Energie en broeikasgasemissies in de keten

- Quick Scan energie en broeikasgasemissies
- Supermarkt vs. webwinkel

bioKennis
Energie en broeikasgasemissies in de keten

- Quick Scan energie en broeikasgasemissies
- Supermarkt vs. webwinkel

M.P.J. van der Voort ¹
B. Luske²

¹ Praktijkonderzoek Plant & Omgeving B.V. ² Blonk Milieu Advies

Praktijkonderzoek Plant & Omgeving B.V.
Akkerbouw, Groene ruimte en Vollegrondsgroenten
juli 2009
Inhoudsopgave

1 **INLEIDING** .. 5
 1.1 Aanleiding .. 5

2 **QUICK SCAN KETEN** .. 7
 2.1 Inleiding .. 7
 2.2 Methodiek ... 7
 2.3 Resultaten .. 7

3 **SUPERMARKT VS. WEBWINKEL** ... 13
 3.1 Inleiding ... 13
 3.2 Methodiek .. 13
 3.3 Uitgangsdata .. 14
 3.4 Resultaten .. 16
 3.5 Conclusie .. 19
 3.6 Discussie ... 19

BRONNEN .. 21

WEBSITES ... 21
1 Inleiding

1.1 Aanleiding

In de literatuurstudie Energieverbruik en broeikasgasemissie in de biologische keten is een aantal gegevens benoemd uit andere onderzoeken. Veel literatuur was van buitenlandse afkomst. Die gegevens bieden wel houvast, maar geven geen actueel beeld van de situatie.

Uit het onderzoek kwamen een tweetal vragen naar voren.

Wat is het energieverbruik en broeikasgasemissie van een aantal producten in Nederland.

Een andere vraag is het effect van verschil in ketenconcept en dan met name het effect van de consument.

De consument die zelf naar de supermarkt rijdt en een keten concept van een internetwinkel, waar het product bij de consument wordt thuis gebracht.

Het onderzoek bestaat uit twee delen. Elk deel van het onderzoek komt overeen met één van de bovenstaande vragen.
2 Quick scan keten

2.1 Inleiding

2.1.1 Aanleiding
In de literatuurstudie (Van der Voort, 2008) is een aantal gegevens benoemd uit andere onderzoeken. Een deel van de gegevens was afkomstig uit buitenlandse onderzoeken. Om een beeld te schetsen van de Nederlandse situatie is een inschatting gemaakt voor de teelt, opslag, transport verpakking en verwerking van een groot aantal in Nederland op de markt gebrachte producten.

2.1.2 Doelstelling
Doel van de quick scan is een beeld schetsen van het energieverbruik en de broeikasgasemissie van een groep biologische producten op de Nederlandse markt. Het beeld van het energieverbruik en de broeikasgasemissies geeft het aandeel van de verschillende ketenschakels. Ketenpartijen kunnen hiermee inzichtelijk krijgen hoe groot hun deel is in het energiegebruik en broeikasgasemissie.

2.2 Methodiek

Voor de Quick Scan zijn een zestal producten/ketens gekozen. Het zijn sinaasappels, peren, winterpeen, varkensvlees, melk, aardappels, tarwe (brood) en friet (aardappels).
Per keten is op basis van inschatting en navraag bij handelspartijen bepaald waar het product vandaan komt (teeltlocatie) en welke stappen/bewerkingen er plaats vinden tussen teelt en supermarkt. Op basis van literatuur is per ketenstap het energieverbruik en de broeikasgasemissie bepaald.

2.3 Resultaten

Voor de sinaasappels en peren komen de producten uit respectievelijk Egypte en Argentinië. Van de overige producten is verondersteld dat ze uit Nederland afkomstig zijn. In de berekening van de broeikasgasemissie per kilogram product is het distributiecentrum van de supermarkt voor alle producten het eindpunt. De resultaten van de Quick Scan zijn in de twee onderstaande figuren weergegeven. Figuur 1 is een weergave van de CO₂-equivalenten in gram per kilogram product. Figuur 2 is een weergave van het aandeel van elk van de ketenstappen op het totaal van de keten.
De resultaten van biologische producten die in Nederland op de markt worden gebracht, komen overeen met resultaten uit buitenlandse onderzoeken. Een aantal van de conclusies komen overeen, namelijk dat dierlijke producten hoger scoren, dan plantaardige producten. Dit blijkt wel uit figuur 1. Het belang van transport en verwerking neemt toe naar mate respectievelijk de afstand of het aantal bewerkingen toeneemt. Dit wordt weergegeven in figuur 2.

Voor de Quick Scan is geen uitgebreid onderzoek gedaan naar de keten. Er zijn daarom een aantal
aannames gemaakt van de situatie in de keten. Bij verdere studie kan het zijn dat de cijfers hoger of lager uitvallen. De verwachting is wel dat de producten/ketens niet veel ten opzichte van elkaar zullen verschuiven. Hieronder zijn per product/keten de meest specifieke kenmerken benoemd.

2.3.1 Sinaasappels

Herkomst: Egypte

<table>
<thead>
<tr>
<th>Ketenstap</th>
<th>Gram CO₂-eq./kg prod.</th>
<th>% van totale emissie</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teelt</td>
<td>250 gr.</td>
<td>48,2</td>
<td>Sanjuan et al., 2005</td>
</tr>
<tr>
<td>Koeling/opslag</td>
<td>65 gr.</td>
<td>12,6</td>
<td>Hauwermeiren et al., 2007</td>
</tr>
<tr>
<td>Transport</td>
<td>535 km</td>
<td>199 gr.</td>
<td>GER-waarden, Hauwermeiren et al., 2007</td>
</tr>
<tr>
<td>Zeetransport</td>
<td>6143 km</td>
<td></td>
<td>GER-waarden, Hauwermeiren et al., 2007</td>
</tr>
<tr>
<td>Koeltransport</td>
<td>90 km</td>
<td></td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Koeltransport</td>
<td>150 km</td>
<td></td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Verpakking</td>
<td>4,6 gr.</td>
<td>0,9</td>
<td>Foster et al., 2006</td>
</tr>
</tbody>
</table>

518,6 gr.

2.3.2 Peren

Voor de teelt van peren is geen literatuurbron gevonden voor de broeikasgasemissie van de teelt. Er is daarom een publicatie van appels als uitgangspunt gehanteerd.

Herkomst: Argentinië

<table>
<thead>
<tr>
<th>Ketenstap</th>
<th>Gram CO₂-eq./kg prod.</th>
<th>% van totale emissie</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teelt</td>
<td>240 gr.</td>
<td>43,6</td>
<td>Jones, 2002</td>
</tr>
<tr>
<td>Koeling/opslag</td>
<td>65 gr.</td>
<td>11,8</td>
<td>Hauwermeiren et al., 2007</td>
</tr>
<tr>
<td>Transport</td>
<td>455 km</td>
<td>240 gr.</td>
<td>GER-waarden, Hauwermeiren et al., 2007</td>
</tr>
<tr>
<td>Zeetransport</td>
<td>11849 km</td>
<td></td>
<td>GER-waarden, Hauwermeiren et al., 2007</td>
</tr>
<tr>
<td>Koeltransport</td>
<td>90 km</td>
<td></td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Koeltransport</td>
<td>150 km</td>
<td></td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Verpakking</td>
<td>4,5 gr.</td>
<td>0,8</td>
<td>Foster et al., 2006</td>
</tr>
</tbody>
</table>

550 gr.
2.3.3 Winterpeen

Herkomst: Nederland

<table>
<thead>
<tr>
<th>Ketenstap</th>
<th>Gram CO₂-eq./kg prod.</th>
<th>% van totale emissie</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teelt</td>
<td>100 gr.</td>
<td>48,6</td>
<td>Bos et al., 2007</td>
</tr>
<tr>
<td>Koeling/opslag</td>
<td>42 gr.</td>
<td>10,3</td>
<td>Bus et al., 2008</td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vrachtwagen 100 km</td>
<td>58 gr.</td>
<td>28,1</td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Koeltransport 150 km</td>
<td></td>
<td></td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Koeltransport 100 km</td>
<td></td>
<td></td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Verpakking</td>
<td>5,9 gr.</td>
<td>2,9</td>
<td>Foster et al., 2006</td>
</tr>
<tr>
<td>Verwerking</td>
<td>0,17 gr.</td>
<td>0,1</td>
<td>MJA2 Nekovri</td>
</tr>
<tr>
<td></td>
<td>205,6 gr.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3.4 Varkensvlees

Herkomst: Nederland

<table>
<thead>
<tr>
<th>Ketenstap</th>
<th>Gram CO₂-eq./kg prod.</th>
<th>% van totale emissie</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teelt</td>
<td>4.795 gr.</td>
<td>90,9</td>
<td>Kramer et al., 2006</td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vrachtwagen 150 km</td>
<td>64 gr.</td>
<td>1,2</td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Koeltransport 150 km</td>
<td></td>
<td></td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Koeltransport 100 km</td>
<td></td>
<td></td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Verpakking</td>
<td>4,5 gr.</td>
<td>0,1</td>
<td>Foster et al., 2006</td>
</tr>
<tr>
<td>Verwerking</td>
<td>408 gr.</td>
<td>7,7</td>
<td>Kramer et al., 2006</td>
</tr>
<tr>
<td></td>
<td>5.272 gr.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3.5 Melk

Herkomst: Nederland

<table>
<thead>
<tr>
<th>Ketenstap</th>
<th>Gram CO₂-eq./kg prod.</th>
<th>% van totale emissie</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teelt</td>
<td>1.385 gr.</td>
<td>87,7</td>
<td>Kramer et al., 2006</td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tankauto 250 km</td>
<td>89,5 gr.</td>
<td>5,7</td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Koeltransport 150 km</td>
<td></td>
<td></td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Koeltransport 100 km</td>
<td></td>
<td></td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Verpakking</td>
<td>9,5 gr.</td>
<td>0,6</td>
<td>Foster et al., 2006</td>
</tr>
<tr>
<td>Verwerking</td>
<td>95,2 gr.</td>
<td>6,0</td>
<td>Sukkel, 2008</td>
</tr>
<tr>
<td></td>
<td>1.579 gr.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3.6 Aardappels

Herkomst: Nederland

<table>
<thead>
<tr>
<th>Ketenstap</th>
<th>Gram CO₂-equivalent/ kg prod.</th>
<th>% van totale emissie</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teelt</td>
<td>231 gr.</td>
<td>68,8</td>
<td>Bos et al., 2007</td>
</tr>
<tr>
<td>Koeling/opslag</td>
<td>42 gr.</td>
<td>12,5</td>
<td>Bus et al., 2008</td>
</tr>
<tr>
<td>Transport Vrachtwagen</td>
<td>100 km</td>
<td>58 gr.</td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Koeltransport</td>
<td>150 km</td>
<td></td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Koeltransport</td>
<td>100 km</td>
<td></td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Verpakking</td>
<td>5 gr.</td>
<td>1,5</td>
<td>Foster et al., 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td>335,7 gr.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3.7 Brood (tarwe)

Herkomst: Nederland

<table>
<thead>
<tr>
<th>Ketenstap</th>
<th>Gram CO₂-equivalent/ kg prod.</th>
<th>% van totale emissie</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teelt</td>
<td>571 gr.</td>
<td>48,6</td>
<td>Bos et al., 2007</td>
</tr>
<tr>
<td>Transport</td>
<td>253,7 gr.</td>
<td>28,1</td>
<td>Foster et al., 2006</td>
</tr>
<tr>
<td>Verpakking</td>
<td>0,03 gr.</td>
<td>2,9</td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Verwerking Broodproductie</td>
<td>140 gr.</td>
<td>0,1</td>
<td>Foster et al., 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td>964,9 gr.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3.8 Friet (aardappels)

Herkomst: Nederland

<table>
<thead>
<tr>
<th>Ketenstap</th>
<th>Gram CO₂-equivalent/ kg prod.</th>
<th>% van totale emissie</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teelt</td>
<td>231 gr.</td>
<td>48,2</td>
<td>Bos et al., 2007</td>
</tr>
<tr>
<td>Koeling/opslag</td>
<td>42 gr.</td>
<td>8,8</td>
<td>Bus et al., 2008 en</td>
</tr>
<tr>
<td>Hauwermeiren et al., 2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Vrachtwagen</td>
<td>100 km</td>
<td>58 gr.</td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Koeltransport</td>
<td>150 km</td>
<td>12,1</td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Koeltransport</td>
<td>100 km</td>
<td>12,1</td>
<td>GER-waarden</td>
</tr>
<tr>
<td>Verpakking</td>
<td>5 gr.</td>
<td>1,0</td>
<td>Foster et al., 2006</td>
</tr>
<tr>
<td>Verwerking Spoelen</td>
<td>143 gr.</td>
<td>29,8</td>
<td>Foster et al., 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td>478,8 gr.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Supermarkt vs. Webwinkel

3.1 Inleiding

3.1.1 Aanleiding
Voor de consument wordt het steeds gemakkelijker om de dagelijkse boodschappen via internet te doen. Daarnaast is het aandeel biologische producten in de supermarkt de laatste jaren toegenomen en zijn er allerlei initiatieven om streekproducten meer te promoten. Een van deze initiatieven is de Hofwebwinkel, die onder andere biologische streekproducten aanbiedt via internet die thuis bezorgd kunnen worden. Praktijkonderzoek Plant en Omgeving (PPO) heeft Blonk Milieuadvies gevraagd om het broeikaseffect en het energiegebruik van de afzet van biologische groenten via een internetwinkel te vergelijken met het gangbare afzetkanaal via de supermarkt.

3.1.2 Doelstelling
Het doel van de studie is om de milieuprestaties (broeikaseffect en energiegebruik) van de afzetkanalen van biologische groenten (aardappelen, uien en wortelen) via een internetwinkel te vergelijken met het reguliere afzetkanaal via de supermarkt.

3.2 Methodiek

3.2.1 Functionele eenheid
De analyse vergelijkt de afzet van 1.000 kg product (aardappelen, uien of wortelen) bij de consument.

3.2.2 Systeemafbakening
De analyse richt zich op de milieueffecten die optreden in de laatste schakels van de keten en de afzet richting de consument. De milieueffecten op de boerderij zijn buiten beschouwing worden gelaten (zie figuur 1, rood omkaderde deel) omdat redelijkerwijs aangenomen kan worden dat hier geen verschillen optreden. De analyse omvat alleen de milieueffecten van het transport. Door onzekerheid van data en de relatief kleine impact op de resultaten van het energiegebruik tijdens opslag, verpakken en orders pikken, is deze post niet meegenomen in de analyse. Dit is mede gedaan, omdat voor beide ketens deze post ongeveer gelijk zal zijn per functionele eenheid.
3.2.3 Methode van vergelijking
Om een goede analyse te kunnen uitvoeren zijn allereerst de transportketens van de webwinkel en de supermarktketen in beeld gebracht. De transportafstanden, belading en laadvermogen van de webwinkelketen zijn geïnventariseerd door Praktijkonderzoek Plant & Omgeving bij de webwinkel. De supermarktketen is in beeld gebracht door Blonk Milieuadvies op basis van data afkomstig van Super de Boer en op basis van eerdere casestudies van Blonk Milieuadvies over tuinbouwproducten. Voor alle uitgangsdata is een gemiddelde, een minimum en een maximumwaarde opgegeven, waaruit 10.000 random samenstellingen zijn gekozen waarmee gerekend is (Bayesian approach). Deze methode maakt het mogelijk om naast de grootte van het verschil in broeikasgasemissies en energiegebruik ook de kans te berekenen dat dit verschil optreedt.

3.3 Uitgangsdata

3.3.1 Brandstofverbruik van wegtransport
Het brandstofverbruik van voertuigen is niet altijd gelijk. Zo is het bekend dat de situatie op de weg, het wegtype (stedelijk gebied of snelweg), bandenspanning, weertype veel invloed hebben op het verbruik van voertuigen (TNO, pers. comm.). Daarnaast is de rijstijl van invloed op het brandstofverbruik. In de analyse is daarom uitgegaan van een bandbreedte voor het brandstofverbruik van vrachtwagens, bestelbusjes en auto’s (Vermeulen et al., 2004; www.energielabel.nl).

<table>
<thead>
<tr>
<th>Vervoersmiddel</th>
<th>Kg CO₂-eq/km (minimum)</th>
<th>Kg CO₂-eq/km (maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>0,149</td>
<td>0,224</td>
</tr>
<tr>
<td>Bestelbus</td>
<td>0,249</td>
<td>0,331</td>
</tr>
<tr>
<td>Vrachtwagen>12 ton</td>
<td>0,280</td>
<td>0,504</td>
</tr>
</tbody>
</table>

Tabel 1: Broeikasgasemissie per kilometer per vervoersmiddel (inclusief emissie door productie van brandstof)

3.3.2 Afgelegde afstanden
Het inschatten van de transportafstanden die de producten afleggen is zorgvuldig uitgevoerd op basis de aardappelcase. Aangezien uien en wortelen net als aardappelen producten zijn die op grote schaal in Nederland geteeld worden, is aangenomen dat de aardappelcase representatief is voor uien en wortelen. De aardappelen die de webwinkel verkoop zijn afkomstig van boeren die binnen een straal van 5 kilometer bij de webwinkel gesitueerd zijn. De groente wordt eventueel op de boerderij opgeslagen en daarna direct
vanaf de boerderij bij de webwinkel afgeleverd met een bestelbus. Vanaf de webwinkel wordt de groente met verschillende bestelbusjes over een gemiddelde afstand van 100 km aan huis gebracht (enkele reis). De transportketen van de webwinkel bestaat dus slechts uit 2 stappen. In het geval van de supermarktketen is de transportketen een stuk ingewikkelder. De meeste consumptie aardappels worden in het zuiden van het land geteeld (Noord-Brabant, Limburg, Flevoland en Zeeland). Teleurs uit de regio slaan de aardappelen vaak gezamenlijk op in een loods (bijvoorbeeld in Tholen of Veghel). Voor de analyse is uitgegaan van een transportafstand van boer tot opslag van 50 km. Vanuit de opslag gaan de aardappelen naar een pakstation. Jansen Dongen in Tilburg is de verpakker van aardappelen voor de Super de Boer (gemiddeld 60 km). Dan gaan de aardappelen van de verpakker naar een distributiecentrum. Super de Boer heeft momenteel 4 distributiecentra: in ’s Hertogenbosch, Drachten, Beilen en Veenendaal. De aangenomen bediening van supermarkten vanuit deze distributiecentra is ingeschat als zijnde respectievelijk 40%, 10%, 10% en 40%. De gemiddelde transportafstand van pakstation tot distributiecentrum is daarmee berekend op gemiddeld 100 km. De aflevering van de groente aan de supermarkt is ook ingeschat op gemiddeld 100 km. Voor alle transportafstanden is met een minimale en een maximale waarde gerekend.

3.3.3 Beladingsgraad
In de berekeningen wordt de emissie per functionele eenheid uitgerekend. De functionele eenheid in deze analyse is gesteld op aflevering van 1000 kg aardappelen, wortelen of uien. Een cruciale rol in de analyse speelt daarom de beladingsgraad van de vervoersmiddelen. Een bestelbusje verbruikt minder brandstof dan een vrachtauto per afgelegde kilometer, maar omdat er aanzienlijk minder vervoerd wordt per rit, is het verbruik per ton/km voor een bestelbus hoger dan voor een gemiddelde vrachtwagen (figuur 2).

![Figuur 2. Broeikasgasemissie per tonkm voor een bestelbusje en een vrachtwagen (heenreis).](image)

De beladingsgraad van de bestelbus die de groente ophaalt van de boerderij is gemiddeld 1000 kg per rit. De belading bij de bezorging van de groente bij de consument is gemiddeld 900 kg (60 klanten met ieder gemiddeld 15 kg aan bestelling). De emissie van een bestelbus met 1 ton belading komt daarmee op 0,29 kg CO₂-eq/tonkm. Vrachtwagens die in de supermarktketen worden ingezet, vervoeren gemiddeld tussen de 10 en 14 ton per vracht. Dit is uiteraard afhankelijk van de grootte van de vrachtwagen (Gross Vehicle Weight, GVW) en de grootte, vorm en gewicht van de lading. In deze analyse is uitgegaan van een vrachtwagen met een GVW groter dan 12 ton met een gemiddelde belading van 12 ton. De broeikasgasemissie komt hiermee op 0,097 kg CO₂-eq/tonkm (incl. productie van brandstof).

3.3.4 Extra gereden kilometers
Bij het afleveren van producten worden eigenlijk altijd extra kilometers gereden. De producten moeten immers van A naar B en niet van B naar A. Op de terugweg gaan alleen lege kratten etc. mee. In de praktijk wordt de afstand vaak dubbel afgelegd. Bij distributie van producten wordt de afgelegde afstand zelfs nog groter, omdat er omgereden moet worden langs andere bezorgadressen. In de analyse is uitgegaan van een extra kilometer factor van 2 tot 2,1 voor de alle afstanden (gemiddeld 5% extra kilometers naast de terugreis). Behalve voor de distributie van producten aan de supermarkt is uitgegaan van een extra kilometer factor van tussen 2 en 2,2 (gemiddeld 10% extra km naast de terugreis).
3.3.5 Supermarkt bezoek

Uit onderzoek is gebleken dat 82% van de Nederlanders binnen een wegafstand van 1 km in de buurt wonen en bijna iedereen in Nederland woont binnen 5 km van een supermarkt vandaan waarvan het merendeel minder dan 1 km van een supermarkt woont (www.ruimtemonitor.nl). In de analyse is daarom aangenomen dat de afgelegde afstand naar de supermarkt gemiddeld 2 km is, minimaal 1 en maximaal 3 km (heen en terugreis).

De emissie van auto’s met een gemiddeld energielabel is 0,173 kg CO₂-eq per km. Dit is echter exclusief de emissie voor de productie van de brandstof. Inclusief de productie van diesel is de emissie per km van een auto 186 kg CO₂-eq/km. Als maximum en minimum is aangenomen een emissie van 20% lager en 20% hoger, conform de huidige energielabels die auto’s in de winkel hebben in Nederland (www.energielabel.nl). Tevens is aangenomen dat gemiddeld 47% van de supermarktbezoekers met de auto komt (GfK cijfers) 34% met de fiets en 18% te voet. Als minimum en maximum scenario is gekozen dat 0% en 100% van de supermarktbezoeken met de auto worden gedaan. De emissie van supermarktbezoeken van fietsers en wandelaars is verwaarloosd.

Een aannemer in de analyse is dat alle supermarktbezoeken vermeden worden door gebruik te maken van de webwinkel. Dit is gedaan, omdat de webwinkel een breed assortiment heeft en alle componenten van een maaltijd kan leveren. Of dit in de praktijk ook gebeurt is echter de vraag. Het kan best zo zijn dat er toch af en toe een ritje naar de supermarkt wordt gemaakt.

3.3.6 Allocatie

Bij het toerekenen van emissies en energiegebruik tijdens transport van producten ontstaan problemen wanneer er meerdere producten tegelijk worden vervoerd. In deze analyse is dit aan de orde in 3 transportbewegingen, nl:

- van distributiecentrum naar supermarkt
- van de supermarkt naar consument
- van de webwinkel naar consument.

In levenscyclus analyses worden de milieueffecten dikwijls verdeeld op basis van de economische waarde van de belading van de producten. Er zijn ook andere allocatiemogelijkheden, bijvoorbeeld op basis van massa- of volumeaandeel. Daarnaast kan er bijvoorbeeld systeemuitbreiding toegepast worden. Dit houdt in dat het energiegebruik voor het transport van alle producten die samen vervoerd worden, met elkaar verrekend worden. Omdat allocatiefactoren op basis van economische waarde, massabalans of systeemuitbreiding in het geval van transport vaak nauwelijks te achterhalen zijn, wordt dit dikwijls achterwege gelaten. In dit onderzoek is de analyse dan ook uitgevoerd zonder een vorm van allocatie toe te passen. De aannemer is dus dat het volumeaandeel van aardappelen, wortelen en uien in verhouding gelijk is aan het bestedingsaandeel van supermarkteninkoop- en verkoop.

3.4 Resultaten

3.4.1 Broeikasgasemissie en energiegebruik in de transportketens

Uit de eerste analyse blijkt dat de gemiddelde broeikasgasemissie en het energiegebruik in de transportketen van de webwinkel en de supermarktketen ongeveer gelijk zijn. Voor beide transportketens is de distributie van de producten (van distributiecentrum naar supermarkt of van webwinkel naar consument) de transportschakel die het meest bepalend is.

De gemiddelde broeikasgasemissie van de webwinkel per ton afgeleverd product bij de consument is 70 kg CO₂-eq (±10,6 standaarddeviatie). Voor de supermarktketen is dit ook 70 kg CO₂-eq per ton afgeleverd product (±12,8 standaarddeviatie). Het verschil is dan ook niet significant.

De analyse laat zien dat de transportketens van de webwinkel zeker potentie heeft om efficiënter te verlopen dan die van de supermarkt, omdat het aantal afgelegde kilometers aanzienlijk lager ligt. De sleutel tot verbetering zit in verbetering van de beladingsgraad van de distributiefase. Wanneer de belading van de bestelbusjes niet 0,9 ton zou zijn, maar bijvoorbeeld 1,2 ton, dan zou de webwinkelketen aanzienlijk minder emissie veroorzaken dan de supermarktketen. De afname in emissies van de webwinkel zou dan 24% van de huidige emissie bedragen (zie figuur 4 t/m 6, onderste grafieken).
<table>
<thead>
<tr>
<th></th>
<th>afgelegd aantal km van product (enkele reis, excl. extra km)</th>
<th>aantal km gereden met voertuig (retour incl. extra km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>webwinkelketen</td>
<td>105</td>
<td>215</td>
</tr>
<tr>
<td>supermarktketen</td>
<td>277</td>
<td>570</td>
</tr>
</tbody>
</table>

Tabel 2: Afgelegde kilometers van product (enkele reis) en transportkilometers over de weg (retour)

Figuur 3: Broeikaseffect per ton afgeleverd product voor beide ketens zonder toepassing van allocatie (gemiddelde van 10.000 runs), met gemiddelde beladingsgraad van 0,9 ton /rit (boven) en 1,2 ton/rit (onder)

Figuur 4: Energiegebruik per ton afgeleverd product voor beide ketens zonder toepassing van allocatie(gemiddelde van 10.000 runs), met gemiddelde beladingsgraad van 0,9 ton /rit (boven) en 1,2 ton/rit (onder).
Figuur 5: Verschil in broeikasgasemissies (supermarktketen minus webwinkel), met gemiddelde beladingsgraad van 0,9 ton/rit (boven) en 1,2 ton/rit (onder)
3.5 Conclusie

Uit de analyse zijn de volgende conclusies te trekken. Er is geen significant verschil in het broeikaseffect of energiegebruik voor de afzet van biologische aardappelen, ui en wortelen via de webwinkel of via de gangbare supermarktketen.

Het aantal afgelegde kilometers verschilt wel aanzienlijk. De afgelegde afstand van de groente die via de webwinkel wordt afgezet is gemiddeld 105 km, terwijl dit voor de afzet via de supermarkt 277 km is (tabel 2). De voornaamste reden dat er geen verschil is tussen de emissies en het energiegebruik van de webwinkelketen en de supermarktketen is de kleine belading van de producten tijdens de distributiefase van de webwinkelketen.

De afzet van biologische groente via de supermarkt gaat op grotere schaal dan de webwinkel, waardoor de transportketen ook redelijk geoptimaliseerd is.

De afzet van biologische groente via de webwinkel gaat op relatief kleine schaal, waardoor deze (nog) niet geoptimaliseerd is.

De afzet via de webwinkel heeft zeker de potentie om veel efficiënter worden, door de belading tijdens de distributie te vergroten en het aantal afgelegde kilometers zo klein mogelijk te houden. Dit houdt in dat meer consumenten gebruik zouden moeten maken van de webwinkel, of dat de huidige consumenten van de webwinkel meer producten tegelijk zouden moeten bestellen.

3.6 Discussie

In de analyse is geen rekening gehouden met een verschil in derving in de transportketen, omdat hier geen gegevens over waren. Het kan echter wel zo zijn dat de webwinkel minder uitval heeft van producten, omdat de keten directer verloopt, waardoor de webwinkel lager uit zou komen dan deze analyse aangeeft. Andersom zou dit ook het geval kunnen zijn, maar dit is minder aannemelijk.

Over het algemeen kan vastgesteld worden dat het zwaartepunt van de broeikasgasemissies van regionale open teelten op het landbouwbedrijf plaatsvinden. Hierbij gaat het niet alleen om koolstofdioxide (CO₂), maar voornamelijk om directe en indirecte emissies van lachgas (N₂O) die door microbiële bodemprocessen ontstaan (decompositie en mineralisatie onder deels aerobe en deels anaerobe bodemomstandigheden). Door N-(kunst)meststoffen worden deze bodemprocessen versneld en ontstaan er, afhankelijk van de bodemomstandigheden en mestsoort aanzienlijke emissies. Lachgas heeft een Global Warming Potential (GWP) die bijna 300 keer zo sterk is als CO₂ (300 CO₂-equivalenten) waardoor broeikasgasemissies uit de bodem veel invloed hebben op het totale broeikaseffect van tuinbouwproducten uit de volle grond (Blonk et al., publicatie in 2009).

De emissies vanwege transport veroorzaken voor de meeste akkerbouwgewassen een minimaal gedeelte van de broeikasgasemissies die in de gehele productieketen van akkerbouwgewassen (circa 5% van producten afkomstig van open teelten in Nederland).

Omdat de biologische akkerbouw andere mestsoorten toepast dan gangbare akkerbouwbedrijven, zou er wel een verschil kunnen zijn in broeikasgasemissies, wanneer de hele keten in beschouwing wordt genomen (inclusief de landbouwbedrijf). Het transport zal dan nog steeds van kleine invloed zijn op de totale emissies in de keten van productie op het landbouwbedrijf tot en met afzet aan de consument.
Bronnen

Quick Scan
- GER-vaarden materialen, SenterNovem
- Kramer, K.J., Hoste, R., Dooren, H.J. van, Energie in de varkensketen, Wageningen UR, Maart 2006

Supermarkt vs. webwinkel
- Blonk et al., (publicatie in 2009). Berekening van het broeikaseffect van tuinbouwproducten; methodiekissuues en voorstellen voor berekening. LEI, Den Haag en Blonk Milieuadvies, Gouda
- GIK cijfers
- TNO, pers. Communicatie

Websites

Quick scan
www.senternovem.nl/MJA

Supermarkt vs. webwinkel
www.energielabel.nl
www.hofwebwinkel.nl
www.ruimtemonitor.nl
Energie en broeikasgasemissies in de keten

- Quick Scan energie en broeikasgasemissies
- Supermarkt vs. webwinkel

bioKennis