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Abstract 

Viral diseases are an important limiting factor in many crop production systems. As 

antiviral products are not available, control strategies rely on genetic resistance or 

hygienic measures to prevent viral diseases, or on eradication of diseased crops to 

control such diseases. Increasing international travel and trade of plant materials 

enhances the risk of introducing new viruses and their vectors into production systems. 

In addition, changing climate conditions can contribute to a successful spread of newly 

introduced viruses or their vectors and establishment of these organisms in areas that 

were previously unfavorable. 

Tomato is economically the most important vegetable crop worldwide and many 

viruses infecting tomato have been described, while new viral diseases keep emerging. 

Pepino mosaic virus (PepMV) is a rapidly emerging virus which has established itself as 

one of the most important viral diseases in tomato production worldwide over recent 

years. Begomoviruses and other whitefly transmitted viruses are invading into new 

areas, and several recently described new viruses such as Tomato torrado virus and new 

Tospovirus species are rapidly spreading over large geographic areas. In this manuscript 

emerging viruses of tomato crops are discussed.  

 

Introduction 

Despite tremendous efforts in human, animal and plant health management, viral 

diseases remain notoriously difficult to control or eradicate. Moreover, currently used 

control strategies are compromised by the continuous emergence of new strains of 

existing viruses or of completely new viruses. Owing to their large population size and 

short generation time, viruses have a great potential to quickly evolve and adapt under 

natural selection pressure. The high incidence of mutation, recombination and 

reassortment in viral genomes enhances the generation of new variants that, in case the 

mutation results in a biological advantage, quickly spread throughout the viral population 

(Moya et al., 2004). Especially RNA virus quasispecies, composed of large mutant 

swarms that contain major and minor mutations in their genome sequences, are highly 

effective in adapting to varying selection pressures as the pool of variants in the 

quasispecies “cloud” is a rich source of variation which can contain successful variants 

(Domingo, 2000).  

There are several definitions of emerging viruses. The world health organisation 

(WHO) defines an emerging virus as ‘one that has appeared in a population for the first 

time, or that may have existed previously but is rapidly increasing in incidence or 

geographic range’. Others consider an emerging virus as a virus that has recently 
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changed or appeared to occupy and spread within a new niche (Rojas and Gilbertson; 

2008). Emerging viruses can be newly described viruses that were previously unknown. 

However, more frequently, emerging viruses are known viruses with an increased 

incidence in a certain niche due to changes in the environment, the vector, the host 

and/or in the viral genome.  

Virtually no antiviral products are available for plant disease management, 

leaving eradication or prevention through hygiene measures as the only immediate 

control strategies, albeit that these practices have only met limited success. The best 

control strategy for a viral disease is the introduction of genetic resistance in the plant 

host. However, introgression of genetic resistance is time-consuming, and will in most 

cases become available only after the emerging virus has become well-established. 

Increasing international travel and trade of seeds, seedlings, cuttings and fruits 

enhances the risk of introducing new viruses and their vectors into production areas. 

Changing climate conditions can contribute to a more successful spread of the virus or 

its vector and establishment of these organisms in areas that were previously 

unfavorable, thus enhancing viral spread.  

With a worldwide production of 130 million metric tons and a value of over 30 

billion international dollars in 2007, tomato (Solanum lycopersicum) is by far the most 

important vegetable crop (source: Food and Agricultural Organization (FAO), United 

Nations (UN); http://faostat.fao.org/site/339/default.aspx). In terms of economical 

value, tomato constitutes 72% of the value of fresh vegetables produced worldwide. The 

number of described viral species that infect tomato crops amounts to 136, while this 

number is notably lower for other vegetable crops with, for example, 49 viruses that 

infect pepper (Capsicum annuum), 53 that infect lettuce (Lactuca sativa), 46 that infect 

melon (Cucumis melo), 54 that infect potato (Solanum tuberosum) and 44 that infect 

eggplant (Solanum melongena). Only for cucumber (Cucumis sativis) even more viral 

pathogens (153) have been described (Brunt et al., 1996 onwards, Plant viruses online, 

VIDE database).  

The high number of viral pathogens of tomato can partly be explained by the 

sensitivity of tomato to begomoviruses, a genus that harbors a large variety of species. 

In addition, years of intensive breeding for improved production may have narrowed the 

genetic basis for viral disease resistance in commercially grown tomato varieties. 

Furthermore, the intensification of tomato production with large areas of protected 

monocropping under controlled climate conditions may generate the conditions for 

efficient spread and survival of viruses and their vectors, increasing the potential for 

emerging viruses to become endemic. Finally, although it may seem trivial, also the 
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economical importance of tomato makes the study of pathogens and pests affecting this 

crop a major topic in phytopathological research. Consequently, pathogens infecting 

tomato are generally well studied and characterized. Over the recent years, several viral 

diseases including Tomato yellow leaf curl virus (TYLCV; genus Begomovirus), Pepino 

mosaic virus (PepMV; genus Potexvirus) and Tomato torrado virus (ToTV) have emerged 

in greenhouse tomato crops and are presently impacting the fresh market tomato 

production in diverse geographic areas worldwide.  

Considering the past 20 years, in this manuscript the most important emerging 

viral pathogens of tomato are discussed, encompassing: (i) new viral species; (ii) known 

viral pathogens of other crops that are emerging in tomato; and (iii) tomato viruses with 

a rapidly increasing incidence. In addition, the re-emergence of old viruses, that largely 

disappeared with the introduction of resistance, due to ‘specialty market’-driven culture 

of old tomato varieties, is discussed.  

 

 

New viral species that infect tomato 

 

Emerging species assembled in the novel ‘Torradovirus’ genus  

In the past decade, two related viral species that are clearly distinct from previously 

described plant viruses simultaneously emerged in two distinct geographic regions, Spain 

and Mexico. Both viruses caused necrotic or burn-like disease symptoms in tomato 

crops. From 2001 onwards, tomato plants with severe necrotic leaf symptoms were 

observed in protected tomato crops in the Murcia area in the South-East of Spain 

(Verbeek et al., 2007; Alfaro-Fernández et al., 2007a). Because of the burn-like 

appearance of affected leaves, the disease was locally referred to as ‘torrado’ (roasted) 

disease. Initial disease symptoms consist of necrotic spots that are surrounded by a light 

green or yellow area at the base of the leaflets (Figure 1a). In a later stage, leaves and 

fruits display severe necrosis and plants suffer an overall growth reduction resulting in 

serious economical damage (Verbeek et al., 2007). Diagnostics revealed the presence of 

Pepino mosaic virus (PepMV) in infected plants, but as the symptoms were atypical for 

PepMV further studies were performed. In addition to the rod-shaped PepMV particles, 

isometric viral particles were observed by electron microscopy. Through inoculation of 

the indicator plants Physalis floridana and Nicotiana glutinosa that are not susceptible to 

PepMV, a virus with a bipartite positive stranded (ss) RNA genome with three open 

reading frames (ORFs) was purified. The virus shares virion characteristics and 

nucleotide sequence similarities with viruses from the genera Sequivirus, Waikavirus, 
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Sadwavirus and Cheravirus, but phylogenetic analyses on two different genome regions 

revealed a separate taxonomic position. The name ‘Tomato torrado virus’ (ToTV) was 

proposed, and the species was proposed to belong to a novel genus (Verbeek et al., 

2007; Table 1).  

Intriguingly, from 2003 onwards a highly similar disease (leaf, stem and fruit 

necrosis; Figure 1e) was observed in Mexican tomato crops, locally known as ‘marchitez’ 

(wilted) disease, which was initially thought to be caused by a Sw5 resistance-breaking 

strain of Tomato spotted wilt virus (TSWV; genus Tospovirus) (Turina et al., 2007), 

although this virus could not be detected in symptomatic plants. Electron microscopy 

revealed the presence of isometric viral particles in symptomatic plant material (Turina 

et al., 2007). Virus characterization and partial sequencing revealed that the virus was 

distinct from previously described viruses and the name ‘tomato apex necrosis virus’ 

(ToANV) was proposed (Turina et al., 2007). In a parallel study on the same disease, 

analyses of morphology and genome structure showed that the virus causing ‘marchitez’ 

disease was highly similar to ToTV (Verbeek et al., 2008). However, subsequent 

nucleotide sequence analyses revealed that the disease was caused by a new viral 

species that is clearly distinct from, albeit related to, ToTV with nucleotide sequence 

identities of 85%, 63 and 66% for the three ORFs, and the name ‘Tomato marchitez 

virus’ (ToMarV) was proposed (Verbeek et al., 2008; Table 1). Phylogenetic analyses 

showed that ToTV, ToMarV and ToANV are related and these new viruses are thought to 

belong to the same novel genus for which the name ‘Torradovirus’ was proposed, with 

ToTV as the type species (Verbeek et al., 2008; Sanfaçon et al., 2009). ToMarV is 

considered a distinct species of the same genus, and because partial sequence 

comparison revealed 95% sequence homology, ToANV is considered to be a ToMarV 

isolate (Verbeek et al., 2008).  

The generation of a new family within the order of Picornavirales, which currently 

contains mainly animal viruses that belong to the families Picornaviridae, Comoviridae, 

Dicistroviridae, Marnaviridae, Sequiviridae and the unassigned plant virus genera 

Cheravirus and Sadwavirus, was recently proposed (Le Gall et al., 2008). The name 

‘secoviridae’ was proposed for the new family, which includes all plant viruses within the 

order and comprise the genera Comovirus, Fabavirus, Nepovirus, Sequivirus, Waikavirus, 

Cheravirus, Sadwavirus and the new genus Torradovirus (Sanfaçon et al., 2009).  

Rapidly after the initial characterisation of ToTV, the virus was reported in 

greenhouse tomato crops in the Canary Islands (Alfaro-Fernández et al., 2007b), where 

the typical symptoms were already observed in 2003. Similarly, typical symptoms were 

observed in tomato crops in Poland already in 2003, and based on nucleotide sequence 
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comparisons ToTV was identified afterwards as the causal agent (Pospieszny et al., 

2007). While poor mechanical transmission was reported, efficient vectoring by the 

greenhouse whitefly Trialeurodes vaporiarium was demonstrated (Pospieszny et al., 

2007). More recently, the whitefly Bemisia tabaci was shown to efficiently transmit the 

virus and other Solanaceous crops, including potato, eggplant, pepper and tobacco 

(Nicotiana tabacum), were reported as hosts (Amari et al., 2008). In addition, natural 

infection of weed hosts, possibly serving as alternative hosts in close proximity to 

Solanaceous crop production systems, was reported in Spain (Alfaro-Fernández et al., 

2008a). In 2008, tomato plants exhibiting ToTV-like symptoms were observed in 

Panama and molecular analysis confirmed the presence of both ToTV and Cucumber 

mosaic virus (CMV). No difference in symptom expression was found between plants 

infected with both viruses or with ToTV alone (Herrera-Vasquez et al., 2009). 

Interestingly, out of 87 ToTV-infected samples with typical ‘torrado’ disease symptoms 

that were collected between 2003 and 2006 in Spanish greenhouse tomato crops, 83 

were simultaneously infected with Pepino mosaic virus (PepMV) (Alfaro-Fernández et al., 

2007a). Recently, the virus was also reported in tomato crops in Hungary (Alfaro-

Fernández et al., 2009a) and in Australia (EPPO reporting service 2009), showing a rapid 

migration of ToTV over large geographical distances (Figure 2), possibly in association 

with whiteflies. By contrast, ToMarV is thus far only reported in Mexico and information 

regarding ToMarV transmission is currently not available.  

 

New Crini- and Tospovirus species  

The criniviruses represent a group of viruses that emerged over the last decades in 

association with the worldwide emergence of whiteflies (Wisler et al., 1998a; Jones, 

2003; Wintermantal, 2004). Whitefly populations (mainly the Bemisia tabaci B biotype) 

have drastically increased worldwide since the 1970s, especially in tropical and 

subtropical areas (Wisler et al., 1998a). Even the greenhouse whitefly Trialeurodes 

vaporariorum, for which epidemics have long been restricted to greenhouse crops, have 

been emerging in open field vegetable production over the last 20 years with large 

populations in summer crops and weed reservoirs (Wintermantel, 2004). Increased 

insecticide resistance, global warming, changing of agricultural practices and increasing 

global trade of plant materials have been suggested as factors enhancing whitefly 

emergence (Wintermantel, 2004). Members of the genus Crinivirus within the 

Closteroviridae family have a bipartite ssRNA genome with the two segments separately 

encapsidated, and are transmitted by several species from Bemisia and Trialeurodes 

whiteflies in a semi-persistent manner (Wintermantel, 2004). In the last decade two 
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criniviruses emerged as a problem in tomato production, Tomato infectious chlorosis 

virus (TICV) and Tomato chlorosis virus (ToCV).  

TICV was first identified in field-grown tomato crops in 1993 in California, with an 

estimated yield loss of 2 million US dollars in that year alone (Duffus et al., 1996; Wisler 

et al., 1996). Tomato plants showing symptoms reminiscent of TICV infection have been 

reported in greenhouse tomato crops in Florida since 1989 (Wisler et al., 1998b). The 

disease was referred to as ‘yellow leaf disorder’ and had been attributed to nutritional 

disorders or pesticide phytotoxicity, as initial analyses could not detect viral presence. 

However, transmission experiments revealed that this ‘yellow leaf disorder’ was 

efficiently transmitted by whiteflies. A Crinivirus that was distinct from TICV, both in 

terms of RNA sequence, vector specificity and host range was isolated and named 

Tomato chlorosis virus (ToCV) (Wisler et al., 1998b).  

TICV is transmitted solely by the greenhouse whitefly Trialeurodes vaporariorum, 

while ToCV is transmitted by a number of whitefly species which include the greenhouse 

whitefly, the banded wing whitefly Trialeurodes abutilonea, and the Bemisa tabaci 

biotypes A, B and Q (Navas-Castillo, 200; Wintermantal and Wisler, 2006). The B. tabaci 

A biotype is also known as the sweet potato whitefly, and the B biotype is also known as 

the silverleaf whitefly (Jones, 2003). T. vaporariorum is present in all temperate areas 

worldwide, wile T. abutilonea has only been described in Cuba and the US. B. tabaci was 

originally described in tropical and subtropical regions, but it has spread to temperate 

regions as well. The B biotype is considered highly invasive and with worldwide spread, 

has been shown to be the most efficient vector for ToCV transmission (Wintermantal and 

Wisler, 2006). 

Both TICV and ToCV induce practically indistinguishable “yellowing disease” in 

tomato, which include interveinal yellowing and thickening of mature leaves, while the 

new growth at the plant apex appears normal. Disease symptoms usually appear 3-4 

weeks following inoculation, and are readily mistaken for nutritional disorders or 

pesticide phytotoxicity. Although TICV and ToCV do not induce any symptoms on tomato 

fruit, fruits of infected plants are smaller, decreased in number, the ripening process is 

impeded, and the plants seems to go through early senescence. All of which results in 

yield and economical losses (Wintermental, 2004; Dalmon et al., 2009).  

Although both TICV and ToCV have a wide host range, only TICV infects lettuce. 

While both TICV and ToCV induce very similar disease symptoms in tomato plants, they 

can be discriminated using the indicator plants Nicotiana benthamiana and N. clevelandii 

(Wisler et al., 1998b). As symptoms of both viruses can be confused with nutritional 

disorders or poor growing conditions, it has been speculated that the virus might have 
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been present in tomato crops long before being identified (Rojas and Gilbertson, 2008). 

Moreover, both viruses are phloem-limited and infected plants carry low viral titers, 

which complicates accurate diagnostics.  

Over the last decade, criniviruses were reported to infect field and greenhouse 

tomato crops in Cuba, Turkey, Cyprus, Portugal, Spain, Italy, Israel, Jordan, La Réunion 

Island, Morocco, Greece, Puerto Rico and Taiwan (British Society for Plant Pathology, 

New Disease Reports; Louro et al., 2000; Navas-Castillo et al., 2000; Accotto et al., 

2001; Wintermantel et al., 2001; Dovas et al., 2002; Varia et al., 2002; Tsai et al., 

2004; Segev et al., 2004; Anfoka and Abhary, 2007; Martinez-Zubiaur et al., 2008). 

Interestingly, ToCV was identified in Israel in 2004, while in 2007 TICV was identified in 

tomato fields in the Jordan Valley in Jordan (Segev et al., 2004; Anfoka and Abhary, 

2007). Although the distance between the tomato fields in Jordan and in Israel is only a 

few kilometers, ToCV has not yet been detected in Jordan and TICV has not yet been 

detected in Israel. This may be linked to different agricultural practices affecting whitefly 

populations, with most tomatoes in Jordan grown in open fields, while in Israel the 

majority of the tomatoes are grown in greenhouses.  

In addition to whitefly emergence, also thrips populations have notably increased 

over the last decades, thus facilitating the emergence of thrips-transmitted viruses (Prins 

and Goldbach, 1998). More specifically, the proliferation of thrips-vectored Tospoviruses 

has been associated with increasing thrips populations, mainly attributed to the rapid 

expansion of the western flower thrips (Frankliniella occidentalis) combined with 

increasing insecticide resistance in thrips populations (Prins and Goldbach, 1998; Rojas 

and Gilbertson, 2008). Over recent years, several new species from the Tospovirus 

genus, infecting tomato crops in Australia, Asia and the Middle-East, have been reported 

(Hassani-Mehraban et al., 2005; Dong et al., 2008; Knierim et al., 2006). Tospoviruses 

are enveloped viruses with a tripartite ssRNA genome that belong to the Bunyaviridae 

family and that cause significant losses in tomato, pepper and other crops worldwide. 

Presence of tospoviral species, and more specifically of Tomato spotted wilt virus (TSWV; 

the Tospovirus type species) and members of the Watermelon silver mottle virus 

(WSMoV) serogroup, has been documented in Asian tomato production since the mid-

1980s. Since then, an increasing number of tospoviruses has been found in different 

crops all over Asia (Whitfield et al., 2005; Dong et al., 2008). In 1998 a tospovirus-like 

disease was reported in tomato crops with necrotic lesions on the foliage and chlorotic 

ring spots on the fruits in Iran (Hassani-Mehraban et al., 2005). Serological and 

molecular characterisation revealed that this Tospovirus isolate represents a new 

species, which was tentatively named ‘tomato yellow ring virus’ (TYRV; Table 1).  
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In 2002, a new Tospovirus species infecting pepper and tomato in Queensland 

(Australia) was characterized and tentatively named ‘Capsicum chlorosis virus’ (CaCV; 

McMicheal at al., 2002; Table 1), which was later reported to infect tomato plants in 

Thailand (Knierim et al., 2006). The virus has also been reported to occur in Taiwan and 

China (Dong et al., 2008).  

In 2005 a devastating new disease was observed in tomato and chili pepper crops 

in Yunnan, China. Based on electron microscopy, serological studies and complete 

nucleotide sequences of the three RNA fragments, it was concluded that the virus 

represents a new Tospovirus species, and the name ‘Tomato zonate spot virus’ (TZSV) 

was proposed (Dong et al., 2008; Table 1). Phylogenetic analyses show that TZSV 

clusters in an Asian group of tospoviruses, comprising Calla lily chlorotic spot virus 

(CCSV; Taiwan), Watermelon silver mottle virus (WSMoV; Taiwan and Japan), Capsicum 

chlorosis virus (CaCV; Taiwan, Australia, Thailand and China), watermelon bud necrosis 

virus (WBNV; India and Southeast Asia) and melon yellow spot virus (MYSV; Japan and 

Taiwan). All these tospoviruses seem to originate from, and are presently restricted to, 

Asia (Figure 2), suggesting that they share a common origin. The high incidence of new 

Tospovirus species in tropical Asian regions suggests a ‘hot spot’ of viral genetic diversity 

in reservoir hosts variants from where they are transmitted to commercial crops through 

increasing vector populations (Rojas and Gilbertson, 2008).  

In addition to new Tospovirus species, recently another unknown, putatively 

thrips-transmitted virus has been reported in open field tomato crops in the Central 

Valley of California (Batuman et al., 2009). Necrotic symptoms were observed on tomato 

leaves, stems and petioles (Figure 1g), most similar to those induced by Tobacco streak 

virus (TSV). Although numerous fields were affected, disease incidence in the field was 

rather low (5 to 20%). The causal agent was identified as an Ilarvirus (Bromoviridae) 

with three RNA fragments, and nucleotide sequence analyses revealed 81 to 84% and 64 

to 80% identity for the three RNAs of Parietaria mottle virus (PMoV) and TSV ilarviruses, 

respectively. The mode of transmission has not clearly been demonstrated but may 

involve thrips feeding on infected pollen, as was previously shown for TSV (Sdoodee & 

Taekle, 1987). It was proposed that this virus is representative of a new Ilarvirus 

species, tentatively named ‘Tomato necrotic spot virus’ (TNSV; Batuman et al., 2009; 

Table 1).  
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Table 1. Emerging viruses of tomato crops reviewed in this manuscript 

Family Genus Species Geographical spread Reference1 

Secoviridae Torradovirus Tomato torrado virus  

(ToTV) 

Spain, Canary Islands, 

Panama, Poland, 

Hungary, Australia 

Verbeek et al., 

2007 

  Tomato marchitez virus 

(ToMarV) 

Mexico Verbeek et al., 

2008 

Closteroviridae Crinivirus Tomato infectious 

chlorosis virus (TICV) 

US (California), Europe 

(South), Middle-East 

Duffus et al., 1996 

  Tomato chlorosis virus 

(ToCV) 

Europe (South), US, 

Middle-East 

Wisler et al., 1998b 

Bromoviridae Ilarvirus Tomato necrotic spot virus 

(TNSV) 

US (Florida) Batuman et al., 

2009 

 Anulavirus Pelargonium zonate spot 

virus (PZSV) 

Israel, Europe (South), 

US (California) 

Gallitelli, 1982 

Bunyaviridae Tospovirus Tomato yellow ring 

virus(TYRV) 

Iran Hassani-Mehraban 

et al., 2005 

  Capsicum chlorosis virus 

(CaCV) 

Australia, China, 

Thailand, Taiwan 

McMicheal at al., 

2002 

  Tomato zonate spot virus 

(TZSV) 

China Dong et al., 2008 

Flexiviridae Potexvirus Pepino mosaic virus  

(PepMV) 

Worldwide (except 

Middle-East) 

van der Vlugt et al., 

2000 

Geminiviridae Begomovirus Tomato yellow leaf curl 

virus (TYCLV) and related 

species 

Tropical and subtropical 

areas 

Cohen and Harpaz, 

1964 

1first description for new viruses; first report in tomato for known viruses that recently emerged in tomato 

 

Known viral pathogens that emerged in tomato  

Pepino mosaic virus, a Potexvirus that was initially isolated from pepino (Solanum 

muricatum) in 1974 in Peru (Jones et al., 1980), was observed for the first time in 

tomato crops only a decade ago (van der Vlugt, 2000; Table 1). In only a few years 

time, the virus became a major disease of glasshouse tomato crops worldwide (French et 

al., 2001, Mumford and Metcalfe 2001, Cotillon et al., 2002, Aguilar et al., 2002; 

Maroon-Lango et al., 2005; Ling 2006, Pagán et al., 2006; Figure 2). Potexviruses are 

mechanically transmitted viruses with flexuous rod-shaped particles and an ssRNA 

genome containing five ORFs. PepMV isolates originating from tomato crops in Europe 

between 2000 and 2003 shared over 99% nucleotide sequence identity among each 

other but were clearly distinct (96% nucleotide sequence identity) from the original 

pepino isolate (Verhoeven, 2003). In addition, whereas the original pepino isolate was 
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asymptomatic in tomato, the tomato isolates caused a wide variety of symptoms on 

fruits and vegetative plant parts (van der Vlugt et al., 2000, French et al., 2001, 

Mumford and Metcalfe 2001, Cotillon et al., 2002, Aguilar et al., 2002). These isolates 

were thus considered as distinct from the original pepino-infecting strain, and these were 

subsequently designated ‘European tomato strain’ of PepMV (Mumford and Metcalfe, 

2001; Pagán et al., 2006; Verhoeven, 2003). Since 2005, new genotypes sharing only 

80% nucleotide sequence identity with the European tomato strain have been identified, 

originating from tomato crops in the US (US1 and US2; Maroon-Lango et al., 2005) and 

from tomato seeds from Chile (CH1 and CH2; Ling, 2006).  

The typical fruit marbling (Figure 1c) is generally considered as the most important 

PepMV symptom because it significantly impacts the economic value of the crop 

(Mumford and Metcalfe, 2001; Jones and Lammers, 2005; Spence et al., 2006). In 

addition, uneven or blotchy ripening of tomato fruit has been associated with PepMV 

infection (Roggero et al., 2001; Spence et al., 2006). Symptoms on the vegetative plant 

parts include yellow angular spots on the leaves, the so-called ‘nettleheads’ (upper 

young leaves that are distorted, serrated and upright with a reduced leaf surface), leaf 

mosaics, leaf scorching and leaf blistering or bubbling. The economic impact of PepMV on 

the tomato industry varies for different tomato producing areas, as it depends on the 

structure of the tomato market and more specifically on the local marketability of lower 

quality fruit (Jones and Lammers, 2005; Spence et al., 2006). In addition, large 

differences in symptom severity and damage have been observed between subsequent 

cropping seasons and between different geographic areas, suggesting an impact of 

climate conditions on symptom display (Spence et al., 2006; Jordá et al., 2001). 

Greenhouse trials conducted in the UK from 2001 to 2003 revealed considerable 

differences in damage between subsequent years, with the percentage of downgraded 

tomato fruit due to PepMV-induced quality loss ranging from 6 to 38%. In a 

questionnaire conducted among Belgian tomato growers, yield losses caused by PepMV 

were estimated negligible while losses due to fruit marbling were estimated around 5% 

in the 2005 growth season. However, large differences were noted between individual 

growers. By contrast, in 2006 quality losses were less pronounced but the overall yield 

loss was estimated between 5 and 10% (Hanssen et al., 2009a). Since economical 

margins are limited, losses of 5 to 10% can significantly affect the economical 

profitability of the crop, which is reflected by the fact that 50% of the Belgian tomato 

growers estimates the damage caused by PepMV as ‘moderate to very severe’ (Hanssen 

et al., unpublished data).  
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It is presently unclear what triggered the sudden emergence of PepMV in tomato, 

although long distance spread through infected seeds has been suggested (Rojas and 

Gilberston, 2008). In addition, as the virus is highly infectious, increasing global trade of 

tomato fruits and maybe also cuttings of ornamental pepino varieties may have 

contributed to long distance spread.  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1. Symptoms of emerging viruses in tomato plants. (A) necrotic spots at the leaflet base induced by 

Tomato torrado virus (ToTV); (B) Leaf deformation, yellowing and stunting induced by Tomato yellow leaf 

curl virus (TYLCV); (C) Fruit marbling induced by Pepino mosaic virus (PepMV); (D) Chlorotic rings and line 

patterns on leaves induced by Pelargonium zonate spot virus (PZSV); (E) Fruit necrosis induced by Tomato 

marchitez virus (ToMarV); (F) Interveinal leaf chlorosis induced by Tomato chlorosis virus (ToCV); (G) 

Necrotic leaf spots induced by Tomato necrotic spot virus (TNSV). Pictures E and G are kindly provided by Dr. 

Paul Maris (De Ruiter Seeds, Bergschenhoek, the Netherlands) and Dr. Robert Gilbertson (University of 

California, USA), respectively.  
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Known tomato viruses with a rapidly increasing incidence  

The worldwide emergence of whiteflies, especially of the B. tabaci B biotype, has 

contributed significantly to the rapid and successful emergence of the tomato yellow leaf 

curl disease (TYLCD), caused by a complex of viral species and constituting a serious 

threat to tomato production in many tropical and subtropical regions worldwide (Table 1; 

Figure 2). The causal agents are members of the Begomovirus genus within the family of 

the Geminiviridae, plant viruses with a circular ssDNA genome. Begomoviruses are 

transmitted by the whitefly B. tabaci in a persistent and circulative manner, and their 

genome generally consists of two DNA molecules. However, nearly all begomoviruses 

that cause TYLCD have only one genomic component. Many different species have been 

described within this group, most of which have been given the name Tomato yellow leaf 

curl virus (TYLCV), or derivatives thereof. TYLCD symptoms comprise upward curling of 

leaflet margins, reduction of leaf surface, yellowing of young leaves, severe stunting and 

flower abortion (Moriones and Navas-Castillo, 2000; Figure 1b). A disease with similar 

symptoms to TYLCD was already reported in tomato crops in Israel in the late 1930s, but 

the virus was first identified in 1961, and tomato production in the Middle East has been 

severely affected from the 1970s onwards (Cohen and Antignus, 1994; Czosnek and 

Laterrot, 1997; Cohen and Lapidot, 2007). However, due to a worldwide spread of the B 

biotype of the vector B. tabaci, which has a wider host range than other biotypes and is 

highly invasive, new TYLCV-like viruses emerged from weed and endemic plant 

reservoirs in the late 1980s. In addition, with the rapid emergence of whiteflies into new 

geographic regions, Begomovirus infections have been reported in new tomato 

production areas over the last decade. The disease was described in Japan, Mexico and 

the US in the late nineties (Polston et al., 1994; Polston and Anderson, 1997; Kato et al., 

1998; Ascencio-Ibáñez et al., 1999).  

TYLCV hosts that can serve as virus reservoirs might have a large effect on viral 

emergence to new tomato production regions. While TYLCV can produce severe 

symptoms in tomato, it is also able to establish symptomless infections in both wild and 

cultivated species. For instance, in many tomato-growing areas pepper is grown in close 

proximity. Since pepper was known as a non-host of TYLCV, whitefly management was 

not practiced rigorously in pepper plots (Polston and Lapidot, 2007). After former, 

conflicting reports regarding the susceptibility of peppers to TYLCV (Mansour and Al-

Musa, 1992; Reina et al., 1999), it was recently demonstrated that some, albeit not all, 

cultivars of pepper are in fact symptomless hosts of TYLCV (Morilla et al., 2005; Polston 

et al., 2006). Moreover, despite the lack of TYLCV-induced disease symptoms whiteflies 

were able to acquire TYLCV from infected pepper plants and transmit the virus to tomato 
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(Polston et al., 2006). Hence, symptomless infected pepper plants can serve as virus 

reservoir for the acquisition and transmission of TYLCV. Other asymptomatic hosts of 

TYLCV may act as reservoirs in a similar manner. 

Remarkably, in 2007 a TYLCV outbreak outside the climatic zone in which B. 

tabaci thrives was reported. TYLCV infection was reported in 19 neighboring greenhouse 

tomato crops in the Netherlands, but the virus has been successfully eradicated and no 

new outbreaks have been reported since then (Botermans et al., 2009). The source of 

infection could not be identified, but nucleotide sequence analyses revealed a high 

similarity between isolates from the different crops (> 99% identity to the Spanish 

TYLCV-Alm strain) and therefore infection was thought to be initiated from the same 

source, while local spread most likely occurred through B. tabaci vectoring (Botermans 

et al., 2009). As Begomovirus emergence in tomato crops has been extensively 

discussed in several recent reviews (Moriones & Navas-Castillo, 2000; Varma & Malathi, 

2003; Seal et al., 2006; Rojas & Gilbertson, 2008), this topic is not further addressed in 

this manuscript.  

  Pelargonium zonate spot virus (PZSV) was first isolated from Pelargonium zonale 

(Quacqurelli and Gallitelli, 1979) and subsequently from tomato crops in Italy. PZSV-

infected tomato displayed concentric chlorotic or necrotic rings and line patterns on leaf, 

stems and fruits (Gallitelli, 1982), and has been the causal agent of multiple disease 

outbreaks in commercial tomato crops in various geographic regions. PZSV was detected 

in the late 1990s in greenhouse tomato crops and weeds growing in the immediate 

vicinity in Spain (Luis-Arteaga and Cambra, 2000), and in 2000 in greenhouse-grown 

tomato plants in south-eastern France (Gebre-Selassie et al., 2002). More recently, the 

virus was isolated from open field tomatoes in California (Liu and Sears, 2007) and in 

Israel (Lapidot et al., 2009; Figure 2). It was reported that the virus is seedborne in the 

weed species Diplotaxis erucoides and transmitted to tomatoes in association with pollen 

grains carried by thrips, as was previously described for Ilarvirus species (Finetti-Sialer 

and Gallitelli, 2003). Also particle morphology and a number of physiochemical 

properties are shared with ilarviruses. As the genome comprises three ssRNA species 

with an organisation that is similar to viral species of the Bromoviridae, it was suggested 

that PZSV represents a new genus within this family (Finetti-Sialer and Gallitelli, 2003), 

for which the name ‘Anulavirus’ was proposed (Gallitelli et al., 2005). The virus is 

seedborne in several hosts and is efficiently transmitted mechanically (Gallitelli, 1982; 

Lapidot et al., submitted).  
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Re-emerging old viruses

In recent years, the tomato market in Europe has evolved towards a specialized, 

marketing-driven industry. So

pink), sizes or shapes (cherry, plum or beef), tastes (sweet or rather salty) and healt

promoting properties (high lycopene content) are gaining importance (e.g. Flandria 

specialty street; www.specialtystreet.be

reintroduction of “old” tomato varietie

Especially in France, old tomato varieties are gaining popularity because of their atypical 

appearance and flavor (e.g. ‘Saveurs Anciennes’; 

market-driven changes have consequences for plant disease management as these old 

varieties usually lack the resistance genes that are commonly exploited in more recently 

developed commercial tomato varieties. As a consequence, 

and Tomato mosaic virus (ToMV), two tobamoviruses that caused serious losses in 

tomato production worldwide before resistant varieties were introduced, are re

in tomato production areas where these “old” varieties are grown. Grower organizations 

are considering reintroduction of the cross

in the 1970s, consisting of the inoculation of young tomato plants with the mild TMV 

isolate MII-16 (Rast, 1972), to protect crops from infection with more aggressive TMV or 

Figure 2. Geographic distribution of the emerging viruses in tomato crops reviewed in this manuscript. 
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ToMV variants. However, complications can occur when TMV infects a susceptible variety 

that is grafted onto a TMV-resistant rootstock. As TMV resistance is generally conferred 

by the Tm22 resistance gene (Pelham, 1966) and based on a hypersensitive response 

(HR), infection of the susceptible scion will result in necrosis at the grafting point and 

subsequent plant collapse and death. In addition, the high TMV infection pressure in 

areas where both susceptible and resistant varieties are grown, results in a higher 

incidence of leaf and stem necrosis in resistant varieties due to the activation of the HR 

upon challenge with TMV. Finally, as these established viruses might occur in mixed 

infections with currently emerging viruses like PepMV or ToTV, there may be a risk of 

synergism, or even for recombination events, which might lead to new viral disease 

problems in the future. 

 

Control strategies 

Over the past 20 years, several viruses have emerged in tomato production worldwide, 

some of which pose a considerable threat to greenhouse and open field tomato 

production. Especially the devastating begomoviruses and the highly contagious PepMV 

are currently hampering the economic profitability of tomato production worldwide. 

Optimal control strategies are virus-specific and depend on the incidence, transmission 

and availability of resistant varieties. Within the European Union, control strategies for 

plant virus emergence depend on Pest Risk Analyses (PRAs) and the phytosanitary 

measures that are taken, which can include a quarantine status on seeds, seedlings 

and/or commercial crops (www.eppo.org/QUARANTINE/quarantine.htm). Begomoviruses 

and the criniviruses TICV and ToCV are listed in the EPPO A2 alert list. TYLCV and related 

species were assigned a quarantine status for tomato in EU member states (EU directive 

2000/29/EC), while PepMV (Commission Decision 2001/536/EC and 2004/200/EC) 

currently has a quarantine status only on tomato seeds. 

Control of whitefly-transmitted viruses depends mainly on the availability of 

efficient insecticides, insect-proof greenhouses and resistant varieties (Polston and 

Lapidot, 2007). Tomato varieties with resistance to TYLCV, ToTV and ToMarV are 

commercially available. Genes controlling resistance to TYLCV and other tomato-infecting 

begomoviruses (Ty genes) were introgressed from several wild Solanum species. The 

intermediate TYLCV resistance gene Ty1, introgressed from Solanum chilense LA1969 

(Michelson et al., 1994; Zamir et al., 1994), is the most commonly used source of TYLCV 

resistance, while information on ToTV resistance has not been published. A recent F1 

diallele study (Vidavski et al., 2008) demonstrated that several of these Ty resistance 

genes may interact with each other, and in some cases result in hybrid plants displaying 
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higher TYLCV-resistance compared to their parental lines. This suggests that pyramiding 

resistance genes originating from different resistance sources can be effective in 

obtaining cultivars that are highly resistant to begomoviruses (Vidavski et al., 2008).  

In contrast, varieties with resistance to criniviruses are not yet available. The 

Tospovirus TSWV-resistance gene sw5 (Stevens, 1964) is widely used in commercial 

varieties, but resistance for the newly described Tospovirus species is not yet available in 

commercial tomato varieties. Resistance strategies for Tospovirus control are 

compromised by the continuous emergence of resistance-breaking strains and new 

species (Pappu et al., 2009). Control of tospoviruses is also hampered by the rapid 

development of insecticide resistance within thrips populations. Alternatives to chemical 

thrips control comprise the use of thrips predators or thrips-proof insect nets (Jones, 

2004), although the small mesh size required for thrips-proof nets leads to reduced 

ventilation and thus to suboptimal climate conditions in the greenhouse. A promising 

future disease management strategy for whitefly and thrips transmitted viruses could 

consist of genetic resistance to the insect vectors rather than to the viruses they 

transmit. 

For the highly contagious, mechanically transmitted PepMV and PZSV, control 

depends largely on hygienic measures, as resistant varieties are not yet available. In 

addition, cross-protection strategies might be developed in production areas with a high 

infection pressure, provided that only one virus is dominant and that the viral population 

is homogenous (Lecoq, 1998; Gal-On and Shiboleth, 2006).  

Future control strategies for plant virus diseases may include transgenic 

resistance. Especially the introduction of an inverted repeat (IR) transgene, that is 

derived from viral sequences and is thus able to trigger gene silencing of the viral gene 

expression, into the plant genome is a promising strategy (Prins et al., 2008).  

 

Concluding remarks 

Viral diseases are an important limiting factor in many crop production systems. Owing 

to their large population size and short generation time, viruses have a great potential to 

quickly evolve and adapt under natural selection pressure. Tomato is by far the most 

important vegetable crop, and many viral species that infect tomato crops have been 

described. Over the recent years, several viral diseases have emerged in greenhouse 

tomato crops and are presently impacting the fresh market tomato production in diverse 

geographic areas worldwide. These are (i) new viral species, (ii) known viral pathogens 

of other crops that are emerging in tomato, (iii) tomato viruses with a rapidly increasing 

incidence, and (iv) old viruses that re-emerge due to the cultivation of old varieties that 
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lack the resistance genes that are commonly exploited in more recently developed 

commercial tomato varieties. Optimal strategies to reduce the impact of emerging 

viruses on current and future tomato production systems will most probably consist of an 

integrated pest management (IPM) approach, in which the most efficient control 

measures are combined depending on the biology of the virus and its vector (Jones, 

2004). Consequently, a good insight in the biology and epidemiology of these viruses is 

critical for the development of suitable control strategies.  
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Thesis Outline 

 

In Chapter 1, the most important emerging viruses of tomato crops were reviewed. This 

includes Pepino mosaic virus (PepMV), a Potexvirus with a single stranded RNA genome 

which has rapidly become one of the most important viral pathogens of tomato crops 

worldwide over the recent years, and subject of this thesis research.  

In Chapter 2, the genetic diversity of the PepMV population in Belgian 

greenhouses is studied and related to the symptom development in tomato crops. 

Presently, five PepMV genotypes (EU, LP, CH2, US1 and US2) have been described 

worldwide, three of which (EU, LP and US2) have previously been reported to occur in 

Europe. A novel assay based on restriction fragment length polymorphism (RFLP) was 

developed to discriminate the different PepMV genotypes. Both RFLP and sequence 

analysis revealed the occurrence of two genotypes, the EU genotype and the CH2 

genotype, within Belgian tomato crops, with a clear dominance of the CH2 genotype. 

Whereas no differences were observed in symptom expression between plants infected 

by either of the two genotypes, co-infection with both genotypes resulted in more severe 

PepMV symptoms. Nevertheless, it remained unclear whether different PepMV isolates 

can cause differential symptom severity. Therefore, the symptomatology that is induced 

by different PepMV isolates was studied in Chapter 3. Based on the survey described in 

Chapter 2, four isolates that differed in symptom expression in the crop of origin were 

selected for greenhouse trials. PepMV symptom development was assessed regularly and 

extensive sampling followed by ELISA analyses, genotyping and nucleotide sequencing 

was performed to study viral presence and variation in PepMV sequences throughout the 

trial period. These trials demonstrated that PepMV isolates can cause differential 

symptomatology as two isolates that were selected based on mild symptom expression 

in the crop of origin caused only mild symptoms in the trial, while two other isolates that 

were selected for severe symptom display, caused considerably more severe symptoms.   

In Chapter 4, seed transmission of PepMV in tomato is demonstrated. Fruit was 

harvested from the greenhouse trials described in Chapter 3 and over 100,000 seeds 

were collected. Subsequently, in the framework of a European project, seeds were 

distributed to 10 different laboratories in three separate batches and germinated for 

seedling analyses by ELISA. The results show that PepMV can be transmitted through 

seeds, albeit with low transmission rates. 

In Chapter 5, the potential of three mild PepMV isolates, belonging to the CH2, 

EU and LP genotypes, to protect a tomato crop against an aggressive CH2 isolate, was 

assessed in greenhouse trials. The results suggest that the interaction between PepMV 



 

Chapter 1  26 

 

isolates largely depends on RNA sequence homology and that post-transcriptional gene 

silencing plays an important role in cross-protection. 

A custom-designed Affymetrix tomato GeneChip array that contains probe sets to 

interrogate over 22,000 tomato transcripts was used in Chapter 6 to study 

transcriptional changes in response of tomato to inoculation with the highly similar 

(99.4% nucleotide sequence identity) mild and aggressive CH2 isolates that are 

characterized in Chapter 3.  

Finally, Chapter 7, the general discussion, is a PepMV pathogen profile in which 

the results obtained in this work are discussed and integrated into a review on the 

current knowledge on this highly successful pathogen of tomato crops.   
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Abstract 

In just a few years time, Pepino mosaic virus (PepMV) has become one of the most 

important viral diseases in tomato production worldwide. Infection by PepMV can cause a 

broad range of symptoms on tomato plants, often leading to significant financial losses. 

At present, five PepMV genotypes (EU, LP, CH2, US1 and US2) have been described, 

three of which (EU, LP and US2) have been reported to occur in Europe. Thus far, no 

correlation has been found between different PepMV genotypes and the symptoms 

expressed in infected plants. In this paper, the genetic diversity of the PepMV population 

in Belgian greenhouses is studied and related to symptom development in tomato crops. 

A novel assay based on restriction fragment length polymorphism (RFLP) was developed 

to discriminate the different PepMV genotypes. Both RFLP and sequence analysis 

revealed the occurrence of two genotypes, the EU genotype, as well as the CH2 

genotype, within the tomato production in Belgium. Whereas no differences were 

observed in symptom expression between plants infected by one of the two genotypes, 

co-infection with both genotypes resulted in more severe PepMV symptoms. 

Furthermore, our study revealed that PepMV recombinants frequently occur in mixed 

infections under natural conditions. Possibly, this may result in generation of viral 

variants with increased aggressiveness.  

 

 

Introduction 

Worldwide, tomato (Solanum lycopersicum) is one of the most widely grown vegetable 

crops. In many regions where tomato is cultivated, viral diseases have become one of 

the main limiting factors in tomato production over the last decades. A virus that has 

recently caused a large impact on tomato cultivation is Pepino mosaic virus (PepMV). 

PepMV is a positive-sense single-stranded RNA virus that belongs to the potexviruses, 

with Potato virus X as a type species. The genomic RNA of the virus is approximately 

6,400 nt long and encodes five open reading frames (ORFs) encompassing an RNA-

dependent RNA polymerase (RdRp), a triple gene block, a coat protein (CP), and two 

short untranslated regions that flank the coding regions, including a 3' poly(A) tail 

(Aguilar et al., 2002; Cotillon et al., 2002). PepMV was first identified in Peru in 1974 

from young leaves of pepino (Solanum muricatum) that displayed yellow mosaic 

symptoms (Jones et al., 1980). Presence of the virus in tomato crops was not reported 

until 1999 when it was found in Dutch tomatoes (van der Vlugt et al., 2000), after which 

the virus quickly spread in tomato crops throughout Europe and North America (Soler et 

al., 2000; French et al., 2001; Jordá et al., 2001; Mumford and Metcalfe, 2001; Roggero 

et al., 2001). A wide range of symptoms has been associated with PepMV infection in 

tomatoes including leaf mosaic, leaf distortions, nettle heads and stunting. Apart from 
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these, fruit discoloration, mostly expressed as marbling or flaming, possibly caused by 

irregular lycopene distribution, is considered as the most devastating result of PepMV 

infection because it reduces the commercial value of the fruit (Soler et al., 2000; 

Mumford and Metcalfe, 2001; Roggero et al., 2001; Spence et al., 2006). In some cases, 

even complete plant collapse has been associated with PepMV infection (Soler-Aleixandre 

et al., 2005). In general, environmental factors such as light and temperature are 

thought to play a crucial role in symptom development (Jordá et al., 2001). In some 

tomato cultivation areas up to 90% of the greenhouse tomato plants are infected with 

PepMV, leading to up to 40% production losses (Soler et al., 2000). Since no resistant 

varieties are available and no curative measures exist, prevention of PepMV infection by 

hygienic measures is important. To reduce economic losses caused by PepMV infection, 

some tomato growers deliberately inoculate their plants with PepMV at the start of the 

growing season since it has been speculated that early PepMV infections are less 

damaging than infections that occur later in the growing season (Spence et al., 2006). 

This immunization strategy is based on the principle of cross-protection, which was 

successfully used in the seventies to protect tomato plants against Tobacco mosaic virus 

(Rast, 1972). Recently, resistance sources have been identified within the Solanum 

genus that may be used for future resistance breeding against PepMV (Ling & Scott, 

2007; Soler-Aleixandre et al., 2007).  

In addition to the complete nucleotide sequence of four European PepMV isolates, 

that of a Peruvian PepMV isolate from Lycopersicon peruvianum has been determined 

(Aguilar et al., 2002; Cotillon et al., 2002; Lopez et al., 2005). Generally, PepMV isolates 

that have been identified in European tomato crops are highly similar (99% nucleotide 

identity) and differ from the Peruvian isolate (95% nucleotide identity). Therefore, these 

European PepMV isolates were grouped in the so-called tomato genotype, while the 

Peruvian isolate represents the so-called Peruvian (LP) genotype (Mumford and Metcalfe, 

2001; Aguilar et al., 2002; Cotillon et al., 2002; Verhoeven et al., 2003; Lopez et al., 

2005; Pagán et al., 2006). In addition, three significantly different PepMV genotypes 

have recently been identified, two derived from isolates from diseased tomato plants in 

the USA, the so-called US1 and US2 genotypes, and one derived from an isolate from 

infected tomato seeds in Chile, the so-called CH2 genotype (Maroon-Lango et al., 2005; 

Ling, 2007). To distinguish the original ‘tomato genotype’ from the novel PepMV 

genotypes identified on tomato, the original genotype is further referred to as the 

European (EU) genotype. In Spain, members of the LP and US2 PepMV genotypes have 

been found in tomato crops, always occurring in mixed infections with the EU genotype 

(Martinez-Culebras et al., 2002; Pagán et al., 2006). Apart from the study of Pagán et al. 

(2006), the genetic structure of the tomato PepMV population has not been analyzed in a 

tomato growing area. Furthermore, until now no correlation has been found between 
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different PepMV isolates or genotypes and the severity of symptom expression in infected 

tomato plants (Pagán et al., 2006). Here, the genetic diversity among PepMV isolates in 

Belgian greenhouses is studied and related to the symptom development in tomato 

crops. In addition, it is shown that PepMV recombinants frequently occur in mixed 

infections with different PepMV genotypes. 

 

 

Materials and methods 

 

PepMV assessment in commercial greenhouses 

From January untill November 2006, a monthly survey for the occurrence of PepMV was 

conducted. In total, 48 commercial Belgian greenhouse tomato production facilities 

located in areas with a high PepMV infection pressure were used in this study, giving 

preference to greenhouses with a history of PepMV infections (Table 1). On a monthly 

basis, different plant parts (head, foliage and fruit) were examined for PepMV occurrence 

by horticultural experts according to a specific rating schedule from 1 (no symptoms) to 

6 (dead plant part) (Table 2). In each greenhouse, approximately 100 plants that belong 

to a single tomato variety located in a marked rating block of two plant rows were 

examined, and one average score was given for each type of symptom. Furthermore, 

samples were collected monthly to assess PepMV presence. The samples were composed 

of young leaves from the heads of ten different, randomly chosen tomato plants from the 

marked rating block (one leave per plant; ten leaves per sample). As such, each sample 

was supposed to represent the overall situation of a PepMV infection in a given 

greenhouse at a given point in time. Following homogenization, subsamples were used 

for further analysis. 

 

Determination of viral presence 

Samples were analysed for PepMV presence using a double antibody sandwich enzyme-

linked immunosorbent assay (DAS-ELISA) employing a commercially available antiserum 

(Agdia Inc., Elkhart, USA) according to the supplier’s instructions. Samples were rated 

positive if the absorbance level exceeded the background level by three times. 

Background absorption was defined as the mean value of at least 2 wells containing all 

reagents except the sample. In case ELISA testing was inconclusive, PepMV presence 

was determined by reverse transcriptase PCR (RT-PCR). 
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Table 1. PepMV occurrence in 48 commercial Belgian greenhouse tomato production facilities in the 2006 

growing season assessed upon monthly monitoring 

Greenhousea Location First detection of PepMV Genotype(s) detectedb  Genotype(s) autumn ‘06b 
01* Melsele February ‘06 EU + CH2 EU + CH2 
02* Merksplas March ‘06 EU EU 
03 Rijkevorsel February ‘06 CH2 CH2 
04 Rijkevorsel None None None 
05* Rijkevorsel December ‘05 EU + CH2 EU + CH2  
06 Rijkevorsel None None None 
07 Rijkevorsel February ‘06 EU EU + CH2 
08 Merksplas June ‘06 CH2 EU + CH2 
09 Merksplas May ‘06 CH2 EU + CH2 
11 Wuustwezel June ‘06 EU EU 
12 Ravels None None None 
13 Hoogstraten May ‘06 CH2 CH2 
14 Meer None None None 
15 Meer February ‘06 CH2 CH2 
16 Borsbeek April ‘06 CH2 CH2 
17* Broechem January ‘06 EU + CH2 EU + CH2 
18 Broechem January ‘06 EU EU 
19 Broechem January ‘06 CH2 CH2 
20 Broechem February ‘06 EU EU + CH2 
21 Melsele June ‘06 CH2 CH2 
22 Melsele April ‘06 CH2 CH2 
23* Hoogstraten January ‘06 CH2 CH2 
24 Rijkevorsel None None None 
31* Aartselaar February ‘06 EU EU + CH2 
32* Boechout February ‘06 EU + CH2 EU + CH2 
33 Rumst May ‘06 CH2 CH2 
34 Duffel February ‘06 CH2 CH2 
35 Duffel None None None 
36 Lier None None None 
37 Putte February ‘06 EU EU 
38 Putte January ‘06 CH2 CH2 
39 St.-Kat.-Waver March ‘06 CH2 CH2 
40 St.-Kat.-Waver February ‘06 CH2 CH2 
41* St.-Kat.-Waver February ‘06 EU + CH2 EU + CH2 
42 St.-Kat.-Waver August ‘06 CH2 CH2 
43 St.-Kat.-Waver February ‘06 CH2 CH2 
44 St.-Kat.-Waver July ‘06 CH2 CH2 
45 St.-Kat.-Waver February ‘06 CH2 CH2 
46 Koningshooikt March ‘06 CH2 EU + CH2 
47* Koningshooikt February ‘06 EU + CH2 EU + CH2 
48 St.-Kat.-Waver January ‘06 CH2 CH2 
49 St.-Kat.-Waver February ‘06 CH2 CH2 
50* St.-Kat.-Waver January ‘06 CH2 CH2 
51 St.-Kat.-Waver January ‘06 EU EU + CH2 
52 Boechout June ‘06 EU EU + CH2 
53 Duffel October ‘06 EU EU 
54 St.-Kat.-Waver February ‘06 CH2 CH2 
55 St.-Kat.-Waver February ‘06 EU + CH2 EU + CH2 
aGreenhouses marked with an asterisk(*) were selected for phylogenetic analyses. 

bPepMV genotype determined by RT-PCR-RFLP (Reverse transcriptase PCR restriction fragment length 

polymorphism assay). 
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Table 2. Score table used for monthly assessment of PepMV symptomsa by horticultural experts 

Plant part Symptom Type Score 
Head Leaf bubbling (a) Mean of a and b (A) 

  Nettle head (b) 
Foliage Leaf bubbling (c) Mean of c, d, e and f (B) 
 Yellow spots (d) 
 Stem necrosis (e) 
 Leaf necrosis (f) 
Fruit Discoloration: Maximum of g and h (C1) 
      Marbling (g) 
      Flaming (h) 
 Scars and open fruits:  Maximum of i and j (C2) 
      Scars (i)  
      Open fruits (j)  
 Rare symptoms: Maximum of k and l (C3) 

 
 

      Sunken spots on the fruit surface (k) 
      Brown spots on the fruit surface (l) 
 Mean score fruit symptoms Mean of C1, C2 and C3 (C) 
General 
score 

 Mean of A, B and C 

aPepMV symptoms were scored between 1 (symptoms not observed) and 6 (die-off of the respective plant 

part). 

 

Reverse transcriptase PCR 

Total RNA was extracted from the tomato samples (300 mg of homogenized leaf tissue) 

using a phenol-based extraction procedure described by Eggermont et al. (1996). 

Subsequently, cDNA was synthesized using the Qiagen Quantitect Reverse Transcription 

kit (Qiagen Inc., Valencia, CA, USA) according to the manufacturer’s instructions using 

the PepMV-specific reverse primers Pep4 and PepMV UTR R (Mumford and Metcalfe, 

2001; Pagán et al., 2006), targeting a fragment of the RNA-dependent RNA polymerase 

(RdRp) gene and the Coat Protein (CP) gene, respectively. Prior to PCR amplification, the 

cDNA was treated with RNase to eliminate residual RNA. Amplification was performed in 

a 20 µl reaction volume containing 1 µl of cDNA, 1 µM of each primer and 1 unit Titanium 

Taq DNA polymerase (Clontech Laboratories, Inc., Palo Alto, CA, USA). Primers Pep3 and 

Pep4 generated a single, 625 bp RdRp amplicon and primers PepMV TGB F and PepMV 

UTR R generated a single CP amplicon of 845 bp (Mumford and Metcalfe, 2001; Pagán et 

al., 2006). The PCR temperature profile consisted of denaturation at 94°C for 2 min, 

followed by 30 cycles of 45 s at 94°C, 45 s at 53°C, and 45 s at 72°C, with a final 

extension step at 72°C for 10 min. Amplified products (1 µl) were resolved 

electrophoretically in a 1.5% agarose gel. All reactions were performed at least twice. 

 

Reverse transcriptase PCR restriction fragment length polymorphism (RT-PCR-

RFLP) 

A RT-PCR assay combined with RFLP analysis has previously been proposed as a rapid 

method for discrimination of the PepMV isolates known at that time (Martinez-Culebras et 

al., 2002). However, since this method was not developed to discriminate between the 

currently occurring five PepMV genotypes, a similar RT-PCR-RFLP assay was developed 

for these five genotypes. RdRp and CP sequences of reference PepMV genotypes 
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available in GenBank (Table 3) were screened in silico for genotype-specific restriction 

enzyme recognition sites. According to theoretical predictions from sequence alignments, 

digestion of the RdRp fragment with EcoRI and BglII results in three different RFLP 

groups, one encompassing the EU and the LP genotype, one with the CH2 genotype and 

one consisting of the US1 and US2 genotypes (Table 3). Based on in silico prediction, no 

discrimination between the EU and the LP genotype or between the US1 and US2 

genotype was possible with restriction analysis of the RdRp fragment using these 

enzymes (Table 3). However, further discrimination between these genotypes was 

possible upon restriction of the CP fragment with a set of four restriction endonucleases 

(HindIII, NdeI, PvuII and SacI; Table 3). Actual digestion of RT-PCR fragments was 

performed according to the manufacturer’s instructions (New England Biolabs Inc., 

Ipswish, MA, USA). The analyses were performed twice, each time on two different 

samples from the same greenhouse. 

 

Table 3. Rapid typing of PepMV genotypes by restriction endonuclease digestion of RT-PCR products (RT-PCR-

RFLP) 

  PepMV genotype 

PepMV 
fragmenta 

Restriction 
enzyme 

EUb LPb CH2b US2b US1b 

RdRp None 625c 625 625 625 625 

 EcoRI 230 
395 

230 
395 

625 625 625 

 BglII 625 625 338 
287 

625 625 

CP None 845 845 845 845 845 

 HindIII 845 845 845 845 562 
283 

 NdeI 367 
478 

367 
478 

845 845 845 

 PvuII 278 
122 
445 

278 
122 
445 

845 644 
201 

643 
202 

 SacI 845 386 
459 

845 845 845 

aRdRp= RNA dependent RNA polymerase; CP = coat protein. 

bGenBank accession numbers of used reference sequences: EU (Fr, AJ438767; Sp13, AF484251), LP (LP2001, 

AJ606361), US1 (AY509926), US2 (AY509927) and CH2 (DQ000985).  

cSizes (bp) of cDNA fragments are based on theoretical digests of reference sequences retrieved from GenBank 

(Table 3). 
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Phylogenetic analyses 

Genetic characterization of PepMV isolates was performed based on two genomic regions, 

a fragment of the RdRp gene and a fragment of the CP gene, obtained by RT-PCR as 

described earlier. Amplified products were directly cloned into the pCR4-TOPO vector 

(Invitrogen, Carlsbad, CA, USA) and sequenced using the vector-specific primers M13-F 

and M13-R flanking the insert (Macrogen inc., Seoul, South Korea). Depending on the 

experiment, for each sample three to ten clones were sequenced. Multiple sequence 

alignments were performed using CLUSTAL X (Thompson et al., 1997), including six 

PepMV reference sequences available in GenBank (Table 3). Subsequently, a neighbour-

joining tree (Saitou and Nei, 1987) was constructed and displayed by Treeview (v. 1.6.6; 

Page, 1996). Robustness of the generated phylogenetic relationships was assessed by 

subjecting the data set to 1,000 bootstrap replicates. All sequences determined in this 

study have been deposited in GenBank under Accession numbers EF599505-EF599604. 

 

Statistical analyses 

Analysis of variance (ANOVA) and post-hoc Bonferroni tests were used to determine the 

effects of PepMV genotype on symptom expression in different plant parts. All statistical 

analyses were performed with SPSS software (v. 10.0; SPSS Inc., Chicago, IL, USA). 

 

 

Results  

 

Assessment of PepMV occurrence in commercial greenhouses 

In the 2006 growing season, a monthly survey for the occurrence of PepMV was 

conducted in 48 commercial Belgian greenhouse tomato production facilities (Table 1). At 

the end of the growing season, tomato crops in 41 of the 48 greenhouses were infected 

with PepMV (Table 1). However, since areas with a high PepMV infection pressure and 

greenhouses with prior PepMV infections were selected, it should be noted that the high 

PepMV presence in this study is not representative of the PepMV incidence in the total 

Belgian tomato cultivation.  

 

PepMV genotyping by RT-PCR-RFLP 

In order to develop a rapid screening method to discriminate between the different 

PepMV genotypes, an RT-PCR-RFLP assay was designed. The robustness of the assay was 

verified by sequence analysis of all sequences obtained in this study as well as of those 

retrieved from GenBank. For all sequences, a perfect correlation was obtained between 

the presence or absence of the RFLP restriction sites and the PepMV genotype (data not 

shown), demonstrating the reliability of the assay.  
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Once PepMV was detected in a given sample, the genotype was determined using 

the developed RT-PCR-RFLP method (Table 1). At the time of detection, the EU genotype 

was found in ten greenhouses while in 24 greenhouses the CH2 genotype was detected. 

In seven greenhouses a mixed infection with these two genotypes was recorded. At the 

end of the growing season, genotyping by RT-PCR-RFLP was performed again to see 

whether the composition of the PepMV population had changed over the growing season. 

At that time, the CH2 genotype was detected solitary in 21 greenhouses, while infection 

with only the EU genotype was found in five greenhouses. Mixed infections with both 

genotypes were found in 15 greenhouses and no other PepMV genotypes were detected. 

In seven greenhouses, PepMV was not detected during the entire growing season and no 

symptoms were observed.  

To assess the homogeneity of the PepMV population present in a greenhouse, RT-

PCR-RFLP results obtained from mixed plant samples were compared to results obtained 

from individual plant samples. In total, 30 individual plant samples, originating from 

greenhouses 01, 31 and 32, were analysed together with the corresponding mixed plant 

sample. Individual plant samples from greenhouse 31 generated an EU genotype specific 

RT-PCR-RFLP pattern, consistent with the result obtained from the mixed plant sample, 

whereas individual plant samples from greenhouses 01 and 32 resulted in mixed infection 

patterns, with the exception of one plant that appeared to be infected only with the CH2 

genotype. These results show that mixed plant samples are, in general, representative of 

individual plants in the rating block, implying that the PepMV population is homogenous 

within a greenhouse, and that co-infection with the EU genotype and the CH2 genotype 

occurs within individual plants.  

Since the CH2 genotype was not previously reported in European tomato 

cultivation, the RT-PCR-RFLP identification of one isolate (2206/06/A1, obtained from 

greenhouse 22) that resulted in a CH2 specific RT-PCR-RFLP pattern was confirmed by 

determining the complete sequence (GenBank Accession number EF599605), resulting in 

an overall nucleotide identity of more than 98% with the CH2 sequence present in 

GenBank (DQ000985). Altogether, these results illustrate that the CH2 genotype was 

dominant in the Belgian tomato production of 2006, as it was found in 36 of 41 

greenhouses in which PepMV was detected.  

 

PepMV genotype occurrence and symptom development 

Each greenhouse was rated monthly for plant vigour and PepMV symptom expression in 

multiple plant parts according to a specific rating scale (Table 2). Subsequently, results 

were grouped based on the encountered PepMV genotypes (EU, CH2 or mixed; Figure 1). 

As shown in Figure 1, no differences were observed in symptom expression between 

plants infected by one of the two genotypes. Nevertheless, the obtained PepMV symptom 
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scores were significantly higher (p<0.05) for greenhouses with mixed infections. When 

comparing results for the three different plant parts that were assessed (head, foliage 

and fruit), the mean scores in the head of the plant show the most significant differences 

between the different groups (Figure 1). Nevertheless, it should be noted that in general 

differences between the groups were rather small. This is mainly due to the fact that 

means were calculated based on monthly ratings throughout the entire growing season, 

while PepMV symptom expression typically occurs periodically. Long periods without 

symptoms are usually observed that level out extreme differences when monitoring a 

complete growing season. Compared with the situation when PepMV was detected for the 

first time in a greenhouse in eight out of 40 greenhouses with PepMV infected tomato 

plants, an additional PepMV genotype (five times the CH2 genotype and three times the 

EU genotype) invaded the crop during the growing season (Table 1). Upon invasion of 

this second genotype more severe symptoms were usually observed. In greenhouse 07, 

for example, PepMV infection with only the EU genotype was first detected in February. 

Upon monthly monitoring, from September onwards also the CH2 genotype was 

detected, coinciding with a sudden increase in symptom severity in September, especially 

on the fruits. Scores for fruit marbling increased from one to four between August and 

October. A concurrent increase in symptom severity was not seen in plants only infected 

with the EU or the CH2 genotype (data not shown).  
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Figure 1. Relation between symptom expression and PepMV genotype. All greenhouses included in the 

survey were grouped based on the occurrence of a given PepMV genotype, generating three groups (EU 

genotype in black bars, CH2 genotype in white bars, and mixed infections of EU and CH2 genotypes in grey 

bars). Symptoms were scored on a rating scale from 1 (no symptoms) to 6 (die-off) as shown in Table 2. 

Overall means of score ‘A’, ‘B’ and ‘C’ (Table 2) and a 95% confidence interval per group are shown in the 

graph, calculated for each factor using SPSS software. Differences between groups were studied using One 

Way ANOVA and posthoc Bonferroni tests. 
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Phylogenetic analyses of PepMV isolates from ten greenhouses 

To further assess the genetic diversity of the encountered PepMV isolates, the nucleotide 

sequences of a 625 bp fragment of the RdRp gene and a 845 bp fragment of the CP gene 

were determined in several samples taken in the beginning of the growing season, 

preferentially from greenhouses that were diagnosed with mixed infections of the EU and 

CH2 genotypes (Table 1). For the RdRp gene, two to three clones from samples from ten 

greenhouses (01, 02, 05, 17, 23, 31, 32, 41, 47 and 50) were sequenced resulting in 29 

nucleotide sequences. Subsequently, the sequences were compared with reference 

sequences from the different genotypes. Based on the sequence alignments a 

phylogenetic tree was constructed that displays two main groups (Figure 2a), that each 

share 97% to 100% similarity, while the two groups share only about 80% homology 

between each other. The first group includes the European reference isolates Fr and SP13 

and is further referred to as the EU genotype group. The second cluster encompassing 

the Chilean reference isolate CH2 is referred to as the CH2 genotype group (Figure 2a). 

Thirteen sequences (originating from 7 samples) were assigned to the EU genotype, 

while 13 other sequences (originating from 6 samples) landed in the CH2 genotype group 

(Figure 2a). Sequence homology between both PepMV groups and the closest related 

viral species within the genus Potexvirus (Scallion Virus X and Narcissus Mosaic Virus X) 

ranged between 44 and 49%. Sequences that are homologous to the reference isolates 

US1 (US1 genotype), US2 (US2 genotype) and LP01 (LP genotype) were not detected in 

our study, confirming the results of the RT-PCR-RFLP analysis. However, within three 

greenhouses (01, 05 and 50), PepMV sequences were identified that clustered in between 

the two different groups (samples 0106/12/C1 clone D, 0506/09/B1 clone A and 

5006/05/B1 clone A), suggesting the occurrence of PepMV recombinants (Figure 2a).  

The intra-specific sequence variance for the RdRp gene fragment within a 

greenhouse was studied for greenhouse 32, where a mixed infection with the EU and the 

CH2 genotype was found (Figure 2b). Sequence homology ranged from 79% to 100%, 

even when comparing different clones from a single sample. When studying sequences 

belonging to the same PepMV genotype but obtained from different clones from the same 

sample, a sequence homology of 98% to 100% was seen.  

In addition, for five of the ten selected greenhouses (01, 02, 23, 31 and 32) a 845 

bp fragment of the CP gene was cloned and sequenced (four clones per sample). 

Sequence alignments of 20 sequences showed similar results for this part of the viral 

genome as for the RdRp gene (data not shown). Again, two distinct PepMV genotype 

groups were formed, and similar as for the RdRp gene fragment, both groups shared only 

78% sequence homology. For the CP gene, no sequences were identified that clustered in 

between the two different groups. 
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Figure 2. Phylogenetic analysis of PepMV sequences. 

Neighbour-joining tree of 29 RdRp-sequences from 

PepMV-infected tomato samples collected in ten 

commercial greenhouses (a), of 44 RdRp-sequences 

obtained from 7 different samples from greenhouse 32, 

four of which originated from the 2005 growing season 

and three from the 2006 growing season (b), and 

subsequent analysis of 64 RdRp sequences from PepMV-

infected tomato samples collected in three of those 

greenhouses (c). Trees are generated using Clustal X with 

1,000 bootstrap replicates and visualized using Treeview. 

Bootstrap values > 90% are shown at the major nodes. 

Reference sequences from each genotype, encompassing 

sequences from the PepMV isolates Fr, SP13, US1, US2, 

LP01, and CH2 (GenBank Accession numbers AJ438767, 

AF484251, AY509926, AY509927, AJ606361, and 

DQ000985, respectively) were included for comparison. 

Sequence identifiers encode ‘the greenhouse code _ year 

of sampling/ serial number/ rating block/ sample number/ 

clone’. The scale bar represents 0.1 changes per 

nucleotide. Samples denoted with ‘Inoc.’ originate from 

the 2005 growing season and were used to inoculate 

plants in 2006.   

c 
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Evidence for recombination between the European and Chilean PepMV 

genotypes 

A detailed study was performed of the RdRp sequences obtained from the samples of 

three greenhouses (01, 05 and 32) that displayed a mixed infection with both the EU and 

CH2 genotype. For each greenhouse, two samples taken between April and June 2006 

were analysed. For two greenhouses (05 and 32), also samples from the 2005 growing 

season were included. For each sample, RdRp fragments were cloned and eight to ten 

colonies were sequenced. Multiple sequence alignments and subsequent phylogenetic 

analyses were performed on a dataset of in total 70 RdRp sequences including those of 

the six reference PepMV isolates (Figure 2c). Also in this case the majority of sequences 

fell within the two clusters that represent the EU and the CH2 genotypes. In addition, 

again a considerable subset of sequences fell in between both clusters, with the different 

sequences in a gradual transition from one cluster to the other (Figure 2c).  

Detailed sequence analysis of the RdRp fragments showed that all sequences that 

landed in between both clusters were partially identical to the CH2 genotype and partially 

identical to the EU genotype. This is exemplified by Figure 3a showing a sequence 

alignment of a small subset of sequences. In general, the transition site between the two 

sequences differed from sequence to sequence, even for sequences derived from a single 

sample. Nevertheless, some sequences with identical recombination sites were identified 

as well. For example, the recombinant RdRp sequences 3206/11/B1_I and 

3206/13/A1_G that were obtained from samples taken at different time points in the 

same greenhouse were 100% identical. When aligned with other sequences that were 

also obtained from this greenhouse, namely one belonging to the CH2 genotype 

(sequence 3206/13/A1_A) and one belonging to the EU genotype (sequence 

3206/04/A1_A), both sequences share 100% homology over the first 250 nucleotides 

with sequence 3206/13/A1_A, while the subsequent 375 nucleotides share 100% 

homology with the EU sequence (Figure 3a). The predicted translated sequences of the 

respective clones show that the original codons have been preserved and that all 

sequences encode amino acid sequences that are partially identical to the CH2 genotype 

and partially identical to the EU genotype (Figure 3b).  
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a 
EU_3206/04/A1_A         ATGAGGTTGTCTGGTGAAGGTCCAACTTTTGATGCCAACACAGAATGTTCAATAGCATAT 60 

3205/inocD_A            ATGAGGTTGTCTGGTGAAGGTCCCACATTTGACGCTAACACTGAGTGTTCGATTGCATAC 60 

3206/11/B1_I            ATGAGGTTGTCTGGTGAAGGTCCCACATTTGACGCTAACACTGAGTGTTCGATTGCATAC 60 

3206/13/A1_G            ATGAGGTTGTCTGGTGAAGGTCCCACATTTGACGCTAACACTGAGTGTTCGATTGCATAC 60 

3205/InocB_E            ATGAGGTTGTCTGGTGAAGGTCCCACATTTGACGCTAACACTGAGTGTTCGATTGCATAC 60 

CH_3206/13/A1_A_CH      ATGAGGTTGTCTGGTGAAGGTCCCACATTTGACGCTAACACTGAGTGTTCGATTGCATAC 60 

                        *********************** ** ***** ** ***** ** ***** ** *****  

 

EU_3206/04/A1_A         ACTGCTACAAGATATCATCTTGATTCTACAGTCAAGCAGGTTTATGCTGGAGATGATATG 120 

3205/inocD_A            ACTGCCACAAGATTCCATATTGACAATACTATTAAGCAAGTGTATGCCGGTGACGACATG 120 

3206/11/B1_I            ACTGCCACAAGATTCCATATTGACAATACTATTAAGCAAGTGTATGCCGGTGACGACATG 120 

3206/13/A1_G            ACTGCCACAAGATTCCATATTGACAATACTATTAAGCAAGTGTATGCCGGTGACGACATG 120 

3205/InocB_E            ACTGCCACAAGATTCCATATTGACAATACTATTAAGCAAGTGTATGCCGGTGACGACATG 120 

CH_3206/13/A1_A_CH      ACTGCCACAAGATTCCATATTGACAATACTATTAAGCAAGTGTATGCCGGTGACGACATG 120 

                        ***** *******  *** ****   ***  * ***** ** ***** ** ** ** *** 

 

EU_3206/04/A1_A         GCATTAGATGGAGTTGTCCAAGAAAAACCCTCTTTCAAAAAACTACAGAACAAGCTTAAA 180 

3205/inocD_A            GCATTAGATGGAGTTGTGAGTGAAAAGAAATCATTCAGGAAGTTACAAAATCTACTAAAA 180 

3206/11/B1_I            GCATTAGATGGAGTTGTGAGTGAAAAGAAATCATTCAGGAAGTTACAAAATCTACTAAAA 180 

3206/13/A1_G            GCATTAGATGGAGTTGTGAGTGAAAAGAAATCATTCAGGAAGTTACAAAATCTACTAAAA 180 

3205/InocB_E            GCATTAGATGGAGTTGTGAGTGAAAAGAAATCATTCAGGAAGTTACAAAATCTACTAAAA 180 

CH_3206/13/A1_A_CH      GCATTAGATGGAGTTGTGAGTGAAAAGAAATCATTCAGGAAGTTACAAAATCTACTAAAA 180 

                        *****************    *****    ** ****  **  **** **    ** *** 

 

EU_3206/04/A1_A         CTCACCTCAAAGACACTATTTCCAAAACAGGTTAAAGGTGATTATGCTGAATTCTGTGGT 240 

3205/inocD_A            CTCACTTCAAAAACGCTGTACCCAAAACAGGTTAAAGGTGATTATGCTGAATTCTGTGGT 240 

3206/11/B1_I            CTCACTTCAAAAACGCTGTACCCAAAACAGGTTAAAGGGGATTACGCTGAATTTTGTGGT 240 

3206/13/A1_G            CTCACTTCAAAAACGCTGTACCCAAAACAGGTTAAAGGGGATTACGCTGAATTTTGTGGT 240 

3205/InocB_E            CTCACTTCAAAAACGCTGTACCCAAAACAGGTTAAAGGGGATTACGCTGAATTTTGTGGT 240 

CH_3206/13/A1_A_CH      CTCACTTCAAAAACGCTGTACCCAAAACAGGTTAAAGGGGATTACGCTGAATTTTGTGGT 240 

                        ***** ***** ** ** *  ***************** ***** ******** ****** 

 

EU_3206/04/A1_A         TGGACTTTCACTCCTGGTGGTATCATTAAAAACCCTTTGAAAATGCATGCTTCCATTATG 300 

3205/inocD_A            TGGACTTTCACTCCTGGTGGTATCATTAAAAACCCTTTGAAAATGCATGCTTCCATTATG 300 

3206/11/B1_I            TGGACTTTCACTCCTGGTGGTATCATTAAAAACCCTTTGAAAATGCATGCTTCCATTATG 300 

3206/13/A1_G            TGGACTTTCACTCCTGGAGGTATCATTAAAAACCCTTTGAAAATGCATGCTTCCATTATG 300 

3205/InocB_E            TGGACTTTCACACCAGGGGGTATAATTAAAAATCCACTTAAAATGCATGCCTCAATTATG 300 

CH_3206/13/A1_A_CH      TGGACTTTCACACCAGGGGGTATAATTAAAAATCCACTTAAAATGCATGCCTCAATTATG 300 

                        *********** ** ** ***** ******** **  * *********** ** ****** 

 

EU_3206/04/A1_A         TTGCAAGAGGCAATCGGCAATTTACACACTGCTGCCAGATCATATGCCATTGACATGAAG 360 

3205/inocD_A            TTGCAAGAGGCAATCGGCAATTTACACACTGCTGCCAGATCATATGCCATTGACATGAAG 360 

3206/11/B1_I            TTGCAAGAGGCAATCGGCAATTTACACACTGCTGCCAGATCATATGCCATTGACATGAAG 360 

3206/13/A1_G            TTGCAAGAGGCAATCGGCAATTTACACACTGCTGCCAGATCATATGCCATTGACATGAAG 360 

3205/InocB_E            CTGCAAGAAGCCATTGGCAATCTGCACACAGCAGCCAGATCTTATGCAATTGACATGAAG 360 

CH_3206/13/A1_A_CH      CTGCAAGAAGCCATTGGCAATCTGCACACAGCAGCCAGATCTTATGCAATTGACATGAAG 360 

                         ******* ** ** ****** * ***** ** ******** ***** ************ 

 

EU_3206/04/A1_A         CATTCATACCAAATGGGTGATGAGCTGCACAATTACTTAACACCAGATGAAGCTGAACAA 420 

3205/inocD_A            CATTCATACCAAATGGGTGATGAGCTGCACAATTACTTAACACCAGATGAAGCTGAACAA 420 

3206/11/B1_I            CATTCATACCAAATGGGTGATGAGCTGCACAATTACTTAACACCAGATGAAGCTGAACAA 420 

3206/13/A1_G            CATTCATACCAAATGGGTGATGAGCTGCACAATTACTTAACACCAGATGAAGCTGAACAA 420 

3205/InocB_E            CATTCATACCAAATGGGTGACCAACTGCATGACTACTTAACACCAGATGAAGCTGAACAA 420 

CH_3206/13/A1_A_CH      CATTCATACCAAATGGGTGACCAACTGCATGACTACCTAACCCCTGATGAAGCTGAACAA 420 

                        ********************  * *****  * *** **** ** *************** 

 

EU_3206/04/A1_A         CACTTCCTTGCTGTTCGGAAGTTGCACAAGTTACACCAAGGAGAAGCAATGAGACTTGGT 480 

3205/inocD_A            CACTTCCTTGCTGTTCGGAAGTTGCACAAGTTACACCAAGGAGAAGCAATGAGACTTGGT 480 

3206/11/B1_I            CACTTCCTTGCTGTTCGGAAGTTGCACAAGTTACACCAAGGAGAAGCAATGAGACTTGGT 480 

3206/13/A1_G            CACTTCCTTGCTGTTCGGAAGTTGCACAAGTTACACCAAGGAGAAGCAATGAGACTTGGT 480 

3205/InocB_E            CACTTCCTTGCTGTTCGGAAGTTGCACAAGTTACACCAAGGAGAAGCAATGAGACTTGGT 480 

CH_3206/13/A1_A_CH      CATTTCCTAGCTGTGAGAAAGCTTCACAAACTCCATCAAGGCGAGGCCATGCGTCTTGGT 480 

                        ** ***** *****  * *** * *****  * ** ***** ** ** *** * ****** 

 

EU_3206/04/A1_A         GAAAAGAGCCCTCCAAAAGCAACACATTGAGGGGTTAAGTTTTCCCCAGTTCGAAATGGA 540 

3205/inocD_A            GAAAAGAGCCCTCCAAAAGCAACACATTGAGGGATTAAGTTTTCCCCAGTTCGAAATGGA 540 

3206/11/B1_I            GAAAAGAGCCCTCCAAAAGCAACACATTGAGGGGTTAAGTTTTCCCCAGTTCGAAATGGA 540 

3206/13/A1_G            GAAAAGAGCCCTCCAAAAGCAACACATTGAGGGGTTAAGTTTTCCCCAGTTCGAAATGGA 540 

3205/InocB_E            GAAAAGAGCCCTCCAAAAGCAACACATTGAGGGATTAAGTTTTCCCCAGCTCGAAATGGA 540 

CH_3206/13/A1_A_CH      GAGAAAAGTCCACCAAGATCAACCCATTAAGGGGTTAAGTTTTCCCCAGTTTGAAATGGA 540 

                        ** ** ** ** **** * **** **** **** *************** * ******** 
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EU_3206/04/A1_A         AAAATCAACTCTGATTAATTTACTTCAATTGCACCACTTCGAGCCAAAACTCAGTGTTGA 600 

3205/inocD_A            AAAATCAACTCTGATTAATTTACTTCAATTGCACCACTTCGAGCCAAAACTCAGTGTTGA 599 

3206/11/B1_I            AAAATCAACTCTGATTAATTTACTTCAATTGCACCACTTCGAGCCAAAACTCAGTGTTGA 600 

3206/13/A1_G            AAAATCAACTCTGATTAATTTACTTCAATTGCACCACTTCGAGCCAAAACTCAGTGTTGA 599 

3205/InocB_E            AAAATCAACTCTGATTAATTTACTTCAATTGCACCACTTCGAGCCAAAACTCAGTGTTGA 600 

CH_3206/13/A1_A_CH      AAGATCAACTTTGATCAATTTACTTCTGTTACACAAATTTGAACACAAGATTAACACTGA 600 

                        ** ******* **** **********  ** *** * ** ** *  **  * *     ** 

 

EU_3206/04/A1_A         AGGAATCATAGTTGTGCACGGAATT 625 

3205/inocD_A            AGGAATCATAGTTGTGCACGGAATT 624 

3206/11/B1_I            AGGAATCATAGTTGTGCACGGAATT 625 

3206/13/A1_G            AGGAATCATAGTTGTGCACGGAATT 624 

3205/InocB_E            AGGAATCATAGTTGTGCACGGAATT 625 

CH_3206/13/A1_A_CH      AGGAATCATAGTTGTGCACGGAATT 625 

                        ************************* 

 

b 
EU_3206/04/A1_A      MRLSGEGPTFDANTECSIAYTATRYHLDSTVKQVYAGDDMALDGVVQEKPSFKKLQNKLK 60 

3205/inocD_A         MRLSGEGPTFDANTECSIAYTATRFHIDNTIKQVYAGDDMALDGVVSEKKSFRKLQNLLK 60 

3206/11/B1_I         MRLSGEGPTFDANTECSIAYTATRFHIDNTIKQVYAGDDMALDGVVSEKKSFRKLQNLLK 60 

3206/13/A1_G         MRLSGEGPTFDANTECSIAYTATRFHIDNTIKQVYAGDDMALDGVVSEKKSFRKLQNLLK 60 

3205/InocB_E         MRLSGEGPTFDANTECSIAYTATRFHIDNTIKQVYAGDDMALDGVVSEKKSFRKLQNLLK 60 

CH_3206/13/A1_A      MRLSGEGPTFDANTECSIAYTATRFHIDNTIKQVYAGDDMALDGVVSEKKSFRKLQNLLK 60 

                     ************************:*:*.*:***************.** **:**** ** 

 

EU_3206/04/A1_A      LTSKTLFPKQVKGDYAEFCGWTFTPGGIIKNPLKMHASIMLQEAIGNLHTAARSYAIDMK 120 

3205/inocD_A         LTSKTLYPKQVKGDYAEFCGWTFTPGGIIKNPLKMHASIMLQEAIGNLHTAARSYAIDMK 120 

3206/11/B1_I         LTSKTLYPKQVKGDYAEFCGWTFTPGGIIKNPLKMHASIMLQEAIGNLHTAARSYAIDMK 120 

3206/13/A1_G         LTSKTLYPKQVKGDYAEFCGWTFTPGGIIKNPLKMHASIMLQEAIGNLHTAARSYAIDMK 120 

3205/InocB_E         LTSKTLYPKQVKGDYAEFCGWTFTPGGIIKNPLKMHASIMLQEAIGNLHTAARSYAIDMK 120 

CH_3206/13/A1_A      LTSKTLYPKQVKGDYAEFCGWTFTPGGIIKNPLKMHASIMLQEAIGNLHTAARSYAIDMK 120 

                     ******:***************************************************** 

 

EU_3206/04/A1_A      HSYQMGDELHNYLTPDEAEQHFLAVRKLHKLHQGEAMRLGEKSPPKATHMEKSTLINLLQ 180 

3205/inocD_A         HSYQMGDELHNYLTPDEAEQHFLAVRKLHKLHQGEAMRLGEKSPPKATHMEKSTLINLLQ 180 

3206/11/B1_I         HSYQMGDELHNYLTPDEAEQHFLAVRKLHKLHQGEAMRLGEKSPPKATHMEKSTLINLLQ 180 

3206/13/A1_G         HSYQMGDELHNYLTPDEAEQHFLAVRKLHKLHQGEAMRLGEKSPPKATHMEKSTLINLLQ 180 

3205/InocB_E         HSYQMGDQLHDYLTPDEAEQHFLAVRKLHKLHQGEAMRLGEKSPPKATHMEKSTLINLLQ 180 

CH_3206/13/A1_A      HSYQMGDQLHDYLTPDEAEQHFLAVRKLHKLHQGEAMRLGEKSPPRSTHMERSTLINLLL 180 

                     *******:**:**********************************::****:*******  

 

EU_3206/04/A1_A      LHHFEPKLSVEGIIVVHGI 199 

3205/inocD_A         LHHFEPKLSVEGIIVVHGI 199 

3206/11/B1_I         LHHFEPKLSVEGIIVVHGI 199 

3206/13/A1_G         LHHFEPKLSVEGIIVVHGI 199 

3205/InocB_E         LHHFEPKLSVEGIIVVHGI 199 

CH_3206/13/A1_A      LHKFEHKINTEGIIVVHGI 199 

                     **:** *:..********* 
 

Figure 3. Alignment of recombinant nucleotide sequences (a; nt 1 to 510: part of RNA dependent RNA 

polymerase gene, nt 510 to 536: untranscribed region, nt 536 to 625: part of coat protein gene) and 

corresponding amino acid sequences (b) originating from different samples from one greenhouse (greenhouse 

32), with a sequence belonging to the CH2 genotype (CH3206/13/A1_1) and a sequence belonging to the EU 

genotype (EU3206/04/A1_A). Figure 3a shows identical transition sites for 3206/11/B1_I and 3206/13/A1_G 

(nt 251) and different transition sites for 3205/inocD_A (nt 218) and 3205/InocB_E (nt 406). Sequences of the 

primers to check for recombination are underlined. Figure 3b shows that recombination occurs in such way that 

codons stay intact and translation results in amino acid sequences that are partly identical to one of the 

parental genotypes. 
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To eliminate the possibility that the recombinant sequences were generated by 

artefacts during the RT-PCR, an RNA extract derived from PepMV infected plants from 

greenhouse 11 (infected with the EU genotype only) and one from plants from 

greenhouse 19 (infected with the CH2 genotype only) were mixed before RT-PCR 

analysis. Subsequently, the generated cDNA products were amplified, cloned and 

sequenced. In total 16 clones were sequenced, all of which were found to be derived 

from either the EU genotype or the CH2 genotype and no recombinant sequences were 

obtained. In addition, primers were developed to specifically detect the obtained 

recombinant sequences, with a forward primer (5’ TGAAGGTCCCACATTTGACGC 3’) 

specific for the CH2 genotype and a reverse primer (5’ CTGAGTTTTGGCTCGAAGTGG 3’) 

specific for the EU genotype (Figure 3a). Under stringent PCR conditions, with an 

annealing temperature of 66°C, an amplicon of the expected size was obtained only in 

samples containing recombinant sequences, and not in samples containing only the CH2 

or the EU genotype, nor in a mixture of two samples containing only the CH2 or the EU 

genotype. These results provide further evidence for recombination events to occur in 

tomato plants co-infected with both PepMV genotypes.  

 

 

Discussion 

The data provided in this study show that two PepMV genotypes occur in Belgian tomato 

production greenhouses, the EU genotype and the CH2 genotype. Until now, the EU 

genotype was considered the most prevalent PepMV genotype in European tomato 

production greenhouses (Aguilar et al., 2002; Cotillon et al., 2002; Ling, 2007). 

Remarkably, while the CH2 genotype has not previously been detected in European 

tomato production facilities, we found that this genotype was present in 85% of the 

surveyed greenhouses with PepMV infected tomato crops (Table 1). This raises the 

question of how this genotype was introduced and why it occurs so widespread. Since the 

CH2 genotype has previously been shown to occur on tomato seeds (Ling, 2007) and 

since many plants were found to be infected already at an early stage of the cultivation 

(Table 1), an infection at the nurseries that grow young plantlets for delivery to 

greenhouses was considered as a potential cause of the widespread occurrence of the 

CH2 genotype. However, PepMV presence in these nurseries could not be demonstrated 

by ELISA testing. Alternatively, the widespread occurrence of the CH2 genotype suggests 

that this genotype may have a biological advantage over the EU genotype. Our data 

suggest that the CH2 genotype spreads faster than the EU genotype in greenhouses with 

mixed infections, as an individual plant only infected with the CH2 genotype could be 

identified in greenhouse 32, while infection only with the EU genotype was not observed. 

A similar situation was found in a Dutch greenhouse, where one out of six analyzed 
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plants was infected with the CH2 genotype only, while the other five showed mixed 

infections upon RT-PCR-RFLP analysis. In addition, a mixed infection inoculation 

experiment showed that three weeks after inoculation only the CH2 genotype could be 

detected, while only two months later also the presence of the EU genotype could be 

demonstrated (data not shown).  

 It should be noted that primers Pep3 and Pep4 used in this study were originally 

designed based on the EU genotype (Pagán et al., 2006). As a result, a bias may be 

introduced in our PCR results by using these primers, perverting the dynamic range of 

the detected targets. Nevertheless, using this primer set Pagán et al. (2006) were able to 

obtain US2-like sequences. In addition, our results show that these primers can perfectly 

amplify the CH2 genotype, since the CH2 genotype was identified in almost 85% of the 

samples while the EU genotype was found in <50% of the samples.  

A remarkable observation made in this study was the occurrence of recombination 

between the EU and CH2 genotype in plants that are infected with isolates of both 

genotypes. Identical recombinants were detected at different time points in different 

plants, suggesting that the recombinant genotype was sufficiently viable to be 

transmitted from one plant to another. The viability of the recombinants is further 

supported by the predicted translated sequences of the recombinant clones that, in all 

cases, represented perfect hybrid sequences between the EU and CH2 genotype (Figure 

3b). Recombination is known to play an important role in the evolution of RNA viruses 

(Nagy and Simon, 1997; Garcia-Arenal et al., 2001; Moya et al., 2004). Nevertheless, 

information on recombination and its frequency in the absence of selection pressure is 

scarce, and to our knowledge recombination events within complete viral RNAs have not 

been described yet for potexviruses. Recombination most frequently occurs through the 

so-called copy-choice model, in which the viral RdRp enzyme switches templates during 

replication. Since each nucleotide may serve as a target for switching, recombination 

may occur randomly (Lai, 1992; Shapka and Nagy, 2004). However, some regions, so-

called recombination hot spots, appear to display a higher recombination frequency 

which is generally explained by specific secondary structures such as stem loops 

(Olsthoorn et al., 2002). The occurrence of such recombination hot spots could not be 

demonstrated based on our data, as multiple recombination regions were identified for 

the sequences obtained in our study. However, sequences of all recombinants identified 

in this study were unidirectional as the 5’ end was consistently composed of a sequence 

of the CH2 genotype while the 3’ end contained a sequence of the EU genotype.  

Significantly increased symptom severity was observed in tomato production 

greenhouses with a mixed infection when compared to greenhouses where plants were 

infected with only a single genotype (Figure 1). In addition, when a second PepMV-

genotype invaded a PepMV-infected tomato crop, more severe symptoms were observed. 
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It is currently not known whether the increased symptom severity is due to synergistic 

activities between the different PepMV genotypes or whether recombinant genotypes 

account for more severe symptoms. 

Obviously, scoring of symptoms can be subjective due to a lack of sufficient 

standardization. Therefore, all observations were performed by only two horticultural 

experts that have carried out scoring of tomato varieties and disease symptoms for many 

years. Scoring criteria were tweaked regularly in order to minimize bias. Eventually, a 

large dataset of over 900 and 2000 scores for vegetative tissues and fruits, respectively, 

was analyzed. However, it should be stressed that our analysis concerns observations in 

different greenhouses with different cultivation practices. Controlled inoculation 

experiments using purified single or mixed virus isolates are required to substantiate our 

findings and clarify the role of different genotypes and mixed infections in symptom 

severity.  

Importantly, however, our results show that plants infected with the EU PepMV 

genotype do not express cross-protection towards the CH2 genotype or vice versa, 

suggesting that the immunization carried out by some tomato growers in an attempt to 

protect their crops is not effective and may increase, rather than minimize, PepMV 

damage. 
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Abstract 

After a first detection in 1999, Pepino mosaic virus (PepMV) swiftly spread through 

greenhouse tomato production worldwide. Currently, three different PepMV genotypes 

(the European tomato (EU), the CH2 and the Peruvian (LP) genotype) have been 

reported to occur in European tomato production. So far, it is unclear whether different 

viral isolates cause different symptom severity. Based on a survey conducted in 

commercial tomato production in Belgium in 2006, four PepMV isolates that differed in 

symptom expression in the crop of origin were selected for greenhouse trials. The 

selected isolates were inoculated onto tomato plants grown in four separate plastic 

tunnels. PepMV symptom development was assessed regularly and extensive sampling 

followed by ELISA analyses, genotyping and sequencing was performed to study viral 

presence and variation in PepMV sequences throughout the trial period. Two isolates (EU 

mild and CH2 mild) that were selected based on mild symptom expression in the crop of 

origin caused only mild symptoms in the trial, while two other isolates (CH2 aggressive 

and EU+CH2) that were selected for severe symptom display, caused considerably more 

severe symptoms. Sequence homology between CH2 mild and CH2 aggressive was as 

high as 99.4%. Results of this study show that differential symptom expression can, at 

least partially, be attributed to the PepMV isolate, which may be related to minor 

differences at the nucleotide level between isolates. 

 

 
Introduction 

Over recent years, tomato (Solanum lycopersicum) greenhouse crops are increasingly 

affected by the highly contagious Potexvirus Pepino mosaic virus (PepMV), which was 

first described in 1980 on pepino (Solanum muricatum) in Peru (Jones et al., 1980). 

Infection of tomato was not reported until 1999, when the virus was first detected in 

tomato greenhouse crops in the Netherlands (van der Vlugt et al., 2000). Since then, a 

fast spread of the virus occurred throughout tomato production worldwide, with official 

reports of PepMV incidence from Spain, France, Italy, the United Kingdom, Poland, 

Belgium, the United States and Canada (Soler et al., 2000; French et al., 2001; Jorda et 

al., 2001; Mumford & Metcalfe, 2001; Roggero et al., 2001; Cotillon et al., 2002; 

Pospieszny et al., 2006; Hanssen et al., 2008).  

The PepMV viral RNA genome is approximately 6400 nucleotides long and, similar 

to other potexviruses, contains five open reading frames (ORFs) including a replicase 

gene, a triple gene block (TGB) and a coat protein gene (CP). Sequence data revealed a 

high genome identity (approximately 99%) between isolates from different European 

countries (Aguilar et al., 2002; Cotillon et al., 2002; Mumford & Metcalfe, 2001; 

Verhoeven et al., 2003). Since these European isolates showed only 96% sequence 
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homology to a Peruvian PepMV isolate (LP 2001), they are considered as a distinct 

genotype and further referred to as the EU tomato genotype (Lopez et al., 2005). Two 

other PepMV isolates, originating from diseased tomato plants in the United States (US1 

and US2; Maroon-Lango et al,. 2005), displayed between 79% and 82% homology to 

the EU tomato genotype. A fifth genotype, the so-called CH2 genotype which showed 

more sequence homology with the US2 genotype (91%) than with the EU tomato 

genotype (about 80%), was found on contaminated tomato seeds originating from Chile 

(Ling, 2007).  

A phylogenetic study in Spanish tomato production revealed the presence of the 

Peruvian and US2 genotypes in addition to the EU tomato genotype of PepMV (Pagan et 

al., 2006). Recently, the CH2 genotype has spread throughout Europe and was reported 

to occur in Belgium and Poland (Hanssen et al., 2008; Hasiów et al., 2008), but has also 

been identified in France, the Netherlands and Morocco (Hanssen et al., unpublished 

data). Genetic characterisation of PepMV isolates from Belgian greenhouse tomatoes 

demonstrated dominance of the CH2 genotype over the EU tomato genotype and the 

frequent occurrence of recombinants between both genotypes in mixed infections 

(Hanssen et al., 2008).  

 Initially, symptoms such as nettleheads, dwarfing, leaf distortions, leaf mosaics, 

yellow rectangular leaf spots and marbling or flaming of fruit were associated with 

PepMV infection in tomato. As leaf or head symptoms were usually mild and persisted 

only for a short period after infection, fruit discoloration was generally considered the 

most devastating consequence of PepMV infection (Soler et al., 2000; Roggero et al., 

2001; Spence et al., 2006). Nevertheless, since the emergence of new PepMV 

genotypes, the symptom severity seems to be increasing as not only the common leaf 

and head symptoms are becoming more persistent and severe, but also new symptoms 

(e.g. leaf scorching or premature leaf senescence, open fruit and scars on the fruit 

surface) are observed (Spence et al., 2006; Hanssen et al., 2008). So far, no correlation 

has been observed between different PepMV genotypes and the severity of symptom 

expression in infected tomato plants (Pagan et al., 2006; Hanssen et al., 2008). 

However, co-infection with both genotypes resulted in enhanced PepMV symptoms 

(Hanssen et al., 2008). A detailed follow-up of symptom display in Belgian greenhouse 

tomatoes infected with PepMV in 2006 gave rise to the hypothesis that severity and 

nature of symptoms induced in tomato plants differ between isolates, and even within 

the same genotype. From this survey four PepMV-isolates, obtained from these naturally 

infected commercial tomato crops were selected for further study. Here, we compared 

PepMV symptom expression caused by those four different PepMV isolates in greenhouse 

trials. In addition, complete genome sequences were determined and sequence evolution 

during the infection was assessed.  
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Materials and Methods 

 

Experimental design 

From May to October 2007, a greenhouse trial was conducted in five separate plastic 

tunnels to assess PepMV symptom expression upon inoculation with different PepMV 

isolates. Tomato seeds (cultivar Tricia, De Ruiter Seeds, Bergschenhoek, the 

Netherlands) were disinfected with sodium hypochlorite (1° active chlorine for 30 min) 

and rinsed thoroughly with tap water. Subsequently, the seeds were germinated on 

rockwool trays in a lettuce greenhouse facility, isolated from tomato production facilities 

to prevent PepMV infection. Five weeks after sowing, 100 tomato plants were transferred 

to each of the tunnels. One month after planting, the tomato plants in four separate 

tunnels were individually inoculated with four different PepMV strains, while plants in a 

fifth tunnel were mock-inoculated with phosphate buffer.  

Based on a survey conducted in 2006 in commercial tomato production 

greenhouse facilities in Belgium, four PepMV isolates (‘1806’, ‘1906’, ‘0506’ and ‘PCH 

06/104’) obtained from different greenhouses with distinct PepMV symptom expression 

in tomato were selected (Hanssen et al., 2008). Here, a PepMV isolate is defined as the 

viral inoculum derived from PepMV infected plants from one specific tomato production 

site. Inoculation was performed by rubbing one lower leaf per plant with an extract of 

infected tomato leaf material, prepared by grinding 30 g of leaf material in 60 ml of 

phosphate buffer (pH 7.4). Viral concentration in the PepMV inoculum of the four isolates 

was standardized by using infected leaf material with a similar viral titre as determined 

by ELISA. This method was verified to result in 100% disease incidence.  

Each tunnel with 100 plants was divided in ten sampling blocks, each containing 

ten adjacent plants. Until the fourth week post inoculation (WPI), a weekly sample 

consisting of a single leaf from the head of each of the 10 plants in the sampling block 

was taken from all 10 sampling blocks per tunnel. After four weeks, sampling was 

performed once in two weeks. An overview of the sampling schedule is given in Table 1. 

 

Genetic characterization of PepMV isolates 

The genotypes of PepMV isolates were determined using a previously described RT-PCR-

RFLP method (Hanssen et al., 2008). Whole genome sequences of the three isolates 

containing a single genotype (EU mild, CH2 mild and CH2 aggressive) were determined 

by amplifying, cloning and sequencing seven partially overlapping regions of the PepMV 

genome (Table 2). Amplified products were directly cloned into the pCR4-TOPO vector 

(Invitrogen, Carlsbad, CA, USA) and sequenced using the vector-specific primers M13-F 

and M13-R (Macrogen Inc., Seoul, South Korea). Alignment of the full genome 

sequences was performed using the CLUSTAL X algorithm (Thompson et al., 1997). In 
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addition, for the EU+CH2 isolate a 625bp fragment of the genome referred to as RdRp 

(Pagan et al., 2006; Hanssen et al., 2008), obtained using primers Pep3 and Pep4 (Table 

2; Mumford & Metcalfe, 2001) was cloned and a total of ten clones was sequenced.  

 

Table 1. Schedule of sampling and Pepino mosaic virus analyses on tomato  

WPIa Sampling  
date b (‘07) 

PepMV analyses 

  ELISA Genotyping c Sequencing d 

1 20/06 10 samples per tunnel /e 1 sample per tunnel, 7-
10 clones 

2 29/06 10 samples per tunnel / / 
3 05/07 10 samples per tunnel / 1 sample per tunnel, 7-

10 clones 
4 13/07 10 samples per tunnel / / 
6 27/07 10 samples per tunnel 3 samples per tunnel 

(sampling block 1, 5 and 10) 
/ 

8 10/08 10 samples per tunnel / / 
10 24/08 10 samples per tunnel / / 
12 07/09 10 samples per tunnel / 1 sample per tunnel, 7-

10 clones 
14 20/09 10 samples per tunnel / / 
16 01/10 10 samples per tunnel 3 samples per tunnel 

(sampling block 1, 5 and 10) 
1 sample per tunnel, 7-
10 clones 

a WPI = weeks post inoculation 

b A sample consisted of a mixture of 10 young leaves (one from each plant in the sampling block) from the 

heads of the plants. As the heads of the plants were pruned in the sixth WPI, leaves were taken from young 

shoots in the highest plant parts after six WPI. 

c by RT-PCR-RFLP 

d RdRp fragment, after cloning (analysis not performed for EU+CH2 isolate ‘0506’) 

e analysis not performed 

 

Table 2. Primer sets used for amplification and sequence determination of the Pepino mosaic virus genome 

Primera Target region 5’Position b Sequence (5’-3’) Tann
c Amplicon 

size  

Apa15 Replicase gene 36 CTAACACAACATAACCACG 57°C 1172 
Rep1-R1  1190 GTTGCATGGGTGCAACCA   
Rep2-F Replicase gene 1075 GAATTGTATGACCCTGATG 54°C 1316 
Rep2-R   2371 GGTTGAATCATTGCTTTCTC   
Rep3-F2 Replicase gene 2166 TCAAAATGCAACATGAAGAC 54°C 1105 
Rep3-R  3252 GTTGATGTTGGAAAAGTTG   
Rep4-F1 Replicase gene 2951 ACACCATATCTCAAAGC 51°C 1160 
Rep4-R  4094 CCTTTAACCTGTTTTGG   
Pep3-F d Replicase gene 3893 ATGAGGTTGTCTGGTGAA 53°C 625 
Pep4-R d   4500 AATTCCGTGCACAACTAT   
Apa23-F Triple gene block 4411 GTTTTCCCCAGTTTGAAATGG 54°C 1147 
Apa25-R  5537 CCAAGGGGAGAAGTTGATTGC   
Ker1 Coat protein gene 5379 CACCAATAAATTTAGTTTTAGC 56°C 996 
FL-R  6359 AGAAAACCCACTCTGA   
a F is sense primer, R is antisense primer 

b reference sequence CH2, GenBank accession number DQ000985 

c Annealing temperatures 

d Mumford & Metcalfe, 2001. 
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Evaluation of PepMV symptoms  

During the trial period, at ten time points (0, 1, 2, 4, 5, 6, 8, 9, 10 and 14 WPI) 30 

individual plants from each treatment were examined for PepMV symptoms. In addition, 

at three points in time (3, 7 and 12 WPI) all 100 plants were evaluated. In each case, 

the head of the plants, the foliage and stem, and the fruit were examined. Symptoms 

were rated using a scale from one (not present) to four (severe symptom display) (Table 

3). In addition, at 9, 13 and 15 WPI all tomatoes in the mature clusters from each 

treatment were examined to determine the percentage of marbled and flamed tomatoes.  

 

Determination of PepMV presence and infection level 

All plant samples were analysed for PepMV presence using a double antibody sandwich 

enzyme-linked immunosorbent assay (DAS-ELISA) using a commercial antiserum (Agdia 

Inc., Elkhart, USA), according to the supplier’s instructions. The optical density (OD) was 

measured at 405 nm and samples were rated positive if the OD exceeded the mean 

value of two negative control wells by three times. Assay reproducibility was confirmed 

by including a duplicate sample of a standardized positive control of known viral 

concentration in each ELISA analysis. A mean OD value of 3.76 with a 95% confidence 

interval of 3.72 till 3.80 was obtained for the positive controls in each of the ELISA 

analyses, demonstrating the reproducibility of the analysis. The linear range of OD 

values was determined using a dilution series of the positive control of known viral 

concentration and ranged from 0.6 to 3.8. Since nearly all OD values for the samples 

from this trial fell within this range, the sample OD was considered as an indication for 

the PepMV viral titre. OD values per tunnel and per sampling point were determined by 

calculating the mean of the ten OD values obtained for each sampling block.  

 

Viral genome variation 

For the three single isolates used in this study, viral genome variation was studied by 

cloning and sequencing the 625bp RdRp fragment (Mumford & Metcalfe, 2001; Pagan et 

al., 2006; Hanssen et al., 2008). From each treatment, four samples obtained at 

different time points (1, 3, 12 and 16 WPI), were used. Amplified products were directly 

cloned and sequenced (seven to ten clones per sample) as described above. Multiple 

sequence alignments were performed using CLUSTAL X (Thompson et al., 1997) and 

neighbour-joining trees were constructed and displayed using TREEVIEW v. 1.6.6 (Page, 

1996).  
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Table 3. Pepino mosaic virus symptom rating scale for tomato  

Plant part Symptom type Score Description Picture 

Heada  
 

Nettle-head 1 Absent  
2 Leaves are somewhat pointed and 

upright with a slightly reduced 
surface 

 
3 Leaves are pointed, upright or 

curled, with a reduced surface  

 
4 Leaves resemble nettle leaves, with 

a serrated leaf margin and a reduced 
surface 

 
Leaf bubbling 1 Absent 

 

2 One bubbled leafb 
3 Two to four bubbled leavesb 
4 All leaves are bubbledb 

Foliagec Premature leaf 
senescence 

1 Absent 

 

2 Scorching – leaflet margins 

3 Scorching – entire leaflets of min. 
one leaf 

4 Scorching – more than one leaf 

Fruit Marbling 1 Absent 

 

2 One marbled fruitb 
3 Two marbled fruitsb 
4 More than two marbled fruitsb 

Flaming 1 Absent 

 

2 One flamed fruitb 
3 Two flamed fruits display flamingb 
4 More than two fruits display 

flamingb 

Open fruit 1 Absent 

 

2 One open fruitb 
3 Two open fruitsb 
4 More than two open fruitsb 

Necrosis of the 
sepals 

1 Absent 

 

2 One fruit with sepal necrosisb 
3 Two fruits with sepal necrosisb 
4 More than two fruits with sepal 

necrosisb 

aUpper youngest leaves (planttop) 
bPer plant 
cLower leaves 
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Results 
 

Differential PepMV infection levels 

A greenhouse trial was conducted in five separate plastic tunnels that each contained 100 

cluster tomato plants, to assess PepMV symptom expression upon inoculation with four 

different PepMV isolates that were obtained from commercial greenhouse tomato crops 

with distinct PepMV symptoms (Hanssen et al., 2008). PepMV isolate ‘1806’ (EU mild) 

belonged to the EU tomato genotype and did not cause typical PepMV symptoms in the 

tomato crop of origin. Isolate ‘1906’ (CH2 mild) belonged to the CH2 genotype and 

caused mild symptoms. Isolate ‘PCH 06/104’ (CH2 aggressive) also belonged to the CH2 

genotype but caused severe PepMV symptoms. Finally, isolate ‘0506’ (EU+CH2), 

containing both the EU tomato and the CH2 genotype, caused severe symptoms. To 

verify that only the inoculated genotype was present in the PepMV infected plants, 

genotyping analyses were performed using a previously described RT-PCR-RFLP 

genotyping method (Hanssen et al., 2008) on samples harvested at six and 16 WPI 

(Table 1), confirming that no cross-contamination occurred between treatments 

throughout the trial period (data not shown).  

ELISA analyses on samples taken one day before inoculation confirmed that the 

plants were not infected with PepMV prior to inoculation. One week after inoculation (1 

WPI), however, the majority of the samples tested positive for PepMV. For the EU-mild 

and CH2-aggressive inoculation, three out of ten sampling blocks tested negative, while 

in the CH2-mild and the EU+CH2 inoculation, only one sampling block tested negative. At 

2 WPI, all sampling blocks tested positive, except for the same three sampling blocks of 

the EU-mild inoculation. These blocks tested positive from 3, 4 and 6 WPI onwards, 

respectively. These results suggest that the EU mild isolate slower colonizes the tomato 

crop as compared to the other isolates (Figure 1). The viral titres observed in the 

different samples appeared to be different for the various inoculations (Figure 1). The OD 

values obtained for the EU mild isolate were considerably lower at most of the sampling 

points, although plants in this tunnel displayed the largest variation in viral titres 

between subsequent sampling points (Figure 1). At the end of the trial period, all 

samples contained a similar viral load (OD ~ 2.5), except for the CH2+EU inoculated 

plants (OD ~ 3.8), which contained a minimum 10 times higher viral concentration. 

Samples from the mock-inoculated control tunnel remained negative in the ELISA assay 

throughout the entire trial period.  
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Figure 1. Viral accumulation in the different Pepino mosaic virus inoculations on tomato, displayed as mean 

optical density values obtained from 10 samples per tunnel (one sample from each sampling block) and per 

sampling point (indicated using the number of weeks post inoculation (WPI) and the actual date on the 

horizontal axis), throughout the trial period. Standard errors bars are indicated for each measurement. Each 

sample consisted of a mixture of 10 young leaves (one from each plant in the sampling block) from the heads 

of the plants. As the heads of the plants were pruned in the sixth WPI, leaves were taken from young shoots in 

the highest plant parts after six WPI.  

 

 

Differential symptom expression upon PepMV inoculation 

The typical PepMV symptoms were monitored at regular intervals during the entire trial 

period (Figure 2; Table 3). The same thirty plants were monitored weekly per treatment, 

except for three, seven and 12 WPI when all 100 plants were monitored.  

Typical nettlehead symptoms were seen from two WPI onwards (Figure 2a). From 

two till five WPI, the most severe display of nettleheads was monitored in plants 

inoculated with the CH2 aggressive and the EU+CH2 isolate, with the most sever 

nettlehead scores at six WPI. The CH2 mild inoculation, in contrast, resulted in 

considerably less severe symptoms. No nettlehead-like symptoms were seen in the EU 

mild inoculated plants or in the mock-inoculated control (Figure 2a). A similar pattern of 

symptom expression was recorded for bubbling of the leaf surface in the head of the 

plants (Figure 2b). At six WPI, scoring of nettlehead symptoms and bubbling of the leaf 

surface was terminated because the heads of the plants were pruned. On the foliage and 

stems, the incidence of necrosis was assessed. Necrosis on the stem did not occur, but 

premature senescence of the leaves observed as chlorosis and necrosis (Table 3), was 

prevalent in the trial mainly between three and nine WPI. Again, plants inoculated with 
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the CH2 aggressive isolate and the EU+CH2 isolate exhibited the most severe symptoms 

with significantly (p<0.05 at most sampling points) more premature leaf senescence 

throughout the trial period, symptoms that were not observed in the EU mild inoculated 

plants or the mock-inoculated control (Figure 2c).  

With respect to fruit quality, scores were given for fruit marbling, fruit flaming or 

blotchy ripening, incidence of scars and open fruits, and necrosis or browning of the 

sepals (Table 3). In weeks 9, 13 and 15 all ripe tomatoes were rated for fruit marbling 

(Figure 3a). Marbling was most prevalent in the EU+CH2 inoculated plants, with almost 

10% of the ripe tomatoes displaying severe marbling at 13 WPI. While fruit marbling is a 

very specific virus related symptom, flaming of tomatoes is a problem that can also be 

induced by environmental conditions in an otherwise healthy tomato crop. In this trial, 

PepMV infection significantly increased the number of flamed or discoloured tomatoes 

(Figure 3b), especially for the CH2 aggressive isolate. Open fruit is defined as tomato 

fruit that splits shortly after fruit setting, such that the seeds are visible in the flesh of 

the mature tomato (Table 3). From four WPI onwards, the incidence of scars and open 

fruit was significantly higher (p<0.05 at all sampling points from 4 to 12 WPI) in the CH2 

aggressive inoculated plants as compared to the other inoculations (Figure 2d). In these 

plants, the overall percentage of clusters with at least one open fruit was 10%, as 

compared to 4% and 3% in plants inoculated with EU+CH2 and EU mild, respectively.  

In this trial it was clearly shown that PepMV can cause sepal necrosis (Table 3), a 

symptom that is not typically associated with PepMV infection, but that radically reduces 

the commercial value of cluster tomatoes. A high incidence was recorded in plants 

infected with the CH2 isolates and in the mixed infection, with the CH2 aggressive 

inoculation resulting in the highest score at five WPI, followed by the CH2 mild and 

EU+CH2 inoculations (Figure 2e). No sepal necrosis was seen in the control treatment or 

in the EU mild inoculation.  

Plant vigour and yield were assessed by counting the number of tomato clusters, 

as well as the total number of tomatoes per plant. Plants in the mock-inoculated control 

produced significantly more tomatoes per cluster than plants inoculated with the four 

PepMV isolates (Figure 3c). No significant differences were seen between plants 

inoculated with the EU mild, CH2 mild and CH2 aggressive isolates. However, the number 

of clusters per plant was significantly lower for plants inoculated with the EU+CH2 isolate 

(Figure 3c).  

Overall, it can be concluded that the isolates CH2 aggressive and EU+CH2 caused 

significantly more severe symptoms than the isolates EU mild and CH2 mild. 
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Figure 2. Pepino mosaic virus (PepMV) symptom expression on tomato, presented as the evolution of symptom 

scores (Table 3) in tomato plants inoculated with the different PepMV isolates, throughout the trial period. 

Plants were inoculated with PepMV on June 13th. Each point represents the mean of 30 scores obtained from 30 

plants at a certain time point, indicated using the number of weeks post inoculation (WPI) and the actual date 

on the horizontal axis. Time points marked with * represent the means of 100 scores obtained from 100 plants. 

Standard errors bars are indicated for each measurement. (a) Nettlehead (scores were given until the end of 

July, when plants were topped); (b) leaf bubbling in the head of the plants (scores were given until the end of 

July, when plants were topped); (c) Premature leaf senescence (necrosis and/or chlorosis); (c) open fruit; (e) 

browning of sepals.  
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Figure 3. Pepino mosaic virus (PepMV) damage on tomato quality and fruit setting, caused by the different 

PepMV isolates. Percentage of tomatoes showing marbling (a) and flaming (discoloration and blotchy ripening) 

(b) at three different time points. Time point 9 weeks post inoculation (WPI) is shown in diagonally striped 

bars; time point 13 WPI is shown in dark grey bars and time point 15 WPI is shown in light grey bars; (c) Fruit 

setting: total number of tomatoes (left vertical axe – light grey bars) and clusters (right vertical axe – dark 

grey bars) per plant for the four different inoculations and the control, over the entire growing period. 

Statistical differences are indicated with a and b for the number of clusters and with A and B for the number of 

tomatoes (One-Way ANOVA, post-hoc Bonferroni, p<0.05). The error bars represent standard errors. 
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Comparison of PepMV whole genome sequences 

The whole genome sequences, except for the 5’ and 3’ untranslated regions (UTR), were 

determined for the three single isolates EU mild, CH2 mild and CH2 aggressive. Several 

primer sets targeting seven partially overlapping regions of the PepMV genome were 

used for sequence determination of in total 6291 nt of the PepMV genome (Table 2). 

While the sequence homology between the EU mild isolate and both CH2 isolates (CH2 

mild and CH2 aggressive) was only 79%, as could be expected (Ling, 2007; Hanssen et 

al., 2008), homology between both CH2 isolates was as high as 99.4% and the isolates 

differed only in 38 single nucleotide polymorphisms (SNPs). Collectively, these SNPs 

cause only nine amino acid differences in the respective predicted proteins between both 

CH2 isolates: three in ORF1; two in ORF2; one in ORF3; one in ORF4 and two in ORF5 

(Table 4). The UTR between ORF1 and ORF2 (25 nt) was highly conserved between the 

PepMV isolates, with only one SNP between the EU and the two CH2 isolates and 

complete homology between the latter two, while the size of the UTR between ORF 4 and 

ORF5 varied between the EU mild isolate (38 nt) and both CH2 isolates (45 nt). A single 

SNP was found in this region when comparing the CH2 mild and the CH2 aggressive 

isolate. Sequencing of ten clones obtained from the 625bp RdRp fragment of the EU+CH2 

isolate revealed the presence of three genotypes, including the EU tomato genotype, the 

CH2 genotype and a recombinant genotype. 

 

Table 4. Amino acid polymorphisms in the predicted protein sequences of Pepino mosaic virus isolates CH2 

mild and CH2 aggressive  

 
Positiona 

‘1906’ 
CH2 mild 

‘PCH 06/104’ 
CH2 aggressive 

ORF1  504 Glutamic acid Alanine 
 995 Valine Isoleucine 
 1051 Threonine Serine 
ORF2 154 Valine Alanine 
 192 Serine Proline 
ORF3 97 Serine Asparagine 
ORF4 24 Alanine Threonine 
ORF5 48 Threonine Isoleucine 
 244 Alanine Threonine 
a Distance from the first amino acid of the protein 

 

Variation of partial PepMV genome sequences  

The variation of a 625 bp fragment of the replicase gene and the first ORF of the TGB 

was studied for the isolates EU mild, CH2 mild and CH2 aggressive throughout the trial 

period. The nucleic acid sequences obtained from samples taken at 1, 3, 12 and 16 WPI 

were compared (Table 1). For all three isolates, minor differences were observed 

between the sequences obtained from different clones and different time points. In 

isolate EU mild, only silent mutations were observed (data not shown). All sequences 

from this isolate obtained after three WPI differed in one base pair (position 348: A to C 

substitution) from the sequences obtained at one WPI, suggesting that a stable but silent 
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point mutation had occurred. Similarly, sequences obtained from both CH2 isolates 

displayed a number of SNPs at different time points, although most of the point 

mutations were again silent (Figure 4). For both CH2 isolates, also missense point 

mutations, leading to amino acid changes, were observed (Figure 4). None of these 

mutations in the studied genome region were stable as they had disappeared by sixteen 

WPI. 

 

 

Figure 4. Sequence variation of the Pepino mosaic virus isolates CH2 mild and CH2 aggressive, presented as a 

neighbour joining tree of 67 sequences obtained from samples taken at 4 different time points. Sequence 

identifiers encode ‘inoculation _ sampling time point - sampling block - clone’. The predicted translated 

sequences are identical for all sequences, except for the sequences marked with * (one amino acid substitution) 

or ** (two amino acid substitutions). Dotted arrows indicate reversible mutations in the CH2 mild isolate (1: 

one to three weeks post inoculation (WPI); 2: three to 12 WPI; 3: 12 to 16 WPI).  
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Discussion 

Greenhouse trials were conducted to compare the symptoms caused by four different 

PepMV isolates, originally isolated from four different commercial Belgian tomato crops 

which differed considerably in PepMV symptom display. As the impact of environmental 

growth conditions and tomato genotype on PepMV symptom development is not yet fully 

understood, it was not clear whether the differences in symptom display in these 

commercial tomato greenhouses should be attributed to the viral isolate, or to 

environmental factors and cultural practices. In this study, the environmental conditions 

and plant genotype were standardized in order to study the impact of the viral isolate. 

Our analysis strongly suggests that the viral isolate largely determines symptom 

development. The EU isolate ‘1806’ (EU mild) and the CH2 isolate ‘1906’ (CH2 mild), 

which caused only mild symptoms in the crop of origin, caused rather mild symptoms in 

our analysis, while the CH2 isolate ‘PCH06/104’ (CH2 aggressive) and the mixed infection 

isolate ‘0506’ (EU+CH2) that originated from two different tomato crops with severe 

PepMV symptom display, resulted in the most severe PepMV damage in our analysis. 

Generally, the CH2 aggressive isolate caused the most severe fruit and leaf symptoms 

throughout the trial period, followed by the EU+CH2 isolate. The latter caused 

considerably more fruit marbling than all the other isolates.  

Interestingly, significant differences in symptom severity were recorded for 

isolates belonging to the same genotype. The occurrence of open fruit appeared to be 

associated with the CH2 aggressive isolate. This isolate was clearly more aggressive than 

the CH2 mild isolate, although only minor differences were found in the genome and 

amino acid sequences of both isolates. A total of 38 SNPs was found in the 6291 nt 

sequence that was determined when comparing both isolates, resulting in only nine 

differences at the predicted amino acid level. The SNPs were not concentrated in a 

specific region of the genome. These results confirm the hypothesis that minor 

differences at the nucleotide level can account for biological differences between isolates. 

A comparative study using test plants with fourteen EU tomato strain isolates, displaying 

99.1 to 100% nucleic acid sequence homology in a 547 nt fragment of the replicase 

gene, revealed minor biological differences upon inoculation of test plants (Verhoeven et 

al., 2003). Comparison of the whole genome sequence of two EU tomato isolates 

differing slightly in symptom expression revealed 99% homology on the nucleotide level 

(López et al., 2005). Nevertheless, it remains unclear which regions of the PepMV 

genome are involved in the expression of symptoms.  

ELISA analyses revealed a slower colonisation of the tomato crop by the EU mild 

isolate as compared to the other isolates. As plants were inoculated on the lower leaves 

and samples were taken from the upper, young leaves, the virus could only be detected 

after efficient systemic movement. Therefore, the slower colonisation could be due to 
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impeded phloem-dependent accumulation of this mild PepMV isolate as was also 

observed for the attenuated M strain of Tobacco mosaic virus (TMV) (Nelson et al., 

1993). The mixed infection resulted in the highest and most stable titres throughout the 

entire period, while the viral titre in plants inoculated with the EU mild isolate was very 

unstable and generally the lowest. As viral synergism is often manifested by an increase 

in both symptom expression and viral accumulation (Hull, 2002), the higher titre 

observed in plants infected with the EU+CH2 isolate could indicate a synergistic 

interaction between the coinfecting EU and CH2 genotypes, but further research is 

needed to confirm this hypothesis.  

Our results suggest a correlation between the aggressiveness of the PepMV isolate 

and the viral titre. Interestingly, a lower PepMV titre in symptomless tomato plants 

infected with a Peruvian genotype isolate (isolate LP 2001), when compared to tomato 

plants infected with EU tomato genotype isolates showing clear PepMV symptoms, has 

previously been reported (López et al., 2005). A lower viral titre may occur for viral 

isolates with reduced post-transcriptional gene silencing (PTGS) suppressor activity, as 

PTGS reduces viral accumulation (Ratcliff at al., 1999). PTGS has been associated with 

differential symptom expression, viral resistance and synergism of viruses in previous 

studies (Pruss et al., 1997; Ratcliff et al., 1999; Kubota et al., 2003).  

It may be expected that the PepMV genome displays high mutation frequencies, 

as many different genotypes have emerged over a rather limited period of time. In 

general, RNA virus replication is characterised by high mutation rates, high yields and 

short replication times (Domingo & Holland, 1997). Therefore, RNA sequence stability of 

the PepMV isolates used in our greenhouse trails was studied by comparing sequences of 

a 625 nt fragment, containing the end of the replicase gene, an untranslated region and 

the start of the TGB, obtained from samples taken at four time points throughout the 

trial period. Comparison of sequences obtained from the beginning and the end of the 

trial period revealed that the number of mutations was rather limited, that most of the 

mutations that took place had no clear biological relevance as they were mostly silent 

and often reversible. Therefore, the RNA sequence in this part of the genome appeared 

to be relatively stable. These results are compatible with recent advances in plant virus 

evolution on random genetic drift and the existence of critical thresholds that limit 

viruses to a small portion of their potential sequence space (Domingo & Holland, 1997). 

It was shown that systemic movement of plant viruses through the vascular system 

results in population bottlenecks. A study on systemic movement of TMV revealed that 

the effective population numbers are a lot smaller than the census population numbers, 

indicating the importance of random genetic drift in virus evolution (Sacristan et al., 

2003). Deleterious mutations can lead to average fitness losses, thus restricting the 
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types and numbers of mutations RNA viruses can tolerate (Domingo & Holland, 1997; 

Garcia-Arenal et al., 2001).  

A high stability of the RNA sequence of the PepMV genome is also in line with the 

observation that sequence homology of different isolates from different origins but 

belonging to the same PepMV genotype groups, show high levels of sequence homology 

(>99%) (Verhoeven et al., 2002; Lopéz et al., 2005). However, it remains unclear how 

the variability in currently known PepMV genotypes was introduced in the viral genome.  

A recent report on biological characterisation of several PepMV isolates on 

solanaceous test species in climate chambers revealed diverse pathogenic behaviours 

(Córdoba-Selles et al., 2008). However, to our knowledge this is the first study in which 

differential symptom display in greenhouse tomato production could unambiguously be 

attributed to the PepMV isolate. These results can at least partially explain the huge 

variation in the level of damage reported for PepMV in commercial tomato production. In 

addition, SNPs that may play a role in PepMV symptom expression were identified that 

might contribute to future identification of genome regions involved in the expression of 

PepMV symptoms in tomato.  
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Abstract  

In this manuscript we provide evidence for seed transmission of Pepino mosaic virus 

(PepMV) in tomato. Fruit was harvested from a tomato crop artificially infected with both 

European and CH2 genotypes of PepMV and more than 100,000 seeds were extracted 

and cleaned using an enzymatic treatment without disinfection. Infection assays using 

indicator plants confirmed the presence of viable virus on the seeds. Seeds were 

distributed to 10 different laboratories in three separate batches, where they were 

germinated and the young plants tested with ELISA. In total over 87,000 plants were 

tested and 23 positives detected, indicating an overall transmission rate of 0.026%. 

However, the observed seed transmission rates varied from 0.005% to 0.057%, 

depending on the seed batch used. Results clearly showed that PepMV can be 

transmitted from seeds contaminated with virus to seedlings, highlighting the risk of 

using seeds from PepMV-infected plants and the potential for seed transmission to 

contribute to the further spread of PepMV.  

 

 

Introduction 

Since first appearing in tomato crops in 1999 Pepino mosaic virus (PepMV), a Potexvirus 

originally isolated from pepino (Solanum muricatum) in Peru in 1974 (Jones et al., 

1980), has become a major disease of greenhouse tomato production worldwide (van 

der Vlugt et al., 2000; French et al., 2001; Mumford and Metcalfe, 2001; Cotillon et al., 

2002; Maroon-Lango et al., 2005; Pagan et al., 2006; Hasiow et al., 2008; Hanssen et 

al., 2008; Ling, 2008a). The virus causes a wide range of symptoms both on fruits and 

on the vegetative plant parts, including fruit marbling and flaming, nettle-heads, leaf 

mosaics, dwarfing, leaf distortions and yellow leaf spots. Although the symptoms are 

often mild, an increase in symptom severity has been observed and more novel 

symptoms are now more common, including leaf scorching, sepal necrosis and open fruit 

(Spence et al., 2007; Hanssen et al., 2008; Hanssen et al., 2009b). Despite the wide 

range of symptoms, in terms of economic impact, those on fruit are generally regarded 

as the most damaging as they can lead to fruit being downgraded, reducing the 

economic value of a crop (Soler et al., 2000; Roggero et al., 2001; Spence et al., 2007).  

Originally all PepMV isolates identified in European tomato production shared a 

high nucleotide sequence homology and differed in biological properties from the orginal 

pepino isolate (Mumford and Metcalfe, 2001; Aguilar et al., 2002; Cotillon et al., 2002; 

Verhoeven et al., 2003; Lopez et al., 2005; Pagan et al., 2006). For these reasons they 

were classified as a European tomato genotype (EU). Lopez et al. (2005) isolated a 

PepMV isolate (LP2001) from Lycopersicon peruvianum, which was similar to the original 

pepino strain in biological properties and shared a high nucleotide sequence identity 
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(96%) with the EU genotype. This isolate is now considered as the type-isolate for the 

Peruvian genotype of PepMV (LP). Since 2005, three divergent genotypes (US1/CH1, 

US2 and CH2) have been identified in tomato (Maroon-Lango et al., 2005; Ling, 2007). 

However, as no US2 isolates are available and nucleotide sequence alignment suggests 

that US2 might be a recombinant of US1 and CH2, we propose to distinguish four PepMV 

genotype groupings (LP, EU, US1/CH1 and CH2). In several European countries, the CH2 

genotype has now become dominant and has largely replaced the EU genotype in 

commercial tomato production (Davino et al., 2008; Hanssen et al., 2008). However, in 

the United States, the EU genotype is still predominant (Ling, 2008a).  

With the sudden appearance and rapid establishment of the different PepMV 

genotypes across large geographical areas, the question of how PepMV is spread over 

long distances remains unanswered. Along with the movement of germplasm and trade 

in infected fruit, the potential role of contaminated seed has also been suggested. Seed 

transmission has been reported for approximately 20% of plant viruses and can, even 

with low transmission rates, be an important means of viral dissemination (Yang et al., 

1997). Although potexviruses are generally not considered to be seed-transmitted, the 

highly infectious nature of PepMV combined with an extremely rapid cross-continental 

spread has raised concerns with respect to seed transmission. However, despite the fact 

that it has previously been shown that seeds from PepMV-infected tomato plants contain 

high viral loads (Krinkels et al., 2001; Córdoba-Selles et al., 2007; Ling, 2008b), and 

that viral particles can be found on the seed coat, but not in the embryo (Ling, 2008a), 

the ability of PepMV to be transmitted via seed is still unclear. Previous studies have 

been ambiguous, as seed transmission rates obtained varied from zero to 1.84% 

(Krinkels et al., 2001; Salomone and Roggero 2002; Córdoba-Sellés et al., 2007; Ling, 

2008b). In most previous studies the numbers of seeds tested were low; in others the 

seeds were not cleaned to ‘industry-standards’. Therefore, the work presented here was 

designed to obtain a statistically-sound estimation of the PepMV seed transmission rate 

in tomato.  

 

 

MATERIALS AND METHODS 

 

Seed harvest and cleaning 

Seeds used in this study were harvested from tomatoes artificially infected with PepMV 

(cultivar Tricia; De Ruiter Seeds, Bergschenhoek, The Netherlands) and grown in plastic 

tunnels in Belgium during the 2007 growing season (Hanssen et al., 2009b). Plants were 

inoculated with a mixture of the EU and CH2 genotypes, and fruit was harvested at 8, 12 

and 15 weeks post inoculation (WPI). Enzyme-linked immunosorbent assay (ELISA) 
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analyses on leaf samples confirmed similarly high viral concentrations in the mother 

plants at the three different harvesting points (Hanssen et al., 2009b).  

In each harvest, all ripe tomatoes (500 to 800) were collected and cleaned to 

‘industry standards’. Seeds were manually separated from the tomato pulp and collected 

in containers to which an equal volume of tap water was added. Subsequently, citric acid 

pH 4 (6.7% v/v) and pectinase (Pectinex Ultra SP-L, Novozymes A/S, Denmark; 0.25% 

v/v) were added and the pulp was incubated for three hours at 28°C, stirring every 30 

minutes. Next, seeds were retrieved by sieving, thoroughly rinsed with tap water and 

dried for 24 hours in an oven at 26°C until the water content was below six percent.  

 

Determination of viral presence and infectivity on seeds 

PepMV contamination of the seeds was assessed using a commercially available ELISA 

assay according to the suppliers’ instructions (Prime Diagnostics, Wageningen, The 

Netherlands). Twenty seeds were tested per seed batch, each sample containing one 

seed from the infected batch spiked into 250 healthy seeds according to a PepMV-

specific seed testing protocol designed by the International Seed Health Initiative - 

section Vegetables (ISHI-Veg; Krinkels, 2001). All samples were tested in duplicate and 

were rated positive if the mean optical density at 405 nm (OD) of the sample was at 

least twice the mean OD of two wells containing extract from healthy tomato seeds. The 

PepMV genotypes present on the seed batches were determined by RT-PCR-RFLP 

(Hanssen et al., 2008).  

Part of the seed batch harvested at 15 WPI was used for seed infectivity assays 

on Nicotiana occidentalis P1. Seeds were divided into subsamples, crushed in a mixture 

of sand and water and inoculated onto two plants using carborundum powder and cotton 

wool. Plant symptoms were evaluated two weeks after inoculation. 

 

Seed transmission grow-out trials 

The tomato seeds harvested from PepMV infected plants were distributed to 10 different 

partner laboratories, in batches of 4,000-5,000 seeds per laboratory. These were sown 

in stonewool blocks (10 cm square) within six weeks of the seed being harvested. 

Seedlings were irrigated individually with nutrient solution according to local practices 

and grown for at least four weeks in a glasshouse. Strict hygienic measures were taken 

to prevent external contamination of seeds and seedlings. Leaf samples were then taken 

from each plant, pooled and tested in groups of ten. In total, 8,778 pooled samples were 

obtained from 87,780 seedlings, across all 10 laboratories. All pooled samples were 

analysed for presence of PepMV by the ELISA assay as described above. Positive ELISA 

results were confirmed by an additional ELISA analysis or by RT-PCR.  
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Statistical analyses 

To determine the number of seeds required for the grow-out trial, a binomial distribution 

of the probability of seed transmission (p) was assumed (Table 1). The seed 

transmission rate was calculated from grouped sample test results using the equation P* 

= 1 – (1 – R/N)1/i , where P* is the maximum likelihood estimate of the seed 

transmission rate (0 to 1), N is the number of grouped samples, i is batch size, and R is 

the number of infected seedlings (adapted from Gibbs and Gower 1960). Transmission 

rates of seeds, harvested at 8, 12 and 15 WPI, were compared using an analysis of 

deviance (Generalised Linear Model with a binomial distribution error term and logit-link 

function). 95% lower and upper confidence intervals were calculated to indicate the 

errors associated with the transmission rates (Table 2). Generalised Linear Model 

analysis was carried out using Genstat Release 10.2 (Lawes Agricultural Trust). 

Confidence intervals were calculated using Seedcalc version 8.1 (International Seed 

Testing Association). 

 

Table 1. Estimation of the number of PepMV infected seeds to be included in PepMV grow-out trials under 

different assumptions of transmission rates.  

   X Value (Number of positive groups) 

   P=0.0001  P=0.001  P=0.01  
N=10000  X CI X CI X CI 
 K=50 1 0-0.0185 10 0-0.02 79 0.0012-0.0357 
 K=25 1 0-0.0093 10 1.8E-7-0.011 89 0.0027-0.0252 
 K=10 1 0-0.0039 10 2.5E-5-0.0055 96 0.0048-0.0182 
N=50000        
 K=50 5 0-0.0035 49 3.5E-5-0.0066 395 0.0039-0.0191 
 K=25 5 0-0.0019 49 0.0001-0.0035 444 0.0069-0.0146 
 K=10 5 0-0.0009 50 0.0003-0.0023 478 0.0074-0.0131 
N=100000        
 K=50 10 0-0.0020 98 0.0001-0.0036 790 0.0061-0.0154 
 K=25 10 1.8E-8-0.0011 99 0.0003-0.0026 889 0.0072-0.0136 
 K=10 10 2.5E-6-0.0006 100 0.0005-0.0018 960 0.0082-0.0121 

N = Total number of seeds. K = Number of seeds per group. P = Probability of seed transmission. X = Number 

of positive groups. CI = Confidence interval. The confidence intervals were calculated using the binomial 

distribution f(X) = [N!/(X!(N-X)!] PX (1-P)N-X. If N seeds are analysed in batches of K, the frequency of positive 

batches, in which transmission has occurred, will be i and thus 1-i is the frequency of batches in which no seed 

transmission has occurred. Therefore, applying the above binomial probability distribution, f(0) = 1-i = 

[K!/(0!(K-O)!] P0 (1-P)K = (1-P)K. Therofore, 1-i = (1-P)K and p = 1 – (1-i)1/K.  
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Results 

A total of more than 100,000 seeds was obtained by enzymatic treatment from fruit 

harvested from tomato plants artificially infected with PepMV. Three batches of seeds 

were produced at 8, 12 and 15 WPI. Seeds were tested for the presence and viability of 

PepMV particles and used in grow-out trials to determine the seed transmission rate. In 

total ten partner laboratories from different European countries participated in the grow-

out trials.  

 

Determination of viral presence and infectivity on the seeds 

Before distribution of the seeds to the ten partners, the presence of PepMV on the seeds 

was determined by ELISA analyses on 20 samples per harvest, following the spiking 

method described above. The ELISA results revealed a high concentration of PepMV on 

or in seeds, as all samples were positive with mean OD values of 3.39 (st.dev. (±) 0.29), 

3.35 (± 0.37) and 3.12 (± 0.57) obtained for the three subsequent harvests; mean OD 

values of 2.92 (± 0.60) and 0.07 (± 0.006) were obtained for the positive and negative 

control wells, respectively. Genotype analyses by RT-PCR-RFLP revealed that, like the 

mother plants, seeds from all three harvests were infected by both the EU and CH2 

PepMV genotype. 

Infectivity of PepMV particles present in seeds from the third harvest was 

determined by inoculation on N. occidentalis. To this end, 15 samples of 10 seeds each 

and 10 samples of 50 seeds each were inoculated on two N. occidentalis seedlings per 

sample. Five out of 30 plants inoculated with the 10-seed-samples developed PepMV 

symptoms, while 11 out of 20 plants inoculated with the 50-seed-samples developed 

PepMV symptoms, indicating that these seed batches contained infectious PepMV.  

 

PepMV seed transmission  

In order to determine the PepMV seed transmission rate in tomato, an extensive grow-

out trial was performed. Based on previous studies, a seed transmission rate between 0 

and 1% was anticipated (Krinkels et al., 2001; Salomone and Roggero, 2002; Córdoba-

Sellés et al., 2007). Assuming that the probability of seed transmission is binomially 

distributed and that the rate is not lower than 0.01%, probability calculations resulted in 

the estimation that a total number of 100,000 seedlings in blocks of ten would be 

sufficient to obtain a reliable estimate (Table 1). The germination and grow-out of this 

many seedlings, arranged to avoid physical contact between the blocks, would require a 

huge amount of greenhouse space. Therefore the seed transmission grow-out trials were 

run in parallel in the greenhouse facilities of plant pathology laboratories of ten partners 

in Belgium, Bulgaria, Denmark, Greece, Italy, Norway, Poland, Portugal, Slovenia and 

the United Kingdom. To assess the influence of the time span between infection of the 
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mother crop and seed harvest on the transmission rate, seeds harvested at 8, 12 and 15 

WPI were analysed in three subsequent grow-out trials.  

Since the seeds were harvested from a commercial tomato hybrid, a 

heterogeneous germination and a suboptimal germination rate of 70-80% were 

expected. Therefore, seeds were sown in blocks of 16 to obtain at least ten homogenous 

seedlings per block to pool into one sample for ELISA analysis.  

In total, 8,776 blocks consisting of 10 seedlings each were sampled four weeks 

after sowing, 23 of which tested positive for PepMV by ELISA (Table 2). Positive ELISA 

results were generally clearly above the threshold value (twice the negative control) 

(Table 3) and were in all 23 cases confirmed by additional ELISA analyses or by RT-PCR. 

In addition, typical PepMV symptoms such as nettlehead and leaf deformation were seen 

in infected plots. Thus, at least 23 out of 87,760 seeds resulted in an infected seedling, 

leading to a minimum PepMV transmission rate of 0.026% (confidence interval 0.0166 to 

0.0359; Table 2). Interestingly, while only one and three infected blocks were obtained 

from the first and second harvest, respectively, the third harvest gave rise to 19 infected 

blocks, resulting in a significantly higher (P<0.05) transmission rate (0.0567%) as 

compared to the first and second harvest (0.0053% and 0.0085%, respectively). 

Positive samples obtained in Denmark, Italy, Norway Slovenia and the UK were analysed 

by a genotype specific TaqMan qRT-PCR (unpublished) or by RT-PCR-RFLP (Hanssen et 

al., 2008). Out of the 11 positive blocks obtained in those four countries, seven were 

infected only with the EU genotype, three with the CH2 genotype, and one with both the 

EU and CH2 genotype.  

 

Table 2. Number of ELISA-positive plots out of the total number of plots1 tested in grow-out trials 

Partner 8 WPI harvest 12 WPI harvest 15 WPI harvest Total 
Bulgaria 0/382 0/395 0/338 0/1115 
Denmark 0/240 0/360 2/320 2/920 
Greece 0/270 0/366 2/416 2/1052 
Italy 1/249 1/393 1/410 3/1052 
Norway 0/346 0/350 2/411 2/1107 
Slovenia 0/71 0/153 2/240  2/464 
UK 0/329 0/365 2/348 2/1042 
Poland  0/495 5/520 5/1015 
Portugal  0/350 3/350 3/700 
Belgium  2/311  2/311 
Total 1/1887 3/3538 19/3353 23/8778 

Transmission rate (%)2 0.0053a 0.0085a 0.0567b 0.026 
Confidence interval  
(P =0.05) 

0.0002 - 0.0295 0.0021 - 
0.0248 

0.0345 - 0.0885 0.0166 - 0.0395 

1 8.760 plots consisting of 10 tomato seedlings each grown from infected seeds 

2 Different letter labels indicate significant differences (P=0.05). 
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Table 3. ELISA optical density (OD) values of controls and positive samples obtained from the grow-out trials 

by the different partner laboratories  

Samples         Belgium Denmark Greece Italy Norway Poland Portugal Slovenia  UK 
Healthy 
controls1 

 0.111 
+0.004 

0.090 
+0.008 

-0.024 
+0.026 

 0.117 
+0.011 

0.016 
+ 0.013 

0.024 
+0.005 

 0.020 
±0.008 

 0.082 
+0.015 

0.064 
+0.003 

Positive 
controls1 

3.450 
+0.120 

1.682 
+0.120 

1.940 
+0.034 

 3.136 
+0.056 

1.034 
+0.128 

 1.944  
+0.140 

 3.355 
±0.135 

 1.321 
+0.177 

0.819  
+0.145  

Positive 
sample 1 

 0.340 0.480 1.983  0.689 1.593 0.575   0.124  1.631  0.357 
 

Positive 
sample 2 

 0.280 1.303 1.217  0.307 0.695 0.571   0.120  0.964  1.045 

Positive 
sample 3 

- - -  2.930 - 0.585  0.840  -  - 

Positive 
sample 4 

- - -  - - 0.202  -  -  - 

Positive 
sample 5 

- - -  - - 0.734  -  -  - 

Negative 
samples2 

 0.116 
+0.006  

0.087 
+0.006 
  

0.014 
+0.020 

 0.102 
+0.022 

0.020 
+0.007 

0.029 
+0.006 

 0.018 
±0.005 

 0.076 
+0.003 
 

 0.066  
+0.008 

1 Mean OD value +  standard deviation obtained from all control wells 

2 Mean OD value +  standard deviation obtained from all negative sample wells 

 

 

Discussion 

The results presented in this extensive study, based upon a grow-out trial using almost 

90,000 tomato seedlings, clearly demonstrated that PepMV can be transmitted to the 

next generation via contaiminated seed and provided a statistically sound estimation of 

0.026% as the PepMV seed transmission rate in tomato.  

In the past, the seed transmission of PepMV has proved a controversial subject, 

with previous studies on the subject giving conflicting results. For example, Salomone 

and Roggero (2002) did not find any seed transmission by testing 52 seedlings. 

Likewise, in a more recent study, none of 10,000 grow-out seedlings from an infected 

commercial seed lot were infected by PepMV as determined by symptom expression, 

ELISA tests or infectivity assays, although mechanical transmission demonstrated the 

virus on the seed was still viable (Ling, 2008b). In contrast, other studies have found 

seed transmission, including one conducted in collaboration with the seed industry, 

which revealed seed transmission rates between 0.06% and 0.03% for seeds that were 

cleaned by natural fermentation and dried (Krinkels et al., 2001). In another grow-out 

trial with 168 seedlings a seed transmission rate of 1.84% was found for PepMV infected 

tomato seeds that were only rinsed without fermentation or enzymatic treatment 

(Córdoba-Selles et al., 2007). The contrasting conditions used in these previous studies 

and the study presented in this paper does make direct comparison of results difficult. 

The fact that different PepMV genotypes, seed ages and seed treatments were used will 

potentially have influenced the final results obtained. Moreover, in contrast to our latest 

study, the numbers of seeds used in most of the previous studies were too low for a 

statistically sound estimation of the seed transmission rate. However it is interesting that 
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the results found in our study are in line with those from Krinkels et al. (2001), who 

obtained similar transmission rates and applied a comparable seed treatment. In 

contrast, the much higher transmission rate reported by Córdoba-Selles et al. (2007) 

can be explained by the fact that seeds were not cleaned to ‘industry-standards’. A high 

viral titre on seeds harvested from PepMV infected tomato plants was previously 

reported (Córdoba-Selles et al., 2007; Ling, 2008b). Taking into account the highly 

efficient mechanical transmission of the virus, it is strongly suspected that seed 

transmission of PepMV occurs as a result of contact between the germinating seedling 

and the virus contaminated seed coat. For this reason, seed cleaning and treatment will 

have a large influence on the transmission rate. This was demonstrated by further seed 

treatment and disinfestation studies performed by Córdoba-Selles et al. (2007), who 

were able to significantly reduce transmission from their uncleaned seed using various 

chemical treatments.  

Of course it should be noted that as the seeds used in this study were harvested 

from heavily infected plants, where all the fruit was infected, and where no post-cleaning 

disinfection treatment of the seeds was applied prior to sowing, the transmission rate 

obtained does represent a potential worst case scenario. In practice, procedures (both 

statutory and internal quality ones) are in place that should virtually eliminate the risk 

from commercial seed. For example, within the European Union, PepMV has had 

quarantine status on seeds since 2001 and regulations are in force to prevent the 

introduction and further spread of PepMV through infected tomato seeds (Commission 

Decision 2001/536/EC and 2004/200/EC). These include the seed producer having to 

provide proof of absence of PepMV, either in the production area, in the mother crop by 

monitoring, or through seed testing. In addition, acid extraction of tomato seeds is 

mandatory. In general, seed production companies combine the different criteria. 

Established seed production methods do exist and protocols such as the widely-used 

ISHI-Veg approved ELISA-based testing procedure (http://www.worldseed.org/en-

us/international_seed/ishi_vegetable.html) can provide reliable detection of PepMV in 

the contaminated seed lots, as shown in this study.  

However, this study does provide conclusive proof that PepMV can be transmitted 

from tomato seeds produced from infected fruit and for that reason the risk must be 

taken seriously. The continued imposition of strict regulations for seed harvest and 

reliable PepMV seed testing methods are necessary to prevent spread of PepMV by 

tomato seeds. While the efficiency of transmission is obviously low, the highly infectious 

nature of PepMV in tomato crops means that even one infected plant derived from 

contaminated seed is sufficient to start an outbreak in a commercial crop that might 

have tens if not hundreds of thousands of plants. So ultimately in risk matrix terms, 

while the risk of infection from seed is low, the probability of it causing an outbreak is 
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high. For example, transmission via seed provides the most likely explanation of how 

PepMV was able to spread so widely and so rapidly throughout worldwide greenhouse 

tomato production in the late 1990s and early 2000s, prior to the introduction of the 

current regulations.  

While the occurrence of seed transmission is clear, the results do include some 

interesting observations. Firstly, they show that infected seedlings obtained from tomato 

seeds infected by two different genotypes of PepMV are not necessarily infected by both 

genotypes. Only one out of 11 infected plots from which the genotypes were determined 

was infected by both genotypes. These results strongly suggest that only a low number 

of viral particles initiated the infection and represent strong evidence of a population 

bottleneck during PepMV seed transmission. Population bottlenecks during horizontal 

transmission of plant viruses from host to host have thus far only been reported during 

aphid transmission (Ali et al., 2006). Very small numbers (between one and two) of 

effective founders have been reported for Cucumber mosaic virus (CMV) transmitted 

from one plant to another by the aphid vector Aphis gossyppi (Betancourt et al., 2008). 

Also the number of Potato virus Y (PVY) particles transmitted by the aphid vector Myzus 

persicae was found to be very limited, from 0.5 to 3.2 (Moury et al., 2007). However, to 

our knowledge, this is the first indication of a population bottleneck during seed 

transmission. The second interesting observation made during this study was the 

apparent increase in seed transmission risk seen as the interval between infection of the 

mother crop and seed harvest was extended. A ten times higher transmission rate was 

observed for seeds harvested at 15 WPI, as compared to seeds harvested at 8 and 12 

WPI. The observed difference could not be explained by a higher viral titre in the mother 

plants at the time of harvest, nor by a higher concentration of virus in or on the seed 

batches. It has previously been reported that the time interval between infection of the 

mother plants and fruit harvest influences seed transmission rates and it was suggested 

that infection before initiation of florescence is required to obtain seed transmission 

(Blaszczak 1964). Taking into account a period of two weeks between inoculation and 

overall systemic spread of the virus (Hanssen et al., 2009b), and a period of nine to ten 

weeks between initial fruit set and tomato harvest, fruit set of tomatoes harvested at 15 

WPI was initiated after systemic spread of the virus in the mother plants, in contrast to 

the 8 WPI harvest. If systemic spread of the virus at the time of fruit set is required for 

seed transmission to occur, this might explain both the absence of seed transmission in 

the 8 WPI harvest and the relatively high rate obtained from the 15 WPI harvest. Fruits 

harvested at 12 WPI were either set just before or just after systemic spread of the 

virus, which might account for the intermediate rate. While it is tempting to suggest a 

physiological explanation, further studies would undoubtedly be required to clarify the 

possible mechanisms behind this observation.  
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Abstract 

The potential of three mild Pepino mosaic virus (PepMV) isolates, belonging to the CH2, 

EU and LP genotypes, to protect a tomato (Solanum lycopersicum) crop against an 

aggressive challenge isolate of the CH2 genotype was assessed in greenhouse trials and 

PepMV symptoms were rated at regular time points. After challenge infection, enhanced 

symptom display was recorded in plants that were pre-inoculated with a protector isolate 

that belonged to a different genotype (EU, LP) than the challenge isolate. A quantitative 

genotype-specific TaqMan assay revealed that in these plants, the accumulation of the 

challenge isolate only temporarily slowed down. By contrast, efficient cross-protection 

was obtained using the mild isolate of the CH2 genotype, and in this case the challenge 

isolate was barely detectable in the pre-inoculated plants. These results suggest that the 

interaction between PepMV isolates largely depends on RNA sequence homology and that 

post-transcriptional gene silencing plays an important role in cross-protection.  

 

 
Introduction 

Pepino mosaic virus (PepMV), a highly infectious Potexvirus that was first isolated from 

pepino (Solanum muricatum) in Peru in 1974 (Jones et al., 1980), is a major viral 

disease in greenhouse tomato production worldwide (van der Vlugt et al., 2000; French 

et al., 2001; Mumford & Metcalfe 2001; Cotillon et al., 2002; Maroon-Lango et al., 2005; 

Pagan et al., 2006; Hasiow et al., 2008; Hanssen et al., 2008; Ling, 2008). The virus 

causes a wide range of symptoms, of which the typical fruit marbling is considered to be 

the most devastating, as it reduces the economical value of the fruit (Soler et al., 2000; 

Roggero et al., 2001; Spence et al., 2007). Recently reported open fruits and sepal 

necrosis similarly contribute to fruit quality devaluation (Hanssen et al., 2009b). Damage 

and economical losses caused by PepMV vary greatly, not only between different 

production areas but also between different infected crops in the same area. This 

variation can, at least partially, be attributed to differential symptomatology caused by 

different PepMV isolates (Hanssen et al., 2009b).  

Currently, four PepMV genotypes are distinguished: the Peruvian PepMV genotype 

(LP) which was first isolated from Lycopersicon peruvianum and is similar to the original 

Pepino (S. muricatum) isolate (Lopez et al., 2005; Pagan et al., 2006); the European 

tomato genotype (EU), which was first reported in greenhouse tomato production in 

Europe (Mumford & Metcalfe, 2001; Aguilar et al., 2002; Cotillon et al., 2002; Verhoeven 

et al., 2003; Pagan et al., 2006); the CH2 genotype, which was first isolated from 

tomato seeds from Chile (Ling, 2007) and the US1 genotype, which was first described 

in the USA (Maroon-Lango et al., 2007). The different genotypes cannot be distinguished 

based on biological characteristics, as biological differences between isolates from the 



Chapter 5 79 

same genotype can be considerable (Córdoba-Sellés et al., 2009; Hanssen et al., 

2009b). The EU and LP genotypes share a nucleotide sequence homology of 96% and 

cluster phylogenetically. The CH2 genotype is rather different as it displays only 78 to 

80% sequence homology with the EU and LP genotype groups. The US1 genotype shares 

78% sequence homology with CH2 and 82% with EU/LP genotypes. An RT-PCR-RFLP 

based method was developed to distinguish the different genotypes without RNA 

sequence determination (Hanssen et al., 2008). In recent years, the CH2 genotype has 

largely replaced the EU genotype in commercial tomato production in several European 

countries, whereas in the USA and Canada the EU genotype is predominant (French et 

al., 2008; Gómez et al., 2008; Hanssen et al., 2008; Hanssen et al., unpublished data; 

Ling, 2008).  

Viral cross-protection was first described by McKinney (1929), who observed that 

tobacco plants that were systemically infected by a mild strain of Tobacco mosaic virus 

(TMV) were not affected by subsequent infection by a severe strain of TMV, which 

otherwise induced yellow mosaic symptoms. Since then, cross-protection has been 

applied both in research, to study relationships between viruses, and in commercial crop 

cultivation to control viral diseases (Lecoq & Lemaire, 1991). The most successful 

examples of cross-protection in vegetable production are the control of TMV conferred by 

the mild MII-16 protector isolate, which was used in greenhouse tomato production 

worldwide until resistant plant varieties became available, and control of Zucchini yellow 

mosaic virus (ZYMV) in field squash production by the mild WK protector isolate of ZYMV 

(Rast, 1972; Lecoq & Lemaie, 1991; Lecoq, 1998). In perennial crops efficient cross-

protection was obtained in papaya fields for control of Papaya ringspot virus (PRSV) and 

in citrus orchards against Citrus tristeza virus (CTV) (Muller, 1980; Yeh et al., 1984). 

Cross-protection is of particular interest to control a narrow host-range virus that is 

characterized by high incidence and substantial crop damage in a geographic region 

where it constitutes the major viral disease of the crop (Lecoq, 1998; Gal-On & 

Shiboleth, 2005). Since PepMV is the most prevalent virus in tomato production in 

North-Western Europe (Belgium, the Netherlands and the UK), and taking into account 

the lack of alternative control strategies, cross-protection is potentially suitable to 

control PepMV disease. It has been speculated that early PepMV infections are less 

damaging than infections that occur later in the growing season and that economic 

losses may be reduced by inoculation of tomato plants with a mild isolate in an early 

stage (Spence et al., 2006; Hanssen et al., 2008). Isolates belonging to the LP genotype 

have been reported to cause only mild symptoms in tomato (Lopez et al., 2005), 

indicating that isolates from this genotype could be interesting candidates for cross-

protection. A mild LP isolate of PepMV is currently used in greenhouse tomato cultivation 

in the Netherlands for cross-protection (Brakeboer, 2007), but no efficiency data are 
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available yet. In contrast, Belgian tomato growers have largely abandoned the PepMV 

cross-protection strategy after negative experiences with early inoculation during the 

2005 growing season (Hanssen et al., 2009a). Greenhouse experiments have shown 

enhanced symptom severity in tomato crops that were simultaneously infected by two 

different PepMV genotypes when compared to crops infected by one of the genotypes 

(Hanssen et al., 2008). These observations have raised questions on the interaction of 

different PepMV isolates and genotypes in mixed infections, as well as on risks 

associated with cross-protection.  

The aims of this study were to provide a better understanding of the interaction 

between PepMV isolates. The cross-protection potential of a mild LP isolate to protect 

tomato against an aggressive PepMV isolate from the CH2 genotype, which is dominant 

in Europe, was evaluated in greenhouse trials. In addition, the cross-protection potential 

of a mild EU isolate and a mild CH2 isolate against the aggressive CH2 isolate was 

evaluated. 

 
 

Materials and methods 

 

Experimental design 

A greenhouse trial was conducted in four plastic tunnels to assess the potential of a mild 

PepMV isolate ‘5608’, belonging to the LP genotype and further referred to as ‘LP mild’ 

(protector isolate) to protect tomato plants against the more aggressive CH2 isolate ‘PCH 

06/104’ (challenge isolate), further referred to as ‘CH2 aggressive’ (GenBank accession 

number FJ457097; Hanssen et al., 2009b). Here, a PepMV isolate is defined as the viral 

inoculum derived from PepMV infected plants from one specific tomato production site. 

The genotype of both isolates was determined using a previously described RT-PCR-RFLP 

method (Hanssen et al., 2008). In addition, isolate pureness was confirmed using the 

PepMV genotype-specific TaqMan RT-qPCR detection method. Tomato seeds (cultivar 

Tricia, De Ruiter Seeds, Bergschenhoek, the Netherlands) were disinfected, sown and 

germinated as previously described (Hanssen et al., 2009b). Five weeks after sowing, 

100 tomato plants were transplanted to each of the tunnels in stonewool substrate. One 

week after planting, in all tunnels absence of PepMV was demonstrated by ELISA 

analyses, and subsequently tomato plants of the first and second tunnel were inoculated 

individually with the LP mild isolate as previously described, while plants in the third and 

fourth tunnel were mock-inoculated with phosphate buffer (Hanssen et al., 2009b). 

Inoculations were performed on the third youngest leaf of each plant. Three weeks later, 

after confirmation of systemic infection by ELISA analyses, all plants in the second 

tunnel were inoculated again, however this time with the CH2 aggressive challenge 



Chapter 5 81 

isolate. At the same time, plants in the third tunnel were inoculated (for the first time) 

with CH2-aggressive. This time point is defined as 0 weeks post-inoculation (WPI), while 

the period before this time point is referred to as weeks ante-inoculation (WAI). Plants in 

the fourth tunnel were kept as non-infected controls. The plants that were first 

inoculated with the LP mild isolate and subsequently with the CH2 aggressive isolate are 

further referred to as the pre-inoculated plants. Plants that were inoculated only with the 

LP mild isolate are further referred to as the LP mild reference plants and those 

inoculated only with the challenge isolate as the CH2 aggressive reference plants. Each 

tunnel was divided into ten sampling blocks, each containing ten adjacent plants. At 

regular intervals, samples were taken from the youngest leaves in the head of the 

plants, as previously described (Hanssen et al., 2009b).  

 

PepMV detection and relative quantification of viral titres  

To confirm PepMV presence in the inoculated plants and absence in the non-infected 

plants, all plant samples were analysed for PepMV presence with a double antibody 

sandwich enzyme-linked immunosorbent assay (DAS-ELISA) using a commercial 

antiserum (Prime Diagnostics, Wageningen, the Netherlands), according to the supplier’s 

instructions. The optical density (OD) was measured at 405 nm and samples were rated 

positive if the OD exceeded the mean value of two negative control wells by three times.  

To relatively quantify the viral titres, a genotype specific TaqMan RT-qPCR 

method was applied. For each tunnel, three samples (sampling blocks 1, 4 and 8) were 

analysed at 8 time points (1 WAI and 1, 3, 5, 7, 9, 11 and 14 WPI). RNA was extracted 

from fresh plant material using the RNeasy Plant Mini Kit (Qiagen, Chatsworth, CA, USA) 

and reverse transcribed using the high capacity cDNA archive kit (Applied Biosystems, 

Foster City, USA). qPCR reactions were performed in 10 µl of final reaction volume, 

including TaqMan universal PCR master mix (Applied Biosystems), forward and reverse 

primers at 900 nM each, 200 nM of the corresponding TaqMan probe and 2 µl cDNA. 

Primers and TaqMan probes specific for EU/LP, or CH2/US2 were used for specific 

quantification of PepMV genotypes (Table 1; Gutiérrez-Aguirre et al., 2009). Plant 

cytochrome oxidase (COX) specific primers and a Taqman probe (Weller et al., 2000) 

were used as internal control for accounting for variations due to the RNA extraction. The 

qPCR was performed in 384-well plates (Applied Biosystems). Reactions were run in 

triplicate on an ABI PRISM 7900HT sequence detection system (Applied Biosystems) 

using universal cycling conditions (2 min at 50°C, 10 min at 95°C followed by 45 cycles 

of 15 s at 95°C and 1 min at 60°C). The threshold cycle (Ct) for each individual 

amplification was obtained using the SDS 2.3 software (Applied Biosystems). Buffer-

extraction controls were used to evaluate potential contamination within the RNA 

extraction procedure. Non-template controls were used to monitor for potential 



Chapter 5 82 

contamination within the qPCR reagents. Based on previous observations, Ct of 35 was 

considered as the highest detectable Ct (Gutiérrez-Aguirre et al., 2009). 

 

Table 1. PepMV genotype specific primers and Taqman probes used in this study (Gutiérrez-Aguirre et al., 

2009) 

Primer/Probe Sequence Position in 
genome 

Forward primer EU/LP 5′ TGGAACATACTTCTCGACAGCAA 3’ 6035-60571 
Reverse primer EU/LP 5′ TCCATCGAAGAAGTCAAATGCA 3’ 6112-61331 
Probe EU/LP 5′FAM-ATTCCACCAGCAAATTGGGCCAAACTT-TAMRA 3’ 6059-60851 
Forward primer CH2 5′ TGGGTTTAGCAGCCAATGAGA 3’ 5832-58522 
Reverse primer CH2 5′ AACTTTGCACATCAGCATAAGCA 3’ 5881-59032 
Probe CH2 5′FAM-CGGACCTGCCATGTGGGACCTC-TAMRA 3 ‘ 5854-58752 
1SP13 reference sequence (GeneBank Accession number AF484251) 

2CH2 reference sequence (GeneBank Accession number DQ000985) 

 

 

Evaluation of PepMV symptoms  

Symptoms were scored following a previously described assessment schedule (Hanssen 

et al., 2009b; this manuscript also contains representative pictures of typical symptoms) 

with minor modifications; fruit marbling and flaming were not assessed on the plants, 

but by examining all ripe tomatoes after harvest. All harvested tomatoes were weighed 

to determine the yield per tunnel. Significant (p<0.05) differences in symptom scores 

were identified by analysis of variance (one-way ANOVA) and post-hoc Bonferroni tests 

using SPSS software (v. 10.0; SPSS Inc., Chicago, IL, USA). 

 

 
Results 

A PepMV cross-protection trial was conducted in four plastic tunnels, each containing 100 

tomato plants. To this end, tomato plants were inoculated with a PepMV isolate known to 

cause few or no symptoms, subsequently challenged with an aggressive isolate that is 

known to cause significant damage, and symptom display was recorded. As the LP 

genotype of PepMV was previously reported to cause symptomless infections in tomato 

(Jones et al., 1980; Lopéz et al., 2005), an LP isolate (LP mild) obtained in 2008 from a 

PepMV-infected symptomless commercial tomato crop in Belgium was selected as 

potential protector isolate. Tomato plants in one tunnel were first inoculated with the LP 

mild isolate, and after systemic spread a second inoculation with an aggressive challenge 

isolate belonging to the CH2 genotype was performed. As a reference, both isolates (LP 

mild and CH2 aggressive) were inoculated separately in two distinct tunnels. Plants in 

the fourth tunnel were kept as non-infected controls.  

ELISA analyses confirmed: i) that all plants inoculated with the LP mild isolate 

(tunnel 1 and 2) were systemically infected prior to inoculation with the CH2 aggressive 
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isolate, ii) that plants inoculated solely with the CH2 aggressive isolate (tunnel 3) were 

systemically infected from one WPI onwards, and iii) that non-inoculated control plants 

remained free of PepMV (data not shown) . RT-PCR-RFLP analyses (Hanssen et al., 

2008) at 4 and 13 WPI confirmed: i) that plants were infected by the inoculated 

genotypes only, ii) that plants inoculated with two different genotypes were systemically 

infected by both genotypes, and iii) that no cross-contamination occurred between 

treatments throughout the trial period (data not shown). 

 

Enhanced symptom severity and yield loss in pre-inoculated plants 

Large differences in fruit symptom severity were obtained for the different treatments. A 

high incidence of sepal necrosis was observed between 2 and 11 WPI on all plants that 

were inoculated with the CH2 aggressive isolate, regardless of the pre-inoculation with 

the LP mild isolate (Figure 1a). In the LP mild reference and control plants, sepal 

necrosis did not occur. Differences between LP mild pre-inoculated plants and LP mild 

reference plants were significant (P<0.05) at 3, 4 and 7 WPI. The incidence of open 

fruits was rather low in this trial. The percentage of tomato clusters with at least one 

open fruit was 0.51% in the control plants, 0.45% in the LP mild reference plants, 

1.60% in the pre-inoculated plants and 4.32% in the CH2 aggressive reference plants. 

The percentage of marbled and flamed fruits was determined by examining all ripe 

tomatoes at harvest. Interestingly, throughout the entire trial period, the highest 

percentages of marbled tomatoes were obtained from the plants that were first 

inoculated with the LP mild isolate and subsequently with the CH2 aggressive isolate 

(Figure 2a). At 5 WPI, the percentage of marbled tomatoes obtained from these pre-

inoculated plants was as high as 43%, whilst only 18% marbled tomatoes were 

harvested from the CH2 aggressive reference plants. Similarly, 18% and 23% marbled 

tomatoes were harvested from these plants at 7 and 13 WPI respectively, while at the 

same time points only 2.5% and 2.0% marbled tomatoes were harvested from the CH2 

aggressive reference plants. No or only few marbled tomatoes were seen in the control 

and the LP mild reference plants. Overall percentages of marbled tomatoes harvested at 

the five time points were 0.1% for the control plants, 1.3% for the LP mild reference 

plants, 4.2% for the CH2 aggressive reference plants and 17.9% for the LP mild pre-

inoculated plants.  

With regard to fruit flaming, symptoms were prevalent in both the LP mild pre-

inoculated plants and the CH2 aggressive reference plants (Figure 2b). At 7 WPI, less 

flamed tomatoes were harvested from pre-inoculated plants (11%) when compared to 

the CH2 aggressive reference (25%), whilst at 9 WPI the difference was less pronounced 

(12% and 16%, respectively). By 11 WPI, more flamed tomatoes were harvested from 

the pre-inoculated (17%) and the LP mild reference (17%) plants as compared to the 



Chapter 5 84 

CH2 aggressive reference (9%). Overall, percentages of flamed tomatoes harvested at 

the three time points were 3.8% for the control plants, 5.0% for the LP mild reference 

plants, 16.5% for the CH2 aggressive reference plants and 12.6% for the LP mild pre-

inoculated plants.  

 All ripe tomatoes, including those displaying typical PepMV symptoms, were 

harvested and weighed weekly to determine the yield per tunnel. The cumulative weight 

relative to the non-infected control was determined for all harvesting points from 5 to 15 

WPI (Figure 3). Interestingly, yields of the LP-mild pre-inoculated plants were 

consistently lower than those of controls over the entire harvesting period, and were 

generally also lower than those of the CH2 aggressive reference plants (Figure 3). The 

overall yield loss from these plants amounted to 13%. A minor yield loss (3%) was 

recorded in the plants infected only with the LP mild isolate, while the yield loss from the 

CH2 aggressive reference plants was 6%.  

When monitoring the plants for PepMV symptoms, a large difference in general 

crop appearance and plant vigour was observed between the various tunnels. From 3 

WPI onwards, the CH2 aggressive reference plants and especially the LP mild pre-

inoculated plants were clearly weaker, with a visibly reduced leaf surface and lower 

vigour than control plants.  

PepMV symptom development was monitored at regular intervals by rating the 

same 30 plants at 12 time points and additional ratings of all 100 plants per tunnel at 

two additional time points. Premature leaf senescence was seen from 3 WPI onwards in 

all tunnels, including the control tunnel, albeit to a lesser extent than in the treatments. 

Leaf bubbling was only rarely observed. Nettlehead scores obtained from pre-inoculated 

plants were between those from the LP mild and CH2 aggressive reference plants, which 

were consistently the lowest and the highest, respectively, while nettlehead symptoms 

did not occur in control plants (Figure 1b). Differences between control plants and 

inoculated plants were significant (P<0.05) at all time points from 1 WAI onwards. CH2 

aggressive reference plants displayed significantly (P<0.05) more severe nettlehead 

symptoms then the other treatments at 1 and 2 WPI.  
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Figure 1. Symptom scores in LP mild pre-inoculation trial. Each point represents the mean score of 30 plants 

with standard errors. (a) Sepal necrosis on fruits of tomato plants inoculated with the various PepMV isolates. 

No sepal necrosis was observed before challenge inoculation at 0 WPI as fruit development had not yet 

started. (b) Nettlehead symptoms in the head of the tomato plants inoculated with the various PepMV 

isolates (scores given until 7 WPI, when the plants were topped).  
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Figure 2. LP mild pre-inoculation trial: symptoms on tomato fruits caused by the different PepMV 

infections. Percentage of tomatoes showing (a) marbling and (b) flaming at various time points. The mean 

number of fruits harvested per week and per tunnel was 292, with the highest number of fruits harvested 

at 5 WPI.  
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Figure 3. LP mild pre-inoculation trial: tomato production, determined as the cumulative weight of all ripe 

tomatoes (including fruit with typical PepMV symptoms) harvested once a week, from 5 until 15 WPI, in each 

tunnel and shown as the percentage relative to the weight obtained for the control tunnel. Total yield obtained 

from the 11 harvesting points amounted to 742 kg in the control tunnel, 721 kg in the LP mild reference tunnel 

(3% yield loss), 641 kg in the LP mild pre-inoculated tunnel (13% yield loss) and 695 kg in the CH2 aggressive 

reference tunnel (6% yield loss).  

 

 

Relative infection levels of the different PepMV isolates 

To determine the relative infection level of the different PepMV isolates, genotype-

specific TaqMan RT-qPCR assays were performed using a EU/LP-specific and a CH2/US2-

specific assay. Mean Ct values obtained using the PepMV genotype-specific probes were 

subtracted from the mean Ct values of the internal control, COX, for standardisation. The 

index obtained (Ct(cox)-Ct(PepMVgenotype)) is proportional to the viral genome copy 

load in each analysed sample. The standardisation with COX excludes potential inter-

sample variations due to differences in the efficiency of the RNA extraction procedure. 

Initially, replication of the CH2 aggressive isolate in LP mild pre-inoculated plants was 

notably slower than in the CH2 reference plants (Figure 4). The lower slope of the CH2 

aggressive load curve is indicative of a somewhat slower onset after challenge 

inoculation, which was followed by a consistently lower load of the challenge isolate until 

5 WPI. From 7 WPI onwards the CH2 aggressive loads were comparable in the CH2 
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aggressive reference and the LP mild pre-inoculated plants (Figure 4). The viral load of 

the LP mild isolate was hardly influenced by challenge inoculation with the CH2 

aggressive isolate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Relative quantification of viral loads visualised for the LP mild pre-inoculation trial. Values in the Y 

axis are based on a genotype specific TaqMan RT-PCR. The viral load in the reference plants is shown using 

closed symbols, while viral loads of both the protector (LP mild pre-inoc) and the challenge isolate (CH2 aggr 

challenge) in the pre-inoculated plants are shown using open symbols. Ct values obtained with LP/EU or CH2 

genotype specific assays were subtracted from the Ct values obtained from the Cox (control) assay. 

Subsequently the lowest obtained value was equalized to zero for illustrative purposes.  Each point represents 

the mean of three sampling blocks with standard errors. Inoculation time points are indicated by arrows in the 

X axis. 
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Additional trials with mild CH2 and EU protector isolates 

Next to the LP mild protector isolate, additional mild isolates belonging to different 

genotypes were tested for their cross-protection potential. Isolate ‘1806’, further 

referred to as ‘EU mild’ (GenBank accession number FJ457098), and isolate ‘1906’, 

further referred to as ‘CH2 mild’ (GenBank accession number FJ457096), were selected 

based on previous greenhouse trials (Hanssen et al., 2009b). These isolates were tested 

in two additional tunnels following the same experimental design. In the first additional 

tunnel, plants were inoculated with the CH2 mild isolate and four weeks later, after 

confirmation of systemic spread of the virus, challenge inoculation was performed using 

the CH2 aggressive isolate. In the second additional tunnel, plants were inoculated with 

the EU mild isolate. As ELISA analyses showed that the plants were not systemically 

infected after three weeks, a second inoculation with the same isolate was performed. 

Two weeks later ELISA analyses confirmed systemic spread of the virus and the 

challenge inoculation with the CH2 aggressive isolate was performed.  

In both tunnels, nettlehead scores were significantly lower (P<0.05) as compared 

to the scores obtained in the CH2 aggressive reference plants at 1 and 2 WPI (data not 

shown). With regard to fruit marbling, results obtained with the EU mild protector isolate 

were similar to those obtained with the LP mild protector isolate, with a higher 

percentage of marbled fruit in the pre-inoculated plants as compared to the CH2 

aggressive reference plants at all time points (Figure 5a). Similar results were also 

obtained for fruit flaming (Figure 5b). By contrast, none of the fruits harvested from the 

plants that were pre-inoculated with the CH2 mild isolate showed marbling (Figure 5a). 

Only at 13 WPI few marbled fruits (2.7%) were seen. Also fruit flaming was clearly 

suppressed by pre-inoculation with the CH2 mild isolate (Figure 5b). In addition, plants 

in this tunnel were stronger and more vigorous as compared to plants that were pre-

inoculated with the LP mild or the CH2 aggressive reference plants. No yield loss was 

recorded as the overall yield from both additional tunnels was comparable to the control 

(data not shown). Genotype-specific TaqMan RT-qPCR assays were applied to quantify 

relative viral loads of the EU mild and CH2 aggressive isolates in the EU mild pre-

inoculated plants. Similar results were obtained as with LP mild pre-inoculated plants 

(Figure 6). A slower onset of viral accumulation of CH2 aggressive was recorded in EU 

mild pre-inoculated plants, but from 5 WPI onwards viral loads of CH2 aggressive in pre-

inoculated and reference plants were comparable.  
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Figure 5. Additional trials: symptoms on tomato fruits caused by the different PepMV infections. 

Percentage of tomatoes showing (a) marbling and (b) flaming at various time points. The mean number 

of fruits harvested per week and per tunnel was 281, with the highest number of fruits harvested at 

5WPI. 
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Figure 6. Additional trials: relative quantification of viral loads visualised for the EU mild pre-

inoculation trial. As the first pre-inoculation with EU mild performed at 4WAI did not result in systemic 

infection, a second pre-inoculation was performed at 1 WAI and challenge inoculation was postponed 

with one week. Inoculation points of the various isolates are indicated using black arrows. The viral 

load in the reference plants is shown using closed symbols, while viral loads of both the protector (EU 

mild pre-inoc) and the challenge isolate (CH2 aggr challenge) in the pre-inoculated plants are shown 

using open symbols. Values in the Y axis are based on a genotype specific TaqMan RT-PCR. Ct values 

obtained with LP/EU or CH2 genotype specific assays were subtracted from the Ct values obtained 

from the Cox (control) assay. Subsequently the lowest obtained value was equalized to zero for 

illustrative purposes. Each point represents the mean of three sampling blocks with standard errors. 
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To determine the relative concentration of the CH2 mild and CH2 aggressive 

isolates in CH2 mild pre-inoculated plants, nucleotide sequences of a total of 16 clones, 

each containing a 840 bp fragment of the PepMV coat protein gene, obtained from three 

samples taken at 3, 5 and 7 WPI in sampling block 8, were determined as described 

previously (Hanssen et al., 2009b). Interestingly, each of these 16 clones contained a 

fragment derived from the CH2 mild genotype, suggesting that the concentration of the 

CH2 aggressive isolate in CH2 mild pre-inoculated plants was at least 10 times lower 

than the concentration of the CH2 mild isolate. The dominance of the CH2 mild isolate in 

these plants was further confirmed by a specifically developed RT-PCR assay by which a 

CH2 aggressive specific amplicon was obtained (forward primer 

5’ATTAACACTGAAGGCATCATA 3’, reverse primer 5’ GTATTCTACTGTGTCGTCTTGTG 3’; 

mismatches with CH2 mild are indicated in bold). Due to the high sequence homology 

between both isolates, the assay was only specific at a high annealing temperature 

(63°C), thus decreasing the sensitivity of the assay. Spiking experiments were 

performed to determine down to which dilution pure CH2 aggressive cDNA could be 

detected in a background of CH2 mild cDNA. These tests revealed that the assay could 

detect CH2 aggressive in a CH2 mild background down to a ratio of 1/50. Using this 

assay, the challenge isolate CH2 aggressive could not be detected in samples obtained 

from the CH2 mild pre-inoculated plants after challenge inoculation. Based on both the 

sequence analyses and the CH2 aggressive specific RT-PCR assay, it can be concluded 

that the concentration of CH2 aggressive is at least 10 times lower than the 

concentration of CH2 mild in CH2 mild pre-inoculated plants challenged with CH2 

aggressive.  

Samples obtained from sampling blocks 2, 4 and 8 at 3, 5, 7 and 13 WPI (12 

samples in total) were analysed using this assay and all tested negative, meaning that 

the CH2 aggressive concentration was, at least, less than 50 times lower than the CH2 

mild in the pre-inoculated plants. 
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Discussion 

In this work the potential of a mild LP isolate to provide cross-protection in a tomato crop 

against severe damage caused by an aggressive CH2 isolate was assessed in greenhouse 

trials. The study revealed an enhanced symptom severity rather than cross-protection in 

plants pre-inoculated with the LP mild isolate and subsequently challenged by an 

aggressive CH2 isolate. Especially the incidence of fruit marbling, the most typical and 

economically important PepMV symptom, increased considerably, while the incidence of 

fruit flaming, a less typical symptom which sometimes occurs as a physiological disorder, 

was less influenced. In addition, pre-inoculation with LP mild and subsequent challenge 

inoculation with an aggressive CH2 isolate had a serious impact on plant vigour and leaf 

development, and hence on yield, resulting in overall yield reduction of 13% as compared 

to the control plants. Fruit sepal necrosis was nor reduced nor enhanced. Interestingly, 

additional trials with two other mild protector isolates resulted in similar results for plants 

pre-inoculated with a mild EU isolate and subsequently challenged by the aggressive CH2 

isolate, while efficient cross-protection against the challenge isolate was obtained in 

plants pre-inoculated with a mild CH2 isolate.  

In the LP mild and EU mild pre-inoculated plants, RT-PCR-RFLP demonstrated the 

presence of both the protector and the challenge genotype after challenge inoculation. 

Quantitative genotype-specific RT-qPCR assays revealed that viral accumulation of the 

CH2 challenge isolate was initially somewhat suppressed by the mild isolates, but that 

after 5 to 7 WPI the viral load obtained for CH2 aggressive in the pre-inoculated plants 

was similar to the CH2 aggressive reference plants. This accumulation of the challenge 

isolate coincided with the start of the fruit ripening period and thus with the high 

incidence of fruit marbling. Nettlehead symptoms (nettle-like leaf deformations in the 

head of the plants) are usually more pronounced in the first weeks after inoculation and 

disappear later on, as previously observed in greenhouse trials (Spence et al., 2006; 

Hanssen et al., 2009b). In this trial, the incidence of nettlehead symptoms in the first 

weeks after challenge inoculation was lower in LP mild and EU mild pre-inoculated plants 

than in the reference plants only inoculated with the challenge isolate. This could be 

related to the initial suppression of the challenge isolate accumulation in the pre-

inoculated plants. Overall the EU mild and LP mild isolates did not induce durable cross-

protection against an aggressive CH2 isolate. 

By contrast, efficient cross-protection against the CH2 challenge isolate was 

obtained by pre-inoculation with a mild CH2 isolate. Especially the incidence of PepMV 

typical fruit symptoms was notably reduced. Remarkably, the titre of the CH2 mild isolate 

was significantly higher when compared to the CH2 aggressive challenge isolate, which 

was barely detectable by cloning and by specific conventional RT-PCR.  
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Overall, our results indicate that co-infection with different PepMV genotypes in 

the same plant can lead to enhanced symptom severity, and that pre-inoculation of a 

tomato crop with a mild isolate results in protection against an aggressive isolate only if 

it belongs to the same genotype. These observations are in line with previous 

observations that co-infection with two PepMV genotypes (EU and CH2) in commercial 

tomato crops results in more severe symptoms (Hanssen et al., 2008). Whether the 

enhanced symptom severity is due to synergism between different PepMV genotypes, or 

to PepMV recombinants, which were previously reported to occur in mixed infections 

(Hanssen et al., 2008), is currently not clear. Synergism between different viruses 

usually coincides with a drastic increase in viral titre of at least one of the two viruses, as 

previously shown for Potato virus X (PVX) and Potato virus Y (PVY) (Stouffer and Ross, 

1961) and for Blackeye cowpea mosaic virus (BICMV) in combination with Cucumber 

mosaic virus (CMV) (Andersson et al., 1996). Synergistic interactions with potyviruses 

are generally characterised by an unchanged concentration of the Potyvirus and an 

increased concentration of the other virus (Hull, 2002). Relative quantification of viral 

titres of the co-infecting PepMV genotypes in this study did not reveal such an increase. 

However, a positive correlation between viral titre and symptom severity has not yet 

been unambiguously proven for PepMV in tomato. A synergistic interaction resulting in 

enhanced symptom severity without significant increase of either of the two interacting 

viruses was previously reported for Rice tungro bacilliform virus (RTBV) and Rice tungro 

spherical virus (RTSV) in rice tungro disease (Hull, 2002). 

Interestingly, nucleotide sequence homology of the EU and LP genotypes with the 

CH2 genotype is as low as 79%, while the sequence homology between the mild and 

aggressive CH2 isolates used in this study is 99.4% (Hanssen et al., 2009b). These 

results suggest that RNA sequence homology is a determining factor in PepMV cross-

protection efficiency in tomato, as was previously shown for other plant virus 

interactions. It was demonstrated that the mild ZYMV-WK strain conferred efficient cross-

protection against related but not to divergent strains of the virus (Wang et al., 1991; 

Desbiez and Lecoq, 1997). Similar results were obtained for PRSV types P and W, which 

are serologically indistinguishable but differ in host range. A mild P-type isolate of PRSV 

confers efficient cross-protection against severe P-type isolates but not to W-type 

isolates (Yeh et al., 1984). Albiach-Marti et al. (2000) demonstrated that mild strains of 

CTV conferring efficient cross-protection in Florida and Spain displayed high sequence 

homology with a diverse range of isolates. A CMV mutant lacking the 2b counter-defence 

protein gene was shown to provide protection against wildtype strains, but in this case 

efficient cross-protection to a more divergent strain was also obtained (Ziebell et al., 

2007). 
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Ratcliff et al. (1999) have provided convincing evidence that post-transcriptional 

gene silencing PTGS can be the underlying mechanism for cross-protection. The authors 

showed that for Tobacco rattle virus (TRV) and Potato virus X (PVX) constructs sharing a 

common sequence that one viral construct can suppress the other through RNA-mediated 

cross-protection in co-infected plants. Based on this study, it was suggested that cross-

protection is mediated by pre-activation of the RNA-induced silencing complex (RISC) 

with small interfering RNA (siRNA) derived from the protector virus RNA, thus inhibiting 

replication of the challenge isolate (Ratcliff et al., 1999; Gal-On & Shiboleth, 2006). By 

contrast, co-infection of two viruses with limited sequence homology could lead to 

synergism, mediated by inhibition of the PTGS defence mechanism by viral silencing 

suppressors (Gal-On & Shiboleth, 2006).  

 To our knowledge, this is the first report on cross-protection between different 

PepMV isolates in tomato. Our findings that the interaction between PepMV isolates 

differs largely depending on nucleotide sequence homology between the isolates have 

important implications for PepMV disease management in practice. The risk of enhanced 

symptom severity in mixed infections caused by different PepMV genotypes undermines 

the potential of cross-protection and implies that the emergence of new PepMV 

genotypes in various tomato production areas (Alfaro et al., 2008; Hanssen et al., 2008; 

Hasiow et al., 2008; Ling, 2008) poses a threat to the tomato industry worldwide. A 

management strategy based on cross-protection can only be successful in areas where 

one PepMV genotype is dominant, provided that the PepMV population is monitored 

intensively and that very strict hygienic measures are taken during cultivation and 

between different cropping cycles. 
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Abstract 

As plant viruses are obligate intracellular parasites that hijack host cellular functions and 

resources for their replication and movement, they generally induce a wide variety of 

alterations in host gene expression and cell physiology. Pepino mosaic virus (PepMV) is a 

highly infectious Potexvirus and a major disease of greenhouse tomato crops worldwide. 

Damage and economical losses caused by PepMV vary greatly, and can at least partially 

be attributed to differential symptomatology caused by different PepMV isolates. In this 

study, we used a custom-designed Affymetrix tomato GeneChip array that contains probe 

sets to interrogate over 22,000 tomato transcripts to study transcriptional changes in 

response to inoculation with a mild and an aggressive PepMV isolate that share 99.4% 

nucleotide sequence identity. Interestingly, our results show that both isolates induce 

differential transcriptomic responses in the tomato host despite similar viral titers. PepMV 

inoculation resulted in an extensive transient repression of host genes which clearly 

affected primary metabolism. Especially the defense response intensity was higher upon 

inoculation with the aggressive isolate and was mediated by salicylic acid signaling rather 

than by jasmonate signaling. Our results furthermore show that PepMV differentially 

regulates the RNA silencing pathway, suggesting a role for PepMV encoded silencing 

suppressors, and the ubiquitination pathway. Finally perturbation of pigment 

biosynthesis, as monitored by differential regulation of the flavonoid/anthocyanin and 

lycopene biosynthesis pathways, was monitored, which can be associated with the typical 

PepMV-induced marbling of tomato fruit.  

 

 
Introduction 

Global transcriptional profiling provides insight in the cellular biology of the host upon 

pathogen infection (Quirino and Bent, 2003; van Baarlen et al., 2008; Wise et al., 2007). 

As viruses are obligate intracellular parasites that hijack host cellular functions and 

resources for their replication and movement, plant viruses generally induce a wide 

variety of alterations in host gene expression and cell physiology (Whitham et al., 2003; 

Whitham et al., 2006; Alfenas-Zerbini et al., 2009). Over recent years, the use of 

transcriptomics approaches such as microarrays and subtractive libraries, has resulted in 

significant advances in identifying such responses (Whitham et al., 2003; Marathe et al., 

2004; Senthil et al., 2005; Whitham et al., 2006; Dardick, 2007; Yang et al., 2007; 

Alfenas-Zerbini et al., 2009). In most compatible plant-virus interactions, transcriptomic 

analyses reveal a general virus-induced host gene repression shortly after infection 

(Wang and Maule, 1995; Maule et al., 2002; Marathe et al., 2004; Dardick, 2007; 

Baebler et al., 2009). Nevertheless, genes related to cell death, cell rescue, defense, 

ageing, stress and protein degradation are often induced in response to viral infection, 
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both in compatible and incompatible interactions (Whitham et al., 2003; Marathe et al., 

2004 Senthil et al., 2005; Dardick, 2007). Viruses are also known to affect plant 

hormone signaling, as the abnormal growth of virus-infected plants has been related to 

alterations in auxin, abscisic acid, cytokinin, giberellin or ethylene levels, depending on 

the specific virus-host combination (Whitham et al., 2006).  

Another prominent virus-induced host response is the induction of the post-

transcriptional gene silencing (PTGS) machinery of the plant (Baulcombe, 2004). Antiviral 

PTGS involves the processing of viral double-stranded RNA (dsRNA) by Dicer-like 

enzymes (DCL) into small interfering RNAs (siRNAs), which are subsequently 

incorporated into the multi-component RNA-induced silencing complex (RISC). RISCs 

contain endonucleolytic Argonaute (AGO) enzymes that, upon activation by siRNAs, 

cleave RNA strands that have high sequence homology to the incorporated siRNAs (Xhie 

et al., 2004; Vaucheret et al., 2004; Ding and Voinnet, 2007). In addition to its 

implication in defense against viruses (Dalmay et al., 2001; Mourrain et al., 2000; Qu et 

al., 2005; Schwach et al., 2005), evidence accumulates for RNA silencing to play a role in 

interactions with other types of pathogens and pests, more specifically in bacterial 

defense (Padmanabhan et al., 2009; Ruiz-Ferrer and Voinnet, 2009), fungal defense 

(Ellendorff et al., 2009), nematode defense (Hewezi et al., 2008) and insect defense 

(Pandey et al., 2008). Furthermore, RNA silencing also plays an important role in the 

regulation of endogenous gene expression through microRNA (miRNA) function 

(Baulcombe, 2004). Host-adapted viruses have evolved strategies to counteract PTGS by 

encoding RNA silencing suppressors (Ding and Voinnet, 2007). As viruses are inducers, 

suppressors and targets of RNA silencing, virus-induced symptom development in 

infected plants can be influenced by the siRNA and miRNA pathways in many different 

ways (Baulcombe, 2004). 

 Pepino mosaic virus (PepMV), a highly infectious Potexvirus that was first isolated 

from pepino (Solanum muricatum) in Peru in 1974 (Jones et al., 1980), is a major 

disease of greenhouse tomato crops worldwide (Hanssen and Thomma, 2010). The virus 

causes a wide range of symptoms, of which the typical fruit marbling and the occurrence 

of open fruits are particularly devastating as they reduce the economical value of the 

fruit (Soler et al., 2000; Roggero et al., 2001; Spence et al., 2007; Hanssen et al., 

2009a; b; 2010a). Damage and economical losses caused by PepMV vary greatly, and 

can at least partially be attributed to differential symptomatology caused by different 

PepMV isolates (Hanssen et al., 2009b; 2010a). Currently, four PepMV genotypes are 

distinguished: the Peruvian genotype (LP) which was first isolated from Lycopersicon 

peruvianum and is similar to the original Pepino (L. muricatum) isolate (Lopez et al., 

2005; Pagán et al., 2006); the European tomato genotype (EU), which was first reported 

in greenhouse tomato production in Europe (Mumford and Metcalfe, 2001; Aguilar et al., 
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2002; Cotillon et al., 2002; Verhoeven et al., 2003; Pagán et al., 2006); the CH2 

genotype, which was first isolated from tomato seeds from Chile (Ling, 2007) and the 

US1 genotype, which was first described in the United States (Maroon-Lango et al., 

2007). Over recent years, the CH2 genotype has largely replaced the EU genotype in 

commercial tomato production in several European countries (Hanssen et al., 2008; 

Goméz et al., 2009). Two Belgian CH2 PepMV isolates have recently been characterized 

in detail and were designated mild (isolate 1906, further referred to as the mild CH2 

isolate) and aggressive (isolate PCH 06/104, further referred to as the aggressive CH2 

isolate), respectively, based on symptom expression in naturally infected commercial 

greenhouse tomatoes and in subsequent greenhouse trials (Hanssen et al., 2009b; 

2010a). Inoculation of greenhouse tomatoes with the mild isolate resulted in rather mild 

PepMV symptomatology, while inoculation of greenhouse tomatoes with the aggressive 

isolate resulted in severe PepMV symptomatology with considerably more fruit marbling 

and a higher incidence of open fruits and premature leaf senescence. Intriguingly, the 

nucleotide sequence identity between both isolates was as high as 99.4% (Hanssen et 

al., 2009b). Because of the economical impact of PepMV symptoms, unraveling the 

molecular basis of (differential) symptom display is warranted.  

In this study, we used a custom-designed Affymetrix tomato GeneChip array that 

contains probe sets to interrogate over 22,000 tomato transcripts (van Esse et al., 2007; 

2008; 2009) to study transcriptional changes in response to inoculation with the mild and 

aggressive PepMV isolate. Interestingly, our results show that both isolates induce 

differential transcriptomic responses in the tomato host despite the accumulation of 

similar viral titers. 

 
 
Materials and methods 

 

Plant and virus materials, inoculation and disease evaluation 

Tomato seedlings, cultivar Tricia (De Ruiter seeds, Bergschenhoek, the Netherlands) 

were grown in stonewool in a climate chamber (22 and 20°C during day and night 

periods of 10 and 14 hours, respectively, at 75% relative humidity). At 29 days after 

planting, plants were inoculated with a mild (‘1906’; GenBank accession number 

FJ457096) or an aggressive (‘PCH 06/104’; GenBank accession number FJ457097) 

PepMV isolate of the CH2 genotype (Hanssen et al., 2009b). Inoculation was performed 

on the second fully developed leaf as previously described (Hanssen et al., 2008).  

The development of typical nettlehead-like PepMV symptoms was recorded at 4, 8 

and 12 days post inoculation (DPI) on 20 plants per treatment. Symptoms were scored 

from 0 (no symptoms) to 3 (severe symptoms; Figure 1b; Hanssen et al., 2008) and 
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statistically analyzed by analysis of variance (one-way ANOVA) and post-hoc Bonferroni 

tests using SPSS software (v. 10.0; SPSS Inc., Chicago, IL, USA). 

 Viral accumulation was measured in the microarray samples using a PepMV-

specific RT-qPCR assay with forward primer Pep5 (5’ ATGAAGCATTCATACCAAAT 3’) and 

reverse primer Pep4 (5’ AATTCCGTGCACAACTAT 3’; Mumford and Metcalfe, 2001). The 

PCR program consisted of an initial denaturation step at 95°C for 15 min, 45 cycles of 

15s at 94 ºC, 30 s at 50 °C and 30 s at 72 °C, followed by a final incubation step of 2 

min at 72°C. Standard curves based on cDNA dilution series were generated to 

determine the relative concentrations of amplified viral RNA. Based on 4 replicates, run in 

two different analyses, a reaction efficiency of around 90% was obtained. Ct values 

obtained from the PepMV-specific RT-qPCR assay were standardized by subtraction from 

an internal control assay on the tomato actin gene (GenBank U60480.1) using forward 

primer Q-LeActinF 5’ CTAGGCTGGGTTCGCAGGAGATGATGC 3’ and reverse primer Q-

LeActinR 5’ GTCTTTTTGACCCATACCCACCATCACAC 3’ (using the thermal profile 

mentioned above with an annealing temperature of 60°C). 

 

Microarray sample preparation and data analysis  

Per time point and treatment three biological replicates, each consisting of pooled RNA 

extracts obtained from the youngest fully developed leaves of two seedlings, were 

collected. Total RNA was extracted using the RiboPure RNA extraction kit (Ambion) and 

reverse transcribed with labeled oligo-dT primers for hybridization onto custom-designed 

Affymetrix tomato GeneChip arrays (Syngenta Biotechnology, Inc., Research Triangle 

Park, North Carolina, US).  

Microarray quality control and data analysis were performed as described 

previously (van Baarlen et al., 2008; van Esse et al., 2009). Pathway reconstruction was 

performed using the BioNetBuilder plug-in (Avila-Campillo et al., 2007), an open-source 

tool that is able to generate biological networks by integration of information from 

several databases that include the Biomolecular Interaction Network Database (BIND) 

(Gilbert, 2005), Prolinks (Bowers et al., 2004), and the Kyoto Encyclopedia of Genes and 

Genomes database (KEGG) (Kanehisa et al., 2002).  

  

Microarray data 

Microarray data have been deposited in ArrayExpress as accession E-MEXP-2389. 
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Results  

 

Differential disease development in tomato infected by different PepMV isolates 

The phenotypic response of tomato seedlings to inoculation with a mild and an 

aggressive CH2 PepMV isolate was evaluated by recording the development of typical 

PepMV symptoms at 4, 8 and 12 DPI on 20 seedlings per treatment. 

 

 

Figure 1. Characterization of tomato infection by a mild and aggressive Pepino mosaic virus (PepMV) isolate. 

(a) Scores for symptomatology on mock-inoculated plants (white bars), plants inoculated with the mild CH2 

isolate (light grey bars) and the aggressive CH2 isolate (dark grey bars) of PepMV. Twenty plants were 

evaluated per treatment and error bars represent standard errors. (b) Representative pictures corresponding to 

symptom scores presented in (a). Symptoms were scored on a scale from 0 to 3 with 0 = no symptoms, 1 = 

reduced leaf surface, slight leaf bubbling, 2 = moderate leaf deformation, and 3 = severe leaf deformation. (c) 

Relative viral loads for mock-inoculated plants (white bars), plants inoculated with the mild CH2 isolate (light 

grey bars) and the aggressive CH2 isolate (dark grey bars) of PepMV obtained using a PepMV-specific RT-qPCR 

assay. PCR was performed pooled total RNA from the youngest fully developed leaves from two plants per 

sample (3 replicates). Ct values obtained from PepMV positive samples were subtracted from Ct values 

obtained from a  actin control RT-qPCR assay. Subsequently the lowest value (obtained for mock-inoculated 

plants at 12 DPI) was set at zero. Error bars represent standard errors. 
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While at 4 DPI no symptoms were recorded yet, at 8 DPI tomato seedlings inoculated 

with the aggressive isolate displayed severe nettlehead symptoms, while plants 

inoculated with the mild isolate remained symptomless (Figure 1a, b). By 12 DPI, mild 

symptoms had developed in the seedlings inoculated with the mild isolate, while 

symptoms in seedlings inoculated with the aggressive isolate had aggravated (Figure 1a, 

b). The significant difference (P<0.05) in symptom severity between the mild and the 

aggressive CH2 isolate is consistent with previous observations (Hanssen et al., 2009b; 

2010a). Mock-inoculated plants remained free of viral symptoms throughout the trial 

period (Figure 1a, b).  

In addition to characterization of symptomatology, viral accumulation was 

measured in the various samples using a PepMV-specific RT-qPCR assay on pooled RNA 

extracts obtained from the youngest fully developed leaves. While no virus was detected 

in the mock-inoculated plants throughout the trial, rather equal amounts of virus were 

detected in the plants inoculated with the two PepMV strains. At 4 DPI the viral load was 

at the maximum level, and decreased slightly throughout the trial period (Figure 1c). 

Interestingly, the titer of the mild isolate already decreased at 8 DPI, while the titer of 

the aggressive isolate decreased to a similar level at 12 DPI. Most importantly, overall 

the viral titers were similar for both isolates and are thus no reason to expect significant 

differences in symptom severity and global transcription profiles between the two 

isolates. 

 

PepMV infection results in host gene repression  

Differentially regulated tomato genes (≥2-fold change; P-value <0,001) upon inoculation 

with the two PepMV isolates were identified at 4, 8 and 12 DPI when compared with 

mock-inoculated control plants. Following the dynamics of the viral accumulation, the 

number of differentially regulated genes was maximal at 4 DPI (3880 and 4020 for the 

aggressive and the mild isolate, respectively), and subsequently decreased (1315 and 

744 genes for the aggressive and the mild isolate, respectively, at 8 DPI) to less than 

10% of the maximum response at 12 DPI (381 and 317 for the aggressive and mild 

isolate, respectively). Despite the observation that by far the largest amount of 

differentials was identified at 4 DPI, also at 8 and 12 DPI novel differentially regulated 

genes emerged (Figure 2a, b). When comparing the total amount of differentially 

regulated genes between the two isolates, roughly three quarters of the differentials 

overlapped (Figure 2c). Interestingly, at 8 DPI when the titer of the mild isolate but not 

the aggressive isolate had already decreased, almost double the amount of genes were 

differentially expressed in the plants that were infected by the aggressive isolate (Figure 

2e). This difference in response intensity between both isolates is also reflected by the 

number of highly-induced genes (≥4-fold change), which amounted to 55 and 11 genes 
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upon infection by the aggressive isolate and 18 and 3 genes upon infection by the mild 

isolate at 8 and 12 DPI, respectively.  

 

 
 

 

Figure 2. Differentially regulated tomato genes upon infection by a mild and aggressive Pepino mosaic virus 

(PepMV) isolate. (a, b) Venn diagram displaying the overlap in differentially regulated tomato gene sets upon 

inoculation with an aggressive (a) or a mild (b) isolate of the PepMV CH2 genotype at 4, 8 and 12 days post 

inoculation (DPI). (c) Venn diagram displaying the overlap in differentially regulated tomato gene sets upon 

inoculation with an aggressive or a mild isolate of the PepMV CH2 genotype. (d) Induced and repressed tomato 

genes in response to inoculation with an aggressive and a mild isolate of the PepMV CH2 genotype at 4, 8 and 

12 DPI.  
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As has previously been noted for other viruses, host gene repression was more 

pronounced than induction at each of the time points, as at least 70% of the differentially 

regulated genes appeared to be repressed for both isolates (Figure 2e). Remarkably, 

when comparing the total amount of differentially regulated genes between the two 

isolates, relatively more repressed than induced genes overlapped between the two 

isolates. In the set of repressed genes up to 67% is commonly repressed by both 

isolates, compared to only 42% overlap in the set of induced genes. This suggests that, 

despite the observation that the majority of differentials is repressed, an important 

difference between the isolates is biased towards the induced differentials.  

 

Over-representation analysis on repressed genes: primary metabolism 

To identify differentially regulated biological processes, we performed over-

representation analysis (ORA), a method by which over- and under-represented 

functional categories in a given gene set are identified using the web-based platform 

GeneTrail that can use Arabidopsis Reference Sequence (RefSeq) identifiers (Backes et 

al., 2007; van Baarlen et al., 2008). For 15,835 of the 22,721 genes that are monitored 

with the microarray, Arabidopsis homologues with significant similarity (E value < 10-6) 

were identified (van Esse et al., 2009). ORA on the set of genes that are commonly 

repressed by both isolates (overlap; Figure 2c) identified as many as 267 functional 

categories involved in basic cell homeostasis and primary metabolism with a prominent 

occurrence of photosynthesis-related categories. ORA on the isolate-specific repressed 

gene sets revealed a few remarkable differences. Transcription and translation processes 

were more severely affected by the aggressive isolate, while photosynthesis was more 

severely suppressed by the mild isolate (Table 1). In addition to the photosynthesis-

related categories identified in the commonly repressed genes, ORA identified another 17 

photosynthesis-related categories in differentials that are down-regulated by the mild 

isolate exclusively.  

Since ORA ignores induction or suppression amplitudes, hierarchical clustering 

(HCL; Eisen et al., 1998) on all photosynthesis-related genes that can be monitored with 

the array was used to cluster genes and treatments within ORA categories based on gene 

expression profiles to further study the behavior of these genes. HCL of these genes 

revealed that the expression profiles cluster by time point rather than by isolate (Figure 

3a). This demonstrates that photosynthesis is similarly affected by both isolates, 

although the extent of the differential regulation clearly differs. Overall, the repression of 

photosynthesis-related genes is stronger in plants infected by the mild isolate, with the 

strongest repression at 4 DPI (Figure 3a). By 12 DPI, several photosynthesis-related 

genes, mainly involved in chlorophyll binding and light harvesting, were induced in both 

interactions, indicative of the recovery of photosynthetic activity. Interestingly, also other 
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energy processes appeared to be similarly repressed by PepMV infection. For instance, 

nearly all genes encoding citrate cycle enzymes showed significant repression (P<0.05) 

upon inoculation with both isolates at 4 DPI, which decreased by 8 DPI and was restored 

by 12 DPI (Figure 4). Thus, primary metabolism is temporarily affected by the PepMV-

induced host gene repression.  

 

 

 

Figure 3. Pepino mosaic virus (PepMV) infection of tomato affects photosynthesis and host defense; (a) 

Transcriptional regulation of the 64 photosynthesis- and light harvesting-related genes that are represented on 

the tomato GeneChip in the interactions of tomato with the mild (CH2 M) and aggressive (CH2 A) CH2 isolate of 

PepMV at 4, 8 and 12 days post inoculation (DPI). (b) Transcriptional regulation of 53 defense-related genes 

that are identified in the over-representation analysis in the interactions of tomato with the mild (CH2 M) and 

aggressive (CH2 A) CH2 isolate of PepMV at 4, 8 and 12 days post inoculation (DPI).  

 

 

  

a b 
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Figure 4. Pepino mosaic virus (PepMV) infection of tomato affects the citrate cycle.

the citrate cycle with intermediate products indicated as a blue dot and enzymes in italic (black = represented, 

grey = not represented on the tomato GeneChip). Expression data at 4 and 8 days post inoculation (DPI; 

P<0,05) are plotted using the indicated fold

the mild CH2 isolate. Expression levels similar to the control are indicated in grey. 

 

Table 1. Over-representation analysis of genes that are specifically supp

tomato plants inoculated with the mild or aggressive CH2 isolate, respectively.

Gene Ontology subcategory 

CH2 mild  

 Intracellular   

 Cytoplasm    

 Intracellular part    

 Organelle    

 Intracellular organelle    

 Cytoplasmic part    

 Organelle part    

 Chloroplast part    

 Plastid part    

 Intracellular organelle part   

 Intracellular membrane-bounded organelle 

 Membrane-bounded organelle  

 Photosynthetic membrane   

 Thylakoid   

 Thylakoid membrane   

 Thylakoid part    

 Chloroplast thylakoid membrane 

 Plastid thylakoid membrane  

 Organelle membrane   

 Translation   

 

(PepMV) infection of tomato affects the citrate cycle. Graphic representation of 

the citrate cycle with intermediate products indicated as a blue dot and enzymes in italic (black = represented, 

grey = not represented on the tomato GeneChip). Expression data at 4 and 8 days post inoculation (DPI; 

lotted using the indicated fold-change color scale with A = the aggressive CH2 isolate and M = 

the mild CH2 isolate. Expression levels similar to the control are indicated in grey.  

representation analysis of genes that are specifically suppressed on at least one time point in 

tomato plants inoculated with the mild or aggressive CH2 isolate, respectively. 

bounded organelle  

 

Chloroplast thylakoid membrane  

107 

 

Graphic representation of 

the citrate cycle with intermediate products indicated as a blue dot and enzymes in italic (black = represented, 

grey = not represented on the tomato GeneChip). Expression data at 4 and 8 days post inoculation (DPI; 

change color scale with A = the aggressive CH2 isolate and M = 

ressed on at least one time point in 

P-valuea 

 

1.41E-08 

1.41E-08 

1.78E-08 

4.87E-08 

4.87E-08 

4.87E-08 

1.95E-06 

1.95E-06 

1.95E-06 

1.95E-06 

1.92E-05 

2.10E-05 

7.95E-05 

8.90E-05 

1.25E-04 

1.50E-04 

1.69E-04 

1.69E-04 

1.71E-04 

1.74E-04 
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 Cell   3.32E-04 

 Cell part   3.32E-04 

 Chloroplast thylakoid    4.41E-04 

 Chloroplast    4.41E-04 

 Plastid   4.51E-04 

 Plastid thylakoid    4.51E-04 

 Organelle subcompartment   5.19E-04 

 Ribosome    1.47E-03 

 Chlorophyll binding    1.47E-03 

 Cellular biosynthetic process  1.49E-03 

 Ribonucleoprotein complex   1.56E-03 

 Tetrapyrrole binding   1.66E-03 

 Oxidoreductase activity, acting on heme group of donors, oxygen as  acceptor 3.65E-03 

 Oxidoreductase activity, acting on heme group of donors  3.65E-03 

 Heme-copper terminal oxidase activity  3.65E-03 

 Cytochrome-c oxidase activity  3.65E-03 

 Biosynthetic process    5.47E-03 

 Structural molecule activity  6.03E-03 

 Monovalent inorganic cation transmembrane transporter activity 7.65E-03 

 Cellular metabolic process   9.26E-03 

 Structural constituent of ribosome  1.01E-02 

 Hydrogen ion transmembrane transporter activity  1.30E-02 

 Plastoglobule   1.61E-02 

 Intracellular non-membrane-bounded organelle  1.75E-02 

 Non-membrane-bounded organelle  1.75E-02 

 Metabolic process   1.83E-02 

 Organic acid metabolic process  2.15E-02 

 Cellular process   2.15E-02 

 Carboxylic acid metabolic process  2.15E-02 

 Macromolecular complex   2.35E-02 

 Stomatal movement   3.40E-02 

 Pigment metabolic process   3.71E-02 

 Cellular macromolecule biosynthetic process  3.71E-02 

 Tetrapyrrole metabolic process  3.71E-02 

 Oxidoreductase activity, acting on single donors with incorporation od molecular oxygen 3.71E-02 

 Plastid stroma   3.71E-02 

 Photosystem   3.71E-02 

 Macromolecule biosynthetic process  3.71E-02 

 Porphyrin metabolic process  3.71E-02 

 Catabolic process   3.87E-02 

 Response to radiation   4.03E-02 

 Porphyrin biosynthetic process  4.24E-02 

 Photosynthesis  4.24E-02 

 Tetrapyrrole biosynthetic process  4.24E-02 

 Cellular biopolymer biosynthetic process  4.56E-02 

 Biopolymer biosynthetic process  4.89E-02 

CH2 aggressive  

 Non-membrane-bounded organelle  7.70E-14 

 Intracellular non-membrane-bounded organelle  7.70E-14 

 Structural molecule activity  2.49E-12 

 Structural constituent of ribosome  3.76E-10 

 Ribonucleoprotein complex     3.76E-10 

 Translation   3.93E-10 

 Ribosome   1.33E-09 

 Chromatin   1.82E-08 

 Macromolecular complex    1.96E-08 

 Intracellular part    7.93E-08 

 Intracellular    1.56E-07 
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 Chromosomal part    1.79E-07 

 Nucleosome    2.54E-07 

 Organelle    3.31E-07 

 Intracellular organelle    3.31E-07 

 Protein-DNA complex    4.52E-07 

 Chromosome    6.41E-07 

 Organelle organization    1.51E-06 

 Cytosolic ribosome    7.46E-06 

 Cytoplasmic part    1.12E-05 

 Chromatin assembly or disassembly    1.16E-05 

 Cell    1.55E-05 

 Cell part    1.55E-05 

 Cytosolic part    1.65E-05 

 Cytoplasm    1.83E-05 

 Nucleosome assembly    5.95E-05 

 Biosynthetic process    5.95E-05 

 Nucleosome organization    5.95E-05 

 Cellular biosynthetic process   5.95E-05 

 Establishment or maintenance of chromatin architecture    1.07E-04 

 Cellular biopolymer biosynthetic process    1.21E-04 

 Cellular biopolymer metabolic process  1.31E-04 

 Biopolymer biosynthetic process  1.31E-04 

 Chromatin assembly    1.36E-04 

 Chromosome organization   1.70E-04 

 DNA packaging    1.85E-04 

 Gene expression    1.90E-04 

 Intracellular organelle part    2.93E-04 

 Organelle part   2.97E-04 

 Anatomical structure organization  3.90E-04 

 Acyl carrier activity    4.00E-04 

 Cellular macromolecule biosynthetic process    4.22E-04 

 Macromolecule biosynthetic process   4.65E-04 

 Ribosomal subunit    4.90E-04 

 Protein-DNA complex assembly    5.25E-04 

 Cellular component organization  5.71E-04 

 Small ribosomal subunit    8.70E-04 

 Cytosol   1.10E-03 

 Anatomical structure morphogenesis    1.60E-03 

 Cellular process    1.78E-03 

 Structural constituent of cytoskeleton  2.08E-03 

 Cytosolic small ribosomal subunit  3.27E-03 

 Cellular metabolic process    4.50E-03 

 Anatomical structure development  6.86E-03 

 Protein metabolic process    7.91E-03 

 Primary metabolic process    8.80E-03 

 Cellular protein metabolic process  8.88E-03 

 Cellular macromolecule metabolic process  1.93E-02 

 Succinate-coa ligase activity  2.44E-02 

 Succinate-coa ligase (GDP-forming) activity  2.44E-02 

 Macromolecule metabolic process  2.62E-02 

 Nucleic acid binding    2.76E-02 

 Metabolic process    2.76E-02 

 Plastid organization and biogenesis  2.76E-02 

 Membrane-bounded organelle  3.09E-02 

 Intracellular membrane bounded organelle  3.80E-02 

 Fatty acid biosynthetic process  3.97E-02 

  Developmental process  4.65E-02 
aFalse discovery rate 
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Over-representation analysis on induced genes: defense 

Similar as for the repressed genes, ORA was used to compare the sets of induced genes 

(Figure 2c) between isolates and over time, showing significant differences in the 

induction of defense responses by the mild and the aggressive isolate. Although viral 

titers were similar (Figure 1c), defense responses were notably more pronounced upon 

inoculation with the aggressive isolate. The gene category “Pepsin A” activity was 

identified in both interactions at 4 DPI, which indicates a prominent role for protease 

activity at this time point (Table 2, 3). In addition, subtilase activity was induced by the 

mild isolate (Table 2, 3). The relevance of protease activity is further exemplified by the 

expression pattern of the cathepsin B-like cysteine protease, which at 4 DPI was induced 

146-fold by the aggressive isolate and 100-fold by the mild isolate and remains highly 

induced throughout the PepMV-tomato interaction. Protease activity has been implicated 

in pathogen defense in many plant species including tomato (van Esse et al., 2008; van 

der Hoorn, 2008). 

 

Table 2. Over-representation analysis of genes that are induced in tomato plants upon inoculation with the 

mild CH2 PepMV isolate.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

aFalse discovery rate 

  

Gene Ontology subcategory P-valuea 

4 days post inoculation   
 Pepsin A activity 2.53E-03 
 Subtilase activity 1.85E-02 
8 days post inoculation  
 Transcription factor activity 2.73E-02 
 Response to stress 2.73E-02 
 O-methyltransferase activity   2.73E-02 
 Response to wounding   2.73E-02 
 Response to light intensity    2.73E-02 
 Response to high light intensity    2.73E-02 
 Transcription regulator activity    2.73E-02 
 Response to stimulus     2.73E-02 
 Defense response     2.85E-02 
 Acid phosphatase activity    3.24E-02 
 Defense response to bacterium   3.46E-02 
 Response to temperature stimulus  3.60E-02 
 Defense response to bacterium, incompatible interaction  4.56E-02 
12  days post inoculation  
 chlorophyll binding   2.37E-06 
 tetrapyrrole binding     1.01E-05 
 photosynthesis, light harvesting in photosystem II  3.78E-03 
 photosynthesis, light harvesting    5.89E-03 
 posttranscriptional gene silencing    3.35E-02 
 gene silencing        4.57E-02 
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Table 3. Over-representation analysis of genes that are induced in tomato plants upon inoculation with the 

aggressive CH2 PepMV isolate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFalse discovery rate 

 

At 8 DPI, many defense and stress-related categories were over-represented (Table 2, 

3). Several defense-related categories are only over-represented upon inoculation with 

the aggressive isolate (Table 2, 3). Moreover, some defense-related categories that 

appear upon inoculation with both isolates (response to stress, response to wounding and 

defense response) are ranked higher upon inoculation with the aggressive isolate, 

indicating that more genes that belong to these categories are differentially regulated by 

this isolate. This more pronounced defense response induced by the aggressive isolate is 

also reflected by the set of highly induced genes (≥4-fold change) containing many 

defense-related genes at this time point. Similar to 8 DPI, at 12 DPI several defense-

related categories were still over-represented and several defense genes were still highly 

induced in the plants inoculated with the aggressive but not with the mild isolate (Table 

2, 3). This altogether demonstrates that, although plant defenses are activated in both 

Gene Ontology subcategory P-valuea 

4 days post inoculation  
 Pepsin A activity    2.51E-02 
 Anchored to membrane   4.59E-02 
 External encapsulating structure    4.59E-02 
 Carbon-oxygen lyase activity   4.59E-02 
8 days post inoculation  
 Defense response    4.30E-05 
 Response to biotic stimulus   4.79E-03 
 Oxidoreductase activity, acting on paired donors, with incorporation or 

    reduction of molecular oxygen    
7.16E-03 

 Response to stress    1.00E-02 
 Response to wounding     1.00E-02 
 Defense response to bacterium   1.91E-02 
 Transcription regulator activity   2.40E-02 
 Response to other organism    2.67E-02 
 Response to light intensity    2.67E-02 
 Transcription factor activity   2.67E-02 
 Multi-organism process    2.74E-02 
 MAPKKK cascade     3.04E-02 
 Response to external stimulus   3.42E-02 
 Immune response     3.59E-02 
 Immune system process    3.59E-02 
 MAP kinase kinase activity   3.76E-02 
 Protein kinase cascade     3.76E-02 
 Response to high light intensity   4.82E-02 
 Response to stimulus      4.82E-02 
12 days post inoculation  
 Chlorophyll binding     7.34E-06 
 Tetrapyrrole binding      3.12E-05 
 Photosynthesis, light harvesting in photosystem II  6.79E-04 
 Photosynthesis, light harvesting    9.74E-03 
 Response to other organism      4.24E-02 
 Response to biotic stimulus   4.24E-02 
 Immune response     4.24E-02 
 Defense response     4.24E-02 
 Protein serinethreoninetyrosine kinase activity   4.24E-02 
 Immune system process   4.24E-02 
 Multi-organism process   4.69E-02 
 Response to chemical stimulus  4.69E-02 
 Photosynthesis, light reaction  4.69E-02 
 Response to stress    4.69E-02 
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interactions, they are more pronounced, of higher magnitude and maintained longer in 

the aggressive isolate. 

HCL of all defense-related genes from the ORA-identified categories showed that 

the expression profiles cluster by isolate at 4 and 8 DPI and not by sampling time point 

(Figure 3b). The 12 DPI time point of the aggressive isolate clusters with the three time 

points of the mild isolate, which is not surprising because the defense response is largely 

dampened by that point in time (Figure 3b). In addition, HCL reveals that most of the 

defense-related genes that were significantly induced at 8 DPI were already induced at 4 

DPI, showing a rapid activation of host defense upon PepMV infection. The fact that the 

ORA did not reveal defense-related categories in addition to protease activity at 4 DPI is 

due to the extensive transcriptome change at this time point, which affects many 

processes and in which defense responses are not detected as over-represented.  

Host signaling upon pathogen and herbivore attack has established the primacy of 

two pathways in plants, one involving salicylic acid (SA) and the other involving 

jasmonate (JA) hormones (Thomma et al., 1998; 2001; Stout et al., 2006). Homologues 

of the Arabidopsis pathogenesis-related proteins PR-1 and PR-5, known to be controlled 

by salicylic acid (SA; Ryals et al., 1996) were induced by PepMV infection while the 

homologue of JAR1, a JA-response protein that converts JA into the biologically active 

jasmonoyl-isoleucine (Staswick and Tiryaki, 2004), the jasmonate receptor CORONATINE 

INSENSITIVE 1 (COI1) (Xie et al., 1998; Yan et al., 2009), and the JA-inducible marker 

gene PDF1.2 (Penninckx et al., 1998) were suppressed upon PepMV inoculation. This 

suggests that the tomato response to PepMV infection is mediated by SA rather than by 

JA, which is in line with the general observation that viruses are controlled by SA 

signaling (Huang et al., 2005; Vlot et al., 2009). Interestingly, the tomato homologue of 

Arabidopsis Npr1, which encodes a critical SA signal transducer, is not induced by PepMV. 

Similarly, in compatible Arabidopsis interactions with Cucumber mosaic virus (CMV) and 

Oilseed rape mosaic virus (ORMV) the majority of defense-related genes was induced by 

an SA-dependent, NPR1-independent signaling pathway (Huang et al., 2005). 

Nevertheless, a clear induction of the SA pathway upstream of the PR proteins was not 

detectable in our dataset.  

 

Induction of post-transcriptional gene silencing  

The key characteristic of RNA silencing is the formation of siRNAs that are produced by 

RNaseIII-like Dicer enzymes that are incorporated into a so-called RNA-induced silencing 

complex (RISC), which contains an Argonaute (AGO) protein with an siRNA-binding 

domain and endonucleolytic activity to cleave target RNAs. The PTGS pathway genes that 

have been implicated in antiviral defense and could be monitored with the GeneChip 

array (P<0.05) comprised the genes encoding the Dicer-like (DCL) enzymes DCL2 and 
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Also the gene encoding DCL4 was induced, although with a smaller amplitude (2.2-fold 

and 2.3-fold for the aggressive and the mild isolate, respectively). A rather mild up-

regulation could be observed for RDR6 by both PepMV isolates. Furthermore, some AGO 

family proteins were differentially expressed. Probes corresponding to Arabidopsis AGO1, 

2, 4, 6 and 10 were monitored. Interestingly, two AGO1 orthologues, Ago1-1 and Ago1-2 

that were shown to play a role in RNA silencing in Nicotiana benthamiana (Jones et al., 

2006), were differentially regulated. Ago 1-2 was repressed, whereas Ago1-1 was slightly 

induced by PepMV. AGO4 and AGO10 were repressed, while two AGO6 orthologues did 

not show differential expression. Interestingly, at 4 DPI AGO2 was induced 3.1-fold by 

the aggressive isolate and only 1.4-fold by the mild isolate. These data demonstrate that 

the antiviral PTGS pathway is differentially regulated upon PepMV infection (Figure 5).  

 

Flavonoid and carotenoid biosynthesis  

One of the most damaging effects of PepMV is the so-called “fruit marbling” which is 

likely due to irregular distribution of lycopene, the major red pigment in tomato fruits 

(Hanssen et al., 2008). To investigate whether PepMV has an effect on pigment 

production we studied the expression of genes that encode enzymes of the 

flavonoid/anthocyanin and carotenoid (lycopene) biosynthetic pathways (P< 0.05) 

(Figure 6). Interestingly, both the flavonoid/anthocyanin and lycopene biosynthetic 

pathways were severely affected by PepMV infection. In the flavonoid/anthocyanin 

biosynthetic pathway, the gene encoding 4-coumarate: CoA ligase (4CL) is induced upon 

infection with both CH2 isolates, although the induction is more pronounced in the 

aggressive isolate. At 8 DPI this gene is highly induced by both isolates (7,7-fold and 

4,8-fold induction by the aggressive and the mild isolate, respectively; Figure 6a). Also a 

homologue of the gene encoding chalcone synthase (CHS; Arabidopsis RefSeq 

NP_196897, similar to Petunia hybrida Chalcone synthase B), the enzyme that initiates 

flavonoid biosynthesis (Holton and Cornish, 1995), is induced upon infection by both 

PepMV isolates at 4 DPI (amplitude 3.7) and 8 DPI (amplitude 1.9; Figure 6A). 

Interestingly, all homologues of the gene that encodes the next enzyme in the 

biosynthesis route, chalcone isomerase (CHI), that could be monitored with the array are 

slightly repressed by both isolates (Figure 6A). Also other genes encoding enzymes that 

act further downstream in the flavonoid/anthocyanin biosynthesis pathway are differently 

expressed (Figure 6a). In conclusion, the flavonoid biosynthetic pathway does not follow 

the trend of general host gene repression.  

Interestingly, all genes encoding enzymes involved in the biosynthesis of 

lycopene, including GGPP-synthase, pythoene synthase, phytoeene desaturase and ζ-

carotene desaturase, were suppressed upon PepMV infection (Figure 6b). The gene 

encoding phytoene synthase, also known as the tomato fruit ripening specific protein 
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(pTOM5; Bramley et al., 2005), was severely suppressed at all time points, although the 

level of repression gradually decreased from 7 and 13 times at 4DPI for the aggressive 

and mild CH2 isolate, respectively, to approximately 5 times for both isolates at 8 DPI 

and approximately 3 times for both isolates at 12 DPI. Thus, in contrast to the 

flavonoid/anthocyanin biosynthesis, the complete lycopene biosynthetic pathway is 

severely affected by the PepMV-induced host gene repression. 
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Figure 6. Pepino mosaic virus (PepMV) infection of tomato affects pigment biosynthesis pathways. (A) 

Transcriptional regulation of flavonoid/anthocyanin biosynthesis. Expression data at 4 and 8 days post 

inoculation (DPI; P<0,05) are plotted using the indicated fold-change color scale with A = the aggressive CH2 

isolate and M = the mild CH2 isolate. Expression levels similar to the control are indicated in grey. (B) 

Transcriptional regulation of lycopene biosynthesis. Expression data at 4, 8 and 12 DPI (P<0,05) are plotted 

using the indicated fold-change color scale with A = the aggressive CH2 isolate and M = the mild CH2 isolate.  

 
 
Pathway analysis reveals a role for the proteolytic machinery  

Pathway reconstruction is a tool to identify cellular processes from transcriptome data, 

which has been widely used to analyze human and murine data, but has hardly been 

used to analyze plant data (van Baarlen et al., 2008; van Esse et al., 2009). Although 

the number of tools to facilitate cellular pathway reconstruction from Arabidopsis data is 

b 
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increasing, pathway reconstruction in a non-sequenced plant such as tomato remains 

challenging (van Baarlen et al., 2008; van Esse et al., 2009). We performed pathway 

analyses using BioNetBuilder plug-in on all 15,835 genes with Arabidopsis homologues (E 

value < 10-6; van Esse et al., 2009) that were differentially regulated (≥2-fold; P<0.01) 

upon infection by either PepMV isolate using the BioNetBuilder option to expand gene 

sets with neighboring nodes to find new interactions with molecular components 

identified in the previous step (Avila-Campillo et al., 2007). This resulted in the 

identification of 54 interacting factors that are involved in ubiquitination (Figure 7). 

Subsequently, the expression data of the differentially regulated genes (P<0.05) were 

grafted onto the pathway.  

 
Figure 7 Pathway reconstruction reveals differential regulation of an ubiquitination pathway. Responses of 

tomato upon inculation with the aggressive (a) and mild (b) CH2 isolates of PepMV using the Bionetbuilder 

plug-in. A ubiquitination network implied in both interactions was retrieved and visualized in Cytoscape. 

Subsequently, expression data monitored with the tomato GeneChip were grafted onto the network. 

  

a 

b 
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The most extensive regulation of the network occurred at 4 DPI in both interactions, 

although differential regulation of the pathway was also observed at 8 and 12 DPI. 

Interestingly, in contrast to the general host gene repression, the identified pathway also 

contained genes that were induced in both interactions (Figure 7), suggesting that this 

ubiquitin-pathway plays an active role in the PepMV-tomato interaction.  

 

An mild EU isolate induces similar host gene alterations  

To determine whether transcriptome changes in response to PepMV inoculation are 

genotype-specific, transcriptome changes upon infection with a mild isolate belonging to 

the European tomato PepMV genotype (EU; isolate 1806; Hanssen et al., 2009b) were 

determined using a similar experimental design as with the CH2 isolates. Up to 12 DPI, 

plants inoculated with the EU isolate did not display any viral symptoms, although a 

slight reduction in plant vigor was observed. At all three time points, the number of 

induced genes was lower than for both CH2 isolates (Figure 8)HowhHH, further 

suggesting a correlation between isolate aggressiveness and the extent of host 

transcriptional reprogramming. However, surprisingly, the ratio of suppressed host genes 

was higher for the EU isolate when compared to the CH2 isolates. At 12 DPI, double the 

amount of genes was suppressed by the EU isolate (621) than by either of the CH2 

isolates (257 and 302 for the mild and aggressive isolate, respectively). Thus, the 

intensity of the host gene repression, marked by the number of down-regulated genes, 

does not correlate with isolate aggressiveness.  

In general, a similar pattern was seen for the EU isolate as with the CH2 isolates. 

At 4 DPI an early protease response (pepsin A, caspase and subtilase activity) was 

activated, coinciding with a down-regulation of general cellular processes related to 

photosynthesis, energy processes and translation activity. Interestingly, the gene 

encoding cathepsin B was not induced by the EU isolate, in contrast to its induction by 

the CH2 isolates. In general, the amplitude of protease induction was lower upon 

infection with the EU isolate. At 8 DPI the prevalent ORA categories comprised defense 

and stress responses (Table 4), while the general suppression of host genes became less 

severe. By 12 DPI, many photosynthesis-related genes were still down-regulated, but 

light harvesting and chlorophyll binding were induced (Table 4), similar to the situation 

as described for both CH2 isolates (Table 2, 3). Nevertheless, many general cellular 

processes, such as transcription, translation, metabolism and energy production were still 

suppressed. This is remarkable since, although a slight reduction in plant vigor was 

noted, the plants did not display obvious disease symptoms. Interestingly, the gene 

encoding DCL2 was not induced by the mild EU isolate, implying that the role of DCL2 is 

less important in tomato defense against this specific, mild PepMV isolate.   
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Figure 8. Differentially regulated tomato genes upon infection by three 

Venn diagrams displaying the overlap in differentially regulated gene sets between tomato responses upon 

inoculation with an aggressive and a mild isolate of the PepMV CH2 genotype and a mild is

genotype at 4 (a), 8 (b) and 12 (c) days post inoculation (DPI).
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Table 4. Over-representation analysis of genes induced in tomato plants inoculated with the mild EU PepMV 

isolate.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

aFalse discovery rate 
bNo categories identified with P value < 0.05. 
 

 

Discussion 

 

Tomato response to PepMV is transient: recovery? 

In this study we monitored global transcriptional responses of tomato upon inoculation 

with two PepMV isolates of the CH2 genotype that differ considerably in aggressiveness 

although they share 99.4% nucleotide sequence identity (Hanssen et al., 2009b; 2010a). 

Inoculation with both isolates resulted in a very fast and extensive transcriptome change 

(4000 differentially regulated genes at 4DPI; amounting to ~20% of the total amount of 

genes that are monitored with the array) which, by 12 DPI, decreased to ~10% of the 

initial amount of differentially expressed genes. This dynamics is completely different 

than the dynamics observed upon inoculation with the foliar pathogen Cladosporium 

fulvum (Thomma et al., 2005) or the vascular fungus Verticillium dahliae (Fradin and 

Thomma, 2006) monitored over a ten-day time-frame using the same tomato array (van 

Esse et al., 2009). The number of differentially regulated genes gradually increased to 

Gene Ontology subcategory P-valuea 

4 days post inoculationb  
8 days post inoculation  
 Steroid metabolic process    4.21E-04 
 Steroid biosynthetic process   4.67E-03 
 Defense response to bacterium   6.54E-03 
 Brassinosteroid metabolic process  6.54E-03 
 Phytosteroid metabolic process   6.54E-03 
 Sterol biosynthetic process    6.54E-03 
 Sterol metabolic process     6.54E-03 
 Response to light stimulus     6.54E-03 
 Response to radiation      6.54E-03 
 Defense response      6.54E-03 
 Response to stress      6.54E-03 
 Response to wounding      1.02E-02 
 Response to stimulus     1.07E-02 
 Response to bacterium      1.11E-02 
 Cellular lipid metabolic process   1.17E-02 
 Response to high light intensity  2.00E-02 
 Oxidoreductase activity, acting on CH-OH group of donors 2.00E-02 
 Response to abiotic stimulus  2.61E-02 
 Lipid metabolic process    2.88E-02 
 Response to biotic stimulus   2.97E-02 
 Response to light intensity   3.41E-02 
 Defense response to fungus   3.97E-02 
 Response to external stimulus  4.75E-02 
12 days post inoculation  
 Photosynthesis, light harvesting in photosystem II  2.09E-04 
 Photosynthesis, light harvesting  2.18E-03 
 Chlorophyll binding    3.11E-03 
 Tetrapyrrole binding    6.18E-03 
 Photosynthesis, light reaction  1.77E-02 
 Thylakoid     3.67E-02 
 Photosynthesis     3.67E-02 
 Cytosolic ribosome    3.67E-02 
 Cytosolic part     4.94E-02 
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amount to over 3,000 differentials for C. fulvum, and over 500 and 1,000 genes for V. 

dahliae in foliage and roots, respectively. Interestingly, the pattern seems to follow the 

amount of pathogen propagules which is increasing upon inoculation with the fungal 

pathogens, while it is decreasing upon PepMV inoculation (van Esse et al., 2009; this 

study). Moreover, in contrast to progressive fungal disease development, viral symptoms 

are often transient as plants can recover from the initial infection shock, and can re-

appear later in the infection process in response to environmental changes (Hull, 2002; 

Dardick, 2007). Recovery from PepMV symptoms after initial infection is indeed common 

in PepMV-infected tomato crops (Hanssen and Thomma, 2010), suggesting that the 

transient transcriptional response to PepMV is related to the recovery phenomenon.  

Interestingly, the vast majority of the differentially expressed genes upon PepMV 

inoculation were repressed, with the strongest repression by the aggressive isolate, a 

phenomenon which is similarly observed in other plant-virus interactions (Aranda and 

Maule, 1998; Havelda et al., 2008). Remarkably, however, even more down-regulated 

genes were monitored upon inoculation with an asymptomatic EU isolate of PepMV.  

 

Host gene repression – ‘fuel for the fire’ or viral infection strategy? 

The majority (67%) of the repressed genes overlapped between both isolates, indicating 

that PepMV-induced host gene repression is not isolate-specific. ORA identified a general 

repression of photosynthesis and primary metabolism. Although increased photosynthesis 

to supply the energy required for plant defense may be anticipated, repression of 

photosynthesis and plastid function is a common host response not only to viruses 

(Aranda and Maule, 1998; Dardick, 2007; Havelda et al., 2008), but also to fungal and 

bacterial plant pathogens (Bolton, 2008). Apparently, as production of defense-related 

compounds becomes first priority, photosynthetic metabolism is reduced until pathogenic 

growth has been terminated. Apart from prioritizing resources towards the defense 

response, decreasing photosynthesis may also protect the photosynthetic machinery 

against oxidative damage, or, alternatively, be a consequence thereof (Bolton, 2008). 

Plant respiration, comprising glycolysis, the citrate cycle and mitochondrial electron 

transport, is generally induced upon pathogen attack to generate energy for the defense 

response (Bolton, 2008). Remarkably, while PepMV induces a broad spectrum of defense 

responses, a strong repression of the citrate cycle was observed. Thus, as suggested 

previously (Wang and Maule, 1995), our results suggest that, rather than host liberation 

of resources for defense responses, the virus modulates the host by repressing all 

processes that are not required for viral replication as a strategy for optimal and fast viral 

replication.   
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Intensity of defense responses correlates with viral aggressiveness 

Host gene induction upon PepMV infection comprised protease activity specifically at 4 

DPI and activation of defense responses at 4 and 8 DPI, which persisted up to 12 DPI in 

plants infected with the aggressive isolate. Interestingly, a stronger defense response 

was observed in plants inoculated with the aggressive CH2 isolate, which was not caused 

by higher viral accumulation as viral loads were similar for both isolates. Moreover, the 

stronger defense response was not sufficient to contain viral accumulation, nor to 

prevent symptom development. This indicates that PepMV aggressiveness is not 

correlated with the capacity to suppress basal plant defense responses, as was observed 

in Arabidopsis thaliana where an aggressive Tobacco etch virus (TEV) strain induced 

notably less defense-related genes when compared with a mildly aggressive strain 

(Agudelo-Romero et al., 2008). By contrast, enhanced symptom severity upon 

inoculation with the aggressive PepMV isolate may be related to a more severe 

perturbation of host metabolism leading to more severe developmental defects (Whitham 

et al., 2006).  

 

PepMV differentially regulates antiviral PTGS 

A major plant defense response to virus infection is the induction of the antiviral PTGS 

machinery. The response of genes encoding key PTGS components was studied in detail, 

and the genes encoding tomato homologues of the Arabidopsis dicer-like enzymes DCL2 

and DCL4 were induced by both CH2 isolates. Interestingly, the induction of DCL2 was 

much stronger when compared to the induction of DCL4, which usually is the major 

contributor to antiviral PTGS (Bouché et al., 2006). However, DCL2 can substitute for 

DCL4 in antiviral defense when DCL4 is inhibited by viruses (Bouché et al., 2006; Deleris 

et al., 2006). Therefore, the high induction of DCL2 in our dataset may be indicative of a 

PepMV-encoded silencing suppressor that interferes with DCL4 activity. Alternatively, the 

induction of both DCL genes might be a result of a PepMV-encoded suppressor protein 

that acts upstream of the dicer-like enzymes. The Potato virus X silencing suppressor P25 

has similarly been suggested to interfere with RDR6, to block an AGO protein, or 

interfere in another way with assembly of siRNA-containing effector complexes (Verchot-

Lubicz et al., 2007; Bayne et al., 2007). Two AGO1 ortologues (Ago1-1 and Ago1-2) that 

were previously identified in N. benthamiana, as well as AGO2 and AGO4 were 

differentially expressed. Ago1-1 was slightly induced while Ago1-2 was repressed. Also 

AGO4 was repressed, but AGO2 was strongly induced by the aggressive isolate (>3-fold 

at 4 DPI) and only slightly by the mild isolate. Although AGO1 is presented as a major 

antiviral slicer in Arabidopsis, the same situation is not necessarily true in tomato, and 

other AGO paralogues may display a similar activity as has previously been suggested 

(Ding and Voinnet, 2007). Interestingly, the induction amplitudes of the genes encoding 
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the tomato homologues of DLC2 and AGO2 correspond to PepMV isolate aggressiveness, 

with a strong induction by the aggressive CH2 isolate, a moderate induction by the mild 

CH2 isolate and no induction by the symptomless EU isolate. Possibly, this reflects the 

differential effectiveness of a silencing suppressor encoded by the various isolates. 

However, currently no PepMV-encoded silencing suppressor has been characterized.  

 

Perturbation of flavonoid/anthocyanin and carotenoid biosynthesis 

One of the most damaging effects of PepMV is the so-called “fruit marbling”, which is 

likely to be caused by aberrant production of tomato pigments such as flavonoids, 

anthocyanins and carotenoids. The stronger induction of 4CL, involved in the 

flavonoid/anthocyanin biosynthetic pathway, is probably related to defense responses as 

this last enzyme in the general phenylpropanoid pathway leads to precursors for both 

flavonoids, but also wall-bound phenolics and lignins (Hahlbrock and Scheel, 1989; 

Whetten and Sederoff, 1995). However, induction of the 4CL gene was not associated 

with induction of PAL and C4H, as is often observed upon pathogen attack, elicitor 

treatment, and wounding (Fritzemeier et al., 1987; Schmelzer et al., 1989; Lee et al., 

1995; Thulke and Conrath, 1998). A homologue of the gene encoding CHS, which 

synthesizes chalcones, was induced at both 4 DPI and 8 DPI. Chalcones are usually 

processed further by CHI to generate flavonones (Holton and Cornish, 1995; Schijlen et 

al., 2004). However, all homologues for the gene encoding CHI were repressed by both 

PepMV isolates, suggesting that chalcones might accumulate in PepMV-infected tomato. 

This yellow pigment is the most prevalent flavonoid compound in tomato fruits and it 

constitutes the major pigment of the yellow fruit skin. Although the effect of chalcone 

accumulation in tomato is not well known, it might change the color of flowers and fruits. 

CHI-silencing in tobacco resulted in changes in flower color and a natural CHI mutant in 

onion resulted in a gold colored variant (Nishihara et al., 2005; Kim et al., 2004). 

Furthermore, over-expression of petunia CHI in tomato fruits was shown to alter the 

color of tomato fruits, most likely caused by reduced levels of chalcone (Muir et al., 

2001), demonstrating that differential chalcone levels can influence fruit color.  

Also the lycopene biosynthetic pathway was severely affected by PepMV infection. 

Interestingly, all genes encoding enzymes involved in this pathway were repressed up to 

12 DPI, suggesting that PepMV infection suppresses lycopene biosynthesis. As lycopene 

is the major red color pigment in tomato fruit, this finding might be involved in the 

typical fruit discoloration observed in PepMV infected tomato fruits. Especially the severe 

suppression of pTOM5 (phytoene synthase) is interesting in this respect, as inverted 

repeat-mediated knock-down of this gene was shown to result in yellow tomato fruits 

(Bramley et al., 1992).  
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Our study was performed on young plants and many transcriptome responses 

appeared to be transient over the observed time period. Also PepMV symptoms are 

mostly transient and disappear after the initial infection phase, but tend to reappear with 

changing environmental conditions later in the growth season. Similar fluctuations are 

likely to occur in the transcriptome, possibly related to viral replication in newly 

developing plant tissues. Local differences in PepMV replication and correlated host 

responses during fruit ripening might lead to local impairment of lycopene biosynthesis 

and/or local accumulation of chalcone in the fruit skin, leading to marbled of flamed 

fruits.  

 

Induction of the ubiquitination machinery  

The induction of the ubiquitination/proteasome machinery upon PepMV infection has 

similarly been observed in CMV-infected Arabidopsis (Marathe et al., 2004), and was 

shown to be important for resistance to TMV in tobacco (Liu et al., 2002). Furthermore, 

viral hijacking of the host proteolytic machinery to enhance viral replication has been 

reported in several cases. The Lettuce mosaic virus (LMV) helper component proteinase 

(HCPro) is a PTGS suppressor that interacts with the 20S proteasome (Ballut et al., 

2005). Furthermore, the Faba bean necrotic yellows virus (FBNYV) protein Clink is able to 

bind to SKP1 for targeted degradation of host proteins (Aronson et al., 2000; Timchenko 

et al., 2006), while the P0 silencing suppressor of poleroviruses interacts with SKP1 via a 

minimal F-box motif to target and degrade AGO1 (Pazhouhandeh et al., 2006; 

Bortolamiol et al., 2007).  

Interestingly, several components of the PepMV-induced ubiquitination pathway 

are involved in defense signaling, such as the jasmonate receptor COI1 that forms a 

complex with Skp and cullin proteins to degrades JAZ1 proteins that otherwise repress 

transcription of jasmonate-responsive genes (Thines et al., 2007). Repression of COI1 is 

in agreement with the observation that PepMV-induced defense responses are mediated 

by SA rather than by JA.  

Another defense-related component identified in the PepMV-induced ubiquitination 

pathway is the EIN3-BINDING F BOX PROTEIN 1 (EBF1) that represses ethylene 

responses by degradation of the ethylene-responsive transcription factors EIN3 and EIL1 

(Gagne et al., 2004; Binder et al., 2007). The gene encoding EBF1 was repressed in 

response to PepMV, suggesting that ethylene responses are induced. Furthermore, the 

gene encoding INDOLE-3-BUTYRIC ACID RESPONSE 5 (IBR5), which is able to promote 

auxin responses, is induced in our dataset which suggests that auxin is involved in the 

PepMV response (Monroe-Augustus et al., 2003; Binder et al., 2007). Auxin has been 

recognized as a regulator of plant defense against various pathogens (Navarro et al., 

2006; van Esse et al., 2009; Kazan and Manners, 2009), and a role for auxin has been 
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demonstrated in the TMV-tomato interaction were the replicase protein of TMV actively 

disrupts auxin signaling by interacting with AUX/IAA protein LeIAA26, thus enhancing 

viral accumulation and symptom development (Padmanabhan et al., 2008).  

In conclusion, infection with an aggressive and a mild PepMV isolate resulted in 

significant transcriptional changes. Furthermore, with novel strategies that allowed the 

use of state-of-the-art tools we identified several processes that are involved in the 

interaction between PepMV and tomato which provide new insight into the biology of 

PepMV. 
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Abstract 

Taxonomy: Pepino mosaic virus (PepMV) belongs to the Potexvirus genus of in the 

Flexiviridae family. 

Physical properties: PepMV virions are non-enveloped flexuous rods that contain a 

monopartite, positive sense, single stranded RNA genome of 6.4 kb with a 3’ poly-A tail. 

The genome contains five major open reading frames (ORFs) encoding a 164 kDa RNA-

dependent RNA polymerase (RdRp), three triple gene block proteins of 26, 14 and 9 

kDa, and a 25kDa coat protein.  

Genome diversity: four PepMV genotypes, with an inter-genotype RNA sequence 

identity ranging from 78 to 95%, can be distinguished: the original Peruvian genotype 

(LP); the European (tomato) genotype (EU), the American genotype US1 and the Chilean 

genotype CH2.  

Transmission: PepMV is very efficiently transmitted mechanically, and a low seed 

transmission rate has been demonstrated. In addition, bumblebees have been associated 

with viral transmission.  

Host range: Similar to other Potexviruses, PepMV has a rather narrow host range that 

is thought to be largely restricted to species of the Solanaceae family. After originally 

being isolated from pepino (Solanum muricatum), PepMV has been identified in natural 

infections of the wild tomato species S. chilense, S. chmielewskii, S. parviflorum and S. 

peruvianum. PepMV is causing significant problems in the cultivation of greenhouse 

tomato (Solanum lycopersicum), and has been identified in weeds belonging to various 

plant families in the vicinity of tomato greenhouses.  

Symptomatology: PepMV symptoms can be very diverse. Fruit marbling is the most 

typical and economically devastating symptom. In addition, fruit discoloration, open 

fruit, nettle-heads, leaf blistering or bubbling, leaf chlorosis and yellow angular leaf 

spots, leaf mosaic and leaf or stem necrosis have been associated with PepMV. Severity 

of PepMV symptoms is thought to depend on environmental conditions as well as on 

properties of the viral isolate. Minor nucleotide sequence differences between isolates 

from the same genotype have been shown to lead to enhanced aggressiveness and 

symptomatology. 

Control: Prevention of infection through strict hygiene measures is currently the major 

strategy for controlling PepMV in tomato production. Cross-protection can be effective, 

but only under well-defined and well-controlled conditions and the effectiveness heavily 

depends on the PepMV genotype.  
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Introduction 

Pepino mosaic virus (PepMV) has been observed for the first time in tomato (Solanum 

lycopersicum) crops in the Netherlands only a decade ago (EPPO, 2000), and has 

presently become a major disease of greenhouse tomato crops worldwide (van der Vlugt 

et al., 2000; French et al., 2001; Mumford and Metcalfe 2001; Cotillon et al., 2002; 

Maroon-Lango et al., 2005; Pagán et al., 2006; Hasiów et al., 2008; Hanssen et al., 

2008, Chapter 2; Ling 2006; Ling et al., 2008). The economic impact of PepMV on 

tomato industry is highly debated, as the impact largely depends on the structure of the 

tomato market, more specifically on the marketability and economic value of lower-

quality fruits, which differs considerably between growing areas (Jones and Lammers, 

2005; Spence et al., 2006). Furthermore, the high variability in nature and severity of 

symptom display complicates a reliable determination of the economic impact of PepMV 

on the tomato industry. In a questionnaire conducted among Belgian tomato growers, 

yield losses caused by PepMV were estimated between 5 and 10% in the 2006 growth 

season and negligible in 2005, while fruit quality losses were more pronounced in 2005 

(Hanssen et al., 2009a). Greenhouse trials conducted in the UK from 2001 to 2003 

revealed considerable differences in damage between subsequent years, with the 

percentage of downgraded tomato fruit due to PepMV-induced quality loss ranging from 

6 to 38%.  

In this pathogen profile we review the current knowledge on PepMV biology, genome 

diversity, population dynamics, symptomatology, transmission and control, which 

includes the results that have been obtained during this thesis research. 

 

 

Host range and symptomatology 

As indicated by its name, PepMV was originally isolated from pepino (Solanum 

muricatum) that showed yellow leaf mosaic symptoms in Peru (Jones et al., 1980). Its 

host range is thought to be mainly restricted to Solanaceae species (Salomone and 

Roggero, 2002; Soler et al., 2002; Verhoeven et al., 2003). In a survey in central and 

southern Peru the virus has been identified in natural infections of the wild tomato 

species S. chilense, S. chmielewskii, S. parviflorum and S. peruvianum (Soler et al., 

2002). Furthermore, by performing mechanical inoculations, the host range of PepMV 

was shown to contain eggplant (Solanum melongena), potato (Solanum tuberosum) and 

species from the genera Nicotiana (e.g. N. benthamiana), Datura (e.g. D. stramonium), 

Capsicum (C. annuum) and Physalis (P. floridana) (Salomone and Roggero, 2002; 

Verhoeven et al., 2003; Jones et al., 1980; Martin and Mousserion, 2002). So far, Basil 

(Ocimum basilicum; Lamiaceae) is the only reported natural host that does not belong to 

the Solanaceae with plants displaying interveinal chlorosis (Davino et al., 2009). 
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Furthermore, in a survey of 42 native weed species growing in or around tomato 

production sites in Spain, PepMV infection was found in 18 weed species, including those 

belonging to the Amaranthaceae (e.g. Chenopodium murale), Convolvulaceae (e.g. 

Calystegia sepium), Brassicaceae (e.g. Diplotaxis erucoides), Boraginaceae (e.g. 

Heliotropium europaeum), Asteraceae (e.g. Sonchus tenerrimus), Plantaginaceae 

(Plantago afra), and Polygonaceae (Rumex sp.) (Córdoba et al., 2004). Interestingly, a 

recent study revealed that co-inoculation with a EU and a CH2 isolate extended the host 

range beyond the host range of the single isolates (Gómez et al. 2009). More 

specifically, neither the EU isolate Sp13, nor the CH2 isolate PS5, could establish 

infection in N. glutinosa or N. tabacum, while both host plants appeared to be 

susceptible upon inoculation with the mix of the two isolates (Gómez et al., 2009). 

 

 

Figure 1. Typical PepMV symptoms on tomato. (a) nettlehead of young top leaves; (b) leaf bubbling; (c) 

yellow spots; (d) fruit marbling; (e) open fruit; (f) fruit discoloration (flaming). 

 

PepMV symptomatology has been most extensively studied in cultivated tomato. A wide 

range of symptoms has been associated with PepMV infection. Fruit marbling is generally 

considered the most devastating symptom of PepMV infection as it diminishes the 

economical value of the crop, but other fruit symptoms like discoloration (botchy 

ripening or flaming), and the occurrence of ‘open fruit’ (fruit that splits shortly after 

setting such that the seeds become visible) can be similarly devastating (Figure 1; 

Spence et al., 2006; Hanssen et al., 2008, Chapter 2). Symptoms on vegetative plant 

a b c 
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parts may comprise nettle-heads (upper young leaves distorted, serrated and upright 

with a reduced surface), leaf blistering or bubbling, chlorosis and yellow angular leaf 

spots, but also severe leaf mosaics and even leaf or stem necrosis (Figure 1; van der 

Vlugt et al., 2000; Roggero et al., 2001; Spence et al., 2006; Hasiów et al., 2008; 

Hanssen et al., 2009b, Chapter 3; Hasiów-Jaroszewska et al., 2009a). In addition, it has 

been suggested that the so-called ‘tomato collapse’ disease, a sudden and progressive 

wilt of tomato which eventually leads to plant death, is caused by necrosis of the 

vascular system due to PepMV accumulation (Soler-Aleixandre et al., 2005).  

 

 

Transmission 

PepMV is efficiently transmitted mechanically (Jones et al., 1980). The virus is highly 

contagious in tomato, as it easily spreads by the standard crop handling procedures in a 

greenhouse through contaminated tools, hands and clothing and by direct plant-to-plant 

contact (Wright and Mumford, 1999; Spence et al., 2006). Therefore, once the virus 

enters a tomato production facility, containment of further spread is virtually impossible 

and usually all plants will be infected eventually. It has been shown that bumblebees, 

often used for pollination in commercial tomato production, contribute to the spread of 

the virus (Lacasa et al., 2003; Shipp et al., 2008). In infected greenhouse tomato crops, 

nearly all the bumblebees were shown to carry PepMV and vectoring of the virus to non-

infected plants was demonstrated (Shipp et al., 2008). Based on the infection levels in 

flowers, fruits and leaves, it was suggested that the infection occurred first in the 

pollinated flowers and then spread to other parts of the plant. Whether infection 

occurred through direct injury to the flowers or through fertilization with infected pollen 

could not be determined (Shipp et al., 2008). 

Recently also the root-infecting parasitic fungus Olpidium virulentus, that has been 

implicated in the transmission of several plant viruses, was shown to be able to enhance 

PepMV spread (Alfaro-Fernández et al., 2009b). In addition, it was reported that PepMV 

can be efficiently transmitted by nutrient solution in a closed recirculation system leading 

to the infection of healthy tomato plants, although the virus itself was not detectable 

directly in nutrient solution (Schwarz et al., 2009).  

Seed transmission of PepMV has been demonstrated in several studies, with rates up 

to ~2% depending on the time of seed harvest, the tomato variety and the seed 

cleaning or disinfection methods applied (Krinkels, 2001; Córdoba-Selles et al., 2007; 

Ling, 2008; Hanssen et al., 2010b, Chapter 4). In a recently performed grow-out trial 

with over 87,000 seedlings a seed transmission rate of 0.026% was found for seeds 

cleaned according to industry standards without disinfection (Hanssen et al., 2010b, 

Chapter 4). Interestingly, the rate of transmission increased as the interval between 



 

Chapter 7  

infection of the mother crop and seed harvest 

been shown to efficiently reduce the seed transmission rate (Córdoba

2007). Although the efficiency of seed transmission is low, the highly infectious nature of 

PepMV implies a substantial risk associated with tomato seeds harvested from an 

infected crop. Therefore, strict regulations 

through seeds are in place 

and 2004/200/EC). In addition, sensitive 

to screen tomato seed lots for PepMV presence have been developed (Ling et al., 2007; 

Gutiérrez-Aguirre et al., 2009

dissemination of PepMV most lik

the nursery to the grower, through infected grafts, cuttings or fruits and even through 

seed-to-seedling transmission (Córdoba
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Figure 2. Schematic overview of the PepMV genome 

(adapted from Cottilon et al., 2002). Untranslated regi

nucleosidetriphosphatase; RdRp: RNA dependent RNA polymerase; TGBp: triple gene block protein; CP: coat 

protein. The size and overlap of the proteins is proportional to the actual sizes.
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mosaic virus (NMV) and Cymbidium mosaic virus (CymMV) (Aguilar et al., 2002). 

Initially, genetic characteristics, symptomatology and host range of different European 

PepMV isolates showed high similarity, suggesting a common origin of these isolates 

(Mumford and Metcalfe, 2001; Verhoeven et al., 2003). Nucleotide sequence 

comparisons of coat protein genes of 15 isolates originating from different European 

countries revealed 99% identity among the isolates, while these isolates shared only 96-

97% identity with the original Peruvian pepino isolate (BBA1137; Mumford and Metcalfe, 

2001). Therefore, and because the Peruvian pepino isolate does not cause symptoms in 

tomato, European isolates were considered of a distinct PepMV type (van der Vlugt et al., 

2000; Mumford and Metcalfe, 2001). A comparative symptomatology and host range 

study of 15 PepMV tomato isolates and the original pepino isolate BBA1137 confirmed 

that the pepino isolate differed from the tomato isolates, as only the pepino isolate 

(occasionally) caused symptoms in Nicotiana tabacum, Capsicum annuum and Physalis 

floridana (Verhoeven et al., 2003). The comparison of the complete nucleotide 

sequences of two tomato isolates with an isolate from L. peruvianum (LP-2001) which 

was symptomless in tomato demonstrated that the tomato isolates shared over 99% 

identity while they shared approximately 96% identity with the LP-2001 genome (Soler 

et al., 2002). In addition, a two nucleotide deletion and some polymorphisms were 

identified in the 5’ UTR and the TGBp3 had two extra amino acids. These differences 

were suggested to play a role in the differential biological characteristics (López et al., 

2005). At that time, only part of the sequence of the original PepMV isolate from pepino, 

BBA1137, was determined. As partial sequence comparison revealed a high identity 

between LP-2001 and BBA1137, the sequence of LP-2001 was considered a reference for 

the original pepino strain. Complete sequence determination of BBA1137 confirmed that 

both isolates share nucleotide sequence homologies of over 99% and can thus be 

considered as isolates from the distinct pepino or Peruvian type of PepMV, which is 

further referred to as LP (Pagán et al., 2006).  

In 2005, two distinct isolates originating from US tomato production, designated 

US1 and US2, were described that shared only 86% sequence identity (Table 1; Maroon-

Lango et al., 2005). Moreover, they shared only 78 and 81% sequence identity with the 

so-called European tomato isolates (Table 1; Maroon-Lango et al., 2005). As both US 

isolates caused disease in tomato, the designation ‘tomato strain’ which was used for the 

European isolates till then was no longer appropriate and most authors started referring 

to this group of isolates as the ‘European (tomato) genotype (EU)’ (Maroon-Lango et al., 

2005; Pagán et al., 2006; Pospieszny and Borodynko, 2006; Hanssen et al., 2008, 

Chapter 2). In addition to EU, US1 and US2 genotypes, a divergent genotype was 

isolated from tomato seeds originating from Chile and designated CH2 (Ling, 2006). This 

CH2 isolate shares 78 to 80% nucleotide sequence identity with the LP and EU 
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genotypes and 78% with US1 (Table 1). Phylogenetic analyses revealed two main 

clusters, one containing the EU and LP genotype and the other consisting of the more 

recently described US and CH2 genotypes, suggesting two distinct evolutionary routes 

(Figure 3). As nucleotide sequence comparisons suggest that US2 is a recombinant of 

US1 and CH2, it was recently proposed to distinguish four PepMV genotypes: the original 

Peruvian genotype (LP); the European (tomato) genotype (EU), the American genotype 

US1 and the Chilean genotype CH2 (Hanssen et al., 2010b, Chapter 4).  

 

Table 1. Nucleotide sequence identities between type isolates of the different PepMV genotypes 

PepMV  
genotype 

GenBank 
Accession  

LP (LP2001) CH2 US1 US2 

  G1 R2 T3 C4 G R T C G R T C G R T C 
EU5  AJ438767 95 95 96 97 79 78 79 77 82 81 85 83 79 79 80 77 
LP6  AJ606361 * * * * 79 78 80 77 82 81 85 84 79 78 80 77 
CH27 DQ000985     * * * * 78 77 80 80 90 88 92 99 
US18 AY509926         * * * * 86 87 86 80 
US28 AY509927             * * * * 
1Genome (complete sequence)  
2Replicase gene 
3Triple gene block 
4Coat protein gene 
5Cottilon et al., 2002 
6López et al., 2005 
7Ling, 2006 
8Maroon-Lango et al., 2005 
 

 

 

Figure 3. Unrooted distance tree of complete nucleotide sequences from various PepMV genotypes, including 

sequences from isolates FR (Cottilon et al., 2002) and LE2000 (Lopéz et al., 2005) of the EU genotype; isolates 

CH2 (Ling, 2006) and the Belgian ‘2206/06/A1’ (Hanssen et al., 2008) of the CH2 genotype, LP2001 (Lopéz et 

al., 2005) of the LP genotype, and US1 and US2 (Maroon-Lango, 2005). Genbank accession numbers are 

indicated in the figure. The tree is generated using Clustal X with 1000 bootstrap values and visualized using 

Treeview. The scale bar represents 0.1 changes per nucleotide.  
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PepMV population dynamics 

Since first appearing in greenhouse tomato crops in the Netherlands in 1999, PepMV 

rapidly established itself in tomato producing countries. An unprecedented, worldwide 

series of PepMV outbreaks within a just a few years time was reported, with disease 

reports from the UK, France, Italy and Spain, but also China, Canada and the US 

(Cotillon et al., 2002; French et al., 2001; Roggero et al., 2001; Jordá et al., 2001; 

Mumford and Metcalfe, 2001; Aguilar et al., 2002; Yaoliang and Zhongjian, 2003). 

Initially, all reported outbreaks were caused by the EU genotype of PepMV and the 

reported symptoms were rather mild. However, a study on the genetic structure of the 

PepMV population in Spain in 2005 revealed that the population was more diverse than 

assumed (Pagán et al., 2006). Although the EU genotype was dominant in Spanish 

tomato production, the LP genotype appeared to be present on the Canary Islands 

already in 2000, and US2-like isolates were present in peninsular Spain in 2004 (Pagán 

et al., 2006). In addition, the occurrence of mixed infections with two different 

genotypes (combinations of EU and US2-like, and of LP and US2-like) and with inter-

genotype recombinants, was revealed. In 2006, the genetic diversity of the PepMV 

population in Belgian greenhouses was studied, revealing the occurrence of isolates 

belonging to the EU and CH2 genotypes, often in mixed infections, and the presence of 

recombinants (Hanssen et al., 2008, Chapter 2). A remarkable finding was the 

dominance of the CH2 genotype, which had not yet been reported in Europe until then, 

occurring in 85% of the infected crops while the EU genotype occurred in less than 50% 

of those crops (Hanssen et al., 2008, Chapter 2). Also the majority of the recent PepMV 

isolates from Dutch and French tomato crops that were genotyped belonged to the CH2 

genotype (Hanssen et al., unpublished). In 2002 and 2005, two distinct Polish PepMV 

isolates were obtained from tomato and were shown to belong to the EU genotype and 

the CH2 genotype, respectively (Pospieszny et al., 2002; Pospieszny and Borodynko, 

2006). Two additional Polish PepMV strains, isolated in 2007, that differed from the 

previously identified PepMV isolates in host range and symptomatology appeared to 

belong to the CH2 genotype (Hasiów-Jaroszewska et al., 2009a). Altogether these 

results are indicative a shift in the PepMV population, with the EU genotype gradually 

being overtaken by the CH2 genotype. It was suggested that the CH2 genotype has a 

biological advantage over the EU genotype, as it seemed to spread faster within a crop 

(Hanssen et al., 2008, Chapter 2). This was confirmed by a recent study on evolutionary 

dynamics of the PepMV population in Spain, in which RT-qPCR analyses in inoculated 

tomato plants showed that a CH2 isolate (PS5) accumulated faster and to higher viral 

loads than a EU isolate (Sp13) (Gómez et al., 2009). This study further revealed that 

PepMV populations in Spain are composed of isolates belonging to the EU and CH2 

genotypes and that the CH2 type is predominant. Interestingly, EU isolates were shown 



 

Chapter 7   136 

to persist in mixed infections, and it was suggested that mixed infections contribute to 

shaping of the population structure (Gómez et al., 2009). In addition, mutation analyses 

revealed very few non-synonymous substitutions, reflecting strong purifying selection. 

These results are in line with the observation that the number of mutations in the RNA 

sequence of PepMV isolates throughout a greenhouse trial period was rather limited and 

that most of the mutations that took place had no clear biological relevance (Hanssen et 

al., 2009b, Chapter 3). 

Recent data on the Belgian PepMV population show a further dominance of the CH2 

genotype, as in the 2008 growth season the EU genotype was only detected in 7% of the 

infected crops while the CH2 genotype occurred in 90% of the infected crops. 

Interestingly also the LP genotype was detected, with an incidence of 10% (Hanssen et 

al., unpublished data). The sudden occurrence of the LP genotype in Belgian tomato 

production may perhaps be linked to the use of a mild LP isolate in the Netherlands for 

cross-protection in commercial tomato greenhouses (Hanssen et al., 2010a, Chapter 5). 

 In retrospect, the US2-like sequences reported from Spain (Pagán et al., 2006) 

displayed high sequence identity to the later described CH2 genotype (Ling, 2006), 

suggesting that CH2 rather than US2 was present in Spain in 2004, indicating that the 

current PepMV CH2 epidemic in Europe was already initiated in or before 2004. 

Intriguingly, a recent population study on PepMV isolates in 31 infected North American 

greenhouse tomato crops revealed the occurrence of the EU, US1, US2 and CH2 

genotypes, with a clear dominance of the EU genotype which was identified in all 31 

crops (Ling et al., 2008). The remaining genotypes were only found rarely and 

exclusively in mixed infections. The low incidence of the CH2 genotype in North America 

is remarkable and might reflect different PepMV dissemination pathways linked to a 

different, less intensive structure of tomato growth facilities in North America as 

compared to Europe, where PepMV is mainly prevalent in dense greenhouse tomato 

cultivation areas. In the American situation mechanical transmission through workers or 

bumblebees may be subordinate to the long-distance transmission through young plants 

and seeds.  

Factors contributing to PepMV population dynamics are currently not known. 

However, recently the existence of a population bottleneck during seed transmission was 

reported, with an apparent advantage of the EU genotype in transmission through seeds 

harvested from a mother crop co-infected by the EU and CH2 genotypes (Hanssen et al., 

2010b, Chapter 4). As seed transmission was suggested as a major dissemination route 

of PepMV in 1999 and 2000, before strict sanitary regulations were in place (Córdoba-

Sellés et al., 2007), this putative population bottleneck might be related to the original 

dominance of the EU genotype in European countries. 
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Recently, the US1 genotype was isolated in the Canary Islands from greenhouse 

tomato crops displaying leaf blistering and mosaic (Alfaro-Fernández et al., 2008b), the 

first time that this genotype is isolated in a different location than originally reported 

(North America; Maroon-Lango et al., 2005).  

 

 

The diversity of symptom severity  

The symptom intensity in PepMV infected tomato crops is highly variable, ranging from 

asymptomatic infections to very severe symptomatology (Jordá et al., 2001; Soler et al., 

2000; Soler-Aleixandre et al., 2005; Hanssen et al., 2008). Observations in commercial 

tomato production have led to the hypothesis that environmental conditions play an 

important role in symptom severity. Low environmental temperatures and low light 

conditions are thought to result in more severe damage (Jordá et al., 2001). 

Furthermore, the PepMV-associated ‘tomato collapse’ is thought to be enhanced by 

temperature fluctuations throughout the growth season (Soler-Aleixandre et al., 2005). 

PepMV-induced leaf scorching was attributed to a period of high light intensity followed 

by a period of dull weather (Spence at al., 2006). However, a PepMV trial conducted 

under high-light conditions in 2003 resulted in considerably more damage than a trial 

conducted under lower-light conditions in 2001-2002 (Spence at al., 2006). Although 

growers in Belgium and the Netherlands confirm the importance of light and 

temperature, the interplay of environmental factors contributing to PepMV damage 

appears to be complex and remains to be elucidated.  

As the impact of environmental growth conditions and tomato genotype on PepMV 

symptom development is not yet fully understood, it was not clear whether the 

differences in symptom display in commercial tomato greenhouses should also be 

attributed to the viral isolate that invaded the crop. In a population study conducted in 

Spanish tomato crops, no correlation between PepMV genotypes and symptomatology 

were found (Pagán et al., 2006). In a similar study of Belgian tomato crops no significant 

differences in symptom severity were detected between EU and CH2 isolates (Hanssen et 

al., 2008, Chapter 2). However, tomato crops that were simultaneously infected with 

isolates of both genotypes showed significantly enhanced symptom display on all plant 

parts when compared to crops infected with a single isolate (Hanssen et al., 2008, 

Chapter 2). Nevertheless, more and more evidence is accumulating showing a clear role 

of the viral isolate in PepMV symptomatology. Studies on Polish PepMV isolates revealed 

clear differences in host range and symptomatology of different isolates belonging to the 

CH2 genotype (Pospieszny et al., 2008; Hasiów-Jaroszewska et al., 2009a). Three 

necrotric CH2 isolates sharing over 99% sequence identity with non-necrotic isolates 

from the CH2 genotype were recently identified (Hasiów-Jaroszewska et al., 2009a). 
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Evidence for a role of the viral isolate in PepMV symptomatology is also found in recent 

greenhouse inoculation experiments (Hanssen et al., 2009b, Chapter 3). A CH2 isolate 

that was selected based on mild symptom expression in the crop of origin caused only 

mild symptoms in the trial, while another isolate with a sequence identity of 99.4% that 

was selected based on severe symptom display in the crop of origin caused significantly 

more severe symptoms in the same trial, including nettle-head and a high incidence of 

premature leaf senescence, open fruit and fruit flaming. These results demonstrate that 

minor differences at the nucleotide level can account for considerable differences in 

symptomatology between isolates that infect their crops under the same conditions. 

Nevertheless, presently it remains unclear which regions of the PepMV genome are 

important for symptomatology. The recent development of an infectious clone derived 

from a necrotic CH2 isolate is an important step forward to elucidate the role of certain 

regions and residues in PepMV symptomatology (Hasiów-Jaroszewska et al., 2009b).  

 
 

Host responses to PepMV 

Global transcriptional profiling, for instance with the use of micro-arrays, can provide 

insight in the cellular biology of the host upon pathogen infection (Quirino and Bent 

2003; van Baarlen et al., 2008; Wise et al., 2007). As viruses establish infection in 

plants by exploiting the cellular components of the host, viruses can induce a wide range 

of alterations in host gene expression (Whitham et al., 2003). Presently, micro-array 

studies have been undertaken for a limited number of viral interactions with their hosts 

(Whitham et al., 2006; Wise et al., 2007). In most compatible plant virus interactions, a 

general virus-induced host gene repression occurs shortly after infection (Maule et al., 

2002). However, genes related to cell death, cell rescue, defence, ageing and stress are 

often induced in response to viral infection (Whitham et al., 2003; Marathe et al., 2004; 

Senthil et al., 2005). Another important virus-induced host response is the induction of 

the RNA silencing machinery of the plant, which degrades or modifies viral RNAs to block 

translation of viral proteins (Baulcombe, 2004). This virus-induced post-transcriptional 

gene silencing (PTGS) mechanism involves the processing of viral double-stranded RNA 

(dsRNA) by Dicer-like enzymes (DCL) into small interfering RNAs (siRNAs) which are 

subsequently incorporated into protein complexes containing endonucleolytic Argonaute 

enzymes (Ding and Voinnet, 2007). PTGS is thought to be the mechanism behind the 

long known ‘recovery’ phenomenon, first described by Wingard (1928) who observed 

that upper leaves of tobacco plants infected with tobacco ringspot virus were 

asymptomatic and resistant to secondary infection (Ratcliff et al., 1999; Baulcombe, 

2004). Host-adapted viruses have evolved strategies to counteract PTGS in their hosts 

by encoding viral suppressors of RNA silencing (Ding and Voinnet, 2007). As viruses are 
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inducers, suppressors and targets of the RNA silencing mechanism, virus-induced 

symptom development in infected plants can be influenced by the siRNA pathways in 

many different ways (Baulcombe, 2004), for example by perturbation of the endogenous 

microRNA (miRNA) function (Whitham, 2006). Moreover, it was recently shown that 

virus resistance induced by an NB-LRR-type disease resistance gene is mediated by 

Argonaute4-dependent inhibition of translation of virus-encoded proteins (Bhattacharjee 

et al., 20009). Therefore, PTGS components appear to be key factors in both compatible 

and non-compatible plant-virus interactions. 

A custom-designed Affymetrix tomato GeneChip array (Syngenta Biotechnology, 

Inc., Research Triangle Park, NC, U.S.A.) that contains probe sets to interrogate over 

22,000 tomato transcripts (van Esse et al., 2007) was used to study changes in the 

tomato transcriptome in response to inoculation with a mild and an aggressive PepMV 

isolate of the CH2 genotype (Hanssen et al., unpublished, Chapter 6). Over-

representation analysis demonstrated a severe down-regulation of host genes involved 

in photosynthesis and energetic processes upon PepMV infection, while defence and 

stress responses were clearly induced. This reinforces the notion that, like bacteria and 

fungi, compatible viruses induce basal plant defense, although the mechanism to 

recognize the pathogen is likely to be different (Whitham et al., 2006; Ascencio-Ibáñez 

et al., 2008). Intriguingly, the induction of defence and stress responses was stronger 

and more persistent in plants that were inoculated with the aggressive CH2 PepMV 

isolate as compared with plants that were inoculated with the mild CH2 isolate, although 

viral loads were similar (Hanssen et al, unpublished, Chapter 6). Interestingly, dicer-like 

enzyme 2 (DCL2), a key factor in antiviral PTGS, was strongly induced by the aggressive 

isolate and only moderately by the mild isolate. In addition, several Argonautes were 

differentially regulated, suggesting that PTGS plays an important role in the interaction 

between PepMV and its host tomato. Nevertheless, these defense responses did not 

result in PepMV containment. Moreover, these results suggest that some of the 

symptoms provoked by the aggressive isolate may be caused by a more elaborate host 

defense response or perhaps a more severe perturbation of the plant miRNA function 

through PepMV-encoded silencing suppressors that have not yet been identified.  

Another interesting observation is that PepMV infection results in the differential 

regulation of genes that code for several key enzymes in the flavanoid and lycopene 

biosynthesis pathway (Hanssen et al., unpublished, Chapter 6). This may possibly 

explain the impact of the virus on fruit symptoms such as fruit marbling and flaming. 

Although the use of microarrays has made it possible to profile changes in transcriptional 

activity of thousands of genes simultaneously, to link expression profiles to biological 

pathways as they occur in the cell remains a challenge (van Baarlen et al., 2008). 
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Therefore, functional analysis of candidate genes will have to reveal their role in viral 

defense and symptomatology.  

 

 

Control strategies  

Sources varying from moderate to full resistance have been identified in specific wild 

Solanum accessions, including S. pseudocapsicum, S. chilense, S. peruvianum, and S. 

habrochaites (Ling and Scott, 2007; Soler-Aleixandre et al., 2007). Especially the 

resistance that is segregating in accession LA1731 from S. habrochaites is thought to be 

promising because segregants of this accession displayed resistance against the CH1, 

CH2 and EU PepMV genotypes (Ling and Scott, 2007). As introduction of the identified 

resistance into cultivated tomato by breeding is a time-consuming process, commercial 

resistant varieties are not yet available. Therefore, prevention through hygiene currently 

remains the most important strategy for controlling PepMV in commercial tomato 

production. However, due to the high infectivity of the virus, prevention of infection 

through hygiene measures is a challenge, especially in dense tomato growing areas.  

Many tomato growers, especially in the Netherlands, have chosen to inoculate their 

crops with a mild PepMV isolate in an attempt to protect their crops from severe damage 

upon natural infection by an aggressive isolate based on cross-protection (Spence et al., 

2006; Hanssen et al., 2009a). In addition to the cross-protection effect which is aimed 

for, many growers feel that an infection early in the growing season is less harmful than 

an infection that occurs later in the growing season. In support of this, greenhouse trials 

conducted in the UK from 2001 to 2003 showed that the time of infection has an impact 

on PepMV-associated damage, as inoculations in May were more damaging than 

inoculations in February (Spence et al., 2006). Also from a questionnaire conducted 

among Belgian tomato growers it seems that early infections result in less damage than 

late infections (Hanssen et al., 2009a). Whether this is due to plant age, to activation of 

PTGS based plant defenses resulting in (partial) recovery, or to climate conditions has 

not been clarified. Although disease symptoms in infected crop sometimes decrease or 

disappear after a certain period, the virus remains detectable, also in the asymptomatic 

plant parts. However, a recent cross-protection study based on greenhouse trials 

revealed that efficient cross-protection against an aggressive isolate belonging to the 

CH2 genotype could only be achieved by pre-inoculation with a mild isolate from the 

same genotype. By contrast, enhanced symptom severity was observed when plants 

were pre-inoculated with a mild isolate belonging to the EU or to the LP genotype 

(Hanssen et al., 2010a, Chapter 5). These results suggest that the PepMV cross-

protection efficacy largely depends on RNA sequence identity, as was similarly shown for 

other plantvirus interactions (Wang et al., 1991; Desbiez and Lecoq, 1997; Yeh and 
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Gonsalves, 1984). The role of PTGS in cross-protection was demonstrated by the 

observation that two viral constructs derived from different viruses but sharing a 

common sequence could suppress each other when co-inoculated in plants (Ratcliff et 

al., 1999). It has been suggested that cross-protection is mediated by pre-activation of 

the siRNA-induced silencing complex, thus inhibiting replication of the challenge isolate 

(Gal-On and Shiboleth, 2006). 

Thus, although cross-protection can be efficient, the enhanced symptom severity in 

the case of limited nucleotide sequence identity between protector and challenge isolate 

undermines the potential of cross-protection as a general PepMV control strategy. Cross-

protection can only be used successfully in areas where one single PepMV genotype is 

dominant, provided that a continuous monitoring of the PepMV population is performed 

and that strict hygienic measures are taken.  

Future strategies to combat PepMV epidemics in tomato production might also 

include transgenic approaches. Coat protein-mediated resistance (CPMR), by which the 

expression of the viral coat protein confers resistance, could be an efficient strategy. 

However, the obtained protection efficiency ranges from immunity to delay or 

attenuation of symptoms and the mechanisms are not fully understood (Prins et al., 

2008). Also, expression of replicase or dysfunctional movement proteins in transgenic 

plants can sometimes lead to resistance or symptom attenuation (Golemboski et al., 

1990; Lapidot et al., 1993). A more promising strategy could be the introduction of an 

inverted repeat (IR) transgene, derived from a viral sequence, into the plant genome. 

Generation of long dsRNA precursors from those IR fragments will induce the siRNAs and 

the PTGS machinery, thus conferring sequence-specific antiviral resistance (Prins et al., 

2008).  

 

 

Conclusion 

Since first appearing in protected tomato crops in Europe in 1999, PepMV has displayed 

a high potential to adapt to diverse environmental conditions. In only a few years time, 

not only the original EU genotype but also the more recently described CH2 genotype 

have established in tomato producing regions worldwide, and a recent shift in the PepMV 

population reveals a dynamic interplay between the different PepMV genotypes and their 

host. Symptoms can be very diverse, both in severity and nature. Although recent 

studies show that small differences in nucleotide sequence can account for large 

differences in biological properties and host responses, host and viral factors playing in a 

role in symptom severity remain unknown. Functional studies using host and viral 

mutants could identify viral factors that impact biological characteristics and increase our 

understanding of host responses to PepMV infection. Unraveling the role of PTGS and 
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viral encoded silencing suppressors in differential symptom severity might shed light on 

the interplay between different genotypes in mixed infections and could thus contribute 

to the further development of a sound cross-protection strategy. Although resistance 

sources have been identified in wild tomato species, commercial resistant varieties are 

not yet available and PepMV control is largely restricted to hygienic measures. However, 

currently applied prevention strategies often fail, demonstrating that our understanding 

of PepMV dissemination pathways is still too limited to contain spread of the virus.  
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Summary 

 

Owing to their large population size and short generation time, viruses generally have a 

huge potential to evolve and adapt under natural selection pressure. Despite tremendous 

efforts in human, animal and plant health management, viral diseases remain difficult to 

control and eradicate. Moreover, existing control strategies are compromised by the 

continuous emergence of new viruses. In Chapter 1 emerging viruses of tomato crops 

are reviewed. This includes Pepino mosaic virus (PepMV), a Potexvirus with a single 

stranded RNA genome, a rapidly emerging virus which has become one of the most 

important viral diseases in tomato production worldwide over the recent years.  

Infection by PepMV can cause a broad range of symptoms on tomato plants, of 

which especially the typical fruit marbling can lead to significant economical losses. 

Presently, five PepMV genotypes (EU, LP, CH2, US1 and US2) have been described 

worldwide, three of which (EU, LP and US2) have previously been reported to occur in 

Europe. As nature and severity of PepMV symptoms are highly variable, economical 

damage caused by PepMV is difficult to assess and the identification of factors 

contributing to symptom severity is warranted. In Chapter 2 the genetic diversity of the 

PepMV population in Belgian greenhouses is studied and related to the symptom 

development in tomato crops. Previously, no correlation has been found between 

different PepMV genotypes and the symptomatology of infected plants. A novel assay 

based on restriction fragment length polymorphism (RFLP) was developed to 

discriminate the different PepMV genotypes. Both RFLP and sequence analysis revealed 

the occurrence of two genotypes, the EU genotype as well as the CH2 genotype, within 

the tomato production in Belgium. Surprisingly, a clear dominance of the CH2 genotype 

in the Belgian PepMV population was found, although this genotype has previously not 

been found in commercial tomato production. Whereas no differences were observed in 

symptom expression between plants infected by one of the two genotypes, co-infection 

with both genotypes resulted in more severe PepMV symptoms. Furthermore, our study 

revealed that PepMV recombinants frequently occur in such mixed infections.  

So far, it remained unclear whether different PepMV isolates can cause differential 

symptom severity. Therefore, PepMV symptomatology of different isolates was studied in 

Chapter 3. Based on the survey described in Chapter 2, four isolates that differed in 

symptom expression in the crop of origin were selected for greenhouse trials. The 

selected isolates were inoculated onto tomato plants grown in separate plastic tunnels. 

PepMV symptom development was assessed regularly and extensive sampling followed 

by ELISA analyses, genotyping and nucleotide sequencing was performed to study viral 

presence and variation in PepMV sequences throughout the trial period. Two isolates (EU 
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mild and CH2 mild) that were selected based on mild symptom expression in the crop of 

origin caused only mild symptoms in the trial, while two other isolates (CH2 aggressive 

and EU+CH2) that were selected for severe symptom display, caused considerably more 

severe symptoms. Sequence identity between the mild and the aggressive CH2 isolates 

was as high as 99.4%. Results of this study show that differential symptom expression 

can, at least partially, be attributed to the PepMV isolate, which may be related to minor 

differences at the nucleotide level between isolates.  

In Chapter 4, seed transmission of PepMV in tomato is demonstrated. Fruit was 

harvested from the greenhouse trials described in Chapter 3 and more than 100,000 

seeds were extracted and cleaned using an enzymatic treatment without disinfection. 

Infection assays using indicator plants confirmed the presence of infectious virus 

particles on the seeds. In the framework of a European project, seeds were distributed 

to 10 different laboratories in three separate batches, and germinated for seedling 

analyses by ELISA. In total over 87,000 plants were tested, and 23 PepMV-infected 

plants were detected, indicating an overall transmission rate of 0.026 %. Our results 

clearly show that PepMV can be transmitted from contaminated seeds to seedlings, 

highlighting the risk of using seeds from PepMV-infected plants, and revealed the 

potential for seed transmission to contribute to spread of PepMV.  

In Chapter 5, the potential of three mild PepMV isolates, belonging to the CH2, 

EU and LP genotypes, to protect a tomato crop against the aggressive CH2 isolate 

(Chapter 3) as the challenge isolate, was assessed in greenhouse trials. After challenge 

infection, enhanced symptom display was recorded in plants that were pre-inoculated 

with a protector isolate that belonged to a different genotype (EU, LP) than the challenge 

isolate. A quantitative genotype-specific TaqMan assay revealed that in these plants, the 

accumulation of the challenge isolate only temporarily slowed down. By contrast, 

efficient cross-protection was obtained using the mild isolate of the CH2 genotype, and 

in this case the challenge isolate was barely detectable in the pre-inoculated plants. 

These results suggest that the interaction between PepMV isolates largely depends on 

RNA sequence homology and that post-transcriptional gene silencing plays an important 

role in cross-protection.   

As plant viruses are obligate intracellular parasites that hijack host cellular 

functions and resources for their replication and movement, they generally induce a wide 

variety of alterations in host gene expression and cell physiology. In Chapter 6, we 

used a custom-designed Affymetrix tomato GeneChip array that contains probe sets to 

interrogate over 22,000 tomato transcripts to study transcriptional changes in response 

to inoculation with the highly similar (99.4% nucleotide sequence identity) mild and 

aggressive CH2 isolates that are characterized in Chapter 3. Interestingly, our results 
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show that both isolates induce differential transcriptomic responses in the tomato host 

despite accumulation to similar viral titers. PepMV inoculation resulted in an extensive 

transient repression of host genes which clearly affected primary metabolism. Especially 

the defense response intensity was higher upon inoculation with the aggressive isolate, 

and defense was mediated by salicylic acid signaling rather than by jasmonate signaling. 

Our results furthermore show that PepMV differentially regulates the RNA silencing 

pathway, suggesting a role for PepMV-encoded silencing suppressors, and the 

ubiquitination pathway. In addition, perturbation of pigment biosynthesis, as monitored 

by differential regulation of the flavonoid/anthocyanin and lycopene biosynthesis 

pathways, was monitored, which can be associated with the typical PepMV-induced 

marbling of tomato fruit.  

Finally, Chapter 7, the general discussion, is a PepMV pathogen profile in which 

the results obtained in this work are discussed and integrated into a review on the 

current knowledge on this highly successful pathogen of tomato crops.   
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Samenvatting 

 

Virussen hebben een enorm evolutie- en aanpassingsvermogen onder natuurlijke 

selectiedruk, onder meer dankzij de grootte van hun populaties en hun korte 

generatietijd. Ondanks aanzienlijke inspanningen in mens, dier en plant 

gezondheidsmanagement zijn virusziekten nog steeds moeilijk te beheersen of uit te 

roeien. Daarenboven worden bestaande beheersingsstrategieën bemoeilijkt door de 

continue opkomst van nieuwe virussen. In hoofdstuk 1 wordt een overzicht gegeven 

van opkomende virussen in de tomatenteelt, waaronder het Pepinomozaïekvirus 

(PepMV). PepMV is een Potexvirus met een enkelstrengig RNA genoom, dat in de 

voorbije jaren wereldwijd uitgroeide tot een van de belangrijkste virusziekten in de 

tomatenteelt. 

Infectie door PepMV kan een brede waaier van symptomen veroorzaken in 

tomatenplanten, waarvan het meest typische symptoom de vruchtmarmering is die tot 

significante economische verliezen kan leiden. Momenteel zijn er wereldwijd vijf 

genotypen van PepMV beschreven (EU, LP, CH2, US1 en US2), waarvan er drie zijn 

gevonden in Europa. Omdat de aard en ernst van de PepMV-symptomen in de 

tomatenteelt zeer variabel zijn, is de economische schade die het virus veroorzaakt 

moeilijk in te schatten. Identificatie van de factoren die de ernst van de symptomen 

bepalen is dan ook van groot belang. In hoofdstuk 2 wordt de genetische diversiteit 

van de PepMV populatie in Belgische tomatenteelten bestudeerd en gerelateerd aan 

symptoomontwikkeling in het gewas. Eerdere studies vonden geen correlatie tussen 

verschillende PepMV genotypen en de symptomatologie in de plant. Een nieuwe toets, 

gebaseerd op ‘Restriction Fragment Length Polymorphism’ (RFLP), werd ontwikkeld om 

de verschillende PepMV genotypen te onderscheiden. Zowel RFLP als sequentieanalyse 

onthulden het voorkomen van twee genotypen, het EU en het CH2 genotype, in de 

Belgische tomatenproductie. Verassend was de uitgesproken dominantie van het CH2 

genotype in de Belgische PepMV populatie, terwijl dit genotype eerder niet werd 

gedetecteerd in de commerciële tomatenproductie. Hoewel er geen verschillen in 

symptoomexpressie werden geobserveerd tussen planten geïnfecteerd met één van 

beide genotypen, resulteerde co-infectie met beide genotypen in sterkere PepMV 

symptomen. Daarnaast wees onze studie uit dat PepMV recombinanten frequent 

voorkomen in dergelijke menginfecties.  

Tot nu toe was het onduidelijk of verschillende PepMV isolaten verantwoordelijk 

zijn voor verschillen in symptoomontwikkeling. Daarom wordt de symptomatologie van 

verschillende isolaten bestudeerd in Hoofdstuk 3. Op basis van de studie beschreven in 

Hoofdstuk 2 werden vier isolaten geselecteerd die verschilden in symptoomexpressie in 
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het gewas waaruit ze geïsoleerd werden. De geselecteerde isolaten werden geïnoculeerd 

op tomatenplanten in afzonderlijke plastic tunnels. PepMV symptoomontwikkeling werd 

op regelmatige tijdstippen beoordeeld en aan de hand uitgebreide bemonstering en 

ELISA analysen, genotypering en nucleotide-sequenering, werden de virustiter en de 

variatie in PepMV sequenties opgevolgd over de gehele proefperiode. Twee isolaten (EU 

mild en CH2 mild), die geselecteerd werden op basis van de milde symptoomexpressie in 

het gewas van oorsprong, veroorzaakten enkel milde symptomen, terwijl twee andere 

isolaten (CH2 agressief en EU + CH2), die geselecteerd werden omwille van de ernstige 

symptomen, aanzienlijk meer symptomen veroorzaakten. De nucleotidensequentie van 

het milde en agressieve CH2 isolaat waren voor 99.4% identiek. De resultaten van deze 

studie tonen aan dat differentiële symptoomexpressie op zijn minst gedeeltelijk 

toegeschreven kan worden aan het PepMV isolaat, mogelijk geassocieerd met zeer kleine 

verschillen op RNA niveau.  

In Hoofdstuk 4 wordt aangetoond dat PepMV zaadoverdraagbaar is in tomaat. Er 

werden vruchten geoogst van de praktijkproef beschreven in Hoofdstuk 3, waaruit meer 

dan 100,000 zaden werden geëxtraheerd die gereinigd werden aan de hand van een 

enzymatische behandeling zonder disinfectie. Infectietesten met indicatorplanten 

bevestigden de aanwezigheid van infectieuze viruspartikels op het zaad. In het kader 

van een Europees project werden de zaden in drie afzonderlijke batches verdeeld over 

10 verschillende laboratoria, waar ze werden opgekweekt voor analyse van de zaailingen 

m.b.v. ELISA. In totaal werden meer dan 87,000 zaailingen getest, waarvan er 23 

besmet bleken met PepMV, wat resulteert in een zaadtransmissie percentage van 0.026. 

Deze resultaten demonstreren dat PepMV overgedragen kan worden van besmette zaden 

naar zaailingen en dat het gebruik van PepMV-besmette planten een risico inhoudt, 

zeker omdat het virus zeer infectieus is. Zaadtransmissie speelt dan ook mogelijk een 

belangrijke rol spelen in de verspreiding van PepMV.  

In hoofdstuk 5 werd voor drie milde PepMV isolaten, behorende tot het CH2, EU 

en LP genotype, aan de hand van praktijkproeven nagegaan of ze een tomatengewas 

konden beschermen (crossprotectie) tegen het agressieve CH2 isolaat (Hoofdstuk 3). Na 

besmetting met het agressieve isolaat werd een versterking van de symptomen en een 

toename van de schade waargenomen in planten die eerst geïnoculeerd waren met een 

mild isolaat dat tot een ander genotype (EU, LP) behoorde dan het agressieve ‘challenge’ 

isolaat (CH2). Een kwantitatieve genotypespecifieke TaqMan toets onthulde dat de 

accumulatie van het ‘challenge’ isolaat in deze planten slechts tijdelijk werd afgeremd. 

Echter, wanneer er een mild isolaat van het CH2 genotype werd gebruikt was de 

bescherming zeer efficiënt en kon het agressieve isolaat niet of amper worden 

gedetecteerd in het gewas.  Deze resultaten tonen aan dat de interactie tussen PepMV 
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isolaten grotendeels afhangt van de homologie in RNA sequentie en dat ‘post-

transcriptionele gene silencing’ (PTGS) een belangrijke rol speelt in crossprotectie.  

Vermits plantvirussen obligate intracellulaire parasieten zijn die cellulaire functies, 

bouwstenen en voedingsbronnen van hun gastheer wegkapen voor hun eigen replicatie 

en transport, induceren ze doorgaans een brede waaier van veranderingen in 

genexpressie en celfysiologie in hun gastheer. In Hoofdstuk 6 gebruikten we een 

‘custom-designed Affymetrix tomato GeneChip array’ met detector sets voor meer dan 

22,000 tomatengenen om de transcriptionele veranderingen in tomatenplanten te 

bestuderen in respons op inoculatie met de twee sterk gelijkende (99.4% identiteit in 

nucleotidensequentie) CH2 isolaten (mild en agressief) die gekarakteriseerd werden in 

Hoofdstuk 3. Onze resultaten tonen aan dat de twee isolaten verschillende transcriptoom 

responsen induceren in de tomatengastheer, ondanks het feit dat ze tot gelijkaardige 

virustiters accumuleren. PepMV inoculatie resulteerde in een brede maar transiënte 

repressie van gastheergenen, waarbij onder meer het primair metabolisme sterk 

aangetast werd. De intensiteit van de verdedigingsrespons was sterker bij inoculatie met 

het agressieve isolaat en de verdediging bleek via de salicylzuur signaaltransductie te 

verlopen, eerder dan via jasmonaat. Verder tonen onze resultaten aan dat PepMV de 

PTGS pathway differentieel reguleert, wat suggereert dat PepMV-gecodeerde ‘silencing 

suppressors’ een rol spelen in het infectieproces, alsook de ‘ubiquitination pathway’. 

Daarnaast werd een verstoring van de pigmenthuishouding door differentiële regulatie 

van de pathways voor biosynthese van flavonoïden, anthocyanen en lycopeen 

vastgesteld, wat mogelijk gecorreleerd is met de typische PepMV-geïnduceerde 

marmering van tomatenvruchten.  

Hoofdstuk 7 tenslotte, de algemene discussie, is een PepMV pathogeen profiel, 

waarin de resultaten die in dit werk bekomen werden besproken worden en geïntegreerd 

in een overzicht van de huidige kennis over deze succesvolle pathogeen van tomaat.  
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Juli 2006. Collega Bart Lievens verdedigt zijn doctoraat. We genieten van het zonnetje 

op het mooie binnenplein van het Arenbergkasteel in Leuven en klinken met een glaasje 

champagne op de knappe prestatie. Tijdens een gezellige babbel oppert Bart’s  

copromotor dr. ir. Bart Thomma dat het PepMV onderzoek toch ook een leuk 

doctoraatstopic zou zijn en dat hij het wel zou zien zitten om mij te begeleiden. Hij stelt 

voor dat ik er eens over nadenk…  

Ergens op een mooie zomermiddag in 2007 heb ik uiteindelijk beslist om ervoor 

te gaan. Intussen zijn we enkele jaren, ontelbare emails die heen en weer vlogen tussen 

Sint-Katelijne-Waver en Wageningen, heel wat boeiende discussies en een zevental 

papers verder. Ik overdrijf dus niet als ik schrijf dat ik heel wat aan mijn copromotor 

Bart Thomma te danken heb. Bart is een fantastische begeleider en mentor, die er op 

een heel inspirerende manier in slaagt om het beste in iemand naar boven te halen. Zijn 

gedrevenheid, oprechtheid, efficiëntie en – niet in het minst – zijn kwaliteiten als 

wetenschapper, hebben mij door deze boeiende en uitdagende periode gegidst. Bedankt 

Bart, ik heb enorm veel van je geleerd, en zeker niet alleen op wetenschappelijk vlak. 

Jouw optimisme en onaflatende inzet hebben een diepe indruk op me gemaakt.  

Ik zou daarnaast mijn promotor prof. de Wit willen bedanken omdat hij mij de 

kans en het vertrouwen gaf om mijn doctoraatsonderzoek onder zijn promotorschap uit 

te voeren.      

Ook binnen Scientia Terrae had ik twee bijzondere mentors, Bart Lievens en Fons 

Vanachter. Bart Lievens, al meer dan acht jaar mijn collega en tevens copromotor van 

dit werk, stond altijd klaar om zijn ervaring te delen, spendeerde avonden en misschien 

zelfs nachten om oplossingen te bedenken voor moeilijkheden waar het onderzoek 

tegenaan liep, en was bovendien altijd te vinden voor een leuke babbel. Bedankt Bart, je 

bent een geweldige collega. Je enthousiasme en je passie voor de wetenschap werken 

aanstekelijk. Zonder jou zou Scientia Terrae niet de dynamische groep zijn die het 

vandaag de dag is. Fons Vanachter, eveneens al acht jaar mijn naaste collega, wijdde 

me in in de wereld van de fytopathologie en de Vlaamse tuinbouw. Hij leerde me 

schimmels determineren, plantenwortels en -vaatbundels onderzoeken, de veilingklok 

interpreteren, het vakjargon van tuinders en voorlichters ontcijferen, opportunistische 

schimmels onderscheiden van de echte boosdoeners,… en hij stond het PepMV team 

steeds met raad en daad bij. Fons toonde me hoe je met diplomatie en overleg vaak veel 

meer bereikt dan met confrontatie. Bedankt Fons, het was – en is nog steeds - een eer 

om met jou te mogen samenwerken.  

Maar dit proefschrift is zeker niet alleen het werk van mezelf en mijn promotoren. 

Dit proefschrift is het resultaat van het werk van een heel gemotiveerd, efficiënt en leuk 
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team: Anneleen Paeleman, Kris Goen, Lieve Wittemans, Elise Vandewoestijne, Roel 

Vanderbruggen, Fons Vanachter en Frans De Nayer. Anneleen, bedankt voor de 

aangename en efficiënte samenwerking, voor de ontelbare uren die je in het labo 

doorbracht - tijdens en ver buiten de gangbare werkuren, en voor je onvoorwaardelijke 

inzet. Dit proefschrift is ook een beetje jouw werk… Kris, bedankt voor de leuke en open 

discussies, je kritische kijk, je enthousiasme, je oprechtheid en je steun. Dankzij jouw 

organisatietalent en je oog voor detail zijn onze proeven in de plastic tunnels een succes 

geworden. Lieve, bedankt voor je nuchtere en kritische kijk, je gedrevenheid, je passie 

voor het onderzoek, je ideeën en je steun. Elise, bedankt voor de leuke samenwerking. 

Je staat altijd klaar om extra werk op jou te nemen, of het nu gaat om bezoekjes aan 

tuinders, het uitschrijven van artikeltjes of het structureren en analyseren van de bergen 

data die we verzamelden... Roel, bedankt voor je onmisbare, pragmatische kijk op de 

zaken. Jij stuurde onze wilde plannen over de praktijkproeven in een haalbare richting 

en zorgde voor de teelttechnische sturing en omkadering. Frans, je bent nog een beetje 

nieuw in het team maar het is nu al duidelijk dat je een meerwaarde zal zijn voor de 

groep, en dat je een waardige collega bent voor Kris en Roel… Raf De Vis, directeur van 

PSKW, en Ward Baets, directeur van PCH, bedankt voor jullie steun en het vertrouwen in 

ons onderzoek. Onze proeven hadden – en hebben zeker ook op dit moment - 

belangrijke implicaties voor de werking op de Proefstations. Toch was er voor jullie veel 

mogelijk, als we maar met redelijke argumenten kwamen en een goed plan konden 

voorleggen. Ons PepMV-team is een mooi voorbeeld van hoe een goed team zoveel 

sterker kan zijn dan het sterkste individu. Het is een plezier om met zo’n bekwame en 

enthousiaste mensen te mogen samenwerken… 

Ook WUR-collega Peter Van Esse verdient een bijzonder bedankje. Bedankt Peter, 

voor de hulp bij het analyseren en interpreteren van de microarray data, voor de mooie 

figuren die je in mekaar toverde en voor de leuke ontvangst tijdens mijn bezoekjes aan 

het labo Fytopathologie in Wageningen: het was een plezier om met jou in discussie te 

gaan over zin en onzin van onze microarray resultaten en over Belgische frietjes en 

bieren ;-).  

 Een bijzonder woordje wil ik hier ook richten aan Tom De Ceuster, voorzitter van 

Scientia Terrae vzw. Bedankt Tom, voor het vertrouwen dat je vanaf mijn eerste 

werkdag (ergens in 2001… de tijd vliegt) in mij gesteld hebt, en voor de ruimte die je 

me gaf om te groeien. Je zei me in mijn eerste werkweek dat je van je mensen verwacht 

dat ze hun problemen zoveel mogelijk zelf oplossen, dat je tracht mensen te motiveren 

om zelf de juiste keuzes te maken en de lijnen uit te zetten. Dat typeert je. Je geeft je 

mensen de ruimte en de kans om er wat van te maken. Bedankt dat ik de kans kreeg 

om samen met jou, Bart, Fons, Kris en het hele team Scientia Terrae te laten groeien…
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Dit proefschrift zou er niet gekomen zijn zonder de financiële steun van de Vlaamse 

overheid (IWT Vlaanderen) en de tuinbouwsector. Ik wil dan ook IWT, LAVA en de 

veilingen, Greenpartners, de zaadindustrie en de overige leden van de 

gebruikerscommissie bedanken voor de steun en voor de prettige samenwerking. De 

open discussies tijdens de vergaderingen vormen een belangrijke meerwaarde voor het 

onderzoek. Daarnaast kunnen we steeds rekenen op de nodige technische en 

organisatorische ondersteuning. Omdat dit onderzoek onmogelijk een succes had kunnen 

worden zonder LAVA, wil ik in het bijzonder Maarten de Moor en Raf de Blaiser bedanken 

voor het vertrouwen en de steun.  

 Verder wil ik ook al mijn collega’s binnen Scientia Terrae  bedanken voor de leuke 

sfeer en de dynamische en positieve ingesteldheid. Een bijzonder woordje van dank voor 

mijn bureaugenootjes Annelies, Ingeborg en Hans: jullie enthousiasme en vrolijkheid 

maken van onze bureau een  prachtige werkomgeving.  

Thanks also to my Spanish colleague Nelia, for her smile and her enthusiasm, for 

her eagerness to learn and for her patience in dissecting tomato fruits and inoculating 

plants that sometimes refused to get sick in her caring hands.  

 I would also like to thank prof. Claude Bragard and dr. Amit Gal-On for sharing 

their plant virology expertise, for the scientific advice and the interesting discussions. 

Amit, your enthusiasm is inspiring, it’s a pleasure to collaborate with you.  

 Aan het einde van deze lang lijst van mensen die hebben bijgedragen aan het tot 

stand komen van dit werk, wil ik een bijzonder woordje van dank en appreciatie richten 

tot mijn ouders, mijn broer Kurt en mijn zus Kristien, voor alles wat ze me hebben 

meegegeven, voor hun onvoorwaardelijke steun, voor het enthousiasme waarmee ze al 

mijn ondernemingen volgen en steunen, voor hoe ze – elk op hun manier –  een 

inspirerend voorbeeld voor me zijn. We zijn de voorbije jaren niet gespaard gebleven 

van de zogenaamde klappen van het leven, maar onze band werd er alleen maar nog 

hechter op.  

 En ik sluit af met de belangrijkste persoon in mijn leven… Bedankt Hans, voor je 

onaflatende steun… Dankzij jou heb ik deze uitdaging aangevat, en dankzij jou heb ik 

het tot een goed einde gebracht.  

 

 

Inge 

06/02/2010 
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