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Abstract: Integrated modelling is one of the key aspects of Integrated Policy Assessment Toals,
which are used to find out whether, why and how policies are developed and what the possible options for
these policies are. They do this by determining the economic, social and environmental impacts for each
option. Where modelling used to be a domain-centric undertaking, to support integrated assessments the
modellers now need to describe and work with models that span various domains (mostly environment,
economy and social sciences). Conceptually this is challenging enough, and it would be helpful when the
technical burdens of models integration could be simplified by a standard framework.

Many such frameworks already exist, and new ones seem to be invented per project. For several large
Integrated A ssessment projects, funded by the EU, we choose to build upon the Open Modeling Interface and
Environment (OpenMI) standard, which has been in development since a few years. OpenMI is a data and
model integration framework, designed to take independent data and computing systems and provide a
standard means of describing how time series are communi cated between the systems.

Because the origina development target of the OpenMI was the hydrological domain, some work has been
needed to increase the applicability for other environmental domains in order to use it as glue for integrated
modeling. These modifications have been contributed to the OpenMI Association and the Technical
Committee (OATC), following the open source principles, and helped steer the development of the next
major version (2.0) of the OpenMI.

In this paper we discuss many of the changes that will be included in OpenMI 2 and will show how, with the
addition of richer data types, the exchange of values as objects, the possibility to use both a push (set) and
pull (get) approach for the data exchange between components, clearer state management and better OGC
compatibility, the OpenMI will become a more universal standard for model linking.

It is also concluded that with all these changes the biggest risk to be avoided is the OpenMI interfaces
becoming too flexible, introducing a lack of clarity that could result in incompatible components and
Software Development Kit (SDK) implementations. The OpenMI Technical Committee should take care to
prevent this from happening.
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1. INTRODUCTION

1.1. Integrated assessment and modelling

Societies see the emergence of new governance concepts, based on the assumption that processes of planning
and decision taking are no longer hierarchical but the product of complex interactions between governmental
and non-governmental organizations, and the genera public (according to the model of “co-production of
knowledge” Callon, 1999). All involved are seeking to influence the collectively binding decisions that have
consequences for their interests.

To account for this changing governance and the increased number of stakeholders involved, decisions need
to be assessed in an integrated context. One of the possible approaches to support this process is by
combining models and modelling tools into linked model chains and use it to simulate future scenarios. This
approach is also known as Integrated Assessment and Modelling (IAM; Parker et al., 2002) and is one of the
key aspects of Integrated Policy Assessment Tools, which are used to find out whether, why and how policies
are developed and what the possible options for these policies are. They do this by determining the economic,
social and environmental impacts for each option.

Where modelling used to be a domain-centric undertaking, to support IAM the modellers now need to
describe and work with models that span various domains (mostly environment, economy and social
sciences). Conceptually this is chalenging enough, and it would be helpful when the technical burdens of
models integration could be simplified by a standard framework. Many of such model integration
frameworks already exist (e.g. TIME, OMS, MODCOM, KEPLER). This paper focuses on only one of them,
the Open Modelling Interface (OpenMI; Moore and Tindall, 2005) which has been proposed as a European
standard to facilitate the exchange of data at run time between models.

1.2. What isthe Open Modelling Interface (OpenM1)

The OpenMI (www.openmi.org) is a data and model integration framework, designed to take independent
data and computing systems and provide a standard means of describing how time series are communicated
between the systems. It has been developed from the need to answer integrated hydrological catchments
management questions within the EU 5" framework program project Harmonl T. The main objective of the
HarmonlI T project was to provide a widely accepted unified method to link models, both legacy code and
new ones (Gijsbers et al, 2002). The OpenMI (version 1.*) provides a standardized interface to define,
describe and transfer data between software components that run sequentially, based on a pipes and filters
architecture (Gregersen et al, 2007). The data definition concerns what the datais about (quantity) and where
(element set) and when (time) it applies. Each component (LinkableComponent) has a meta data description
of its exchangeable data in terms of a quantity and an element set. Each unique exchangeable quantity is
registered and published in a so-called Exchangeltem. Connections between Exchangeltems of
LinkableComponents are defined by a Link and exist as a separate entity.

1.3. OpenMI Governance

The OpenMI is constantly under development under supervision of the OpenMI Association, which has as
main objectives to promote the development, use, management and maintenance. It is an entirely open
international group of organizations and people, with a small core team that supports, responds to and is
guided by a growing active worldwide user community. It is a not for profit organization and therefore
depends on the willingness of its members. Organizationally, the OpenMI Association consists of a General
Assembly, an Executive Committee (OAEC), a Technical Committee (OATC), and a Dissemination
Committee (OADC).

1.4. OpenMI compared to other frameworks; OMS, MODCOM, TIME, KEPLER

Many integrated modelling frameworks already exist, and new ones seem to be invented per project. A few
well known solutions are:

e OMS — The Object Modelling System: A pure Java, object-oriented modeling system framework
that enables interactive model construction and application based on components. It is a
collaborative project active among the U.S. Department of Agriculture and partner agencies and
organizations involved with agro-environmental modeling. (Carlson et al., AgSAP 2009).

e MODCOM: A framework that facilitates the assembly of simulation models from previously and
independently developed and tested component models. A small, but dedicated group of developers
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build the MODCOM software and it is distributed under the terms of the GNU Genera Public
License, available at http://www.modcom.wur.nl. (Hillyer et al., 2003).

e TIME - The Invisible Modelling Environment: a software development framework for creating,
testing and delivering environmental simulation models. TIME includes support for the
representation, management and visualization of a variety of data types, as well as support for
testing, integrating and calibrating simulation models. (http://www.toolkit.net.au/Tools/TIME).
TIME is intended for use by modelers who program in Visual Basic, C# or Fortran 95. Other
languages, such as C++ and Java are aso usable with TIME, though their use is not explicitly
supported. While all modelling frameworks simplify the task of creating models, by providing
reusable components for data handling, visualization and model execution, TIME further simplifies
the task by providing a high level, meta data driven environment for automating common tasks,
such as creating user interfaces for models, or optimizing model parameters. This reduces the
learning curve for new developers while the use of commercial programming languages gives
advanced users unbridled flexibility.

e KEPLER: A scientific work flow application designed to help scientists, analysts, and computer
programmers create, execute, and share models and analyses across a broad range of scientific and
engineering disciplines. Kepler can operate on data stored in a variety of formats, locally and over
the internet, and is an effective environment for integrating disparate software components, such as
merging "R" scripts with compiled "C" code, or facilitating remote, distributed execution of models.
Using Kepler's graphical user interface, users simply select and then connect pertinent analytical
components and data sources to create a "scientific work flow"—an executable representation of the
steps required to generate results. The Kepler software helps users share and reuse data, work flows,
and components developed by the scientific community to address common needs. The Kepler
software is developed and maintained by the cross-project Kepler collaboration, which is led by a
team consisting of several of the key institutions that originated the project: UC Davis, UC Santa
Barbara, and UC San Diego. Primary responsibility for achieving the goals of the Kepler Project
reside with the Leadership Team, which works to assure the long-term technical and financial
viability of Kepler by making strategic decisions on behalf of the Kepler user community, aswell as
providing an official and durable point-of-contact to articulate and represent the interests of the
Kepler Project and the Kepler software application. http://kepler-project.org/.

Compared to the frameworks listed above the OpenMI is the youngest and thus a bit less evolved. On the
other hand it has the unique feature that it in principle only sets a standard based on interfaces, currently
defined for both the .NET and the Java languages. A reference implementation is provided as Software
Development Kit (SDK), but using it is not mandatory. Fulfilling the defined interfaces in the proper way,
which is rather easy to do since they are minimal and partly only descriptive, is enough to ensure OpenMI
compliance. Since it is less bound to a specific environment it is a good candidate for cross-framework
linking and supporting multi-framework models (Argent and Rizolli, 2004). Other key points are the
existence of the OpenMI Association and the open source character of the OpenM| development, and the use
of OpenMI in several large European Commission (Sixth Framework Programme) projects, see
http://ec.europa.eu/research/fp6/index_en.cfm.

2. USING THE CURRENT OPENMI (1.4)

2.1. Casestudies (“other” domains)

For severa large Integrated Assessment projects funded by the EU Sixth Framework Programme, the
OpenMI was selected as basis to build upon instead of starting yet another modelling framework. Since its
release in early 2006 the OpenMI is well applied in the hydrological domain, and the following IA projects
tried to adopt (and adept) it for the broader environmental domain:

e SEAMLESS — assess agricultural and agro-environmental policies.
e  SENSOR — assess sustainability impacts of land use related policies.

e EFORWOOD - assess sustainability impacts of European forest wood chains, which are influenced
by policy, market drivers and technological innovations.

All these projects end in 2009.
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2.2. Proposalsfor OpenMI 2.* changes

Since the original development target of the OpenMI was the hydrologica domain and linking mostly time-
stepping, quantitative model engines, some work was needed to increase its applicability for the other
environmental areas addressed by the projects listed in the previous section. These modifications were
contributed to the OpenM| Association and the Technical Committee, following the open source principles,
for consideration for the next major OpenMI release. Next to that the years of practica use in the
hydrological domain also resulted in feedback on the original (version 1.*) standard and requests for changes.
A few of the larger issues:

e Support for qualitative and other (e.g. structured) types of data, besides quantitative data.

e Improved support for other components than those based on time-stepping model engines, e.g.
constant value provider, 0D component, Gl S-based models, analytic functions, databases, optimizer
and scenario managers, etc.

e Allow oneinput to get data from multiple outputs and to define how to processit (e.g. sum).
e Store spatia and other descriptive information with exchanged data.

e Improvethe simplicity of use, e.g. by supporting some native language elements like collections.

3. THE NEXT VERSION OF OPENMI (2.0)

Partly funded by the LIFE-Programme of the European Commission (http://ec.europa.eu/environment/life/)
in the OpenMI-Life project (http://www.openmi-life.org/) and with contributions of the European projects
mentioned before, the OpenMI Technical Committee took up the list of change requests and currently is
defining and building the next version of the OpenMI (2.0). The long term aim is that the OpenMI should
become the European and global standard for model linking in the environmental domain.

3.1. Keychanges

In the new version, asin version 1.*, the exchange items play a significant role. An |LinkableComponent has
alist of input and output items. The input items describe what can be accepted as input, and the output items
describe what can be provided as output by the component. For version 2 the exchange items will now also
contain the actual values, previously you could only ask the component to provide values for a quantity given
specific spatial and time period references. In the new version values are represented as a list, that can
contain any object as opposed to version 1.4 where the values always were either an array of doubles, or an
array of X, Y, Z vectors. Data can now aso be qualitative or quantitative (supported in the standard, see
Figure 1), or any custom implementation (complex types).
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Figure 1. Extended value definition interfaces of OpenM| 2
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For input items the values list is of type set (write), whereas the values list in output items is of type get
(read). Allowing to set values is also a major change as compared to version 1.* and is introduced mainly to
make it easier to work with optimizer and scenario manager type of components. It also, together with some
changes to the linkable component interface, makes it possible to move beyond the strictly pull-based
calculation approach of OpenMI 1.*. In version 2 each component can specify which operation modes it
supports (e.g. pull and/or push). When the component is initialised an operation mode is selected, which then
is expected to be used for calculation and handling requests for values.

Inputs and outputs contain the actual values — no spatial, temporal or unit conversions. Getting values from
the input or output will not trigger any calculations. When a component needs to get values not already
available in the output (there is an isAvailable property that can be checked), the component can invoke the
update method in the I LinkableComponent interface.

The component is then to investigate what data is requested (i.e. the update call is for certain inputs
connected to outputs of the component), and perform calculations or other actions needed to present the data
in its outputs.

One possible way to use thisis as follows (for a pull-based system):

1. Componentl <>--[Outputlteml] >[I nputltem1]--<>Component2

2. Component2 updates and sets times, elements, quantity/quality which it needsin the Inputlteml.
3. Componentl updates and sets new computed valuesinto its Outputltem?.
4

Outputlteml will check its consumers (IInputltems) and if they are compatible will set values into
them.

5. If inputltems are not compatible there should be a decorator inserted in between (or more than one),
or an error should be generated.

This, however, is at the moment of writing still under discussion within the OpenMI Technical Committee.
What is clear is that the separate ILink interface from the version 1.* will be removed and replaced by direct
references between inputs and outputs (i.e. an input knows its provider, and an output knows its consumers).

In version 1.4, to retrieve values from a model component, its getValues method must be called and the
model should deliver these values represented at time, locations and the unit defined by the requesting
component. When needed one or more DataOperations could be applied to convert the data. In version 2.*
this will be achieved by requesting a decorated output item from the model component by invoking its
getDecorator method. A decorator is an output item adapted specifically to the input item that is passed as
argument to the getDecorator method. Decorated output items have an argument property that makes it
possible to define further details about how the data is to be provided — e.g. by defining the interpolation
method to be used. Figure 2 shows an example of the use of decorators to convert between spatia
representation of the data, from what is delivered as standard output of the component to what is requested by
another component. The lines existing of edges and nodes (circles) in the diagram illustrate the spatial
representation and its transformation by the decorators.

Component
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\ \&
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Figure 2: Use of output item decoratorsin OpenM| 2
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And finally there are some smaller changes being worked on:

e Increased use of implementation language specific elements, e.g. the native event mechanism of
.NET and the Observer/Observable pattern of Java, native collection classes and native date/time
classes. In version 1.*, the OpenMI interfaces were kept as language independent as possible,
resulting in the introduction of a custom event system and methods like *getSze() and
*getltem(index). Although more generic, this approach required more boilerplate code to convert
from the OpenMI standard to the language specific counterparts.

e Animproved definition of the ISate and IManageState interfaces of OpenMI, which a component
can implement to support saving and restoring of internal state.

e OpenMI ElementSet and spatia reference definitions used brought more in-line with the Open
Geospatial Consortium (OGC, http://www.opengeospatial.org/) OpenGIS Simple Features Interface
Standard specification and well-known text (WKT) standards. WKT is a text mark-up language for
representing vector geometry objects on a map, spatial reference systems of spatial objects and
transformations between spatial reference systems.

3.2. Development timeline

At the moment of writing this paper (March 2009) version 2.0 of the OpenMI is still under development. The
initial new version of the interfaces is frozen (called the “Trento” version), but some issues remain to be
solved or clarified in more detail. The target for the end of March is to do so by implementing a draft SDK
and use it to test the main concepts. Language specific details from the Java platform are also included. In the
next steps up to the release by end December 2009, further testing, refining and finalizing is planned,
currently according to the following timeline;

e End January 2009: “Trento” version of 2.0 interfaces (standard).

e End March 2009: .NET SDK and testing of main concepts, Java interfaces.
e End April 2009: Configuration editor and further refinements.

e End October 2009: External review and further migration of models.

e End December 2009: Adjustments according to reviews, submit standard release to OAEC.

3.3. Doesit get more universal?

With al these (planned) changes, does the OpenMI get more universal? We think so. With the addition of
richer data types, exchange of objects, the possibility to use both a push (set) and pull (get) approach for the
data exchange between components, clearer state management and better OGC compatibility, integrating
different other types of components (than just time-stepping model engines), application of the OpenMI
becomes possible with less overhead required. For the projects referenced in this paper, much custom coding
could have been avoided.

Increased use of native programming language elements like the event mechanism and collections
frameworks will make the OpenMI more convenient to work with for developers. The higgest risk to be
avoided is that the OpenMI interfaces get to flexible, introducing a lack of clarity that could result in
incompatible components and SDK implementations. The OATC should prevent this.

It is also clear that the work of the OpenMI Association and having it available as open source is really
needed to get the required input and community support to set it as a standard for model linking in the
environmental domain.

4. FUTURE ENHANCEMENTS

With the release of the OpenMI version 2.0 the development of the OpenMI will not stop. There are many
more interesting areas to research and potentialy include in the OpenMI. A few current ideas:

e Increased use of semantic information to describe components and exchange items. By using
ontology the OpenMI would better fit into the semantic web world and, for example, reasoning
engines could be used to facilitate model integration. Some steps towards this have been taken in the
SEAMLESS project (Knapen et al, 2009).
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e Apply the OpenMI for modeling framework interoperability. By using only the interfaces defined in
the OpenMI standard and integrating them into existing model integration frameworks, it can
potentially be used for framework interoperability. Definitely it would be easier to have such a
standard in-between than attempting to make N:M connections between the frameworks.

e Combining the previous two points together with merging the web standards for Service Oriented
Architecture (SOA), like UDDI, WSDL and SOAP, in general could make using models within an
enterprise or across organizations easier. Users could be assisted (semi-automatically) in finding and
selecting models and creating mash-ups of them. The version 2.0 of the OpenMI aready is less
stateless that the old version (although more attention to this is still needed) which is needed to
support Enterprise Model Mash-ups, but it will also require a lot of awareness about this new
purpose and use of models by the model creators.

e On the SDK side of the OpenMI, working with it could be made less invasive, for example
following approaches from other frameworks like Spring (http://www.springsource.org) and
Hibernate (http://www.hibernate.org), eg. by using plain classes and annotations or XML
configuration files to use them with the OpenMI.

5. DISCUSSION AND CONCLUSIONS

This paper provided some details of the development of the OpenMI, from its current version 1.4 to the new
major 2.0 release that will be finalized by the end of December 2009. It was concluded that this version took
well into account all the comments and feedback from a number of large European projects that applied the
OpenMI into the environmental domain, mainly in the field of Decision Support Systems for Integrated
Assessments. In general, the feeling is that the new version of the OpenMI has lots of potential to take
integrated modeling from the hydrological domain into the environmental domain and perhaps beyond that.
Some nice potential future work for the OATC has been listed as well.
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