Schouten et al. (2008). From a BcNEP1 (4 μM) stock solution, dilutions (1.2, 

0.4, 0.12, 0.04 µM) were prepared in 10mM KPi buffer, pH 7. From BcNEP2 (40 μM), 

dilutions (4, 1.2, 0.4, 0.12 µM) were prepared in the same buffer. Tomato, Nicotiana 

benthamiana and Arabidopsis thaliana leaves were infiltrated with a 1 ml needle-less syringe 

on their abaxial side with protein dilutions mentioned above or with 10mM KPi buffer, pH 7.  

  

Measurement of ethylene production 

Detached N. benthamiana leaves were infiltrated each with 100 µl of either BcNEP1 or 

BcNEP2 at the concentrations mentioned above or with 10mM KPi buffer, pH 7 using a 1 ml 

syringe on the abaxial surface. Leaves infiltrated with the buffer were used as control. 

Subsequently each leaf was placed into a 30 ml bottle containing 2ml tap water (to avoid 

wilting) and the bottles were sealed with rubber caps. Ethylene-air samples were extracted 

every 30 minutes with a 2 ml syringe and injected in a gas chromatograph (Shimadzu 17A). 

After each sampling, bottles were opened during 5 minutes to release the remnant ethylene 

and closed again. The experiment was terminated after 3.5 h. Each experiment contained three 

biological replicates per treatment and was performed three times. To calculate the amount of 

ethylene produced per leaf in each treatment (nl/ l/ leaf), the average of ethylene 

concentrations from each treatment was multiplied by a calibration factor and by the volume 

of the bottles. The calibration factor was calculated from the average of several ethylene 

measurements from pure ethylene of known concentration. 
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Antibody inhibition 

From a BcNEP1 (4μM) stock solution, dilutions (0.04, 0.12, 0.4 μM) were prepared in 

10mM KPi buffer, pH 7. For BcNEP2 (40 μM) the dilutions (0.4, 1.2, 4 μM) were prepared in 

the same buffer. Purified IgG fractions of polyclonal antisera (made in rabbits) against 

purified recombinant BcNEP1 and BcNEP2 (Schouten et al., 2008) were prepared by 

Eurogentec (Maastricht, The Netherlands). BcNEP protein dilutions were mixed with 

antibody in a molar ratio of 1:10, 1:3, 1:1 in 10mM KPi buffer, pH 7, and incubated at 37 ºC 

for 15 min. The mixture was cooled at room temperature for 5 min and infiltrated into N. 

benthamiana leaves. BcNEP dilutions without antibody served as controls. 

 

 Gene silencing 

Tobacco rattle virus (TRV) was used for silencing genes involved in HR (Gabriels et al., 

2006). cDNA fragments of the genes tested originated from different plants (Table 3). 

Transgenic Cf4-N. benthamiana plants were infiltrated as described (van der Hoorn et al., 

2001) with A. tumefaciens strain MOG101 carrying binary vector pBintra6 and the TRV 

recombinants in 1:1 ratio. Ten days post-infiltration, purified BcNEP1 protein (0.04 µM) was 

infiltrated in the lower side of the 5th or 6th leaf. A. tumefaciens strain MOG101 containing 

binary plasmid pInf1 (Kamoun et al., 2003) was used to transiently express P. infestans INF1. 

 

Table 3. Plasmid constructs used for Virus-Induced Gene Silencing (VIGS) 

Construct Viral vector Origin of insert Reference 

TRV:EDS1 pYL156 N. tabacum Ekengren et al. (2003) 

TRV:NRC1 pTV00 Tomato Gabriels et al. (2006) 

TRV:MEK2 pTV00 N. tabacum Abd-el-Haliem (unpublished) 

TRV:RAR1 pTV00 N. tabacum Abd-el-Haliem (unpublished) 

TRV:SGT1 pTV00 N. benthamiana Peart et al. (2002) 

TRV:NDR1 pYL156 N. benthamiana Ekengren et al. (2003) 

TRV:LeHSP90-1 pTV00 Tomato Gabriels et al. (2006) 

TRV:nGTPase pTV00 Tomato Gabriels et al. (2006) 

TRV:rL19 pYL156 Tomato Abd-el-Haliem (unpublished) 

TRV:Cf4 pTV00 Tomato van der Hoorn et al (2000) 

TRV:00 pTV00 - Ratcliff et al.(2001) 

TRV:1 pBintra6 - Ratcliff et al.(2001) 
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Dark treatment 

N. benthamiana plants (6 weeks-old) were placed in a closed cabinet inside a dark room for 

24 h. Subsequently, leaves were infiltrated with BcNEP1 (0.4 μM) or BcNEP2 (4μM) in the 

dark room under a red candescent lamp (15 W). The infiltration was performed in multiple 

leaves of each plant. One plant infiltrated with each protein was taken out immediately and 

placed in a growth chamber. Other plants were transferred to the growth chamber at one day 

intervals. As a control, one plant infiltrated with each protein was kept in constant light before 

and after infiltration. Symptoms were scored 8 days after infiltration. 

 

Pharmacological inhibition assays 

All inhibitors (Table 4) were purchased from Sigma, with exception of Ac-DEVD-CHO 

(Promega) and Ikarugamycin (BioRes Labs). The dilutions were infiltrated in the abaxial side 

of the leaves from N. benthamiana plants (4 week-old). The highest inhibitor concentration, at 

which no phytotoxic effects were observed at 24 h after infiltration, was selected for further 

experiments.  A new set of leaves were infiltrated with the selected dilutions and 3 h later, 

BcNEP1 (0.04 or 0.12 μM) was infiltrated, partially overlapping the inhibitor infiltrated zone. 

 

 Table 4. Pharmacological inhibitors used in this study 

Inhibitor Target  Stock  Concentrations tested Solvent 

BDM Cytoskeleton function  0.5 M    20, 30, 40, 60 mM Water 

Brefeldin A      Vesicle trafficking 10mM 10,36 μM DMSO 

Staurosporine    Protein kinase  1mM 0.5, 1, 1.5, 2 μM DMSO 

Ac-DEVD-CHO  Apoptotic cell death 10 mM 1 μM DMSO 

E-64      Apoptotic cell death 10 mM 25 μM DMSO 

Ikarugamycin   Endocytosis 10 mM 10, 20, 50, 100 μM DMSO 

LaCl3      Apoptotic cell death 1M 2, 5, 10, 20, 30, 40 mM Water 

NEC-1     Necrotic cell death 300 mM 10, 20, 30 μM DMSO 

Oligomycin Cell energy supply 20 mM 50, 200, 500 nM, 1, 2, 5, 10, 100, 200 μM CH3OH 

Na-Vanadate Cell energy supply 0.5 M 50, 100, 200, 300, 400μM Water 

Latrunculin B    Cytoskeleton function 2.5 mM 10, 20, 50 μM DMSO 

Dynasore    Endocytosis 29.4 mM 10, 80, 200, 300 μM DMSO 

 
MCP treatment 

Leaves from different tomato genotypes were detached and their petioles inserted in wet 

florist foam. The leaves were placed in sealed glass containers (1 l) with a rubber septum, 

through which gaseous MCP was injected to a final concentration of 100 nl/l. After 4 h 
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exposure to MCP, the leaves were placed into open plastic containers for 1 h to remove excess 

MCP and then infiltrated with 100 µl BcNEP1 of each concentration mentioned above. As 

control, detached leaves were incubated in closed containers without addition of MCP and 

treated as above. The experiment was performed twice. 
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Chapter 6 
General discussion 

Senescence and ripening processes in plant tissues are often stimulated by ethylene, and may 

result in an increase of susceptibility to pathogens, which may cause enormous losses in the 

post-harvest chain of a wide variety of horticultural products. Total post-harvest losses of 

fresh produce world-wide are on average estimated to exceed 30%. After harvest, fruits as 

well as flowers become increasingly sensitive to ethylene. Low exogenous ethylene 

concentrations or stress conditions (dark storage, desiccation, pathogen attack) can induce 

auto-catalytic ethylene production and senescence that results in product loss. Ethylene-

induced plant defence is hardly active at this stage since microbial attack is no longer 

threatening to the survival of the individual, as long as seeds remain unaffected. Harvested 

products can be highly susceptible to a range of post-harvest pathogens. Among the most 

important post-harvest problems are diseases caused by the fungal plant pathogen Botrytis 

cinerea. This fungus can infect at least 235 plant species, including a range of economically 

important crops (Jarvis, 1977). The aim of this research was to obtain insight in the role of the 

phytohormone ethylene in the interaction of plants with B. cinerea, using tomato as a model. 

Furthermore, functional analysis of B. cinerea Nep1-Like Proteins (NLPs) was performed. 

At the onset of this research there were reports that B. cinerea can produce ethylene, as well 

as perceive and respond to ethylene. B. cinerea can produce ethylene in culture from α-keto-γ-

(methylthio)butyric acid (KMBA), produced by deamination of L-methionine (Qadir et al., 

1997; Chagué et al., 2002), however the amount of ethylene produced by the fungus in planta 

was reported to be below the detection level (Cristescu et al., 2002). It was postulated that 

production of ethylene by B. cinerea might weaken plant tissue and thereby predispose it for 

invasion, but no experimental data were provided to support this hypothesis. We attempted to 

abolish the ethylene biosynthetic pathway in B. cinerea. Catabolism of L-methionine and 

other amino acids involves bacterial branched-chain aminotransferases (BCAs)  (Engels et al., 

2000; Thage et al., 2004), some of which accept a specific amino acid as substrate while 

others have broad substrate preference. It was proposed that conversion of L-methionine into 

KMBA in the yeast Yarrowia lipolytica is catalyzed by a BCA (Bondar et al., 2005). We 

considered the possibility that a (possibly methionine-specific) BCA in B. cinerea might be 

essential in production of KMBA, which would subsequently decompose into ethylene. The 

B. cinerea genome contains at least 4 genes that encode predicted proteins with homology to 

bacterial BCAs. One of the B. cinerea genes (designated Bcat1) showed 37% identity to a 

BCA from Lactococcus lactis (accession number AF164204). Although we were aware that 
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the presence of other putative BCA genes in the B. cinerea genome might provide functional 

redundancy, the Bcat1 gene was selected for functional analysis. Deletion mutants in this gene 

were generated in an attempt to abolish ethylene synthesis in B. cinerea. Cultures of Bcat1-

deficient mutants grown in presence of methionine showed reduction in KMBA production 

but no notable reduction in ethylene production when compared with the parental strain 

B05.10 (F. Borges & J. van Kan, unpublished). Bcat1-deficient mutants were equally virulent 

as the wild type. A concentration of at least 5 mM methionine is required to achieve 

detectable levels of ethylene production by B. cinerea (A. ten Have & J. van Kan, 

unpublished). This concentration is well beyond the amount of free methionine available in 

plant tissue. We consider it unlikely that B. cinerea produces ethylene in plant tissue and 

ethylene produced by B. cinerea is thus unlikely to play any role in the infection process. 

Besides the ability to produce ethylene, there were reports that B. cinerea is able to respond 

to exogenously applied ethylene. Ethylene treatment stimulated germination of B. cinerea 

conidia and growth of germ tubes (Kepczynska, 1993). Moreover, the rates of conidial 

germination and germ tube growth on glass, tomato and bean leaf surfaces were enhanced in 

the presence of ethylene (Elad et al., 2002). Chagué et al. (2006), however, reported that 

ethylene inhibited mycelial growth in cultures. Thus, ethylene may have different effects on 

the fungus at different developmental stages and in different experimental systems (Sharon et 

al., 2004). Taken together, these observations suggested that an ethylene receptor and 

signalling cascade may be present in B. cinerea. In order to search for a possible ethylene 

receptor in B. cinerea, we first verified that ethylene indeed affects mycelium growth either in 

vitro or during plant colonization (Chapter 2). The fungus was cultured in different media and 

exposed to a range of ethylene concentrations. In sharp contrast to previous reports of others, 

no differences were observed between cultures in the morphology or growth rates in the 

presence or absence of ethylene. It should be noted that Kepczynska (1993) used ethephon as 

ethylene releasing agent, instead of pure ethylene. Ethephon decomposes into ethylene, 

phosphonic acid and hydrochloric acid (Lawton et al., 1994; van Kan et al., 1995). Effects of 

ethephon on B. cinerea may not necessarily be attributed only to a response to ethylene. Our 

experiments were performed several times using the same strain and conditions as reported by 

Chagué et al. (2006), however, effects of ethylene on fungal growth were never observed. A 

concentration of 200 μl/l is very high considering that the amount of ethylene released in red 

tomato fruit is 5 nl.h-1.gFW-1 (E.J. Woltering,  pers. comm.) and the ethylene released by B. 

cinerea-infected tomato fruit ranges from 28 to 60 nl.h-1.gFW-1 (Cristescu et al., 2002).  
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Experiments were conducted in planta to study whether ethylene production by the host plant 

affects disease development. Detached leaves from tomato mutant plants with altered ethylene 

production were inoculated with B. cinerea. The results showed that even if B. cinerea were 

able to sense ethylene produced by the host, it did not affect disease development. It should be 

noted that experiments were conducted in leaves and not in fruits, since it was difficult to get 

uniformity in the ripening stage of fruits. Processes that facilitate infections in fruit may differ 

from those in vegetative organs. Cantu et al., (2008) demonstrated that simultaneous 

suppression of expansin and polygalacturonase in ripening tomato fruit reduced wall 

disassembly, and slowed fruit softening in vivo, which decreased susceptibility to B. cinerea. 

Infection of a range of plant species and tissues by B. cinerea, as well as other pathogens, 

results in a large increase in ethylene production in the infected tissue (Elad, 1988a, 1990). 

Cantu et al. (2009) observed that the transcriptional changes that occur following B. cinerea 

infection of mature green tomato fruit resemble, in qualitative terms, the changes that were 

observed during normal ripening in uninfected fruit. In mature green fruit, B. cinerea 

infection caused 5- and 7-fold up-regulation of ACS2 and ACS4, respectively, key enzymes in 

the ripening-associated ethylene biosynthetic pathway. Expression of ACS2 and ACS4 

increased 31- and 139- fold, respectively, in healthy red ripe fruits compared to healthy 

mature green fruit. B. cinerea appears to exploit endogenous developmental programs and 

actively induce, in unripe tomato fruit, some of the processes that normally occur during fruit 

ripening, possibly to predispose the host tissue to fungal colonization (Cantu et al., 2009).  

Reports that the transcript levels of certain B. cinerea genes are induced by exposure to 

ethylene (Chagué et al., 2006), led us to characterize the role of the fungal histidine kinase 

BcHHK5, which structurally resembles plant ethylene receptors. Gene replacement mutants in 

the Bchhk5 gene were neither affected in growth in vitro nor in virulence. The expression of 

the two genes, Bchsp30 and Bcspl1, reported by Chagué et al. (2006) to be ethylene-

responsive were not significantly and consistently altered upon exposure to ethylene in the B. 

cinerea wild type strain nor in the mutant. In conclusion, our experiments did not provide any 

evidence that B. cinerea senses ethylene, nor that the BcHHK5 protein acts as an ethylene 

receptor. We propose that the stimulation of disease development by ethylene is exclusively 

the result of the ethylene-induced senescence and ripening processes in the host. These 

processes provoke softening and disintegration of tissues that facilitate the entry and 

proliferation of the pathogen. The effects of ethylene are not a direct consequence of an 

ethylene response in the pathogen. 



 
Chapter 6 
 

   88 

Functional analysis of B. cinerea NLPs 

NLPs constitute a protein family that is produced by a wide range of microbes, including 

both prokaryotic and eukaryotic organisms (Bailey, 1995; Fellbrich et al., 2002; Gijzen and 

Nürnberger, 2006). Most of the plant pathogenic microbes that produce NLPs exhibit a 

hemibiotrophic or necrotrophic life style. NLPs are considered proteinaceous toxins that 

trigger necrosis and ethylene production in plants. Besides their stimulation of immune-

associated defenses specifically in dicotyledonous plants, little is known about their mode of 

action. Ottmann et al. (2009) demonstrated that an NLP from Pythium aphanidermatum is 

able to disintegrate plant plasma membranes and provoke subsequent cell lysis.  

Many fungi and oomycetes posses several copies of NLPs in their genomes. Fungi can posses 

from one to four copies, whereas oomycetes like Phytophthora infestans possess up to 60 

copies (Gijzen and Nürnberger, 2006; Garcia et al., 2007; Motteram et al., 2009). B. cinerea 

possesses two NLP proteins, named BcNEP1 and BcNEP2 and these have orthologs in all 

other Botrytis species (Staats et al., 2007). BcNEP1 is the ortholog of all other NLPs 

identified thus far. No ortholog of BcNEP2 was detected in other species, except the closely 

related pathogen Sclerotinia sclerotiorum (Schouten et al., 2008). The two proteins have low 

sequence similarity (39 %) and possess different post-transcriptional modification motifs 

which, however, do not contribute to the necrosis-inducing activity of the proteins. Amino 

acid substitutions in the conserved hepta-peptide GHRHWDE abolish the necrosis-inducing 

activity on N. benthamiana and N. tabacum (Chapter 4). This region is part of a negatively 

charged cavity exposed at the protein surface and is implicated in coordination of a divalent 

cation within this cavity (Ottmann et al., 2009). 

Although both BcNEP1 and BcNEP2 are able to induce necrosis and ethylene production in a 

dose-dependent manner, BcNEP1 is more phytotoxic than BcNEP2. BcNEP1 is able to cause 

necrosis more rapidly and the protein concentration needed to induce ethylene production is 

lower. Other features of these proteins suggested that they may have different functions or 

have similar functions at different stages of the infection. Bcnep1 is transiently expressed 

during the formation of primary lesions in early stages of infection, while Bcnep2 expression 

is detected when the infection is established and the lesions are expanding (Chapter 3). 

Activity of BcNEP1 was independent of light, whereas the necrosis-inducing activity of 

BcNEP2 was compromised when the protein was infiltrated in leaves of dark-adapted plants 

and the infiltrated plants were kept in darkness (Chapter 5). The mechanism underlying light-

dependent activity of BcNEP2 remains to be resolved. 
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Gene replacement of Bcnep1 or Bcnep2 showed that these genes are dispensable for 

virulence (Chapter 3). Disease development by the mutant strains on tomato and N. 

benthamiana was similar to the wild type strain B05.10. The lack of BcNEP1 or BcNEP2 in 

single mutants was not compensated by the overexpression of the other gene since the genes 

are differentially expressed during infection. The fact that these genes are not essential in the 

infection process is in agreement with several reports. Single deletion of the two NLP genes 

from B. elliptica had no effect on virulence on lily (Staats et al., 2007). Likewise, deletion of 

an NLP gene in Mycosphaerella graminicola, present in a single copy in the genome, had no 

effect on virulence of this fungus on wheat, and the MgNLP protein, produced in Pichia 

pastoris, failed to induce necrosis on wheat leaves (Motteram et al., 2009). Both B. elliptica 

and M. graminicola are pathogens of monocots, and it is well established that NLPs are not 

able to cause necrosis in monocots (Gijzen and Nürnberger, 2006; Staats et al., 2007; 

Schouten et al., 2008; Motteram et al., 2009). So why would pathogens that attack monocot 

plants contain NLP genes? Also non-pathogenic microbes like Neurospora crassa, Bacillus 

halodurans, Streptomyces coelicolor posses NLP genes (Pemberton and Salmond, 2004). It is 

tempting to speculate that NLPs have a structural role or a developmental role in microbes 

instead of a role in pathogenesis. Their phytotoxic activity may be an inadvertent side effect 

of a different function.  

We attempted to determine which cellular processes and pathways in plants are required for 

the necrosis-inducing activity of BcNEP proteins. N. benthamiana leaves were pre-treated 

with several inhibitors of cellular processes and then infiltrated with BcNEP1 protein 

(Chapter 5). Only dynasore was able to reduce the necrosis-inducing activity of BcNEP1 but 

not of BcNEP2. Dynasore blocks coated vesicle formation and thereby inhibits endocytotic 

pathways known to depend on dynein (Macia et al., 2006). Does this suggest that BcNEP1 

enters plant cells through endocytosis whereas BcNEP2 uses a different strategy for entry? 

Previous reports established that BcNEP1 and BcNEP2 are associated with cell and nuclear 

membranes and may act as membrane-altering toxins that can penetrate deeply into the cell 

(Schouten et al., 2008). Schouten et al. (2008) proposed that NLPs might bind to plant lectins. 

Interestingly, there is a NLP in Bacillus thuringiensis serovar israelensis, annotated as having 

insecticidal activity but of which further details have remained unpublished. This protein 

contains a NLP domain fused to a lectin domain homologous to ricin B. The ricin B domain 

binds to galactose-containing receptors in (mammalian) cell membranes (Fu et al., 1996). 

Bacteria produce several toxins, whose actions often depend on glycan-binding subunits that 
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allow the toxin to interact with membrane glyco-conjugates and deliver the active toxic 

subunit across the plasma membrane. Binding of a toxin or bacterium to a glycolipid also may 

increase the likelihood of further interactions with membranes (Esko and Sharon, 2009). 

Ottmann et al. (2009) and Küfner et al. (2009) proposed that NLPPya, from the plant 

pathogenic oomycete Pythium aphanidermatum, targets specific components of membrane 

bilayers via a surface-exposed cavity and that it is distantly related to actinoporins and lectins. 

Actinoporins are cytolytic toxins that form transmembrane pores via their flexible N-terminal 

regions (Mancheño et al., 2003). The N-terminal region of NLPPya is required for NLP-

induced necrosis and plant defense activation and it was proposed that NLPs and actinoporins 

share a cytolytic, membrane-disintegrating mode of action (Ottmann et al., 2009).  

Pathogen-derived compounds like toxins trigger a complex spectrum of plant defence 

responses requiring activation of distinct signalling pathways. The phytohormones ethylene, 

jasmonic acid (JA) and salicylic acid (SA) have been implicated in plant defence signalling 

(Thomma et al., 1998; van Loon et al., 1998; Petersen et al., 2000). Arabidopsis mutants 

altered in ethylene, JA and SA production or signalling, as well as tomato mutants altered in 

ethylene production or signalling, were infiltrated with BcNEP proteins, and showed necrotic 

lesion development indistinguishable from the wild type progenitor (Chapter 5). Similar 

results were found for NLPPP, which induced lesions in SA-deficient nahG-expressing 

Arabidopsis plants, suggesting that SA is not required for this response (Qutob et al., 2006). 

Various experiments using genetic and pharmacological approaches (Chapter 5) have not 

identifed any target or cellular process that may be essential for the mode of action of B. 

cinerea NLPs. BcNEP1 and BcNEP2, as well as other NLPs, may indeed act as pore-forming 

toxins and permeate membranes without any active participation by the plant cell, as proposed 

by Küfner et al. (2009). Their role as virulence factors for B. cinerea appears to be marginal 

and may be overruled by two phytotoxic metabolites (botrydial and botcinic acid) that induce 

chlorosis and cell collapse. These toxic metabolites have very distinct chemical structures, yet 

seem to display functional overlap. The production of at least one of these two phytotoxic 

metabolites is essential for virulence of B. cinerea (Siewers et al., 2005; Pinedo et al., 2008; 

Paul and Bettina Tudzynski, pers. comm.). B. cinerea field isolates that do not produce these 

toxins are significantly less virulent as compared to isolates that produce either one or both of 

these toxins (Reino et al.,2004). The lack of any detectable role of BcNEP1 and BcNEP2 in 

virulence of B. cinerea and the difficulty in unravelling their mode of action will lead to 

discontinuation of research on these proteins.  



 
  General discussion 
 

   91

REFERENCE LIST 

 
Bailey, B. A. (1995). "Purification of a protein from culture filtrates of Fusarium oxysporum that induces 

ethylene and necrosis in leaves of Erythroxylum coca." Phytopathology 85(10): 1250-1255. 
Bondar, D. C., J. M. Beckerich and P. Bonnarme (2005). "Involvement of a branched-chain aminotransferase in 

production of volatile sulfur compounds in Yarrowia lipolytica." Applied and Environmental 
Microbiology 71(8): 4585-4591. 

Cantu, D., B. Blanco-Ulate, L. Yang, J. M. Labavitch, A. B. Bennett and A. L. T. Powell (2009). "Ripening-
regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or Ethylene." 
Plant Physiology 150(3): 1434-1449. 

Chagué, V., L. V. Danit, V. Siewers, C. S. Gronover, P. Tudzynski, B. Tudzynski and A. Sharon (2006). 
"Ethylene sensing and gene activation in Botrytis cinerea: A missing link in ethylene regulation of 
fungus-plant interactions?" Molecular Plant-Microbe Interactions 19(1): 33-42. 

Chague, V., Y. Elad, R. Barakat, P. Tudzynski and A. Sharon (2002). "Ethylene biosynthesis in Botrytis 
cinerea." FEMS Microbiology Ecology 40(2): 143-149. 

Cristescu, S. M., D. De Martinis, S. Te Lintel Hekkert, D. H. Parker and F. J. Harren (2002). "Ethylene 
production by Botrytis cinerea in vitro and in tomatoes." Applied and Environmental Microbiology 
68(11): 5342-5350. 

Elad, Y., Z. Lapsker, I. Kolesnik and B. Kirshner (2002). Involvement of ethylene in plant Botrytis cinerea 
interaction. 7th International Mycological Congress, Oslo. 

Engels, W. J. M., A. C. Alting, M. M. T. G. Arntz, H. Gruppen, A. G. J. Voragen, G. Smit and S. Visser (2000). 
"Partial purification and characterization of two aminotransferases from Lactococcus lactis subsp. 
cremoris B78 involved in the catabolism of methionine and branched-chain amino acids." International 
Dairy Journal 10(7): 443-452. 

Esko, J. D. and N. Sharon (2009). Microbial Lectins: Hemagglutinins, Adhesins, and Toxins. Essentials of 
Glycobiology. A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. 
Hart and M. E. Etzler. Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press: 784. 

Fellbrich, G., A. Romanski, A. Varet, B. Blume, F. Brunner, S. Engelhardt, G. Felix, B. Kemmerling, M. 
Krzymowska and T. Nürnberger (2002). "NPP1, a Phytophthora-associated trigger of plant defense in 
parsley and Arabidopsis." Plant Journal 32(3): 375-390. 

Fu, T., C. Burbage, E. Tagge, J. Chandler, M. Willingham and A. Frankel (1996). "Double-lectin site ricin B 
chain mutants expressed in insect cells have residual galactose binding: evidence for more than two 
lectin sites on the ricin toxin B chain." Bioconjugate Chemistry 7(6): 651-658. 

Garcia, O., J. A. N. Macedo, R., Tibúrcio, G., Zaparoli, J., Rincones, L. M. C., Bittencourt, G. O., Ceita, F., 
Micheli, A., Gesteira, A. C., Mariano, M. A., Schiavinato, F. J. Medrano, L. W. Meinhardt, G. A. G. 
Pereira and J. C. M. Cascardo (2007). "Characterization of necrosis and ethylene-inducing proteins 
(NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom in 
Theobroma cacao." Mycological Research 111(4): 443-455. 

Gijzen, M. and T. Nürnberger (2006). "Nep1-like proteins from plant pathogens: recruitment and diversification 
of the NPP1 domain across taxa." Phytochemistry 67(16): 1800-1807. 

Jarvis, W. R. (1977). Botryotinia and Botrytis species: taxonomy, physiology, and pathogenicity. . Otawa, 
Research Branch Canada Department of Agriculture. 

Kepczynska, E. (1993). "Involvement of ethylene in the regulation of growth and development of the fungus 
Botrytis cinerea Pers. ex. Fr." Plant Growth Regulation 13: 65-69. 

Klee, H. J., M. B. Hayford, K. A. Kretzmer, G. F. Barry and G. M. Kishore (1991). "Control of ethylene 
synthesis by expression of a bacterial enzyme in transgenic tomato plants." Plant Cell 3(11): 1187-1193. 

Küfner, I., Ottmann, C., Oecking, C. and Nürnberger, T. (2009) "Cytolytic toxins as triggers of plant immune 
response." Plant Signalling and Behaviour 4: 977-979. 

Lawton, K. A., S. L. Potter, S. Uknes and J. Ryals (1994). "Acquired Resistance Signal Transduction in 
Arabidopsis Is Ethylene Independent." Plant Cell 6(5): 581-588. 

Macia, E., M. Ehrlich, R. Massol, E. Boucrot, C. Brunner and T. Kirchhausen (2006). "Dynasore, a Cell-
Permeable Inhibitor of Dynamin." Developmental Cell 10(6): 839-850. 

Mancheño, J. M., J. Martín-Benito, M. Martínez-Ripoll, J. G. Gavilanes and J. A. Hermoso (2003). "Crystal and 
electron microscopy structures of sticholysin II actinoporin reveal insights into the mechanism of 
membrane pore formation." Structure 11(11): 1319-1328. 

Motteram, J., I. Kufner, S. Deller, F. Brunner, K. E. Hammond-Kosack, T. Nürnberger and J. J. Rudd (2009). 
"Molecular characterization and functional analysis of MgNLP, the sole NPP1 domain-containing 
protein, from the fungal wheat leaf pathogen Mycosphaerella graminicola." Molecular Plant Microbe 
Interactions 22(7): 790-799. 



 
Chapter 6 
 

   92 

Ottmann, C., B. Luberacki, I. Küfner, W. Koch, F. Brunner, M. Weyand, L. Mattinen, M. Pirhonen, G. 
Anderluh, H. U. Seitz, T. Nürnberger and C. Oecking (2009). "A common toxin fold mediates 
microbial attack and plant defense." Proceedings of the National Academy of Sciences of the United 
States of America 106(25): 10359-10364. 

Pemberton, C. L. and G. P. C. Salmond (2004). "The Nep1-like proteins - A growing family of microbial 
elicitors of plant necrosis." Molecular Plant Pathology 5(4): 353-359. 

Petersen, M., P. Brodersen, H. Naested, E. Andreasson, U. Lindhart, B. Johansen, H. B. Nielsen, M. Lacy, M. J. 
Austin, J. E. Parker, S. B. Sharma, D. F. Klessig, R. Martienssen, O. Mattsson, A. B. Jensen and J. 
Mundy (2000). "Arabidopsis map kinase 4 negatively regulates systemic acquired resistance." Cell 
103(7): 1111-1120. 

Pinedo, C., C. M. Wang, J. M. Pradier, B. Dalmais, M. Choquer, P. Le Pecheur, G. Morgant, I. G. Collado, D. E. 
Cane and M. Viaud (2008). "Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the 
phytopathogen Botrytis cinerea." ACS Chemical Biology 3(12): 791-801. 

Qadir, A., E. W. Hewett and P. G. Long (1997). "Ethylene production by Botrytis cinerea." Postharvest Biology 
and Technology 11(2): 85-91. 

Qutob, D., B. Kemmerling, F. Brunner, I. Kufner, S. Engelhardt, A. A. Gust, B. Luberacki, H. U. Seitz, D. Stahl, 
T. Rauhut, E. Glawischnig, G. Schween, B. Lacombe, N. Watanabe, E. Lam, R. Schlichting, D. Scheel, 
K. Nau, G. Dodt, D. Hubert, M. Gijzen and T. Nürnberger (2006). "Phytotoxicity and innate immune 
responses induced by Nep1-like proteins." Plant Cell 18(12): 3721-3744. 

Reino, J. L., Hernández-Galán, R., Durán-Patrón, R. and Collado, I. G. (2004). "Virulence–toxin production 
relationship in isolates of the plant pathogenic fungus Botrytis cinerea." Phytopathology 152: 563-566. 

Schouten, A., P. Van Baarlen and J. A. L. Van Kan (2008). "Phytotoxic Nep1-like proteins from the 
necrotrophic fungus Botrytis cinerea associate with membranes and the nucleus of plant cells." New 
Phytologist 177(2): 493-505. 

Sharon, A., Y. Elad, R. Barakat and P. Tudzynski (2004). Phytohormones and Botrytis. Botrytis: Biology, 
Pathology and Control. Y. Elad, B. Williamson, P. Tudzynski and N. Delen. Dordrecht, the 
Netherlands, Kluwer Academic Publishers: 163-179. 

Staats, M., P. Van Baarlen, A. Schouten and J. A. L. Van Kan (2007). "Functional analysis of NLP genes from 
Botrytis elliptica: Short communication." Molecular Plant Pathology 8(2): 209-214. 

Thage, B. V., F. P. Rattray, M. W. Laustsen, Y. Ardo, V. Barkholt and U. Houlberg (2004). "Purification and 
characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp. 
paracasei CHCC 2115." Journal of Applied Microbiology 96(3): 593-602. 

Thomma, B. P., K. Eggermont, I. A. Penninckx, B. Mauch-Mani, R. Vogelsang, B. P. Cammue and W. F. 
Broekaert (1998). "Separate jasmonate-dependent and salicylate-dependent defense-response pathways 
in arabidopsis are essential for resistance to distinct microbial pathogens." Proceedings of Natural 
Academy of Science of the United States of America 95(25): 15107-15111. 

van Kan, J. A., T. Cozijnsen, N. Danhash and P. J. De Wit (1995). "Induction of tomato stress protein mRNAs 
by ethephon, 2,6-dichloroisonicotinic acid and salicylate." Plant Molecular Biology 27(6): 1205-1213. 

van Loon, L. C., P. A. Bakker and C. M. Pieterse (1998). "Systemic resistance induced by rhizosphere bacteria." 
Annual Review of Phytopathology 36: 453-483. 

 

 



 
 
 

   93

Summary 
 

Botrytis cinerea can infect more than 200 plant species, including a wide range of 

economically important crops. During pathogen infection, plants release ethylene and it has 

been hypothesized that ethylene may predispose host tissue for infection by inducing 

senescence and ripening. This thesis focused on the roles that ethylene production and 

perception, both by the pathogen and the plant, play in the interaction between B. cinerea and 

crops, using tomato as a model. Furthermore, functional analysis was performed of B. cinerea 

Nep1-Like Proteins (NLPs), called BcNEP1 and BcNEP2, with emphasis on their role in 

virulence and mode of action. 

Ethylene regulates several developmental processes in plants and plays an important role in 

plant-pathogen interactions. We investigated possible effects of ethylene on B. cinerea during 

infection of tomato Solanum lycopersicum (Chapter 2). There were previous reports that 

ethylene released by the plant could stimulate germination of B. cinerea conidia and affect 

germ tube growth and infection structure differentiation. Based on growth experiments in 

vitro in the presence of ethylene, we conclude that ethylene does not affect hyphal 

development of the fungus. Also the virulence of B. cinerea on tomato genotypes with a 

reduced or an enhanced ethylene production level was unaltered. Neither did ethylene induce 

fungal gene expression as was previously reported. We studied a B. cinerea gene encoding a 

histidine kinase (BcHHK5) with strong structural similarity to plant ethylene receptors. 

Mutants in which the Bchhk5 was deleted were neither affected in growth in vitro nor in 

virulence. We propose that the effects of ethylene on B. cinerea disease development are not a 

direct consequence of an ethylene response in the pathogen, but rather a consequence of 

induced senescence and ripening processes in the host. These processes provoke softening and 

disintegration of tissues that facilitate the entry and proliferation of the pathogen. 

Functional analysis was performed of two B. cinerea NLPs, named BcNEP1 and BcNEP2, 

produced in Pichia pastoris (Chapter 3). Infiltration of purified proteins into N. benthamiana 

leads to induction of ethylene in a dose-dependent manner. BcNEP1 was able to induce 

ethylene and necrosis at lower concentrations as compared to BcNEP2. Transcriptional 

studies (Chapter 3) showed that Bcnep1 is transiently expressed during early stages of 

infection when primary lesions develop, while Bcnep2 is expressed when the infection is 

established and lesions are expanding. Altogether these results suggested that BcNEP1 and 

BcNEP2 may have different functions or they have a similar function at different stages of the 
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infection process. Single knock-out mutants of either Bcnep1 or Bcnep2 gene showed no 

reduction of virulence on tomato or N. benthamiana. Ethylene emitted by leaves inoculated 

with Bcnep mutants was not significantly different from leaves inoculated with the parental 

wild type strain B05.10. These results demonstrate that BcNEP proteins are not essential in 

the infection process of B. cinerea and that ethylene produced in B. cinerea-infected tissue 

does not result from a response to BcNEP proteins (Chapter 3). 

By transiently expressing site-directed mutant BcNEP proteins in N. benthamiana and N. 

tabacum through Agrobacterium tumefaciens, we could study structure-function relationships 

(Chapter 4). The conserved hepta-peptide GHRHWDE, in the central part of the protein 

sequence, was shown to be essential for the necrosis-inducing activity. Also the first two 

cysteine residues, C68 and C94, which are predicted to form a disulfide bridge, are important 

for necrosis-inducing activity. The two proteins contain different post-transcriptional 

modification motifs, however, none of these motifs is essential for necrosis-inducing activity.  

Necrosis-inducing activity of BcNEP1 was independent of light, whereas the activity of 

BcNEP2 was compromised when the protein was infiltrated in leaves of dark-adapted plants 

and the infiltrated plants were kept in darkness (Chapter 5). We studied the role of the plant in 

the mode of action of BcNEP proteins using genetic and pharmacological approaches 

(Chapter 5). In spite of several efforts, we were not able to identify any cellular process or 

signaling pathway in plants that is required for the necrosis-inducing activity of BcNEP 

proteins. The target(s) and mode(s) of action of BcNEP proteins remain unresolved.  
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Samenvatting 
 

De schimmel Botrytis cinerea kan meer dan 200 plantensoorten infecteren, waaronder een 

groot aantal gewassen van grote economische betekenis. Tijdens infectie door 

ziekteverwekkers produceren planten ethyleen. Er is gepostuleerd dat ethyleen in een 

waardplant de rijping en veroudering van weefsels induceert, waardoor de plant vatbaarder 

wordt voor ziekteverwekkers. Dit proefschrift richtte zich op het bestuderen van de rol van 

ethyleenproductie en -perceptie, zowel door de ziekteverwekker als door de plant, in de 

interactie tussen B. cinerea en planten, waarbij tomaat als modelgewas werd gebruikt. 

Bovendien werd een functionele analyse uitgevoerd aan twee fytotoxische ‘Nep1-Like 

Proteins’ van B. cinerea, genaamd BcNEP1 and BcNEP2, met bijzondere aandacht voor de 

rol van deze eiwitten in virulentie en voor hun werkingsmechanisme. 

Ethyleen reguleert in planten verschillende ontwikkelingsprocessen en het speelt een 

belangrijke rol in plant-pathogeen interacties. We bestudeerden de mogelijke effecten van 

ethyleen op B. cinerea tijdens de infectie van tomaat, Solanum lycopersicum (Hoofdstuk 2). 

Er waren eerdere publikaties die beschreven dat ethyleen, geproduceerd door een plant, in 

staat was om de kieming van B. cinerea conidia te stimuleren, en ook de kiembuisgroei en 

differentiatie van infectie structuren van de schimmel te beïnvloeden. Op basis van in vitro 

groeiproeven in aanwezigheid van ethyleen, konden wij concluderen dat ethyleen de 

ontwikkeling van hyfen van de schimmel niet beïnvloedt. Ook de ziekteontwikkeling van B. 

cinerea op tomaat genotypes met verminderde of verhoogde ethyleen productie was 

onveranderd. Ethyleen kon evenmin de expressie induceren van twee schimmelgenen, zoals 

door anderen werd gerapporteerd. We bestudeerden een B. cinerea gen dat codeert voor een 

histidine kinase (BcHHK5), dat structurele gelijkenis vertoont met ethyleenreceptoren van 

planten. B. cinerea mutanten waarin het Bchhk5 gen was uitgeschakeld vertoonden geen 

veranderde groei in vitro en ook geen verminderde virulentie. We concluderen dat de effecten 

van ethyleen op de ziekteontwikkeling van B. cinerea geen direct gevolg kunnen zijn van een 

ethyleenrespons in de schimmel, maar resulteren van de inductie van veroudering en rijping in 

de waardplant. Deze processen veroorzaken plantenweefselafbraak en vergemakkelijken de 

toegang en proliferatie van B. cinerea (Hoofdstuk 2). 

Eveneens werd een functionele analyse uitgevoerd aan twee fytotoxische eiwitten van B. 

cinerea, genaamd BcNEP1 en BcNEP2 die werden geproduceerd in de gist Pichia pastoris 

(Hoofdstuk 3). Infiltratie van de eiwitten in Nicotiana benthamiana leidde op een 
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concentratie-afhankelijke wijze tot inductie van ethyleen productie. BcNEP1 induceerde 

ethyleen en necrose bij lagere concentraties dan BcNEP2. Transcript analyse (Hoofdstuk 3) 

toonde aan dat Bcnep1 tot expressie komt in de vroege infectiestadia, terwijl Bcnep2 tot 

expressie komt als de B. cinerea lesies uitgroeien. Alles overziend suggereren deze resultaten 

dat BcNEP1 en BcNEP2 verschillende functies hebben, of ze hebben dezelfde functie op 

verschillende tijdstippen van de infectie door B. cinerea. Deletiemutanten in het Bcnep1 of 

Bcnep2 gen vertoonden geen verminderde virulentie op tomaat of N. benthamiana. Ethyleen 

productie in bladeren die waren geïnoculeerd met Bcnep mutanten was niet lager dan in 

bladeren die waren geïnoculeerd met de wild type B. cinerea stam B05.10. BcNEP eiwitten 

zijn dus niet essentieel voor virulentie van B. cinerea en ethyleen productie in B. cinerea-

geïnfecteerd weefsel is niet het gevolg van respons op BcNEP eiwitten (Hoofdstuk 3). 

Door transiënte expressie van gemuteerde BcNEP eiwitten in N. benthamiana en N. tabacum 

door middel van Agrobacterium tumefaciens, konden we structuur-functie relaties bestuderen 

(Hoofdstuk 4). Het geconserveerde hepta-peptide domein, GHRHWDE, in het centrale deel 

van de eiwitsequentie, was essentieel voor de necrose-inducerende activiteit. Ook de eerste 

twee cysteine residuen, C68 en C94, die volgens structuurvoorspellingen een zwavelbrug 

vormen, zijn belangrijk voor necrose-inducerende activiteit. De twee eiwitten bevatten geheel 

verschillende motieven voor post-translationele modificaties, maar deze motieven zijn niet 

essentieel voor necrose-inducerende activiteit (Hoofdstuk 4).  

Necrose-inducerende activiteit van BcNEP1 was niet afhankelijk van licht. Daarentegen nam 

de necrotische reactie op BcNEP2 af als het eiwit werd geïnfiltreerd in bladeren van in het 

donker geplaatste planten, en de geïnfiltreerde planten vervolgens in het donker bleven 

(Hoofdstuk 5). We bestudeerden de rol van de plant in het werkingsmechanisme van BcNEP 

eiwitten door genetische en farmacologische benaderingen (Hoofdstuk 5). In verschillende 

typen experimenten werden geen processen geïdentificeerd die van belang zijn voor necrose-

inducerende activiteit van BcNEP eiwitten. Het werkingsmechanisme en de moleculaire 

targets van BcNEP eiwitten blijven onopgehelderd.  
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