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      Abstract 
 

Poor soil fertility in smallholder farming systems in sub-Saharan Africa is recognised as a 

major factor responsible for low per capita food production and escalating food insecurity. 

Increasing food production in most smallholder farming systems requires intensification with 

nutrient inputs. Targeting nutrient management interventions to heterogeneity can greatly 

enhance the use efficiency of the scarce nutrient inputs and can help in identification of ‘best 

fits’ (most suitable options for niches within the systems). This thesis aimed at contributing to 

understanding how to target nutrient management options to heterogeneity for improved crop 

production in the Teso farming system in eastern Uganda.  

Land use change analysis between 1960 and 2001 showed that 48 -78% more land was 

brought into cultivation and disappearance of communal grazing lands. Productivity of the 

farming system is also low. Population growth, political-instability-mediated collapse of 

institutions that supported production and marketing of cotton, and cattle rustling account for 

the changes in land use and productivity of the system. Balances of N, P and K were positive 

on larger farms (LF) and negative on the medium farms (MF), small farms with cattle (SF1) 

and without cattle (SF2), but were negative at the crop scale on all the farm types. Livestock, 

crop yield, labour availability and access to off farm income are the sustainability indicators 

in the system.  

There were no topographic-gradients in soil pH, SOC, total N, Exch. Mg, Exch. Ca, 

Exch. K, CEC, sand and clay in the two villages with different geo-morphological features 

characterised except for extractable P which was 3-5 times higher in the top soils of the 

profiles in the valley bottoms than those in the upper landscape position of the toposequences. 

Soil organic carbon (SOC) concentrations in surface soils significantly differed (P<0.05) 

between landscape positions and differences were even significantly much larger (P<0.001) 

between field types. Fields classified as of good, medium and poor soil fertility by farmers 

had average SOC concentrations of respectively 9.3-15 g kg–1, 6.6-11 g kg–1, 5.5-7.0 g kg–1. 

In contrast with other studies on smallholder farming systems in sub-Saharan Africa, spatial 

analysis did not reveal a particular generalized pattern in variability in soil fertility across 

farms. Within-farms, larger contents of SOC were associated with larger amounts of silt + 

clay and on locations of former kraals. The field scale, which is easily recognised by farmers, 

is an important entry point for targeting soil fertility management technologies. 

 Heterogeneity in soil fertility affected performance of legumes established with and 

without P and their residual effect on subsequent finger millet crops. Legume biomass and N 

accumulation differed significantly (P<0.001) between villages, landscape position, field type 

and P application rate. Mucuna accumulated the most biomass (4.8-10.9 Mg ha–1) and 

groundnut the least (1.0-3.4 Mg ha–1) on both good and poor fields in the upper and middle 

landscape positions. N accumulation and amounts of N2-fixed by the legumes followed a 



 

similar trend as biomass, and was increased significantly by application of P. Grain yields of 

finger millet were significantly (P<0.001) higher in the first season after incorporation of 

legume biomass than in the second season after incorporation. Finger millet also produced 

significantly more grain yield in good fields (0.62-2.15 Mg ha–1) compared with poor fields 

(0.29-1.49 Mg ha–1). Farmers preferred growing groundnut and were not interested in growing 

pigeonpea and mucuna. They preferentially targeted grain legumes to good fields except for 

mucuna and pigeonpea to poor fields. Benefit-cost ratios indicated that legume-millet 

rotations without P application were only profitable on good fields. Green grams, cowpea and 

soyabean without P can be targeted to good fields on both upper and middle landscape 

positions in both villages but mucuna without P to poor fields on the middle landscape 

position in Chelekura village and cowpea without P to poor fields on the upper landscape 

position in Onamudian village.  

Application of N, P fertilisers alone (0, 30, 60, 90 kg ha–1), N+P at equal rates of 

single application, and manure (3 t ha–1) supplemented with N (0, 30, 60 and 90 kg ha–1) to 

degraded fields closed the within farm yield gap in finger millet by only 24%-43 %. The 

inability of the options to close the yield differences was because of poor nutrient use 

efficiencies (<25%) and other nutrient limitations (S and K) and physical limitations due to 

surface crusting. With large heterogeneity in soil fertility within smallholder farming systems, 

blanket recommendations are of limited value.  

Using the Quantitative Evaluation of Fertility of Tropical Soils (QUEFTS) model 

calibrated for finger millet, balanced fertiliser requirements for a target millet yield of 2000 kg 

ha–1 was estimated at 83 kg N ha–1 and 52 kg P ha–1 and 56 kg K ha–1 for the sandy loam soils 

of Chelekura village and 64 kg N ha–1 and 31 kg P ha–1 and 40 kg K ha–1 for the sandy clay 

loam soils in Onamudian village. Targeting nutrient management options can result in larger 

benefits from nutrient management interventions and specific attention can be afforded to 

specific constraints to avoid wastage of resources. Combining organic resources and mineral 

fertilisers is needed for higher crop yields and nutrient use efficiencies.  However, the SOC 

thresholds for higher mineral fertiliser use efficiencies need to be determined for different soil 

types (silt + clay) and crops as well as making farm/ system scale reconfigurations of 

cropping systems that will enhance efficiency in resource use. Supportive policy frameworks 

should be put in place to enhance investment in soil fertility management and thus increase 

food production. 

 

Key words: Land use change; Heterogeneity in soil fertility; Targeting; Integrated soil fertility 

management; Nutrient use efficiencies; Rehabilitation of degraded fields; Fertiliser requirements 

Finger millet; QUEFTS model; Smallholder systems;  sub-Saharan Africa. 
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1.0 Soil fertility and food security status in Sub-Saharan Africa 

 

Low and declining crop productivity in sub-Saharan Africa (SSA) is attributed to 

constraints associated with poor soil fertility. In consequence, food insecurity is affecting 

the rural populations whose livelihoods depend on mainly agriculture (FAO, 2006). The 

escalating food insecurity jeopardizes the achievement of the first millennium 

development goal (MDG1) which aims at halving the population by 2015 that are 

currently hungry and poor (FAO, 2006).  

Smallholder African farming systems are diverse and heterogeneous but this has 

often been less adequately considered in the development of interventions for increasing 

productivity. As such, the performance of on-station generated technologies is dismal (30 

% of on-station yields) when tested on farm (FAO/World Bank, 1999), leading to limited 

uptake of agricultural technologies such as mineral fertilisers (Bekunda et al., 1997; 

Morris et al., 2007). A variety of factors lead up to this: poor soil fertility, pests and 

diseases, poor management and erratic climatic conditions, social preferences and 

unfavourable socio-economic and institutional environments.  

Soils in SSA are generally inherently low in fertility and management devoid of 

use of adequate nutrient inputs worsens their fertility status (Bationo et al., 2006) and 

contributes to unsustainable farming systems (Stoorvogel and Smaling, 1990; Smaling et 

al., 1997; Hilhorst and Muchena, 2000). It is recognised that increasing agricultural 

productivity is needed if food insecurity in SSA is to be alleviated, and increasing soil 

productivity is one important aspect. The Abuja summit of 2006, recommended use of 

organic and inorganic fertilisers but these political guidelines need to be supported with 

agronomic guidelines complimented with institutional support including improving 

access by smallholders to input and output markets (Andriesse et al., 2007).  

 

1.1 Challenges in increasing productivity in smallholder farming systems  

 

Maintaining productivity in most smallholder farming systems has in the past depended 

on the natural processes of shifting cultivation and fallowing. Owing to population 

increases, expansion of agricultural production through extensification has rendered these 

approaches impossible in most smallholder farming systems. Many smallholder farming 

systems have reached a limit in terms of intensity of land use without inputs and are in 

transitions to intensification. This is the case with the smallholder farming systems in the 

study areas in Pallisa, eastern Uganda. Intensification requires increased use of nutrient 

inputs by managing crop sequences (rotations), recycling of crop residues, and 

application of manures and inorganic mineral fertilisers to achieve and sustain high 

productivity. 
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 Including legumes in crop rotations is considered the most feasible and cheap 

option for resource poor smallholder farmers as legumes add nitrogen into the systems 

through biological nitrogen fixation (BNF) and benefit subsequent crops in rotation 

(Giller, 2001). To benefit from BNF however, soil conditions need to be suitable for 

legume growth (Vanlauwe and Giller, 2006). Across sub-Saharan Africa, soils are low in 

P and tend to be acidic (Bationo et al., 2006) and these constraints must be alleviated to 

benefit from BNF. The alternative options are using crop residues and manures but often 

limited quantities on farms and poor residue or manure quality curtails their use. Where 

organic residues are available the labour costs associated with their use for soil fertility 

management may be prohibitive. Inorganic mineral fertilizers are highly nutrient 

concentrated but are inaccessible for smallholder farmers in many countries due to the 

cost. This has strong implications on the Abuja fertiliser summit recommendation for 

every farmer to use 50 kg ha–1 of fertiliser. At times fertilisers give no yield response, 

especially when poorly applied or that fertilisers may be applied where they are not 

needed. Fertiliser recommendations that were developed on the basis of agroecological 

zones (soil maps and climate) (e.g. Smaling, 1993) are of little value as they do not 

account for changes due to historical management. Heterogeneity in smallholder farming 

systems can be as large as agroecological zones to warrant differential management 

intervention. There is a need to rethink and revisit the strategies to deployment of nutrient 

management interventions in the context of the heterogeneity in soil fertility. Relevant 

scales need to be determined at which nutrient management interventions should be 

applied within the systems. 

 

1.2 Targeting soil fertility interventions to increase crop productivity 

 

There is a renewed effort to address food insecurity issues in SSA. Through the New 

Partnership for African Development (NEPAD) and the Comprehensive Africa 

Agricultural Development Programme (CAADP), the African Green Revolution Alliance 

(AGRA) was instituted to work towards realization of an African green revolution. This 

revolution should be uniquely African and needs to take onboard amongst other issues, 

the large diversity and heterogeneity in the farming systems in developing interventions 

as pointed out by Kofi Annan (Sikkema, 2008). For the continent with the oldest and 

nutrient depleted soils, high poverty levels and limited use of nutrient resources in crop 

production, an approach that integrates the use of both inorganic and organic nutrient 

resources is most plausible. This approach underpins the integrated soil fertility 

management (ISFM) paradigm based on the important principles of agronomical 

effectiveness, social acceptance, economic viability and building on the knowledge and 

skills of all stakeholders (Vanlauwe et al. 2002; 2009). With these underlying principles, 
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targeting of ISFM practices within diverse farming systems can be possible. The 

paradigm fits well with the socio-ecological niche concept of fitting legumes to niches 

within farming systems (Ojiem et al., 2006). This approach provides practical steps 

toward identification of ‘best fits’ from the available best bests for smallholder African 

farming systems (e.g. Smithson and Giller, 2002; Mafongoya et al., 2006; Okalebo et al., 

2006) and improving resource use efficiencies and productivity (Tittonell et al., 2007; 

Zingore et al., 2007; Vanlauwe et al., 2007). Efficacy of the interventions at a relevant 

scale in a given biophysical environment and social acceptance, and economic viability 

are major initial concerns that must be ascertained. Appropriate characterisation of the 

systems as used in the NUANCES (Nutrient use in Animal and Cropping Systems-

Efficiencies and Scales) framework (Giller et al., 2002; 2006) is therefore a first step 

towards understanding the biophysical and socio-economic environment within which 

farmers operate. Characterisation of soil fertility in the smallholder farming can reveal 

the relevant scale for targeting interventions. 

   

1.3  Rationale of the research 

 

Biophysical variation between- and within farms is determined by inherent characteristics 

such as topography, soil type and field types (Deckers, 2002; Tittonell et al., 2005). 

Topographic positions, soil types and fields may be fixed on the landscape but soil 

fertility is variable due to anthropogenic activities. The scales at which the magnitudes of 

variation in heterogeneity in soil fertility are large enough (such as between soil types, 

field types or agroecological zones) to warrant differentiation of management practices 

need to be identified. Thorough systematic characterisation and evaluation of the impacts 

heterogeneity has on the efficacy of nutrient management technologies is vital in guiding 

site specific nutrient management and to allow best fitting of ISFM recommendations 

within smallholder farming systems. Recent studies have shown heterogeneity in soil 

fertility to affect nutrient use efficiencies and crop performance (Vanlauwe et al., 2006; 

Wopereis et al., 2006; Tittonell et al., 2007; Zingore et al., 2007). Nutrient use 

efficiencies are useful for development of appropriate fertiliser recommendations 

compared to soil tests which generate fertility classes (Janssen, 1998; Doberman et al., 

2003). In this study, characterisation and evaluation of the impacts of soil fertility 

heterogeneity on efficacy of integrated nutrient management practices underlines the 

basis for understanding how to target integrated soil fertility management in the Teso 

farming system in eastern Uganda. 
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1.4 Objectives  

This thesis concentrates on soil heterogeneity and its functioning in a low input Teso 

farming system in Uganda with the broad objective of contributing to understanding of 

how to improve productivity of the farming system through targeting of integrated soil 

fertility management practices to spatial soil variability. Specific objectives were to:  

1. Identify the main drivers of change in land use in the farming system from 

1960 -2001 and assess the sustainability of the smallholder farming systems; 

2. Determine the relevant scale for targeting soil fertility management 

interventions in the smallholder farming systems; 

3. Evaluate the impacts of heterogeneity on the agronomic and socio-economic 

performance of legume based integrated soil fertility management practices;  

4. Evaluate the effectiveness of organic and inorganic mineral fertilisers to 

increase crop productivity on degraded fields;  

5. Develop fertiliser recommendations for millet production. 

  

1.5 Research Approach 

 

The research employed an empirical approach and combined historical analysis, 

characterisation and experimentation to gain understanding of how to target nutrient 

management practices. How past changes in the farming system contributed to the low 

productivity and lack of sustainability in farming system was explored. Through 

characterisation, the magnitudes and the nature of variability in soil fertility were 

established and underlined the intervention with soil fertility management practices in the 

quest to improve productivity of finger millet; a crop neglected in national research yet 

important as a food security crop and income source for many smallholders in Uganda 

(Oryokot, 2001). A variety of tools were used to collect and synthesise information to 

contribute to understanding of how to target soil fertility management practices in the 

smallholder farming systems. Approaches and techniques used included satellite image 

analysis, interviews and literature reviews, place-based analysis in understanding the 

dynamics of the farming systems. Characterisation of soil fertility along toposequences 

and within farms with the participation of the farmers was chosen to ensure learning from 

their local knowledge and to establish a relevant scale for targeting integrated soil fertility 

management practices. Farmer participation in evaluation of technologies tested was 

helpful in understanding which of the technologies could possibly be accepted. Benefit: 

cost ratios were calculated to assess the profitability of the options as affected by 

heterogeneity in soil fertility. Through experimentation, the potential of soil fertility 

management practices to improve productivity of degraded fields in the short-term were 

explored and further insights gained on what other nutrients were limiting. Experimental 
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data was used to calibrate the QUEFTS (Quantitative Evaluation of the Fertility of 

Tropical soils) model to support derivation of site specific nutrient management 

recommendations for finger millet. 

  

1.6 Thesis outline  

 

Chapter 2 explores the causes of land use change in the Teso farming systems over a 41 

year period through a combination of methodological approaches including satellite 

imagery, household and key informant interviews. A place-based analysis was used to 

compare the trends in development of the smallholder systems with a similar system in 

southern Mali to identify ultimate drivers of land use change. The sustainability of the 

smallholder farming systems was explored through nutrient balance analysis and 

determinants of sustainability identified.   

Heterogeneity in soil fertility between and within farms is characterised through 

soil analysis and spatial farm mapping. The relevant scale for targeting soil fertility 

management practices is identified in Chapter 3. Chapter 4, addresses the impacts of 

heterogeneity in soil fertility on the effectiveness of legume based integrated soil fertility 

management. Legume biomass productivity, N2-fixation and residual benefit to finger 

millet grown in rotation were measured. As well, farmers preferential targeting and 

acceptance of the legume species and the impact of heterogeneity on profitability of the 

legume-millet rotations were assessed. The potential of manure and mineral fertilisers to 

improve productivity of degraded fields is considered in Chapter 5. The effectiveness of 

these nutrient options was rated against the former kraals which are benchmarks of soil 

fertility recognised by farmers to produced highest millet yield in the farming system. 

Through a greenhouse experiment, other nutrients limiting millet productivity on 

degraded fields were also identified. 

 Chapter 6 is about site specific nutrient management in finger millet. The 

QUEFTS model was calibrated and fertilizer requirements of finger millet to produce 

target yields as obtained on the former kraals were derived. In the final chapter (Chapter 

7) information from earlier chapters is integrated to discus challenges and opportunities 

with the interventions tested to improve crop productivity of the farming system from 

both the technical and institutional standpoints. Ideas for further research are also 

introduced. 
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Drivers of change in land use and household determinants of 
sustainability in smallholder farming systems in eastern 
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Abstract   

 

This study identifies the factors that have driven change in land use in a low input farming 

system in eastern Uganda from 1960 to 2001 and in farm characteristics that influence 

sustainability of the farming system. During the period of analysis more land was brought into 

cultivation, and swamps were encroached. Cropping diversified and cassava overtook cotton 

and millet in importance, and rice emerged in swamps as an alternative cash crop. These 

changes are explained by population growth and political instability-mediated effects arising 

from the collapse of cotton marketing and land management institutions, communal labour 

arrangements and cattle rustling. Sustainability of the farming system is driven by livestock, 

crop productivity, labour availability and access to off farm income. Private-public partnerships 

around market-oriented crops could encourage investment in use of external nutrient inputs to 

boost and sustain productivity in such sub-Saharan Africa farming systems.  

 

Key words: Population growth; Political instability; Land use change; Nutrient balances; Farm 

typology 
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2.0 Introduction 

 

Land use change in African farming systems has been attributed largely to population 

growth with the common conclusion that it has resulted in widespread environment 

degradation (Cleaver and Schrieber, 1994). This ascribes to the neo Malthusian theory, 

which postulates that once carrying capacity of the land is surpassed degradation occurs 

(Malthus, 1989). There are, however, well-documented examples where environmental 

quality has improved with increases in population density (Tiffen et al., 1994; Tappan 

and McGahuey, 2007), supporting the Boserupian theory (Boserup, 1965) that 

technological innovations driven by rising population prevent starvation and 

degradation. Thus population growth alone is insufficient to explain land use change in 

most tropical farming systems – rather it interacts with other underlying factors such as 

politics, cultural norms and the prevailing economic climate (Lambin et al., 2003). 

Depending on the socio-economic factors and household resources, farming systems 

may undergo intensification or extensification (Crowley and Carter, 2000; Siren, 2007; 

Malmberg and Tegenu, 2007).  

  Land use and land cover in the Teso farming system in eastern Uganda has 

changed substantially over the past century. This farming system is a mixed, agro-

pastoral system based on production of annual crops and livestock for subsistence that 

supports one fifth of the population of Uganda. In the 1960s, the dominant annual 

cropping systems were cotton and millet (Parsons, 1970) but these have been overtaken 

by cassava in importance since the mid 1990s (Fermont et al., 2008). There is 

widespread soil degradation (Wortmann and Kaizzi, 1998; Walaga et al., 2000; Nkonya 

et al., 2005), wetland encroachment (NEMA, 2001) and poor crop productivity in the 

system (Kidoido et al., 2002). Livelihoods of the smallholders are threatened and 

recurrent episodes of famine have been reported (Ssali et al., 2002)  

The drivers of the population-farming-environment interactions in this system 

are poorly understood yet are vital in guiding future policy for development in the 

region. Studies of the population-farming-environment nexus in African farming 

systems are often based on correlations between land use and population growth and use 

inferential analysis to examine the influence of policy and institutional factors 

(Hamandawana et al., 2005; Baijukya et al., 2005; Kamusoko and Aniya, 2007). This 

study uses a place-based analysis combined with a comparative case study (cf. Lambin 

et al., 2003) to identify the underlying policy-institutional factors which, apart from 

population growth, have resulted in land use change in the Teso farming system. The 

cotton-cereal farming system of southern Mali is used as a comparative case study 

because of the similarity with the Teso system. Both systems have experienced rapid 
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population increase during the period of analysis (1960 to 2001) with cotton being the 

major cash driver in the 1960s. Cotton remained a major source of cash income in the 

Mali system and productivity of the farming system improved with time. Cotton yields 

rose from 0.23 t ha–1 to over 1 t ha–1 and cereal yields from 0.7 t ha –1 to 1 t ha–1 

(Benjaminsen, 2001; Tefft, 2004). Mali has enjoyed relative political stability and 

institutional support (Bingen, 1998) whilst the Ugandan system has operated under 

political instability with no supportive institutions. In this way we are able to identify 

policy-institutional factors that have influenced the Teso system. 

 Observed land use and land cover is a reflection of aggregated land use 

decisions at the household level (Lambin et al., 2003; Browder et al., 2004). Land use 

and cover changes and environmental quality are also associated (Nepstad et al., 1999; 

Fearnside, 2000) particularly through the management practices applied on given land 

use types. Empirical studies have explored the interactions between household 

characteristics, socio-economics and land use (Pinchón, 1997; Perz, 2001; Browder et 

al., 2004; VanWey et al., 2007) but have rarely examined effects on soil quality.  

Soil fertility and hence crop productivity is related to the nutrients available for 

plant growth (the essential elements), three of which are required in large amounts: 

nitrogen (N), phosphorus (P) and potassium (K). N, P and K are also the nutrients most 

commonly limiting crop production in sub-Saharan Africa (Vlek, 1990). Input-output 

balances of these nutrients in agro-ecosystems can indicate the sustainability status of 

the farming system (Pol and Traore, 1993). Relating the nutrient balances with farm 

household characteristics can therefore help to identify factors that influence 

sustainability of farming systems - an approach we apply in this study. Nutrient 

balances are a reflection of management practices that influence movement (flows) of 

nutrients into, within and out of a given farming system, and therefore reflect the effects 

of aggregated management decisions of different farm types in response to the 

prevailing policy-institutional environment (Defoer and Budelman, 2000). Nutrient 

balances are computed as the difference between total nutrient inflows and total nutrient 

outflows and can be measured at various scales ranging from the plant, plot, field, farm, 

community, region, nation or continent (Jager et al., 1998).  

This study recognizes the diversity in farm households and heterogeneity in soil 

fertility within farming systems (Tittonell, 2007), which have been ignored in 

developing management recommendations and yet are important to farmers in deciding 

land use /management practices to adopt (Smaling, 1993). The objectives of this study 

were: (i) to identify the drivers of land use change in the Teso farming system from 

1960 to 2001 and its impacts on soil productivity; and (ii) to determine the farm level 

characteristics that influence farming systems sustainability. The paper presents a 
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review of relevant literature on farming system change in relation to land use decisions; 

followed by a description of the study area and villages, of procedures for data 

collection on land use and land cover and farm surveys to obtain farm characteristics. 

Farmer’s perceptions of soil productivity are described as well as farm nutrient 

management including nutrient flows. Some suggestions for future improvement of the 

sustainability and productivity of the farming system are presented in the conclusion. 

 

2.1 Farming systems/ land use and household decisions 

 

Spatial-temporal patterns in land use observed at higher scales are an aggregation of 

land use and management decisions at micro-scale by households in response to policy 

and institutional environment over time (Lambin et al., 2003). As households are 

diverse in terms of resources and operate within heterogeneous biophysical and policy 

and institutional environments, the land use patterns are found to exhibit spatial and 

temporal dynamics (Dixon et al., 2001). To explain patterns of land use and land cover 

changes, studies have built on the Chayanovian theory in which the household 

demographic cycle was used to explain the differences in land areas cultivated by 

households (Thorner et al., 1986). Households with lower dependency ratios (more 

labour units compared with consumer units) cultivated more land than those with higher 

dependency ratios. The dependency ratios however change with maturation of 

households and so did land use types (Perz, 2001). This theory holds under assumptions 

of land abundance, absence of labour markets, with no input, credit and output markets 

(Perz, 2001); conditions that do not hold for most tropical farming systems.  

The model has been modified to include labour markets, access to input and 

output markets in addition to the household demographic structures and tested in the 

Amazon forest frontiers (conditions of land abundance still exist) to explain empirically 

changes in deforestation based on relationships between land use types and household 

characteristics (Browder et al., 2004), and in few cases to explore underlying factors 

that influence land use decisions of farm households (Pinchón, 1997; VanWey et al., 

2007). Generally, the household’s internal demands for survival and subsistence in the 

context of prevailing socio-economic and political environment determine choices in 

farming (Walker et al., 2002). 

Several factors have been used to explain land use decisions including soil 

quality, farm size, farm labour, level of household education, farming experience, land 

tenure security, distance to market, farm age, off farm income, participation, initial 

wealth status of households, access to credit, and technical knowledge (Browder et al., 

2004). No consistent effects of these independent variables were usually observed in 
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 Figure 1 Location of study sites and rainfall distribution in Pallisa district, Uganda 

 

terms of relationships between land use and household characteristics. Pinchón (1997) 

working in the Ecuadorian Amazon found soil fertility, topographical location of 

farmland, the duration of settlement (farm age) and household resource endowments to 

significantly influence land use decisions. Ownership of larger cattle herds left large 

farm areas under pasture and negatively influenced the share of farm area allocated to 

food crops. Smaller farms used land more intensively and cleared most of the forest for 

annual and perennial cropping. Families with larger farms cleared less proportions of 

forest and pastures were more important on the larger rather than the small farms and 

closely related to ranching land use. Further, farm household demographic 

characteristics such as education level of household head, family and wage labour, and 

consumer units had significant effects on land use decisions. Security of land tenure also 

significantly influenced land-allocation decisions. Farm household’s titled to land 

converted less forest to agricultural land and had smaller shares of farm area cultivated 

in perennial and food crops and pastures than households without formal tenure. Perz 

(2001) also found that demographic household variables, the institutional context, off-

farm income, farmers’ background and belonging to groups (neighbourhood context) 

exerted significant effects on land use. By contrast, VanWey et al. (2007) found that 

cropping activities depended mainly on women and children for labour provision and 

not men as reported by Pichón (1997). They also found strategies for accessing cash for 

investment in farming was important in influencing cropping activities. Browder et al. 
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(2004) found only farm size to be important in influencing decisions on annual and 

perennial cropping. Larger farms allocated more land to pasture and cattle ranching than 

small size farms. They found no significant effects of household demographic 

characteristics, gender and age (except total family size) nor of policy environment 

factors (access to technical assistance, off farm incomes) on land use. This contradicts 

the findings of Pichón (1997), Perz (2001) and of VanWey et al. (2007) who argued that 

the household life cycle influenced land use decisions. Such mixed responses suggest 

that investigations of household land use decisions are context specific to regions, 

which was an impetus for us to apply the approach to low-input subsistence farming 

systems in Africa.  

 

2.2  Material and methods  

 

2.2.1 The study area   

Pallisa district (1o 43’ N, 33o 37’ E) in eastern Uganda (Figure 1) was selected for study 

as it is representative of the mixed annual crop-livestock Teso farming system that 

supports a fifth of the country’s population (Wortmann and Eledu, 1999). The landscape 

is characterized by wide gently convex interfluves separated by wide swampy valleys 

(Ollier et al., 1969). The topo-sequence can be divided into three sub-zones; the upland 

zone at the summits (upper landscape positions), the midland zones located on 

pediments (middle landscape positions) and the valleys which may be seasonally or 

permanently wet (lower landscape positions). Soils on convex interfluves are derived 

from either lake deposits with basement complex rocks or from only basement complex 

rocks and gneisses (Harrop, 1970). The soils on the uplands and midlands are classified 

as Ferralsols and those in the valleys are Fluvisols.  

  Mean annual rainfall (800-1200 mm) is distributed in a bimodal pattern. The 

first rains are from March to June with a peak in April and the second rains from August 

to October or November with a peak in September or October. There are dry spells 

stretching from November to March. Monthly average temperatures range from 15oC to 

36oC, with an annual mean of 25oC (Yost and Eswaran, 1990). On the basis of spatial 

distribution of rainfall however, the district is divided into four rainfall zones and the 

study area falls with a region of 900 mm per annum (Figure 1).   

 Major crops grown include cassava (Manihot esculenta Crantz), finger millet 

(Eleusine coracana L. Gaertn), sorghum [Sorgum bicolor (L.) Moench], groundnut 

(Arachis hypogaea L.), cowpea [Vigna unguiculata (L.) Walp.], greengram [(Vigna 

radiata (L.) R. Wilczek], sweet potato (Ipomea batatas Poir.), cotton (Gossypium 

hirsutum L.), and maize (Zea mays L.). Rice (Oryza sativa L.) is grown in the valleys. 
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Livestock kept include cattle, sheep, goats, pigs and poultry. Annual crops dominate the 

upland and midland cropping during the rainy seasons, with free grazing of livestock 

after crop harvest and in the dry seasons. Valleys, which in earlier years were gazetted 

as communal grazing lands, are now predominantly used for rice cultivation and only 

support grazing to a limited extent after harvest. Where wetlands exist, they are used for 

fishing but may also be used for collecting thatch grass, and papyrus for craft making.  

 . 

2.2.2 Site selection 

The studies were embedded within an on-going research project on integrated nutrient 

management using a ‘farmer field school’ approach entitled ‘Integrated nutrient 

management to attain sustainable productivity increases in East African farming 

systems’ (INMASP). At the initiation of the INMASP project in 2002, a multistage 

approach was used to select pilot sites. The two sub-Counties of Agule and Pallisa were 

selected due to differences in population densities and soil productivity status. Agule 

subcounty has lower population density and soil fertility while Pallisa subcounty has 

medium population density and moderate soil fertility status (Ssali et al., 2002). The 

project operated in one village in each of the three parishes - Agule and Chelekura in 

Agule subcounty and Akadot parish in Pallisa subcounty (Figure 1). Detailed results on 

participatory diagnosis of constraints and opportunities for soil productivity 

improvement in these villages are summarised elsewhere (Ebanyat et al., 2003). 

Figure 2 Population densities of Pallisa district and the study parishes from 1960 to 
2001. 
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2.2.3 Data collection methods 

Land use cover analysis was done in two parishes: Chelekura (1°24′N; 33°30′E) and 

Akadot (1011’N; 33043’). Black and white aerial photographs (1:50,000) obtained from 

the Department of Surveys and Mapping, Entebbe, Uganda were analysed from 1960 

and Landsat images from 1973 (Multi-Spectral Scanner), 1986 (Multi Scanner) and 

2001 (Enhanced Thematic Mapper), all taken between the period December and 

February (a period when rice fields are prepared and cotton harvesting is done). 

Controlled photo mosaics were constructed. The central portion of the air photos were 

cut out and aligned with adjacent air photos to correct for aircraft height and tilt 

variations. The controlled mosaics of each parish were then further oriented by 

matching features with survey control points for the area. Eight control points were used 

to georeference the constructed controlled photo mosaic i.e. the constructed control 

mosaics were analysed under stereoscope, and land use types classified according to 

National Biomass Survey (MLWE, 2002). Satellite images were classified using both 

unsupervised and supervised classification in Integrated Land and Water Information 

System (ILWIS) version 3.3. Broad land use/cover classes used in the study included 

forest, cultivated land, swamps, bush land, grassland, water bodies and rice cultivation - 

introduced as a new land use type. Preliminary maps produced after analogue and 

digital image interpretations were validated with existing land cover maps of the area 

(such as the GLC2000 and the Africover maps), ground observations and through 

historical reconstruction. Four key informants were identified in each village and were 

interviewed on land use types that existed in some locations and on change that 

occurred over time. Information obtained was used to produce land use/cover maps of 

the two villages for 1960, 1973, 1986 and 2001.  

To understand the factors that have caused land use change and to confirm 

farmer’s perceptions, a literature review was conducted. Data on district scale changes 

in human and livestock populations, acreages for finger millet and cotton were collected 

and used for inference since disaggregated data at parish scale were lacking. The review 

also included national research institutes, government ministries and departments and 

private sector organisations to identify the national policies that were implemented 

during the period of analysis. Population data for the district and study parishes (Figure 

2) were computed on the basis of the population growth rates between census years 

available from the Uganda National Bureau of Statistics.  

Two household surveys were conducted. The first one in March 2002 included 

89 farm households participating in the INMASP project. The objective was to obtain 

perceptions on soil productivity trends, current soil fertility status and its driving factors, 

and soil fertility management practices. The second was a rapid survey conducted in 
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April 2005 that included 90 farms, 60 non-participating farm households (rapid survey 

farms - RSF) and 30 farm households (case study farms - CSF) participating in the 

INMASP project. Farm typologies were constructed using data collected from the CSF. 

However, knowing that the farm households participating in the project were self-

selected on the basis of interest (Braun et al., 2000), data collected during this survey 

were used to ascertain if all the farm types in the community were represented. Data 

from the RSFs were collected using questions described by Tittonell et al. (2005) to 

obtain information on resource endowments and livelihood strategies of the farm 

households to enable construction of functional farm typologies (Tittonell, 2007).  

Data for quantification of nutrient balances were collected using questionnaires 

in the NUTMON toolbox (Vlaming et al., 2001) from the 30 case study farms in March 

2003. Nutrient flows into and out of the farms and distribution within the farms was 

captured during a one-time recall survey for the two seasons of the previous year 2002 

using resource flow mapping. Inflows were mainly imports of nutrients and outflows in 

the form of farm products. To quantify the soil nutrient stocks, soil samples were taken 

from 0-30 cm depth from fields on major local soil units identified with farmers on 

respective farms for analysis of total N, P and K, particle size distribution and bulk 

density following standard methods for tropical soils (Anderson and Ingram, 1993).  

 

2.2.4 Data analysis  

Relationships between land use and cover data and population density were explored 

using correlation analysis and the strengths of the relationships inferred from the square 

of the correlation coefficients. Differences in respondent’s perceptions between sites 

were tested using Pearson Chi square. Farm resource data was subjected to (di) 

similarity agglomerative cluster analysis using the cosine similarity index because of 

sensitivity to both quantitative and qualitative data (Jongman et al., 1995) to generate 

farm typologies. Nutrient balances were computed using the NUTMON software 

version 3.5 from the inflow and output data at both farm and crop level and significance 

tested using a T test for farm balances and ANOVA for crop level balances. Regression 

analyses were performed to identify farm household characteristics influencing nutrient 

balances and nutrient balances to stock ratios (NBSR) of the major nutrients at both 

farm and crop level. Only variables that were not significantly correlated were used as 

explanatory variables. All statistical analysis was performed using SPSS version 12. 
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2.3  Results and discussion 

 

2.3.1 Land use change  

The major land use types identified in the studied parishes in Pallisa district were forest, 

cultivated lands/homesteads, bush lands, grasslands, papyrus swamps, rice cultivation 

and water. These land use types have undergone drastic change over the 41 years of 

analysis in both parishes (Figure 3 - Chelekura and Figure 4 - Akadot). Their 

proportional spatial coverage is summarised in Table 1. In 1960, cultivated land and 

homesteads occupied 24% and 53% of the total land area in Chelekura and Akadot 

parishes respectively indicating comparatively more intensive land use in the latter 

parish. Land cultivated declined in both parishes in 1973 but again increased in 1986 to 

areas comparable, but not surpassing those of 1960. By 2001, land brought into 

cultivation increased by 90% and 48% respectively in Chelekura and Akadot compared 

with 1960. The increases in cultivated lands were however paralleled by declines and 

eventual disappearance of some land use types. After 1986, grasslands, which were 

mainly grazing lands and closer to swamps, and bushlands, declined very rapidly 

leaving none by 2001 in both parishes. The swamps also declined but at a much faster 

rate in Akadot than in Chelekura parish and by 2001 swamps covered only 6% of total 

land area in Chelekura and none remained in Akadot parish. 

 In 1960, more land was cultivated in Akadot than in Chelekura parish because 

cotton growing was more intense in this parish than in Chelekura which mainly had 

livestock and more grazing/grasslands and bushlands (Table 1). According to key 

informants Chelekura was comparatively less inhabited and from census records 

population density at that time was estimated at 72 persons km-2 (Figure 2). Akadot 

parish had two cotton ginneries at Akadot and Kaboloi and most farmers grew cotton 

which they sold at the ginneries. At that time cotton was promoted as a major crop for 

households to raise cash for paying poll tax so that men were more involved in its 

production. 

 The increase in cultivated land and disappearance of other land use types over 

the period of analysis was associated with population growth. Population density was 

negatively correlated with all land use types except for cultivated land (r = 0.70) and 

rice cultivation (r = 0.78) that were positive and significant (Table 2). From these 

results, population explained only 49% and 60% of the increase in cultivated land and 

rice cultivation. Cultivated land was significantly negatively correlated with grasslands 

(r = 0.84) and bushlands (r = 0.64), as was bush land with rice (r = 0.71) implying 

that over time they were converted to cultivated land and rice respectively. There has 

been immigration into the area during the 41 years of analysis (although exact statistics 



Chapter 2
 

20 

 
 
 
 
Figure 3 Land use change in Chelekura Parish, Pallisa district from 1960 to 2001. 
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Figure 4 Land use change in Akadot Parish, Pallisa district from 1960 to 2001. 
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were not available in the district) in search of more land and due to insecurity in the 

north-eastern region of Uganda from the mid 1980s. Other factors however modify the 

effects of population growth in explaining the temporal and spatial changes in land use. 

We argue that the underlying effects of national political instability and changing 

economic policies that rippled through the country had a share in this.  

 The country was affected by political instability and economic decline for half of 

the period of analysis (Figure 5). The period 1960-1970 was characterised by 

agriculture-led economic growth (GOU, 1965) and political stability. The post-

independence government continued to pursue colonial economic development policies 

which prioritised export of cotton and coffee for earning of foreign exchange. 

Implementation of colonial policies continued, although in a rather less punitive way 

than during colonial administration. Model farmers were promoted and agricultural 

implements and fertilisers were subsidised. However, large scale farmers with 

plantation estates (sugarcane and tea) rather than subsistence farmers benefited from the 

subsidies even though export growth was from cotton and coffee produced by 

subsistence farmers. Cotton and finger millet were popular crops respectively grown by 

85% and 66% of farmers for cash and subsistence in the Pallisa region (MAC, 1966). At 

this time, there was a strong crop-livestock interaction in the system. Ox-ploughing, a 

practice which was introduced in the area at around the same time with cotton in 1910 

(Mahadevan and Parsons, 1970), enabled opening of large land areas and preparation of 

fine seed beds. For finger millet in particular, labour for the tedious weeding and 

harvesting was communally organised to help one another (‘Ebole’), rewarded with a 

meal and local brew, ‘ajon’ at the end of the season.  

 The decline in cultivated land in 1973 was associated with a change in the 

political governance and economic policies of the country following the take over by Idi 

Amin in 1971. Economic war was declared and the Asian community that dominated 

the business and trade sector including cotton marketing were expelled. This 

demoralised smallholders who withdrew from cultivation of the crop and in Akadot and 

Chelekura parishes cultivated area declined to 38% and 6% of total land respectively. 

The political instability from the 1970s until the mid 1980s impacted on all the sectors 

of the economy including agriculture culminating in a complete collapse of cotton 

marketing in the early 1980s. Farmers had to explore alternative crops to generate cash 

income. According to key informants from both parishes of Chelekura and Akadot, 

farmers soon started to grow rice on grasslands (grazing areas) on the flanks of the 

swamps from 1982 onwards but initially left the seasonal swamps to provide pastures 

for dry season grazing. The Obote II government (1980-1985) adopted some economic 

recovery programmes but the escalating guerrilla war continued to increase insecurity 
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and weakened institutions. Policies, including land management policies, could not be 

enforced (Tukahirwa, 1994) making it difficult to restrain encroachment of wetlands by 

rice cultivation. Farmers diversified into growing other crops for both domestic 

consumption and cash, i.e. grain legumes and cassava (Kidoido et al., 2002; Fermont et 

al., 2008) leading to expansion of cultivated areas again in the uplands.  

 Cattle population in Pallisa district dropped drastically from over 123,000 in 

1985 to only 20,000 in 1991 (MAAIF, 1993) following extensive cattle rustling and 

insecurity in the region. Further expansion of rice cultivation into the valley bottoms 

became much easier because competition from grazing no longer existed. From 1987 

the economic liberalisation policies and export drive further encouraged crop 

diversification. Cultivation soon started in the dry seasons (November to February) 

where valleys accumulated water leading to double cropping. In effect, all the swamps 

and grazing lands in Akadot parish were brought into cultivation and 94% in Chelekura 

parish by 2001 (Table 1). These examples illustrate that farmers are flexible and search 

for farming strategies that enable them to cope with externally imposed constraints 

arising from political and economic forces (Berry, 1993). Expanding cultivated land and 

intensifying use of valley bottoms seemed to less driven by population increase in this 

case, as was concluded from other literature by Crowley and Carter (2000). 

The above political trends and their effects on institutional arrangements contrast 

with the Malian system which experienced relatively political stability throughout the 

period of analysis. The Mali government prioritised the cotton sector in national 

development and initiated the establishment of Compagnie Malienne pour le 

Développment des Fibres Textiles (CMDT), which has supported the cotton sector since 

1960. CMDT co-ordinated all production and marketing arrangements. It stabilised 

input and output markets for cotton, maintained partnerships with supportive institutions 

in cotton production like research and extension and empowered local farmer 

organisations like the Syndicat des Producteurs de Cotton et Vivriers (SYCOV) and 

village producer associations (Bingen, 1998; Tefft, 2004). Because of assured markets 

from cotton sales, farmers were able to increase livestock numbers, oxen and carts. Thus 

manure production increased, opening of larger acreages was possible through ox-

ploughing and transport of manure to the fields became easier as oxen for traction and 

ox carts are available. Input credit availability ensured timely availability of seed, 

pesticides and fertiliser. There were also well-organised family labour structures 

provided by extended family units around specific production activities taking care of 

farm operations in a timely manner. As a consequence, productivity of the farming 

system improved with time because coordination ensured good crop husbandry and 

marketing (Tefft, 2004). The institutional arrangements that were created through good  
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Figure 5 Uganda’s political timelines and economic performance and their impacts on 

land use from 1960 to 2001. (Sources: GOU, 1967, 1976, 1996; MFPED, 1990; UBOS, 

1999 and 2004; Kamugisha 1993; Tukahirwa 1994; Walaga et al., 2000). 
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national policies and stable political environment ensured improvement and sustained 

cotton production in Mali. This is an example of how politics and economic stability, 

and institutional support to market-oriented crop production are important in the quest 

to improve livelihood security and productivity of smallholder farming systems in 

Africa. Political instability, lack of supportive input-output markets and land 

management services, apparently attributed to the break down in communal labour 

arrangements and loss of cattle together with population growth drive land use changes 

in the Teso farming system. 

 

2.3.2 Farm typologies in the farming system  

To obtain a better understanding of impacts of decisions on land use, farm 

characterisation is important. Data on household characteristics was used in generation 

of farm typologies and their allocation of land to various land use types. The latter was 

subsequently also related with land use at the parish scale. No differences in the farm 

typologies existed between villages thus categorisation was done across the villages. 

Four major farm typologies were identified in the RSF as shown in the dendrogram 

(Figure 6) and these were all represented in the CSF. They included larger farms (LF), 

medium farms (MF), small farms with cattle (SF1) and small farms without cattle 

(SF2). Their respective proportions in the RSF were 11, 30, 39% and 20%. The 

typologies were distinguished by the wealth indicators, land and cattle combined with 

indicators of livelihood strategies, labour sale/hire, food security status and income 

sources (Table 3). These criteria tallied with those prioritised by farmers (land, 

livestock, food security, and type of housing). This combination of indicators improved 

the classification above using only land and livestock as done by Awa et al. (1999) for 

the Teso farming system. The resource endowments differed between farm types but 

also note that LF and SF2 farms were over-represented in the CSF (Table 4). On 

average, the LF farms owned 5 ha of land, 9 cattle and 4 goats. The MF farms had on 

average 2 ha of land, 3 cattle and 1 goat. The SF1 farms had at least 1 ha of land and 

owned at least 1 cattle and 1 goat. The SF2 farms had less than 1 ha of land, no cattle 

but at least one goat. The latter were also the most food insecure among the four 

typologies because of limited production resources. Per typology, the farmers in the 

CSF had similar wealth resources as in RSF.  

 Dependency on off-farm income was another important livelihood strategy for 

the farmers in Pallisa. Fifty eight percent of total farm income of LF farms was derived 

from off-farm activities, especially small scale businesses. They also produced some 

specific crops for sale like maize and rice. These types of farms had land to labour ratios 

of 2.1. The MF farms have some off-farm employment in civil service but  
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supplemented their income by growing crops for sale in particular cotton. Off-farm 

income constituted 42% of their total income and they had an average land to labour 

ratio of 1.2. For the SF1 farms, income was generated from sale of both food and cash 

crops. The proportion of total incomes from off-farm on these farms was 21% and the 

land to labour ratios was 1. For the SF2 farms off-farm income was less important 

(average of 14% of total income) but these farmers mainly survived on sale of own 

labour in the community. This category was land limited and had a land to labour ratio 

of 0.95. 

 

2.3.3 Farm-level land use  

Land allocation to crops was used to explore change in the cropping systems. The land 

allocation to crops varied between farm types (Figure 7) and reflected differences in 

farmer’s production objectives for domestic consumption or cash. Cassava however 

occupied the second largest share in area of land after fallow in each farm type. Since 

there were no significant differences between farm types between villages, we used the 

average land allocation fractions per farm type (Figure 7) and the household numbers in 

each parish - being 914 for Chelekura and 804 for Akadot (UBOS, 2005) - to estimate 

the crop coverage of the cultivated land in each parish. The estimates had an error of 

±18%. Crop shares of land between the parishes differed significantly (P<0.05) but 

there were notable variations in the proportions of land allocated to each crop within 

each site (Figure 8). In both parishes cassava occupied more that 250 ha of the 

cultivated land overtaking the earlier important crops, cotton and finger millet in 

importance in the region.  

 In the 1960s farmers owned on average 2 ha of land (Carr, 1982) of which over 

75% was occupied by cotton and finger millet; cassava was then very minor in the 

farming system (MAC, 1963). Four decades later with diminishing average farm sizes, 

cassava occupied the leading share of 20% reflecting a change in the cropping system 

compared with the 1960s. District level estimates also support changes in cropping 

although accuracy of land area estimates may be questionable. In 1960, cotton covered 

approximately 50,000 ha and finger millet, 60,000 ha - respectively 25% and 30% of the 

total land area in the district. By 1991, the areas cultivated with both crops drastically 

reduced with millet occupying only 5% of the land area and cotton less than 2% (GOU, 

1976; MAAIF, 1993). The area cropped with cotton then increased to 9% and that of 

millet remained at 5% in 2001 (UIA, 2002; MAAIF, 2003). The change in the cropping 

systems occurred because of economic pursuits by farmers to improve their income but 

also due to biophysical constraints especially declining soil fertility. Cassava is an 

important food security crop as well as a tradable food crop that is well adapted to poor 
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Figure 7 Percentage land allocation to primary production activities per farm type in the 

study area.  

Figure 8 Average land area allocated to different crops in Chelekura and Akadot 

parishes, 2003. Bars are standard deviations. 
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 soil fertility (Howeler, 2002). These reasons could explain why it has become a 

dominant crop over time. Diminishing land holdings and collapse of communal labour 

arrangements for weeding might explain declines in land area cropped with finger millet 

whereas the collapse of markets explain decline of cotton production in the district 

during the period of analysis. This agrees with Crowley and Carter (2000) who report 

that farmer’s responses to constraints such as lack of inputs and market failures feed 

back to the biophysical environment, especially to soil fertility. The emergence of rice 

was because farmers sought alternative cash crops and, with failure of responsible 

institutions to implement land management policies, swamps have been encroached. 

 

2.3.4 Nutrient flows and balances   

Farm level nutrient flows were variable between farm types (Table 5). The inflow of 

major nutrients on the farms due to grazing amounted to 84%, 80% and 94% of the total 

farm inflows for N, P and K respectively for LF, 67%, 50% and 86% for MF, 62%, 50% 

and 86% for SF1 and 23%, 5% and 40% for SF2. The variation in contributions 

corresponded with the cattle endowments of the farms (see Table 4). Contributions of 

other inflows that included organic residues (IN2a), atmospheric deposition (IN3) and 

biological nitrogen fixation for N (IN4) were small, while no external fertilisers (IN1) 

were used on any of the farms. Manure losses (OUT2b) were significantly different 

between farms because of cattle numbers and hence manure accumulated on the farms. 

They respectively accounted for 46%, 67%, 81%; 32%, 50%, 69%; 27%, 50%, 69%; 

and 3%, 5%, 20% of the total losses of N, P and K on LF, MF, SF1 and SF2 farms 

respectively. Although not significantly different between farms, leaching (OUT3) was 

generally a more important pathway for N loss than through manure on all the farms.  

 Nutrient balances differed between farm types. However, T tests showed only 

SF1 (– 9 kg N ha–1) and SF2 (– 16 kg N ha–1; – 1 kg P ha–1) farm types had balances 

significantly less than zero (Table 5) implying higher depletion rates on these farms. 

The reason may be due to few cattle and no cattle respectively on these farms and 

management practices in which there was frequent cultivation of the little land 

available. Total balances across the farms showed deficits for N (–16 kg ha–1), balanced 

for P (0 kg ha–1) and a surplus for K (+23 kg ha–1). The negative balances for N are 

mainly attributed to high losses of manure and leaching in the sandy soils. Because P is 

immobile, losses of P through erosion are easily compensated by grazing that brings in 

manure to the farms. Surplus K could be explained by high K contents in manure 

because grasses grazed by cattle grow on soils that are rich in K (Ollier and Harrop, 

1959). The results suggest a need for better management of manure collection and 

storage to minimise N losses for farm types that have cattle.  
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Nutrient balances for crops were negative but not significantly different between farm 

types (Table 6). Crops in LF farms had high negative nutrient balances because of 

higher off-take in crop products and higher losses through manure and leaching. The N 

balances of crops on the SF2 farm types were also highly negative because of leaching 

(–15 kg N ha–1). Cotton and finger millet extracted more N than other crops. It is also 

noteworthy that the fallows in the short-term have limited soil fertility restorative 

capacity for only K that could be related to recycling K from the soil stocks. 

 The discrepancy between farm level and crop level balances on farms with 

higher cattle numbers can be explained by the fact that manure is accumulated in kraals 

but not redistributed to cultivated fields. This reiterates the importance of scale in 

nutrient balance analysis (Haileslassie et al., 2007). Historically, livestock in the Teso 

system were confined to kraals near homesteads for safety against theft in the night and 

little consideration was given to use of manure as a nutrient resource for fertility 

maintenance (Mahadevan and Parsons, 1970). Such management contributes to soil 

fertility heterogeneity in smallholder farms (Augustine, 2003; Giller et al., 2006) and 

inefficient use of nutrients from manure. Even when farmers appreciate the soil fertility 

improvement role of manure, farm labour constraints curtail redistribution to crop 

production fields. Some farmers attempt to distribute manure within the proximity of 

the homestead by moving cattle to new kraals once the current ones are full (Walaga et 

al., 2000). After some time, the former kraal (niches of high fertility) can be planted 

with vegetables and cereals like maize for roasting. Variability in soil fertility was also 

further reinforced by the nutrient mining of the cultivated fields. 

 

2.3.6 Farming system productivity and associated management challenges  

Crop productivity of the Teso system was poorer compared to the Mali system (Table 

7). The respective productivity of cotton, millet and sorghum are 12, 31 and 59% higher 

in Mali and as expected, crop level nutrient balances were also accordingly more 

negative because of higher removal in products and losses through leaching and erosion 

(Lesschen et al., 2004). The exception, however, was cotton which received more P and 

K from fertilisers and manure inputs than are lost from the system. The higher 

productivity of the Mali system could be explained by the stable long rainy season of 5 

months compared with shorter bi-modal rainfall seasons (4 and 3 months) in Pallisa. 

Better soil fertility, however, resulting from continuous nutrient application over a long-

term as a result of the market-oriented cotton production can lead to higher water use 

efficiency. For crops cultivated in both systems, these are indeed consistently higher in 

Mali (Table 7). The capital accumulation at household level (cattle), access to input 

credit and improved production skills because of extension support allowed farmers in  
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Table 8 Reasons for declines in food and cash crop production by village in Pallisa district, 
Uganda 
. 
 
Reason for decline in 

Percent respondents  
Average 

 
χ2 Chelekura A 

(n=25)
Onamudian 

(n=26)
Keria 

(n=30)
Food crops   
Soil infertility 84 73 83 80 *** 
Unreliable rainfall 44 54 43 47 *** 
Pests and diseases 8 39 13 20 *** 
Limited land 16 12 23 17 *** 
Lack of improved seed 20 19 0 12 *** 
Inadequate labour 4 4 0 3 ns 
Lack of knowledge and skills 0 4 0 1 ns 
   
Cash crops (n=28) (n=23) (n=29) (n=80)  
Soil exhaustion 57 57 79 65 ns 
Lack of agricultural inputs 30 54 14 33 *** 
Pests and diseases 26 36 17 26 *** 
Fluctuating market 9 25 31 23 *** 
Labour intensive 9 14 17 14 *** 
Lack of improved seed 17 11 10 13 *** 
Limited land 9 14 7 10 *** 
Limited knowledge and skills  4 18 0 8 *** 
Significance: *** P<0.001, ns = not significant 

Mali to produce higher crop yields. Further, they were motivated by the assured 

markets. This demonstrates that soil fertility is considered by farmers when they have 

tangible direct benefits because often farmers are not interested in improving soil 

fertility for its own sake. In systems with poor soils, it is worth investing in soil fertility 

improvement to gain higher returns especially when the nutrient inputs are accessible 

(Kanté, 2001). Extension support to the farmers also improved their skills in use of 

manure and fertilisers. The farmers practiced targeted application of the nutrient 

resources (manure and fertilisers) to the high value crop cotton and the cereals grown in 

rotation benefited from their residual effects. Farmers have also adopted maize, a high 

value crop and apply manure preferably to this crop compared to with other cereal crops 

(Kanté, 2001; Lesschen et al., 2004). 

 In the Teso farming system over 90% of the farmers reported that both food and 

cash crop production had declined over the years. They associated the trends in crop 

production with declining soil fertility, unreliable rainfall and infestation by pest and 

diseases in the case of food crops but also included lack of agricultural inputs and 

fluctuating markets in the case of cotton production (Table 8). Farmers judged declines 

to be due to poor crop yields (88%), presence of Striga (57%), tired soils (44%) and 

stunted crops (1%), indicators that have been used by other smallholder farmers in east 

Africa (Maruge et al., 2000). Continuous cultivation without adequate nutrient 
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replenishment accounted for declining productivity. Often, cultivating improved crop 

varieties without any soil fertility improvement results in low yields (Kaizzi et al., 2004) 

and continued nutrient depletion. From Table 8 it also could be noted that there are 

between site differences in responses implying that intervention efforts should take 

variation into account. 

 There is hardly any use of external inputs in the farming system. Farmers rely on 

locally available nutrient input resources as is shown by the following characteristics 

(with proportionate uses between brackets). Crop production is characterised by crop 

rotation (over 90%), recycling of crop residues (78%), fallowing (51%) and negligible 

use of nutrient inputs such as cattle manures. The common types of crop residues 

available are cereal straws, and peelings of cassava and sweet potato. Households also 

reported that residues face other competitive uses as fodder (60%), fuel (51%), 

thatching materials (5%), mulching or are just burnt (57%). The remainder that is 

recycled is quantitatively small and qualitatively too poor to be used for soil fertility 

improvement. High labour requirements (41%), limited application skills (35%) and 

limited available quantities (32%) constrained widespread and efficient use of cattle 

manure whereas poverty (53%) and negative perceptions that inorganic fertiliser spoil 

soils (52%) constrained their use. These results are similar to those observed in other 

smallholder farming systems in low potential areas of sub-Saharan Africa (Hilhorst and 

Muchena, 2000; Nkonya et al., 2005). 

 Fertility management practices that include organic matter (cattle manure) 

cycling, crop rotation and nutrient conservation (sheet erosion control) have declined 

over time in the area. The available quantity of cattle manure, a major source of 

nutrients, is limited following the extensive rustling in the area. Tethering is now the 

common cattle management system as only few animals are kept. The result is that 

fields receive little manure input during stubble and dry season grazing. The option of 

increasing manure production by increasing cattle numbers now faces a great challenge 

as there are no adequate pastures. 

 Other management practices for improving productivity also face many 

challenges. Crop rotation was practiced mainly by farmers who had relatively large 

areas of land. The rotations were also not well designed to benefit the subsequent crops. 

In the 1950-60’s, the management recommendation in this system was cropping for two 

years, followed by three to four years of fallowing designed in such a way to gradually 

cover the entire farm with time (Parsons, 1970). Legumes were a key component of the 

rotations (Uchendu and Anthony, 1975). During the fallow phases, manure deposition 

through livestock grazing also contributed to nutrient accumulation in such fields 

(Joblin, 1960). Nowadays, the fallow phase is so short; less than 6 months on 70% of  
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the farms surveyed. Some farmers equate to resting a field with cassava as the last crop 

in the rotation cycle (cassava fallow) for 0.5 – 2 years; a practice also reported in the 

West African savannas (Kristjanson et al., 2002; Adjei-Nsiah et al., 2007). The ‘cassava 

fallow’ is assumed to recycle nutrients through the large biomass produced by the early 

maturing varieties grown and the grass that grows in the fields during the 1 to 2 years of 

cropping. In reality, these high yielding cassava varieties remove substantial amounts of 

nutrients hence further degrading soils (Fermont et al., 2007).  

 Lack of implementation of land management policies contribute to degradation 

of soil fertility in smallholder farms. In the colonial times, the district by-laws and 

ordinances were implemented by chiefs and fines were attributed for failure to adhere 

(Kamugisha, 1993). In the lowlands of eastern Uganda that include Pallisa, grass bunds 

(‘amatuta’) of 1 m between fields of 110 m x 65 m along contours were a requirement 

to control sheet erosion and bush burning was prohibited (Parsons, 1970). The grass 

bunds are now no longer effectively managed and explain the increased prevalence of 

sheet erosion during the rainy seasons. In summary, lack of input and output markets 

and lack of extension support are accelerating nutrient depletion in the system and 

hence the widespread negative nutrient balances reported in the system (Wortman and 

Kaizzi, 1998; Walaga et al., 2000; Nkonya et al., 2005). 

 

2.3.7 Farm household determinants of farm sustainability 

In Table 9, regressions between the characteristics across farm typologies and major 

nutrients showed that tropical livestock units (TLU) were the major determinant of 

balances and nutrient balance to stock ratios (NBSR) for all the major nutrients. For the 

NBSR however, crop yields and access to off farm income, especially for N and K, 

were also important. These results were expected because livestock is a major source of 

nutrient inflows to the farms through the grazing inflow. Farms with more livestock 

(LF) were expected to have better nutrient balances and NBSR due to accumulation of 

nutrients in manure from the cattle. In the case of NBSR, larger crop yields reduced the 

amounts of nutrients in the stocks as more nutrients were removed from the farm. Thus 

farms that produced more and sold produce (LF) had smaller NBSR’s. Access to off 

farm incomes would probably reduce the farm area cultivated or investment in farming 

practices that would improve nutrient accumulation such as growing more legumes.

 At the crop scale however, nutrient balances and NBSR were, next to TLU 

densities, largely dependent on crop yields. Larger crop yields made nutrient balances 

more negative as farmers did not apply any nutrients to crops. The contribution of the 

cattle was through free range grazing on the farms fields. Labour limited farms or farms 

with higher consumer to labour (CL) ratios, had less labour available for cultivation of 
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land leading to less negative balances as only small crop yields were produced. Such 

farm households were food insecure. Observations in the field showed that the labour-

limited farmers tried to plant as much cropland even if planting was late. Labour 

limitations affected weeding and its timing. Crops were lost or yields obtained were 

very small due to weed competition. The conditions of high CL ratios have been created 

because of the universal primary education policy which opened opportunities for many 

children to go to school. Previously, they formed the bulk of family labour. Without 

communal or group labour arrangements, cash is needed to buy in labour for farm 

operations which is a challenge for the poor households.  

 The scenario described here highlights a need for crop-livestock integration, 

particularly manure management to enhance crop production within farms in the case of 

farms with livestock. This would also boost the NBSR at the crop level and improve the 

systems sustainability. Improving opportunities for access to off farm income could 

relieve pressure from the land or help with purchase of nutrient inputs which in turn 

could assist in improving nutrient balances and NBSR.  

 

2.4  Conclusions 

 

Land use and productivity status in the Teso farming system changed during the four decades of 

analysis because of several factors rather than population growth alone, as commonly assumed 

to be the case for smallholder farming systems in sub-Saharan Africa. Important among these 

additional factors were political instability that increased insecurity, the lack of input 

and output markets and weakened land management and service delivery institutions. In 

response to these external shocks, smallholders diversified from millet and cotton to 

production of cassava, now the dominant crop for food security and cash, and rice and 

legumes such as groundnuts for cash. Rice cultivation expanded into the swamps faster 

as the cattle that used to graze there were depleted through rustling. Productivity of the 

farming system is poor as no external nutrient inputs are used and nutrient balances are 

negative at the crop scale because of reliance on nutrient mining. Sustainability of the 

farming system is determined by numbers of livestock, the amounts of crop production, 

labour ratios and access to off farm income. 

The example of cotton-cereal farming system in southern Mali shows that 

improving soil fertility and productivity of farming systems hinges on how it is 

supported by stable policies and institutions over the long-term. Building institutional 

partnerships around profitable crops can be an entry point for improving soil fertility 

(Lesschen et al., 2004) but needs to focus on improving livelihood security of the 

smallholders to gain acceptance and to be sustained. Potential case-specific commercial 
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commodities and viable partnerships for these systems therefore need to be identified 

and established.  

 For agronomic improvement of productivity, farmers with livestock need to use 

manure in crop production but also improve its management. Since labour can be a 

major constraint in use of manure, for example for transport and application on fields, 

labour saving approaches such as establishing kraals directly on fields so that manure 

accumulates on field that are later cultivated as in parts of Zambia (Penninkhoff, 1990) 

should be adopted by farmers rather than maintaining the kraals close to the 

homesteads. Creation of opportunities for off-farm income could help a majority of the 

farm households acquire nutrient inputs such as fertilisers to apply to the low fertility 

soils on their farms. However there is a need for complementary strategies as well as 

making fertilisers available. Opportunities also exist through growing of leguminous 

crops to improve soil fertility; especially increasing nitrogen supply through biological 

nitrogen fixation if other limitations like low P in soils are addressed (Vanlauwe and 

Giller, 2006). It is also possible to improve the farmer’s strategy of matching crop 

production with soil fertility variations that have been created or reinforced on the farms 

over years (Carter and Murwira, 1995). This practice has been shown to lead to 

increased resource use efficiencies (labour and nutrient inputs) in some African farming 

systems (Zingore, 2006; Tittonell, 2007) and may aid development of context specific 

management recommendations that can lead to boosting productivity of smallholder 

systems - the best fits approach (Vanlauwe et al., 2007). 
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Abstract  
 

Heterogeneity in soil fertility is determined by inherent soil-landscape characteristics and historical 

human management. Understanding how this heterogeneity is constructed is vital to aid targeting of 

soil management practices. We characterised the nature and magnitude of variability in soil fertility 

through soil profile observations along toposequences of soil types and sampling of surface soils from 

fields on 33 farms in two villages exhibiting different geo-morphological features in Pallisa district, 

Eastern Uganda. Down the toposequences in Chelekura and Onamudian villages, soil pH, SOC, total 

N, Exch. Mg, Exch. Ca, Exch. K, CEC, sand and clay did not exhibit topographic-gradients. 

Extractable P was however 3 and 5 times higher in the top soils of the profiles in the valley bottoms 

than those in the upper landscape position of the toposequences in Chelekura and Onamudian 

respectively. Within the profiles of each local soil type, soil pH, SOC, total N, extractable P, 

exchangeable bases and sand decreased with depth except in the valley bottoms where Ca increased 

with depth. SOC and silt + clay are used to illustrate the spatial variability in soil fertility within-

farms. Significant differences (P<0.05) were observed in average SOC concentrations in surface soil 

properties between landscape positions in both villages. Large and significant differences (P<0.001) in 

SOC were observed between field types. Fields classified as of good, medium and poor soil fertility by 

farmers had average SOC concentrations of, respectively 9.3 g kg–1, 6.6 g kg–1, 5.5 g kg–1 in Chelekura 

village and 15 g kg–1, 11 g kg–1, 7 g kg–1 in Onamudian village. In contrast with other studies in 

smallholder farming systems in sub-Saharan Africa, spatial analysis did not reveal a particular 

generalized pattern in variability in soil fertility (evaluated here using SOC as an indicator) across 

farms in each village. Within-farms, larger contents of SOC were associated with larger amounts of 

silt + clay and locations where cattle kraals had been sited in the past. The field scale, which is easily 

recognised by farmers, is an important entry point for targeting soil fertility management technologies 

since management decisions are at the farm scale. 

 
Key words: Sub-Saharan Africa; Spatial heterogeneity; Teso farming system; Smallholder farms
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3.0  Introduction 

 

Productivity of smallholder farming systems in Sub-Saharan Africa (SSA) is 

constrained by poor soil fertility (Buresh et al., 1997; Smaling et al., 2002) yet efforts 

to improve soil productivity in these systems are challenged by the lack of robust 

recommendations that adequately consider heterogeneity in soil fertility at relevant 

scales. For example, fertilizer recommendations were made at agro-ecological scale 

assuming homogenous soil characteristics and climatic conditions and crop response 

(Smaling, 1993). The usefulness of such recommendations over time has been eroded 

because they do not account for management-induced changes in soil fertility status.  

 Inherent characteristics of soils are determined by the underlying geology and 

may guide land use decisions such as settlement, grazing, afforestation, and 

cultivation at larger spatial scales (Ogunkunle, 1993; Deckers, 2002). What is of 

importance to the farmer however, is the top soil where crop production is done. 

Assessing variability relevant for farmer management therefore should combine both 

topographic and surface soil characterisation because they are intertwined in 

determining the status of soil fertility.  

 Along toposequences, variability in soil fertility is related with the associated 

soil types on the landscape positions or soilscapes (Deckers, 2002). In many parts of 

Uganda, soils on the upper parts of the landscape are shallow and less fertile while 

those on the pediments are deeper and more fertile. This is due to processes of erosion 

and deposition down slope, creating gradients of increasingly fine soil texture that 

correspond with increasing soil fertility towards the lower positions of the landscape. 

Commonly, farmsteads are located on the uplands, in upper and middle landscape 

positions. Depending on settlement patterns and socially constructed patterns of land 

access, management imposed on the top soils along the toposequence may reinforce 

or overrule the toposequence-induced variability in soil fertility (Prudencio, 1993; 

Tittonell, 2007). This can create large differences in soil fertility over short distances 

within farms that influence crop productivity and may necessitate differential soil 

fertility management interventions. In several smallholder African farming systems, 

nutrient resource management practices have resulted in creation of soil fertility 

gradients in which soil fertility decreases away from homesteads (Giller et al., 2006; 

Tittonell et al., 2007a; Zingore et al., 2007a). Management induced soil fertility status 

strongly affects efficiency of added nutrients by crops (e.g. Vanlauwe et al., 2006; 

Wopereis et al., 2006; Zingore et al., 2007b; Tittonell et al., 2007b). Due to impacts of 

variability on crop productivity, targeting of management recommendations to 

heterogeneity in the diverse smallholder African farms is necessary. Soilscape 

(landscape) or fieldscape (field) scales have been suggested as appropriate scales for 

targeting soil fertility management practices for better nutrient management (Deckers, 
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2002). Appropriateness of these scales is farming system specific and need to be 

established. 

This study focuses on the Teso farming system in eastern Uganda, where 

farmsteads have existed for several years and are randomly spread over toposequences 

(except in the valleys) with gentle slopes of <8%. Crop and soil management 

decisions are domains of individual households within the confines of farm 

boundaries. Our objective was to characterise the nature and magnitudes of variability 

in soil fertility within the Teso farming system, and thereby to determine whether 

toposequence variability and or within-farm variability are the most appropriate 

scale(s) for targeting of soil fertility management interventions. We focused on 

elucidating whether soil properties differ: (i) between delimited landscape positions 

on toposequences; (ii) between field types as classified by the farmers; (iii) between 

farm types differentiated by resource endowments; and (iv) systematically with 

distance from the homesteads. 

 

3.1 Materials and methods 

3.1.1 Site description 

Pallisa district (1°09′ N, 33°48′ E) in eastern Uganda was selected for characterisation 

of the mixed crop-livestock Teso farming system which supports 5% of Uganda’s 

population. Until recently, the millet cropping systems (that also extend to the Teso 

region of western Kenya) dominated and crops were produced with virtually no 

inorganic fertilisers (Ebanyat et al., 2008; Fermont et al., 2008). The district lies at an 

altitude of 1000-1100 masl with a landscape of a dissected peneplane of the 

Tanganyika surface (Chenery, 1960), characterised by wide gently convex interfluves 

separated by wide swampy valleys (Ollier et al., 1969). The toposequences are 

dominated by the Buruli or the Maizimasa complex of catena whose respective 

geology are a combination of lacustrine deposits and basement complex rocks 

(granitic-gneiss) or only basement complex rocks (Ollier and Harrop, 1960). The 

Buruli catena covers approximately 65% of the district land surface and the soils are 

light grey or pink sandy loam or loams. The Maizimasa catena has reddish brown 

sandy clay loams or brown clay loams. Rainfall is distributed in a bimodal pattern. 

The first rains are from March to June with a peak in April and the second rains are 

from August to October or November with a peak in September or October. The 

markedly dry periods are from November to March. Mean monthly temperatures 

range from 15°C to 36°C, with annual mean of 25°C (Yost and Eswaran, 1990).  

  

3.1.2 Study sites 

The sites selected for the study were Chelekura A village (hereafter referred to as 

Chelekura village) in Chelekura parish (1°17΄N; 33°30΄E) and Onamudian village in 
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Akadot parish (1°11΄N; 33°43΄E). There was an on-going research project on 

integrated nutrient management using a farmer field school approach (called 

‘Integrated nutrient management to attain sustainable productivity increases in East 

African farming systems’; INMASP) in these villages and this made it easier working 

with organised farmer groups to integrate farmer’s local knowledge on soils. 

Chelekura represented the Buruli catena while Onamudian represented the Maizimasa 

complex catena. The study sites were within the same rainfall zone of 900 mm yr1 

and enabled focusing of studies on soil fertility heterogeneity. The sites however 

differed in population density, parent material from which soils are developed and 

distance to the main urban centre. Four main types of households, grouped by farm 

size, cattle and food security status were identified in the study sites (Table 1). 

 

3.1.3 Participatory village transect mapping and farm surveys   

Participatory transect mapping of soils was conducted with farmers from farmer field 

schools with already prior knowledge from village reconnaissance and village 

resource mapping including soils distribution documented under the INMASP project 

(Ebanyat et al., 2003). The mapping was done following transects and land surface 

coverage of the village with the local soil types noted in each village (Figure 1). The 

toposequences were divided into three positions on the basis of the dominant soils and 

changes in slope; the upper position (includes uplands in Onamudian village), middle 

position and the bottom position encompassing areas that are seasonally or 

permanently wet. Soil types were identified according to farmers’ local knowledge, 

land use practices recorded, and the productivity constraints and potential of the local 

soil types identified and discussed with farmers during mapping. Profile pits were dug 

in each major local soil unit, morphological characteristics described and soil samples 

of each horizon taken for laboratory analysis (a total of 33 profile samples were 

collected). The location of each soil profile was geo-referenced with an Etrex Garmin 

global positioning system. The morphological descriptions of soil horizons and the 

results of soil analyses were used to classify the soils according to the FAO 1998 

revised legend. 

Farm surveys were conducted on the selected representative farms (i.e. larger 

farms (LF), medium farms (MF), small farms with cattle SF1, and small farms 

without cattle (SF2)) of farmers participating in the farmer field school project (Table 

1). The farm types were derived by agglomerative cluster analysis using the cosine 

similarity index from rapid farm survey data collected from a total of 90 households 

(60 of which were non-farmer field school participating households) on data of farm 

resource endowments, production orientations and livelihood strategies (Tittonell et 

al., 2005). The main grouping variables were farm size, number of cattle, income 

sources, household food security, hire or sale of labour, types of crops grown, and 
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Figure 1 Locations of profile pits, farms and fields sampled by landscape positions in 

(A) Chelekura village and (B) Onamudian village, Pallisa District. Broken straight 

lines represent the transect paths; dotted curves are researcher delineated landscape 

position boundaries. 
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types of farm implements owned (Ebanyat et al., 2008). The sampling was done in 17 

farms in Chelekura village and in 16 farms in Onamudian village. Sketches of farm 

maps were drawn with help of the farmers showing the fields. GPS coordinates of 

major corner boundaries of the farms were recorded and later used to compute farm 

sizes. Management history of the fields including cropping sequences over the 

previous four cropping seasons and soil fertility management practices were obtained 

through interviews with farm owners. Farmers were also asked to rate the fertility of 

individual fields of their farms and to indicate the main local soil unit to which each 

field was located.  

 

3.1.4 Surface soil sampling and sample preparation 

Soil samples were collected from 33 farms selected to represent the main farm types 

in the area (Table 1). Point grid sampling following 20 x 20 m grids laid on each of 

the fields of each farm was used and one sample collected from each grid point 

intersection at 0-20cm depth in February and March, 2005. Only fields of each farm 

on the upper and middle landscape positions were sampled because the study 

concentrated on these locations where a majority of crops are produced. Grid 

sampling is suitable for capturing variability especially when spatial structure in 

variability in fertility is not known (e.g. Flowers et al., 2005). The method resulted in 

collection of different number of soil samples from each of the farms so comparisons 

of soil properties between fields and farms were made using the weighted averages of 

samples collected per field in relation to total number of samples collected from a 

given farm. The mid-point locations of the homesteads and sampled fields (Figure 1) 

were geo-referenced using an Etrex Garmin GPS with an error of  7 m. A total of 

1209 soil samples were collected, air-dried, crushed and sieved through 2 mm prior to 

analysis at the Soil and Plant Analysis Laboratory of the World Agroforestry Centre 

(ICRAF) in Nairobi, Kenya.  

 

3.1.5 Distance, bulk density, and slope computations 

Data of GPS recordings were processed in Arc GIS 9.1 to obtain mid-field distances 

from homestead using the square root of Euclidian distances algorithm. Bulk density 

was determined for each of the fields of each farm using an equation developed by 

multiple regression analysis between bulk density measurements determined by the 

core method (Anderson and Ingram, 1993) for 62 randomly selected fields in the two 

study villages and other soil properties. Bulk density was predicted from soil organic 

carbon (identified as the best predictor amongst other soil properties) using the 

equation below developed by regression analysis: 
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BD = -9.44 × SOC + 1622    (R2 = 0.08; RMSE = 92 kg m–3)   

  (1) 

 

Where: BD = bulk density (kg m3) and SOC is soil organic carbon (g kg1). 

Slopes for each field were obtained from a slope map generated in GIS from a digital 

elevation model. 

 

3.1.6 Spectral and chemical analysis of soil samples 

The air-dry soil samples (<2 mm) were scanned at 350-2500 nm infrared region in 

Duran glass Petri-dishes using a FieldSpecTM FR spectroradiometer with optical set 

up as described by Shepherd et al. (2003). The relative reflectance data was reselected 

at every tenth nanometer value. The spectral data were then transformed using the 

first derivative in the Savtizky-Golay algorithm using the “The Unscrambler” 

software (CAMO, 2005) to minimize variations caused by grinding and optical set up. 

Wave bands in the ranges of 420-960, 1020-1770 and 1830-2480 nm having low 

signal to noise ratio were left out. The first two principal components explained 75% 

of the spectral variance (44% of which by the first PC and 31% by the second).  

Fifteen percent of the total samples (n = 181) were randomly selected on the 

basis of the principal component model of the first derivative reflectance and 

subjected to wet chemistry analysis to determine pH, organic carbon, total nitrogen, 

extractable P, exchangeable bases (Mg, K and Ca) and particle size using methods 

described in Shepherd and Walsh (2002). Total organic C and total nitrogen were 

determined using a ThermoQuest EA 1112 elemental analyser.  

A principal component analysis (PCA) model was developed using all the wet 

chemistry data (excluding two samples that were outliers) and the first two principal 

components were calibrated against the spectra. The first PC explained 57% of the 

total variance in the wet chemistry data while the second accounted for 19%. On the 

loading plot, information in PC1 was associated with variability in C, N, 

exchangeable bases Mg, Ca, silt and sand, while variability in extractable P, pH and 

clay was associated with PC2. The partial least square calibration model for spectra 

and the first PC from the wet chemistry PCA model was good with a cross-validation 

correlation coefficient of r = 0.93 and RMSE = 0.87, while for the second PC it was 

not as good as for PC1 (r = 0.73; RMSE = 0.96). The calibration models for 

extractable P, exchangeable K, exchangeable Ca and silt had a high correlation 

coefficient, r  0.9. With the calibration models developed for each soil parameter, 

predictions were made for the other samples that were not subjected to wet chemistry 

analysis. Relationships between predicted and measured values for selected soil 

properties are in Figure 2.  
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Figure 2 Relationship between predicted soil properties using near infrared 

spectroscopy and measured soil properties using standard wet chemistry methods (n 

=181). 
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3.1.7 Spatial variability of soil fertility within farms 

Point maps were created in ILWIS for selected representative farms using the grid 

point data for only soil organic carbon and silt + clay and contour maps delineating 

zones of similar soil characteristics developed. These variables were chosen as 

recognised indicators of soil fertility status in tropical soils (Feller and Beare, 1997). 

The approach chosen to illustrate spatial variability in soil fertility within farms was 

adequate although we know that Geostatistics could have also been applied to 

generate continuous surfaces of soil variables. 

 

3.1.8 Statistical analysis 

Statistical analysis was performed using the mixed effects model (REML) in Genstat 

11.1 with farm as a random factor. Soil properties; pH, SOC, total N, extractable P, 

exchangeable bases, particle size fractions and bulk density were evaluated for normal 

distribution. SOC was transformed to log and exchangeable bases to square root 

values, the rest of the variables were not transformed. Farm scale soil fertility status of 

each nutrient was calculated by weighted aggregation of soil parameter relative to the 

proportions of area of a given field relative to the farm total area (Tittonell, 2007). 

Total farm areas were adjusted for the areas occupied by the homestead, which are 

normally not used for production.  

 

 


)()()(
1

TFAFAiaSFaSFS
n

i

       

 (2) 

Where: 

SFS (a)  = Soil fertility status at farm scale for nutrient a 

SF(a)i = Nutrient status for each field in the farm (1 to n fields) 

FAi = Area of each particular field (1 to n fields) in hectares 

TFA = Total farm area in hectares. 

 

3. 2 Results 

 

3.2.1 Toposequences and soil profile description  

 

Local soil types and land use 

Four major local soil types Eitela, Apuuton, Erony, and Akao/Apokor were identified 

in each of the study villages with the farmers. These soils were distinguished by the 

farmers on the basis of soil depth, colour, sticking properties and moisture retention 

ability. The local soil types Apuuton and Eitela dominated most of the Chelekura and 
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Onamudian villages respectively (Figure 1). The toposequences in both study villages 

were gently sloping (2-8%) and approximately 3 km and 2.5 km long in Chelekura 

village (Figure 3) and Onamudian village (Figure 4) respectively. In Chelekura, the 

toposequence was Apuuton, Erony, Eitela and Akao/Apokor while in Onamudian it 

was Erony, Eitela, Apuuton, and Akao. The pattern in Onamudian conformed to that 

generally expected, with reddish brown soils occurring on the upper positions with 

gradually coarse sandy soils towards the valley bottoms (Chenery, 1960).  

Farmers’ classification of soils was not consistent with the FAO classification 

in both villages except for soils on the valley bottoms because of different criteria 

used in classifications. The soils in Chelekura village were predominantly sandy 

(Apuuton) and the Eitela soils occurred in a small patch within the middle landscape 

position. The profiles of Eitela soils had marrum/ plinthite at depths of less than 40 

cm and 70 cm in Chelekura and Onamudian villages respectively (See Appendix 3.1). 

Erony soils are an intergrade of Apuuton and Eitela. Textural characteristics of the 

soils in the uplands showed Eitela to have the largest proportions of clay followed by 

Erony and Apuuton (Table 2 and 3). 

In terms of land use, homesteads are located on the upper and middle positions 

(usually in the centre of farms) and most cropping is carried out on these positions. 

Crops grown on these landscape positions include grain legumes and root crops 

especially cassava. The valley bottoms are used for rice (Oryza sativa L.) cultivation 

and for grazing. Major constraints associated with the local soil units as indicated by 

farmers in both villages included over cultivation without use of soil nutrient inputs, 

sheet erosion, low moisture storage due to the sandy nature of the soils on the upper 

and middle landscape positions, and waterlogging in the valleys during the rainy 

seasons. The soils on the upper positions are also considered shallow and underlain by 

laterite or plinthite. These constraints have also been reported in other parts of Pallisa 

District (Ssali et al., 2002).  

 

Pedological characteristics of the soil types 

Morphological characteristics of the profiles are summarised in Table 2 (Chelekura 

village) and Table 3 (Onamudian village) and further details of the profile 

descriptions are provided in Appendix 3.1. Moist colours of the soils in the horizons 

ranged from dark reddish brown (10YR4/2), reddish brown (2.5YR4/4), dusky red 

(2.5YR3/2) on the upper and middle positions to dark gray (10YR4/1) in the valley 

bottoms in Chelekura village. For Onamudian village, colours varied from dusky red 

(2.5YR3/2), dark reddish grey (10YR3/1) in the upper and middle landscape positions 

to dark gray (10YR4/1) in the valley bottoms. Within the profiles in the valley 

bottoms, mottle colours, strong brown (7.5YR 4/6) were observed because of 

anaerobic conditions associated with seasonal moisture fluctuations. The soils in the 
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upper and middle positions were well drained and had well developed strong angular 

to subangular blocky structure in the B horizons. The A horizons were < 30cm with 

weak to moderate sub-angular blocky structure that easily broke into crumb 

structures. The profiles on the upper and middle positions in both villages were 

generally shallow and had laterite at < 70 cm. Profiles in the valley bottoms were deep 

probably due to long-term sediment deposition from surrounding uplands.  

Variations in soil properties down the toposequences were not systematic in 

both villages (see also Appendix 3.2). Extractable P was however 3 and 5 times 

higher in the surface horizon of the profiles in the valley bottoms compared to those in 

the upper position in Chelekura and Onamudian respectively. SOC was lowest (3.7 g 

kg–1) in the valley bottoms. Within the profiles of each local soil type, soil pH, SOC, 

total N, extractable P, exchangeable bases and sand decreased with depth except in the 

valley bottoms where Ca increased at depths greater than 80 cm. Clay increased with 

depth indicating a process of illuviation. The high clay content at depth in the valley-

bottom soils form an impervious layer that restricts water percolation and explains 

why ponding occurs in the valley bottoms during rainy seasons, resulting in 

accumulation of adequate water for growing of rice. 

 Using the profile morphological and chemical characteristics, the soils were 

classified according to revised FAO (1998) legend as Ferralsols on the upper and 

landscape positions. The soils in the valley bottoms had an ochric A horizon, cambic 

B1 horizons, and Fluvic properties and were classified as Dystric Fluvisols.    

 

3.2.2 Landscape and fieldscape variability in surface soil properties  

Only SOC (P< 0.05) and total N (P<0.001) were significantly larger in the middle 

than upper landscape position (LP) but all the predicted soil properties were 

significantly (P<0.001) larger in the good than poor field types (FT) in Chelekura 

village (Table 4). In Onamudian village, silt + clay, SOC and Tot N significantly 

differed between LP and FT and there were significant (P< 0.05) LP × FT 

interactions of silt + clay, SOC and soil pH. In general, values of soil properties were 

higher in Onamudian village than Chelekura village and could be attributed to 

underlying geology from which the soils are developed.  

 At field scale, the highest values of these chemical properties were recorded 

on fields that were classified as ‘good’ and the lowest values in the ‘poor’ fields. 

These results show the farmers’ strong ability to judge between good and poor field 

types. In this study area, 28%, 43%, 29% and 63%, 24% and 13% of the fields were 

of good, medium and poor fertility in Chelekura and Onamudian respectively. 

Farmer’s judgment relates to crop productivity of fields relative to each other but it 

also differs between locations. For example, the mean SOC contents for good fields in 
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Figure 5 Relationship between SOC and silt + clay (A and B) and extractable P with 
SOC (C and D) respectively in Chelekura and Onamudian villages, Pallisa district).  
 

Chelekura had an average of 9 g kg–1 which is similar to the fields of poor fertility (7 g 

kg–1 SOC) in Onamudian village. 
 

3.2.3 Soil variability at farm-scale  

 

Farm indices of soil properties and magnitude of variation 

There were no significant differences in average farm weighted soil properties (soil 

fertility status) across farms in either of the study villages (Table 5). The status indices 

of SOC, the major indicator of soil fertility, in all the farms were less than 10 g kg–1 in 

Chelekura and >10 g kg–1 in Onamudian. Coefficients of variations across farm types 

were generally higher for exchangeable Ca ranging from about 28 to 76%. Although 

the weighted average of SOC did not differ across farm types in both villages, their 
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CVs on the other hand were highly significantly larger (P<0.05) between the LF (50 

%) and the SF2 (8 %) and SF1 (10%) farm types in Onamudian village. This variation 

is related to livestock ownership and accumulation of manure on former kraals around 

the homesteads of the larger farms. 

 

Relationships between SOC, texture and extractable P 

Soil organic carbon increased with silt + clay across fields of farm types in Chelekura 

(Figure 5A) and Onamudian (Figure 5B), conforming to the pattern reported for 

tropical soils (Feller and Beare, 1997). There were no strong relationships between 

extractable P and SOC in Chelekura (Figure 5C) and Onamudian (Figure 5D).  

 

3.2.4 Spatial variability in soil fertility within individual farms  

Selected farms are used as examples to illustrate the nature and factors determining 

within-farm spatial variability in silt + clay and SOC in Chelekura (Figure 6) and 

Onamudian village (Figure 7). The distribution of silt + clay generally followed 

variations in slope and soil type within individual farms. The relationship between 

SOC and other measured soil properties as well with slope were weak (See Appendix 

3.3). SOC distribution, although related to silt + clay, did not always exhibit the same 

pattern of distribution as silt + clay because of effects of past management. Where 

former kraals existed, the SOC was increased above that expected from the 

distribution of silt +clay within farms as illustrated in Figures 6B and 7B. There was 

no clear pattern of SOC with distance from the homesteads. In general, SOC contents 

were related to the intensity of management, the distribution of local soil types or the 

location of the farm on the landscape. With land fragmentation some of the farms are 

not contiguous and the farmers own fields on different soil types. Most of the farms 

characterized (60%) in Chelekura farms were fragmented compared with those in 

Onamudian village (20%). Mr. George Okodoi’s farm (Figure 6A), had fields on the 

three local soil types; Apuuton with silt + clay ranging from 200 to 250 g kg–1, Erony 

with silt + clay ranging from 200 to 300 g kg–1 and tiny portion of Eitela with silt + 

clay of 300 to 350 g kg–1. Within the Erony, a patch with silt clay of 300-350 g kg–1 

was a former homestead site and the increase in silt + clay was contributed by rubble 

of mud and wattle huts. The SOC distribution within the same farm related to the 

variations in silt and clay. However, the former kraal site had higher values of SOC 

(10 g kg–1) for that part of the farm with silt + clay of 200 –250 g kg–1.   

Mr. Kupliano Oluka’s farm was also spread along the slope on the middle 

landscape position in the Chelekura village respectively over three different soil units, 

Eitela (largest parcel), Erony (the intermediate parcel) and Apuuton (smallest parcel) 

silt + clay declining down the slope (Figure 6C). SOC was highest in Eitela (7 - 9 g 

kg–1) and least in Apuuton (4 - 5 g kg–1) (Figure 6D). In Onamudian, Mrs. Priscilla 
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Figure 8 Variations of soil properties with distance from homestead by landscape 

position. A and B are for SOC (g kg–1) and C and D for extractable P (mg kg-1) 

respectively in Chelekura and Onamudian villages, Pallisa district. 

 

Akol’s farm was located on both upper and middle landscape positions. Silt + clay 

was highest in the upper positions with the soil type Eitela and was lowest in the soil 

type Apuuton in the middle landscape position (Figure 7A). The pattern in variability 

in SOC was similar to that of silt + clay on this farm (Figure 7B). These types of 

farms with contiguous land parcels from upper to bottom positions are rare in the 

study area. Mr. Kakati’s farm located on the middle landscape position exhibited 

decreases in silt + clay fractions along the slopes towards the valley bottoms (Figure 

7C). SOC distributions also followed similar patterns but the former kraals near the 
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home had higher SOC (>30 g kg–1) overruling the inherent effects of soil texture 

(Figure 7D).  

No generalized systematic patterns in variations in SOC or extractable P with 

distance from homesteads across farms were observed in both Chelekura and 

Onamudian villages except that there was wide variability in fields that were closer 

(<200 m) to the homesteads (Figure 8). This differs from the common generalisation 

that SOC declines with distance from homesteads across smallholder African farms 

(Giller et al., 2006; Tittonell et al., 2005).  

 

3.3 Discussion 

 

3.3.1 Landscape variability 

Variability along the toposequences is related to occurrence of soil types and slope 

effects on the soil forming process of erosion which influences the topsoil properties. 

The variability of soils in most parts of Uganda closely follows the toposequence 

position along a catenary sequence formed from same parent material (Milne, 1947). 

The soils of Pallisa belong to the Buruli catena and the Maizimasa complex catena 

and are characterised by shallow soils in the uplands and deeper soils in the valley 

bottoms (Chenery, 1960; Ollier and Harrop, 1960). The toposequences studied in both 

villages (Tables 2 and 3) were shallow at the upper positions (A horizon depths of 0-

30 cm) with laterite at ≤70 cm and deeper in the valley bottoms (A horizon depths of 

0-41 cm). The depth of the surface horizons is associated with the natural processes of 

erosion on the uplands and sediment deposition in the valley bottoms. In the AP 

horizon soil pH, SOC, and total N slightly increased along the toposequence in 

Chelekura but not in Onamudian village. The gradients in extractable P but not in 

other soil properties in the surface horizons were more prominent in both villages. 

Extractable P was 3 and 5 times higher in the AP horizons in the valley bottoms than 

upper landscape positions in Chelekura and Onamudian villages respectively and is 

associated with deposition of eroded soil sediments from the surrounding uplands.  

 Within the pedons the soil pH, SOC, total N and extractable P generally 

decreased with depth in the well-drained pedons in the upper and middle positions 

(Table 2 and 3). Decline in P with depth is attributed to fixation in such soils with 

high iron and aluminum oxide contents (Sanchez, 1976). The increase in clay content 

with depth is indicative of illuviation leading to formation of argillic subsurface 

horizons. In the valley bottoms, clay increased at (1 m) depth and could be related to 

clay formations in situ in moist subsoils in periodically wet soils in valley bottoms. 

Lower SOC contents in the valley bottoms in Chelekura (Table 2) were due to the 

periodic wetting and drying facilitating decomposition of organic matter in the sandy 

soils. Seasonal burning was also practiced in the area and could lead to reduction of 
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SOC in Chelekura. The gentle slopes of these peneplanes, with more or less a similar 

type of parent material (basement complex granite gneisses and lake deposits) and the 

random distribution of soil types could explain the lack of toposequence-related 

fertility gradients in these villages. Soilscapes are more applicable in gaining the local 

knowledge about soils distribution and general land use planning but can be limited 

for the special purpose of targeting nutrient management options (the object in this 

characterization) (Ogunkunle, 1993) and as such field scale becomes more relevant 

(Deckers, 2002).  

Soil types are important in some systems for targeting production but this 

depends on settlement patterns, and relative distribution and household access to 

different local soil types. In Northern Namibia, farm households, on average, have 

access to three of the five indigenous local soil types and this influences the targeting 

of crop production (Hillyer et al., 2006). In Pallisa, farms are instead randomly 

distributed on the toposequences, mainly on the upper and middle landscape positions 

(Figure 3 and 4). Access to soil units is dependent on where a farm is located, and few 

farmers have access to all the local soil types. Targeting crop production to local soil 

types was clear only for lowland rice in the valley bottoms, although upland rice has 

recently been introduced into the system. Long-term crop production, relying on 

nutrient mining in this system may obscure differences in soil types.  

 

3.3.2 Fieldscape variability in surface soil properties  

Significant differences in soil properties between field types (Table 5) have also been 

reported elsewhere (Tittonell, 2007). The farmers’ criteria for catergorisation are 

useful and have been gained from their long-tem experience cultivating their farms 

(Mairura et al., 2008). The farms characterised had been cultivated for periods ranging 

from 15 to 34 years (Table 1). Farmers’ categorisation was based on local indicators 

including crop yield, amongst others (Barrios et al., 2001; Maruge et al., 2000). Soil 

fertility variations between field types are more explicit for farmers and could be a 

better entry point for targeting management practices for soil fertility maintenance or 

soil restoration; aspects that integrate best fitting of integrated soil fertility 

management technologies to local variability (Vanlauwe et al., 2006). Farmers’ local 

knowledge cannot however be easily translated into quantitative thresholds for 

gauging the soil quality of the various field types. At best soil tests will remain 

important. Keulen (2001) asserted that it is difficult to develop acceptable thresholds 

for organic matter in tropical soils. We found in this study also that in Chelekura 

village, the quality of fields considered to be of good fertility has similar soil chemical 

fertility status to poor fields in Onamudian village (Table 5) and this reiterates the 

need for site specific interventions.  
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3.3.3 Farm scale and with-farm variability in soil fertility  

Farm level indices of soil properties were similar across farm types classified on basis 

of resource endowments (Table 5) because of lack of contrasts in use intensity of 

nutrient inputs between farmers. Soil fertility at farm scale is determined by inherent 

characteristics due to soil types. The spatial variability in soil fertility differs between 

farms depending on the location of farm on the toposequence (and hence soil type the 

farm is endowed with) and historical management related to presence of former kraals 

and former homesteads within farms. These factors largely determine the variability 

in SOC in farms within and between the study villages. Compared with Chelekura 

village, SOC is high in farms across Onamudian village due to the finer texture 

leading to more physical protection of organic carbon (Six et al., 2002).  

Historical management in which manure accumulates in former kraals results 

in larger concentrations of SOC consequently overruling the effects of texture. Long-

term effects of former kraals (up to 4 decades) on soil fertility have been reported 

elsewhere in east Africa (Augustine, 2003). For some of the homesteads the former 

kraals were over 15 years old. The larger amounts of SOC on these sites may be due 

to presence of unprotected particulate organic carbon not necessarily associated with 

silt + clay fractions (Plante et al., 2006). Because farmers continually rotate the kraals 

and also move their homesteads this results in seemingly random patterns with 

isolated patches of high fertility within the farms.  

Besides very few nutrient inputs are used in the Teso farming, the random 

settlement patterns of homesteads on the toposequences, and the lack of contiguous 

fields within the farms along entire toposequences contrasts with other smallholder 

African farming systems previously described. Elsewhere in western Kenya for 

example, farms tend to be sited on the hill crests or pediments and farms have 

consolidated strips of land extending from uplands to valley bottoms (≤300 m). They 

also practice intensive nutrient management close to the homesteads creating inverse 

soil fertility gradients overruling the effects of topography (Tittonell et al., 2005; 

Tittonell et al., 2007a). Similarly in the ring management systems of western Africa, 

settlements are communal and fields are located on rings of decreasing management 

intensities from the village creates inverse soil fertility gradients (Prudencio, 1993). 

Soil fertility gradients within farms in Zimbabwe have also been reported to be 

generated due to targeted application of inorganic fertilisers and organic materials to 

fields close to homesteads (Mtambanengwe and Mapfumo, 2005; Zingore et al., 

2007b).  

Strong slope effects combined with cultivation practices account for gradients 

of increasing soil fertility along slopes within bench terraces and along entire hill 

slopes in highlands of southwestern Uganda (Siriri et al., 2005) and can be a basis for 

determining targeting of soil fertility management interventions. In the Teso farming 
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system, the slopes are gentle and together with rather individual farm management 

approach make it difficult to guide targeting of soil fertility management practices 

according to landscape position. It might be useful to target according the 

recognisable differences in soil fertility between field types within farms to enhance 

soil productivity.   

 

3.4 Conclusions  

 

Profile characterisation revealed that variations in soil properties were not systematic 

down the toposequences in the top soils found in both villages. However extractable P 

accumulated more in the valley bottoms compared to the upper and middle landscape 

positions due topography mediated effects of erosion and deposition. Surface soil 

properties significantly differed between the delineated landscape positions for SOC 

and total N (Chelekura) and silt + clay, SOC and Total N (Onamudian); they were 

usually being associated with the dominant soil types in the landscape positions. 

These variations were however not as and large as those between field types as 

categorised by farmers. All the selected soil properties were significantly larger 

between field types in Chelekura village but only SOC, total N, silt + clay, in 

Onamudian village. There were no significant differences in status of soil properties 

between farms types reflecting the lack of differences in intensity in soil fertility 

management in the farming system. Within farms, the spatial heterogeneity in the soil 

fertility indicator, SOC, is due to inherent soil characteristics (silt + clay), and 

historical management related to former homesteads and former kraals. Spatial 

analysis did not reveal a particular generalised pattern in variability in soil fertility 

across farms in each village. Referring to our objective, we conclude that field and not 

landscape position or farm is the most suitable scale for targeting soil fertility 

management interventions in the Teso farming system. 
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Abstract  

 

Targeting of integrated management practices for smallholder agriculture in sub-

Saharan Africa is necessary due to the great heterogeneity in soil fertility. 

Experiments were conducted to evaluate the impacts of landscape position and field 

type on the biomass yield, N accumulation and N2-fixation by six legumes (cowpea, 

green gram, groundnut, mucuna, pigeonpea and soyabean) established with and 

without P during the short rain season of 2005. Residual effects of the legumes on the 

productivity of finger millet were assessed for two subsequent seasons in 2006 in two 

villages, Chelekura and Onamudian, in Pallisa district, eastern Uganda. Legume 

biomass and N accumulation differed significantly (P<0.001) between villages, 

landscape position, field type and P application rate. Mucuna accumulated the most 

biomass (4.8-10.9 Mg ha–1) and groundnut the least (1.0-3.4 Mg ha–1) on both good 

and poor fields in the upper and middle landscape positions. N accumulation and 

amounts of N2-fixed by the legumes followed a similar trend as biomass, and was 

increased significantly by application of P. Grain yields of finger millet were 

significantly (P<0.001) higher in the first season after incorporation of legume 

biomass than in the second season after incorporation. Finger millet also produced 

significantly more grain in good fields (0.62-2.15 Mg ha–1) compared with poor fields 

(0.29-1.49 Mg ha–1) across the two villages. Participatory evaluation of options 

showed that farmers preferred growing groundnut and were not interested in growing 

pigeonpea and mucuna. They preferentially targeted grain legumes to good fields 

except for mucuna and pigeonpea which they said they would grow only in poor 

fields. Benefit-cost ratios indicated that legume-millet rotations without P application 

were only profitable on good fields in both villages. We suggest that green grams, 

cowpea and soyabean without P can be targeted to good fields on both upper and 

middle landscape positions in both villages but mucuna without P to poor fields on the 

middle landscape position in Chelekura village and cowpea without P to poor fields 

on the upper landscape position in Onamudian village.  
 
Key words: Landscape position; Field type; Legume biomass productivity; N2-fixation; P 
application; Farmers acceptance; Benefit-cost ratios; sub-Saharan Africa  
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4.0 Introduction 

 

Heterogeneity in soil fertility is a common feature of smallholder farming systems in 

sub-Saharan Africa (SSA) that results from the interactions between inherent soil 

characteristics, and historical and current human management (Tittonell et al., 2005; 

Zingore et al., 2007a). Heterogeneity in soil fertility has largely been ignored in 

development of soil fertility management recommendations there is evidence that it 

strongly affects agronomic performance of soil management technologies (Vanlauwe 

et al., 2006; Tittonell et al., 2007). As such, blanket fertiliser recommendations for 

agroecological zones are of little value. Due to this, research in smallholder farming 

systems in SSA now emphasises the need for site specific management (Deckers, 

2002; Zingore et al., 2007b). Soil fertility improvement technologies should be 

targeted to socio-ecological niches within farming systems (Ojiem et al., 2006) 

recognising differences among landscapes (soilscapes) or fields (fieldscapes) within 

farms (Deckers, 2002). This approach will increase efficiency in resource use, guide 

the design of management strategies to maintain or replenish soil fertility and enhance 

sustainable use of soil improvement technologies if proven agronomically effective, 

socially acceptable and economically viable: the key principles of integrated soil 

fertility management (Vanlauwe et al., 2002; Vanlauwe et al., 2009).  

In most smallholder farming systems in SSA, N and P are the major nutrients limiting 

crop productivity (Sanchez et al., 1997). Mineral fertilisers could be used to address 

these limitations but their scarcity, high costs and poor profitability have curtailed 

their wider use (Morris et al., 2007). Legumes can provide substantial amounts of N 

through N2-fixation, and contribute N to subsequent crops in rotation in low input 

farming systems (Giller, 2001). They also can improve other soil chemical and 

biological properties creating better growth conditions for subsequent crops (Yusuf et 

al., 2009). Many studies report cereal yield increases after legumes in smallholder 

African farming systems (e.g. Osunde et al., 2003; Ncube, 2007; Ojiem et al., 2007). 

To realise such benefits however, constraints to legume growth such as soil acidity 

and poor phosphorus availability have to be ameliorated through application of lime 

and inorganic P fertilisers (Vanlauwe and Giller, 2006).  

Legume effectiveness to improve crop productivity in smallholder farming systems 

has largely been assessed on large spatial scales, covering agro-ecological units 

(Baijukya, 2004; Kaizzi et al., 2006; Ojiem et al., 2007). Comprehensive evaluations 

of the impacts of between and within-farm variability on the contribution of legumes 

to the productivity of subsequent cereal crops in rotation are scarce (Ojiem et al., 

2007). Our focus was therefore to identify the most appropriate niches for different 

legumes within the Teso farming system of eastern Uganda. We explored potential 
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Figure 1 Cumulative total rainfall during the experimentation seasons in the study 

area. Legumes were grown in the short rains (2005B) of 2005 followed by finger 

millet in the long (2006A) and short rains (2006B). Note that in 2005B no grains were 

harvested due to drought. 
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landscape positions and field types to target production of legume species with or 

without P application, and their residual effects on production of finger millet 

(Eleusine coracana [L.] Gaertn), the major staple cereal crop. The Teso farming 

system is characterised by poor crop productivity due to little nutrient input use, and 

with N and P being the major limiting nutrients (Wortmann and Eledu, 1999). The 

specific objectives of the study were to evaluate the impacts of heterogeneity in soil 

fertility: (i) on biomass production and the contribution of biological nitrogen fixation 

to N accumulation by the legume species; (ii) on grain yield response and N use 

efficiency by finger millet crop following incorporation of legume biomass; (iii) to 

assess farmers preference and targeting of legumes to different types of fields; and 

(iv) to determine economic benefits of legume–finger millet rotations.  

 

4.1 Materials and Methods 

 

4.1.1 Study sites 

The study was conducted in Chelekura (1°24′ N; 33°30′ E) and Onamudian (1°11′ N; 

33°43′ E) villages in Pallisa district (1°13′ N; 31°42′ E), eastern Uganda. These sites 

represented the low input crop-livestock Teso farming system, supporting 5% of 

Uganda’s population. Finger millet is the second important cereal after maize in 

Uganda, mainly grown in the Teso farming system. It is a food security crop and 

major source of income for smallholders through its use for local brewing 

(NAARO/SAARI, 1991). 

The study area is situated between 1000 and 1100 masl and is characterised by 

gently sloping toposequences on broad, rounded and flat-topped uplands. Mean 

annual rainfall (950-1100 mm) is distributed in a bimodal pattern, with the long rains 

from March to June (550-600 mm) and the short rains from September to October/ 

November (400-500 mm), and a marked dry period from December to February. 

During the experimentation period, cumulative daily total rainfall received in the short 

rains of 2005 in the study villages (500 mm) was poorly distributed, but above normal 

in both seasons in 2006 (ca. 1600 mm annual total) (Figure 1). Heterogeneity in soil 

fertility along toposequences and between field types within farms in the study 

villages is large and the soils on the raised lands and valley bottoms are generally 

classified as Ferralsols and Fluvisols respectively (Ebanyat et al., 2009) 

 

4.1.2 Field selection, soil sampling and preparation 

Fields of good and poor fertility located on the upper and middle landscape positions 

that had been cultivated with finger millet prior to experimentation were selected 

based on farmers’ long-term knowledge of fertility status of their fields. Field 
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selection was restricted to these landscape positions as legumes are not grown in the 

lower landscape positions that are prone to flooding. In total, 56 fields were selected 

(7 each for good and poor fields in the upper and middle landscape positions in each 

village). Soil samples were randomly taken in each field at a depth of 0-20 cm from 

five spots, to obtain composite samples of approximately 0.5 kg. The composite 

samples were air-dried, ground and sieved through 2 mm. 

  

4.1.3 Establishment of researcher-managed experiments  

Field experiments were conducted for three seasons; short rains of 2005 (2005B), long 

rains of 2006 (2006A) and short rains of 2006 (2006B). Selected fields were ox-

ploughed twice and plots of 5 × 5 m demarcated prior to establishment of the legume 

experiments in 2005B. Six legume species were planted using recommended spacing: 

soyabean (Glycine max [L.] Merr.), variety TGX 1740-2F or SB 19 (0.75 × 0.10 m); 

cowpea (Vigna unguiculata [L.] Walp.), variety SEKO 1 (0.6 × 0.15 m); green gram 

(Vigna radiata [L.] R. Wilczek), local variety (0.6 × 0.15 m); groundnut (Arachis 

hypogaea L.), variety SERENUT 3R (0.45 × 0.10 m); pigeonpea (Cajanas cajan [L.] 

Millsp.), variety SEPI 1(0.75 × 0.30 m); and mucuna (Mucuna pruriens [L.] DC.) 

(0.75 × 0.6 m). All legumes were improved varieties, except green gram. A weedy 

fallow and finger millet variety U15 or SEREMI 2 (0.45 × 0.05 m) treatment were 

also included. The legumes were planted between 22nd and 27th August 2005 (season 

2005B). Each legume species was established with and without basal application of 

30 kg P ha–1 supplied as single super phosphate (SSP) while the continuous finger 

millet and weedy fallow treatments received no basal fertiliser. Legumes were 

maintained at 2 plants per hill except for soyabean and groundnut (1 plant per hill). 

Millet was thinned to 0.05 m within rows at first weeding i.e. 14 days after planting 

(DAP). Further weed control was by hand hoeing at 28 DAP. In the 2005B season, the 

legumes and finger millet did not produce grain due to drought at pod initiation and 

grain filling (Figure 1). Total rainfall received during the legume growth was 410 mm. 

After legumes, the same finger millet variety (SEREMI 2) was planted between 15th 

and 22nd March 2006 (season 2006A) and between 15th and 19th September 2006 

(season 2006B) on all the plots, thus the overall crop sequence was legume-millet-

millet. Weeding was done twice in each season. Total rainfall received during the 

growing period of millet was 580 mm (2006A) and 615 mm (2006B). 

 

4.1.4 Plant sampling and preparation 

At 50% flowering of the legume species, biomass samples were obtained from two 

locations along three middle rows using 1 m2 quadrats for determination of dry matter 

accumulation, N2-fixation and N uptake. Millet and weedy fallow treatments were 
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also sampled at 120 DAP and biomass determined. Millet samples were obtained from 

within the three middle rows of each plot, and randomly within plot centres of the 

weedy fallow treatments. At maturity, the millet heads were harvested using small 

knives, and the straw cut at 0.05 m above ground level. All plant samples were oven 

dried at 65oC for 72 hr and dry weights obtained. Millet heads were threshed in 

special cloth bags to minimise losses of the husks and the respective grain weights 

obtained. The grain and biomass samples were ground to pass through a 1 mm sieve 

prior to laboratory analysis.  

 

4.1.5 Soil and plant analysis 

Soil and plant samples were analysed at the World Agroforestry Centre (ICRAF), 

Nairobi, Kenya. Diffuse reflectance spectra were recorded for the soil and plant 

samples using a Field Spec FR Spectroradiometer (Analytical Spectral Devices Inc, 

Boulder CO) at wavelengths from 0.35 to 2.5 m with a spectral sampling interval of 

1nm. The optical set up for soil analysis procedures are described in detail by 

Shepherd and Walsh (2002) and for plant analysis by Shepherd et al. (2003).  

Soil chemical properties (pH, Olsen P, Exchangeable Ca, Mg and K, CEC) 

and soil particle composition (sand, silt and clay) were determined using standard 

methods for tropical soils (Anderson and Ingram, 1993) while total organic C and 

nitrogen were determined using a ThermoQuest EA 1112 elemental analyser on 20 

(i.e. approximately one- third) randomly selected samples from the total number of 

soil samples. Total N in legume and N and P in millet samples were determined from 

micro-Kjeldahl digests with H2SO4 and H2O2 by steam distillation and titration with 

HCl for N and by colorimetry (molybdenum- blue) for P. 

Partial Least Squares Regressions (PLSR) were used to relate spectral 

reflectance to measured soils or plants properties and calibration models for each 

property developed on a random two-thirds of samples (20 soil samples and 300 plant 

samples) analysed by wet chemistry. Cross-validation was applied to prevent over-

fitting of the models. The prediction performance of the models was evaluated on 

predicted and measured values of soil and plant attributes using the coefficient of 

determination (R2) and root mean square error (RMSE). 

RMSE = 
1

n
( x i  y i ) 2                                                                             (Equation 1) 

Where ( xi  yi) is the difference between the measured value by chemical analysis 

and predicted value by PLSR, n is the total number of samples in the test (Naes et al., 

2002). The analysis was performed using OPUS version 6.5 (copyright © Bruker 

Optik GmbH 1997-2007). The models for prediction of soil properties were good for: 
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SOC, total N, CEC, total P and silt (R2 = 0.90-0.96; RMSE = 0.11-0.75); for 

exchangeable Ca, sand and clay (R2=0.85-0.87; RMSE = 0.04-1.69); and, soil pH, 

exchangeable K and exchangeable Mg (R2=0.72-0.75; RMSE = 0.22-0.39). However, 

prediction of extractable P was less reliable and consequently, all samples were 

analysed for extractable P using the modified Olsen method (Anderson and Ingram, 

1993) at Kawanda National Agricultural Laboratories Research Institute and these 

data are subsequently used. The models were good for N in both millet (R2= 0.8, 

RMSE = 0.08) and legume (R2 = 0.59, RMSE = 1.57) samples.  

 

4.1.6 Determination of N2-fixation 

Nitrogen fixed from the atmosphere was computed by the N-difference method that 

assumes both the legume and the non-leguminous reference crop derive the same 

amount of N from the soil. The method works reasonably well for soils with low 

capacity to supply N and when the reference crop accumulates less N than the legume 

test plants (Unkovich et al., 2008), conditions that held in Pallisa. Two fields in 

Onamudian village, where the reference crop accumulated substantially higher N than 

the legume treatments were excluded from the computations. The proportion of N2-

fixed was calculated as: 

 

% N2-fixed = 100 × [TotNlegume- TotN non legume]/ TotNlegume  (Equation 2)  

 

The non-fixing crop used for reference was finger millet. The amount of N2-fixed by 

the legume was calculated as: 

 

N2-fixed (kg ha-1) = [% N derived from N2-fixation /100] × total N in legume biomass 

         (Equation 3) 

Legume and reference samples were analysed for 15N with the intention of 

calculating inputs from N2-fixation using the 15N natural abundance method, but 

legume samples had highly variable 15N-enrichment, often greater than that in the 

reference millet samples (data not presented), which precluded calculation of N2-

fixation. Below-ground N contributions of legumes are not considered in this paper 

but root N contributions of legumes are estimated to be roughly 30% of total N2-fixed 

(McNeill et al., 1998).  

 

4.1.7 Nitrogen use efficiency 

Nitrogen use efficiencies of N derived from legume residue in finger millet following 

incorporation of legume biomass was determined using average yields of millet for 

the two seasons and the amounts of legume N as: 
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NUE  =  
GYtreatment GYmillet

LNtreatment

      (Equation 4) 

Where: NUE is N use efficiency, GY is grain yield (kg ha–1) and LN is the legume N 

(kg ha–1) incorporated. 

 

4.1.8 Farmers’ preference and targeting of legumes  

Farmers’ preferences for legume species and targeting to soil fertility heterogeneity 

were assessed using the direct matrix ranking methodology (Theis and Grady, 1991). 

Farmer field school participants evaluated the performance of the legume species at 

the end of the season after visiting the field experiments within their respective 

villages. Twenty seven and 24 farmers participated in Chelekura and Onamudian 

villages respectively. Important characteristics used for evaluation were mainly 

related to soil fertility (biomass production, drought tolerance, pest and disease 

resistance, and weed suppression, improvement of yields of subsequent crops), and 

additional benefits such as household nutrition and income source (grouped as others). 

Each farmer ranked the legume attributes on the scale: 1 = poor, 2 = fair, 3 = good, 4 

= very good and 5 = excellent. Each farmer also gave a score of 1 to a preferred field 

type for production of a given legume and a reason for the preference. The scores 

were tabulated and total frequencies converted to percentages.  

 

4.1.9 Economic Analysis  

Benefit cost ratio analysis (CIMMYT, 1988) was conducted to assess the profitability 

(i.e. > 2 is profitable) of legume-millet rotations. Total yields of finger millet for two 

seasons were used to compute total benefits. Production costs for both legumes and 

millet were included in the calculation of the benefits. The total variable costs for 

legume biomass production included; seed, single superphosphate (SSP) fertiliser at 

the farm gate, labour (cost of ploughing, planting, weeding, chopping and 

incorporation). For finger millet, the variable cost for each season included seed and 

labour for land preparation, planting, weeding, harvesting, drying and threshing. The 

labour costs were obtained from farms within the study sites and for mucuna from two 

progressive farmers of a Conservation Agriculture project who were producing 

mucuna seed for sale but also practicing fallowing to improve fertility of their farms. 

Since pigeonpea was not native to this system, production costs could not be obtained. 

We assumed the costs to be similar to those of mucuna since it also required cutting 

and chopping biomass before incorporation. The farm gate millet price was 400 Ush 

kg–1 as observed during the experimentation seasons and was used to calculate the 

gross value of production. No grain was obtained from the legumes and therefore was  
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not included in the computation of gross value. The benefit cost ratio (BCR) was 

calculated as:  
 

BCR = 
TVCT

TVCTGVT 
       (Equation 5) 

Where: GVT = Gross value treatment and TVCT = Total variable cost of treatment.  

4.1.10 Statistical analysis 

  

Analysis of farmer’s acceptance of legume species  

Farmers’ acceptance of legume species was assessed by quantitative analysis of 

ranking data of legumes through computation of probabilities and logit regression 

analysis using the logistic preference ranking analysis tool (Hernández-Romero, 

2000). The analytical approach allows for separation of species to those that are likely 

to be accepted.  

Analysis of legume biomass and millet yield responses 

Legume biomass, N accumulation and amounts of N2-fixed, and millet grain yield 

data were analysed with the Restricted Maximum Likelihood (RELM) mixed effects 

model in Genstat 11.1. The fixed model terms included landscape, field type, legume 

species, phosphorus application and seasons, and their interactions and the random 

terms included farm, field and plot.  

 

4.2 Results  

 

4.2.1 Initial soil conditions of experimental fields 

The soils from the experimental fields in Chelekura were weakly acidic to basic, with 

low organic carbon and CEC. Soils from the fields in Onamudian village were 

moderately to weakly acidic and with moderate organic carbon and CEC (Table 1). 

Fields of both sites had small concentrations of extractable P (< 10 mg kg–1) with the 

exception of good fields on the middle landscape position. Exchangeable bases were 

high but higher in Onamudian than in Chelekura. Though not always significantly 

different, measured soil properties in a village were in general better in the good than 

the poor fields (farmer’s classification). Significantly (P<0.01) better soil properties 

were found in good than poor fields in the middle landscape position except the soil 

particle size fractions and soil pH in Chelekura village. Significant better soil pH, 

SOC, exchangeable bases were found in good than poor fields located in the upper 

landscape position in Onamudian village. Our results agree with findings in central 

Kenya that farmer’s local knowledge can be used to categorise fertility of fields 

within their farms (Mairura et al., 2008). This farmer categorisation is, however,  
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relative to the specific context: good fields in Chelekura are similar to poor fields in 

Onamudian (Table 1). 

 

4.2.2 Heterogeneity and P effects on legume productivity 

 

Biomass productivity 

Biomass productivity differed strongly (P<0.001) between the study villages, with 

larger yields generally in Onamudian (Table 2a). Field type, legume species 

(P<0.001) and phosphorus and landscape position × legume interaction significantly 

(P<0.05) affected biomass yield in Chelekura village. Biomass yield was generally 

larger on good compared with poor fields on each of the landscape positions for all 

the legumes. This effect remained when P was applied although the effect of P was 

mixed and sometimes negative. Biomass productivity followed the order: mucuna 

(3.9-6.5 Mg ha–1) > cowpea (3.4-6.1 Mg ha–1) > green gram (2.0-5.3 Mg ha–1) > 

pigeonpea (1.1-2.6 Mg ha–1> groundnut (1.0-1.8 t ha–1) ≈ soyabean (0.9-1.9 Mg ha–1). 

The trend in biomass production in Onamudian village was similar to that of 

Chelekura except that soyabean performed better than groundnuts. The largest 

biomass (10.9 Mg ha–1) was obtained in this village from mucuna. Application of 

phosphorus consistently increased biomass yield of cowpea on both good and poor 

fields on both landscape positions in each study site. This increase in biomass with P 

application ranged from 3-25 % in Chelekura and 21-35% in Onamudian. P increased 

groundnut biomass on all fields and landscape positions in Onamudian (5-25%) with 

apparent overall P effects ranging from -18 to 86%. The strongest effects of P 

application were obtained with soyabean (86%) on good fields in the middle 

landscape position in Chelekura and with mucuna on poor fields in the middle 

position (52%) in Onamudian village.  

 

Biomass N accumulation 

Legume biomass N accumulation significantly (P<0.001) differed between villages 

(Table 2b). The effect of landscape position was significant in only Onamudian 

village. Groundnut and soyabean accumulated comparatively small amounts of N on 

both good and poor fields and landscape positions in Chelekura and Onamudian 

villages. The ranges for groundnut were 27-56 kg N ha–1 and 43-119 kg N ha–1, and 

for soyabean 23-48 kg N ha–1 and 32-126 kg N ha–1 in Chelekura and Onamudian 

villages, respectively. Cowpea and mucuna accumulated the largest amounts of N in 

good fields on the middle landscape positions in both villages. In general, N 

accumulated increased with biomass accumulated.  
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 The apparent effects of P on biomass N accumulation varied with legume 

species, field type, landscape position and P application. The strongest increase was 

obtained with cowpea on good fields (79%) and green gram on poor fields (70%) both 

on middle landscape position in Onamudian village. In Chelekura village, the 

strongest apparent effects of P were from soyabean (82%) and green gram (51%) on 

good fields and poor fields respectively on the middle landscape position and from 

groundnut (62%) on poor fields in the upper landscape position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2a Percentage of N2-fixed from atmosphere by legume species without (P0) 

and with 30 kg P ha-1 (P30) on good and poor fields in Chelekura village during the 

short rainy season (2005B). A and B are respectively good and poor fields on upper 

landscape position. C and D are good and poor fields respectively on the middle 

landscape position. CP= cowpea; GG = greengram; Gnut = groundnut; Muc = 

mucuna; PP = pigeonpea and SB = soyabean. 

 

Nitrogen fixation 

In Chelekura village, the majority of the legumes fixed more than 50% of their N with 

or without P application in both landscape positions (Figure 2a). Soyabean derived the 

smallest %N from N2-fixation on the good fields in the middle landscape position and 
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on poor fields on the upper landscape position even when P was applied, probably 

because of soyabean rust. The highest increase in the proportion of N2-fixed when P 

was applied was obtained with groundnut on the good fields (38%) followed by 

soyabean (16%) on the poor fields of the middle landscape position (Figure 2a, C). 

Application of P increased N2-fixed by groundnuts by 19% on the poor fields on 

upper landscape position and 10% by soyabean on the good fields on the middle 

landscape position. The proportions of N2-fixed from the atmosphere were generally 

higher in Chelekura (Figure 2a) than in Onamudian village (Figure 2b). In the latter 

village, only mucuna, cowpea and pigeonpea fixed more than 50% of their N when  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2b Percentage of N2-fixed from atmosphere by legume species without (P0) 

and with 30 kg P ha-1 (P30) on good and poor fields in Onamudian village during the 

short rainy season (2005B). A and B are respectively good and poor fields on upper 

landscape position. C and D are good and poor fields respectively on the middle 

landscape position. CP= cowpea; GG = greengram; Gnut = groundnut; Muc = 

mucuna; PP = pigeonpea and SB = soyabean. 
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combined with P on the poor fields on the middle landscape position (Figure 2b, D). 

The largest increments in N2-fixed were obtained with groundnut (40%) and mucuna 

(42%) grown on poor fields with P at the upper landscape position. On poor fields at 

the middle landscape position, increases of 15, 26 and 20% with P application were 

obtained for cowpea, pigeonpea and soyabean respectively. Without P, no N2–fixation 

by soyabean was detected on the good fields of the middle landscape positions but 

there was a 50% increase in N2-fixation when P was applied. Application of P resulted 

in a 26% increase in N2-fixation by green gram on the good fields on the middle 

landscape position.  

The amounts of N2-fixed by legume species, by field types and by landscape 

position were generally larger for each legume species when established with P (Table 

2c). Field type and legume effects were significant (P<0.001) in Chelekura village. In 

Onamudian, landscape position × legume and field type × legume interactions were 

also significant in addition to the main effects of landscape position, field type, 

legume and phosphorus. Considering both villages, cowpea and mucuna respectively 

fixed 83-266 kg ha–1 and 68-253 kg ha–1 which were the highest amounts in both field 

types in the upper and middle landscape positions. The amounts fixed were usually 

larger in the middle compared with the upper landscape positions in both villages. The 

range of N2-fixed by soyabean was small (7-97 kg ha–1) because of the generally 

small amounts of biomass accumulated. 

 

Finger millet grain yield performance after legumes 

In Chelekura village, millet grain yield significantly differed between seasons 

(P<0.001), field type (P<0.01) and legume species (P<0.05) (Table 3a). The yield was 

greater in 2006A compared with 2006B due to the immediate beneficial effects of 

biomass incorporation. In 2006A, legume biomass without P increased millet yield 

from -0.12 to 1.02 Mg ha–1 (good fields) and 0.14 to 0.85 Mg ha–1 (poor fields) on the 

upper landscape position. Yield increases ranged from 0.42 to 0.78 Mg ha–1 (good 

fields) and from -0.05 to 0.23 Mg ha–1 (poor fields) in the middle landscape position. 

The residual effect of the legume biomass in season 2006B was small, resulting in 

yield increases above the continuous millet treatment of -0.14 to 0.39 Mg ha–1 in both 

good and poor fields in the upper landscape position and from -0.02 to 0.31 Mg ha–1 in 

the middle landscape position.  



Impacts of heterogeneity in soil fertility and farmers targeting of legumes 
 

93 

T
ab

le
 3

 G
ra

in
 y

ie
ld

 o
f 

fi
ng

er
 m

il
le

t 
(M

g 
ha

–1
) 

fo
ll

ow
in

g 
in

co
rp

or
at

io
n 

of
 b

io
m

as
s 

le
gu

m
es

 e
st

ab
li

sh
ed

 w
it

h 
or

 w
it

ho
ut

 P
, w

ee
dy

 f
al

lo
w

 a
nd

 c
on

ti
nu

ou
s 

m
il

le
t t

re
at

m
en

ts
 

on
 g

oo
d 

an
d 

po
or

 f
er

ti
li

ty
 f

ie
ld

s 
lo

ca
te

d 
on

 t
he

 u
pp

er
 a

nd
 m

id
dl

e 
la

nd
sc

ap
e 

po
si

ti
on

s 

(L
P

) 
in

 (
a)

 C
he

le
ku

ra
 v

il
la

ge
 a

nd
 (

b)
 O

na
m

ud
ia

n 
m

ea
ne

d 
ac

ro
ss

 t
he

 2
00

6A
 a

nd
 

20
06

B
 s

ea
so

ns
. 

 (a
) 

C
he

le
ku

ra
 v

il
la

ge
 

 
U

pp
er

 
 

M
id

dl
e 

S
ea

so
n/

tr
ea

tm
en

t 
G

oo
d 

 
P

oo
r 

 
G

oo
d 

 
P

oo
r 

 
P

0 
P

30
 

∆
P

 
 

P
0 

P
30

 
∆

P
 

 
P

0 
P

30
 

∆
P

 
 

P
0 

P
30

 
∆

P
 

20
06

A
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
C

ow
pe

a 
1.

47
 

1.
30

 
-1

2 
 

1.
29

 
1.

31
 

2 
 

1.
74

 
1.

66
 

-5
 

 
1.

08
 

1.
23

 
14

 
G

re
en

 g
ra

m
 

2.
04

 
1.

36
 

-3
3 

 
1.

33
 

1.
53

 
15

 
 

1.
81

 
1.

79
 

-1
 

 
0.

92
 

1.
16

 
26

 
G

ro
un

dn
ut

 
1.

28
 

1.
40

 
9 

 
1.

45
 

1.
5 

3 
 

1.
45

 
1.

63
 

12
 

 
0.

87
 

0.
77

 
-1

1 
M

uc
un

a 
1.

28
 

1.
48

 
16

 
 

1.
23

 
1.

19
 

-3
 

 
1.

76
 

1.
74

 
-1

 
 

0.
85

 
1.

03
 

21
 

P
ig

eo
np

ea
 

0.
80

 
1.

25
 

56
 

 
1.

02
 

1.
31

 
28

 
 

1.
58

 
1.

39
 

-1
2 

 
0.

80
 

0.
94

 
18

 
S

oy
ab

ea
n 

1.
13

 
1.

12
 

-1
 

 
0.

74
 

1.
15

 
55

 
 

1.
58

 
1.

57
 

-1
 

 
0.

86
 

0.
95

 
10

 
W

ee
dy

 f
al

lo
w

 
0.

91
 

- 
 

 
0.

79
 

- 
 

 
1.

04
 

- 
 

 
0.

59
 

- 
 

C
on

ti
nu

ou
s 

m
ill

et
 

1.
02

 
- 

 
 

0.
60

 
- 

 
 

1.
03

 
- 

 
 

0.
85

 
- 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
20

06
B

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

C
ow

pe
a 

0.
71

 
0.

94
 

32
 

 
0.

53
 

0.
67

 
26

 
 

0.
80

 
0.

78
 

-3
 

 
0.

78
 

0.
85

 
9 

G
re

en
 g

ra
m

 
0.

70
 

0.
83

 
19

 
 

0.
38

 
0.

60
 

58
 

 
0.

77
 

0.
79

 
3 

 
0.

76
 

0.
60

 
-2

1 
G

ro
un

dn
ut

 
0.

65
 

0.
96

 
48

 
 

0.
50

 
0.

51
 

2 
 

0.
81

 
0.

79
 

-2
 

 
0.

45
 

0.
58

 
29

 
M

uc
un

a 
0.

79
 

0.
77

 
-3

 
 

0.
82

 
0.

55
 

-3
3 

 
0.

64
 

0.
77

 
20

 
 

0.
74

 
0.

79
 

7 
P

ig
eo

np
ea

 
0.

73
 

0.
85

 
16

 
 

0.
68

 
0.

76
 

12
 

 
0.

77
 

0.
89

 
16

 
 

0.
59

 
0.

69
 

17
 

S
oy

ab
ea

n 
0.

63
 

0.
73

 
16

 
 

0.
29

 
0.

25
 

-1
4 

 
0.

76
 

0.
71

 
-7

 
 

0.
59

 
0.

57
 

-3
 

W
ee

dy
 f

al
lo

w
 

0.
78

 
- 

 
 

0.
39

 
- 

 
 

0.
62

 
- 

 
 

0.
43

 
- 

 
C

on
ti

nu
ou

s 
m

ill
et

 
0.

69
 

- 
  

 
0.

43
 

 -
 

  
 

0.
63

 
- 

  
 

0.
47

 
- 

  
S

E
D

 S
ea

so
n 

0.
26

9*
**

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
S

E
D

 L
P

 
0.

26
1n

s 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
S

E
D

 F
ie

ld
 ty

pe
 

0.
26

5*
* 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

S
E

D
 L

eg
um

e 
0.

27
1*

**
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

S
E

D
 P

ho
sp

ho
ru

s 
0.

27
0n

s 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 



Chapter 4 
 

94 

T
ab

le
 3

 c
on

ti
nu

ed
 …

 
 (b

) 
O

na
m

ud
ia

n 
vi

ll
ag

e 
20

06
A

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
C

ow
pe

a 
1.

87
 

2.
01

 
7

1.
09

0.
88

-1
9 

1.
83

1.
73

 
-5

 
1.

29
 

1.
18

 
-9

 
G

re
en

 g
ra

m
 

1.
81

 
2.

10
 

16
0.

88
0.

68
-2

3 
2.

15
1.

88
 

-1
3 

0.
89

 
1.

00
 

12
 

G
ro

un
dn

ut
 

1.
54

 
1.

74
 

13
0.

68
0.

91
34

 
1.

63
1.

95
 

20
 

0.
96

 
1.

08
 

13
 

M
uc

un
a 

1.
98

 
1.

90
 

-4
0.

92
0.

93
1 

1.
88

1.
76

 
-6

 
1.

16
 

1.
25

 
8 

P
ig

eo
n 

pe
a 

1.
90

 
1.

89
 

-1
0.

99
0.

87
-1

2 
1.

70
1.

87
 

10
 

0.
87

 
1.

18
 

36
 

S
oy

ab
ea

n 
1.

76
 

2.
03

 
15

0.
61

0.
74

21
 

1.
70

2.
08

 
22

 
1.

05
 

1.
12

 
7 

W
ee

dy
 f

al
lo

w
 

1.
69

 
- 

0.
84

-
 

1.
85

- 
 

0.
65

 
- 

 
C

on
ti

nu
ou

s 
m

il
le

t 
1.

67
 

- 
0.

98
-

 
1.

63
- 

 
0.

58
 

- 
 

 
 

 
 

 
 

 
 

 
20

06
B

 
 

 
 

 
 

 
 

 
 

 
 

C
ow

pe
a 

0.
72

 
1.

21
 

68
0.

63
0.

67
6 

1.
06

1.
23

 
16

 
0.

75
 

0.
74

 
-1

 
G

re
en

 g
ra

m
 

0.
65

 
0.

83
 

28
0.

51
0.

59
16

 
1.

18
1.

34
 

14
 

0.
74

 
0.

90
 

22
 

G
ro

un
dn

ut
 

0.
62

 
1.

13
 

82
0.

55
0.

5
-9

 
0.

77
0.

74
 

-4
 

0.
57

 
0.

76
 

33
 

M
uc

un
a 

0.
80

 
0.

93
 

16
0.

76
0.

71
-7

 
0.

76
0.

92
 

21
 

0.
76

 
0.

90
 

18
 

P
ig

eo
np

ea
 

0.
80

 
1.

07
 

34
0.

69
0.

71
3 

0.
70

0.
77

 
10

 
0.

92
 

0.
93

 
1 

S
oy

ab
ea

n 
0.

81
 

0.
92

 
14

0.
46

0.
37

-2
0 

0.
69

0.
81

 
17

 
0.

59
 

0.
68

 
15

 
W

ee
dy

 f
al

lo
w

 
0.

69
 

- 
0.

52
-

 
0.

71
- 

 
0.

76
 

- 
 

C
on

ti
nu

ou
s 

m
il

le
t 

0.
52

 
- 

 
0.

48
-

  
0.

74
- 

  
0.

57
 

- 
  

S
E

D
 S

ea
so

n 
0.

21
2*

**
 

 
 

 
 

 
 

 
 

 
 

 
 

 
S

E
D

 L
P

 
0.

20
9*

 
 

 
 

 
 

 
 

 
 

 
 

 
 

S
E

D
 F

ie
ld

 ty
pe

 
0.

20
8*

**
 

 
 

 
 

 
 

 
 

 
 

 
 

 
S

E
D

 L
eg

um
e 

0.
21

3*
**

 
 

 
 

 
 

 
 

 
 

 
 

 
 

S
E

D
 P

ho
sp

ho
ru

s 
0.

21
2*

**
 

 
 

 
 

 
 

 
 

 
 

 
 

 
SE

D
 =

 S
ta

nd
ar

d 
er

ro
r 

of
 d

if
fe

re
nc

e;
 S

ig
ni

fi
ca

nc
e,

 *
 P
 

0.
05

; *
**

 P
 

 0
.0

01
;

P 
A

pp
ar

en
t e

ff
ec

t o
f 

ph
os

ph
or

us
 =

 (
P 3

0-
P 0

)/
 P

0 ×
 1

00



Impacts of heterogeneity in soil fertility and farmers targeting of legumes 
 

95 

Yield responses were consistent with inherent variability in soil fertility. Usually 

stronger responses were found in the good compared with the poor fertility fields in 

both seasons. On average, yields on the good fields were higher than those on poor 

fields in 2006A and the difference was even larger in the 2006B season as a result of 

decline in residual effectiveness of legumes biomass. Millet grain yields did not differ 

significantly on establishment of legumes with P. 

The general trends in millet grain responses to legume biomass incorporation 

in Onamudian village were similar to those in Chelekura village except that responses 

to landscape positions (P<0.05) and P (P<0.001) were also significant (Table 3b). In 

addition, the apparent effects of P were stronger in the good fields than the poor fields 

and millet yielded more in the middle landscape position for both field types and 

seasons. 

Average additional grain yield of finger millet above continuous millet for the 

two seasons showed a positive contribution of the legumes to millet production 

(Figure 3). The added yields only significantly (P<0.001) differed between legumes 

species in Chelekura village. In Onamudian village, the added yields significantly 

(P<0.001) differed with legumes and application of phosphorus and interaction 

between landscape position × legume (P<0.05). Amounts of added grain yield were 

on average 0.2-0.3 Mg ha–1 in poor and good fields located on the upper landscape 

position in Chelekura and 0.15- 0.2 Mg ha–1 in Onamudian village. Millet responses 

were larger for all legumes with P except for cowpea and green gram in good fields 

(upper landscape position) in Chelekura village. Generally P application on legumes 

benefited millet in the poor fields more than in the good fields.  

 

Biomass NUE by finger millet 

NUE was in general low and only in few cases approached 25 kg grain kg–1 N taken 

up. P application gave increased NUE in each of the field types and landscape 

positions in both Chelekura and Onamudian village (Table 4). NUEs were higher on 

poor than on good fields in the upper landscape position with the largest NUE 

obtained with groundnut residues (18.2 kg grain kg–1 N). With P, the NUE after 

pigeonpea doubled from 7.1 to 14.3 kg grain kg–1 N. In Onamudian village higher 

NUE’s were found on the good fields ranging from 0.87 to almost 25 kg grain kg–1 N.  

 

Grain yield and N uptake  

Overall relationships between grain yield with N uptake following biomass 

incorporation across the treatments in each village were relatively weaker in 
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Figure 4 Finger millet grain yield relationships with total N uptake in Pallisa district, 

2006. A= Chelekura and B=Onamudian village. Open triangles are treatments without 

P and filled circles are treatments with 30 kg P ha–1 on preceding legume crops. 
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Chelekura (R2=0.52) than in Onamudian (R2= 0.85) and slopes of the lines are lower 

in the first village compared with the latter. The relationship was also weaker with P 

application in Chelekura (R2=0.40) but not different between with and without P 

application in Onamudian village (Figure 4). The latter could be due to the somewhat 

higher extractable P in the soils in Chelekura (Table 1). In both villages, increasing 

grain yield with N-uptake are low perhaps because other nutrients are limiting 

response. This is more distinct in Chelekura (lower R2) than in Onamudian (higher R2) 

which is supported by the fact that soil fertility in the latter village is somewhat better 

in particular in CEC (Table 1). 

 

4.2.3 Socio-economic evaluation 

 

Legume acceptance and preferential targeting by farmers 

Groundnut had the highest probabilities of being ranked first in Chelekura (60%) and 

Onamudian (75%) villages (Figure 5). It was followed by cowpea and green gram in  

Table 4 Nitrogen use efficiencies (kg grain kg-1 N uptake) in finger millet following 
incorporation of biomass of legumes grown with or without P fertiliser, weedy fallow on good 
and poor fertility fields located on the upper and middle landscape positions in Chelekura and 
Onamudian villages (averaged across 2 seasons). 
 

Upper   Middle 
Good  Poor  Good  Poor 

Village/legume 

P0 P30  P0 P30  P0 P30  P0 P30 
Chelekura            
Cowpea 2.57 0.77  3.25 3.84  2.35 1.81  2.71 3.42
Green gram 4.55 2.37  4.82 6.89  2.69 1.87  2.42 2.51
Groundnut 0.76 7.75  18.28 9.75  4.20 5.71  0.09 0.48
Mucuna 0.98 1.49  5.63 3.43  1.29 1.60  0.87 2.42
Pigeonpea -1.23 2.29  7.10 14.34  2.56 1.76  0.34 2.76
Soyabean -0.12 1.79  -0.33 6.01  7.63 3.75  2.48 2.78
Weedy fallow -4.85   5.19   -8.23   -15.26  
Millet         
            
Onamudian            
Cowpea 1.38 0.87  2.02 3.31  1.64 0.94  1.70 1.54
Green gram -0.87 11.84  1.26 2.34  3.29 2.86  1.86 1.08
Groundnut -0.51 24.79  1.33 5.92  -0.44 1.13  0.86 2.88
Mucuna 2.21 11.24  2.21 3.53  0.61 0.32  1.18 1.99
Pigeonpea 1.81 17.73  3.14 5.89  0.40 1.08  2.33 2.72
Soyabean -1.52 23.89  3.22 4.04  0.29 1.57  1.27 2.50
Weedy fallow 1.94   3.64   2.12   4.93  
Millet         
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Figure 5 Comparison of acceptance of legume species by participants in the farmer 
field schools in A: Chelekura (n= 27) and B: Onamudian (n= 24) villages, Pallisa 
District. 
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Chelekura and Onamudian, respectively. The slopes of regression lines of cumulative 

frequencies of farmers ranking of groundnut were 0.07 and 0.04, with positive and 

significant probabilities from zero of 0.59 and 0.80 in Chelekura and Onamudian 

respectively indicating a strong likelihood of acceptance by farmers. In both sites, 

probabilities were not significantly different for mucuna and the intercepts were 

negative. In the case of pigeonpea, the intercepts were negative although the 

probabilities were significant. The results indicated that mucuna and pigeonpea are 

unlikely to be accepted by farmers.  

Farmers preferred to target grain legumes with or without P application to 

fields of good fertility as indicated by 35-96 % of the respondents and pigeonpea and 

mucuna to fields of poor fertility (70-100%) in both villages. The farmers indicated 

that they would grow cowpea in both good (35-38%) and poor (45-63%) fertility field 

types which tallies with the good agronomic performance of cowpea across field 

types, and the response to P application. Farmers targeted grain legumes more to the 

good (26-93%) than poor fields mainly to avoid yield losses. Pigeonpea and mucuna 

were targeted to fields of poor fertility because of their biomass production potential 

and accompanying benefits of weed suppression and tolerance of poor soil fertility 

(63-92%).  

 

Economic benefits  

Benefits from millet following legumes were greater than from continuous millet 

treatment in both field types and landscape positions in the study villages (Table 5). 

Legumes without P application were profitable only on good fields in both villages. In 

Chelekura, profitable legumes (BCRs > 2) included green gram, cowpea and mucuna 

on good fields in the upper position and all the legumes except groundnut on good 

fields in the middle position. On poor fields only mucuna was profitable in the middle 

position. With the exception of groundnut, all the legumes without P application and 

weedy fallow and continuous millet cropping had BCRs > 2 on good fields on both 

upper and middle landscape positions in Onamudian village. However, only cowpea 

without P application was profitable on poor fields in the upper position.  

 

4.3 Discussion 

 

Heterogeneity in soil fertility influenced productivity of legumes established without 

and with P (Table 2) and the subsequent millet yields (Table 3). Biomass production, 

N accumulation and N2-fixation of the legumes were within ranges reported elsewhere 

in sub-Saharan Africa (Hauser and Nolte, 2002; Baijukya, 2004; Kaizzi et al., 2006; 

Ncube, 2007; Ojiem et al., 2007). Greater N availability in soils is known to inhibit N2 
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fixation (Giller, 2001) which explains why the proportions of N2-fixed were larger in 

Chelekura village with fields of lower total N than in Onamudian village (Table 1). 

Application of P increased the amounts of N2-fixed (Table 2b) rather than the 

proportions fixed (Figure 2) and had stronger effects in the poor fertility fields which 

were often P deficient (Table 1).  

 Millet yields increased following legumes, as is commonly found in legume 

cereal cropping systems (Osunde et al., 2003; Ncube, 2007; Franke et al., 2008). The 

yield responses were larger when larger amounts of legume biomass were 

incorporated. Residual effectiveness of the legumes was however short lived as the 

yields in season 2006B were significantly less than those of 2006A season due to a 

decrease in N availability. Legume residues release large amounts of N rapidly once 

incorporated in soil rendering it susceptible to leaching losses (Dawson et al., 2008). 

This could have been more likely as more than normal rainfall was received in 2006B 

season (Figure 1). Millet straw has high C: N ratio and because the straw of the 

previous season was incorporated into the plots, N immobilisation could have also 

compounded the low yields in 2006B season.     

 Heterogeneity in soil fertility mediated the millet yield responses. The larger 

millet yield responses observed in good than poor fields following legumes imply that 

other factors than N restricted millet growth. Larger relative responses of millet to P 

applied to the previous legume crop on poor fields showed a residual benefit of P 

application as reported earlier from legume-cereal rotations (Kihara et al., 2007). This 

is advantageous as it could cut costs of P application and also has cumulative benefits 

to all the crops in the rotation sequence because of increasing P recovery with time 

(Janssen and Wolf, 1988)  

Yield responses are also influenced by nutrient recoveries and use efficiencies 

as modified by heterogeneity in soil fertility. The agronomic N use efficiencies of 

legume biomass N in this study were stronger when P was applied to both good and 

poor fields (Table 4) a similar response to that observed with maize across different 

field types (Tittonell et al., 2007; Zingore et al., 2007a). The N use efficiencies were 

however smaller on less fertile fields. Zingore et al. (2007b) demonstrated that poor N 

use efficiencies on infertile fields were due to multiple nutrient limitations including 

deficiencies of micronutrients. To realise improved N use efficiencies and benefit 

from use of legumes, a better understanding of factors influencing N dynamics after 

legumes is needed, especially after straw incorporation. Other factors that interact to 

limit millet production in poor fertility fields need to be explored, such as deficiencies 

of other nutrients.   

Although mucuna and pigeonpea resulted in significantly higher millet yield 

increases compared with continuous millet, farmers would not accept them to be 
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planted on good fertility fields demonstrating a mismatch between agronomic 

performance and farmers preferences. Farmers were unfamiliar with pigeonpea which 

is a crop of the northern farming system in Uganda. They neither knew the crop as a 

food crop nor the potential marketability of its grain. For the case of mucuna, it was 

not popular with farmers because it has no direct food benefit to the farmers, although 

it produced large amounts of N-rich biomass, demonstrating that improving soil 

fertility is a secondary goal of farmers. Lack of acceptance of mucuna is also linked to 

substantial amounts of labour required for incorporation, and the fact that land is used 

without producing food (Nyende and Delve, 2004). In Chelekura, soyabean did not 

establish well and was attacked by rust, which influenced the farmers ranking (Figure 

5). Onamudian is close to the main market in Pallisa and green gram and soyabean are 

marketable and used in making snacks, and farmers preferred growing them. Their 

biomass performance also was better in this village. Overall, farmers’ evaluation 

could have been biased by the lack of grain yield due to the poor rainfall received 

during the 2005B season (Figure 1). Groundnut was highly preferred by farmers 

because it contributes to household food needs and is highly marketable despite its 

poorest economic performance on good fields where almost all legumes were 

potential to be targeted (Table 5).  

Farmers’ targeting of legumes to field types often did not reflect the 

agronomic or economic performance of the legumes. For example, farmers do not 

grow groundnut on high fertility fields as it produces a lot of biomass but the haulm 

yields are poor. Unpublished survey data from the same villages showed that 

groundnut was grown on fields of poor to moderate fertility yet farmers said they 

would target it to good fertility fields. Furthermore, our experimental results showed 

that in general all legumes produced more biomass on good fields than poor fertility 

fields (Table 2 (a)). Economic analysis indicated high returns on incorporation of 

legume biomass with or without P application because of the increased yield of the 

subsequent millet crop (Tables 5a and b). However growing legumes without P was 

most profitable (BCR > 2) on good fertility fields in both landscape positions in the 

study villages. With the current yields and prices, use of P fertilisers is not attractive 

for farmers. At current yields a 15–20% increase in the value of the produce or a 30–

40% reduction in the price of P fertiliser would be needed to make all of the legume 

technologies profitable. Integration of agronomic performance and farmers’ 

production objectives and economic benefits is needed to best fit legumes to socio-

ecological environments (Ojiem et al., 2006). 

From agronomic and economic viewpoint, green gram, cowpea, and mucuna 

established without P could be targeted to good fields (upper landscape position) and 

all the legumes except groundnuts (middle position) in Chelekura village. Only 
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mucuna without P was suitable for poor fields in the middle landscape positions in 

this village. In Onamudian village, all the legumes (except groundnuts) could be 

targeted to good fields and only cowpea to poor fields on upper position. A BCR > 2 

is often used as an economic threshold to identify soil fertility management 

technologies that can attract reinvestment and in turn may lead to their sustainable 

use. Millet however is grown for other social benefits (e.g. social functions/ 

ceremonies like marriages) to which it is difficult to attach a direct economic value. 

Therefore legumes (especially without P application) that result in BCRs greater than 

those from continuous millet could be attractive to farmers for growing in both good 

and poor fields for social sustainability. The wider perceptions of multiple benefits 

that farmers attach to a technology explain why groundnut was prioritised in both sites 

although it did not contribute significantly to higher yields of the subsequent millet. 

The high cost of the seed for the variety used and weak residual effect on millet yield 

explained its lack of profitability. Due to the poor rainfall, no grain of the legumes 

was produced, but in better seasons all the legumes including groundnuts may be 

profitable. Much as the economic analysis indicated that pigeonpea and mucuna were 

profitable on the good fields, the opportunity cost of missing out on food production 

means they are unlikely to be accepted by farmers, except for growing in the poor 

fields where their use was not profitable. Integrating the agronomic, social and 

economic factors in the targeting of legume species therefore draws as to suggest that 

green gram, cowpea and soyabean should be targeted on good fields in both villages, 

mucuna to poor fields in the middle landscape position in Chelekura village and 

cowpea to poor fields on the upper position in Onamudian village.  

 

4.4 Conclusions 

 

Variability in soil fertility strongly influenced the productivity of legumes and their 

contribution to subsequent crops of finger millet. Legumes increased millet 

productivity on both good and poor fields. P is necessary for establishment of legumes 

and accumulation of N in poor fertility fields. Farmers preferred targeting legumes 

with perceived multiple benefits to good fertility fields and legumes with no 

immediate contribution to household food requirement to poor fields but not because 

of a greater impact on fertility. Economic benefits were affected by heterogeneity 

between field types and, with current millet yields and prices, legume-millet rotations 

without P fertiliser were more profitable on good fields. Our results challenge the 

generalised recommendation that legumes are suitable for improving the productivity 

of low input farming systems. From our experiments, we suggest that green gram and 

cowpea without P be targeted to good fields on both upper and middle landscape 
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positions in both villages, mucuna without P to poor fields in the middle landscape 

position in Chelekura village, and cowpea to poor fields on upper position in 

Onamudian village. Thus, niches for different legume species need to be identified in 

the low input farming systems to derive maximum benefit from legumes. 
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Abstract  
 

Nutrient additions are required to increase crop production on degraded fields. Field experiments were 

conducted for three seasons to evaluate the effectiveness of inorganic fertilisers and kraal manure to 

improve the productivity of finger millet on nutrient-depleted fields on smallholder farms in Pallisa 

district, eastern Uganda. N, P fertilisers alone (0, 30, 60, 90 kg ha–1), N+P at equal rates of single 

application, and manure (3 t ha–1) supplemented with N (0, 30, 60 and 90 kg ha–1) were applied to 

degraded fields located in upper and middle landscape positions in Chelekura and Onamudian villages. 

A second control treatment of millet grown on soils of former kraals (high fertility niches) was 

included as a benchmark. Average grain yield ranged from 404 kg ha–1 to 2026 kg ha–1 and differed 

significantly (P<0.001) between villages and seasons in 2006. Significant effects (P<0.05) of 

landscape position on grain yield were observed only in Onamudian village. The treatments 

significantly increased millet yields on degraded fields but could not eliminate the yield differences 

between degraded fields and former kraals. The largest grain yields on degraded fields were obtained 

with application of N+P with average yields of 800 kg ha–1 in Chelekura village and 1171 kg ha–1 in 

Onamudian village. These yield responses closed the yield difference between the former kraal fields 

and degraded fields by 24% and 43 % compared with yields obtained on former kraal fields in 

Chelekura and Onamudian respectively. The physiological efficiencies, agronomic efficiencies and 

apparent recoveries of N and P were poor; often less than 25%. Pot experiments conducted in a 

greenhouse showed that S also limited millet growth in Chelekura and K was a limiting nutrient in 

Onamudian which partly explains the large yield gaps of finger millet between fertilized fields and 

former kraals in the smallholder farming systems. 

 

Key words: Heterogeneity in soil fertility; Integrated nutrient management; Nutrient use 

efficiencies; Fertiliser recoveries; Finger millet, Sub-Saharan Africa, Limiting nutrients. 
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5.0 Introduction 

 

Poor soil fertility is a major problem constraining crop productivity in smallholder farms of 

sub-Saharan Africa (SSA) due to inadequate replenishment of nutrients removed (Buresh et 

al., 1997). The magnitudes of nutrient depletion vary across the continent and are amongst the 

highest in Uganda: 20-40, 3.5-6.6 and 17-33 kg ha–1 yr–1 for N, P and K respectively (Smaling 

et al., 1997). Although negative nutrient balances are prevalent throughout SSA, areas of 

nutrient accumulation are created through management and resulting in heterogeneity in soil 

fertility and crop productivity within farms (eg Rowe et al., 2006; Tittonell et al., 2007; 

Zingore et al., 2007). Continued depletion of nutrients results in degraded patches of soil 

within farms. 

The area covered by poor fertility fields in smallholder African farms is substantial 

and will increase if no action is taken to replenish and sustain soil fertility. Tittonell (2007) 

found the proportion of poor fertility fields according to farmers’ categorisation to account for 

approximately 30% of total farm fields in six farming systems in western and central Kenya 

and eastern Uganda. In two villages in Pallisa district the degraded fields covered 13-29 % of 

the land area (Ebanyat et al., 2009). Together with reducing farm size this threatens the food 

security of smallholders who rely on farming for their livelihood. Thus deliberate measures to 

increase crop production on degraded fields are necessary.  

Potential options to restore soil fertility include the use of inorganic fertilisers or 

locally-available organic inputs. The use of inorganic fertilisers is constrained by high costs 

and inaccessibility, and a lack of economic returns (Morris et al., 2007). At the same time the 

limited amounts of organic resources available on smallholder farms and their poor nutrient 

quality constrain their use and effectiveness in soil fertility management (Ridder et al., 2004). 

Combined use of organic and inorganic fertilizers in integrated nutrient management is a 

potential approach to ameliorate soil fertility because of their complementary benefits 

(Vanlauwe et al., 2002). 

Strategies for fertility regeneration in smallholder farming systems can best be 

designed with the knowledge of field responsiveness to nutrient management interventions. 

Vanlauwe et al. (2009) propose a stepwise approach in targeting and adapting nutrient 

management interventions and germplasm to local variations as a way to moving towards 

integrated soil fertility management. The stepwise approach requires recognisable 

benchmarks against which to evaluate efficacy of the intervention strategies and the beginning 

point we suggest is identifying such benchmarks within the farming system. In the Teso 

farming system in eastern Uganda where this study was conducted, areas where manure 

accumulated over years of night corralling (former kraals) are fertile, give good yields of 

finger millet and are readily observed by smallholders. We used these former kraal sites as 

benchmarks to assess within-farm differences in millet yield and to evaluate responsiveness of  
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Figure 1 Cumulative daily rainfall received in the study area during field experimentation for 

three subsequent seasons 2005B, 2006A and 2006B. 

 

degraded fields to nutrient interventions in two study sites in Pallisa district. N and P are the 

major nutrients limiting millet production in the low input farming systems in eastern Uganda 

(Tenywa et al., 1999). We tested the hypothesis that differences in finger millet yield between 

the former kraals and degraded fields can be eliminated by application of appropriate rates of 

N and P of organic and inorganic origin on degraded fields. The specific objectives of the 

study were: (i) to determine finger millet yield response to applied nutrients of organic and 

inorganic origin on degraded fields and assess the extent to which yield differences between 

benchmark sites and degraded fields amended with nutrient inputs are reduced; (iii) to 

determine nutrient use efficiencies by finger millet; and (iii) to identify other nutrients 

limiting finger millet production in degraded fields.  

 

5.1 Materials and methods 

 

5.1.1 The study sites 

Field experiments were conducted in two villages: Chelekura in Chelekura parish (1°24΄N; 

33°30΄E) and Onamudian in Akadot parish (1°11′N; 33°43΄E) in Pallisa district (1°09′ N, 
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33°48′ E) representative of the Teso farming system of eastern Uganda. Soils of Chelekura 

are formed from lake deposits and those of Onamudian from basement complex rocks 

(granitic gneisses) (Harrop, 1970). The landscape is characterized by wide gently convex 

interfluves separated by wide swampy valleys (Ollier et al., 1969). The toposequence can be 

divided into three sub-zones; the upland zone at the summits (upper landscape positions), the 

midland zones located on pediments (middle landscape positions) and the valleys which may 

be seasonally or permanently wet (lower landscape positions). In both villages, soils are 

Ferralsols and Dystric Fluvisols in the uplands and valley bottoms respectively (Ebanyat et 

al., 2009).  

  Mean annual rainfall ranges from 900 to 1200 mm and is distributed in a bimodal 

pattern. The first rains are from March to June and the second rains from August to October 

or November. A dry spell stretches from November to March. Both study sites were within 

the same rainfall zone of 900 mm yr–1. Monthly temperature ranges from 15oC to 36oC, with 

an annual mean of 25oC (Yost and Eswaran, 1990). Cumulative total rainfall during the 

growing period of short rain season in 2005B was low (≈400 mm) but was above normal in 

2006B (Figure 1). Millet (Eleusine coracana L.) is an important staple and income crop in the 

study area. 

  

5.1.2 Field experiments 

 

Field selection and soil and manure characterization 

Ten degraded fields (5 on upper and 5 on middle landscape positions) based on farmers 

perceptions of fertility status and five former kraal sites last used for night corralling five 

years prior to this study were selected for experimentation in each of two study villages of 

Chelekura and Onamudian. Five soil sub-samples were taken from each field from 0-20 cm, 

thoroughly mixed and by quarter sampling composite samples were obtained. Manure was 

collected from 2 (Chelekura) and 3 kraals (Onamudian) and subsamples taken for oven drying 

at 65oC for 48 hr to obtain the average moisture content. Air-dried composite samples of soil 

(<2 mm) and manure samples were subjected to physico-chemical analysis at the World 

Agroforestry Centre (ICRAF) following spectral and standard wet chemistry analysis 

procedures (Shepherd and Walsh, 2002). Extractable P was determined at Kawanda National 

Agricultural Laboratories Research Institute in Uganda using the modified Olsen method 

(Anderson and Ingram, 1993).  

 

Field preparation and experiment establishment 

The fields were ox-ploughed twice and plots of 3 × 3 m demarcated and kraal manure, N 

(urea) and P as triple super phosphate (TSP) were applied as single replicates per farm and 

landscape position as follows: Control (with no nutrient inputs), N and P alone at rates of 30, 
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60 and 90 kg ha–1 and combinations of N and P each at equal rates (i.e. 30N+30P, 60N+60P 

and 90N+90P), kraal manure at 3 t ha–1 and kraal manure 3 t ha–1 with N at 30, 60 and 90 kg 

ha–1 (i.e. M+30N, M+60N and M+90N). Manure and TSP fertilizer were basal applied by 

spreading and worked into soil with a hand hoe. Finger millet variety SEREMI 2 was planted 

during the short rains of 2005 (2005B) at a spacing of 0.3 m between rows and thinned to 0.05 

m within rows at 2 weeks after planting (WAP). Nitrogen was applied in two equal splits at 

first weeding (2 WAP) and second weeding (4 WAP). In the subsequent seasons of 2006A 

and 2006B, land preparation was done on a plot basis using a hand hoe. The experiments were 

replanted in the same plots without any nutrient input additions in the long rainy season 

(2006A), but with nutrient inputs at the same rates during the short rainy season (2006B). All 

other agronomic operations were carried in the same way across the seasons.  

 

Millet sample collection, preparation and analysis 

In 2005B, only straw was harvested because of poorly distributed rains (Figure 1) that did not 

allow panicle filling. In 2006, millet panicles were harvested by cutting with thumb knives 

(farmers practice) and straw cut at 0.05 m above the ground surface from two quadrats of 1 

m2 along the 3 middle rows of each plot. The panicles and straw samples were oven dried at 

Makerere University’s Soil and Plant analytical laboratories at 65°C for 72 hours. Panicles 

were threshed and weights of grains and husks, and straw were obtained before they were 

ground to pass through a 1 mm sieve. The samples were analysed at the World Agroforestry 

Centre (ICRAF), Nairobi, Kenya for total N using of spectral and wet chemistry procedures as 

detailed in Shepherd et al. (2003). Total P was determined using the wet chemistry procedure 

as detailed by Anderson and Ingram (1993) for plant materials at Kawanda National 

Agricultural Laboratories Research Institute in Uganda.  

 

5.1.3 Greenhouse pot experiment 

Bulk soils were collected from 5 locations within the degraded fields used for experiments at 

0-20cm; three each from upper and middle landscape positions of each village. The samples 

were bulked and mixed using a manually rotated drum. The mixed soils of each village were 

weighed into pots to provide a rooting volume of 2000 cm3 i.e. 3.48 kg and 3.10 kg for 

degraded soils, and 2.84 and 2.78 kg for former kraal soils from respectively Chelekura and 

Onamudian villages. Treatments applied constituted macro and micro nutrients: N, N+P, 

N+P+K, N+P+K+S, N+P+K+S+Ca, N+P+K+S+Ca+Mg, N+P+K+S+ micro-nutrients and 

N+P+K+S+Ca+Mg + micro-nutrients. The source and amount of each nutrient applied (g pot–

1) to soils from Chelekura and Onamudian village were: N (NH4NO3; 0.2429, 0.2214), P 

(NaH2PO4; 0.1974, 0.1800), K (K2O; 0.0410, 0.0374), S ((NH4)2SO4; 0.2104, 0.1918), Ca 

(CaO; 0.2380, 0.2170), Mg (MgO; 0.1133, 0.1033), Mo(Na2MoO4; 0.0010, 0.0009), Mn 

(MnSO4; 0.0200, 0.0183), Cu (CuSO4; 0.0150, 0.0137), Zn (ZnSO4; 0.0150, 0.0137), Bo 
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(Na2B4O7; 0.0010, 0.0009) and Co (CoCl2; 0.0025, 0.0023). The nutrients were dissolved in 

the amounts of distilled, deionised water required to bring the soils in pots to field capacity. 

The pots were left to stand for 2 days and then planted with 0.5 g of finger millet seed (variety 

SEREMI 2). The experiment design was a complete randomized block with three replicates. 

At 2 weeks after emergence only 20 plants were maintained per plot. Water was added after 

every 2 days to maintain moisture content of the pots at 70% of field capacity during the 

experiment period. Millet shoots were cut at 0.05 m from the soil surface at 8 WAP and oven 

dried at 65oC for 48 hr to obtain shoot dry weights. Roots were recovered by washing soil 

from each pot through a 2 mm sieve. The roots were then oven dried to obtain root dry 

weights. Total biomass was a total of recovered roots and shoot biomass. 

 

5.1.4 Data calculations and analysis  

Total nutrient uptake in straw and grain was determined as a product of straw or grain yield 

with mass respective percentage total N or total P and the nutrient physiological or internal 

nutrient efficiencies for N and P computed using the equation of Witt et al. (1999):  

 

UNTGYTPhE           (Equation 1) 

 

Where: 

 PhE is physiological nutrient efficiency (kg kg–1); GYT = Grain yield for treatment (kg ha–1) 

and UNT is the total uptake of nutrient (kg ha–1). 

 

Agronomic efficiency and apparent nutrient recovery fractions of nutrients applied to 

degraded fields were computed from the following equations: 

 

RNGYCGYTAE )(          (Equation 2) 

 

Where:  

AE is agronomic efficiency (kg kg–1); GYT = grain yield of treatment (kg ha–1) and GYC is 

grain yield of control treatment (kg ha–1) and RN is rate of applied nutrient (kg ha–1), and 

 

RNUCUTARN )(         (Equation 3) 

 

Where: 

ARN is apparent recovery of nutrient (kg kg–1); UT = total uptake of nutrient in straw and 

grain (kg ha–1); UC is total uptake in straw and grain in the control treatment (kg ha–1); RN is 

the rate of applied nutrient (kg ha–1). 
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Statistical analysis was performed using the linear mixed effects models of the Genstat 11.1 

statistical package for field experiments with the fixed model term: Constant + Landscape 

position + Treatment + Season + Landscape position × Treatment + Landscape position × 

Season + Treatment × Season + Landscape position × Treatment × Season, and the random 

term: Farm + Farm × Plot. Analysis was only conducted on data from 16 of the 20 farms 

because several plots were destroyed by livestock. Only data for the two seasons of 2006 are 

used in the analysis. For the greenhouse limiting-nutrient pot experiment, a two way analysis 

of variance was conducted on millet biomass and the factors compared were soils and nutrient 

application. 

 

5.2 Results  

 

5.2.1 Soil and manure quality 

Initial soil quality of degraded fields selected by farmers differed significantly in pH, SOC, 

total N, exchangeable Mg, CEC and total P between sites but not between landscape positions 

(Table 1). In both sites, the fields were moderately acidic and poor in extractable P (<10 mg 

kg–1). Compared with poor fields, the degraded fields generally had a lower pH and contained 

less SOC, total N, Exc. K, Exc. Mg, and CEC in both villages. The silt fraction in degraded 

fields was larger than in poor fields in Chelekura village, and caused surface crusting. The 

former kraals differed significantly between sites in pH, SOC, total N, exchangeable Mg, 

CEC and total P, but were richer reflecting niches of good soil fertility. Manure quality varied 

between sites and seasons, and was poor in carbon (Table 2). The narrow C: N ratio (8-11) 

implies that manure used in both study sites was well-decomposed.  

   

5.2.2 Finger millet yield, nutrient uptake and nutrient use efficiencies 

Analysis of yield, nutrient uptake and physiological efficiencies data showed significant 

(P<0.001) differences between sites thus further analysis was conducted by site to assess 

landscape position, treatment, season and their interaction effects.  

 

Seasonal variations 

The relationship between inherent soil fertility, rates of fertilizer and yield was investigated 

with the aid of three-quadrant diagrams (Wit, 1992). With this procedure fertiliser application 

and yield responses (quadrant i) are split into the relationships between total nutrient uptake 

and yield (quadrant ii) and between fertiliser rates and total nutrient uptake (quadrant iii), for 

N (Figure 2) and P (Figure 3). These relationships were plotted for the grain yield of finger 

millet for treatments applied to degraded fields during seasons 2006A and 2006B by 

landscape position. Yield responses are related to nutrient uptake, which was influenced by  
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Table 2 Chemical properties of cattle manure used in the experiments. 

Site/Season pH Tot C 
 (%) 

Tot N 
(%) 

Total 
P (%) 

Total 
K (%) 

Total 
Ca (%) 

Total Mg 
(%) 

C/N 
ratio 

Chelekura    
2005B 8.0 5.24 0.55 0.15 0.57 0.56 0.14 10
2006B 9.5 7.99 0.71 0.26 0.94 0.62 0.19 11
    
Onamudian           
2005B 7.5 8.31 1.09 0.39 0.85 1.24 0.49 8
2006B 7.0 5.61 0.70 0.28 0.52 0.60 0.17 8

 

the apparent nutrient recovery. Apparent nutrient recoveries were also determined by the 

indigenous nutrient supply by the soils and varied between seasons.  

The indigenous supply of N was larger in both seasons in the upper than middle 

position with 19 kg N ha–1 and 13 kg N ha–1 (2006A) and 15 kg N ha–1 and 8 kg N ha–1 

(2006B) in Chelekura village. In Onamudian, the indigenous supply of N was larger in the 

upper landscape position (21 kg N ha–1) than the middle position (13 kg N ha–1) in 2006A. 

Indigenous supply of N however declined in the upper landscape position (11 kg N ha–1) but 

remained the same in the middle landscape position (13 kg N ha–1) in the 2006B season. 

Apparent N recoveries (ANR) were less than 25 % for both the N-only treatments and manure 

+N treatments on both landscape positions in Chelekura village in each of the seasons. In 

Onamudian only a few cases did it approach 40%. These low recoveries contributed to small 

total N uptake which in turn determined the generally rather flat yield response curves in both 

villages (Quadrant (i)). The responses in 2006A are due to nutrient application in 2005B and 

those for 2006B are due to nutrient application that season, plus any residual effect of P that 

was applied earlier. Application of manure with N occasionally gave slight increases in ANR, 

which was reflected in responses in N uptake and yield signifying an additive benefit from 

manure application, especially in the 2006A season. 

The indigenous P supply was higher in 2006A than 2006B season for both landscape 

positions (Figure 3). In Chelekura village, indigenous P supply in the upper position (1.79 kg 

P ha–1) was larger than in the middle position (1.59 kg P ha–1) in 2006A and 1.61 kg P ha–1 in 

the upper position and 1.34 kg P ha–1 in the middle position in 2006B. Because of larger total 

P reserves, indigenous P supply in Onamudian village was larger than in Chelekura village: 

1.93 kg P ha–1 (upper position) and 1.58 kg P ha–1 (middle position) in 2006A and 1.67 kg P 

ha–1 (upper position) and 1.70 kg P ha–1 (middle position) in 2006B. Apparent P recoveries 

(APR) were also small and usually less than 25% for both the P only and N+P treatments.  P 

uptake was higher in N+P treatments than sole application of P in both study villages, 

implying that N and P were limiting in both sites. Yield responses were higher in 2006A than 

2006B.  
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Across season analysis  

Average straw and grain yield significantly differed between treatments but not between 

landscape positions in Chelekura village (Table 3). Yield ranged from 1024 kg ha–1 to 2322 

kg ha–1and 400 to 1069 kg ha–1 for straw and grain respectively. N uptake was significantly 

(P<0.05) larger on the upper than middle landscape position. It also differed significantly 

(P<0.001) between treatments with the greatest uptake usually obtained from the N+P 

treatments. The average N uptake ranged from 10 to 27 kg ha–1. Average P uptake also 

differed significantly (P<0.001) between treatments. Treatments that received P fertiliser 

generally resulted in significantly larger P uptake compared with the control. Only 

physiological P efficiencies differed significantly (P<0.001) between treatments and by 

treatment × landscape position and ranged from 181 to 285 kg kg–1.  

Trends in average responses of yield, uptake and physiological efficiencies in 

Onamudian village (Table 4) were similar to those in Chelekura with some minor differences. 

Grain yield was significantly (P<0.05) larger on the upper than the middle landscape position. 

The yields in Onamudian village were greater than those in Chelekura village. N uptake was 

not significantly different between landscape positions but physiological N efficiencies 

differed significantly (P<0.001) between treatments and ranged from 32 to 58 kg ha–1. 

Agronomic efficiencies (AE), apparent N recovery fractions (ANR) and apparent P recovery 

fractions (APR) of N, P and manure +N applied to degraded fields were generally poor (Table 

5). In Chelekura village AE ranged from -0.23 to 5.94 kg grain yield per kg of N, and 1.72 to 

8.27 kg grain yield per kg of P. The range for ANR was 0.03- 0.26 kg kg–1 and for APR from 

0.01 to 0.22 kg kg–1. The values for these indices were comparatively higher in Onamudian 

village: AE ranged from 1.4 to 14 kg grain yield per kg of N, and 2.6 to 19.4 kg grain yield 

per kg of P. Ranges for ANR and APR were 0.10- 0.41 and 0.02- 0.09 kg kg–1 respectively 

 

Within-farm yield differences 

Across application rates, grain yield responses to application of N, P, manure, manure +N, 

and N + P treatments on degraded fields were variable but yields were increased above the 

control treatment (Figure 4). Responses were larger in Onamudian than Chelekura village 

although in both villages yields obtained with fertilizers were always less than those on the 

former kraal sites. In Chelekura village all treatments produced yields less than 1000 kg ha–1 

and in Onamudian village, only manure +N (1036 kg ha–1) and N+P (1171 kg ha–1) produced 

yields greater than 1000 kg ha–1. The trend in yield responses relative to the control were: 

manure (0.21) < P (0.45) < N (0.47) < manure +N (0.62) < N+P (0.88) in Chelekura and 

(0.43) < N (0.64) < P (0.70) < manure +N (0.87) < N+P (1.11) in Onamudian village. 

Treatment application to degraded fields resulted in closing of gaps in grain yields between 

former kraals and the control treatment (1532 kg ha–1) by 6 % (manure) to 24% (N+P) in 

Chelekura village and in Onamudian village (1442 kg ha–1) by 16% (manure) to 43% (N+P). 
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Figure 2 Three-quadrant diagrams showing relationships between N application, N uptake 

and grain yield of finger millet; (i) Yield against fertiliser rate (fertiliser use efficiency), (ii) 

Yield against N uptake (Physiological N use efficiency), (iii) N uptake against fertiliser 

application rate (Fertilizer Recovery) in degraded fields located on the upper and middle 

landscape positions in Chelekura (A and B) and Onamudian (C and D) village during seasons 

2006A (A and C) and 2006B (B and D).( ) = N alone, upper landscape position; (  ) = 

manure (3 t ha–1) + N, upper landscape position; ( ) = Nitrogen alone, middle landscape 

position; and ( ) = manure (3 t ha–1) + N, middle landscape position. Areas under bold (   ) 

and dotted lines (------) respectively represent ANR under 25% in the upper and middle 

landscape positions respectively. 
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Figure 3 Three-quadrant diagrams showing relationships between P application, P uptake and 

grain yield of finger millet; (i) Yield against fertiliser P rate (fertiliser use efficiency), (ii) 

Yield against P uptake (Physiological P use efficiency), (iii) P uptake against fertiliser 

application rate (Fertilizer Recovery) in degraded fields located on the upper and middle 

landscape positions in Chelekura (A and B) and Onamudian (C and D) village during seasons 

2006A (A and C) and 2006B (B and D). ( ) = P alone, upper landscape position; ( ) = N+P, 

upper landscape position; ( ) = Nitrogen alone, middle landscape position; and ( ) = N + P, 

middle landscape position. Areas under bold (     ) and dotted lines (-----) respectively 

represent ANR under 25% in the upper and middle landscape positions respectively.
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Figure 4 Average responses of finger millet grain yields per applied treatment on degraded 

fields in comparison with the former kraal sites in the study villages, 2006. Bars are standard 

deviations. 

 

Overall, grain yield responded more strongly to N+P application than to sole applications of 

either N or P implying that both nutrients are limiting on both sites.  

 

5.2.2 Other limiting nutrients 

In the pot experiment conducted to explore whether nutrients other than N and P were limiting 

crop response in the field experiments (Figure 5), N alone significantly increased biomass 

yields of finger millet in degraded soils from Onamudian but not in the soils from Chelekura. 

When N and P were applied together, shoot growth increased much more strongly in soils 

from Chelekura and the increase in growth was doubled on Onamudian soils compared with 

the sole nutrients. Addition of K, together with N and P significantly increased growth above 

the N+P treatment only in the soil from Onamudian. Adding sulphur increased plant growth 

only in the soil from Chelekura. Based on total biomass production, it appears that multiple 

nutrients limit productivity of millet on the degraded fields but that plant growth response 

depended on the interactions of N × P × S in Chelekura and N × P × K in Onamudian village. 
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Adding other cations (Ca and Mg) or other micronutrients did not result in significant 

increases in biomass; to the contrary they tended to give slightly depressed biomass yields. 

 

5.3 Discussion 

 

Although biomass production and yield of finger millet responded strongly when both N and 

P were supplied, in no case did yields match those found when finger millet was grown on 

sites where kraals had been situated in the past. These former kraal sites are areas where 

manure has been accumulated over long periods of time through night corralling of cattle, 

though none of the sites where the experiments were situated had been used by cattle in the 

previous five years. Persistence of good fertility in soils for at least four decades where kraals 

were formerly located has been reported from East Africa (Augustine, 2003). 

The seasonal differences in millet yield response were strongly influenced by rainfall. 

No yield was obtained in the first season (2005B) due to drought. Yield and growth response 

in the subsequent season 2006A was dependent on nutrients applied as fertilizer and manure 

in the poor season (2005B), and thus observed variability in responses in 2006A may have 

been due to variability in nutrient losses. Although fertilizers and manure were applied again 

in the 2006B season, excessive rainfall (Figure 1) is likely to have caused substantial losses of 

N. Despite the excessive rainfall, strong responses in growth and yield of finger millet to 

combined applications of N and P were observed in both 2006 seasons, though yields 

obtained were often only half those observed in the former kraal sites. 

 Soils differed between the two villages: the soils in Onamudian had greater silt + clay 

content (36%; sandy loam) than for those in Chelekura (31%; sandy clay loam). Silt + clay 

determine organic carbon storage through influencing physical protection of soil organic 

matter (Feller and Beare, 1997). In turn, these properties determine the capacity of soils to 

retain and supply cations. The soils in the former kraal sites had twice to three times as much 

SOC compared with the degraded fields in each of the landscape positions of each village. 

Variations in soil quality of former kraals between villages were also equally influenced by 

the differences in % silt + clay of the soils, but could also vary due to different amounts of 

manure previously accumulated in those sites. 

 Multiple nutrient deficiencies of N, P, Ca and Zn were reported to constrain 

rehabilitation of productivity on degraded sandy soils in Zimbabwe (Zingore et al., 2008). The 

limiting nutrient experiment that we conducted in pots showed that S and K were additionally 

limiting millet growth in soils from Pallisa (Figure 5). We had expected that treatments where 

manure was added would have supplied other nutrients such as K, S and micronutrients, but it 

seems that manure was unable to provide sufficient quantities of these nutrients in the short-

term. In field experiments in Zimbabwe, responses in growth and yield of maize to old kraal 

manure were seen only in the third year after application (Nyamangara et al., 2005; Zingore et 
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al., 2007). We further observed yield declines when P was applied at rates above 60 kg P ha–1 

that may be associated with Zn-P antagonism arising from precipitation of zinc phosphate 

(Marschner, 1995). Soil organic matter also determines the physical properties of soils. The 

soils in the area are prone to surface sealing and often crusts are observed following rain 

events. Enhanced soil organic matter contents can improve the water balance in the degraded 

fields by reducing the susceptibility to crusting and enhancing infiltration. The good 

productivity of finger millet on the former kraal sites could be attributed to the beneficial 

effects of manure on many aspects of soil fertility: improving structure, moisture availability, 

nutrient availability including micronutrient supply and biological activity which can enhance 

nutrient cycling.   

It is noteworthy that the conditions created in soils at former kraals arise from long-

term accumulation of manure. To improve the conditions in the degraded fields will therefore 

require substantial time and large applications of manure. The quantities of manure available 

in this region are limited and difficult to increase - the smallholder farmers lack grazing land 

to feed cattle producing manure (Ebanyat et al., 2009) which means that more cattle cannot be 

supported in the area. Fertiliser use and recovery efficiencies were low probably because of 

the low SOC in the degraded fields and other losses. Rehabilitation of the degraded fields will 

require building up of organic matter to thresholds that can enhance fertiliser use efficiencies 

(Tittonell et al., 2007) but it is unclear how the required amounts of organic matter can be 

sourced or created.  

Attention to balanced crop nutrition, ensuring that fertilisers supply all of the 

necessary nutrients for crop growth may give sufficient crop residues which, if returned to the 

soil may contribute to increase soil organic matter contents. Our results indicate that the 

declaration of the African Fertilizer Summit made in Abuja 2006 to aim for farmers to use 50 

kg of fertiliser per ha needs careful consideration because it will not yield much unless 

degraded fields are first rehabilitated. Responses of finger millet differed between sites with 

fields in the Chelekura site being less responsive compared with Onamudian because of the 

initial soil quality. The degraded fields in Onamudian had larger amounts of SOC compared 

with Chelekura (Table 1). Different amounts of inputs are required to raise productivity of 

fields in these two different villages reiterating the need for site specific nutrient management 

and that such blanket fertilizer recommendations are inappropriate. Our experiments over 

three seasons yielded reasonable responses to fertilisers and manure and from the knowledge 

that the process of rehabilitation takes time, dynamic modelling may help in designing 

strategies for intensification (e.g. Tittonell et al., 2008). Further experimentation is required to 

determine the quantities of organic manure and nutrients needed and the period it may take to 

restore fertility. Further field experiments are needed to assess the effects of application of all 

the limiting nutrients, including S, K and micronutrients on millet yield in the degraded fields.  
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Figure 5 Millet biomass response on soils from study villages amended with macro and 

micronutrients in a green house pot experiment over 8 weeks of growth. Bars are standard 

errors of difference: a = soil type (village); b = treatment; c = soil type x treatment.  
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5.4 Conclusions 

 

Although growth and grain yield of finger millet in degraded soils were increased strongly by 

application of fertiliser and manure, none of the treatments could completely close the 

difference in yields obtained on sites of former kraals. The short-term nature of the 

experimentation, covering only three seasons, was insufficient to restore fertility of these 

degraded soils, even where cattle manure was applied in farmer’s fields. The amounts of 

manure accumulated in former kraal sites were very large compared with the amounts added 

in the experiments, and probably insufficient to address the multiple nutrient limitations of S 

and K. Combined application of N+P fertilizer gave the strongest yield response compared 

with other options, but the strength of the crop response was variable with season, soil type 

and to a less extent, landscape position. Management aimed at increasing nutrient recovery 

efficiencies will need to accompany technological interventions to enhance sustainability. 

Thus combining organic and inorganic resources (integrated nutrient management) because of 

their complementary benefits could lead to improved productivity of the degraded fields. 

Repeated applications of manure would be required to increase soil organic matter contents 

sufficiently to assist in improving capture (infiltration) and storage of water. The scarcity of 

manure in the area, due to the small number of cattle and the lack of grazing land, means that 

other means to restore soil organic matter contents of the soils and supply of other limiting 

nutrients must be sought. 
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Abstract 
 

Heterogeneity in soil fertility across smallholder farms in sub-Saharan Africa renders blanket 

recommendations of limited value. The Quantitative Evaluation of Fertility of Tropical Soils 

(QUEFTS) model was calibrated for finger millet to explore the potential of this approach to 

develop site-specific nutrient management recommendations. Fertiliser response data from 

experiments conducted in eastern Uganda over 3 seasons were used to determine the model 

constants (kg grain kg–1) respectively for maximum accumulation (a) and maximum dilution 

(d) of 21 and 53 kg grain kg–1 N, 76 and 261 kg grain kg–1 P and 11 and 46 kg grain kg–1 K. 

The relationship between observed and model-predicted yield was good (r2 = 0.76; RMSD = 

262 kg ha–1). Balanced fertilisation requirements for a target millet yield of 2000 kg ha–1 were 

estimated at 83 kg N ha–1, 52 kg P ha–1 and 56 kg K ha–1 for the sandy loam soils of 

Chelekura village and 64 kg N ha–1, 31 kg P ha–1 and 40 kg K ha–1 for the sandy clay loam 

soils in Onamudian village. In degraded fields, other nutrient limitations besides N, P and K 

and soil physical aspects restricted nutrient uptake and hence resulted in prediction of yields 

above those which are obtained when finger millet is reliant on soil nutrient supply and N-P-

K fertiliser. 
 
Key words: Integrated nutrient management; Heterogeneity in soil fertility; QUEFTS; fertiliser requirements; 
yield gap; Uganda; sub-Saharan Africa        
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6.0  Introduction 
 

Although listed amongst the lost crops of Africa, finger millet (Eleusine coracana (L.) 

Gaertn)) has superior nutritional value compared with the commonly-consumed cereals i.e. 

wheat, rice and maize (NRC, 1996). The growing demand for the crop in East Africa now 

exceeds supply and is attracting research focus to increase its productivity (Mgonja et al., 

2007). In Uganda, finger millet is the second most important cereal crop after maize and is 

grown in northern, western and eastern regions of the country for food and to sell (Oryokot, 

2001).  

Despite its importance in the livelihoods of smallholders, finger millet yields are 

small, often less than 500 kg ha–1 and constrained by poor soil fertility and shortage of labour 

in eastern Uganda (Tenywa et al., 1999). Little is known about fertiliser nutrient requirements 

of the crop. Wide gaps ranging from 450 to 2500 kg ha–1 between on-station and on-farm 

yields of finger millet have been reported (Tenywa et al., 1999). Within farms, heterogeneity 

in soil fertility also contributes to yield variability and yield differences ranging from 1000 to 

1500 kg ha–1 have been observed between good soil fertility niches (former cattle kraal sites) 

and fields of poor fertility in eastern Uganda (Ebanyat et al., 2009). Such heterogeneity in soil 

fertility needs to be considered to make efficient use of inputs through deriving site-specific 

nutrient management recommendations for improvement of millet productivity.  

In the Teso farming system in eastern Uganda, N and P are the major nutrients 

limiting millet production (Tenywa et al., 1999; Nyende, 2001). Fertiliser recommendations 

that consider the interaction between these nutrients are necessary to support farmer 

management. The quantitative evaluation of fertility of tropical soils (QUEFTS) is a 

modelling approach that considers soil nutrient availability and major nutrient interactions to 

predict crop yield (Janssen et al., 1990). The generic model was developed initially to predict 

maize response to soil fertility in Kenya (Smaling and Janssen, 1993). QUEFTS uses an 

empirical approach to estimate crop yield based on measurements of the nutrients available 

from soil, nutrients from fertiliser added and the cultivar-specific potential yield under given 

environmental conditions. Further, the approach considers interactions of the major nutrients 

N, P and K in determining yield and differs in this aspect with the single nutrient-yield 

response approaches commonly used. Beyond estimating yields, fertiliser requirements and 

economic benefits of fertiliser use can also be estimated. The usefulness of the QUEFTS 

approach has been demonstrated by the large number of applications and adaptations that 

have been made for different crops (e.g. rice, wheat, pearl millet) in tropical and subtropical 

environments (Witt et al., 1999; Haefele et al., 2003; Samaké, 2003; Liu et al., 2006; Das et 

al., 2008; Tittonell et al., 2008a). QUEFTS had not been calibrated for finger millet and we 

undertook this with the aim of deriving site-specific recommendations for millet production. 

Our specific objectives were: (i) to determine the physiological model parameters for finger 
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millet; (ii) to assess the relationships between soil analytical data and the soil supplies of 

available N, P and K; (iii) to estimate fertiliser requirements for finger millet production with 

balanced application of nutrients at target yield specified by niches with high soil fertility 

within the farming system; and (iv) to predict finger millet yield response to application of N 

and P fertilisers on nutrient-depleted fields.  

 

6.1 Materials and Methods 

 

6.1.1  Data used  

Data used for calibration came from field experiments conducted in Chelekura village, 

Chelekura Parish (1°17′N; 33°30′E) and Onamudian village, Akadot parish (1°11′N; 33°43′E) 

in Pallisa district (1°09′N; 33°48′E), eastern Uganda to determine yield response of finger 

millet grown on nutrient-depleted fields to application of fertilisers and manure. The yield 

responses in the degraded fields were compared with millet yields on benchmark sites with 

highly fertile soils (former cattle kraals). Fields used for the experiments were selected based 

on farmer’s local knowledge of fertility of their own fields. Surface soils were collected from 

20 fields at depth of 0–20 cm, air dried, sieved through 2 mm and analysed for pH, SOC, 

Total N, CEC and particle size distribution at the ICRAF laboratory Nairobi using methods 

described by Shepherd and Walsh (2002). Extractable P was determined by wet chemistry 

analysis using the modified Olsen method (Anderson and Ingram, 1993) at Kawanda National 

Agricultural Research Laboratories Institute in Uganda. N and P fertiliser response 

experiments with 3 × 3 m plots were conducted on degraded fields located on both the upper 

and middle landscape positions in each village. Treatments were N and P alone at rates of 0, 

30, 60, 90 kg ha-1, N combined with P each at same rates (i.e. N30+P30; N60+P60, N90+ P90 

kg ha-1), and manure at 3 t ha–1 combined with N at the each of the above specified rates. 

Neither fertiliser nor manure was applied to plots on the former kraals. Finger millet variety 

SEREM 2 was the test crop and recommended agronomic practices were followed in its 

production. At maturity of finger millet in each season, dry weights of grain and straw yields 

were measured. The total N, P and K contents in the grain and straw were determined in 

digests with H2SO4/H2O2 with salicylic acid and selenium catalyst (Anderson and Ingram, 

1993). The experiments were conducted over three seasons but only data of the two seasons 

of 2006 from 16 farms could be used in this study because the crop produced no grain yield in 

the 2005 season due to late-season drought. 

 

6.1.2  The QUEFTS model 

To calibrate the QUEFTS model to estimate fertiliser requirements and yield of finger millet a 

four step process is followed (Janssen et al., 1990): 
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1. Quantification of the potential indigenous soil supply (uptake under optimum 

conditions) of available N (SN), P (SP) and K (SK) using soil chemical data or from crop 

nutrient uptake measured by preference in NPK factorials, or in nutrient-omission trials; the 

supply of available nutrients from fertilizers and other inputs is found as the product of the 

quantity and the maximum recovery fraction of the fertiliser nutrient; 

2. Estimation of the actual crop uptake of N, P and K (UN, UP and UK, respectively) 

as a function of the available supply of that nutrient from the soil plus the available supply 

from nutrient inputs, taking into account the available supplies of the other nutrients; 

3. Estimation of N-, P- and K-determined yield ranges as a function of calculated 

nutrient uptake and a cultivar-specific potential yield (Ymax), considering minimum and 

maximum physiological efficiencies (yield per unit of nutrient uptake) of N, P and K. These 

relations between yield and nutrient uptake vary between a maximum value at low nutrient 

availability (maximum dilution) and a minimum value at maximum yield (maximum 

accumulation). Sequentially minimum and maximum N, P and K determined yields (YNA: 

yield at maximum N accumulation, YND: yield at maximum N dilution, etc.) are obtained; 

and, 

4. Yield ranges are combined in pairs (N and P, N and K, P and K); Final yield is 

obtained by averaging calculated yields of paired nutrients.  

 

6.1.3  QUEFTS Model calibration  

 

Physiological efficiency  

Model calibration requires setting of the maximum accumulation (a) and maximum dilution 

(d) parameters. These parameters are physiological efficiencies (PhE) or internal efficiencies 

and are derived as: 

 

PhENutrient (kg kg–1)   = GY/ TU                 (Equation 1)  

 

Where: GY = economic yield (kg) and TU is the total nutrient uptake (kg) in grain and straw. 

The parameters were determined for N, P and K for finger millet under the environmental 

conditions of the study area. The sensitivity of the model to ‘a’ and ‘d’ parameters was 

analysed by taking data sets at 5 and 95th, 7.5th and 92.5th, and 10th and 90th percentiles of the 

estimated values (Witt et al., 1999). 

 

Supplies of available nutrients from soil and fertilizer  

Relationships between nutrient uptake and soil supply of available nutrients did not fit well 

using the default algorithms in the QUEFTS model. Multiple regression analysis between soil 

available nutrients (indigenous supply) and measured soil variables was conducted to derive  
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appropriate equations for estimating soil nutrient supply using Genstat statistical package 

version 11.1. Soil supply of available nutrients (SAv) or indigenous supply were taken as 

averages of the maximum values obtained from treatments without N (for N) and without P 

(for P) and N+P treatments for K across the experimental farms in each village. Recovery 

fractions of applied fertiliser were estimated nutrient uptake differences between N+P and P 

treatments for N, N+P and N treatments for P divided by the applied rate of the nutrient. 

Nutrient recoveries from manure were computed as difference between manure + N and N 

treatments. Nutrients and recovery fractions for fertiliser requirement computations were 

obtained by taking arbitrarily 95th percentile of all recovery data for each nutrient in each 

village.  

 

Estimation of fertilizer requirement 

Fertiliser requirement for various target yields equal to or less than the given yield potential 

can be determined from the relationships between nutrient uptake at target yield, 

physiological efficiency of nutrient use, the nutrient supply from the soil, and recovery 

efficiencies of applied fertilizers. The  yields  on  the  former  kraals  were  used  as  target 

yields  (≈2000  kg  ha–1)  to  estimate  fertiliser  requirements  to  produce  the  same  grain 

yield  obtained  on  degraded  fields  (i.e.  to  eliminate  the  yield  gap  between  the  former 

kraals and degraded fields). Fertiliser requirements (FR in kg ha–1) for N, P and K based on 

uptake and fertiliser recovery efficiencies at a target yield have been computed as (Pathak et 

al., 2003; Liu et al., 2006):  

 

FR = (NUtarget – Nind)/MRE    (Equation 2) 

 

We use the symbol SAv (available soil supply) instead of Nind (indigenous nutrient), and 

calculate NUtarget as Y/PhE where; Y is the target yield (kg ha–1); PhE physiological nutrient 

efficiency (kg kg–1). Y/PhE is also the same as target uptake (NUtarget in kg ha–1). MRE is 

maximum recovery efficiency (kg kg–1). 

In reality, however, crops do not take up all of the total supply of nutrients. In case of 

balanced supplies of N, P and K, the actual uptake is 96% of the supply (Janssen, 2009). Also 

the yield may be somewhat less than the product of uptake and physiological efficiency. 

Following Janssen (2009), the relationship between yield (Y) and available nutrient supply 

(Av) was set at: 

  

Y = 0.9 × Av × PhE                   (Equation 3) 
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The available supply (Av) consists of available soil supply (SAv) and available fertilizer 

supply (FAv), where FAv is FR × MRE. Substituting Av in Equation 3 and expressing it in 

FR (kg ha–1) results in:  

 

FR = (1.11 × Y/PhE – SAv)/MRE                 (Equation 4) 

 

Equations 2 and 4 can be seen as shortcuts of QUEFTS. They are especially useful when 

supplies of N, P and K are well balanced. 

 

6.2  Results 

 

6.2.1.  Soil characteristics of the experimental fields  

Characteristics of experimental fields are summarised in Table 1. The degraded fields had 

medium soil acidity, and were poor in SOC, total N and extractable P, but adequate in 

exchangeable K. These qualities differed significantly between villages but not between 

landscape positions within villages. Chemical characteristics of former kraals were 

significantly better in Onamudian village compared with Chelekura village except in 

extractable P and exchangeable K. The soils in the study sites were sandy loams in Chelekura 

and sandy clay loams in Onamudian villages.   

 

6.2.2.  QUEFTS Model calibration  

 

Physiological efficiency 

Descriptive statistics of crop data used for calibration of the QUEFTS model (Table 2) 

showed wide variations in measured yields and physiological variables. This was due to the 

extreme variability in soil fertility which encompassed very poor soils and very fertile soils on 

former kraal sites. Grain yields ranged from 64 to 2918 kg ha–1. The largest observed yield 

from a former kraal site is close to the potential yield for the variety used in this environment. 

The wide range of soil conditions meant that the data was useful for calibration of the 

QUEFTS model as it encompassed the full range of soil heterogeneity where finger millet is 

cultivated on smallholder farms in eastern Uganda. 

The physiological parameters were derived from grain yield and total nutrient uptake 

relationships for N, P and K at the 5th and 95th percentiles of physiological efficiencies of each 

nutrient for ‘a’ and ‘d’ respectively (Figure 1). The parameters determined for maximum 

accumulation (a) and maximum dilution (d) were 21 and 53 kg grain kg–1 N, 76 and 261 kg 

grain kg–1 P and 11 and 46 kg grain kg–1 K. Yields were calculated with these calibrated 

values for PhE as a function of the measured uptake, using the procedures of steps 3 and 4 of 

the QUEFTS Model. The plots of observed yields were made along the Y-axis and the  
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calculated yields along the X-axis, as recommended by Piňeirio et al. (2008). The calculated 

yields slightly overestimated yields as reflected in the regression coefficient of 0.98, but the 

fit between calculated yields and measured yields was rather good with R2 =0.76 and root 

mean squared deviation (RMSD) of 262 kg ha–1 (Figure 2A). For sensitivity analysis, two 

other sets of ‘a’ and ‘d’ parameters were used. They were derived at 7.5th and 92.5th, and 10th 

and 90th percentiles, respectively (Table 4). With set II parameter values, the model further 

overestimated grain yield of finger millet as shown by the regression coefficient of 0.93, and 

with Set III the overestimation was still larger (regression coefficient of 0.91). Statistically, 

the Set I values gave the best results.  

 

Supplies of available nutrients from soil and fertilizer  

The relationships between soil data and soil supply of available nutrients were studied for 

season 2006A only, as Season 2006B was too wet to produce normal relationships. Table 3 

shows the best fitting simple equations between chemical soil data and soil supply of 

available nutrients (SAv) measured as the maximum nutrient uptake from the soil. A negative 

relationship between exchangeable K and SOC has been reported earlier (Janssen et al., 1990; 

Smaling and Janssen, 1993). It is explained by the decreasing relative K saturation of the 

cation absorption complex with increasing SOC contents (Mengel and Kirkby, 1980). 

 
Table 3 Regressions equations for soil available nutrients (SAv in kg ha–1) and soil 

parameters.  

Nutrient Equation R2 P 

    

N SAvN = 38 × Tot N (g kg–1) 0.50  <0.01 

P SAvP = 161 × Olsen P(mg kg–1)/total P (mg kg–1)  0.58 0.001 

K SAvP = 104 × Exch. K( mmol kg–1)/SOC (g kg–1) 0.64 0.001 

 
 
Table 4 Sets of model parameters ‘a’ (maximum accumulation) and ‘d’ (maximum dilution) 
relating grain yield and N, P and K uptake by finger millet. Sets II and III of parameters were 
used for sensitivity analysis. 
 
Nutrient Model parameters a 

Set I  Set II  Set III 
a d a d a d

N 21 53 23 52  23 49
P 76 261 81 253  91 243
K 11 46 13 44  15 40

a The parameters a and d of each nutrient were respectively determined from data of physiological efficiencies at 
the 5th and 95th (Set I), 7.5th and 92.5th (set II), and 10th and 90th percentiles.  
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The relationship for SAvP is surprising because in the original QUEFTS studies (Janssen et 

al. 1990; Smaling and Janssen, 1993) a positive relation between SAvP and total P was found. 

We observed that SAvP was smaller in Onamudian village despite the high total P and 

extractable P on this site (data is not presented). For the calculation of the available supply of 

fertilizer nutrients (FAv), the maximum recovery efficiency (MRE) is needed. MREs of 

fertilizers N, P and K were found at the 95% percentile of all the data obtained from the 

experimental fields in each village (Figure 3). Fertiliser N and P recoveries were poor and 

ranged from -0.4 to 0.51 for N and -0.2 to 0.32 for P.   

 

Nutrient uptake efficiency: relations between supply of available nutrients and actual uptake  

In QUEFTS the actual uptake of a nutrient is equal to the supply only if the particular nutrient 

is the limiting and all other growth factors are abundantly available. Interactions with the 

other nutrients (e.g. in case of N with P and K) are taken into account, but not the interactions 

with other growth factors, and the effects of farmers’ management skills. An example is given 

in Figure 4, showing the relationship between the actual uptake of N and the calculated soil 

supply of available N. The measured uptake is less than the calculated uptake, but the 

difference is not great except at the higher N supply. The measured uptake shows a 

tremendous variation. It may be equal to the supply but also far less. Similar pictures were 

found for P and K. The ratio of measured actual uptake to calculated actual uptake in the 

control treatments was about 0.7 for N, 0.65 for P and 0.5 for K, but it showed tremendous 

variation. A similar problem as for the soil supply holds for the recovery fractions of fertilizer 

N and P. Figure 3 shows that the median values for the recovery efficiencies of fertilizer N 

and P were about a quarter and one third of the values at the 95th percentile. These large 

variations are apparently caused by factors not considered in the QUEFTS model, and are 

probably difficult to measure. The weak and irregular pattern of the relationship between 

uptake and supply, and thus the nutrient uptake efficiency, weakens the relationships between 

QUEFTS-calculated and measured yields.  

 

6.2.3  Yields calculated with the modified QUEFTS model  

Using the relationships found between soil data and nutrient supply (Table 3), and the values 

for the physiological nutrient use efficiency (Table 5), yields for finger millet were calculated 

according to the procedures of the model QUEFTS. Calculated yields (with non reduced soil 

supply) were about twice as high as the observed yields (Figure 5). In view of the findings 

shown in Figures 2, 3 and 4, it is likely that the low nutrient uptake efficiency and the great 

variability in farmers’ fields are responsible for the poor results in Figure 5. A second 

calculation was made taking into account the low uptake efficiency (reduced supply). The soil 

supplies of N, P and K were set at 0.7, 0.65 and 0.5, respectively, of the originally calculated 

supplies, and the recovery fractions were multiplied by 0.25 for N and P and by 0.3 for K. The 
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Figure 4 Relation between uptake (calculated or measured) and calculated supply of N on 

control plots. 

 

average regression coefficients found for the two villages was close to unity in this case 

(Figure 5). The measured yields were higher in Onamudian than in Chelekura village, and on 

average also higher than the QUEFTS calculated yields (Figure 6). Probably the nutrient 

uptake efficiency in Onamudian was better than in Chelekura.  

Calculated yields of finger millet at reduced soil supply were comparable to measured 

yields and were highest for N and P at the rate of 90 kg ha–1 N+P in both villages (Figure 7). 

This suggests that the adjusted supply is appropriate. With the calculated yields, the yield 

gaps of finger millet were about 2500 kg ha–1 at no nutrient input and about 2000 kg ha–1 for 

N+P at the highest rate in both villages.  

 
6.2.4  Fertiliser requirements     

Shortcut calculations of the amounts of fertiliser required for balanced nutrition were 

computed for a target yield of 2000 kg ha–1 from the target nutrient uptake estimated using the 

physiological efficiency (PhE) optimum and fertiliser recovery efficiencies (Table 5). In these 

calculations, recovery efficiency of K was set at 0.5 because the recovery ratio for N:K is 
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Figure 5 Relationship between measured and calculated yields of finger millet with non-

reduced and reduced nutrient supply for all experimental data of the two study sites in Pallisa 

District, (2 seasons of 2006). 

 

approximately 1:1 and from our experiments, maximum N recoveries ranged between 0.47 

(Chelekura) and 0.49 (Onamudian) which are close to default recoveries in the QUEFTS 

model. The N and P recovery fractions at the 95th percentiles of recovery fractions for each 

nutrient in each village are presented in Figure 4.  

Fertiliser requirements computed with the modified equation were higher than those with 

equation 2. With both equations however, the calculated fertiliser requirements were 1.3 to 

1.7 times higher for soils of Chelekura village compared with those of Onamudian village. 

Noteworthy here is that K is also determined to be required, yet it has always been considered 

not important as a limiting nutrient in this system (Wortmann and Eledu, 1999). 
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Figure 6 Relationship between measured and calculated yields of finger millet using reduced 

nutrient supplies per study village in Pallisa District (2 seasons of 2006). 

 

6.3 Discussion 

The QUEFTS approach was useful for understanding soil-crop relationships and deriving site-

specific fertiliser recommendations for finger millet. The parameters determined for 

maximum accumulation and dilution, i.e. physiological efficiency, partly fell within the 

ranges for cereals reported by Janssen (2009) except in the case of K for which finger millet 

had smaller values. The ratio of the uptakes of N:P was less than that found earlier for other 

cereal crops. On the basis of the calibrated model, optimum ratios were determined for 

balanced nutrient fertilisation of finger millet as 1 : 0.28 : 1.3 for N : P : K, while according to 

Janssen (2009) these values for cereals are 1 : 0.145 : 0.8. The high portion of P in finger 

millet could be due to the small grain size of millet (Janssen, 1993) and the somewhat larger 

value for K is due to the smaller harvest index found in finger millet compared with cereals in 

general.  
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The values of medium physiological efficiency, fertilizer nutrient recovery efficiency 

and soil available nutrient supply were used to calculate the amount of fertiliser required to 

achieve the target yield of millet (2000 kg ha–1) (Table 5). The fertiliser estimates were 83, 52 

and 56 kg ha–1 (Chelekura) and 61, 31, and 40 kg ha–1 (Onamudian) for N, P and K 

respectively. The soils in Onamudian village were more fertile (e.g. had larger SOC contents) 

than those in Chelekura and thus a smaller fertiliser requirement for finger millet. This 

difference in the calculated fertiliser requirements is explained by larger recovery efficiencies 

of applied fertiliser and higher soil supply of nutrients in Onamudian than Chelekura village.  

Application of QUEFTS is suitable for well-drained deep soils with pH (H2O) of 4.5- 

7.0, SOC < 70 (g kg–1), organic N < 7 (g kg–1), total P < 2000 g kg–1, Olsen P < 30 (g kg–1), 

and Exch. K < 30 mmol kg–1 (Smaling and Janssen, 1993). These conditions were largely met 

(Table 1) except that in our experiments K was not applied as it was expected to be 

adequately supplied from soils in the study area (Wortmann and Eledu, 1999). Other 

conditions such as no limitation by other nutrients and moisture availability were not met in 

the degraded soils. Millet yields were reduced at higher rates of P (Figure 7D) and induced 

zinc deficiency (due to precipitation as insoluble zinc phosphate) may have impaired P uptake 

(Marschner, 1995). The soils were high in silt (Table 1), which predisposes the soils to 

surface-sealing and hence reduced infiltration and moisture availability. These factors affect 

nutrient availability and hence result in a measured uptake that is less than the calculated 

uptake (Figure 4). In consequence, model calculated yield responses (using non reduced 

supply) to soil available nutrients were overestimated (Figure 5). Over predictions with 

QUEFTS have also been reported for maize yield (Tittonell et al., 2008a), and were greater 

for farmer-managed fields than for researcher-managed fields. These observations indicate 

that soil variability and differences among farmers fields (related to both historical and current 

management) make it practically difficult to arrive at accurate predictions of yield from 

nutrients supplied by soils and fertilisers especially in degraded fields such as those in our 

study.  

 Although the calculated fertiliser requirements fall within the ranges of rates of 

applied nutrients in the field experiments, none of the rates was capable of closing the yield 

gaps of finger millet in the short term (Figure 7 C and D). The gap for no use of inputs was 

approximately 2500 kg ha–1 with only a slight reduction to about 2000 kg ha–1 at the highest 

fertiliser rate of N+P. Thus the calculated rates are uneconomic at the yield gains from 

fertiliser application given the prices (US$ kg–1) of 1.14 (N), 1.27 (P) and 0.98 (K) and for 

millet grain of 0.23 at the time of our study. This indicates that rehabilitation of degraded 

fields will require investment without immediate profitable gains until productivity is 

regenerated. The period it takes to regenerate fertility is dependent on management practices 

employed but generally several years are required (Tittonell et al., 2008b; Zingore et al.,  
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Figure 7 Average grain yield response to application rates of N, P, and N+P fertilisers on 

degraded fields in the study villages in 2006 (2 seasons). A and B are QUEFTS calculated 

yield with reduced supply and C and D measured yields in Chelekura and Onamudian 

villages. 

 

2007). If the soil constraints that affect nutrient uptake are alleviated it is likely that the 

fertiliser requirements will reduce and the yield gap could be reduced further or closed.  

Strategies for closing yield gaps would require addressing soil productivity constraints 

and using improved germplasm and good crop management. Degraded fields often have 

multiple nutrient deficiencies (Zingore et al., 2008) and a combining of organic manures and 

mineral fertilisers is a better approach to address such constraints. It has been shown that 

application of manure together with mineral P fertilisers increase P availability in poor 

fertility fields (Tittonell et al., 2007). Therefore improvement of SOC status of degraded soil 

to some thresholds is first needed so as to obtain better use efficiencies of mineral fertilisers. 

However what such thresholds are will vary with soil type (texture) and crop and therefore 
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need to be established. In sandy soils in Zimbabwe, 0.5% SOC has been considered as a 

minimum threshold for efficient use of fertiliser (Mtambanengwe and Mapfumo, 2005). 

Organic matter provides N and also improves soil physical properties such as moisture 

capture and retention, cation exchange capacity, which are important for nutrient retention in 

sandy soils. Good fertiliser management to increase nitrogen recovery is required 

(Duivenbooden et al., 1996).  

Yield calculations from soil supply of nutrients using the QUEFTS model can be 

improved by adding appropriate equations for other nutrients besides N, P and K such as Zn 

(cf. Das et al., 2008). This could be done to improve the uptake supply relationships for the 

degraded fields (Steps 2 and 3 of QUEFTS) by undertaking experimentation that addresses 

identified limiting nutrients and improving soil moisture availability. In this way the accuracy 

of fertiliser recommendations will be improved.      

6.4.  Conclusions 

The QUEFTS model proved to be a useful tool for site specific nutrient management in finger 

millet provided soil conditions are considered. From this study, the physiological model 

parameters ‘a’ and ‘d’ for QUEFTS for finger millet are 21 and 53 (N), 76 and 261 (P) and 11 

and 46 (K) respectively. The recommendations for N, P and K are respectively 83, 52 and 56 

kg ha–1 for the sandy loam soils in Chelekura village and 64, 31, and 40 kg ha–1 for the sandy 

clay loams in Onamudian village. These rates, however, could change if other soil 

productivity limitations in the degraded fields are alleviated. Further validation of the model 

is needed with experimental data including K. In our QUEFTS calculations, K has been found 

to interact with N and P to limit millet production. Therefore, factorial designs with various 

rates of N, P and K are recommended, taking account of other nutrient limitations and 

improving soil water availability through soil organic matter management for improved 

nutrient availability and increased crop yields.  
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7.0  The food insecurity enigma in sub-Saharan Africa 

 

Food insecurity is rampant in sub-Saharan Africa (SSA) and is driven by a spiral of intricately 

interlinked factors; poverty, land degradation and low crop productivity. The unbridled food 

insecurity and poverty is jeopardising the attainment of the Millennium Development Goal 

(MDG) 1 of halving the population of the hungry and poor by 2015 (FAO, 2008). Food 

insecurity and poverty are severest in rural areas where the majority of the poor population 

live and derive their livelihoods largely from agriculture (FAO, 2006). The food insecurity - 

land degradation - low crop productivity nexus has also been reported for farming systems in 

Uganda (Pender et al., 2004) including the Teso farming system, on which this research 

focused. Food insecurity affected 54% of the households in the study district (Ravnborg et al., 

2004), 30-45% of the population are poor (Emwanu et al., 2003), crop productivity is low: for 

example on-farm yields of finger millet, an important staple and income crop is 400 kg ha–1 

(Tenywa et al., 1999) and smallholder farming systems are unsustainable (Nkonya et al., 

2005).  

Developing the agriculture sector is regarded as a promising strategy for alleviating 

food insecurity and poverty for millions of smallholders (FAO, 2006). However, key concerns 

such as increasing agricultural productivity, access to resources and services, linking with 

markets, and development and strengthening supportive institutions need to be addressed 

(Andriesse et al., 2007). Tackling these concerns requires effective partnerships from farmer 

to the international community in order to realize the contribution of agriculture to reduce 

hunger and poverty. The international community and national governments play a critical 

role in putting in place enabling institutional frameworks. Recently, under the New 

Partnership for African Development (NEPAD) and the Comprehensive Africa Agricultural 

Development Programme (CAAD), the Abuja declaration 2006 called for increasing 

agricultural productivity and use of both organic and inorganic nutrient resources, a key 

principle in targeted soil fertility management (Vanlauwe et al., 2009) towards achieving a 

green revolution in Africa. In the case of Uganda, the plan for modernization of agriculture 

(PMA) (GOU, 2000) is in tandem with these guidelines. It is a multi-sectoral strategy calling 

for partnerships with various stakeholders to improve agricultural productivity for poverty 

eradication. While guidelines are in place, generation of practical knowledge for increasing 

agricultural productivity is a domain for research and extension in collaboration with farmers. 

This empirical research was therefore sought to contribute to understanding of how 

heterogeneity in soil fertility affects the effectiveness of integrated soil fertility management 

practices. This is useful for guiding the targeting of nutrient resources to increase crop 

productivity in the Teso farming system in Eastern Uganda. The research focused on 

evaluating efficacy of nutrient management options as affected by heterogeneity to increase 

productivity of finger millet. This crop is a major staple and income crop in the farming  
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system and it is responsive to nutrient inputs. It is also comparatively of better nutritional 

value than the major cereals; rice, wheat and maize (NRC, 1996), yet finger millet has 

received only low research priority (Mgonja et al., 2007). 

The major factors that have contributed to the low productivity of the Teso farming 

system have been identified (Chapter 2); between and within-farm heterogeneity in soil 

fertility was characterised and the potential scale for targeting integrated nutrient management 

interventions suggested (Chapter 3); the impacts of heterogeneity on legume-finger millet 

rotations were evaluated for the purpose of identifying field types and landscape positions to 

target legumes (Chapter 4); the efficacy of manure and mineral fertilisers to improve 

productivity of degraded fields was tested (Chapter 5); and the fertiliser requirements for 

production of finger millet developed by modelling approach (Chapters 6). In this last chapter 

(Chapter 7), a synthesis of the results from previous chapters is made and pathways for 

increasing productivity of the smallholder farming systems through targeting of integrated 

nutrient management options to heterogeneity in soil fertility are discussed. Specifically the 

opportunities and the challenges surrounding approaches for attaining food security by 

increasing food production with various nutrient management optionsare discussed, and 

finally concluding remarks made on priorities for the future. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 1 Trends in land area (ha) brought under cultivation in Uganda from 1961-2005 

(Source: World Development Indicators database). 
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7.1  Which trajectory to achieve food security? 

 

Food security can be achieved by either buying the food required or producing one’s own 

food. To be able to buy food there should a steady source of cash. This is often the strategy 

for the working populations with assured salary incomes. For a majority of the rural 

population, food security is achieved by producing their own food through farming. As such, 

agricultural production has thrived on extensification i.e. expanding land area under 

cultivation. This has brought fragile and marginal lands into cultivation. The proportion of 

land brought under cultivation in Uganda increased from 16% to 27% from 1961-2003 

(Figure 1) but the proportions were much higher in our study parishes - 24% to 65 % in 

Chelekura village and 53% to 100% in Akadot village between 1960 and 2001 (Chapter 2). 

Concomitantly, crop yields are poor and the farming system is unsustainable. The changes in 

land use observed over the 4 decades of analysis were due to smallholders’ responses to 

external socio-economic and political forces rather than population growth alone (Chapter 2). 

Assuming the current management scenario of no input application, an additional 2547, 1498 

and 219,457 ha of land respectively would be required to produce grain (in terms of millet) to 

feed the population in Chelekura, Akadot and Pallisa district by the year 2015 (Table 1). 

Clearly increasing food production through extensification is no longer a feasible strategy in 

the study area. 

Alternatively, food security can be assured by reducing the population dependent on 

agriculture. Finding employment opportunities elsewhere in cities (a major cause of rural-

urban migration) or better opportunities for labour productivity could not only increase and 

improve investments in agriculture through remittances and other forms of capital but also the 

ability to buy required food. In our study area, the wealthy households, which represented 5-

10% of the households benefited from remittances from working relatives. Increasing such 

remittances can be possible if some of the family members can find off farm employment 

such as businesses and formal employments. A systematic strategy of farmers could also be 

followed to secure future remittances from sending children to formal education who then 

have enhanced opportunities to find off farm employment. Either of these strategies in search 

of better opportunities for labour productivity in the mean time is not sufficient for the rural 

population and the alternative trajectory of intensification is potential to increase agricultural 

productivity and to tackle food insecurity.  

Intensification (increased investments of labour and capital in land) is necessary in 

order to improve and sustain the productive capacity of the land under rapid population 

growth. The benefits can be two-fold in that the increasing population can lead to increased 
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 supply of labour and the rise in labour investments in land is possible. There are findings 

however that question this linear relation in the projections as some farmers may require 

much more labour than they can provide from their own production units (Tiffen et al., 1994). 

Investments in land can be perceived here as increased planting of trees around fields and 

productivity management through the use of mineral fertilisers, pesticides, herbicides, organic 

manures and intensification of legume based rotations and diversification in cropping 

systems. Farmers in SSA are resource limited and strategic targeting of resources to increase 

use efficiency in intensification is vital.  

 

7.2  Heterogeneity and efficacy of nutrient management options 

 

Farming systems in SSA are diverse, dynamic and highly heterogeneous. The crop production 

strategy of nutrient mining has further reinforced heterogeneity in the farming systems. Thus 

has made fertiliser recommendations that were made at the agroecological zone level of 

limited relevance at the farm scale because field to field variability is as large as between 

agroecological zones and warrants recommendations to be made at such smaller scales. In the 

study area, farmers recognised large variability between field types in terms of productivity 

and classified them as good, medium and poor fields (Chapter 3). This is knowledge they 

have acquired through their long term experience cultivating fields within their farms. It is 

then imperative that heterogeneity in soil fertility is well characterised for the purpose of 

guiding the targeting of scarce nutrient resources. This will not only enhance efficiency in 

resource use, which is the objective with intensification but also helps to identify where 

special strategies such as rehabilitation are necessary. 

Heterogeneity in soil fertility greatly affects the resource use efficiencies (Vanlauwe et 

al., 2006; Zingore et al., 2007; Tittonell et al., 2007a) and hence the potentials of the options 

to increase crop productivity in smallholder farms. The impacts of heterogeneity on the 

nutrient management options experimented with (legumes, manures and mineral fertilisers) 

are discussed in the subsequent sections and underlie the basis for their proposed targeting 

within soilscapes in the Teso farming system. 

Legume-based soil fertility management is within the long tradition of crop rotation 

practiced in the Teso farming system (Uchendu and Anthony, 1975). The rotations followed 

by farmers are now obscure and also do not appear to be well synchronised to provide 

maximum contribution to the overall productivity of the smallholder farms. There is only a 

narrow range of legume species and suitable cultivars are lacking. So far the commonly 

available legumes to farmers are groundnut, cowpea and green gram. Productivity of these 

legumes is also hampered by climatic factors. During the course of our on-farm 

experimentation, the rainfall was poorer in 2005B season and affected the grain filling by 

legumes and finger millet (Chapter 3). Although the total amount of rainfall was 400 mm and 
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could result in a crop harvest the rainfall distribution within this season was poor and affected 

the crop performance and total benefits from the legume-millet cropping systems (Chapter 3; 

Table 5). In particular seasons with low rainfall and increased temporal and spatial variability 

seem to have increased in frequency to once in every three to four seasons. Farmers’ may 

need to adapt to this climate change with including legumes in their cropping systems that 

need to be enhanced through provision of appropriate germplasm and identification of 

biophysical niches within the farming system. 

Heterogeneity in soil fertility shows further impacts on the potential benefits from 

legumes and fertiliser P application and challenges generalised recommendation of legumes 

for low input systems. Legumes are recommended for low input systems because of their low 

cash requirements and the potential to fix and turning over nitrogen to subsequent crops 

(Giller, 2001). In this study, the amounts of nitrogen fixed were variable and the contribution 

of groundnut for example (the most preferred legume by famers) was far less than that 

obtained from, mucuna or cowpea (Table 2). Planting groundnut alone to 20% of the land in 

the parishes would result in N2-fixed equivalent to 12-60 tons of urea at the parish scale and 

1845 to 9248 tons of urea fertiliser at the district scale. Planting with 30 kg P ha-1 is beneficial 

and would result in substantial additional N2 being fixed especially by cowpea in both 

parishes and equally at the district scale. Legume N productivity was larger in Onamudian 

than Chelekura because of the rather comparatively better soil fertility. Thus better N2 

accumulation in good compared with poor fields reiterates that fertility of soils underlies 

legume growth - fitting the ‘no free lunch’ principle (Vanlauwe and Giller, 2006). In general, 

the legumes could not profitably increase millet production on poor fields (Chapter 4) because 

of multiple problems - physical and other nutrients such as K and S that were later identified 

(Chapter 5). Such fields require improving fertility before benefits from the legumes can be 

obtained. Beyond the agronomic responses, social acceptance is critical. Mucuna produced 

the largest biomass and resulted in better responses of finger millet. Farmers however 

preferred groundnut despite the lowest performance. It is because they anticipated additional 

benefits rather than just soil fertility improvement which is secondary. Such considerations 

enable best fitting of the options as elaborated by the socio-ecological niche concept (Ojiem et 

al., 2006).  

It can of course be understood that the season in which the legumes were grown was 

during a poor rainy season. In a good rainy season, farmers can gain from grain and may 

explain the farmers’ preference of groundnut and this may change the benefits that can be 

received from legumes in terms of net N inputs to the system (Table 2). In general legumes 

that would produce high biomass could have positive net N inputs. Mucuna would be the best 

and could produce N equivalents of about 30 tons and 43000 tons of urea at the Parish and 

district scales respectively.  
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Figure 2 Relationship between SOC and silt + clay by field type as classified by farmers in 

the study villages. The regression lines as found for cultivated (LB) and non-cultivated, fallow 

(UB) land according to Feller and Beare (1997). NUE = Nutrient use efficiency. The textural 

characteristics of the study sites fall within the silt + clay ranges of soils used in Feller and 

Beare (40-800 g kg–1). Sampling is quite different. Soils in our case are mainly from 

cultivated fields. 

 

In the subsequent study, manure and mineral fertilisers were targeted to poor fields (Chapter 

5). Neither manure nor mineral fertilisers alone could raise millet production to levels 

comparable to former kraals (niches of high fertility) but there was evidence of added benefits 

from combined application of manure + N fertilisers and N+P fertilisers implying both N and 

P were limiting. Other nutrients, K and S were also identified to be limiting. It has for long 

been regarded that only N and P are limiting crop production in the Teso farming system due 

to reliance on fertiliser recommendations in the 1970s (Foster, 1976). Over time with 

continuous cultivation, other nutrient limitations have emerged in the case of finger millet.  

There is no doubt that increasing productivity will need use of mineral fertilisers. 

However the question of their use efficiency is central: to know where to target them to get 
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high use efficiencies and optimally increase crop yield. In this study, use efficiencies were 

low (less that 30%) and differed strongly between the sites (soilscapes). Better fertiliser use 

efficiencies are associated with soil characteristics such as CEC, texture and SOC. SOC alone, 

however, can be used as an overall indicator for nutrient use efficiencies. Feller and Beare 

(1997) provide a generalised relationship between SOC and texture for fallow and cultivated 

fields and suggest an envelop within which SOC can be increased. For our experimental sites, 

there are former kraal sites which have SOC way above the line representing the fallow fields 

and there are fields of SOC mass fractions far below the line representing the cultivated fields 

(Figure 2). NUE will be small when SOC mass fractions are very large or very small for a 

given soil texture. It is expected that application of mineral fertilisers to former kraals will be 

non responsive and will only be meaningful to be applied when SOC in poor and degraded 

fields has been built up to some thresholds. In theory, there must be a SOC mass fraction for a 

given soil and crop at which NUE will be largest - when all other conditions for crop growth 

are optimal but mineralisation of organic N does not replace the need for N fertiliser. 

Distinctively the window for increasing SOC differs between soils of varying texture (silt + 

clay contents) with soils of low silt + clay like the Chelekura site having a narrower window 

for building up SOC than Onamudian village. In the management context, this also has 

implications for nutrient input requirement reiterating the need for site specific nutrient 

management. The precise thresholds of SOC have not been determined and could fall within 

the zones with brackets in Figure 2, but these thresholds need to be determined to assist 

implementation of the spirit of the Abuja declaration to increase mineral fertiliser usage to 

increase food production. Areas such as those with high SOC (former kraal sites) should be 

cultivated without fertiliser until SOC drops to critical thresholds warranting mineral fertiliser 

application. Whereas Keulen (2001) argues that it is impractical to determine SOC for any 

soil, the fact that enhancements of mineral fertilisers use at certain SOC mass fraction suffice 

it to be used as an indicator for other effects in soils. Tittonell et al. (2007b) found the 

collocation effects of manure application and P fertiliser application to explain the 

relationship between SOC and extractable P and hence SOC can be an (imperfect) indicator 

for NUE for crop response to P in western Kenya. There should thus be attempts to determine 

such thresholds in smallholder farming systems in SSA.  

The general recommendation of using 50 kg of fertiliser is only generic and 

appropriate recommendations considering the heterogeneity in soil fertility are clearly needed. 

In Chapter 6, fertiliser recommendations for finger millet were found to be higher in 

Chelekura with poor soils compared with Onamudian village which was higher in SOC. The 

amounts of fertiliser were together higher than the Abuja recommendation on both sites, as 

obviously the Abuja declaration was a political statement to set a goal to encourage fertiliser 

use and not an agronomic guideline. The applicability of QUEFTS to site specific 

management in the degraded fields is challenged by other factors that are not taken into 
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account as surface crusting and nutrient imbalances in the degraded fields which must first be 

addressed for fairly more precise recommendations to be developed. With such great 

variability even between fields with similar soil type (per village) due to historical 

management differences, recommendations may have to be developed per farm or per field, a 

task which may be so enormous.  

 

7.3  Concluding remarks  

Targeting nutrient management options can result in larger benefits from nutrient 

management interventions and specific attention can be afforded for specific constraints to 

avoid waste of resources. Benefits from legumes to increase millet production are economic 

on the good fertility fields. If the soil quality of the poor fields is gradually improved to be 

equivalent to that of good fields at the farm scale, larger benefits can be reaped and would 

have major positive impacts at the higher spatial scales of parish and district.   

Cattle manure is possibly the only organic resource that can be obtained in the system 

in significant amounts. However the livestock population is small. This is explained by the 

insurgency in the eastern region of the country that resulted in depletion of cattle (Chapter 2). 

Even with the now prevailing security and peace, farmers aim at having oxen for draught 

power and a cow or two for milk. There is a constraint of lack of grazing pastures as change 

in land use resulted in conversion of most communal grazing land for rice cultivation. The 

farmers owing cattle even at the time of this survey faced a challenge of feeding their cattle 

and this constrains free range grazing of cattle especially during the cropping seasons. During 

dry periods and after crop harvest, cattle can be grazed anywhere in the community. The 

nutritional quality of the fodder is poor and inadequate during the dry seasons. This raises the 

question as to how can quantities of manure be increased and its quality improved. Manure in 

the study area is also of poor quality especially in N because of the poor management 

practices. Concern then is whether to completely change the system into stall feeding which 

can improve manure collection but fodder banks would have to be developed and pasture 

quality improved. The challenge is whether farmers will have enough labour to keep up with 

stall feeding and manure management as the greater proportion of family labour, the children 

are now going to school through universal primary and universal secondary education policies 

in Uganda. It is only likely to be feasible to switch to stall feeding systems if milk production 

could become profitable to compensate for the labour demand.  

 The use of inorganic fertilisers in SSA is very restricted compared with the rest of the 

world (9 vs. 100 kg ha–1) and average use in Uganda is less than 2 kg ha–1 (Camara and 

Heinemann, 2006). The limited fertiliser imports to Uganda (Figure 3) have been the result of 

the political and economic climate. In the 1960s, fertiliser was used on cash crops such as 

coffee, cotton, and the tea and sugarcane plantation estates. Through the years of political 

instability and economic collapse, use was negligible. Structural adjustment and economic 
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Figure 3 Fertiliser imports to Uganda from 1960 to 2005. 

 

liberalisation policies further affected the consumptions of fertilisers through the 1980s 

because abolition of subsidies. The increases in the 1990s may be explained by emergence of 

private sector dealing in fertilisers, emergence of profitable enterprises such as the flower 

industry, rehabilitation and expansion of the sugar cane and tea estates, and tobacco contract 

farming. Despite these increases in fertiliser consumption, fertiliser use in food production 

remains negligible. This is associated with the myths of Ugandan soils being fertile, and 

increasing environmental crusades against fertilisers by environmentalists who advocate 

organic farming. Strong advocacy for judicious use of fertilisers is needed. The results of this 

thesis provide strong arguments that could help in demonstrating the need for fertiliser to 

increase food production, but also the need for targeting to ensure efficient use of fertiliser.  

The soil organic matter status of poor fertility fields needs to be increased up to 

thresholds that enhance high use efficiencies. The thresholds should be determined for 

different soil types and also for different crops. Long term experimentation will be needed 

and/or explorations with dynamic modelling combining yield responses, SOC and texture 

with nutrient use efficiencies.   

The context specific targeting of nutrient resources to heterogeneity can only become 

a road to increasing food production and addressing food insecurity when the socioeconomic 

environment is suitable. It is noteworthy to remember that the collapse of institutional 

arrangements together with political instability and population growth resulted in the declines 
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in productivity and the lack of sustainability in the Teso farming system (Ebanyat et al., 

2008). To improve this system, creation of development pathways that will increase 

production and attract reinvestment in soil fertility management are needed. When production 

is low the use of external inputs is needed but this is beyond the farmer’s capacity to afford 

because of poverty. External interventions are needed in such cases and the assumption is that 

once farmer’s capacity is built to use of nutrient resources to a certain critical optimum, they 

can then independently begin to search for most appropriate economic optima for their own 

farms enterprises (Wit, 1992). Mali’s white revolution (Tefft, 2004) provides an example of 

strong public-private partnerships around profitable commodity cotton. Technical assistance 

(extension) was rendered to farmers on cotton agronomy and their production skills enhanced. 

Access to credit in terms of fertilisers and other inputs and also household capital in terms of 

cattle which addressed other livelihood aspects, provided manure and alleviated the farm 

labour constraints through animal traction. Manure produced and mineral fertiliser was 

targeted to cotton fields. The residual effects of the nutrient inputs resulted in increasing 

overall systems productivity (Benjaminsen, 2001). Both extensification and intensification 

took place simultaneously in the system. This success was hinged on political will, guiding 

policy and building of appropriate institutions and partnerships (Bingen, 1998). Thus win-win 

situations are needed to balance profitability of the enterprises and soil fertility improvements 

- otherwise technologies interventions alone can fail. 
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Appendix 3.1.  
Morphological characteristics of soil profiles along toposequences and soil classification 

 

Chelekura village (Profile chemical data is in Table 2, Chapter 3) 

Pit No. 1 

I.    Information on the site: 

(a) Location: Uganda, Pallisa District, Chelekura A Parish, lower slope facing north, 

dissected plateau. 

(b) Soil Name:  

(c) Higher Category Classification: Possibly Plinthic Ferrasols (FAO): Petroferric 

Kandiustox (USDA) 

(d) Date of Examination: 22/02/2005 

(e) Author: P. Ebanyat and J. Aniku 

(f) Site: Chelekura A village, Mr. Okodoi’s  Farm (575289, 142784)  

(g) Elevation: 1072 masl 

(h) Land form: 

i. Physiographic position: on gentle concave upper slope 

ii. Surrounding landforms: intricately dissected uplands with numerous drainage ways and 

streams 

iii. Microtopography: nil 

(i) Slope on which profile is sited: Gently sloping (2-3%) 

(j) Land-use:  

At the time of examination, the land was not under any crop as many crops had been 

harvested the previous season. The land is generally used for cultivation of cotton, maize 

and cow peas and sorghum. Ploughing is by bullocks; no chemical fertilizers are applied 

to the fields. 

(k) Climate: 

No accurate data available, but annual rainfall is about 1200 mm with a dry period 

January through March. Average annual temperature ranges from 22ºC - 26ºC with June 

to September being the coolest months. 

 

II. General Information on the Soils 

(a) Parent material: Sandy lacustrine deposits over weathered granite. 

(b) Drainage: Somewhat excessively drained. 

(c) Moisture conditions in profile: Dry up to laterite layer. 

(d) Depth of groundwater table: Unknown but certainly more than 6 meters. 

(e) Presence of surface stones, rock outcrops: Common (5% - 15%) large granite boulders. 

(f) Evidence of erosion: None at site 
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(g) Presence of salt or alkali: None 

(h) Human influence: Very light, confined to plough layer. 

 

III. Brief Description of the Profile:   

Moderately deep very well drained, grey sandy loam profile with coarse blocky structure. 

Very friable, very porous. 

 

IV       Profile Description 

Ap 1: 0 - 13 cm  Dark reddish (10 YR 4/2) moist, greyish brown (10 YR 5/2) dry; loamy 

sand; weak fine crumb structure; many very fine and medium 

interstitial pores; abundant fine and medium roots; clear, wavy 

boundary.  

Ap 2: 13 - 23 cm Dark reddish brown (10 YR 4/2) moist, greyish brown (10 YR 5/2) dry, 

sandy loam; strong coarse sub angular blocky; slightly sticky, slightly 

plastic; very friable moist; slightly hard dry; many fine interstitial 

pores; few fine roots; clear smooth boundary.  

B: 23 - 60 cm Brown (7.5 YR 4/2) moist, brown (7.5YR 5/3) dry; sandy clay loam; 

strong coarse angular blocky structure; slightly sticky, slightly plastic; 

hard dry, firm moist; many fine and medium interstitial pores, few 

termite galleries; many fine and medium roots; abrupt smooth 

boundary. 

C:  > 60 cm Continuous layer of cemented iron oxide concretions and nodules of 

irregular shape. 

 

SOIL CLASSIFICATION  

Diagnostic surface horizon (Eipedon): Ochric  

Diagnostic sub-surface horizon: Oxic 

Petroferric contact 

Moisture regime: Ustic 

Soil temperature: Isohyperthermic 

Family Differentiae: Fine-loamy; probably mixed clay mineralogy 

Reaction class: Acid 

Depth class: Shallow 

 

 

Classification according to FAO Revised Legend 1998 

Ochric A Horizon; Ferralic B Horizon  

Haplic Ferralsols, Petroferric phase 
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Pit No. 2  

I. Information on the Soil:  

(a) Location: Uganda, Pallisa District, Chelekura A Parish, on summit of a broad plateau. 

(b) Soil name;  

(c) Higher category classification: Plinithic Ferrasols (FAO), Petroferric Kandiusto (USDA) 

(d) Date of examination: 22/02/2005 

(e) Authors: P. Ebanyat and J. Aniku 

(f) Site: Chelekura A Parish, Mr. Kupliano Oluka’s farm (574508, 142400) 

(g) Elevation: 1070 masl 

(h) Landform 

i. Physiographic position: pediment of broad plateau 

ii. Surrounding landforms: Intricately dissected midland with numerous drainage ways and 

streams. 

iii. Microtopography: Nil 

(i) Slope: Plain to gently sloping (1%-2%) 

(j) Land use: Formally under cassava crop but the crop was harvested a few months before 

examination of profile. Natural vegetation is savanna with acacia species. 

(k) Climate 

No accurate data available, but annual rainfall is about 1200mm with a dry period January 

through March. Average annual temperature ranges from 22ºC - 26ºC with June to September 

being the coolest months. 

 

II. General Information  

(a) Parent material: Weathered granite:  

(b) Drainage: Well drained 

(c) Moisture condition in profile: Profile dry throughout 

(d) Depth of ground water table: Unknown possibly > 10m 

(e) Common (5%-15%) granite large boulders 

(f) Evidence of erosion: Slight sheet erosion 

(g) Presence of salts and alkali: None 

(h) Human influence: Very slight, confined to plough layer 

 

III. Brief Description of the Profile 

Generally a shallow, well drained profile; red, sandy loam over laterite gravel at 38cm depth 
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IV. Profile Description 

Ap: 0 – 10cm Red (2.5 YR 4/6) moist, light red (5 YR 6/6) dry; coarse sandy loam; 

strong coarse angular blocky structure; slightly sticky, slightly plastic, 

slightly firm moist, hard dry; many fine and medium interstitial pores, 

few tubular pores; many fine and medium roots; clear wavy boundary.  

B1: 10 -30cm Reddish brown (2.5 YR 4/4) moist, light red (2.5 6/6) dry; clay loam; 

weak coarse sub angular blocky structure; sticky, plastic, friable moist, 

hard dry; many fine and few interstitial pores, many fine and few 

medium roots; clear smooth boundary.  

B2: 30-38cm Reddish brown (2.5 YR 4/4) moist, red (2.5 YR 5/6) dry; clay loam; 

weak coarse angular blocky structure; sticky, plastic, friable moist, hard 

dry; many fine and medium interstitial pores; many fine and medium 

roots, many few small iron oxide nodules; abrupt smooth boundary.  

C: > 38cm Continuous layer of cemented iron oxide concretions of irregular shape  

 

SOIL CLASSIFICATION  

Diagnostic surface horizon (Epipedon): Ochric 

Diagnostic sub-surface horizon: Oxic, Petroferric contact 

Moisture regime: Ustic 

Soil temperature: Isohyperthermic 

Family Differentiae: Fine loamy; probably mixed mineralogy 

Reaction class: Acid 

Depth class: Shallow 

 

Classification according to FAO Revised Legend 1998 

Ochric A Horizon and Ferralic B Horizon 

Haplic Ferralsols, Petroferric phase 

 

Pit No.  3 

I. Information on the soil: 

(a) Location: Uganda, Pallisa District, Chelekura A Parish, Mr. Oluka Kupliano’s farm on 

lower slope facing west. 

(b) Soil Name: 

(c) Higher Category Classification: Possibly Plinithic Ferrasols (FAO); Plinithic Acrustox 

(USDA) 

(d) Date of examination: 22/02/2005 

(e) Authors:  P. Ebanyat and J. Aniku 

(f) Site: Chelekura A Parish, Mr. Oluka Kupliano’s farm, (574258, 142550) 
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(g) Elevation: 1068 masl 

(h) Landform: 

i. Physiographic position: On  a gentle convex middle slope 

ii. Surrounding landform: Intricately dissected uplands with numerous drainage ways and 

streams 

iii. Microtopography: Nil 

(i) Slope on which profile is located: Gentle sloping (2%-3%) 

(j) Land use: At time of examination land had no standing crops. The land is generally used 

for cultivation of cotton, maize, sorghum millet and cow peas, some times in rotations or 

mixed cropping. Ploughing is done by bullocks: no chemical fertilizer applied. 

(k) Climate: No accurate data available, but annual rainfall is about 1200 mm with a dry 

period January through March. Average annual temperature ranges from 22ºC - 26ºC with 

June to September being the coolest months. 

 

II. General Information on the Soil: 

(a) Parent material: Sandy colluvial or lacustrine deposit over weathered granite and laterite. 

(b) Drainage: Well drained 

(c) Moisture condition in profile: Dry to the gravel layer 

(d) Depth of groundwater table: Unknown but probably more that 4 meters 

(e) Presence of surface stones, rock outcrops: Few (2% - 5%) large granite boulders 

(f) Evidence of erosion: None at site 

(g) Presence of salts and alkali: None 

(h) Human influence: Very light, confined to plough layer 

 

III. Brief description of profile:  

Moderately deep, well drained, reddish brown sandy loam profile with coarse blocky 

structure. Friable, porous with uniform appearance. Laterite gravel and rounded granite rock 

at 90cm depth. 

 

IV. Profile description 

Ap: 0 - 15 cm Dusky red (2.5 YR 3/2) moist, pale reddish brown (2.5 YR 6/2) dry; 

coarse sandy loam; moderate to strong coarse angular blocky 

structures; slightly sticky, non plastic, friable moist, hard dry; many 

fine interstitial pores; abundant fine roots, clear wavy boundary.  

A: 15 - 22 cm Dark reddish brown (5YR 3/2) moist, reddish brown (5 YR 5/3) dry; 

clay loam; strong coarse angular blocky structure, slightly plastic, firm 

moist , hard dry; many fine and medium interstitial pores; abundant 

fine and coarse roots; clear smooth boundary.   
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B1: 22 - 54 cm Dark reddish brown (5 YR 3/3) moist, reddish brown (5 YR 4/3) dry; 

clay loam; strong coarse angular blocky structure; sticky, plastic, firm 

moist, hard dry, many fine and medium interstitial pores; abundant fine 

and medium roots, few coarse roots; diffuse wavy boundary.  

B2: 54 - 90 cm Brown (7.5 YR 4/4) moist, brown (7.5YR 5/4) dry; clay loam, 

moderate to strong angular blocky structure; sticky, plastic, firm moist, 

hard dry; many fine and medium interstitial pores; many coarse roots; 

abrupt smooth boundary.  

C: > 90 cm Compact layer of iron oxide concretions and granite rock. 

 

SOIL CLASSIFICATION  

Diagnostic surface horizon (Eipedon): Ochric 

Diagnostic sub-surface horizon: Oxic (Assumption CEC is low) 

Petroferric contact at a depth of 90 cm 

Moisture regime: Ustic 

Soil temperature: Isohyperthermic 

Family Differentiae: Fine loamy, probably mixed mineralogy? 

Reaction class: Acid 

Depth class: Shallow 

 

Classification according to FAO Revised Legend 1998 

Ochric A Horizon and Ferralic B Horizon 

Haplic Ferralsols, Petroferric phase 

 

Pit No 4.  

I. Information on the soil: 

(a) Location: Uganda, Pallisa District, Chelakura A Parish, Mr. Oluka Kupliano’s Farm at the 

bottom of a broad valley. 

(b) Soil name:  

(c) Higher Category Classification: Dystric Fluvisols (FAO) Aquic Ustifluvents (USDA) 

(d) Date of examination: 23/02/2005 

(e) Authors: P. Ebanyat and J. Aniku 

(f) Site: Chelekura A Parish, Mr. Oluka Kupliano’s Farm  (573508, 142550) 

(g) Elevation: 1058 masl 

(h) Landform: 

i. Physiographic position: Flat broad valley bottom 

ii. Surrounding landform: Intricately dissected uplands with numerous drainage ways and 

streams  
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iii. Microtopography: Common (5%-15%) large anthills and termite mounts. 

(i) Slope: Flat 

(j) Land use: Previously under cotton crop. Generally used for rice cultivation. 

(k) Climate 

No accurate data available, but annual rainfall is about 1200 mm with a dry period 

January through March. Average annual temperature ranges from 22ºC - 26ºC with June 

to September being the coolest months. 

 

II. General Information on the Soil 

(a) Parent Material: Alluvial deposit  

(b) Drainage: Poorly drained 

(c) Moisture condition and profile: Dry 0-20cm, moist below 20cm to the mottled laterite 

layer 

(d) Depth of groundwater table: Unknown but possibly less than 2m. Nearby fields had a 

shallow water wells at 30cm depth; possibly from a patched water table. 

(e) Presence of surface stones, rock outcrops: None 

(f) Evidence of erosion: None 

(g) Presence of salt of alkali: Presence of salts suspected as the sandy soil cakes on drying. 

(h) Human influence: Very slight, confined to the plough layer. There are some drainage 

channels. 

 

III. Brief description of the profile 

Deep, poorly drained soil occurs in nearly levels flats between the uplands. They developed 

from sediments washed from the uplands. Have a coarse sandy surface and subsurface layers. 

Saturated for long periods every year. Many, medium prominent mottles at the gravel layer. 

 

IV. Profile description 

Ap: 0 - 14 cm Dark grey (10 YR 4/1) moist, grey (10 YR 6/1) dry, sand, coarse sub 

angular blocky breaking into medium sub angular blocky structure; non 

sticky, non plastic, very friable moist, hard dry, many fine and medium 

interstitial pores; many fine roots; abrupt smooth boundary.  

A: 14 - 41 cm Dark grey (10 YR 4/1) moist, greyish brown (10 YR 6/1) dry; coarse 

loamy sand; massive structure; non-sticky, non-plastic, firm dry, hard 

dry; few fine interstitial pores; non visible roots; clear smooth 

boundary.  

B1: 41 - 63 cm Dark reddish brown (10 YR 4/2) moist, greyish brown (10 YR 6/1) dry; 

coarse sand; massive structure, extremely hard dry, very firm moist; no 

visible pores; no visible roots; diffuse wavy boundary.  
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B2:  63 - 110 cm. Light yellowish brown (10 YR 6/4) moist, matrix, strong brown (7.5 

YR 4/6) moist mottles; sandy clay; strong coarse prismatic structures; 

sticky, plastic; very firm moist, very hard dry; no visible pores; no 

visible roots; 10% hard iron modules; abrupt smooth boundary.  

C: > 110 cm Compact layer of iron oxide concretions 

 

SOIL CLASSIFICATION  

Diagnostic surface horizon (Eipedon): Ochric  

Diagnostic sub-surface horizon: Cambic 

Moisture regime: Ustic 

Soil temperature: Isohyperthermic 

Family Differentiae: Loamy over clayey 

Reaction class: Acid 

Depth class: Deep 

 

Classification according to FAO Revised Legend 1998 

Ochric A Horizon 

Cambic B Horizon 

Fluvic properties 

Dystric Fluvisols 
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Onamudan village (profile chemical properties are in Table 3, Chapter 3) 

Pit No. 1  

I. Information on the Site 

(a) Location: Uganda, Pallisa District, Onamudian Village, Mr. Obiro Lambert’s Farm, lower 

slope facing east in a dissected plateau. 

(b) Soil Name: 

(c) Higher Category Classification. Plinithic Ferrasols(FAO), Petroferric Kandiustox (USDA) 

(d) Date of examination: 23/02/2005 

(e) Authors: P. Ebanyat and J. Aniku 

(f) Site: Onamudian Village, Mr. Obiro Lambert’s farm (585108, 133000) 

(g) Elevation: 1119 masl 

(h) Landform 

i. Physiographic position: On gentle concave lower slope 

ii. Surrounding landform: Intricately dissected uplands with numerous drainage ways and 

streams. 

iii. Microtopography: Few large one meter high anthills. 

(i) Slope on which the profile is sited: Gently sloping (2%-3%) facing to the east. 

(j) Land use: At the time of examination, maize had been harvested. Land generally used for 

cultivation of cotton, maize, sorghum, millet, cassava and cow peas. Ploughing is by 

bullocks. No mineral fertilizer added to fields. 

(k) Climate 

No accurate data available, but annual rainfall is about 1200 mm with a dry period 

January through March. Average annual temperature ranges from 22ºC - 26ºC with June 

to September being the coolest months. 

 

I. General Information with soil 

(a) Parent material: Weathered granite 

(b) Drainage: Well drained  

(c) Moisture condition in profile: Dry throughout 

(d) Depth of groundwater table: Unknown but certainly more than 6m 

(e) Presence of surface stones, rock outcrops: None at site 

(f) Evidence of erosion: None at site 

(g) Presence of salt or alkali: None 

(h) Human influence: Very light, confined to plough layer 

 

III. Brief Description of the Profile          

Shallow to moderately deep, well drained, reddish brown sandy clay profile; course angular 

blocky structure, friable, porous, over compact cemented layer of laterite gravels. 
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IV.       Profile Description 

Ap1: 0 - 8 cm Dusky red (2.5 YR 3/2) moist, reddish brown (2.5YR 4/3) dry; sandy 

loam; weak coarse sub angular blocky, breaking into crumb structure; 

slightly sticky, slightly plastic, friable moist, slightly hard dry; many 

fine and medium interstitial pores; abundant fine and coarse roots; clear 

smooth boundary.  

Ap 2:  8 - 17 cm Dark reddish brown (2.5 YR 3/3) moist, reddish brown (2.5 YR 4/3) 

dry; sandy clay loam; moderate medium angular blocky, sticky, plastic, 

firm moist, slightly hard dry; many fine interstitial pores; abundant fine 

and coarse roots; clear smooth boundary.  

B1: 17 - 34 cm Dark reddish brown (2.5 YR 3/4) moist, reddish brown (2.5 YR 4/4) 

dry; sandy clay; strong coarse angular blocky structure; sticky, plastic, 

friable moist, hard dry; many fine and medium interstitial pores; 

abundant fine roots; clear smooth boundary.  

B2: 34 - 58 cm Dark reddish brown (2.5 YR 3/4) moist, reddish brown (2.5YR 4/4) 

dry; gravelly sandy clay loam; coarse angular blocky structure; sticky, 

plastic, firm moist, hard dry; many fine and medium interstitial pores; 

abundant fine and coarse roots; clear smooth boundary.  

B3: 58 - 72 cm Reddish brown (5 YR 4/4) moist, yellowish red (5 YR 5/6) dry; gravely 

clay loam; weak medium angular blocky structure; slightly sticky, 

slightly plastic, many fine interstitial pores; few coarse roots in 

channels; abrupt boundary.  

C: > 72 cm Compact cemented layer of laterite gravel. 

 

SOIL CLASSIFICATION  

Diagnostic surface horizon (Eipedon): Ochric   

Diagnostic sub-surface horizon: Kandic horizon 

Petroferric contact 

Moisture regime: Ustic 

Soil temperature: Isohyperthermic 

Family Differentiae: Fine-loamy over clayey 

Reaction class: Acid 

Depth class: Shallow 

 

Classification according to FAO Revised Legend 1998 

Ochric A-Horizon 

Ferralic B Horizon 
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Classification: Humic Ferralsols, Petroferric phase 

 

Pit No. 2 

II. Information on the Soil 

(a) Location: Uganda, Pallisa District, Onamudian Village, Mr. Opolot’s Farm, on the crest 

of a broad plateau. 

(b) Soil Name: 

(c) Higher category classification: Plinithic Ferrasols (FAO), Pettroferric Kundiustox 

(USDA) 

(d) Date of examination: 22/02/2005 

(e) Authors: P Ebanyat and J. Aniku 

(f) Site: Onamudian Village, Mr. Opolot’s Farm (584608, 132650) 

(g) Elevation: 1111 masl 

(h) Landform: 

(i) Slope: flat 

(j) Land use: At time of examination cotton had been harvested, generally cultivated to 

maize, cassava, millet, sorghum and cow peas. Ploughing by bullocks; no chemical 

fertilizer applied to the fields. 

(k) Climate: 

No accurate data available, but annual rainfall is about 1200 mm with a dry period 

January through March. Average annual temperature ranges from 22-26°C with June to 

September being the coolest months. 

 

II. General Information on the Soil 

a) Parent material: Weathered granite 

b) Drainage: Well drained 

c) Moisture condition in the profile: Dry throughout 

d) Depth of groundwater table: Unknown, possibly more than 10 meters 

e) Presence of surface stones, rock outcrops: None on the site 

f) Evidence of erosion: None on the site 

g) Presence of salts or alkali: None 

h) Human influence: Very light, confined to plough layer 

 

III. Brief Description of the Profile 

Moderately deep, well drained, reddish brown, clay loam profile, coarse angular blocky 

structure, friable, porous, uniform appearance of horizons over compact iron oxide gravels. 
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IV. Profile description 

Ap1: 0 - 6 cm Dusky red (2.5 YR 3/2) moist, reddish brown (2.5 YR 4/4) dry; loam; 

weak fine granular structure; slightly sticky, plastic, friable moist, soft 

dry; many fine and medium interstitial pores; many fine roots; clear 

smooth boundary.  

Ap2: 6 - 16 cm Dusky red (2.5 YR 3/2) moist, reddish brown (2.5 YR 4/4) dry; clay 

loam; strong coarse angular blocky structure; sticky, plastic, friable 

moist, slightly hard dry; many fine and medium interstitial pores; 

abundant fine and medium roots; clear smooth boundary.  

B1: 16 - 30 cm Dark reddish brown (2.5 YR 4/4) moist, red (2.5 YR 4/6) dry; clay 

loam; strong medium angular blocky; sticky, plastic, firm moist, hard 

dry; many fine and coarse interstitial pores; many fine and few coarse 

roots; clear wavy boundary.  

B2: 30 - 42 cm Dark reddish brown (2.5 YR 3/4) moist, red (2.5 YR 4/6) dry; clay 

loam; strong coarse angular blocky structures; sticky plastic, firm 

moist, hard dry; many fine and medium pores, few termite galleries, 

few fine and coarse roots; clear wavy boundary. 

C1: 42 - 70 cm Red (2.5 YR 4/6) moist, dark red (2.5 YR 5/8) dry; clay loam; weak 

medium angular blocky structure; slightly sticky, slightly plastic, firm 

moist, hard dry; many fine interstitial pores; abundant fine roots; clear 

smooth boundary.  

C2: > 70 cm Compact layer of cemented iron oxide concretions. 

 

SOIL CLASSIFICATION  

Diagnostic surface horizon (Eipedon): Ochric   

Diagnostic sub-surface horizon: Oxic 

Moisture regime: Ustic 

Soil temperature: Isohyperthermic 

Family Differentiae: Fine Loamy, Probably mixed mineralogy 

Reaction class: Acid 

Depth class: Shallow 

 

Classification according to FAO Revised Legend 1998 

Ochric A Horizon 

Ferralic B Horizon 

Petroferric phase 

Rhodic Ferralsols, Petroferric phase 
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Pit No. 3 

I. Information on the Site: 

(a) Location : Uganda, Pallisa District, Onamudian Village, Ms. Pricilla Akol’s  

Farm, lower slope facing west in a dissected plateau 

(b) Soil Name: 

(c) Higher category classification: Plinithic Ferrasols (FAO), Petroferric Kandiustox (USDA) 

(d) Date of examination: 23/02/2005 

(e) Authors: P. Ebanyat and J. Aniku 

(f) Site: Onamudian Village, Ms. Pricilla Akol’s Farm (584608,132650) 

(g) Elevation: 1094 masl 

(h) Land form 

i. Physiographic position: Gentle concave lower slope 

ii. Surrounding landform: Intricately dissected uplands with numerous drainage ways 

streams. 

iii. Microtopography: Nil 

(i) Slope on which the profile is sited: Gently sloping (2%-3%) facing the west. 

(j) Land use: At the time of examination the field was under weeds. It was previously under 

crops. Land generally is used for cultivation of cotton, maize, sorghum, millet, cassava 

and cowpeas. Ploughing by bullocks no chemical fertilizer applied to the fields. 

(k) Climate: No accurate data available, but annual rainfall is about 1200 mm with a dry 

period January through March. Average annual temperature ranges from 22-26°C with 

June to September being the coolest months. 

 

II. General information on the soil 

(a) Parent material: Weathered Granite 

(b) Drainage: Well drained 

(c) Moisture condition in profile: Dry throughout 

(d) Depth of groundwater table: Unknown, possibly more than 6m 

(e) Presence of surface stones, rock outcrops: None at Site 

(f) Evidence of erosion: None At Site 

(g) Presence of salt or alkali: None 

(h) Human influence: Very Light, Confined To Plough Layer 

 

III. Brief Description of Profile 

Very deep, well drained, red clay loam, coarse angular blocky structure, friable, porous, 

uniform appearance of horizons over weathered granite fragments. 
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IV. Profile description:  

Ap1: 0 - 15 cm Dark reddish grey (10 YR 3/1) moist, dark reddish grey (10 R 4/1) dry; 

sandy loam; moderate coarse angular blocky structure; slightly sticky, 

slightly plastic, friable moist, slightly hard dry; many fine and medium 

interstitial pores; abundant fine and medium interstitial pores; abundant 

fine and few coarse roots; clear smooth boundary.  

A: 15 - 31 cm Dusky red (2.5 YR 3/2) moist, weak red (2.5 YR 4/2) dry; sandy clay 

loam; moderate medium angular blocky structure; slightly sticky, 

plastic, friable moist, hard dry; many fine and few interstitial pores; 

abundant fine and medium roots; clear smooth boundary.  

B1: 31 - 58 cm Very dusky red (2.5 YR 2.5/2) moist, weak red ( 2.5 YR 4/2) dry; 

sandy clay; strong coarse angular blocky structure; sticky, plastic 

friable moist, hard dry; many fine and medium interstitial pores; many 

fine and coarse roots confined in cracks and animal holes; diffuse 

smooth boundary.  

B2: 58 - 85 cm Dark reddish brown (5 YR 3/3) moist, reddish brown (5 YR 4/3) dry; 

sandy clay; strong coarse angular blocky; sticky, plastic, friable moist, 

hard dry; many fine interstitial pores, few termite galleries; few fine 

roots diffuse smooth boundary;  

B3: 85 - 140 cm Reddish brown (5 YR 4/4) moist, reddish brown (5YR 5/4) dry; sandy 

clay; strong medium angular blocky, breaking into medium blocky 

structure; sticky, plastic, friable moist, slightly hard dry; few fine 

interstitial pores; few coarse and fine roots; clear smooth boundary.  

C:  > 140 cm  Weathered fractured granite rock fragments. 

 

SOIL CLASSIFICATION  

Diagnostic surface horizon (Eipedon): Mollic   

Diagnostic sub-surface horizon: Oxic  

Moisture regime: Ustic 

Soil temperature: Isohyperthermic 

Family Differentiae: Fine-loamy 

Reaction class: Acid 

Depth class: Deep 

 

Classification according to FAO Revised Legend 1998 

Mollic A-horizon 

Ferralic B horizon 

Humic Ferralsols 
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Pit No. 4 

I. Information on the Soil: 

(a) Location: Uganda, Pallisa District, Onamudian Village, Ms. Priscilla Akol’s Farm, on 

nearly level flats between the uplands. 

(b) Soil Name 

(c) Higher Category Classification: Dystric Fluvisols(FAO), Tropaquepts (USDA) 

(d) Date of examination: 23/02/2005 

(e) Authors: P. Ebanyat and J. Aniku 

(f) Site: Onamudian village, Priscilla Akol’s Farm (583208,132000) 

(g) Elevation: 1087 masl 

(h) Landform: 

i. Physiographic position: On nearly level land 

ii. Surrounding landform: Dissected plateau with wide flat bottomed valleys 

iii. Microtopography: Common (5%-20%) large anthills 

(i) Slope on which the profile is sited: Nearly flat (0%-1%) 

(j) Land use: Under young rice crop 

(k) Climate  

No accurate data available, but annual rainfall is about 1100 mm with a dry period 

January through March. Average annual temperature ranges from 22ºC-26ºC with June to 

September being the coolest months. 

 

II. General Information on the soil 

(a) Parent material: Alluvial and colluvial deposits 

(b) Drainage: Very poorly drained 

(c) Moisture condition in profile: Wet throughout 

(d) Depth of groundwater table: Water table at 66cm depth 

(e) Presence of surface stones, rock outcrops: None 

(f) Evidence of erosion: None 

(g) Presence of salts or alkali: Salts possibly present as shown by caking of the sandy soil on 

drying 

(h) Human influence: Light construction of drainage canals; cultivation of surface by 

ploughing 

 

III. Brief description of the profile 

This profile was studied in auger holes using 7.5cm Ø bucket auger at 10cm depth intervals. It 

is a very deep, very poorly drained soil that occurs in nearly level flats between the uplands. 

They have developed on sediments washed from the uplands. They have a thick coarse sandy 

surface and subsurface layers; a bluish grey clayey substratum occurs at 90cm depth. 
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IV. Profile description 

Ap: 0 - 10 cm Dark grey (10 YR 4/1) moist, grey (10 YR 6/1) dry, sand, coarse sub 

angular blocky breaking into medium sub angular blocky structure; non 

sticky, non plastic, very friable moist, hard dry, many fine and medium 

interstitial pores; many fine roots; abrupt smooth boundary.  

A: 10 - 30 cm Dark grey (10 YR 4/1) moist, greyish brown (10 YR 6/1) dry; coarse 

loamy sand; massive structure; non-sticky, non-plastic, firm dry, hard 

dry; few fine interstitial pores; non visible roots; clear smooth 

boundary.  

B1: 30 - 80 cm Dark reddish brown (10 YR 4/2) moist, greyish brown (10 YR 6/1) dry; 

coarse sand; massive structure, extremely hard dry. Very firm moist; no 

visible pores; no visible roots; diffuse wavy boundary.  

B2:  80 - 110 cm Light yellowish brown (10 YR 6/4) moist, matrix, strong brown (7.5 

YR 4/6) moist mottles; sandy clay; strong coarse prismatic structures; 

sticky, plastic; very firm moist, very hard dry; no visible pores; no 

visible roots; 10% hard iron modules; abrupt smooth boundary.  

 

SOIL CLASSIFICATION  

Diagnostic surface horizon (Eipedon): Ochric 

Diagnostic sub-surface horizon: Cambic  

Moisture regime: Ustic 

Soil temperature: Isohyperthermic 

Family Differentiae: Fine loamy overclayey 

 

Classification according to FAO Revised Legend 1998 

Ochric A-Horizon 

Cambic B- Horizon 

Exhibiting some gleyic properties 

Classification: Dystric Fluvisols  
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Appendix 3.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 Variations of  soil properties in  profiles along transects in the study villages: (A) 
SOC, (B) Sand (C) Clay and (D) extractable P in Chelekura village; (E) SOC, (F) Sand (G) 
Clay and (H) extractable P in Onamudian village.
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Appendix 3.3. 
 
Table 3.1 Regressions equations and coefficients of determination of predicted soil properties 
with slope (%) in the study villages 
 
Village/ soil property Equation Coefficient of 

determination (R2) 
Chelekura   
pH (units) Y = 0.055x + 6.12 0.0060 
SOC (g kg –1) Y = -0.093x + 7.37 0.0004 
Tot N (g kg –1) Y = -0.012x + 0.78 0.0007 
Extract P (mg kg–1) Y = -0.932x + 18.53 0.0060 
Exch. K (cmolc kg–1) Y = -0.011x + 0.44 0.0030 
Exch. Ca (cmolc kg–1) Y = -0.004x + 1.76 0.0020 
Exch. Mg (cmolc kg–1) Y = -0.004x + 0.60 0.0030 
Sand (g kg –1) Y = 0.260x + 760.16 0.0007 
Silt + clay (g kg –1) Y = -0.067x + 140.37 0.0001 
   
Onamudian   
pH (units) Y = 0.063x + 6.04 0.017 
SOC (g kg –1) Y = -0.890x + 17.59 0.040 
Tot N (g kg –1) Y = -0.089x + 1.85 0.031 
Extract P (mg kg–1) Y =  0.652x + 12.20 0.015 
Exch. K (cmolc kg–1) Y = -0.0031x + 0.544 0.001 
Exch. Ca (cmolc kg–1) Y = -0.004x + 1.76 0.0020 
Exch. Mg (cmolc kg–1) Y = -0.051x + 7.68 0.0001 
Sand (g kg –1) Y = 2.410x + 510.23 0.099 
Silt + clay (g kg –1) Y = -2.500x + 480.57 0.1000 
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      Summary 
 

Smallholder farming systems in sub-Saharan Africa (SSA) are dynamic and their productivity 

status results from actions of human agency as conditioned by socio-economic and 

biophysical environments. Across these systems, poor soil fertility is recognised as a major 

factor responsible for low per capita food production. Increasing crop productivity on the poor 

fertility soils is needed to alleviate the food insecurity problems in SSA. In most smallholder 

farming systems however, population pressure has stretched land use without inputs to limits 

and are now in transitions to intensification. Efficient use of scarce soil fertility inputs is 

needed as the smallholders in SSA are resource constrained. Targeting nutrient management 

interventions to heterogeneity can greatly enhance their use efficiency if done at relevant 

scales and can help in identification of ‘best fits’ (most suitable options for niches within the 

systems). In identification of best fits from available options, efficacy of the interventions in a 

given biophysical environment, social acceptance, and economic viability are major initial 

concerns that must be ascertained. The goal of this thesis therefore, was to contribute to 

understanding how to improve crop production in the Teso farming system through targeting 

of nutrient management options to heterogeneity in soil fertility.  

 

Changes in land use in two parishes in Pallisa district representative of the Teso farming 

system were quantified for the period 1960-2001 using remote sensing techniques and major 

driving factors identified through a comparative analysis with a similar system in southern 

Mali. Sustainability of the system and its determinants were assessed using nutrient balance 

analysis and regression analysis respectively. By 2001, 46% and 78% more land had been 

brought into cultivation in Chelekura and Onamudian parishes respectively. These increases 

were negatively correlated with the disappearance of forests (r = –0.07), grasslands (r = –

0.84), bushlands, (r = –0.64), and papyrus swamp (r = –0.49) and positively correlated with 

rice cultivation (–0.87). Population increase was positively correlated with increase of 

cultivated land (r = 0.70). Farm nutrient balances for N, P and K were all positive on only 

larger farms (LF) that owned at least 9 heads of cattle compared to medium farms (MF) and 

small farms with (SF1) and without cattle (SF2). At the crop scale however, nutrient balances 

were negative on all the farm types. Sustainability of the farming system is driven by 

livestock, crop yield, labour availability and access to off farm income. Crop productivity in 

the system was low because of non use of nutrient inputs compared to a similar system in 

southern Mali. In conclusion, population growth and political-instability-mediated effects 

arising from the collapse of cotton marketing and land management institutions, communal 

labour arrangements and cattle rustling complement in explaining the changes in land use and 

the obtaining productivity status of the farming system.  

 



202 

The nature and magnitude of variability in soil fertility was characterised in Chelekura and 

Onamudian villages through soil profile observations along toposequences of soil types and 

analysis of surface soils from fields on 33 farms exhibiting different geo-morphological 

features. Down the toposequences, soil pH, SOC, total N, Exch. Mg, Exch. Ca, Exch. K, 

CEC, sand and clay did not exhibit topographic-gradients. Extractable P was however 3 and 5 

times higher in the top soils of the profiles in the valley bottoms than those in the upper 

landscape positions of the toposequences in Chelekura and Onamudian respectively. Within 

the profiles of each local soil type, soil pH, SOC, sand, total N, extractable P, exchangeable 

bases and sand decreased with depth except in the valley bottoms where Ca increased with 

depth.  SOC and silt + clay are used to illustrate the spatial variability in soil fertility within-

farms. Significant differences (P<0.05) were observed in average SOC concentrations in 

surface soil properties between landscape positions in both villages. Larger and significant 

differences (P<0.001) in SOC were observed between field types. Fields classified as of 

good, medium and poor soil fertility by farmers had average SOC concentrations of, 

respectively 9.3 g kg–1, 6.6 g kg–1, 5.5 g kg–1 in Chelekura village and 15 g kg–1, 11 g kg–1, 7 g 

kg–1 in Onamudian village. In contrast with other studies in smallholder farming systems in 

sub-Saharan Africa, spatial analysis did not reveal a particular generalized pattern in 

variability in soil fertility (evaluated here using SOC as an indicator) across farms in each 

village. Within-farms, larger contents of SOC were associated with larger amounts of silt + 

clay and on locations where cattle kraals had been sited in the past. The field scale, which is 

easily recognised by farmers, is an important entry point for targeting soil fertility 

management technologies since management decisions are at the farm scale.  

 

Experiments were conducted in the two villages to evaluate the impacts of landscape position 

and field type on the biomass yield, N accumulation and N2-fixation by six legumes (cowpea, 

green gram, groundnut, mucuna, pigeonpea and soyabean) grown with and without P during 

the short rain season of 2005 and after harvest incorporated in the soil. Residual effects of the 

legumes on the productivity of finger millet were assessed for two subsequent seasons in 

2006. Legume biomass and N accumulation differed significantly (P<0.001) between 

villages, landscape position, field type and P application rate. Mucuna accumulated the most 

biomass (4.8-10.9 Mg ha–1) and groundnut the least (1.0-3.4 Mg ha–1) on both good and poor 

fields in the upper and middle landscape positions. N accumulation and amounts of N2-fixed 

by the legumes followed a similar trend as biomass, and was increased significantly by 

application of P. Grain yields of finger millet were significantly (P<0.001) higher in the first 

season after incorporation of legume biomass than in the second season after incorporation. 

Finger millet also produced significantly more grain in good fields (0.62-2.15 Mg ha–1) 

compared with poor fields (0.29-1.49 Mg ha–1) across the two villages. Farmers preferred 

growing groundnut and were not interested in growing pigeonpea and mucuna. They said that 
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they would preferentially target grain legumes to good fields except for mucuna and 

pigeonpea which they said they would grow only in poor fields. Benefit-cost ratios indicated 

that legume-millet rotations without P application were only profitable on good fields in both 

villages. We suggest that green grams, cowpea and soyabean without P can be targeted to 

good fields on both upper and middle landscape positions in both villages but mucuna without 

P to poor fields on the middle landscape position in Chelekura village and cowpea without P 

to poor fields on the upper landscape position in Onamudian village. Although legumes are 

recommended for smallholder farming systems, they only suffice on good fertility fields and 

use of fertiliser P in their production is only economical if its price then was reduced by 30-

40%.  

 

Legumes could not profitably increase finger millet productivity on poor fields and as such 

effectiveness of inorganic fertilisers and kraal manure on the nutrient-depleted fields was 

tested through field experiments over 3 seasons. N, P fertilisers alone  (0, 30, 60, 90 kg ha–1), 

N+P at equal rates of single application, and manure (3 t ha–1) supplemented with N (0, 30, 60 

and 90 kg ha–1) were applied to degraded fields located in upper and middle landscape 

positions in both villages. A second control treatment of millet grown on soils of former 

kraals (high fertility niches) was included as a benchmark. Average grain yield ranged from 

404 kg ha–1 to 2026 kg ha–1 and differed significantly (P<0.001) between villages and seasons 

in 2006. Significant effects (P<0.05) of landscape position on grain yield were observed only 

in Onamudian village. The treatments significantly increased millet yields on degraded fields 

but could not eliminate the yield differences between degraded fields and former kraals. The 

largest grain yields on degraded fields were obtained with application of N+P with average 

yields of 800 kg ha–1 in Chelekura village and 1171 kg ha–1 in Onamudian village. These yield 

responses closed the within farm yield gap (with bench mark) by 24% and 43 % in Chelekura 

and Onamudian respectively. The inability of the options to close the yield differences was 

because of poor nutrient use efficiencies which were often less than 25% as a result of other 

nutrient limitations (S and K) and probably other physical limitations like moisture infiltration 

due to such as surface crusting.  

 

With large heterogeneity in soil fertility within smallholder farming systems, blanket 

recommendations are of limited value. The Quantitative Evaluation of Fertility of Tropical 

Soils (QUEFTS) model was calibrated for finger millet to explore the potential of this 

approach to develop site-specific nutrient management recommendations. The model 

constants (kg grain kg–1) were determined respectively for maximum accumulation (a) and 

maximum dilution (d) of 21 and 53 kg grain kg–1 N, 76 and 261 kg grain kg–1 P and 11 and 46 

kg grain kg–1 K. The observed versus model-predicted yield was good (r2 = 0.76; RMSD = 

262 kg ha–1). Balanced fertilisation requirements for a target millet yield of 2000kg ha–1 was 



204 

estimated at 83 kg N ha–1 and 52 kg P ha–1 and 56 kg K ha–1 for the sandy loam soils of 

Chelekura village and 64 kg N ha–1 and 31 kg P ha–1 and 40 kg K ha–1 for the sandy clay loam 

soils in Onamudian village. Predictions of yield responses from soil application of nutrients 

however will need that soil conditions are taken into account. In the degraded fields, often 

other nutrient limitations and physical limitations such as water availability that affect nutrient 

uptake are not accounted for in QUEFTS. Thus model calculated yields will be higher as it 

depends on total available nutrients from soil and added fertiliser.  
 

In conclusion, targeting nutrient management options can result in larger benefits from 

nutrient management interventions and specific attention can be afforded to specific 

constraints to avoid waste of resources. Overall, improving the quality of poor fertility fields 

is needed to benefit from nutrient management interventions. Application of manure to boost 

SOC in soils is needed first before high nutrient use efficiencies from applications of mineral 

fertilisers can be obtained. This underlines combined use of organic and mineral nutrient 

resources in rehabilitation of degraded fields. With small populations of cattle in the system, 

manure quantities are rather small. The prospect of increasing numbers is also constrained by 

poor quality and limited quantities of grazing pastures. A shift in cattle management to stall 

feeding could improve manure collection. This may be a potential approach but alongside 

fodder banks have to be developed and pasture quality improved. The feasibility to switch to 

stall feeding systems is impossible without profitable milk production to compensate for the 

higher labour demands of such a system. Mineral fertilisers on the other hand are scare and 

expensive for smallholders. Their use has to be strategically promoted. From the agronomic 

standpoint, the determination of SOC thresholds for higher mineral fertility use efficiencies is 

required. The thresholds differ with soil type (silt + clay) and crop and need to be established. 

The efficiencies at farm/ system scale also need to be determined and reconfiguration of 

cropping systems is needed. Crops that increase profitability of fertiliser use (as well as 

organic inputs) will attract reinvestment in soil fertility management. For systems like the 

Teso system with low production, use of external inputs particularly mineral fertilisers is 

inevitable. External interventions and enabling policy framework that enhances public-private 

partnerships around profitable commodities and addressing also broader livelihood needs 

could make targeting nutrient options to heterogeneity a road to sufficient food production.  



205 

      Samenvatting 
 

Bedrijven van kleine boeren in Afrika bezuiden de Sahara (AbS) zijn voortdurend onderhevig 

aan verandering doordat boeren reageren op veranderingen in hun sociaal economische en 

biofysische omgeving met als resultaat dat ook de productiviteit van deze bedrijven blijft 

veranderen. Door de bank genomen wordt bodemvruchtbaarheid gezien als de verklarende 

factor voor de lage per capita voedselproductie van deze bedrijven. Toename van de 

gewasproductie op arme bodems is noodzakelijk om de voedselonzekerheid in AbS te lijf te 

gaan. Meer land verbouwen zonder gebruik van externe inputs is geen optie meer omdat als 

gevolg van de bevolkingsgroei geen land meer beschikbaar is. Wat overblijft voor de kleine 

bedrijven is een transitie naar meer intensieve landbouw waarbij de productie per hectare 

wordt verhoogd door verbetering van de bodemvruchtbaarheid. De efficiëntie van het gebruik 

van de daarvoor nodige inputs is, gezien de beperkte middelen waarover de boeren 

beschikken, een essentiële voorwaarde. Bij het zoeken naar de meest efficiënte opties (in het 

Engels ‘best fits’) voor verbetering in het management van nutriënten speelt heterogeniteit 

tussen en binnen bedrijven een grote rol; niet elke optie is geschikt voor ieder bedrijf en voor 

alle delen van een bedrijf. Bij het zoeken naar niches waarvoor een optie geschikt is dient dus 

rekening te worden gehouden met de heterogeniteit in biofysiche factoren, sociale acceptatie 

and economische levensvatbaarheid. Het doel van dit proefschrift is de productie van 

gewassen in het Teso landbouw systeem (Oeganda) te verbeteren via nieuw te ontwikkelen 

kennis en begrip door opties in nutriëntenmanagement te koppelen aan heterogeniteit in 

bodemvruchtbaarheid.  

 

De veranderingen in landgebruik in twee regio’s in het Pallisa district, representatief voor het 

Teso landbouwsysteem, zijn over de periode 1960-2001 vastgesteld met behulp van remote 

sensing technieken; de sturende factoren voor verandering zijn bepaald in een 

vergelijkingsstudie met een systeem in Zuid Mali. Duurzaamheid van het systeem wordt 

gekenmerkt door de nutriënten balans en factoren die dit bepalen werden vastgesteld via 

regressie analyse. Tot 2001 was in de twee regio’s Chelekura en Onamudian 45 en 78 % meer 

land in cultuur gebracht. Deze toename was negatief gecorreleerd met het verdwijnen van 

bossen (r = –0.07), graslanden (r = –0.84), woeste gronden (r = –0.64) en papyrus moerassen 

(r = –0.49) en positief gecorreleerd met de verbouw van rijst (r = 0.87). De 

bevolkingstoename over deze periode was positief gecorreleerd met de toename van in 

cultuur gebracht land (r = 0.70). De nutriënten balansen van N, P en K op bedrijfsniveau 

waren alleen positief op de grote bedrijven die minstens 9 stuks vee hadden (LF) in 

tegenstelling tot middelgrote (MF), kleine bedrijven met wat vee (SF1) en kleine bedrijven 

zonder vee (SF2). Op gewasniveau waren de balansen van alle nutriënten negatief in alle 

bedrijfstypen. De duurzaamheid van het systeem werd bepaald door veeteelt, 
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gewasopbrengsten, arbeid beschikbaarheid en geld verdiend buiten de landbouw. De 

gewasproductie in Oeganda was laag in vergelijking met het systeem in Zuid Mali waar wel 

nutriënten inputs werden gebruikt. Concluderend, de bevolkingsgroei en de door politieke 

instabiliteit veroorzaakte ineenstorting van de katoenmarkt en van instituties voor landbeheer, 

het wegvallen van afspraken over gebruik van gemeenschappelijke arbeid en veeroof, 

verklaren de veranderingen in landgebruik en de huidige status van het landbouwsysteem. 

 

De aard en mate van variabiliteit in bodemvruchtbaarheid in relatie tot geo-morfologische 

eigenschappen is in Chelekura en Onamudian enerzijds vastgesteld door beschrijving van 

bodemprofielen langs toposequenties van bodemtypen en anderzijds door bodem analyses van 

monsters van de oppervlakte laag van velden van 33 bedrijven. Afdalend langs de 

toposequenties werden geen graduele verschillen gevonden in de volgende 

bodemeigenschappen: pH, totaal N gehalte, uitwisselbare Mg, Ca en K, CEC, zand en klei 

fracties. Opneembare P was echter 3 (Chelekura) tot 5 keer (Onamudian) zo hoog in de 

bovenlaag van de bodems in de dalen in vergelijking tot die in hoger gelegen landschap 

posities van de toposequenties. In het bodemprofiel van elk bodemtype met uitzondering van 

die in de dalen, nam pH, organisch stof gehalte, zand fractie, totaal N gehalte, opneembare P 

en uitwisselbare basen af met de diepte in het profiel. In de dalen neemt het Ca gehalte met de 

diepte toe. Organisch stof gehalte en leem plus klei fracties zijn gebruikt om de ruimtelijke 

variabiliteit in bodemvruchtbaarheid in bedrijven te illustreren. Organisch stof gehalten van 

de bovenlaag van de bodems waren significant (P<0.05) verschillend tussen landschapschap 

posities in de regio’s. Grotere en meer significante verschillen (P<0.001) in organisch stof 

gehalten werden gevonden tussen veldtypes. Velden door boeren geclassificeerd als goede, 

gematigde of arme velden in termen van bodem vruchtbaarheid hadden een organisch 

stofgehalte van 9.3 g kg–1, 6.6 g kg–1, 5.5 g kg–1 in Chelekura en 15 g kg–1, 11 g kg–1, 7 g kg–1 

in Onamudian. In tegenstelling tot andere studies van kleine bedrijfssystemen in AbS heeft de 

ruimtelijke analyse niet een bepaald, algemeen geldend patroon in variabiliteit in bodem 

vruchtbaarheid (hier geëvalueerd met het organisch stofgehalte als indicator) opgeleverd. 

Binnen bedrijven werden de hogere gehalten aan organisch stofgehalte geassocieerd met 

hogere fracties van leem plus klei en met locaties waar zich vroeger veekralen bevonden. Het 

schaal niveau van veld is herkenbaar voor boeren en daarom een belangrijke ingang voor het 

bepalen van geschiktheid van bodemvruchtbaarheid maatregelen, ook omdat beslissingen 

daarover op het schaalniveau van het bedrijf door de boeren worden genomen. 

 

Er zijn experimenten uitgevoerd in de twee dorpen om het effect van landschap positie en 

veld type op biomassa opbrengst, N accumulatie en N2-fixatie van zes vlinderbloemigen 

(cowpea, green gram, aardnoten, mucuna, pigeonpea en sojabonen) te bepalen. Deze werden 

daartoe in het korte regenseizoen van 2005 met en zonder toediening van P geteeld; het 
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geoogste plantenmateriaal werd vervolgens ingewerkt in de grond. De effecten op het 

volggewas gierst werden in de volgende twee seizoenen gemeten. De biomassa van 

vlinderbloemigen en de N accumulatie verschilden significant (P<0.001) tussen de twee 

dorpen, landschap posities, veldtypen en bij al of niet bemesten met P. De biomassa van 

mucuna was het grootst (4.8-10.9 Mg ha–1) en van aardnoten het kleinst (1.0-3.4 Mg ha–1) op 

zowel goede als arme velden gelegen op zowel hoge als midden posities in het landschap. De 

accumulatie en fixatie van N door vlinderbloemigen volgde een zelfde trend als de biomassa 

en was significant hoger wanneer P was toegediend. Korrel opbrengsten van gierst waren 

significant (P<0.001) hoger in het eerste seizoen na inwerken van de biomassa die 

geproduceerd was door de vlinderbloemigen dan een seizoen later. In beide dorpen werd ook 

significant meer gierst geproduceerd op de goede velden (0.62-2.15 Mg ha–1) vergeleken met 

de arme velden (0.29-1.49 Mg ha–1). Boeren gaven de voorkeur aan de teelt van aardnoten en 

waren niet geïnteresseerd in pigeonpea en mucuna. Verder, gaven zij de voorkeur aan teelt 

van vlinderbloemigen op de goede velden met uitzondering van mucuna en pigeonpea 

waarvan zij vonden dat die alleen op arme gronden zouden moeten worden geteeld. De 

kostenbaten verhoudingen in beide dorpen gaven aan dat rotaties van vlinderbloemigen 

zonder toediening van P gevolgd door gierst alleen profijtelijk is op goede velden. We 

concluderen dan ook dat green grams, cowpea en sojabonen in beide dorpen het best op de 

goede velden in zowel de hoge en midden landschap posities kan worden geteeld. Mucuna 

zonder P bemesting kan het best worden geteeld op arme velden in de midden-landschap-

positie in Chelekura en cowpea zonder P bemesting op de hoge-landschap-positie in 

Onamudian. Hoewel vlinderbloemigen worden aanbevolen voor kleine boeren bedrijven, 

zullen die alleen succes hebben op de goede velden en wanneer P bemesting, die dient te 

worden toegediend, economisch haalbaar is. Dit is bij een prijs verlaging van 30-40% het 

geval. 

 

Gebruik van vlinderbloemigen als mest voor verhoging van de gierst productie op arme 

velden levert geen profijt op. Daarom werd in beide dorpen ook de effectiviteit van kunstmest 

en mest van kralen op arme velden, uitgeput in nutriënten, getest in veld experimenten over 

drie seizoenen. Alleen N of P kunstmest (0, 30, 60, 90 kg ha–1), combinaties van N+P 

kunstmest in gelijke hoeveelheden als één gift en mestgiften gecombineerd met N kunstmest 

(0, 30, 60 and 90 kg ha–1) werden toegediend op gedegradeerde velden in zowel hoge als 

midden landschap posities. Gierst productie op gronden waar vroeger kralen stonden (niches 

met hoge bodemvruchtbaarheid) werd als referentie punt toegevoegd in de experimenten. De 

gemiddelde graanopbrengst varieerde van 404 kg ha–1 tot 2026 kg ha–1 en was significant 

(P<0.001) verschillend tussen dorpen en seizoenen in 2006. Significante (P<0.05) verschillen 

in graanopbrengst tussen landschap posities werden alleen in Onamudian gevonden. De 

bemesting kon de opbrengst op arme gronden significant omhoog brengen maar het verschil 
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in opbrengst tussen gedegradeerde gronden en velden op vroegere veekralen konden door 

geen van de gebruikte bemesting worden overbrugd. De hoogste graanopbrengst op 

gedegradeerde velden werd bereikt met toediening van N+P kunstmest met opbrengsten van 

800 kg ha–1 in Chelekura en 1171 kg ha–1 in Onamudian. Daarmee werd het gat tussen 

opbrengsten op gedegradeerde gronden en velden op vroegere veekralen voor 24% in 

Chelekura en 43 % in Onamudian gedicht. De lage efficiëntie in gebruik van toegediende 

nutriënten is een gevolg van beperkingen in andere nutriënten zoals S en K en mogelijk ook 

door fysische beperkingen van de bodem zoals beperkte infiltratie van regenwater door 

korstvorming aan het bodemoppervlak. 

 

Bemestingsadviezen die geen rekening houden met de grote variabiliteit in 

bodemvruchtbaarheid binnen kleine boerenbedrijven zijn van beperkte waarde. Het model 

QUEFTS (Quantitative Evaluation of Fertility of Tropical Soils) werd gekalibreerd voor 

gierst ten einde de potentie van dit model te verkennen om locatie specifieke 

bemestingsadviezen te kunnen generen. De modelconstanten (kg graan per kg nutriënt) 

werden voor maximale accumulatie (a) en minimale verdunning (d) vastgesteld op 21 en 53 

kg graan per kg N, 76 en 261 kg graan per kg P en 11 en 46 kg graan per kg K. De correlatie 

tussen waargenomen en door model berekende opbrengsten was goed (r2 = 0.76; RMSD = 

262 kg ha–1). De uitgebalanceerde bemesting voor een na te streven gierst opbrengst van 2000 

kg ha–1 werd geschat op 83 kg N ha–1, 52 kg P ha–1 en 56 kg K ha–1 voor zand-leem gronden 

in Chelekura en op 64 kg N ha–1, 31 kg P ha–1 en 40 kg K ha–1 voor zand-klei-leem gronden in 

Onamudian. 

Echter, wanneer reacties van toegediende nutriënten op opbrengst moeten worden voorspeld 

dan moet er rekening worden gehouden met de condities van de bodem. Andere nutriënten net 

als fysische factoren als beperkte waterbeschikbaarheid door beperkte infiltratie kunnen op 

gedegradeerde gronden een effect hebben op de nutriënten opname, iets waar het QUEFTS 

model geen rekening mee houdt; berekende model opbrengsten zullen dan hoger uitkomen 

omdat die alleen afhankelijk zijn van de totaal beschikbare nutriënten van zowel de bodem als 

van nutriënten die zijn toegevoegd.  

 

Concluderend, opties die doelgericht nutriënten beheren kunnen tot hoger profijt leiden 

wanneer specifiek aandacht wordt geschonken aan specifieke beperkingen die anders zouden 

leiden tot verspilling van beschikbare middelen. Door de bank genomen dient de kwaliteit van 

velden met beperkte bodemvruchtbaarheid worden verbeterd om het profijt van interventies 

op het terrein van nutriëntenbeheer te verhogen. Toedienen van mest om het organische 

stofgehalte te verhogen is eerst nodig voordat de efficiëntie van nutriënten opname van 

toegediende kunstmest wordt bereikt. Dit onderstreept de noodzaak van het gecombineerde 

gebruik van mest en kunstmest wanneer gedegradeerde velden moeten worden 
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opgewaardeerd. Bij kleine aantallen vee zijn de hoeveelheden mest echter klein en het 

vooruitzicht die aantallen te verhogen zijn slecht gezien de beperkte beschikbaarheid van voer 

van kwaliteit en van graslanden. Veranderen van het begrazingsysteem naar het houden van 

vee op stal kan de verzameling van mest verbeteren, maar daarnaast is de introductie van 

voederproductie en verbetering van de kwaliteit van de weiden misschien mogelijk. Een 

verandering naar het houden van vee op stal is onmogelijk als niet ook het profijt hoger wordt 

door melkproductie waardoor de hogere vraag naar arbeid in een dergelijk systeem kan 

worden gecompenseerd. Aan de andere kant is kunstmest schaars en duur voor de kleine 

boeren. Het gebruik daarvan moet strategisch worden gestimuleerd. Vanuit agronomisch 

standpunt, dienen limietwaarden van organisch stofgehalten, die hogere efficiëntie geven bij 

kunstmestgebruik, te worden bepaald. Deze limietwaarden verschillen per bodemtypen (leem 

en klei fracties) en gewas. De efficiëntie op bedrijfssysteem niveau moet worden bepaald en 

gewassystemen moeten daarvoor worden aangepast. Gewassen die het profijt van mest en 

kunstmest gebruik verhogen zullen investeringen in beheer van bodemvruchtbaarheid 

vergemakkelijken. In systemen met lage productie zoals het Teso systeem is het gebruik van 

kunstmest onvermijdelijk. Interventies van buitenaf en stimuleringspolitiek die 

partnerschappen rondom winstgevende producten tussen private en publieke sector verbeteren 

en ook in breder verband rekening houden met het bestaansminimum kunnen dan door 

doelgericht toepassen van opties, rekening houdend met de heterogeniteit, een route zijn tot 

voldoende voedselproductie. 
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