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Abstract. Evapotranspiration is usually estimated in remote
sensing from single temperature value representing both soil
and vegetation. This surface temperature is an aggregate
over multiple canopy components. The temperature of
the individual components can differ significantly, intro-
ducing errors in the evapotranspiration estimations. The
temperature aggregate has a high level of directionality.
An inversion method is presented in this paper to retrieve
four canopy component temperatures from directional
brightness temperatures. The Bayesian method uses both
a priori information and sensor characteristics to solve the
ill-posed inversion problem. The method is tested using
two case studies: 1) a sensitivity analysis, using a large
forward simulated dataset, and 2) in a reality study, using
two datasets of two field campaigns. The results of the
sensitivity analysis show that the Bayesian approach is
able to retrieve the four component temperatures from
directional brightness temperatures with good success rates
using multi-directional sensors (Sspectra

r ≈0.3, Sgonio
r ≈0.3,

and SAATSR
r ≈0.5), and no improvement using mono-

angular sensors (Sr≈1). The results of the experimental
study show that the approach gives good results for high
LAI values (RMSEgrass=0.50 K, RMSEwheat=0.29 K,
RMSEsugar beet=0.75 K, RMSEbarley=0.67 K); but
for low LAI values the results were unsatisfactory
(RMSEyoung maize=2.85 K). This discrepancy was found to
originate from the presence of the metallic construction of
the setup. As these disturbances, were only present for two
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crops and were not present in the sensitivity analysis, which
had a low LAI, it is concluded that using masked thermal
images will eliminate this discrepancy.

1 Introduction

The retrieval of canopy component temperatures is of great
importance for the calculation of evapotranspiration by re-
mote sensing. Evapotranspiration in remote sensing is usu-
ally calculated by applying energy balance models like SE-
BAL (Bastiaanssen et al., 1998), and SEBS (Su, 2002). Such
algorithms are highly sensitive to errors in air temperatures,
the retrieved kinematic temperatures and emissivities.

In most remote sensing energy balance studies only a sin-
gle surface temperature is used (Su, 2002; Jia et al., 2003a).
This surface temperature is calculated from the emitted ra-
diances using Planck’s radiance function, with emissivities
estimated a priori or calculated using techniques like tem-
perature emissivity separation (Payan and Royer, 2004 and
Gillespie et al., 1998). This method is widely used and pro-
duces good results. It can however only retrieve a single sur-
face temperature.

For heterogeneous canopies, the assumption of a single
surface temperature is not correct. Timmermans et al. (2008)
showed that in this case the temperatures of the individual
canopy components will differ significantly. Thermal remote
sensing sensors, like ASTER usually have a spatial resolution
of more than 60 m (Yamaguchi et al., 1998). The measured
radiation by these sensors will be an aggregation of radiation
emitted by the different canopy components. This aggrega-
tion generates a high level of directionality. For example, as
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the optical path through the canopy is large for more oblique
viewing angles, the thermal brightness temperature will de-
pend more on vegetation than on soil for these angles (Ver-
hoef et al., 2007a). The level of directionality further de-
pends on several parameters like the temperature of the indi-
vidual canopy component and LAI.

Directional remote sensing is therefore the best tool for
the retrieval of canopy component temperatures. Jia et
al. (2003b) showed that the retrieval of multiple independent
temperatures requires multiple observations to avoid an in-
determinate system.

Most of the parameter retrieval studies deal with the opti-
cal part of the spectrum, illustrated by D’Urso et al. (2004)
and Knyazikhin et al. (1998). Only a few studies have in-
vestigated the retrieval of kinematic component temperatures
(Kustas and Norman, 2000; Yan et al., 2001; Jia et al.,
2003b). These studies limit the number of retrieved canopy
component temperatures to two, namely those of soil and
canopy.

The objective of this research was to create an inversion
scheme to retrieve four component temperatures. This in-
version scheme was tested on the forward simulated bright-
ness temperatures. A sensitivity analysis was performed with
various satellite configurations, from single view and single
band to multiple view and multiple bands. Finally a case
study was performed using data from two field campaigns:
EAGLE 2006 and AGRISAR 2006. The directional bright-
ness temperatures that are used were measured using various
instruments attached to a goniometer.

2 Methodology

Biophysical parameters can be retrieved with high accuracy
using radiative transfer models (Gastellu-Etchegorry et al.,
2003). The success rate and number of parameters that can
be retrieved depends on 1) the inversion method, 2) the num-
ber of independent observables and 3) the sensitivity of the
modelled remotely sensed data to surface properties.

The inversion algorithm has been implemented into a Mat-
lab program. This program has been run on a multi-processor
system. The data flow of this program is shown in Fig. 1. The
different aspects of the inversion, like the algorithm and the
radiative transfer model are, discussed in the following para-
graphs.

2.1 Traditional retrieval algorithms

According to Kimes et al. (2000) retrieval algorithms can
be divided into three major classes: neural network, look-
up tables and optimization schemes. The accuracy of neural
networks and look-up tables depends on the number of pre-
computed “training” values and on the interpolation between
these “trained” values (Picton, 2000). This interpolation can
not be performed over singularities like the hot spot, despite
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Fig. 1. Bayesian Inversion Scheme.

recent advances have been made for look-up table methods
by Gastellu-Etchegorry et al. (2003). Optimization methods
do not have this limitation, because of the radiative trans-
fer model that is used. Optimization methods are inherently
suitable to handle arbitrary viewing and observing angles.
Therefore the optimization method is still the most used in-
version technique in directional remote sensing.

A simple optimization update is based on the Gauss-
Newton method (Tarantola, 2005), see Eq. (1).

1p = (JT J)−1JT1r (1)

Here1p denotes the changes in the parameters for retrieving
the correct parameter set,1r denotes the difference between
the observed variables and simulated variables, andJ denotes
the local sensitivity of the model.

Newton methods are relatively easy to implement and con-
verge fast (quadratically). To improve upon this convergence
the Newton method was modified independently by Leven-
berg and Marquardt (Fox, 1997). The Levenberg-Marquardt
(LM) algorithm is a trust-region modification of the Gauss-
Newton algorithm (Moŕe and Wright, 2003).

1p = (JT J + µI)−1JT1r (2)

hereµ is a scalar that controls the numerical stability of the
algorithm, see Verhoef (2000). This (non-negative) scalar is
updated per iteration. Whenµ is small the LM method ap-
proaches the quadratic Newton convergence; whenµ is large
the LM method approaches the steepest descent method.
This LM method is still used in current researches (North,
2002). Both methods however still lead to instability as can
be shown using singular value decomposition.

If the input parameters of the model are linearly depen-
dent on each other, the input-output relationship will be non-
unique. This results in an ill-posed inversion scheme, mak-
ing it impossible to retrieve unique sets of parameters. Sin-
gle Value Decomposition (SVD) will not only diagnose this
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problem but will give you a useful numerical answer (Press
et al., 2007). The SVD method states that a Jacobian matrix
J can be decomposed as

J = USVT (3)

with U column-orthogonal (UTU=I), S diagonal andV
orthogonal (VTV=VVT

=I). This results in the rela-
tion

(
JT J

)
JT=VS−1UT , which illustrates why the Gauss-

Newton method may be suffering from difficulties, since the
matrix of singular valuesS may contain zeros. This happens
when there is linear dependence, and in that case the matrix
inversion is impossible. For small singular values the cor-
responding change of model input parameters becomes very
large, which leads to numerical instability.

2.2 Bayesian optimization algorithm

Kimes (2000) and Verhoef (2007b) showed that the ill-posed
problem of model inversion can be reduced if a priori data
is used. The addition of a priori information transforms the
original Newtonian update rule, Eq. (1), into Eq. (4).

1p = V
(
S2

+ I
)−1 [

SUT1r + VT1pa

]
(4)

Here1pa denotes the difference between the current param-
eter set,pm, and the a priori values,pa , and1rm denotes
the difference between the measurements,r, and modelled
observations,rm. The variables are normalized by the re-
spective standard deviations of the parameters, assuming a
Gaussian distribution. The variable1r is normalized using
the sensor accuracy.

The final solution of the inversion is then given by Eq. (5).
It can be seen that when the sensitivity of the model is high
the model solution will dominate the solution and when it is
low, the a priori solution will.

ps = V
(
S2

+ I
)−1 [

S2VT pm + VT pa

]
(5)

A priori information on the temperature is extracted from
the shape of the directional thermal brightness tempera-
ture. The path length through the canopy depends on the
viewing angle; for oblique viewing anglesθo, the opti-
cal path length will be large and the measured brightness
temperature will depend mainly on the vegetation itself.
Tv=Tb (θo= max(θo)), and for nadir looking angles, the op-
tical path length is at a minimum and the measured brightness
temperature will depend more on the soil.Tv=Tb (max(θo)).

The standard deviation used to normalize this a priori in-
formation is calculated using the upper and lower limit for
the vegetation and soil, assuming a Gaussian distribution.
The lower and upper limits for soil are set to−5◦C and
100◦C, and for vegetation 0◦C and 42◦C.

2.3 Sensitivity and uncertainty

This Bayesian update rule not only solves the ill-posedness
of the inversion problem, but also takes into account the sen-
sitivity of the model and uncertainties in input/output param-
eters. The sensitivity of the radiative transfer model to the
input parameters is captured by the diagonal matrix S. The
uncertainty of the model and measurements is captured by
the normalization of1r and1pa . For example, if the sensi-
tivity is low, the values inS will become nearly singular. In
that case the update rule will be largely dependent on the a
priori values.

2.4 Radiative transfer models

The radiative part of the Soil Canopy Observation, Photo-
chemistry and Energy fluxes (SCOPE) model (Tol et al.,
2009) was used in the inversion. SCOPE is a soil-vegetation-
atmosphere transfer model. It calculates the biophysical and
spectral fluxes for individual leaves. It scales these fluxes up
to canopy level. SCOPE uses existing models of radiative
transfer, micrometeorology and plant physiology. It uses a
numerical version of the 4SAIL model.

The original SAIL model (Verhoef, 1984) is a one-
dimensional directional radiative transfer model. SAIL has
been used in many studies. It also has been validated sev-
eral times by studies like the RAMI comparison (Pinty et al.,
2001; Pinty et al., 2004; Widlowski et al. 2007). Recently,
Verhoef et al. (2007a) have expanded the earlier versions of
the model in order to simulate also thermal radiative transfer
inside a canopy, see Eq. (6). As the optical part of the spec-
trum can be solved analytically, this part of the model is very
efficient both in computer resources as in physical represen-
tation. The calculation of the directional thermal brightness
temperature increases computation time only slightly. This
makes the SAIL model ideal for inversion of thermal bright-
ness temperatures.

Eo = r∗so Es + r∗do E
−

+ ε∗v Hc + ε∗s Hd + ε∗∗
v (6)

(Hh −Hc)+ ε∗∗
s (Hs −Hd)

Here,Eo is the directional radiation,Es the downwelling
solar radiation,E− the downwelling diffuse radiation,Hh
andHc are the hemispherical thermal radiation fluxes for
sunlit (hot) and shaded (cold) leaves,Hs andHd are the
hemispherical thermal radiation fluxes for sunlit and shaded
soil. The parameterr∗so is the total reflectance for direct ra-
diation, r∗do is the total reflectance for diffuse radiation,ε∗v
andε∗∗

v are the effective emissivities for sunlit and shaded
vegetation, andε∗s andε∗∗

s are the effective emissivities for
sunlit and shaded soil. These parameters are calculated by
SAIL using single leaf thermal emissions and single leaf re-
flectance/transmittance spectra (Table 1).
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Table 1. SAIL required Input Parameters. The LAI value given is only used in the sensitivity analysis, as LAI was measured during the field
campaigns.

LAI Leaf Area Index 1.50

h Hotspot parameter 0.05
LIDFa Leaf Inclination density function parameter a −0.35
LIDFb Leaf Inclination density function parameter b −0.15
ρl Single leaf reflectance PROSPECT
ε∗v Single leaf emissivity (sunlit) 0.99
ε∗∗
v Single leaf emissivity (shaded) 0.99

θs Sun zenith angle [0–60] ◦

θs Observer zenith angle sensor dependant◦

ψ Relative sun-object azimuth angle sensor dependant◦

Table 2. Input parameters for single leaf reflectance and emission.

N Mesophyll structure parameter 1.400

Cab Chlorophyll a and b content 60.000 µg/cm2

Cw Water Content 0.009 cm
Cm Dry matter 0.012 g/cm2

Cs Senescent material 0.000
Tc Sunlit Leaf Temperature See Fig. 2. (◦C)
Tc Shaded Leaf Temperature See Fig. 2. (◦C)

Single leaf reflectance is calculated by the PROSPECT
model (Jacquemoud et al., 1990). This model is able to pa-
rameterize the leaf reflectance using 5 parameters. These pa-
rameters are listed in Table 2.

Emitted single leaf thermal radiation is calculated using
Planck’s radiance function on basis of the component tem-
peratures (Table 2). Planck‘s equation, Eq. (7), calculates
the emitted flux per wavelength and bandwidth (Quattrochi
and Luvall, 2004):

H (λ) = πI (λ) = 2π

λ2∫
λ1

hc2

λ5 exp[(hc/λkT )− 1]
dλ (7)

hereλ is the wavelength (m),h denotes the Planck constant
(Js),c the speed of light,k Boltzmann’s constant (J K−1) and
T the temperature of the component (K). The integration is
performed over bandwidthλ2−λ1.

The soil reflectance is not modelled but a standard
spectrum, gravelly soil, is taken from the DART spectral
database (Gastellu-Etchegorry et al., 2004) and Lambertian
reflectance is assumed. The soil thermal emission are calcu-
lated using the Eq. (7), but with the sunlit and shaded contact
temperatures,Th andTd .

Note that the current method assumes that the component
temperatures are homogeneous per component. However the
temperature of sunlit leaves sunlit leaves has variations in the

Table 3. Input parameters for soil reflectance and emission.

Gravelly
ρs DART spectral database () Soil

ε∗s Soil emissivity (sunlit) 0.95
ε∗∗
s Soil emissivity (shaded) 0.95
Th Sunlit Soil Temperature (◦C) (hot) See Fig. 2. (◦C)
Tc Shaded Soil Temperature (◦C) (cold) See Fig. 2. (◦C)

range of 5–10 K around the average temperature. This varia-
tion in temperature depends on the biophysical processes in
the leaf. As the inversion method will only be run over the
radiative transfer part, these biophysical processes will not
be taken into account, and we will retrieve the four “mean”
component temperatures. The inversion method can also be
used over the complete SCOPE model, but due to computa-
tional demands this is left out of this paper.

3 Case study

The algorithm is test using both simulated and measured data
of directional brightness temperatures. Concurrently to the
acquisition of the directional brightness temperature in the
field, measurements on vegetation structure and emissivity
were performed.

In time-limited field campaigns the chance of encounter-
ing all these scenarios needed for a thorough sensitivity anal-
ysis is very small. In order to explore the performance of the
algorithm in different conditions, forward simulated bright-
ness temperatures are used. The advantage of forward sim-
ulations is that one can also simulate future satellites like
SPECTRA (Sobrino and Jiḿenez-Muñoz, 2005; Verhoef,
2007a).
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Table 4. Sensor characteristics.1 The number of thermal bands shown here is the amount of bands with wavelength>8µm. 2 The Irisys
1011 is attached to a goniometric system, enabling complete hemispherical coverage; the number of observations angles is divided over 1
nadir, 4 across-solar-plane 4 across-solar-plane.

Nr. Thermal Thermal Absolute Nr.
Thermal Bands Spectral Thermal Observation

Sensor Bands1 Spectrum1 Resolution Accuracy Angles

(µm) (µm) (K)
Irisys 1011 1 08.00–14.00 6.00 0.5 1 (nadir)
Landsat 7 1 10.40–12.50 2.10 0.6 1 (nadir)
AATSR 2 10.40–12.50 0.90–1.00 0.1 1 (nadir)
ASTER 5 08.12–11.65 0.35–0.70 1.0 1 (nadir)
MODIS 5 08.40–14.39 0.50 0.5 1 (nadir)
AATSR 2 10.40–12.50 0.90–1.00 0.1 2
SPECTRA 2 10.30–12.80 0.50 1.0 7
Irisys 1011 (Goniometer) 8 08.00–14.00 6.00 0.5 92

3.1 Sensitivity analysis

The forward simulations were performed for different sen-
sors and for different scenarios. The total number of simula-
tions was 3840 scenarios (consisting of 8 sensors, 8 compo-
nent temperature profiles, 10 solar Zenith angles and 6 noise
profiles. Note that in reality the component temperature pro-
files are the result of the surface energy balance and con-
sequently the solar zenith angles. However in this case the
temperatures are set independently for the sensitivity analy-
sis.

3.1.1 Number of parameters

The retrieval algorithm was executed over each of these sce-
narios three times. The number of parameters to be retrieved
was varied during these retrievals, to investigate how close
the inversion was to becoming ill-posed. These extra param-
eters that will be retrieved are the air temperature and the
surface temperature. These parameters were proposed due to
their high significance in estimating evapotranspiration and
the difficulty in current retrieving algorithms.

3.1.2 Sensors

In order to investigate the potential of multidirectional re-
mote sensing several sensors have been simulated, see Ta-
ble 2. These instruments range from broadband ground
instrument, like the Irisys 1011 Thermal Camera (Sobrino
et al., 2005) to multispectral solo-directional satellite sen-
sors, like ASTER (Yamaguchi et al., 1998) and multispectral
multidirectional satellite sensors, like AATSR (Prata et al.,
1990).

3.1.3 Temperature profiles

The number of parameters that can be retrieved depend
mainly on the number of independent angular measurements.
The level of directionality depends mainly on the differences
in temperatures of the individual components. The lower the
difference in component temperatures, the lower the level of
directionality in the brightness temperatures is. This limits
the number of independent angular measurements (Li et al.,
2003).

Therefore different component temperature profiles were
used to investigate the limitations of the retrieval algorithm.
In total 8 profiles were simulated, representing summer, win-
ter and autumn/spring profiles and 1 homogeneous profile
(Fig. 2).

3.1.4 Solar angles

The shape of the directional brightness temperature depends
greatly on the solar angle. The solar angle controls the sun-
lit fraction of soil and vegetation. Differences in irradiance
cause heterogeneity in temperatures through energy balance.
A thermal hot spot may be observed when sunlit soil is
warmer than shaded soil.

3.1.5 Noise

The directional behaviour of the brightness temperatures can
be lost if the noise in the measurement is too high. There-
fore the effect of different levels of noise on the retrieval al-
gorithm should be investigated. Different levels of sensor
noise were added to the directional brightness temperatures
in order to investigate the success of retrieval algorithm as
is shown in Eq. (8). Regarding the SAIL-inherent error, this
was considered to be outside the scope of this present paper.
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Fig. 2. Temperature Profiles. In(A) the temperature profiles. In(B) the corresponding directional brightness temperatures are shown. The
a-symmetry in the directional brightness temperature is caused by the difference in observed sunlit/shaded vegetation/soil.

Tbm(iband, iobs) = Tbt(iband, iobs)+ dTbn(iband, iobs) (8)

with

dTbn(iband, iobs) = Nl As(iband)<(iband, iobs) (9)

The measured brightness temperature,Tbm at bandibandand
observation angleiobs, is calculated as the sum of the “true”
brightness temperature,Tbt and the noisedTbn. The noise
is calculated as the product of a noise levelNl , the sensor
accuracyAs and random value,<. The random values are
generated with a normal distribution (std(<)=1 and mean
(<)=0).

Note that most researches simulate sensor noise by using
the specified noise equivalent temperature difference (NEdT)
that is given in the sensor documentations. This study aims
to investigate the success rate of the algorithm for other than
sensor noise as well. For this reason, the NEdT approach is
considered too limited for this study.

3.1.6 Success rate

The success of the retrieval is evaluated using the ratio of
RMSEm and RMSEi , see Eq. (10).

Sr =
RMSEm
RMSEi

(10)

With

RMSEm =

√√√√ 1

N

N∑
i

(pm (i)− pt (i))
2 (11)

RMSEi =

√√√√ 1

N

N∑
i

(pa (i)− pt (i))
2 (12)

Here,Sr is the success rate, RMSEm is the root mean square
error between the retrieved parameters,pm, and true param-
eters,pt ; RMSEi is the root mean square error between the

a priori parameters,pa , and true parameters. Values forSr
lower than 1 denote that the inversion has improved com-
pared to the a priori estimates of the parameters; values for
Sr higher than 1 denote that the inversion has deteriorated the
a priori estimates; values of 1 denote that the inversion has
neither improved or deteriorated upon the a priori estimates.

Note that the success rate uses averages the separate error
for the different parameters. As the algorithm is based on
the Gauss-Newton method, it optimizes the overall error re-
sulting in larger errors for components that are less frequent
(such as sunlit soil in the case of high LAI).

3.2 Field measurements

The field measurements were acquired with an Irisys 1010
thermal radiometer (Sobrino et al., 2005) that was attached
to a goniometer (Timmermans et al., 2009; Li et al., 2004).
A goniometer is a device enabling complete hemispherical
measurements. The total number of angular positions per
run was 9. After each run a complimentary run was per-
formed at 45 degrees offset in the azimuthal direction. The
combination of the two runs takes 5 min. The meteorological
parameters and nadir brightness temperatures were observed
in order to characterize the dynamical change in component
temperatures. In the post processing the runs were filtered
based on these observations.

The datasets that are used were acquired in two field cam-
paigns. The first dataset contains the field measurements of
the EAGLE 2006 field campaign (Su et al., 2007, 2009).
This field campaign was organized by the ITC in collabo-
ration with the ESA in the EAGLE framework. The mea-
surements were performed over young maize (LAI=0.2) and
tall grass (LAI=2.5). The sites are part of the KNMI mea-
surement facility situated near the Cabauw meteorological
tower (Van Ulden and Wieringa, 1996), in the central part of
the Netherlands. The second dataset was acquired during the
AGRISAR 2006 field campaign. The measurements were
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Fig. 3. Success rate of different satellites for different temperatures and noise levels. The solar zenith angle for these simulations was 46.7
degrees.(A–D) show respectively a noise level of 0.0, 0.4, 0.8 and 1.0.

performed over mature maize (LAI=1.5), wheat LAI=4.0),
sugar beet (LAI=2.0) and barley (LAI=3.5).

4 Results

4.1 Sensitivity study

Figure 3 shows the success rateSr of retrieving component
temperatures, for the sensors, temperature profiles and noise
levels. The values of the component temperatures in most
scenarios are not improved using the retrieval algorithm with
monodirectional sensors and even deteriorate with increasing
noise level:

1. The improvement of the retrieval depends on the num-
ber of unique measurements. The measurements per
band are highly correlated (see Planck’s function).
Therefore no improvement is observed.

2. The retrieval algorithm only improves on the a priori in-
formation for temperature profile 1, but the directional
brightness temperature ofT -profile 1 is does not ex-
hibit directional behaviour. This directional brightness
temperature is used as a priori information. As a pri-
ori temperature is based on brightness temperature, the
retrieval algorithm improves upon first estimation this
using the emissivities.

The values of the component temperatures in most sce-
narios are improved using retrieval algorithm with the mul-
tidirectional sensors. Although the success rate reduces with
increasing noise levels, only for certain scenarios the success
rate becomes unacceptable:

1. The improvement of the retrieval (Sr<1.0) is apparent
for all T -profiles withNl<1.0. Even for very high noise
levelsNl=0.8 the values of the success rate are below
1.0.

2. The success rate for (T -profile=1 @Nl>1.0) is not ac-
ceptable. The retrieval of the component temperatures
is actually worse than for monodirectional sensors. For
T -profile 1 the directional brightness temperature is uni-
form over the viewing angles (Fig. 2). The shape of
the added noise, controlled by<, will then dominate
the shape of the directional brightness temperature. The
retrieval algorithm tries to fit this shape, and therefore
consequently will not find the correct canopy compo-
nent temperatures. In reality the component tempera-
tures will never have a complete homogeneous temper-
ature.

3. For the scenario (Nl=1.0) the success rate predomi-
nantly depends on the shape of the random values,<,
which is unacceptable. Note that the added noise in this
scenario is of the same order as the sensor sensitivity.
This is an order of magnitude higher than usual sensor
noise.

The best average success rate forT -profiles 2–7 is
achieved by multi-directional sensors: the SPECTRA sen-
sor (0.3), than by the Goniometric setup (0.3) and the AATSR
(0.5).

In addition to the retrieval of four parameters, two other
inversions were performed to retrieve five and six parameters.
The extra parameters to be retrieved were sky temperature
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Fig. 4. Success rates on the retrieval of 4, 5 and 6 parameters for the retrieval of Component temperatures, sky temperatures and LAI. In the
case of 4 parameters, only component temperatures are retrieved, resulting in a success rate of 1 for sky temperature and LAI.

and leaf area index (LAI). The overall success rate of these
runs is shown in Fig. 4.

1. The success rate for the component temperature remains
acceptable, with only a slight reduction when retrieving
six parameters.

2. The overall success rates for the retrieval of sky tem-
perature are unacceptable (Sr>1.0) for AATSR and
MODIS. As the success rate of the component temper-
ature is unaffected.

3. The overall success rates for the retrieval of LAI are
promising (Sr≤1.0). As LAI is usually retrieved using
optical measurements this algorithm can be used to en-
hance this value with the extra information of thermal
measurements.

4.2 Field measurements retrieval

Three time series were made with the goniometer during the
EAGLE 2006 fieldcampaign. Of the three time series two
were made over the tall grass and one time series was made
over the maize (Fig. 5–6). The lines represent the mean
measured brightness temperature. The error bars denote the
RMSE between the measured and the retrieved directional
brightness temperature. The RMSE for grass is about 0.5 K
and for maize 2.5 K. The difference between the measured
and modelled will be explained in detail in the following sec-
tion (discussion).

The measured brightness temperatures over the grass were
performed during two days, 12 June 2006 and 14 June 2006.
The brightness temperatures were higher on the first day than
on the second day: on the first day the measurements were
performed in the afternoon with clear skies, while on the sec-
ond day the measurements were performed early in the morn-
ing with overcast conditions.
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Fig. 5. Retrieved canopy component temperatures of grass on 12
June 2006 and 14 June 2006. The dots represent the mean direc-
tional brightness temperature; the error bars represent the RMSE
between the measured en modelled brightness temperatures.

The grass temperatures at 15:30 and 15:52 on first day are
lower than the soil temperatures. The soil temperature de-
creases during the day, where the vegetation temperature re-
mains relatively constant. This is caused by the direct illumi-
nation sun on the different components. As the sun reaches
lower angles, the soil is shaded by the canopy, whereas the
leaves high in the canopy still receive sunlight.

The maize temperatures are always lower that the temper-
atures of soil. Both sunlit maize and soil display the same
temporal behaviour as the directional brightness temperature.
However shaded maize and soil do not display the same tem-
poral behaviour. This is caused by the structural parameters
of the maize. As the maize was very young the vegetation
height was about 10 cm and the LAI about 0.2. For high sun
angles the thermal image was dominated by the sunlit soil,
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Fig. 6. Retrieved canopy component temperatures of young maize
on 18 June 2006. The dots represent the mean directional bright-
ness temperature; the error bars represent the RMSE between the
measured en modelled brightness temperatures.

as the amount of shaded soil is very small due to the height
of the canopy. For very low sun angles the thermal image is
dominated by sunlit vegetation. The sensitivity of the shaded
components is therefore very low for sparse low canopies.

During the AGRISAR campaign the emphasis of the mea-
surements was on the effect of structural differences between
crops on the directional brightness temperatures. There-
fore the measurements were performed over more vegetation
types, but with less temporal resolution (Fig. 7). The lines
represent the mean measured brightness temperature. The
error bars denote the RMSE between the measured and the
retrieved directional brightness temperature. The RMSE for
maize, wheat, sugar beet and barley is respectively 2.85 K,
0.29 K, 0.75 K and 0.67 K. The measurements of the maize
are left out for further investigation because of the high
RMSE for maize, and the absence of more (temporal) mea-
surements

The variance in the observed component temperature dif-
fers between the crops. The largest variance between the
component temperatures is found for sugar beet. Wheat and
barley display similar behaviour. Both wheat and barley are
considered very homogeneous as they were fully developed,
have a large LAI, with similar leaves in terms of leaf angles
scattering and absorption. This high level of homogeneity
causes the relatively small variations in the vegetation tem-
peratures. As the measurements were performed during mid-
day the soil temperature are higher than the shaded vegeta-
tion temperatures.
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Fig. 7. The retrieved canopy component temperatures of maize (M),
wheat (W), sugar beet (S) and barley (B). The dots represent the
mean directional brightness temperature; the error bars represent the
RMSE between the measured en modelled brightness temperatures.

4.3 Discussion

The potential of the Bayesian inversion and multidirectional
imagery has been demonstrated. For monodirectional sen-
sors no improvement upon the a priori estimates is found.
The success rates values for monodirectional sensors are for
the most part 1. Only for unrealistically high noise profiles
are there unacceptable found. As success rates of 1 denote
no deterioration upon a priori estimates the algorithm can be
run as a post-processor on Level 3 satellite imagery with-
out cause for concern for deterioration of the products. The
retrieval of component temperatures by forward simulated
thermal (directional) brightness temperatures is successful
for all the directional sensors, as the values for the success
rate all pre-dominantly below 1.

Of all possible view angles, the along-track configuration
proves the highest potential. The SPECTRA and goniomet-
ric configuration have the same success rate. The additional
cross solar plane angles therefore do not contribute a lot.
Also in space cross solar planes viewing angles are impos-
sible to retrieve. In the field a goniometric setup is preferred.
With a SPECTRA configuration the setup should be changed
every acquisition due the changing solar azimuth angles.

The retrieval of parameters other than the component tem-
peratures by forward simulated thermal (directional) bright-
ness temperatures is not successful for sky temperature and
moderately successful for LAI. The sensitivity of directional
radiation for sky temperature is very low. As a result the
algorithm fails to retrieve this parameter. The sensitivity of
directional radiation is very high for LAI, as is also proven
in the AGRISAR field measurements. As LAI is usually re-
trieved using optical measurements the need for retrieval of
this parameter through thermal measurements is low. How-
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ever in the absence of optical measurements, for example in
night time, this procedure could be used.

The retrieval of component temperatures by measured
thermal directional brightness temperatures is successful for
all crops except mature maize. The retrieval resulted in a
large RMSE between the retrieved and measured directional
brightness temperature.

The values of the RMSE between retrieved and direc-
tional brightness temperature is influenced by the goniomet-
ric setup. In some of the thermal images the aluminum tracks
of the goniometer are visible, and contaminate the measure-
ment. These tracks have a significant lower brightness tem-
perature than the vegetation or soil. The amount of track vis-
ible is much higher for low LAI with low vegetation height
than for high LAI with high vegetation height. In the case of
the mature maize (AGRISAR) even though the canopy had a
high LAI and vegetation height, a gap in the canopy caused
the visibility of the tracks. As these tracks usually have a sig-
nificant temperature than the soil or canopy, the images can
be filtered. As this is beyond the scope of this paper has not
been considered.

5 Conclusions

A method is presented to retrieve up to four canopy com-
ponent temperatures from directional measurements. The
method inverts the radiative transfer model 4SAIL to re-
trieve the four component temperatures (sunlit/shaded veg-
etation/soil). The inversion is based on a modified Gauss-
Newton optimization scheme. The modification incorporated
the use of a priori knowledge to ensure closure of the inver-
sion problem. Further measures, to ensure closure, were the
introduction of singular value decomposition on the Jacobian
sensitivity matrix.

The method was tested over a large dataset of forward-
simulated data, as a sensitivity analysis. The forward simu-
lations were performed for 8 satellite sensors, 10 solar zenith
angles 8 sensors and 6 noise levels. The solar zenith angles
varied between 0 and 60 degrees. The temperature profiles
were representative of component temperatures in the sum-
mer, winter, and autumn. One additional scenario (with ho-
mogeneous temperatures) was used, in order to test the sys-
tem. The sensors that were simulated consisted of ground
sensors, existing satellite sensors and future satellite sensors.
The sensor characteristics like accuracy were used to normal-
ize the parameters in the inversion scheme. The noise added
to the forward simulations is also based on these sensor char-
acteristics. Instead of the NEdT, the noise added to the (di-
rectional) brightness temperatures were a percentage of the
sensor accuracy. Three retrieval runs were performed with
four, five and six number of parameters to be retrieved, (four
canopy components, sky temperature, and leaf area index).

The results of these sensitivity analyses prove that the al-
gorithm is capable of using the extra information in the direc-
tional brightness temperature to retrieve the four component
temperatures, and to lesser extent leaf area index. The re-
trieval of sky temperature fails with this method. Only an
improvement on the a priori information was observed when
using multidirectional imagery. Here the success rate of the
inversion is good for all solar zenith angles, most temperature
profiles and all but the highest noise levels. When the tem-
perature profile is completely homogeneous, the success rate
was unsatisfactory. For homogeneous temperature profiles
the added noise introduces a shape in the “homogeneous”
brightness temperature. The retrieval algorithm will then try
to model this shape resulting in a worse estimation of the
component temperatures. Fortunately this scenario is rarely
observed, as sunlit components will almost always have a
higher temperature than shaded components. In the case of
cloudy days this scenario may occur, however the satellite
will not be able to observe it.

The method was finally run over the datasets from two
field campaigns. These datasets included a temporal datasets
over grass and maize, and a multi-crop dataset over maize,
wheat, sugar beet and barley. The method produced good re-
sults for the component temperature. However the RMSE
between the measured and retrieved directional brightness
temperature exceeded sensor accuracy levels for certain sce-
narios. This is caused by the aluminum track of goniometric
setup that has a different temperature than the four canopy
components. As these temperatures are not filtered out of the
thermal images, they produce an RMSE of between 0.5 K
and 2.5 K, depending on the LAI. As these errors were not
present in the sensitivity analysis, which was performed with
a low LAI, we are confident that filtering the images for these
tracks will increase the efficiency of the inversion method.
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