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AbstrAct

Within the EU, the management of the risks of chemicals currently falls under a new 
legislation called Registration, Evaluation, and Authorization of Chemicals (REACH).  
Within the next 10 years, the existing (eco)toxicological data gaps for the more than 100 000 
chemicals on the European Inventory of Existing Commercial Substances (EINECS) should 
be filled.  The challenge is to provide this toxicity information in a fast, cost effective manner, 
avoiding the use of experimental animals as much as possible.  In this regard, REACH 
has provisions to allow for the use of in vitro and/or in silico methods, e.g. those based on 
(Quantitative) Structure Activity Relationships [(Q)SARs], to provide toxicity information 
or identify hazards of chemicals.  This information can subsequently be used to identify 
priority chemicals for further risk evaluation.  A QSAR is based on the assumption that 
the biological activity of a new or untested chemical can be inferred from the molecular 
structure, or properties of similar compounds whose activities have already been assessed.  
Therefore, using the chemical structure of chemical compounds as the sole input, one can 
build a toxicity prediction model based on parameters that define the physico-chemical 
properties and relative reactivity of the compounds.  The objective of this thesis was to apply 
OECD guidelines in the development of validated QSAR models that describe acute toxicity 
of selected groups of EINECS chemicals to various organisms.  In addition, an estimate 
was made of the total number of EINECS chemicals that could be possibly evaluated using         
(Q)SAR approaches.  
Based on experimental toxicity data from literature and in silico calculated log Kow (a measure 
of hydrophobicity) values, a QSAR advisory tool was developed that directs users to the 
appropriate QSAR model to apply for predicting toxicity of substituted mononitrobenzenes 
to five types of organisms within specified log Kow ranges.  In a next study, QSAR models 
were developed to predict in vivo acute toxicity of chlorinated alkanes to fish based on data 
from in vitro experiments, and even based on in silico log Kow data only.  Furthermore, 
using toxicity data from acute immobilization experiments with daphnids, an interspecies 
QSAR model was developed to predict toxicity of organothiophosphate pesticides to fish 
based on toxicity data for daphnids and in silico log Kow values.  The QSAR models for the 
mononitrobenzenes, chlorinated alkanes, and organothiophosphates covered in total 0.7 % 
of the 100 196 EINECS chemicals.  In a final step, using chemical classification software,            
54 % of the EINECS chemicals were grouped into specific classes that can in theory be 
subject to QSAR modeling.  The safety assessment of one group of compounds that could 
not be classified e.g. botanical extracts might be done by further development of a method 



recently reported for the safety assessment of natural flavour complexes used as ingredients in 
food.  This would result in an additional 3 % of the EINECS chemicals that could potentially 
be covered by SAR approaches, bringing the total percentage of EINECS compounds that 
can be covered by (Q)SAR approaches to 57.   
In conclusion, the results of this thesis reveal that, (i) in vitro experiments and even in silico 
calculations can help to reduce or replace animals used for experimental toxicity testing and 
(ii) despite the fact that individual QSARs may often each cover only limited, i.e. less than 
1%, of the EINECS compounds, (Q)SAR approaches have the potential to cover about 57 % 
of the EINECS compounds.    
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IntroductIon 

Chemicals are part of everyday life.  They are present in our shower gels, the shoes 
we wear, the medicines, textiles and cars we use, the packaging material of our food, 
the electronic devices that make our life convenient and many more.  The importance of 
chemicals in everyday life is such that we cannot do without them and their use is ever 
increasing.  Global trade in chemicals almost doubled from € 962 billion in 1996 to € 1 641 
billion in 2006 (1). The chemical industry within the European Union (EU) accounts for about                                     
€ 476 billion of the total sales (Figure 1.1), which is about 30 % of the global sales.  The EU 
chemical industry comprises about 27 000 enterprises employing about 1.2 million people, 
which accounts for about 6 % of the total workforce in the manufacturing industries (1).

Figure 1.1:  Geographical breakdown of world chemical sales.  *North American Free Trade Area, 
**Switzerland, Norway and Central and Eastern Europe, ***Oceania and Africa.  Adapted from 
CEFIC, 2007)

The use and production of chemicals has been associated with several industrial and 
environmental incidences over the years.  These include for example, (i) the methylmercury 
poisoning in the Minamata bay in Japan between 1932 and 1968 (2, 3), (ii) the dichloro-diphenyl-
trichloroethane (DDT) pesticide poisoning in the USA in the 1960s, documented in the book, 
Silent Spring, by Rachel Carson (4), (iii) the dioxin poisoning incident in Seveso, Italy in 1976 
(5), and (iv) the methyl isocyanate poisoning in Bhopal, India, in 1984, popularly known as the 
Bhopal incident (6, 7).  In addition, there is chronic exposure to much lower levels of chemicals, 
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which is much more often occurring than dramatic incidences.  Incidences of some diseases 
e.g. testicular cancer in young men, breast cancer, and allergies have increased significantly 
over the last decades and some evaluations have related this to increased exposure to chemicals 
(8).  The  Scientific Committee on Toxicity, Ecotoxicity and the Environment (CSTEE) 
stated that “…links have been reported between high levels of persistent potential endocrine 
disrupting chemicals and reproductive and developmental effects in wildlife populations” (9).

Globally, there are about 16 million chemicals registered for use by the Chemical 
Abstracts Service.  Within the EU, the registration of chemicals is governed by regulation 
(EC) 793/93, which classifies chemicals into two categories, “existing” or ”new”, depending 
on the date on which they entered the market (10). “Existing” chemicals were already on 
the EU market in the period between 1 January 1971 and 18 September 1981.  They amount 
to 100 196 chemicals and are listed on the European Inventory of Existing Commercial 
Chemical Substances (EINECS) (EC, 1990).  Since 19 September 1981 only   4 381 “new” 
chemicals (at the time of writing this thesis) have been added and they are listed on the 
European List of Notified Chemical Substances (ELINCS) (11).  In comparison, in the 
USA, about 2 000 chemicals are notified every year.  Both ELINCS and EINECS chemicals 
are regulated by more than 40 pieces of legislation (12).  While ELINCS chemicals were 
required to be tested before introduction on the market when their volumes were as low 
as 10 kg per year and higher, EINECS chemicals were exempted from premarket testing, 
even though they constituted 99 % of the total volume of chemicals on the market at that 
time (8). Therefore, there exist large toxicity data gaps for EINECS chemicals.  Out of the 
approximately 2 700 high production volume (HPV; production volume > 1 000 ton per year) 
EINECS chemicals, 141 chemicals were identified as priority substances for risk assessment 
and possible recommendations for risk reduction (12). Comprehensive risk evaluation has 
been completed for less than 30 % of these 141 chemicals.  Analysis of the availability of 
data for all the HPV chemicals  indicated that only 3 % of the HPV chemicals had a full 
toxicity data set needed for risk evaluation, while 28 % had minimal data sets (Table 1.1) (13).  

To address the concerns about the lack of toxicity information for EINECS 
chemicals,  the European Commission adopted a new regulatory framework for the 
Registration, Evaluation, and Authorization of Chemicals (REACH) in December 
2006 (14).   REACH came into force in June 2007 and it shifts the responsibility of 
assessing and managing the risks posed by chemicals from governments to industry.  
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Table 1.1:  Percentage of the 2 700 high production volume EINECS chemicals for which effect data 
are available.  (13)
Test type Fulla dataset (%) Minimalb dataset (%)
Environmental Fate/Biodegradation 30 61
Ecotoxicological 9 72
Acute toxicity 29 81
Chronic toxicity 58 58
Mutagenicity 37 68
Developmental/Reproductive 20 15
Environment 5 57
Human Health 12 33
All data 3 28
aFull dataset –Environmental fate (photodegradation, stability in water and soil, biodegradation, bioaccumulation)
Ecotoxicological (toxicity to aquatic invertebrates, aquatic plants, andmicroorganisms)
Acute toxicity (oral, inhalation, dermal, eye and skin irritation, sensitization)     
Chronic toxicity (repeated dose toxicity)  
Mutagenicity (genetic toxicity in vitro and in vivo)  
Developmental and reproductive toxicity
bMinimal dataset –Any one of the endpoints in environmental fate, ecotoxicity, acute toxicity, mutagenicity and 
developmental/reproductive toxicity plus biodegradation and chronic toxicity

  Some of the main aims of REACH are (i) improved protection of human health and the 
environment, (ii) maintenance and enhancement of the competitiveness of the EU chemical 
industry, and (iii) promotion of non-animal alternatives to chemical testing.  A comparison 
of the old and new (REACH) chemical management systems is shown in Table 1.2.  Within 
the REACH framework, manufacturers are required by the year 2018 to provide toxicity 
information for about 30 000 chemicals with annual production volumes greater than 1 ton.  The 
amount of toxicity data required for a chemical increases with increasing production volume.

There is currently ongoing debate about the potentially large number of animals that 
have to be used for experimental toxicity testing as an outcome of REACH.  These concerns 
also arise from the numbers of animals that are currently used worldwide for experimental 
purposes.  In 2005, about 14 million animals were reported to be used worldwide, with use 
within the EU accounting for 12 million (15), and the USA using about 2 million animals 
(16).  The USA figure excludes rats and mice, because their usage is not generally reported 
(16). The numbers of animals used could be higher than 100 million per year, as usage is not 
reported on other continents.  The guiding principles for animal experimentation over the 
last 50 years are mainly based on measures aimed at reducing, refining, and/or replacement 
of animals for experimental purposes, traditionally known as the “three R’s” (17).   
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Table 1.2:  Comparison of the old EU chemical management system, and the new system, REACH.  
(14)
Old chemical management system REACH
Knowledge gaps in many of the chemicals on the 
EU market.

Close the knowledge gaps by providing safety 
information about chemicals produced or 
imported in volumes higher than 1 ton /year per 
manufacturer / importer.

The ‘burden of proof’ was on the authorities 
who needed to prove that the use of a chemical 
substance was unsafe before they could impose 
restrictions.

The ‘burden of proof’ will be on industry and all 
actors in the supply chain who have to demonstrate 
that the chemical can be used safely.

Notification requirements for ‘new substances’ 
started at a production level of 10 kg.  Already  
at this level, one animal test was needed.  At  
1 ton, a series of tests including other animal  
tests had to be undertaken.

Registration will be required when production/
import reaches 1 ton.  As far as possible, animal 
testing will be minimized.

Costly to introduce a new substance on the  
market.  This encouraged the continued use of 
“existing”, untested chemicals and inhibited 
innovation.

Innovation of safer substances will be encouraged 
under REACH through lower registration costs for 
new substances.

Public authorities were obliged to perform 
comprehensive risk assessments that were slow 
and cumbersome.

Industry will assess the safety of identified uses, 
prior to production and marketing. Authorities will 
focus on issues of serious concern.  

 
These principles encourage (i) replacement of the use of animals with alternative 

techniques, (ii) reducing the number of animals used to a minimum, obtaining information 
from fewer animals or more information from the same number of animals, and (iii) refining 
the way experiments are carried out to ensure that animals suffer as little as possible (17). 

There have been global efforts to implement the three R’s while still better monitoring 
the effects of chemicals.  Efforts to implement the three R’s have resulted in the establishment 
of animal alternative centers, e.g. the John Hopkins Center for Alternatives to Animal Testing 
(CAAT; http://caat.jhsph.edu/) in USA, the Netherlands Centre for Alternatives (NCA; http://
www.vet.uu.nl/nca/), and the European Center for the Validation of Alternative Methods 
(ECVAM; http://ecvam.jrc.it/). Within the REACH framework, there are provisions to 
allow alternative testing methods e.g. in vitro and in silico.  Due to the large amount of 
toxicity information that is required within 10 years, methods that can help to direct priorities 
for future toxicity testing will help to save time, money, and animals.  In this regard, in 
silico methods such as those based on (Quantitative) Structure Activity Relationships                                       

http://caat.jhsph.edu
http://www.vet.uu.nl/nca
http://www.vet.uu.nl/nca
http://ecvam.jrc.it
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[(Q)SARs] are expected to provide toxicity information or identify hazards of chemicals, 
and this information can subsequently be used to identify priority chemicals for further risk 
evaluation.  The objective of this thesis was to develop validated QSAR models that can be 
used to predict the toxicity of chemicals, and thus help set priorities for future toxicity testing 
of chemicals and help to reduce the numbers of animals used for experimental purposes 
within REACH.  In addition, an estimate was made of the total number of EINECS chemicals 
that could be possibly evaluated using QSARs.

(quAntItAtIve) structure-ActIvIty relAtIonshIps

A (Quantitative) Structure-Activity Relationship [(Q)SAR] is based on the assumption 
that the biological activity of a new or untested chemical can be inferred from the molecular 
structure, or properties of similar compounds whose activities have already been assessed 
(18).  When the relationship is developed with (i) non continuous or categorical data, it is 
called a SAR and (ii) continuous or quantitative data it is called a QSAR (18).  In order for 
one to perform a QSAR analysis, three elements are needed:  (i) biological data for a set of 
chemicals, (ii) a descriptors e.g. for physical or chemical  properties of the chemicals, and 
(iii) a statistical method to relate the biological activity and the descriptor(s) (19).  The two 
main fundamental assumptions of QSARs are that (i) similar chemicals have sufficiently 
common mechanistic elements, that they may have a rate-determining step and free energy 
requirements for activity in common, and (ii) differences in reaction rates for this common 
rate-limiting step will give rise to observed differences in activity or quantitative potency 
(18).

The first work on QSARs can be traced back to the PhD thesis work of Cros (1863) in 
Strasbourg, France, who showed that a relationship exists between the toxicity of primary 
aliphatic alcohols and their water solubility (20).  In the field of aquatic toxicology, QSARs 
can be traced back more than 100 years to the work of Hans-Hörst Overton in Zürich and 
Meyer in Marburg  who demonstrated that the potency of substances producing narcosis 
in tadpoles and small fish is in direct proportion to their partition coefficients measured 
between olive oil and water (21, 22).   In 1969, Corwin Hansch, considered the founder 
of modern QSAR research, stated that the biological activity for a group of congeneric 
chemicals is related to their hydrophobicity, electronic and steric properties (23).  In 1970, 
McFarland modified this relationship and indicated that toxicity is a combination of uptake 
into, or through, biological membranes (log of penetration) and the interaction of the toxicant 
with the molecular site of action (log of interaction) (Eq. 1), taking into account both the 
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toxicokinetics and toxicodynamics of the compound (24).  

log toxicity  = a(log of penetration) + b(log of interaction)                                         Eq. 1
where a and b are reaction coefficients. 

The process of developing a QSAR model involves several basic steps (Figure 1.2). 

Figure 1.2:  Basic scheme for the development of QSAR models.  Adapted from (19).  Modified to 
include OECD guidelines for QSAR model development (25).
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Table 1.3:  Examples of descriptors that can be calculated and the relevant xenobiotic characteristics.  

Initially an endpoint to be modeled is selected, followed by identification of the chemical 
group for which the model will be developed.  If the number of chemicals is sufficiently 
large, they can be split into a training set and a test set.  Training set chemicals are used 
during the development of the model, while the test set chemicals are used to validate 
the model.  The selection of appropriate descriptors to relate to the endpoint can be done                                                
a priori if the mechanism of action is already known, or one can start with a large number 
of descriptors and use computer software to select the best descriptors that correlate with 
toxicity.  The descriptors can be physicochemical (e.g. hydrophobic), electronic (e.g. dipole 
moment, energy of the highest occupied molecular orbital (Ehomo) or the energy of the lowest 
unoccupied molecular orbital (Elumo) or steric (molecular volume, molecular weight) (19).  
Examples of commonly used descriptors and the xenobiotic characteristic they reflect are 
shown in Table 1.3. 

Calculated descriptor Relevant xenobiotic characteristic Reference(s)
octanol water partition coefficient; 
log Kow

hydrophobicity/lipophilicity (26, 27)

dissociation constant; pKa ionization (28)

energy of the highest occupied 
molecular orbital; Ehomo

ionization potential, ease of oxidation, 
nucleophilic reactivity

(29, 30)

energy of the lowest unoccupied 
molecular orbital; Elumo

oxidation potential, ease of reduction, 
electrophilic reactivity

(29)

molecular weight, molecular volume, 
molecular surface area

binding to receptor (31, 32)

molecular refractivity; MR size and polarizability of a molecule fragment (33)

heat of formation activation or reaction enthalpies (29) 

dipole moment charge separation in a molecule (29)

 The most commonly used physicochemical descriptor is the octanol-water partition 
coefficient, log Kow, which reflects the ability of organic compounds to passively partition and 
accumulate in organisms (26).  The importance of hydrophobicity in explaining the toxicity 
of a large set of industrial chemicals was shown for example, by the work of Könemann and 
Veith (26, 27).  Where log Kow alone is not sufficient to account for toxicity of chemicals, 
additional descriptors to be included may be (among others), electronic ones e.g. the energies 
of the frontier orbitals of the molecules (Figure 1.3).  
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Figure 1.3:  Molecular orbital diagram for the reaction between an electrophile and a nucleophile of 
a reactive toxic intermediate and its toxicological receptor.  (29).  The smaller the difference in energy 
between the HOMO of the nucleophile and the LUMO of the electrophile, the larger the energy ΔE 
gained as a result of the interaction and the higher the reactivity (34). ΔE = energy gain from the 
interaction between HOMO of the nucleophile and LUMO of the electrophile

The energies of the frontier orbitals e.g. the lowest unoccupied molecular orbital 
(LUMO) and the highest occupied molecular orbital (HOMO) direct the electrophilic and 
nucleophilic reactivity of a compound and its toxicological receptor (34).  Reactivity between 
an electrophile and a nucleophile increases when i) the Ehomo is increased or ii) the Elumo is 
decreased (34). Given that the toxicological receptor is constant for a series of chemicals 
to be modeled by a QSAR, the relative reactivity and thus toxicity of a series of chemicals 
may be modeled by looking at their relevant frontier orbital without the requirement for 
knowledge on the orbital characteristics of the toxicological receptor.

Traditional QSARs use experimentally derived descriptors e.g. ionization potential, 
vapor pressure, and log Kow,  among others to quantify physico-chemical characteristics 
(35, 36).  However, due to lack of large data sets of experimentally derived parameters, 
QSARs have been developed based on parameters defined using quantum mechanical 
computer calculations.  Due to the increasing power of computers, quantum mechanical 
computer calculations have become a valuable and widely applicable tool in (bio)chemical 
research.  Using the chemical structure of a compound as the sole input, they provide the 
possibility to calculate parameters that define the physico-chemical properties and relative 
reactivity of a compound.  The possibilities for the use of computational quantum mechanical 

 

HOMO 
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Energy 

electrophile nucleophile 
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calculations in QSAR studies in toxicology have already been demonstrated.  (29, 37-43).   
Computational models offer the advantages of ease of use, speed, and low costs.  

The correlation between the chosen descriptor(s) and the endpoint is often analyzed 
with statistical software.  The most common correlative method is regression analysis.  
Regression analyses are simple to carry out and produce results that are easy to understand 
(18, 44).  The correlation can also be investigated using pattern recognition techniques, and 
they are usually multi-dimensional and non-linear, thus they are often complex and difficult 
to interpret (18).  

In a next step, the reliability of the developed QSAR model can be tested by comparing 
the endpoint values the model predicts to the experimentally determined endpoint values 
of similar chemicals (training set chemicals).  If the predictions are poor, one can restart 
the model development by using different descriptors, or noting training set compounds, 
whose predicted values deviate greatly from the experimental values.  This can help to 
identify compounds that act by a different mechanism of action (19).  If the predictions are 
good, one can define the selection criteria and limits of the model and then make toxicity 
predictions to other chemicals that meet the selection criteria, and were not used during 
model development.

Although QSAR models have been used in regulatory assessment of chemical safety 
in many countries for many years, there were no universal principles for their regulatory 
applicability.  Researchers used different criteria for judging the quality of QSAR models.  
In 2004, member countries of the Organization for Economic Cooperation and Development 
(OECD) agreed on the principles for developing and validating (Q)SAR models for their use 
in regulatory assessment of chemical safety (45).  These guidelines are discussed in brief in 
the next section.

oecd guIdelInes for (q)sAr development And vAlIdAtIon

In order to  facilitate the consideration of a (Q)SAR model for regulatory 
purposes, the (Q)SAR model should be associated with the following five categories 
of information: i) a defined endpoint, ii) an unambiguous algorithm, iii) a defined 
domain of applicability, iv) appropriate measures of goodness-of-fit, robustness, and 
predictivity, and v) a mechanistic interpretation (45).  In 2007, the OECD published a 
“Guidance Document on the Validation of (Q)SAR Models” with the aim of providing 
guidance on how specific (Q)SAR models can be evaluated with respect to the OECD 
principles.  In the following section, each of the five categories is discussed briefly. 
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 i) A defined endpoint 
A QSAR model needs to be based on a clearly defined end-point that refers to a 

physicochemical, biological, or environmental effect that can be experimentally determined 
and thus modeled.  This implies that it should be not only clear which endpoint is being 
modeled but also how it is experimentally defined, since a given endpoint could be determined 
under different experimental conditions and protocols (25).  

ii) An unambiguous algorithm
An unambiguous algorithm seeks to ensure transparency of the model that is used to 

generate predictions of a toxicity endpoint based on chemical structure and/or physicochemical 
properties (25). This holds for the algorithm defining the QSAR model but also for the 
descriptors used in these algorithms.  Descriptors relevant to the toxicity endpoint, calculation 
methods, software packages, and algorithms should preferably be based on methods that 
are publicly available.  The statistical technique, used to analyze the relationship between 
toxicity and the physicochemical descriptors should be transparent (25).

iii) A defined domain of applicability
As models are a simplification of reality, their limits should be well defined (46). This 

principle reflects the fact that QSARs are associated with limitations regarding the types of 
chemical structures, physicochemical properties, and mechanism for which a model generates 
reliable predictions.  In the simplest approach the domain of applicability can be defined by 
the boundaries of the descriptor values for the compounds in the training set (47). 

 
iv) Appropriate measures of goodness-of-fit, robustness, and predictivity,

This principle requires that parameters that reflect both the internal performance of the 
QSAR model as well as its predictivity should be provided.  The internal performance can 
be characterized based on the goodness-of-fit and robustness of the model determined based 
on the training set.  These qualities of the QSAR models can be characterized by the number 
of compounds used in the study (n), coefficient of determination (r2), standard error of the 
estimate (s), variance ratio (F), the internally cross validated coefficient of determination 
(r2

int),  and the externally validated co-efficient of determination (r2
ext) (25).   

v) A mechanistic interpretation
The OECD guidelines also state that a QSAR should be associated with a mechanistic 

interpretation, whenever this is possible.  Such a mechanistic interpretation links the descriptors 
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used in the model and the endpoint being predicted (25).  Any effort in the validation process 
to show that the QSAR model is consistent with other knowledge of fundamental processes 
in chemistry and toxicology increases the credibility and acceptance of the predictions from 
the model (25).   The mechanism(s) of toxicity of chemicals are broadly classified into four 
categories:  i) non-polar narcotics, ii) polar narcotics, iii) unspecific reactivity, and (iv) 
specific mechanism of action (48).  Non-polar narcotics do not interact with any specific 
receptors in an organism and their toxicity is entirely dependent on their hydrophobicity.  
In the absence of any specific mechanism of toxicity, a chemical will always be as toxic as 
its hydrophobicity indicates, a phenomenon called “baseline toxicity”.  Polar narcotics are 
slightly more toxic than baseline toxicity, and they usually possess hydrogen bond donor 
activity, e.g. phenols and anilines (49).  Chemicals with unspecific or specific reactivity have 
enhanced toxicity when compared to baseline toxicity.  Unspecifically reacting chemicals 
react with certain chemical structures commonly found in biomolecules, e.g. epoxides, 
which react with sulfhydryl groups of cysteine residues of peptides while specifically acting 
chemicals react with specific receptor molecules e.g. DDT, which interacts with sodium 
channel regulating receptors in neurons (48).

Altogether, these OECD guidelines should provide regulatory bodies with a scientific 
basis for making decisions on the acceptability of data generated by (Q)SARs, and also 
promote the mutual acceptance of (Q)SAR models by improving the transparency and 
consistency of (Q)SAR reporting.

outlIne of thesIs

 The aim of this thesis was to develop a computational chemistry-based QSAR 
approach that enables identification of priorities within various selected groups of EINECS 
chemicals.  Validated QSAR models for acute toxicity of selected groups of EINECS 
chemicals were developed taking into account the OECD guidelines (25).  Chapter 1 gives a 
general introduction on the subjects that are relevant within the context of the present thesis.  
In the next three chapters, QSAR models were developed for mononitrobenzenes (chapter 
2), chlorinated alkanes (chapter 3) and organothiophosphate pesticides (chapter 4).  Suitable 
software packages, descriptor calculation protocols, and statistical techniques for use for the 
rest of the thesis were also identified in chapter 2.  In each of the three chapters (2, 3, and 
4), the number and type of EINECS chemicals for which the developed QSAR models were 
valid were identified.  In a final chapter an estimate was made of the percentage of EINECS 
chemicals that can be grouped into specific chemical classes, and thus in theory be subject 
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to QSAR modeling (chapter 5).  This gives an indication of the potential applicability of 
QSAR models to predict acute toxicity of chemicals within REACH.  Finally, the overall 
conclusions and a general discussion of this thesis are presented (chapter 6).
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AbstrAct

Fifteen experimental literature data sets on the acute toxicity of substituted nitrobenzenes to 
algae (Scenedesmus obliquus, Chlorella pyrenoidosa, C. vulgaris), daphnids (Daphnia magna, 
D. carinata), fish (Cyprinus carpio, Poecilia reticulata), protozoa (Tetrahymena pyriformis), 
bacteria (Phosphobacterium phosphoreum), and yeast (Saccharomyces cerevisiae) were used 
to establish quantum chemistry-based quantitative structure–activity relationships (QSARs).  
The logarithm of the octanol/water partition coefficient, log Kow, and the energy of the lowest 
unoccupied molecular orbital, Elumo, were used as descriptors. Suitable QSAR models (0.65 < r2 
< 0.98) to predict acute toxicity of substituted mononitrobenzenes to protozoa, fish, daphnids, 
yeast, and algae have been derived. The log Kow was a sufficient descriptor for all cases, with 
the additional Elumo descriptor being required only for algae.  The QSARs were found to be 
valid for neutral substituted mononitrobenzenes with no -OH, -COOH, or -CN substituents 
attached directly to the ring. From the 100 196 European Inventory of Existing Commercial 
Substances (EINECS), 497 chemicals were identified that fit the selection criteria for the 
established QSARs. Based on these results, an advisory tool has been developed that directs 
users to the appropriate QSAR model to apply for various types of organisms within specified 
log Kow ranges. Using this tool, it is possible to obtain a good indication of the toxicity of a 
large set of EINECS chemicals and newly developed substituted mononitrobenzenes to five 
different organisms without the need for additional experimental testing. 
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IntroductIon 

The European Inventory of Existing Commercial Substances (EINECS) contains                
100 196 chemicals that were on the European Union market between 1971 and September 
1981.  Any chemical marketed after September 1981 is called a ‘‘new chemical’’ (1). It is 
recognized that insufficient (eco)toxicological information exists on the hazardous properties 
of many of the EINECS chemicals.  This is mainly because EINECS chemicals were exempted 
from premarket testing, unlike ‘‘new chemicals,’’ even though EINECS chemicals constituted 
99% of the total volume of all substances on the market at that time (1). In October 2003, 
the European Commission adopted a proposal for a new chemical control system called 
Registration, Evaluation, and Authorization of Chemicals (REACH).  One of the goals of 
REACH is the development of computational prediction models to fill existing toxicity data 
gaps (1). General information for about 30 000 existing chemicals marketed in the European 
Union in volumes greater than one ton per year is required before 2012 (2). 

In the field of toxicological risk assessment, the present view is that validated 
quantitative structure–activity relationships (QSARs) can be valuable tools to rapidly screen 
the toxicological potential of chemical compounds and also to help set up research priorities 
in toxicological testing programs (3, 4). One of the principal assumptions that underlie the 
description of QSARs is that physical-chemical properties dominate the behavior of chemical 
compounds.  Traditional QSARs use experimentally derived descriptors, such as ionization 
potential, vapor pressure, octanol/water partition coefficient (Kow), and Hammett, Taft, 
Sterimol, and Abraham parameters to quantify these physical-chemical characteristics (5, 6). 
However, because of a lack of large data sets of experimentally derived parameters, attempts 
have been made to define parameters to establish QSARs based on quantum mechanical 
computer calculations.  As the power of computers continues to increase, quantum mechanical 
computer calculations have become a valuable and widely applicable tool in (bio)chemical 
research.  Quantum mechanical calculations provide the possibility to calculate, using the 
chemical structure of a compound as the sole input, parameters that define the physical-
chemical properties and relative reactivity of a compound.  The possibilities for the uses of 
computational quantum mechanical calculations in QSAR studies in toxicology have already 
been demonstrated.  From these previous initial studies, several classes of compounds 
have been identified for which a possibility exists to use computational chemistry–based 
parameters to estimate their toxicity (7-9). Computational models offer the advantages 
of ease of use, speed, and low costs. Furthermore, they are in principle not susceptible to 
experimental errors, although slightly different output descriptors can sometimes result 
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because of numerical deviations or the different prediction algorithms used by the available 
software. In order to establish the accuracy of quantum chemistry-based data, they need to be 
rigorously validated with experimental data of good quality.

Currently, attempts are being made to define QSARs for several compound classes. 
Substituted nitrobenzenes are a good starting point for two reasons.  First, sufficient 
experimental toxicity data exist, and, second, no attempt has been made to aggregate the 
data and use them to define priorities for future toxicity testing.  Substituted nitrobenzenes 
are widely used in industry during the synthesis of dyes, explosives (e.g., trinitrotoluene), 
solvents, plastics, anilines, and various bioactive products, such as insecticides, pesticides, 
and pharmaceuticals (10, 11). Substituted nitrobenzenes are also found as by-products of 
fuel combustion in vehicles and power plants and as secondary pollutants from reactions 
with hydroxyl and nitrate radicals.  As a result of their varied origins and uses, substituted 
nitrobenzenes are widespread in ecosystems and consequently have a high potential for 
causing ecotoxic effects (10). Substituted nitrobenzenes are generally electrophilic toxicants 
because of the presence of the strong electron-withdrawing nitro substituent (9). The presence 
of other substituents on the nitrobenzene ring results in different toxicities in part because 
of different susceptibilities to nitro-reduction by enzymes, giving rise to nitro radical anions, 
nitrosobenzenes, or N-hydroxylamines (12). 

In this chapter, to estimate the sub(acute) toxicity of various substituted nitrobenzenes 
to aquatic organisms, QSARs were developed based on computer calculated descriptors, 
namely, the logarithm of the octanol/water partition coefficient (log Kow) and the energy 
of the lowest unoccupied molecular orbital Elumo (eV).  The log Kow generally models a 
compound’s hydrophobicity, which is important in describing the passage of a compound 
through membranes.  The Elumo models the electrophilic nature of the nitrobenzenes, which 
is important in their nitroreduction and/or covalent reaction with biological macromolecules. 
The log Kow and Elumo have a clear link to the toxicity of substituted nitrobenzenes as shown 
from previous studies (9, 13-15). The applicability and limits of the QSARs were also 
identified by noting certain types of compounds that are outliers and certain log Kow ranges 
where one should apply the QSARs for the non-polar narcotic models instead.  Thus, from 
this, it is possible to estimate the acute toxicity of substituted mononitrobenzenes to several 
aquatic organisms.  To this end, an advisory tool was established to direct the user to the 
appropriate QSAR for a given organism and log Kow range.
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mAterIAls And methods

Data sets
The 15 experimental data sets used in this chapter contained acute toxicity data for 

substituted nitrobenzenes to six types of organisms.  These were the protozoan Tetrahymena 
pyriformis (9, 11); algae Scenedesmus obliquus (13, 16), Chlorella pyrenoidosa (15), and 
C. vulgaris (17); daphnids Daphnia magna (15) and D. carinata (13); fish Cyprinus carpio 
(13) and Poecilia reticulata (14); bacteria Phosphobacterium phosphoreum (15); yeast 
Saccharomyces cerevisiae (10); and sub-acute toxicity data to D. magna (15). The European 
Chemicals Bureau supplied the EINECS list, from which the list of substituted nitrobenzenes 
falling into the applicability domain of the QSARs developed in this chapter was extracted. 

Molecular descriptors 
Seven commercially available software packages were compared for their accuracy in 

estimating log Kow values for 77 substituted nitrobenzenes. The software packages used were 
CLogP Version 4.0 (Biobyte, Claremont, CA, USA) (18), ALogPs Version 2.102 (VCCLab, 
Munich, Germany) (19), Kow WIN Version 1.66 (Syracuse Research, Syracuse, NY, USA) 
(20), IA LogP (Chem Silico, MA, USA; http://www.logp.com), Spartan 04 for Windows_ 
Version 1.0.3 (Wavefun, Irvine, CA, USA; http://www.wavefun.com),
SPARC online calculator (http://ibmlc2.chem.uga.edu/sparc/index.cfm), and ACD/LogP 
Version 4.67 (Advanced Chemistry Development, Toronto, ON, Canada) (21). The estimated 
log Kow values were compared to experimental values obtained from the PHYSPROP database 
(Syracuse Research; http://www.syrres.com/esc/physdemo.htm).  To input the structure of 
each molecule into the software, the simplified molecular input line entry system (SMILES) 
code was used.  The SMILES codes are widely used to represent a molecular structure by 
a linear string of symbols (22). The SMILES codes were obtained from the SMILES-CAS 
database (Syracuse Research).  The Elumo values were calculated using a semi-empirical 
method, applying the Austin Model 1 (AM1) Hamiltonian (23) from the program Spartan 
04 for Windows® Version 1.0.3 (Wavefun) for Windows®, v1.0.3, on a Pentium 4 computer 
with Windows XP Professional Service Pack 2 and 1 GB memory. 

Statistical analyses
Linear regression analysis, performed in Microsoft® Excel 2000 (Microsoft, Redmond, 

WA, USA), was used to select the most suitable log Kow estimation software for the substituted 
nitrobenzenes.  Experimental log Kow was plotted against log Kow predicted from the different 

http://www.logp.com
http://www.wavefun.com
http://ibmlc2.chem.uga.edu/sparc/index.cfm
http://www.syrres.com/esc/physdemo.htm
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software packages, and the resulting coefficient of determination (r2) and standard error of the 
estimate (SE) values were recorded.  The Statistical Package for Social Scientists (SPSS®) 
10.1 for Windows® (SPSS, Chicago, IL, USA) was used to analyze the QSARs. For QSAR 
descriptions, log (toxicity endpoint) was the dependent variable, while log Kow and Elumo were 
the independent variables.  All QSAR equations were presented in the form 

log toxicity (μM) = x(log Kow) + y(Elumo) + z                  (Eq. 1) 

where x, y, and z are fitting parameters.  The quality of the QSAR models was characterized 
by the number of compounds used in the study (n), r2, s, variance ratio (F), and the internally 
cross-validated coefficient of determination (r2

int).  Cross validation of the models was done 
using a leave-out-many method, with 20% of the calibration compounds left out at each step.  
Cross validation was done only for models with r2 > 0.65 and  n/k > 5, where k is the number 
of descriptors (24). The models were considered acceptable for further use when r2

int > 0.5 
and r2 - r2

int < 0.3  (25). The validation groups were created using the method of unsupervised 
stratification of cross validation to reduce bias introduced by random sampling (26). The data 
were ranked according to increasing log Kow values, then the compounds were alternately 
classified into five groups, and r2

int was calculated according to the formula 

r2
int   =    1 – (PRESS/SSD)                            (Eq. 2) 

where predictive sum of squares (PRESS) is the sum of the squared differences between 
actual and predicted toxicity when the compounds are omitted from the regression and SSD 
is the sum-of-squares deviation for each actual toxicity from the mean toxicity of all the 
compounds (27).  The chemical applicability domain of the models was defined in three 
ways.  First, the degree of extrapolation was defined by the average leverage value, h, where 
leverage is a measure of the distance of a compound from the model experimental space.  
The warning leverage, hw, was set at three times the average leverage value.  Any compound 
with h > hw falls outside the optimum prediction space of the model (24). Second, external 
predictions are restricted to substituted nitrobenzenes that contain only the substituents 
present in the calibration set.  Third, log Kow cutoff points were set by comparing our QSAR 
equations to those for non-polar narcotics.  Above the cutoff point, the non-polar narcotics 
QSAR should be applied in order to avoid underestimating the toxicity of compounds within 
the chemical domain of the QSAR (28).
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results

Theoretically determined descriptors
The 15 data sets used to obtain experimental toxicity data to establish QSARs contained 

103 substituted nitrobenzenes. The Elumo, log Kow values (estimated and experimental) for 
these substituted nitrobenzenes are presented as an appendix in Table S1 available online 
(42). The Elumo values ranged from -2.67 eV to -0.79 eV, while the estimated log Kow values 
ranged from -0.14 to 5.03. Because of the large size of the experimental toxicity data sets, 
they are also presented as appendices in Tables S2 to S10 available online (42).

Log Kow estimation
Out of the 103 substituted nitrobenzenes, experimental log Kow values were available for 

77 (Table S1).  The following values (r2 + s) were obtained for the various software packages: 
Spartan (0.83 + 0.38), SPARC (0.87 + 0.33), IA LogP (0.88 + 0.32), ACD/LogP (0.94 + 
0.15), ALogPs (0.95 + 0.21), KowWIN (0.96 + 0.18), and CLogP (0.98 + 0.15).  A comparison 
of the highest r2 value (CLogP) with the other r2 values resulted in a statistically significant 
difference (p < 0.05) only with the r2 values for SPARC and Spartan.  Based on the highest r2 
value, the log Kow values estimated using CLogP were used to establish QSARs.

Definition of selection criteria for QSARs
The acute toxicity data set of substituted nitrobenzenes to the ciliated protozoa T. 

pyriformis (11) was considered a suitable starting point for QSAR development, as it contains 
substituted nitrobenzenes with a wide variety of substituents ranging from halogen, carboxyl, 
hydroxyl, oxime, cyano, amide, to phenyl, all in the ortho, para, and/or meta positions. Figure 
2.1a presents a plot of the decadic logarithm of the experimental concentration that inhibits 
growth by 50 % (IGC50) for these substituted nitrobenzenes against values predicted based 

on the estimated log Kow. 
From Figure 2.1a, it can be seen that the following compounds are outliers: 

dinitrobenzenes, nitrophenols, nitrobenzoic acids, nitrodiphenyls, and cyanonitrobenzenes.  
The absolute standardized residuals for these compounds were all above the set limit of 1.5, 
confirming their outlier status.  Selection criteria were established for the QSARs, therefore, 
which exclude these compound classes.  Note that nitrobenzoic acids and nitrophenols do 
not apply to the QSAR also because they are likely to be ionized at physiological pH (28).  
Repeating the QSAR according to the selection criteria resulted in an improved correlation 
(r2 = 0.82) when compared to the QSAR that included all the nitrobenzenes (r2 = 0.27). 
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The selection criteria were corroborated using results for the remaining data sets. 
Figure 2.1b and c shows the QSARs for the correlations between the decadic logarithm of 
the experimental toxicity of substituted mononitrobenzenes to S. cerevisiae and D. magna, 

Fig. 2.1. QSARs for the correlation between the 
decadic logarithm of the experimental toxicity of 
substituted mononitrobenzenes and the toxicity 
predicted on the basis of log Kow for different 
organisms and periods of exposure: (a) 48 h for 
Tetrahymena pyriformis (11) (r2 = 0.82; n = 33), 
(b) 12 h for Saccharomyces cerevisiae (10) (r2 
= 0.85, n = 14), and (c) 21 d for Daphnia magna 
(15) (r2 = 0.83, n = 15).   Please note only the 
neutral, substituted mononitrobenzenes with no 
cyano substituent (♦) are included in the QSAR 
descriptions.  Data points not included represent 
substituted nitrobenzenes, which are ionized at 
physiological pH of 7.4, i.e., nitrophenols and 
nitrobenzoic acids (□), have two nitro groups 
(Δ), contain a cyano substituent (o), and have 
two phenyl rings (◊).  IGC50 is concentration 
that inhibits growth by 50 %.
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respectively, compared with the toxicity predicted based on log Kow.  After excluding outliers, 
improved correlations were obtained for both Figure 2.1b (r2 = 0.85 instead of 0.02) and Figure 
2.1c (r2 = 0.83 instead of 0.08).  For the remaining data sets, Table 2.1 displays statistical 
parameters for comparisons between correlations obtained in QSARs described with and 
without selection criteria.  Notable improvements were with Scenedesmus obliquus (Eqn. 6), 
where r2 increased from 0.02 to 0.81, and with D. magna (Eqn. 7), where r2 increased from 
0.02 to 0.83 after applying the selection criteria. Not all QSARs improved after applying 
selection criteria as shown by C. vulgaris (Eqn. 8) and P. phosphoreum (Eqn. 9), where 
r2 slightly increased from 0.48 to 0.60 and from 0.04 to 0.13, respectively.  A summary 
of the inclusion and exclusion criteria based on the substituents present on the substituted 
mononitrobenzenes is shown in Figure 2.2. 

NO2

 
Excluded substituents
NO2, CN, COOH, OH, C6H5,  

 
Included substituents
F, Cl, Br, CH3, CH2CH3, CH2-Cl, 
CH2-CN, COO-alkyl, NH2, O-Alkyl, 
Alkyl-Cl, CHO, Alkyl-OH, Acetyl, 
CONH2, CH=N-OH

Fig. 2.2.  Summary of included and excluded substituents for the substituted mononitrobenzene 
quantitative structure-activity relationships.

Two-parameter QSARs
 In a next step, it was investigated whether the addition of a second parameter, Elumo, in 

the QSARs for the substituted mononitrobenzenes meeting the selection criteria would result 
in improved correlations between experimental and predicted toxicity. This was in line with 
the observations of Cronin et al. (9), who demonstrated an improved QSAR relationship 
for nitrobenzenes after combining log Kow and Elumo as predictors.  The use of Elumo as an 
additional descriptor improved the QSARs only for algae species (Table 2.1) and was an 
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unnecessary descriptor for the other species. For C. vulgaris, combining log Kow and Elumo 
resulted in a better correlation (Eqn.10; r2 = 0.85) than using log Kow alone (Eqn. 8; r2 = 
0.60). A similar improvement was also noted for C. pyrenoidosa (Eqns. 11 and 12). Slight 
improvements were noted for the other algae genus, Scenedesmus (Eqns. 6 and 13–15). 

 
Log Kow cutoff values

The 10 non-polar narcotics models describing toxicity to different organisms that 
were compared to the log Kow–based QSARs developed in this chapter are shown in 
Table 2.2. These QSARs were developed using toxicity data of simple alcohols, ketones, 
substituted aromatic hydrocarbons, ethers, and chlorinated hydrocarbons (29). The specific 
substituted mononitrobenzene QSARs of the present chapter to which they were compared 
are also indicated in this table. Where the non-polar narcotics QSAR was not available for 
an identical organism and endpoint, a comparison was made to the non-polar narcotics 
QSAR of a similar organism; for example, the QSAR for 96-h effective concentration to 
50% of population (EC50) to C. carpio (Table 2.1, Eqn. 19) was compared to the non-polar 
narcotics QSAR describing 96-h toxicity to the fish Pimephales promelas (Table 2.2, Eqn. 
28). All non-polar narcotics QSARs shown in Table 2.2 had r2 = 0.81.  Figure 2.3 shows 
plots of log Kow versus 48-h EC50 to D. magna for the QSAR for non-polar narcotics (---) 

toxicity (Table 2.2, Eqn. 26) and the one developed in this chapter (—) (Table 2.1, Eqn. 18). 
The two plots intersect at a log Kow value of 4.08, which is then set as the upper limit for 
applying our QSAR for D. magna. Similar plots were made for the rest of the QSARs, and 
the log Kow cutoff values are shown in Table 2.1.  The log Kow cutoff values ranged from 2.96 
to > 10. 

Extraction of substituted mononitrobenzenes meeting the selection criteria from the EINECS 
list 

The EINECS list supplied by the European Chemicals Bureau contained                       
100 196 compounds with none of them containing a SMILES code.  Cross-referencing 
the EINECS list with the SMILES-CAS database resulted in 54 277 compounds with 
SMILES codes. In Microsoft Excel 2000, based on selected aspects in the name, 
molecular formula, and SMILES code, compounds satisfying the set criteria were 
filtered out. Two attributes were most important in extracting the relevant substituted 
mononitrobenzenes from the EINECS list. These were the presence of N(=O) and c1 in 
the SMILES code, which indicate the presence of a nitro group and a ring, respectively.   
These attributes accounted for the extraction of 3 074 compounds out of 54 277.  
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Fig. 2.3. QSARs for the correlation between the decadic logarithm of the experimental toxicity and 
log Kow for substituted mononitrobenzenes (—) and for nonpolar narcotics (---) for 48 h log effective 
concentration to 50 % of population (EC50) of Daphnia magna.  The QSAR equations used for these 
plots are shown in Table 2.1 (Eqn. 22) and Table 2.2 (Eqn. 30). LC50 is lethal concentration to 50 % of 
population.
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log Kow = 4.08

From the 45 919 compounds with no SMILES codes, 14 neutral, substituted 
mononitrobenzenes with no cyano substituent were extracted on the basis of the 
presence of carbon, nitrogen, and oxygen in the molecular formula. Full details of the 
extractions steps are shown as an appendix in Table S11.  The final list of substituted 
mononitrobenzenes satisfying the conditions of the selection criteria for the newly 
defined QSARs contained 497 compounds and is shown as an appendix in Table S12. 
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dIscussIon

Quality of developed QSAR models
The QSAR models were developed following the recommended guidelines set by the 

Organization for Economic Cooperation and Development (OECD) in November 2004 (31). 
The guidelines state that the following five major categories should be defined for each QSAR 
model: endpoint, unambiguous algorithm, internal performance and predictivity, domain of 
applicability, and a mechanistic interpretation, if possible (31). The biological data used 
were from well-standardized assays with clearly defined endpoints. The log Kow estimation 
software models tested in this chapter are of good predictive quality, as plotting experimental 
against predicted log Kow resulted in high coefficients of determination (r2 > 0.81).  Similar 
results were obtained previously for nitroaromatics by Petrauskas and Kolovanov (21). The 
differences that exist in the predictions made by the different software packages could be due 
mainly to the following aspects in the training set of the model: number and type of compounds, 
fragments, atoms, bond types, and correction factors. If more of the substituted nitrobenzenes 
in our QSARs are present in the training set of a particular model, then that model is likely to 
have a better predictive power. The prediction algorithms in IALogP and ALogPs are based 
on neural networks and a combination of electronic and topological attributes (32). CLogP, 
ACD/LogP, and KowWIN base their calculations on assigning values to different fragments 
in a molecule and then applying correction factors for the interactions between the fragments 
(18, 21). Spartan assigns contribution values to the different atoms in the molecule rather 
than to fragments (33). The performance of the software models could be further tested by 
comparing the correctness of the theoretical assumptions behind the calculation algorithms 
(21), which is not always easy with commercial products, as the algorithms are not always 
transparent. Furthermore, for untested compound classes, one should be aware that any 
estimation software may give inaccurate estimations, and this always has to be checked. 

The chemical domain of the QSAR models was systematically developed. Outliers 
(dinitro-, cyano-, and ionizing nitrobenzenes) were omitted from the final QSARs because of 
their different uptake and reaction mechanisms.  Substituted dinitrobenzenes have been shown 
previously to have enhanced toxicity when compared to substituted mononitrobenzenes, 
probably because of their fast reduction to the corresponding aryl-hydroxylamines  (9, 14, 
15), which justifies their exclusion. Compounds that can ionize at physiological pH (e.g., 
benzoic acids and nitrophenols) have different kinetics of uptake in the body than those 
that are neutral and may have additional toxicity by interfering with proton gradients during 
oxidative phosphorylation (28). With respect to 2-, 3-, and 4-cyanonitrobenzene, only 
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2-cyanonitrobenzene was an outlier. It could be due to experimental errors or to a mechanistic 
reason that is unclear at this moment. 

The toxicity data used to establish the QSARs were from the same laboratory sources to 
avoid inter-laboratory variation (28). The statistical technique, linear regression, applied to 
analyze the relationship between toxicity and the physical-chemical descriptors is simple to 
use and sufficient, especially where two descriptors are involved. 

Non-algal QSARs showed a high dependence on log Kow for prediction of the toxicity 
of the substituted mononitrobenzenes, a relationship that has been demonstrated previously 
(9, 14, 15). Using the toxicity data of Deneer et al. (14), Banerjee and Williams (34) reported 
poor correlations between log Kow and toxicity to the guppy P. reticulata. For the same data 
set, excluding substituted dinitrobenzenes from the QSAR analysis improved this poor 
correlation. With respect to the use of log Kow as a toxicity descriptor, it is important to note 
that the relation between log Kow and toxicity often remains quite empiric. Although log 
Kow is often the most dominant descriptor for predicting the toxicity of certain compound 
classes to certain species, it is not universal, as was shown by its inapplicability to dinitro- 
and cyanonitrobenzenes in the present chapter. Furthermore, as octanol does not adequately 
represent the type of lipids found in membranes, other researchers have recommended 
replacing octanol with dimyristoyl phosphatidylcholine (DMPC) and thus log Kow with log 
KDPMC/water (35). 

In addition to log Kow as a predictor, the inclusion of the reactivity parameter Elumo 
improved the QSARs describing toxicity only to the algae C. vulgaris, C. pyrenoidosa, and 
S. obliquus.  In the studies of Deneer et al. (15), a similar trend was observed after combining 
log Kow and Hammett’s reactivity parameter (Σσ-) when modeling the toxicity of substituted 
mononitrobenzenes to C. pyrenoidosa. They suggested that the mode of action or the 
toxicokinetic behavior of the substituted mononitrobenzenes in algae could be different from 
that of other organisms (15). Other QSARs of comparable quality describing the toxicity of 
substituted nitrobenzenes to various organisms have been reviewed by Katrizky et al. (36). 
Some of these QSARs have descriptors that are different from those used in this chapter.  Roy 
and Ghosh (37) used the extended topochemical atom indices to model (r2 = 0.92) toxicity 
to T. pyriformis. Although the extended topochemical indices show a significant potential 
for QSAR development, they still need extensive evaluation. In describing toxicity to T. 
thermophila, the best QSAR obtained by Xu et al. (38) used Σσ- and the indicator variable 
I as descriptors (r2 = 0.852). The indicator variable denotes the number and position of the 
nitro groups. However, no model validation was performed. Using the CODESSA-PRO 
software, Katrizky et al. (36) combined constitutional, topological, geometric, electrostatic, 
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and quantum chemical descriptors and obtained a decent QSAR (r2 = 0.72) to describe toxicity 
to T. pyriformis. However, they combined toxicity data from two independent laboratories.  
The three QSARs mentioned previously could be improved by defining the applicability 
domain more clearly. 

Toxicity prediction and priority setting 
For new and existing chemicals, the OECD requires at least three basic acute ecotoxicity 

tests for risk assessment purposes. These tests describe acute toxicity to algae (72-h EC50 for 
growth), daphnids (48-h EC50 for immobilization), and fish (96-h median lethal concentration 
LC50) (39). These tests evaluate toxicity at three trophic levels: primary producer, primary 
consumer, and top predator.  In order to get a quick and broad overview of the toxicity of 
substituted mononitrobenzenes, for each organism in each of the trophic levels, the ‘‘best’’ 
QSAR was selected based on three criteria: r2

int > 0.5, a long exposure period (> 96 h where 
there was more than one exposure period , and the presence of a log Kow cutoff value.  Based 
on the three criteria, an advisory tool was developed and is shown in Figure 2.4. 

0 1 2 3 4 5 6 7

T. pyriformis

S. cerevisiae  

S. obliquus     

D. magna    

P. reticulata    

3

15

16

4

20

23

25

27

(fish)

(daphnid)

(algae)

(yeast)

(protozoan)

28

log Kow

Fig. 2.4.  Advisory tool for predicting acute toxicity of substituted mononitrobenzenes to five organisms.  
The black bars represent log Kow ranges where the QSARs developed in this chapter are applicable.  The 
white/open bars show log Kow ranges where the non-polar narcotic QSARs yield the lowest effect levels.  
The numbers inside the bars refer to the appropriate QSAR models (Tables 2.1 and 2.2 respectively) to 
apply within that log Kow range.  Error bars show the error associated with the log Kow cut-off points.  
The lower and upper (vertical dotted line) log Kow limits are set at zero and six respectively. 
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Within the log Kow ranges represented by the black bars, the QSAR models developed 
in this chapter are applicable.  Above this range, shown in white/open bars, a risk manager 
should use the non-polar narcotics QSAR models. The lower and upper log Kow limits of 
using Figure 2.4 are set at 0 and 6, respectively.  Since log Kow describes the kinetics of the 
uptake of chemicals from water, chemicals with log Kow greater than 6 are generally taken 
up too slowly to show acute toxic effects, while those with log Kow less than 0 would need 
unrealistically high concentrations to display toxicity (40). 

Using the scheme in Figure 2.4, a risk manager selects the appropriate QSAR to use for 
prediction of toxicity based on the log Kow of the compound. For example, a hypothetical 
substituted mononitrobenzene with log Kow = 2 can have its toxicity to all species 
predicted by using the QSARs developed in this chapter.  Another hypothetical substituted 
mononitrobenzene with log Kow = 5 can have its toxicity predicted by using a combination of 
both non-polar narcotics QSARs and the QSARs developed in this chapter.  Table 2.3 shows 
the predicted toxicities of five substituted mononitrobenzenes randomly selected from the list 
of 497 compounds meeting the selection criteria set.  Table 2.3 shows that predicted toxicities 
increase with an increase in the log Kow values.  Predicted toxicities to D. magna after 21 d 
of exposure are consistently higher for all compounds when compared to the toxicity toward 
other organisms. 

Although the advisory tool in Figure 2.4 shows QSARs for five specific species, it is 
a generally accepted approach in safety assessment in environmental toxicity that it can 
be used to predict the toxicity of other similar organisms as well (41), such as other fish, 
besides the specific species (P. reticulata) used for the QSAR. Although Figure 2.4 shows 
our recommended QSARs, other cross-validated QSARs (r2

int > 0.5) shown in Table 2.1 can 
be used as well.  The tool has two strong points.  First, it quickly provides an overview of 
toxicity across different types of organisms, and, second, only high-quality cross-validated 
QSARs have been included.  Whenever additional data become available, external validation 
and addition of QSARs for more animal species will help strengthen the tool further.
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Future perspectives
In case industry considers producing a new substituted mononitrobenzene that fits 

the selection criteria, using the methodology established here, it is possible to estimate 
the toxicological effects of this new compound with no additional toxicological or animal 
testing. Although the QSARs presented here refer to 497 out of the more than 100 000 
EINECS chemicals (i.e., 0.5 %), QSARs will often be restricted to specific chemical classes, 
as it is unlikely that one QSAR model will ever describe the full set of EINECS chemicals.  
Considering this, it is a step forward that 0.5 % of the EINECS chemicals can be included in 
the QSARs described in the present chapter.

AppendIces

Supplementary information is available in 11 tables and is available online (42).   Table 
S1: log Kow and Elumo values used to develop the QSARs in Table 2.1; Tables S2 to S9: 
experimental toxicity data sets; Table S11: systematic procedure for extracting the compounds 
from the EINECS list satisfying the selection criteria of our QSARs; and Table S12: the list 
of the extracted 497 EINECS compounds. 
 

Acknowledgements

The Netherlands Organization for Health Research and Development (ZonMw) funded 
this research under the theme ‘‘Alternatives to Animal Experimentation.’’  The authors also 
wish to thank Remi Allanou (European Chemicals Bureau) for supplying the EINECS list 
and Bill Meylan (Syracuse Research, NY, USA) for providing the SMILES-CAS database 
and the reviewers for their constructive comments.



QSAR models for mononitrobenzenes

49

C
ha

pt
er

 2

references

(1) EU. (2001) White Paper: Strategy for a future chemicals policy.  Commission of the European 
Committees, Brussels, Belgium.  COM(2001) 88 final.,   pp 1–32.

(2) Worth, A. P., Van Leeuwen, C. J. and Hartung, T. (2004) The prospects for using (Q)SARs 
in a changing political environment - High expectations and a key role for the European 
Commission’s joint research centre. SAR QSAR Environ Res 15, 331.

(3) NHC. (2001) Toxicity testing: a more efficient approach. Publication no. 2001/24E. The 
Hague, The Netherlands.

(4) USEPA. (2002) Endocrine Disruptor Screening Program, Proposed Chemical Selection 
Approach for Initial Round of Screening; Request for Comment.  FRL-7286-6, Washington 
DC.

(5) Hansch, C. and Fujita, T. (1964) A method for the correlation of biological activity and 
chemical structure. J. Amer. Chem. Soc. 86, 1616 - 1626.

(6) Abraham, M. H., Chadha, H. S., Martins, F., Mitchell, R. C., Bradbury, M. W. and Gratton, J. 
A. (1999) Hydrogen bonding part 46: A review of the correlation and prediction of transport 
properties by an LFER method: Physicochemical properties, brain penetration and skin 
permeability. Pesticide Science 55, 78.

(7) Soffers, A. E. M. F., Boersma, M. G., Vaes, W. H. J., Vervoort, J., Tyrakowska, B., Hermens, 
J. L. M. and Rietjens, I. M. C. M. (2001) Computer-modeling-based SARs for analyzing 
experimental data on biotransformation and toxicity. Toxicol in Vitro 15, 539-551.

(8) Freidig, A. P. and Hermens, J. L. (2000) Narcosis and chemical reactivity QSARs for acute 
fish toxicity. Quant. Struct. Act. Relat. 19, 547 - 553.

(9) Cronin, M. T., Gregory, B. W. and Schultz, T. W. (1998) Quantitative structure-activity 
analyses of nitrobenzene toxicity to Tetrahymena pyriformis. Chem. Res. Toxicol. 11, 902-
908.

(10) Wang, X., Yin, C. and Wang, L. (2002) Structure-activity relationships and response-surface 
analysis of nitroaromatics toxicity to the yeast (Saccharomyces cerevisiae). Chemosphere 46, 
1045-1051.

(11) Bohac, M., Loeprecht, B., Damborsky, J. and Schüürmann, G. (2002) Impact of orthogonal 
signal correction (OSC) on the predictive ability of CoMFA models for the ciliate toxicity of 
nitrobenzenes. Quant. Struct. Act. Relat. 21, 3 - 11.

(12) O’Brien, P. J., Wong, W. C., Silva, J. and Khan, S. (1990) Toxicity of nitrobenzene compounds 
towards isolated hepatocytes: dependence on reduction potential. Xenobiotica; The Fate Of 
Foreign Compounds In Biological Systems 20, 945-955.

(13) Zhao, Y.-H., Yuan, X., Ji, G.-D., Sheng, L.-X. and Wang, L.-S. (1997) Quantitative structure-
activity relationships of nitroaromatic compounds to four aquatic organisms. Chemosphere 
34, 1837-1844.

(14) Deneer, J. W., Sinnige, T. L., Seinen, W. and Hermens, J. L. M. (1987) Quantitative structure-
activity relationships for the toxicity and bioconcentration factor of nitrobenzene derivatives 
towards the guppy (Poecilia reticulata). Aquat. Toxicol. 10, 115-129.

(15) Deneer, J. W., van Leeuwen, C. J., Seinen, W., Maas-Diepeveen, J. L. and Hermens, J. L. 
M. (1989) QSAR study of the toxicity of nitrobenzene derivatives towards Daphnia magna, 
Chlorella pyrenoidosa and Photobacterium phosphoreum. Aquat. Toxicol. 15, 83-98.

(16) Lu, G.-H., Yuan, X. and Zhao, Y.-H. (2001) QSAR study on the toxicity of substituted 
benzenes to the algae (Scenedesmus obliquus). Chemosphere 44, 437-440.

(17) Netzeva, T. I., Dearden, J. C., Edwards, R., Worgan, A. D. P. and Cronin, M. T. D. (2004) 
QSAR analysis of the toxicity of aromatic compounds to Chlorella vulgaris in a novel short-
term assay. J. Chem. Inf. Comp. Sci. 44, 258-265.



50

Chapter 2

(18) Leo, A. (1993) Calculating log Poct from structures. Chem. Rev. 93, 1281-1306.
(19) Tetko, I. V. and Tanchuk, V. Y. (2002) Application of associative neural networks for prediction 

of lipophilicity in ALOGPS 2.1 program. J. Chem Info Comp Sci 42, 1136-1145.
(20) Meylan, W. M. and Howard, P. H. (1995) Atom/fragment contribution method for estimating 

octanol-water partition coefficients. J. Pharm. Sci. 84, 83-92.
(21) Petrauskas, A. A. and Kolovanov, E. A. (2000) ACD/Log P method description. Perspect. 

Drug Discovery Des. 19, 99-116.
(22) Weininger, D. (1988) SMILES, a chemical language and information system. 1. Introduction 

to methodology and encoding rules  J. Chem. Inf. Comput. Sci. 28, 31-36.
(23) Dewar, M., Zoebisch, E., Healy, E. and Stewart, J. (1985) AM1:  A new general purpose 

quantum mechanical molecular model. Amer. Chem. Soc. 107, 3902-3909.
(24) Tropsha, A., Gramatica, P. and Gombar, V. K. (2003) The importance of being earnest: 

Validation is the absolute essential for successful application and interpretation of QSPR 
models. QSAR and Combinatorial Science 22, 69-77.

(25) Eriksson, L., Jaworska, J., Worth, A. P., Cronin, M. T., McDowell, R. M. and Gramatica, P. 
(2003) Methods for reliability and uncertainty assessment and for applicability evaluations of 
classification- and regression-based QSARs. Environ. Health Perspect. 111, 1361–1375.

(26) Diamantidis, N. A., Karlis, D. and Giakoumakis, E. A. (2000) Unsupervised stratification of 
cross-validation for accuracy estimation. Artificial Intelligence 116, 1-16.

(27) Khadikar, P. V., Karmarkar, S., Singh, S. and Shrivastava, A. (2002) Use of the PI index in 
predicting toxicity of nitrobenzene derivatives. Bioorg Med Chem 10, 3163-3170.

(28) Cronin, M. T. D. and Schultz, T. W. (2003) Pitfalls in QSAR. Journal of Molecular Structure: 
THEOCHEM 622, 39-51.

(29) Van Leeuwen, C. J., Van der Zandt, P. T. J., Aldenberg, T., Verhaar, H. J. M. and Hermens, 
J. L. M. (1992) Application of QSARs, extrapolation and equilibrium partitioning in aquatic 
effects assessment. I. Narcotic industrial pollutants. Environ. Toxicol. Chem. 11, 267-282.

(30) Worgan, A. D. P., Dearden, J. C., Edwards, R., Netzeva, T. I. and Cronin, M. T. D. (2003) 
Evaluation of a novel short-term algal toxicity assay by the development of QSARs and inter-
species relationships for narcotic chemicals. QSAR & Combinat. Sci. 22, 204-209.

(31) OECD. (2004) The report from the expert group on (Quantitative) Structure-Activity 
Relationship ((Q)SARs) on the principles for the validation of (Q)SARS. ENV/JM/
MONO(2004)24.  , In OECD Series on testing and assessment: number 49.

(32) Hall, L. H. and Kier, L. B. (1995) Electrotopological state indices for atom types: a novel 
combination of electronic, topological, and valence state information. J. Chem. Inf. Comp. 
Sci. 35, 1039-1045.

(33) Ghose, A., Pritchett, A. and Crippen, G. (1988) Atomic Physicochemical Parameters for Three 
Dimensional Structure Directed Quantitative Structure-Activity Relationships III: Modeling 
Hydrophobic Interactions. J. Comp. Chem. 9, 80 - 90.

(34) Banerjee, S. and Williams, C. L. (1993) Compatibility of functional groups in K(ow)-based 
QSARs: Application to nitro compounds. Environ Toxicol Chem 12, 1847-1849.

(35) Vaes, W. H., Ramos, E. U., Verhaar, H. J., Cramer, C. J. and Hermens, J. L. (1998) 
Understanding and estimating membrane/water partition coefficients: approaches to derive 
quantitative structure property relationships. Chem Res Toxicol 11, 847-854.

(36) Katritzky, A. R., Oliferenko, P., Oliferenko, A., Lomaka, A. and Karelson, M. (2003) 
Nitrobenzene toxicity: QSAR correlations and mechanistic interpretations. Journal of 
Physical Organic Chemistry 16, 811 - 817.

(37) Roy, K. and Ghosh, G. (2004) QSTR with extended topochemical atom indices. 4. Modeling of 
the acute toxicity of phenylsulfonyl carboxylates to Vibrio fischeri using principal component 
factor analysis and principal component regression analysis. QSAR and Combinatorial 



QSAR models for mononitrobenzenes

51

C
ha

pt
er

 2

Science 23, 526.
(38) Xu, J. B., Jing, T. S., Pauli, W. and Berger, S. (2002) Quantitative structure-activity 

relationships for the toxicity of nitrobenzenes to Tetrahymena thermophila. Journal of 
Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental 
Engineering 37, 563.

(39) OECD. (2001) Guidance document on the use of the harmonized system for the classification 
of chemicals which are hazardous to the aquatic environment.  Technical Report ENV/JM/
MOMO (2001)8. Paris, France.

(40) Verhaar, H. J. M., van Leeuwen, C. J. and Hermens, J. L. M. (1992) Classifying environmental 
pollutants. Chemosphere 25, 471-491.

(41) EC. (2002) Guidance document on aquatic ecology. Sanco/3268/2001  Technical Report. 
Brussels, Belgium.

(42) Zvinavashe, E. (2006) Supplementary information available online at http://www.
setacjournals.org/archive/1552-8618/25/9/extref/i1552-8618-25-9-2313-ETC-25-09-001.
pdf.



52

Chapter 2



QSAR models for chlorinated alkanes

53

C
ha

pt
er

 3

3

 



54

Chapter 3

 
 
 
 
 
 
 

QSAR models for predicting in vivo aquatic 
toxicity of chlorinated alkanes to fish

 

 
Elton Zvinavashe, Hans van den Berg, Ans E.M.F. Soffers, Jacques Vervoort,

Andreas Freidig, Albertinka J. Murk, and Ivonne M.C.M. Rietjens

chEmical rEsEarch in toxicology (2008) 21: 739─745



QSAR models for chlorinated alkanes

55

C
ha

pt
er

 3

AbstrAct

Quantitative structure–activity relationship (QSAR) models are expected to play a crucial role 
in reducing the number of animals to be used for toxicity testing resulting from the adoption 
of the new European Union chemical control system called Registration, Evaluation, and 
Authorization of Chemicals (REACH).  The objective of the present study was to generate in 
vitro acute toxicity data that could be used to develop a QSAR model to describe in vivo acute 
toxicity of chlorinated alkanes.  Cytotoxicity of a series of chlorinated alkanes to Chinese 
hamster ovary (CHO) cells was observed at concentrations similar to those that have been 
shown previously to be toxic to fish. Strong correlations exist between the acute in vitro 
toxicity of the chlorinated alkanes and (i) hydrophobicity [modeled by the calculated log Kow 

(octanol–water partition coefficient); r2 = 0.88 and r 
2
int

 = 0.85] and (ii) in vivo acute toxicity 
to fish (r2 = 0.76). A QSAR model has been developed to predict in vivo acute toxicity to 
fish based on the in vitro data and even on in silico log Kow data only.  The developed QSAR 
model is applicable to chlorinated alkanes with up to 10 carbon atoms, up to eight chlorine 
atoms, and log Kow values lying within the range from 1.71 to 5.70.  Out of the 100 196 
compounds on the European Inventory of Existing Chemicals (EINECS), our QSAR model 
covers 77 (0.1%) of them.  Our findings demonstrate that in vitro experiments and even in 
silico calculations can replace animal experiments in the prediction of the acute toxicity of 
chlorinated alkanes.
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IntroductIon

 
The European Inventory of Existing Chemicals (EINECS) (1) contains over 100 000 

chemicals that are marketed within Europe for industrial or consumer needs. For most of 
these chemicals, there is insufficient (eco)toxicological information on their hazardous 
properties.  To close these existing toxicity data gaps, the European Union parliament recently 
adopted a new chemical control system called Registration, Evaluation and Authorization 
of Chemicals (REACH) (1). One of the aims of REACH is to improve the protection of 
human health and the environment by requiring industry to provide toxicity information 
for the chemicals that they manufacture or distribute. There is currently an ongoing debate 
about the potentially large number of animals that have to be used for experimental toxicity 
testing as an outcome of REACH. Within REACH, however, there is a provision to use, 
among others, sufficiently validated computational prediction models based on quantitative 
structure–activity relationships (QSAR) to fill in the toxicity data gaps and thus save time 
and costs, reducing the number of experimental animals used. To increase the acceptability 
of QSAR models within REACH, guidelines for QSAR model development and validation 
proposed by the Organization for Economic Cooperation and Development (OECD) (2) are 
now widely accepted.  

Chlorinated alkanes are an important group of chemicals on the EINECS list with 
widespread use, large production volumes, and thus a large potential for environmental 
pollution, and they are the focus of this chapter. Chlorinated n-alkanes are built from 
straight chains of carbon and hydrogen with varying numbers of hydrogen atoms replaced 
by chlorine atoms. The introduction of chlorine atoms into the hydrocarbon chain alters 
properties such as solubility, density, volatility, and toxicity (3). Some of these changes 
confer improvements that make the compounds useful commercially, but these changes can 
also make them more toxic. Chlorinated n-alkanes are broadly divided into two main groups 
depending on the number of carbon atoms present: lower chlorinated alkanes (LCA; C1–C9) 
and polychlorinated  n-alkanes (PCA; C10–C30) (4). Mixtures of commercial PCAs, known 
as chlorinated paraffins, are divided into three groups: short-chain (C10–C13), medium-chain 
(C14–C17), and long-chain (C18–C30) paraffins with chlorine contents varying from 35–70 % 
by weight. The LCAs are widely used as industrial and household solvents, fumigants, and 
intermediates in chemical synthesis (5). The PCAs are often used as lubricating additives, 
adhesives, and flame retardants in rubber and textiles. The annual production volume of 
PCAs is greater than 300 kilotons (4). For the PCAs, toxicity is believed to decrease from  
the short to the long-chain PCAs, due to a decrease in solubility (4). It has been suggested 
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that the short-chain PCAs should be included in the list of persistent organic pollutants (6). 
They have a high bioaccumulation potential due to their high log Kow (octanol–water partition 
coefficient) values, are persistent in the environment due to their resistance to degradation, 
and thus have a potential for long-range environmental transport. Short-chain PCAs are 
known to be highly toxic to aquatic organisms (6). 

Despite their widespread use and presence, the amount of toxicological data on PCAs is 
rather limited. Because they are produced via free radical chlorination, a single PCA preparation 
can consist of many different congeners with a wide range of physicochemical properties (4). 
This presents problems in attempting to estimate the toxicity of these preparations as the 
toxicity of individual compounds cannot be identified. Using synthesized PCA congeners, 
Fisk and co-workers described their bioaccumulation in rainbow trout (Onchorhynchus 
mykiss) (7) and toxicity to Japanese medaka (Oryzias latipes) embryos (4). 

For the LCAs, several studies describe their acute toxicity in literature. Crebelli and 
co-workers used electrophilicity descriptors to describe their aneugenic activity to the 
mold Aspergillus nidulans (8). The acute toxicity of LCAs to the protozoan Tetrahymena 
pyriformis (9), the marine bacterium Photobacterium phosphoreum in the Microtox test (10), 
the fathead minnow Pimephales promelas (11) the guppy Poecilia reticulate (12), and HeLa 
cells (13) was determined and related to the hydrophobicity of the compounds. However, in 
most of these studies, the number of chlorinated alkanes tested was either too small to be 
used for QSAR modeling or was for a small range of carbon chain lengths [e.g., C1 to C5 

as in studies by Könemann (12)]. As far as we are aware, there exists no QSAR model to 
predict the in vivo acute toxicity of chlorinated alkanes.  The objective of the present study 
was to generate in vitro acute toxicity data that could be used to develop a QSAR model to 
describe in vivo acute toxicity of chlorinated alkanes.  Toxicity tests were performed for a 
large set of chlorinated alkanes across a wide range of hydrophobicity values and carbon 
chain lengths (C1–C10). The in vitro toxicity data were used to develop a validated QSAR 
model with defined applicability limits following OECD guidelines. The in vitro toxicity 
data were further compared to in vivo toxicity data for fish, and a prediction model for in vivo 
toxicity was developed using the in vitro data. Finally, an estimate was made of the number 
of EINECS compounds for which the QSAR model can make accurate predictions. 
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mAterIAls And methods

Materials
Unless otherwise indicated, all chemicals were obtained from Sigma-Aldrich 

(Zwijndrecht, The Netherlands) and were at least 98% pure. Stocks of chlorinated alkanes 
were prepared in spectrophotometric grade dimethyl sulfoxide (DMSO) obtained from Acros 
Organics (Geel, Belgium). Phosphate-buffered saline (PBS), Hank’s balanced salt solution 
(HBSS), Dulbecco modified Eagle’s medium (DMEM)/Ham’s F12, fetal calf serum (FCS), 
and Trypsin-EDTA were supplied by Gibco-Invitrogen (Breda, The Netherlands). Chinese 
hamster ovary (CHO) wild-type cells were sourced from the American Type Culture Collection 
(Manassas, VA). Cell culture flasks (75 cm2) were supplied by Corning Inc. (Corning, NY), 
and culture plates (24- and 96-wells) were provided by Greiner Bio-one (Alphen aan de Rijn, 
The Netherlands). 

Cell culture 
The CHO cells were grown in 75 cm2 culture flasks and maintained in a humidified 

incubator at 37 oC, 95 % air/5 % CO2 in DMEM/F12 medium supplemented with 10 % FCS. 
Once every three days, the cells were rinsed with HBSS, trypsinized, and then resuspended 
and cultivated in fresh culture medium. Cells from culture flasks with confluency of at least 
90 % were used for the cytotoxicity assay.

Cytotoxicity assay 
The cytotoxicity of the chlorinated alkanes to CHO cells was determined in triplicate in 

96-well culture plates using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide] assay following procedures described previously (14) with some modifications. 
Where appropriate, dilution of the test compounds was done in 24-well culture plates. Two 
methods of exposure were compared, direct and premix (the most commonly used exposure 
method during in vitro testing). For direct exposure, there was no prior dilution of the test 
compound in the dilution plate; the test compound solution in DMSO was added straight into 
the medium of the culture plate.  For premix exposure, there was prior dilution of the test 
compound solution in DMSO using culture medium, and this culture medium containing the 
test compound at the desired concentration was added to the cells in the culture plate. For 
both methods, 100 µL of CHO cell suspension was seeded into each of the inner wells of 
the culture plate at a final concentration of 3 × 105 cells/ml, with 200 µL of HBSS added to 
the outer wells. The plate was incubated for 24 h to allow the cells to attach.  For the direct 
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exposure, 100 µL of culture medium with 10 % FCS (37 oC) was then added to the inner 
wells followed by addition of 2 µL of each test compound solution at various concentrations. 
For the premix exposure, 50 times concentrated solutions of the test compounds in DMSO 
were diluted 50 times in culture medium with 10 % FCS in the dilution plate, and then, 
100 µL of these medium samples was transferred to the culture plate. For both methods in 
each independent experiment, (i) all concentrations were tested in 6-fold and (ii) two sets 
of controls were used, one with DMSO and another with culture medium without the test 
compounds or DMSO. Upon addition of the test compounds, the plates were shaken at 600 
rpm on an orbital shaker (Incubator 1000, Hieroglyph Instruments, Germany) for 5 min, 
followed by 21 h of incubation in the humidified incubator at 37 oC.  Then the MTT reagent 
was added to a final concentration of 0.5 mg/ml, and incubation continued for a further              
3 h, for a total incubation time of 24 h. After this, the culture medium was removed with a 
vacuum pump and 100 µL of DMSO was added to lyze the cells.  The plates were shaken for 
5 min to dissolve the formazan crystals formed after reduction of MTT.  Subsequently, two 
absorbance readings were recorded as follows: A562 for the color of the formazan crystals and 
A620 for cell debris and other non-specific absorbance.

Calculation of EC50 values. 
The A620 values were subtracted from the A562 values, and the result was expressed as a 
percentage of the response of the DMSO control. The EC50 values of the chlorinated alkanes 
were calculated using a Microsoft Excel plug-in, Life Sciences Workbench (LSW) Data 
Analysis Toolbox Version 1.1.1. (MDL Information Systems, CA) with the general sigmoidal 
curve with Hill slope (a-d) chosen as the best fit model.

Calculation of theoretical descriptors. 
Hydrophobicity of the chlorinated alkanes was modeled using log Kow values calculated 

using the software CLogP version 4.0 (Biobyte, Claremont, CA) (15) as described previously 
(16). Briefly, the structure of each molecule was entered into CLogP as a simplified molecular 
input line entry system (SMILES) code. The SMILES codes were obtained from the SMILES-
CAS database (Syracuse Research, Syracuse, NY). Solubility values were calculated using 
ACD/Laboratories version 8.14 for Solaris (Advanced Chemistry Development, Toronto, 
ON, Canada).

QSAR modeling
The Statistical Package for Social Scientists (SPSS) version 13 for Windows (SPSS, 
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Chicago, IL) was used to analyze the QSARs with log EC50 as the dependent variable and log 
Kow as the independent variable. The quality of the QSAR model was characterized by the 
number of compounds used in the study (n), coefficient of determination (r2), standard error of 
the estimate (s), variance ratio (F), the internally cross-validated coefficient of determination 
(r2

int), and the externally validated coefficient of determination (r2
ext). Internal validation of the 

QSAR model was performed using the leave-out-many cross-validation method, with 20% 
of the calibration compounds left out at each step as described previously (16). The external 
performance of the QSAR model was evaluated by testing five additional compounds that fit 
into the applicability domain of the model and then comparing the predicted and experimental 
toxicity values. The calculation of r2

ext was performed according to the formula: 

r2
ext = 1-PRESS/SSD                                                                                               (Eq. 1) 

where PRESS (predicted sum of squares) is the sum of the squared differences between the 
predicted and the experimental toxicity values for each molecule in the validation set, and 
SSD is the sum of the squared deviations between the experimental toxicity values for each 
molecule in the validation set and the mean experimental toxicity values of the training set 
(17).

results

Twenty-one LCAs were tested in the MTT assay with CHO cells, and these model 
compounds of the present study are listed in Table 3.1, together with their estimated log Kow, 
water solubility, and the experimental EC50 values obtained. The MTT cytotoxicity results 
were obtained using the direct exposure method. When comparing the cytotoxicity of the same 
concentration of LCAs after premix and direct exposure of CHO cells, major differences were 
found. After direct exposure to increasing concentrations of 1-chlorononane, for example, 
a clear dose dependent decrease in cell viability was observed (Figure 3.1). After premix 
exposure, however, none of the tested concentrations induced any cytotoxicity. Microscopic 
examination of the 96-well plate 10 min after exposure revealed no local cytotoxicity due 
to a possible temporary high concentration of DMSO when the direct exposure method was 
used. Because of the lack of a dose-response relationship with the premix method, further 
experiments were conducted using the direct exposure method to determine the EC50 values 
reported in Table 3.1.
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Fig. 3.1:  Comparison of the cytotoxicity of 1-chlorononane to Chinese hamster ovary cells using 
direct (▲) and premix (■) methods of exposure in the MTT assay.  The points on the graph represent 
the mean + standard error of three experiments.
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Influence of chain length and extent of chlorination on toxicity. 
With an increase in chain length for single chlorinated compounds from  

1-chloropentane, 1-chlorohexane, 1- chloroheptane, and 1-chlorooctane to 1-chlorononane, the 
cytotoxicity increased, with 1-chlorodecane showing a deviation (Table 3.1).  For compounds 
with the same hydrocarbon backbone, an additional chlorine atom was associated with a 
decrease in toxicity. This is shown for example by 1,6-dichlorohexane vs 1-chlorohexane 
and 1,8-dichlorooctane vs. 1-chlorooctane.  The short-chain PCAs 1,10-dichlorodecane, 
1-chlorododecane, and 1-chlorotetradecane did not show cytotoxicity up to  the maximum 
soluble concentrations tested; therefore, they were excluded from the modeling process.

QSAR modeling
An investigation of the relationship between log Kow and the experimental toxicity data 

from the MTT test revealed a good correlation (Figure 3.2) and can be described by the 
following equation: 

log EC50 (µM) = -0.45(log Kow) + 3.69                                                               (Eq. 2) 

where n = 18, s = 0.19, F = 120, r2 = 0.88, and r2
int = 0.85.  
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Fig. 3.2:  Quantitative structure-activity relationship for the correlation between the decadic logarithm 
of the 24 h in vitro toxicity (EC50) of chlorinated alkanes (C1 – C10) to Chinese hamster ovary cells in 
the MTT assay and the toxicity predicted based on log Kow (■).  The dotted line (◊) shows a plot of log 
Kow versus water solubility of the chlorinated alkanes (n = 18, r2 = 0.96).  The two plots cross where 
log Kow = 4.53.
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An increase in log Kow was associated with an increase in toxicity (Figure 3.2).  However, 
with increasing log Kow values, also the solubility decreased until above log Kow = 4.53, 
where the EC50 becomes higher than the calculated water solubility (Figure 3.2). However, 
1-chlorononane (log Kow = 5.17) was still able to show toxicity above this cut-off value.

Applicability domain of the QSAR model
The range of compounds for which the model is valid (applicability domain) was 

determined by taking into account the minimum and maximum values of both the (i) 
carbon chain length (C1–C10), (ii) the chlorine atoms (Cl1–Cl8), and (iii) the log Kow values             
(1.71–5.70) of the compounds included in the training set. For models within a one-
dimensional descriptor space, the interpolation region is simply taken as the interval between 
the minimum and the maximum values of the training data set (19). The theoretical toxicity 
cut-off limit of log Kow = 4.53 was not taken into account here as compounds with higher log 
Kow values were able to show toxicity. Taking these criteria into consideration, our QSAR 
model is thus applicable to chlorinated alkanes with up to 10 carbon and eight chlorine atoms 
and log Kow values between 1.71 and 5.70. These limits were used as selection criteria to 
extract compounds with similar properties from the EINECS list. Using procedures described 
previously (16), molecular formula, name, and SMILES codes of the EINECS compounds 
were used as filtering criteria in Microsoft Excel 2003 to extract 59 compounds satisfying the 
selection criteria. The 59 compounds and their predicted EC50 values are shown in Table 3.2. 
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This implies that including the 18 compounds used to develop the MTT assay-based in vitro  
QSAR in CHO cells, our QSAR model covers 77 (0.1 %) of the EINECS list compounds.

External validation of QSAR model 
From Table 3.2, five compounds, with log Kow values within the applicability domain of 

the training set were selected for additional testing to externally validate our QSAR model. 
Suitable test concentrations were selected based on the predicted in vitro toxicity values, 
thereby skipping range-finding tests. The experimental toxicity values, shown in Table 3.2, 
correlated well with predicted values (r2

ext = 0.74).

In vitro to in vivo correlation. 
In a final step, it was investigated whether the acute in vitro toxicity data generated in 

the present study could be used to build a model for making acute in vivo toxicity predictions 
for fish. Tables 3.1 and 3.2 show the acute in vivo toxicity data for the fish, P. reticulata (12), 
for the compounds that were also tested in the present study. A correlation of the in vitro and 
in vivo toxicity data is shown in Figure 3.3 and can be described by the following equation: 

 in vivo log LC50 (µM) = 0.93[in vitro log EC50 (µM)] - 0.02                            (Eq. 3) 

where n = 7, r2 = 0.76, s = 0.23, and F = 16.  This equation was used to make 
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Fig. 3.3:  Quantitative structure-activity relationship for the correlation between the decadic logarithm 
of the 24 h in vitro toxicity of chlorinated alkanes to Chinese hamster ovary cells in the MTT assay 
and 7 d in vivo toxicity to fish (Poecilia reticulata).
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predictions for the compounds tested in vitro for which no acute in vivo fish toxicity 
data were available, and the results thus obtained are presented in Tables 3.1 and 3.2. 
 

dIscussIon

During the development of QSAR models, it is usually recommended where possible to 
(i) use experimental data from the same laboratory to avoid inter-laboratory variation (20) and 
(ii) use data sets where the ratio of number of test compounds to descriptors used for modeling 
is at least five (21). Both conditions have been satisfied in this study by generating toxicity 
data within the same laboratory for 26 compounds and developing a QSAR model based on 
one descriptor, log Kow. The developed QSAR model also satisfies the five basic requirements 
for OECD guidelines for QSAR models: clearly defined end point, unambiguous algorithm, 
appropriate measures of goodness of fit, robustness and predictivity, a defined domain of 
applicability, and a mechanistic interpretation. First, the end points are clearly defined (24 
h EC50 to CHO cells and 7 d LC50 to P. reticulata). Second, the methods for data collection 
and calculation of descriptors have been clearly described. Third, the QSAR model has been 
validated both internally and externally. Fourth, the applicability domain in terms of descriptor 
range and the actual list of compounds that fit into the domain have been provided. Fifth, 
hydrophobicity has been confirmed as an important parameter to describe the toxicity of the 
chlorinated alkanes. The strong correlation between toxicity and hydrophobicity found in the 
current study (Figure 3.2) supports a non-polar narcotic mechanism of action for chlorinated 
alkanes described previously (12, 22, 23). Because hydrophobicity is important for the 
toxicity of chlorinated alkanes, it was essential to choose a suitable method of exposure. The 
direct method of exposure resulted in higher toxicity than the premix method (Figure 3.1).  
Hydrophobic compounds have been shown previously to readily adhere to plastic surfaces 
of culture plates (24). This situation can easily arise during the dilution step of the premix 
method where the medium containing the chlorinated alkanes is prepared in a premixing 
well before transfer to wells containing the cells. This provides an additional possibility for 
the chlorinated alkanes to adhere to the plastic surface of the well before the solution is 
actually transferred to the cells. During the direct exposure method, more of the compound is 
immediately available to the cells. However, one needs to mix the test compound thoroughly 
into the culture medium by carefully pipetting up and down several times to avoid any local 
cytotoxicity that can occur due to high concentrations of solvent or test compound. The presence 
or absence of local cytotoxicity should always be confirmed with microscopic observations.  
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Compound name CASb no. log Kow
c in vitro log EC50 

(µM) to CHOd 
cells 

in vivo log LC50 (µM) 
to fish 

(Poecilia reticulata)e

Exp. Prede Expf Predg

1 1,2,3-trichloropropane 96-18-4 1.98 3.12 2.8 2.45 2.87

2 1-chlorobutane 109-69-3 2.52 3.27 2.56 3.02 3.01

3 1,5-dichloropentane 628-76-2 2.77 2.82 2.45 2.59

4 Pentachloroethane 76-01-7 3.63 2.17 2.07 1.87 1.99

5 1,1,1,2,2,2,2,3-heptachloropropane 594-89-8 4.74 1.62 1.57 1.48

6 Hexachloroethane 67-72-1 4.61 1.63 1.49

7 1,1-dichloroethane 75-34-3 1.78 2.89 2.66

8 1,3-dichloro-2,2-bis(chloromethyl)
propane

3228-99-7 1.93 2.82 2.59

9 Trichloromethane 67-66-3 1.95 2.81 2.58

10 1-chloropropane 540-54-5 1.99 2.8 2.57

11 2-chloropropane 75-29-6 1.99 2.8 2.57

12 1,3-dichlorobutane 1190-22-3 2.24 2.69 2.47

13 1,4-dichlorobutane 110-56-5 2.24 2.69 2.47

14 1,1-dichloropropane 78-99-9 2.31 2.66 2.44

15 2,2-dichloropropane 594-20-7 2.31 2.66 2.44

16 1,2,3-trichloro-2-methylpropane 1871-58-5 2.38 2.62 2.41

17 1,2-dichloro-2-methylpropane 594-37-6 2.39 2.62 2.4

18 1-chloro-2-methylpropane 513-36-0 2.39 2.62 2.4

19 2-chloro-2-methylpropane 507-20-0 2.39 2.62 2.4

20 1,1,1-trichloroethane 71-55-6 2.48 2.58 2.36

21 1,2,3,4-tetrachlorobutane 3405-32-1 2.5 2.57 2.36

22 2,3-dichlorobutane 7581-97-7 2.52 2.56 2.35

23 2-chlorobutane 78-86-4 2.52 2.56 2.35

24 1,1,3-trichlorobutane 13279-87-3 2.55 2.55 2.34

25 1,1,2,3-tetrachloropropane 18495-30-2 2.57 2.54 2.33

26 1,2,2,3-tetrachloropropane 13116-53-5 2.57 2.54 2.33

27 1,1,2-trichloropropane 598-77-6 2.58 2.53 2.32

28 1,2,2-trichloropropane 3175-23-3 2.58 2.53 2.32

29 1,3-dichloro-3-methylbutane 624-96-4 2.63 2.51 2.3

30 Tetrachloroethane 25322-20-7 2.64 2.51 2.3

Table 3.2:  List of EINECS compounds that fit into the applicability domaina of the QSAR model 
developed in this thesis.  This list excludes the first 18 compounds in Table 3.1 that were used for the 
model development.  The first five compounds were used as the external validation set.
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Compound name CASb no. log Kow
c in vitro log EC50 

(µM) to CHOd 
cells 

in vivo log LC50 (µM) 
to fish 

(Poecilia reticulata)e

Exp. Prede Expf Predg

31 1,1,1,3-tetrachloropropane 1070-78-6 2.72 2.47 2.27

32 1,1-dichlorobutane 541-33-3 2.84 2.42 2.22

33 2,2-dichlorobutane 4279-22-5 2.84 2.42 2.22

34 1,1,3,3-tetrachlorobutane 39185-82-5 2.86 2.41 2.21

35 1-chloro-3-methylbutane 107-84-6 2.92 2.38 2.18

36 2-chloro-2-methylbutane 594-36-5 2.92 2.38 2.18

37 Trichloropropane 25735-29-9 3.01 2.34 2.15

38 1,1,1,2-tetrachloroethane 630-20-6 3.03 2.33 2.14

39 2,3-dichloropentane 600-11-3 3.05 2.33 2.13

40 2-chloropentane 625-29-6 3.05 2.32 2.13

41 3-chloropentane 616-20-6 3.05 2.32 2.13

42 1,1,2,2,3-pentachloropropane 16714-68-4 3.17 2.27 2.08

43 1,1,1,3-tetrachlorobutane 13275-19-9 3.25 2.24 2.05

44 1-chloro-3,3-dimethylbutane 8/5/2855 3.32 2.2 2.02

45 1,1,1-trichlorobutane 13279-85-1 3.54 2.11 1.93

46 1,1,1,2-tetrachloropropane 812-03-3 3.56 2.1 1.92

47 1,1,1,3,3-pentachlorobutane 21981-33-9 3.57 2.1 1.92

48 2-chlorohexane 638-28-8 3.58 2.09 1.91

49 3-chlorohexane 2346-81-8 3.58 2.09 1.91

50 2-chloro-2,3,3-trimethylbutane 918-07-0 3.72 2.03 1.85

51 2,5-dichloro-2,5-dimethylhexane 6223-78-5 4.09 1.86 1.7

52 2-chloroheptane 1001-89-4 4.11 1.85 1.69

53 3-chloroheptane 999-52-0 4.11 1.85 1.69

54 1,1,1,3-tetrachloro-4-
methylpentane

62103-09-7 4.18 1.82 1.66

55 1-chloro-2,2,4-trimethylpentane 6/4/2371 4.25 1.79 1.64

56 3-(chloromethyl)heptane 123-04-6 4.51 1.67 1.53

57 2-chlorooctane 628-61-5 4.64 1.62 1.47

58 3-chlorooctane 1117-79-9 4.64 1.62 1.47

59 4-chlorooctane 999-07-5 4.64 1.62 1.47

a chlorinated alkanes with up to ten carbon atoms and log Kow values between 1.71 and 5.70, b Chemical Abstracts 
Service, c octanol-water partition coefficient (Kow) values calculated using ClogP version 4.0 (Biobyte, Claremont, 
CA, USA), d Chinese Hamster Ovary, e EC50 values predicted using Eq. 2,  f EC50 values obtained from (12), g EC50 
values predicted using Eq. 3, h Compounds selected for external validation of Eq. 2.
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The in vitro toxicity of compounds with log Kow > 4.53 (Figure 3.2) can be explained in three 
ways. First, the predicted solubility values of the chlorinated alkanes are for water only and 
the solvent used in this study, DMSO, is known to increase their solubility. Second, DMSO 
may increase the absorption of compounds across membranes (24, 25); thus, its use as a co-
solvent could enhance their entry into the cells. Third, the test compounds can bind to the 
proteins or lipids in the FCS in the growth medium, thus increasing their solubility.  Previous 
attempts to use hydrophobicity to explain the toxicity of chlorinated alkanes to bacteria in 
the Microtox test failed (r2 = 0.19, n = 18) (26), possibly due to the short exposure time of 
the assay premix exposure as in the present study (Figure 3.1), and also the absence of serum 
in the medium that could increase the bioavailability of the test compounds. Toxicity results 
for three of our training set compounds have been reported in other published studies and 
are comparable to our data. For example, there is close agreement between the cytotoxicity 
of 1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane, and carbon tetrachloride to CHO cells 
(current study) and to rat primary hepatocytes, both measured with the MTT assay (Table 
3.1). The lower EC50 value of carbon tetrachloride to HeLa cells than to the CHO cells of 
the present study could be due to a longer exposure period (72 h as compared to 24 h in the 
present study). There is also close similarity between the EC50 values obtained in the current 
study to the concentrations that were toxic to the guppy and fathead minnow (Table 3.1). This 
similarity was extended to develop a prediction model for in vivo toxicity based on in vitro 
or in silico data. The good correlation (Figure 3.2, r2 = 0.88) between the in silico-predicted 
log Kow and the in vitro toxicity and the good correlation (Figure 3.3; r2 = 0.76) obtained 
between in vitro and in vivo toxicity to fish support the possible use of QSAR approaches 
in the safety assessments within the framework of REACH, thereby reducing the use of 
experimental animals. Therefore, the results of the present study demonstrate that instead 
of performing toxicity testing of chlorinated alkanes (that fit into the applicability domain) 
on fish, one can carry out an in vitro CHO MTT test or even only calculate the log Kow by 
available in silico models and use the QSAR models defined in the present study. On the basis 
of the QSAR models that we developed, one can use in vitro or even only in silico results 
to predict the in vivo toxicity to fish. The experimental and predicted (Tables 3.1 and 3.2) 
in vivo toxicity data to fish can be used as a starting point for further risk assessment of the 
chlorinated alkanes. A toxicity ranking of the compounds will allow the identification of the 
most toxic and priority compounds. This will help to direct priorities for future testing to the 
most toxic compounds, thereby further refining and reducing the use of experimental animals. 
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AbstrAct

Within the REACH regulatory framework in the EU, quantitative structure-activity 
relationships (QSAR) models are expected to help reduce the number of animals used for 
experimental testing.  The objective of this study was to develop QSAR models to describe 
the acute toxicity of organothiophosphate pesticides to aquatic organisms.  Literature data 
sets for acute toxicity data of organothiophosphates to fish and one data set from experiments 
with 15 organothiophosphates on Daphnia magna performed in the present study were used 
to establish quantum chemistry calculation based QSARs.  The logarithm of the octanol/
water partition coefficient, log Kow, the energy of the lowest unoccupied molecular orbital, 
Elumo, and the energy of the highest occupied molecular orbital, Ehomo were used as descriptors.  
Additionally, it was investigated if toxicity data for the invertebrate D. magna could be used 
to build a QSAR model to predict toxicity to fish.  Suitable QSAR models (0.80 < r2 < 0.82) 
were derived to predict acute toxicity of organothiophosphates to fish (Cyprinus carpio) and 
the crustacean (D. magna).  Toxicity data for D. magna correlated well (r2 = 0.94) with toxicity 
data for C. carpio.  This implies that by performing toxicity tests with D. magna, one can use 
our interspecies QSAR model to predict the acute toxicity of organothiophosphates to fish.  
The three QSAR models were validated either both internally and externally (D. magna) or 
internally only (carp and D. magna to carp).  For each QSAR model, an applicability domain 
was defined based on the chemical structures and the ranges of the descriptor values of the 
training set compounds.  From the 100 196 European Inventory of Existing Commercial 
Chemical Substances (EINECS), 83 compounds were identified that fit the selection criteria 
for the QSAR models.  For these compounds, using our QSAR models, one can obtain an 
indication of their toxicity without the need for additional experimental testing.  
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IntroductIon 

Since June 2007, the management of chemicals within the European Union (EU) falls 
under a new legislative framework called Registration, Evaluation, and Authorization of 
Chemicals (REACH) (1).  REACH aims to provide toxicity information for about 30 000 out 
of the more than 100 000  chemicals listed on the European Inventory of Existing Commercial 
Chemical Substances (EINECS), for which there is insufficient toxicological information 
on their hazardous properties.  Within REACH, there are provisions to use, among others, 
sufficiently validated computational prediction models based on quantitative structure-activity 
relationships (QSAR) to fill in the toxicity data gaps, and thus save time, money and help to 
reduce the numbers of animals used for experimental testing purposes.  Guidelines for QSAR 
model development and validation proposed by the Organization for Economic Cooperation 
and Development (OECD) are expected to help increase the acceptability of QSAR models 
for regulatory purposes (2).  This article focuses on the development of validated QSAR 
models to predict the acute toxicity of organothiophosphate pesticides to fish using toxicity 
data for invertebrates.  

Within the EU, the use of pesticides for pest control in agriculture and animal breeding 
has greatly increased crop and animal yields and promoted the development of the chemical 
industry (3).  Since the ban on organochlorines in the 1970s (4), organophosphorous 
compounds are the most widely used insecticides due to their relatively lower environmental 
persistence.  Because of their widespread use they are often implicated in wildlife and 
human poisonings (4).  The general chemical structure of organophosphorous pesticides is 
shown in Figure 4.1.  They are classified into two main groups, organophosphates (P=O) and 
organothiophosphates (P=S) depending on whether oxygen or sulphur forms a double bond 
with the central phosphorous atom.  Organophosphorous compounds exert their primary 
acute toxic effects by inhibiting the enzyme acetylcholinesterase (AChE).  The inhibition 
occurs due to a nucleophilic reaction between the hydroxyl group of serine in the active 
site of AChE and the electrophilic phosphorous atom of the organophosphorous compound 
resulting in the formation of a covalent P-O bond.  As a result AChE can no longer hydrolyze 
its natural substrate, the neurotransmitter acetylcholine, and acetylcholine accumulates at the 
synaptic terminals leading to overstimulation of the postsynaptic receptor (5, 6).  
Since oxygen is more electronegative than sulphur, the P=O bond is more polarized than the 
P=S bond.  This makes the phosphorous atom more electrophilic in the P=O than in the P=S 
bond  (8).  In the body the P=S moieties of organothiophosphates are oxidized by cytochrome 
P450 monooxygenases  to their corresponding P=O or oxon form (9), which is the active form 
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of the compound (10).  The P=S are manufactured in larger numbers than the P=O as they are 
considered to be safer and more selective due to the biotransformation step to the P=O that is 
necessary to exhibit full toxicity (9).

Figure 4.1: General chemical structure of organophosphorous pesticides.  The atom that forms a double 
bond to P is either O (organophosphate; P=O) or S (organothiophosphate; P=S).  R is usually methyl or 
ethyl and X, called the leaving group, can be alkyl, heterocyclic, aryl etc.  Adapted from literature (7).

Over the last three decades, attempts have been made to develop QSAR models to predict 
the acute toxicity of organophosphorous compounds to various organisms.  Descriptors that 
have been used include: partitioning parameters, modeled using the logarithm of the octanol-
water partitioning coefficient (log Kow) (11, 12), steric (13) and reactivity parameters (12-
17). Most of the QSAR models developed in these studies lack a clear definition of their 
applicability domain and are not externally validated, two of the five basic requirements 
defined by the OECD guidelines for adequate QSAR development (2).

The use of toxicity data for one species to predict toxicity to another species is a 
promising field that has received little attention.  The possibilities for these extrapolations 
have been demonstrated previously between algae and protozoans (18) and between 
protozoans and fish (19, 20).  In the present study, the possibilities to use acute toxicity data 
for Daphnia magna (inverterbrate) from our own laboratory experiments to predict acute 
toxicity of organothiophosphates to fish were investigated.  To this end, QSAR models for 
predicting acute toxicity of organothiophosphates to (i) D. magna based on our experimental 
data and  (ii) various fish species based on literature data were developed based on three 
computer calculated descriptors: log Kow, the energy of the lowest unoccupied molecular 
orbital (Elumo) and the energy of the highest occupied molecular orbital (Ehomo).  The log Kow 
generally models a compound’s hydrophobicity, which is important in describing the uptake 
and passage of a compound through membranes.  The Ehomo models the nucleophilic nature 
of the organothiophosphates, which is important for their oxidation to the P=O form by the 
electrophilic iron-oxo intermediate of the activated cytochrome P450 enzymes.  The importance 
of Ehomo in modeling cytochrome P450 catalyzed reactions has been shown previously (21, 22).  
The Elumo of the P=O metabolite of the various organothiophosphates models the electrophilic 
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nature of this P=O metabolite, which is important for their covalent interaction with the 
AChE enzyme.  The applicability domain and limits of the QSARs were identified, by noting 
descriptor value ranges where one can apply the QSARs.  The QSAR models were validated 
both internally and externally.  Finally, for the developed QSAR models of the present study, 
an estimate was made of the number of EINECS compounds for which the models can make 
accurate predictions.

mAterIAls And methods

Acute toxicity tests with D. magna
The acute toxicity of organothiophosphates to D. magna was determined in a GLP 

laboratory following the procedures described in the OECD acute immobilization test  (23).  
The test compounds, designated as the training set, were obtained from Sigma-Aldrich 
(Zwijndrecht, The Netherlands) and were all at least 98 % pure.  In order to increase diversity 
and equal representativity in the chemical structures, the training set compounds were 
divided into four groups based on (i) the characteristics of the leaving group (see Figure 4.1): 
aromatic or aliphatic, (ii) components of the reaction centre: OOOP=S or OOSP=S, and (iii) 
the R-group bound to the reaction centre: ethyl or methyl.  Stock solutions of the compounds 
were prepared in spectrophotometric grade dimethyl sulfoxide (DMSO) obtained from Acros 
Organics (Geel, Belgium) at concentrations 10 000 times greater than the desired working 
concentrations in the experiment.  Before the start of each experiment, 50 µl of each of the 
concentrated stock solutions was added to 500 ml of experimental culture medium (24) to 
get the working concentrations.  For each compound, six concentrations were tested, each 
in fourfold.  For each concentration, five daphnids,  < 24 h old, were placed in each of four 
vessels with 80 ml of the working solutions.  Three sets of controls were used, (i) potassium 
dichromate as a positive control, (ii) a solvent control with DMSO in place of the stock 
solution with the test compound, and (iii) culture medium only.  O2 concentration, pH, and 
temperature were monitored during the experiment and the average values were as follows: 
O2 9 mg/ml, pH 7.6, and temperature 20 0C.  The test was considered acceptable when in 
the solvent and culture medium only controls, not more than 10% of the daphnids should 
have been immobilized or trapped at the surface of the water, and these conditions were 
met in our experiments.  The number of immobilized daphnids was counted at the end of 
24 hours exposure.  Immobility was defined as the inability to swim within 15 seconds after 
gentle agitation of the test vessel (23).  The nominal concentration of test substance required 
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to immobilize 50 % of the daphnids after 24 h of exposure (EC50) was estimated using a 
Microsoft® Excel plug-in, Life Sciences Workbench (LSW) Data Analysis Toolbox Version 
1.1.1 (MDL Information Systems, CA, USA) with the general sigmoidal curve with Hill 
slope (a to d) chosen as the best fit model.  

Literature toxicity data sets
Fifteen experimental toxicity data sets from the literature describing acute toxicity of 

organothiophosphates to various fish species were screened for their suitability for use as data 
sets for modeling.  The data sets describe acute toxicity of organothiophosphates to six fish 
species from five genera.  For some of the fish species, data from more than one exposure 
period have been given, e.g. 24 h and 96 h.  The fish species for which the acute toxicity 
data were obtained were rainbow trout Oncorhynchus mykiss, bluegill Lepomis macrochirus 
(25-27),  fathead minnow Pimephales promelas (25, 27), cutthroat trout O. clarki, lake trout 
Salvelinus namaycush (25), and carp Cyprinus carpio (7).  Five quality criteria were set in 
order to guide the selection of suitable data sets:  (i) the minimum number of compounds, 
n, should be five (n > 5) (28), (ii) the toxicity data should be from the same laboratory to 
avoid inter-laboratory variation (29), (iii) the toxicity data should have been generated using 
standardized protocols, if not, then the materials and methods should be sufficiently described 
in order to judge the quality of the experimental setup, and (iv) the compounds should be easy 
to identify based on their names and/or chemical abstract (CAS) numbers.  Applying these 
quality criteria resulted in the elimination of 10 data sets from Mayer and Ellersieck (1986).

Calculation of molecular descriptors
Hydrophobicity of the organothiophosphates was modeled using log Kow values calculated 

with the software CLogP version 4.0 (Biobyte, Claremont, CA, USA) (30) as described 
previously (31).  Briefly, the structure of each molecule was entered into CLogP as a simplified 
molecular input line entry system (SMILES) code (32).  The SMILES codes were obtained 
from the SMILES-CAS database (Syracuse Research, Syracuse, NY, USA).  Nucleophilicity 
of the organothiophosphates was modeled using Ehomo values for the P=S version of each 
molecule.  Electrophilicity of the P=O metabolites of the organothiophosphates was modeled 
using Elumo values for the P=O version of each molecule.  The Elumo and Ehomo values were 
calculated using the program Spartan ’04 for Linux Server Edition (Wavefun, Irvine, CA, 
USA; http://www.wavefun.com) running on two 1.7 GHz Xeon Intel CPU’s with 4 GB 
memory.  Each molecule was energy minimized, and then a conformer distribution search 

http://www.wavefun.com


80

Chapter 4

was carried out using the Merck Molecular Force Field (MMFF) molecular mechanistic 
model after which the lowest energy conformer was identified.  The Elumo and Ehomo values 
were calculated for the lowest energy conformer without further geometry optimization using 
the ab initio Hartree-Fock method utilizing a 3-21G basis set. 

QSAR modeling
The Statistical Package for Social Scientists (SPSS®) version 15 for Windows (SPSS, 

Chicago, IL, USA) was used to analyze the QSAR models as described previously (31).  
Briefly, the log (toxicity endpoint) was the dependent variable while log Kow, Ehomo, and Elumo 
were used singly or in combination as the independent variables.  All QSAR equations were 
presented in the form:

predicted log EC50 (M) = x(log Kow) + y(Elumo) + z(Ehomo ) +  c                                         [1]

where x, y, z and c are fitting parameters.  The quality of the QSAR models was characterized 
by the number of compounds used in the study (n), coefficient of determination (r2), standard 
error of the estimate (s), variance ratio (F), and the internally cross-validated coefficient of 
determination (r2

int).  Where a test set was available, the externally cross-validated coefficient 
of determination (r2

ext) was also determined.  Internal validation of the QSAR models was 
performed using the leave-one-out (LOO) validation method where n < 10.  The leave-many-
out (LMO) validation method, was used when n > 10, with 20 % of the calibration compounds 
left out at each step as described previously (31).  Compounds whose studentized deleted 
residuals were outside the + 1.5 limit were denoted as outliers (33) during the modeling 
process.  Internal validation was only performed for QSAR models where r2 > 0.65 and n/k > 
5, where k is the number of descriptors in the model (28).  The chemical applicability domain 
of the QSAR models was defined by taking into account two aspects of the compounds in the 
training set (i) the range of values for the descriptors used for modeling and (ii) the presence 
of P=S in the chemical structure.

External validation of QSAR model for acute toxicity to D. magna.
The external performance of the D. magna QSAR model based on 10 compounds was 

evaluated by testing five compounds that cover the applicability domain of the model, and 
then comparing the predicted and obtained experimental toxicity values.  Selection of test 
concentrations was based on EC50 values predicted by the QSAR model developed using 
the training set data.  The calculation of r2

ext was performed as described previously (34). 
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results

D. magna acute toxicity test
The results of fifteen organothiophosphates tested in the D. magna acute immobilization 

test  are presented in Table 4.1 (compounds 1 to 15), and include the experimental EC50 
values obtained together with their estimated log Kow, Ehomo, the Elumo of their P=O metabolites.  
The first 10 compounds in Table 4.1 were used as the training set for building a QSAR 
model and their log EC50 (M) values ranged almost five orders of magnitude (from -5.06 to 
-9.82).  A higher logarithmic toxicity value (e.g. -5.06) represents lower toxicity than a lower 
logarithmic toxicity value (e.g. -9.82).  

QSAR modeling:  D. magna toxicity data set
Figure 4.2 presents a plot of the decadic logarithm of the experimental log EC50 values 

for the 10 organothiophosphates in the training set against values predicted based on the 
estimated log Kow.  

Figure 4.2:  Quantitative structure-activity relationship for the correlation between the decadic logarithm 
of the 24 h in vitro toxicity (EC50) of organothiophosphates to Daphnia magna and the toxicity predicted 
based on log Kow (n = 10, r2 = 0.80, r2

int = 0.73)
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Figure 4.2 shows that all data points are within one log unit of the regression line.  Table 4.2 
shows the results of the correlations between various descriptors and experimental toxicity 
to D. magna (Eqns 3–5).  The log Kow correlated well with experimental toxicity (Eqn. 3; r2 

= 0.80).  The addition of Elumo as a second descriptor did not improve the correlation (Eqn. 
4; r2 = 0.80).  Combining log Kow with Ehomo resulted in a slightly better correlation (Eqn. 5; 
r2 = 0.82) than with log Kow only (Eqn. 3; r2 = 0.80).  During the internal validation of the 
three QSAR models for D. magna (Table 4.2; Eqns 3–5), the model with only log Kow as a 
descriptor performed best (Eqn. 3; r2

int = 0.73) when compared to the models with Elumo (Eqn. 
4; r2

int = 0.66) or Ehomo (Eqn. 5, r2
int = 0.62) as additional descriptors to log Kow.  Therefore, the 

QSAR model with log Kow only was selected for external validation experiments.

External validation of D. magna QSAR model
For external validation tests, five compounds were selected to cover the log Kow range 

of the training set compounds (Table 4.1, compounds 11 to 15).  Test concentrations were 
selected based on toxicity values predicted using the QSAR model with log Kow as descriptor 
(Table 4.2, Eqn. 3).  The experimental toxicity values shown in Table 4.1, correlated well 
with predicted values (r2

ext = 0.71).

Modeling the fish toxicity data sets
Out of all the fish toxicity data sets, an acceptable QSAR model (r2 > 0.65) was only 

obtained for carp (Table 4.2; Eqn. 6; r2 = 0.80, r2
int = 0.60) using a combination of both log 

Kow and Elumo (Eqn. 6; r2 = 0.80, r2
int = 0.60).  In this chapter, we have presented only the 

experimental toxicity data for carp (Table 4.1), while the rest of the toxicity data sets are 
available as an appendix at the end of this thesis.

Applicability domain of the QSAR models
The range of EINECS compounds for which the two QSAR models  (D. magna and 

carp) are valid (applicability domain) was determined by taking into account (i) the minimum 
and maximum values of the descriptors in the data sets used during the modeling process and 
(ii) the presence of P=S in the molecular structure.  For the two QSAR models, the minimum 
and maximum values for the descriptors are shown in Table 4.2 and they were set as follows: 
D. magna (Eqn. 3; log Kow range 0.75 to 5.50) and carp (Eqn. 6; log Kow range 2.48 to 4.03,  
Elumo range 1.64 to 3.75 eV).  

The descriptor ranges and presence of P=S in the molecular structure were combined 
with the molecular formula, compound name, and SMILES codes in procedures described 
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previously (31) to extract compounds with similar properties from the EINECS list.  Table 4.3 
shows the extracted compounds together with their estimated log Kow, Elumo, Ehomo, and EC50 
values.  EC50 values are not indicated where the compound does not fit into the applicability 
domain of the specific QSAR model.  For example, no predicted EC50 value for phoxim 
(compound 12) to carp is indicated because its log Kow value of 4.39 means that it lies outside 
the applicability domain of the carp QSAR model (Table 4.2, Eqn. 6, log Kow range 2.48 to 
4.03).  The QSAR models cover 68 (D. magna) and 14 (carp) EINECS compounds in addition 
to the ones used as training and test set compounds (Table 4.3).  Including the training and 
test set compounds shown in Table 4.1, each QSAR model covers 83 (D. magna) and 24 
(carp) EINECS compounds.  This implies that including the 21 compounds in Table 4.1 and 
taking into account overlap between the EINECS compounds covered by each QSAR, the 
two QSAR models cover 83 compounds, which amounts to ~0.1 % of the total EINECS 
list.

Interspecies correlations
In a final step, it was investigated whether acute toxicity data for the invertebrate D. 

magna could be used to build a model for making in vivo toxicity predictions to the vertebrate 
carp.  Figure 4.3 presents a plot of experimental EC50 values for carp versus predicted EC50 

values based on the QSAR for D. magna.  From Figure 4.3 it can be seen that methidathion is 
an outlier, and this is confirmed by its high studentized deleted residual value of 4, which is 
outside the set limit of + 1.5.  Repeating the QSAR modeling in the absence of methidathion 
resulted in an improved correlation (r2 = 0.94) than in the presence of methidathion (r2 = 
0.74).  The plot in Figure 4.3 excludes methidathion and can be described by the following 
equation: 

log EC50 (M) (carp) = 0.39[log EC50 (M) D. magna] – 1.93      [2]
where n = 9, r2 = 0.94, r2

int = 0.90, s = 0.06,  F = 107
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Figure 4.3:  Quantitative structure-activity relationship for the correlation between the decadic 
logarithm of the 14 d experimental LC50 values of organothiophosphates to Cyprinus carpio (carp) 
and EC50 values predicted using the QSAR for Daphnia magna based on log Kow (n = 9, r2 = 0.94, r2

int 
= 0.90).  Note that the plot only includes the nine compounds (♦) whose studentized deleted residual 
(SDR) lies within the + 1.5 limit.  Methidathion (□), whose SDR = 4, is considered an outlier and is 
not included in the plot. 
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No CAS no. Compound name log Kow
a Elumo

b Ehomo
d log EC50 

(M)f
log LC50 
(M)h

(P=O)c  

eV)
(P=S)
e(eV)

Daphnia 
magna

Cyprinus 
carpio

24 h 14 d

1 10311-84-9 dialifor 4.36 4.36 -6.71 -8.84

2 107-55-1
O,O-di-sec-butyl hydrogen 
dithiophosphate 3.67 4.19 -9.44 -8.17

3 107-56-2
O,O-diisopropyl hydrogen 
dithiophosphate 2.61 4.19 -9.46 -7.14

4 115-90-2 fensulfothion 2.24 3.1 -9.1 -6.78
5 115-93-5 proban 1.23 2.52 -9.65 -5.8
6 116-01-8 dimethoate-ethyl 1.28 3.91 -9.25 -5.84
7 119-12-0 pyridafenthion 2.51 1.6 -8.4 -7.04
8 126-68-1 ethyl-phosphorothioate 2.02 6.79 -9.51 -6.57
9 13457-18-6 pyrazophos 3.07 1.96 -8.92 -7.59 -4.84
10 13593-03-8 quinalphos 3.2 1.17 -9.07 -7.71
11 144-41-2 morphothion 1.3 4.3 -9.31 -5.86
12 14816-18-3 phoxim 4.38 1.19 -9.49 -8.86i

13 14816-20-7 chlorphoxim 5.1 2.36 -9.25 -9.57
14 1497-32-1 thiobenzoic acid, 

anhydrosulphide with O,O-
diethyl- dithiophosphorate

4.57 1.64 -9.28 -9.05

15 1716-09-2 ethyl-fenthion 4.52 3.15 -8.9 -9
16 18854-01-8 isoxathion 4.03 1.83 -9.03 -8.52 -5.18i

17 2104-96-3 bromophos 5.1 2.5 -9.39 -9.57
18 22068-88-8 neosar 3.11 1.88 -9.39 -7.63 -4.85

19 2253-43-2
O,O-dipropyl hydrogen 
dithiophosphate 3.05 4.19 -9.46 -7.57

20 2253-44-3
O,O-dibutyl hydrogen 
dithiophosphate 4.11 4.23 -9.36 -8.6

21 2253-52-3
O,O-diisobutyl hydrogen 
dithiophosphate 3.85 4 -9.48 -8.35

22 2275-18-5 prothoate 2.47 3.82 -9.19 -7
23 2310-17-0 phosalone 4.31 2.8 -9.05 -8.8

24 23505-41-1 pirimiphos-ethyl 4.06 3.31 -8.61 -8.55
25 24017-47-8 triazophos 2.9 2.39 -8.88 -7.42 -4.8
26 24934-91-6 chlormephos 3.21 3.78 -9.53 -7.72

Table 4.3: List of EINECS compounds that fit into the applicability domain of one or more of the two 
single species QSAR models developed in the present thesis, their Chemical Abstract Services (CAS) 
numbers and predicted EC50 values.  
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No CAS no. Compound name log Kow
a Elumo

b Ehomo
d log EC50 

(M)f
log LC50 
(M)h

(P=O)c  

eV)
(P=S)
e(eV)

Daphnia 
magna

Cyprinus 
carpio

24 h 14 d

27 7/6/2497 disulfoton sulfoxide 2.31 4.13 -9.33 -6.85
28 2595-54-2 mecarbam 3.26 3.61 -9.28 -7.77 -5.01
29 2597-03 7 phenthoate 3.84 2.96 -9.23 -8.34                                                                            
30 2636-26-2 cyanophos 2.5 2.41 -9.53 -7.03 -4.66i

31 2642-71-9 azinphos-ethyl 3.43 1.53 -9.29 -7.94
32 2921-88-2 chlorpyrifos (-ethyl) 4.51 1.6 -9.58 -8.99i

33 29232-93-7 pirimiphos-methyl 3.38 3.3 -8.55 -7.89i -5.04
34 297-97-2 cynophos, thionazin 1.6 2.15 -9.36 -6.16
35 298-02-2 phorate 3.84 4.15 -9.62 -8.35
36 298-03-3 demeton-O, demetonthione 2.64 5.65 -9.25 -7.17
37 298-04-4 disulfoton 4.17 4.37 -9.25 -8.66

38 298-06-6
O,O-diethyl hydrogen 
phosphorodithioate 1.99 4.15 -9.5 -6.54

39 299-84-3 fenchlorphos 4.97 2.46 -9.48 -9.44
40 3070-15-3 fensulfothion sulfide 4.02 3.42 -8.68 -8.51 -5.28
41 30864-28-9 methacrifos 0.98 3.07 -9.67 -5.55
42 32345-29-2 ethyl-phenyl-thiophosphate 3.42 3.62 -9 -7.93 -5.07

43 32650-55-8
O,O’-diisopentyl hydrogen 
dithiophosphate 4.9 4.12 -9.52 -9.37

44 33712-72-0
tris(2-chloropropyl) 
thiophosphate 3.8 4.19 -9.76 -8.3

45 34643-46-4 prothiofos 5.38 2.76 -9.26 -9.84
46 35400-43-2 sulprofos 5.48 3.27 -8.65 -9.94
47 36145-08-1 chlorprazophos 3.27 2.25 -8.74 -7.78 -4.93

48 36560-17-5
O-(2,2-dichlorovinyl) O,O-
dimethylthiophosphate 1.82 3.76 -9.76 -6.37

49 3811-49-2 dioxabenzofos 2.67 3.29 -9.24 -7.2 -4.78i

50 38260-54-7 etrimphos 3.41 3.08 -9.39 -7.92 -5.04

51 42509-80-8 isazofos 2.51 3.72 -9.39 -7.04 -4.75
52 500-28-7 chlorothion 3.4 1.8 -10.02 -7.91 -4.95
53 5221-49-8 pyrimitate 3 3.2 -8.86 -7.52 -4.69

54 52664-35-4
tris(4-aminophenyl) 
thiophosphate 2.69 3.73 -7.85 -7.22 -4.81

55 52-85-7 famophos 2.19 2.52 -9.67 -6.73
56 55-38-9 fenthion 3.84 3.12 -8.92 -8.34i -5.20i
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No CAS no. Compound name log Kow
a Elumo

b Ehomo
d log EC50 

(M)f
log LC50 
(M)h

(P=O)c  

eV)
(P=S)
e(eV)

Daphnia 
magna

Cyprinus 
carpio

24 h 14 d

57 56-38-2 parathion (-ethyl) 3.47 1.2 -9.88 -7.98
58 56-72-4 coumaphos 4.33 1.48 -9.02 -8.82
59 57018-04-9 tolclofos-methyl 4.86 2.88 -9.38 -9.33

60 6028-46-2
O,O-dicyclohexyl hydrogen 
dithiophosphate 4.99 4.16 4.16 -9.46

61 6044-12 8 O,O,O-tris(2-chloro-
1-methylethyl) 
phosphorothioate

3.14 5.29 -10.03 -7.66

62 640-15-3 thiometon 3.2 4.33 -9.26 -7.71
63 64249-01-0 anilophos 4.36 3.08 -9.07 -8.84

64 68715-90-2
O-sec-butyl O-ethyl 
hydrogen dithiophosphate 2.83 4.14 -9.47 -7.35

65 68957-49-3 O-[1-(tert-butyl)-5-chloro-
1H-1,2,4-triazol-3-yl]-O,O-
diethyl thiophosphate

2.91 3.56 -9.37 -7.43 -4.88

66 71735-74-5 ethyl 3-[[bis(1-methylethoxy)
phosphinothioyl]thio]
propionate

4.13 4.4 -9.35 -8.62

67 732-11-6 phosmet 3.11 1.26 -9.35 -7.63

68 756-80-9
O,O-dimethyl hydrogen 
dithiophosphate 0.93 4.09 -9.55 -5.5

69 757-86-8

methyl 
[(dimethoxyphosphinothioyl)
thio]acetate 1.78 4.21 -9.5 -6.33

70 78-34-2 dioxathion 4.01 3.93 -9.46 -8.5
71 78-57-9 azidithion 0.79 2.83 -10.1 -5.37

72 86-50-0 azinphos methyl 2.55 1.55 -9.42 -7.08
73 950-37-8 methidathion 2.77 3.75 -9.38 -7.3 -4.84i

74 97-17-6 dichlofenthion 5.04 2.88 -9.83 -9.51
a octanol/water partition coefficient  b energy of the lowest unoccupied molecular orbital in electron volts c organophosphate (oxidized 
form of the organothiophosphate)  d energy of the highest occupied molecular orbital in electron volts  e  organothiophosphate cross-
validated correlation coefficient.  f EC50 values predicted using fEqn.3 (D. magna), gEqn. 6 (honeybee), and  hEqn. 7 (carp).  EC50 
values not predicted for compounds that do not fit into the applicability domain (blank EC50 values).  i These compounds already 
appear in Table 4.1.
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dIscussIon

In the present study, we have investigated the possibilities of developing a validated 
interspecies QSAR model for predicting the acute toxicity of organothiophosphates to fish 
using toxicity data for D. magna.  We have successfully developed an externally validated 
QSAR model for predicting 24 h acute toxicity to D. magna based on toxicity data generated 
in our laboratory experiments and used it to develop an interspecies QSAR model to make 
toxicity predictions to carp.  The preference to carry out toxicity tests on D. magna was 
based on several considerations.  First, within the REACH regulation, Daphnia is one of the 
two species (together with algae) that are preferred species for providing short-term toxicity 
data (1).  Second, Daphnia was preferred over algae species because (a) algal experiments 
are known to result in experiments with relatively high variability due to the large diversity 
of methods and protocols used for toxicity determination (35) and (b) algae are unicellular, 
thus have no nerve cells, which are relevant when one wishes to consider the neurotoxicity 
of organothiophosphates.  Third, for Daphnia, there is a standardized OECD toxicity test 
available (23).  Fourth, attempts to carry out external validation experiments based on a 
QSAR model developed on existing D. magna literature data (17) (data not shown) failed.  
This could be probably due to variations or differences in the D. magna clones used by Vighi 
et al 17 years ago with the clone we used, that could result in wide deviations in the expected 
toxicity response.  Therefore, it was preferable to generate our own toxicity data for QSAR 
modeling and for external validation.  Based on the set of toxicity data generated a QSAR 
model according to OECD defined guidelines could be defined.

The OECD recommends that for each QSAR model, the following five categories of 
information be provided: i) a clearly defined endpoint, ii) an unambiguous algorithm, iii) 
appropriate measures of goodness of fit, robustness, and predictivity, iv) a defined domain 
of applicability, and v) a mechanistic interpretation (2).  Since detailed explanations of the 
OECD guidelines have been published (2) and are freely available, only a brief description of 
the application of the five criteria in this study will be provided. The QSAR models developed 
in the present study satisfy all five (D. magna) and four (carp) of the OECD requirements.  
Since a given toxicity endpoint could be determined under different experimental conditions 
and protocols (2), it is important to provide all information about the experimental setup 
and the measured endpoint, as done in the present study [24 h EC50 (M) for  D. magna 
and 14 d LC50 (M) for carp)].  For each of the three descriptors: log Kow, Elumo and Ehomo, 
relevance to toxicity endpoint, calculation methods, software packages and the predicted 
values of the descriptors for each compound are described and the latter were generated 
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by methods that are publicly available.  The statistical technique, linear regression used to 
analyze the relationship between toxicity and the physicochemical descriptors is simple to 
use and sufficient especially where few descriptors (in our case, two) are involved (36).  This 
ensures transparency of the model algorithm.  The QSAR models have been validated both 
internally (Eqn. 3; r2

int = 0.73; Eqn. 6; r2
int = 0.60), a measure of robustness) and externally 

for D. magna (Eqn. 3; r2
ext = 0.71, a measure of predictivity).  As models are a simplification 

of reality, their limits should be well defined (37).  In our study, the applicability domain in 
terms of both the descriptor range (for the D. magna QSAR model) and the actual list of 
compounds that fit into the domain have been provided (see Table 4.3). H y d r o p h o b i c i t y 
has been identified as an important parameter to describe the toxicity of P=S compounds to 
D. magna.  An additional parameter, Ehomo, slightly improves the toxicity prediction for D. 
magna (Eqn. 5; r2 = 0.82).  When comparing the correlation with log Kow only (Eqn. 3; r2 = 
0.80) and that with log Kow + Ehomo (Eqn. 5; r2 = 0.82) the only marginal improvement in the 
correlation when taking Ehomo into account as an additional descriptor, reaffirms the fact that 
toxicity of organothiophosphates to D. magna is limited by the ability of the compounds to 
enter the organism (modeled by log Kow) as shown previously (17).  The slight improvement 
in the correlation after the addition of Ehomo and the lack of improvement after adding Elumo 
suggests that for D. magna, the conversion of the organothiophosphate to the organophosphate 
(modeled by Ehomo) or the rate of reaction of the P=O metabolite of the organothiophosphate 
with AChE (modeled by Elumo) are not the rate-limiting steps in the mechanism underlying 
the toxicity.  Toxicity to carp is dependent on both the entry of the organothiophosphates into 
the organism modeled by log Kow, and their conversion to the active oxon (P=O) (modeled by 
Elumo) form.  

The good interspecies correlation (r2 = 0.94) obtained in this study for D. magna to carp, 
seems to support the idea that one can use toxicity data for one organism to predict toxicity 
to another organism.  Our correlation compares well with that from previous studies using 
protozoan data to predict toxicity to fish for aldehydes (r2 = 0.81) (19) and common organic 
pollutants (r2 = 0.81) (20).  

The results in the present study can be used in several ways to help reduce the number 
of animals used for experimental purposes.  In case of new organothiophosphates that fit 
our defined selection criteria, the defined toxicological effects to D. magna and carp can 
be estimated using our developed models without any additional animal testing.  The 
experimental and predicted EC50 values (Table 4.1 and 3) can be used to identify the most 
toxic organothiophosphates on which future risk assessment steps should concentrate.  In 
case further experiments are necessary one can decide to perform experiments with D. magna 
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and then use the D. magna to carp QSAR model (Eq. 2) to predict toxicity to carp.  Predicted 
or experimental EC50 values for D. magna can also be used in the acute threshold test (38).  
This test is based on the experience that daphnids are more sensitive to toxicants than fish; 
therefore, the EC50 values for D. magna can be used as an upper threshold for fish tests (38).  
Using the upper threshold concentration, tests with fish can be repeated until a concentration 
is reached at which no mortality is found – the so-called “step down procedure”, which can 
result in a reduction of approximately 73 % in the number of fish used (38).  Hoekzema et al 
recently validated the test and demonstrated its usefulness for various groups of chemicals and 
came to a reduction of  88 % of the number of fish used  (39).  All these approaches support 
the reduction of the use of experimental animals, which is one of the goals of REACH (1).
 QSAR models are expected to play an important role in the risk assessment 
of chemicals within REACH.  To allow a trustable application of QSAR models on the 
regulatory scene, the implementation of the OECD guidelines for QSAR development and 
validation at every step of the modeling process is very important.  Whenever additional 
data sets are available, it is preferable that QSAR models are externally validated.  The three 
QSAR models described in the present paper can altogether cover 83  compounds, equivalent 
to 0.1 % of the EINECS list.  

AppendIces

Supplementary information is available in three tables (S1-S3) on page 137 . 
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AbstrAct

The new EU legislation for managing chemicals called REACH aims to fill in gaps in toxicity 
information that exist for the chemicals listed on the European Inventory of Existing Chemical 
Substances (EINECS).  REACH advocates the use of alternatives to animal experimentation 
including, amongst others, (quantitative) structure-activity relationship models [(Q)SARs] to 
help fill in the toxicity data gaps.  The aim of the present chapter was to provide a science-
based estimate of the number of EINECS compounds that can be covered by (Q)SAR models 
for acute toxicity.  Using the ECOSAR software, 54 % of the 100 196 EINECS chemicals 
were classified into 49 classes that can be potentially covered by (Q)SAR models.  The 
largest proportion of the classified compounds (40 % of the EINECS list) falls into the classes 
of non-polar and polar narcotics.  Compounds that were not classified include, for example, 
fish oils, botanical and animal extracts, and crude oil distillates.  With rapid improvements in 
analytical tools, the number of EINECS compounds for which toxicity evaluations may be 
based on (Q)SAR approaches may be extended by further developing  the method recently 
developed for the safety assessment of natural flavor complexes used as ingredients in 
food.  This method is based on identification of the individual components in a mixture, and 
judgment of the safety of these identified individual compounds using toxicity information 
on structurally similar congeners in the respective classes.  Such (Q)SAR approaches may 
be applied to an additional 2 938 EINECS compounds, representing botanical and animal 
extracts, leading to a total estimate of  57 % of the EINECS compounds for which (Q)
SAR based approaches may assist in their safety assessment.  It is concluded that, despite 
the fact that individual (Q)SARs may often each cover only a limited number, i.e. less than 
1 %, of the EINECS compounds, the potential for applying (Q)SAR approaches for safety 
assessment of EINECS compounds may prove to be significant.
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IntroductIon 

The European Inventory of Existing Chemical Substances (EINECS) (1) contains more 
than 100 000 chemicals that were on the European Union (EU) market before 18 September 
1981.  After this date, about 4 300 new chemicals were introduced on the EU market and 
these compounds are listed on the European List of Notified Chemical Substances (2).  It is 
recognized that insufficient (eco)toxicological information exists on the hazardous properties 
of many of the EINECS chemicals.  This is mainly because for EINECS chemicals, unlike for 
ELINCS chemicals, there were no requirements for premarket testing, even though EINECS 
chemicals constituted 99 % of the total volume of all substances on the market at that time 
(3).  To close the existing toxicity data gaps and to ensure better protection of human health 
and the environment from the risks that can be posed by chemicals, the EU adopted a new 
legislation called Registration, Evaluation, and Authorization of Chemicals (REACH) (4).  
This legislation came into force on June 1 2007 and shifts the responsibility of assessing 
and managing the risks posed by chemicals from governments to industry.  In the REACH 
legislation, the amount of toxicity data required for a chemical increases with an increase 
in its production volume.  As a result, concerns were expressed that for high production 
volume chemicals, large numbers of experimental animals might be required for toxicity 
testing in order to generate the required toxicity data.  Therefore, within REACH, there is 
a provision to use, amongst others, sufficiently validated computational prediction models 
based on (quantitative) structure-activity relationships [(Q)SARs] to fill in the toxicity data 
gaps.  This is expected to reduce the number of experimental animals used, and also to save 
time and costs (4).  

Internationally, considerable efforts are in progress to help increase the acceptability 
of (Q)SAR models for regulatory purposes.  In 2004, the Organization for Economic 
Cooperation and Development (OECD) proposed guidelines for QSAR model development 
and validation (5), that were recently updated (6).  The OECD is also developing a software 
package called (Q)SAR Application Toolbox that member countries can use to fill toxicity 
gaps in (eco)toxicity data needed for assessing the hazards of chemicals (7).  The European 
Chemicals Bureau (ECB) is currently compiling an inventory of QSAR models that can be 
used for regulatory purposes.  For this purpose, they are developing a harmonized template, 
(Q)SAR Prediction Reporting Format, which will be used to summarize and report substance-
specific predictions generated by (Q)SAR models (8). 

An insight into the total number of EINECS compounds that QSAR models can 
potentially cover would be of interest for a potential successful application of these models 
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Figure 5.1:  Proportion of EINECS chemicals covered by QSAR models we developed for three 
chemical groups including mononitrobenzenes (9), organothiophosphates (10), and chlorinated alkanes 
(11).

within REACH.  In our previous studies, we developed validated QSAR models for three 
chemical groups, including mononitrobenzenes (chapter 2), chlorinated alkanes (chapter 3), 
and organothiophosphates (chapter 4).  In these chapters we also identified how many of the 
EINECS chemicals would actually match the applicability domain of the respective QSARs.  
This analysis revealed that the QSARs for the mononitrobenzenes, chlorinated alkanes, 
and organothiophosphates covered 0.5 %, 0.1 %, and 0.1 % of the EINECS compounds 
respectively, together amounting to 660 compounds, making up about 0.7 % of the EINECS 
list.  These numbers are schematically presented in Figure 5.1 and the question that emerges 
is to what extent (Q)SAR approaches can ultimately be expected to cover the more than 100 
000 EINECS chemicals.  

  

Therefore, the aim of the present study was to provide a science-based estimate of the number 
of EINECS compounds that can be covered by (Q)SAR models for toxicity.  This was 
investigated by using the Ecological Structure Activity Relationships (ECOSAR) software, 
developed by the United States Environmental Protection Agency (US EPA), and quantifying 
to what extent EINECS chemicals can be classified into classes that can potentially be covered 
by these ECOSAR QSAR models.  The effort also provided insight into what percentage and 
what type of EINECS chemicals would not qualify to be included in (Q)SAR type approaches 
and into the reasons why that would be the case.  
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mAterIAls And methods

EINECS list
The EINECS list, containing the compounds to be classified was supplied by the ECB 

as a Microsoft® Excel file.  It contains 100 196 compounds and for each compound, the 
following information is included: name, chemical abstracts service (CAS) number, EINECS 
number, and molecular formula.  The CAS numbers were copied from the Excel file and 
saved into a Microsoft® Notepad (Microsoft, Redmond, WA, USA) file.  The Notepad file was 
used as the input file into the ECOSAR class software.

Software
ECOSAR is a user-friendly computer programme developed and routinely applied by 

the US EPA for predicting aquatic toxicity to fish, daphnids and algae (12).  The software 
version (0.99g) used in this study can be freely downloaded from the EPA website (13).  From 
the main window of the ECOSAR software, the Microsoft® Notepad file was imported and 
processed in batch mode.  The batch output file was set to tab delimited mode to allow easy 
export to Microsoft® Excel.  The batch output file contained the name of the compound, CAS 
number, and QSAR class and it was imported into Microsoft® Excel 2003.  The CAS numbers 
and compound names were compared with those in the EINECS list file for correctness.  
Within Microsoft® Excel 2003 the numbers of compounds within each ECOSAR class were 
counted using a 15-day trial version of the software DigDB version 7.1.3.3 (Data Instrument 
Group, CA, USA; http://www.digdb.com).  During installation, DigDB integrates into 
Microsoft® Excel as a plug-in.  Using a “roll-up” option within DigDB, the compounds in each 
class were counted, and the results displayed in a new worksheet.  The classes identified by 
ECOSAR  were further grouped into mechanism-based classes according to the classification 
scheme proposed by Verhaar et al (14)

results

ECOSAR classification of EINECS compounds
Table 5.1 presents the results of classifying the 100 196 EINECS list compounds into 

the classes of the ECOSAR software.  The ECOSAR software classified 54 277 (54%) out of 
the 100 196 EINECS compounds into 49 classes.  For compounds containing more than one 
functional group, ECOSAR lists all the functional groups that it can identify in a molecule and 

http://www.digdb.com
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Figure 5.2: 2,5-dihydroxy-3,6-dichlorobenzoquinone (CAS 87-88-7), an example of a compound 
that is classified into the classes vinyl/allyl halides, quinone/hydroquinone and vinyl/allyl alcohols by 
ECOSAR due to the presence of several functional groups. 

may assign more than one functional class to a specific molecule.  This is illustrated in Figure 5.2 
for the compound 2,5-dihydroxy-3,6-dichlorobenzoquinone;  (CAS 87-88-7), where ECOSAR 
identifies three functional groups and classifies the compound into the class vinyl/allyl halides 
and identifies two additional classes namely quinone/hydroquinone and vinyl/allyl alcohols.   

 
Table 5.1, therefore, also includes information on which additional functional groups were 
found to occur concomitantly at least in some congeners in the respective class and lists 
in column 3 the respective classes corresponding to these additional functional groups 
encountered in a specific class.  The results thus obtained reveal that neutral organics form 
the largest class (class 1, n = 21 233).  The ECOSAR software defines neutral organics 
as compounds that are generally solvents, non-ionizable, and non-reactive.  Table 5.1 also 
shows that a large majority (80 %) of the classified compounds fall into seven classes: neutral 
organics, esters, aliphatic amines, phenols and aromatic amines, acrylates and aldehydes 
(classes 1 to 7).  The remaining compounds (20 %) fall into 42 classes that contain less than 
1,000 compounds per class (Table 5.1; classes 8 to 49). 

 
Further grouping of ECOSAR classes 

Verhaar et al. developed a classification scheme for environmental pollutants (14) in which  
chemicals are divided into four categories:  i) non-polar narcotics, ii) polar narcotics,  iii) 
chemicals with unspecific reactivity, and (iv) chemicals with a specific mechanism of action.  
Non-polar narcotics include aliphatic and aromatic hydrocarbons, halogenated aliphatic 
and aromatic hydrocarbons, ethers, alcohols and others (14).  Considering the ECOSAR 
classification scheme (Table 5.1), the neutral organics class (ECOSAR class 1), which contains 
the largest number of classified compounds, would fall into the non-polar narcotics group.   
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Class 
number

Class name a Other functional groups attached to the main class 
identified by the ECOSAR software

Total 

1 neutral organics carbon, hydrogen, bromine, phosphorous, iodine, 
chlorine, fluorine, selenium, sulphur, oxygen, nitrogen,  
boron, silicon, germanium, arsenic, antimony, tellurium, 
polonium, alkali, alkaline, lanthanides, actinides, transition 
metals

21233

2 esters phosphate esters, vinyl/allyl ketones, surfactants-anionic, 
phenols, salicylates

8259

3 aliphatic amines esters, phenols, benzyl alcohols, benzyl amines 5985

4 phenols salicylic acid, quinone/hydroquinone, benzyl alcohols,  
triazines

3561

5 aromatic amines phenols, esters, imidazoles, triazines 2581
6 acrylates esters, aliphatic amines, vinyl/allyl alcohols, allylic/vinyl 

nitriles 
1253

7 aldehydes phenols , esters 1032
8 hydrazines phenols, imides,  triazines 920
9 imides imidazoles, phenols, vinyl/allyl halides , vinyl/allyl 

alcohols
852

10 vinyl/allyl ketones vinyl/allyl alcohols, vinyl/allyl ethers 831
11 acid halide benzyl halides, thiophenes, vinyl allyls 606
12 surfactants-anionic vinyl/allyl alcohols, imidazoles, vinyl/allyl ethers 515
13 surfactants-cationic surfactants-anionic, triazines 493
14 benzyl alcohols imidazoles, benzyl halides 462
15 vinyl/allyl ethers vinyl/allyl alcohols , thiazolidinones, quinone/

hydroquinone 
430

16 epoxides esters, vinyl/allyl ketones, silanes, vinyl/allyl ethers 392
17 benzyl halides imidazoles 369
18 imidazoles no other substituents 349

19 methacrylates silanes 341
20 dinitrobenzenes esters, phenols, hydrazines 340
21 vinyl/allyl alcohols no other substituents 283
22 silanes alkoxy benzyl halides 260

a  class name as assigned by the ECOSAR software.

Table 5.1:  Numbers of compounds in various classes as identified by the ECOSAR software.  
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Class 
number

Class name a Other functional groups attached to the main class 
identified by the ECOSAR software

Total 

23 anilines (amino-
meta)

amino-para anilines, amino-ortho anilines, triazines 252

24 vinyl/allyl halides quinone/hydroquinone , vinyl/allyl alcohols, acrylamides 240
25 peroxy acids thiophenes, triazines, vinyl/allyl ethers 199
26 triazines vinyl/allyl ethers 198
27 thiols–mercaptans silanes 193
28 isocyanates esters, imides 183
29 acrylamide vinyl/allyl alcohols 183
30 allylic/vinyl nitriles acrylamides, vinyl/allyl alcohols , vinyl/allyl ethers 174
31 diazoniums esters 167
32 thiophenes benzyl halides , acrylamides, vinyl/allyl alcohols 150
33 schiff bases vinyl/allyl ketones , vinyl/allyl ethers 127
34 haloacetamides benzyl halides 125
35 diepoxides esters 118
36 diketones esters, vinyl/allyl ketones 95
37 thiocyanates silamines 69
38 surfactants-nonionic silanes 65
39 thiazolidinones vinyl/allyl halides 62
40 silamines no other substituents 58
41 benzotriazoles phenols 57
42 aziridines esters 38

43 quinone/
hydroquinone 

vinyl/allyl alcohols 37

44 benzyl amines imidazoles 29
45 propargyl alcohols propargyl ethers, propargyl amines, vinyl/allyl halides 26
46 propargyl ethers no other substituents 23
47 dinitro aromatic 

amine 
phenols, thiophenes , diazoniums 23

48 vinyl/allyl sulfones vinyl/allyl ethers , acrylamides 21
49 propargyl amines no other substituents 18

Total 54277

a  class name as assigned by the ECOSAR software.
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Aromatic amines (ECOSAR class 2), esters (ECOSAR class 25), phenols (ECOSAR class 
26), and anilines (ECOSAR class 35) would fit into the polar narcotics category (14).  
Based on these considerations it can be concluded that, as schematically represented in 
Figure 5.3, the polar narcotics would include 17 077 EINECS list chemicals (ECOSAR 
class 2+25+26+35) and the non-polar narcotics would include 21 233 EINECS 
compounds (ECOSAR class 1), together covering about 40 % of the total EINECS list. 
   Compounds in Table 5.1 that fit the unspecific reactivity category of Verhaar et 
al. include propargyls (classes 16–18), cyanates (classes 19 and 20), aldehydes 
(class 28), hydrazines (class 29), and acid halides (class 31).  The ECOSAR 
software classifies reactive compounds (e.g. organophosphorous, pyrethroids, 
carbamates etc.) into the ester class (ECOSAR class 25) since they are esterified.    
 
Compounds not classified by ECOSAR
 The ECOSAR software was not able to classify the remaining 45 919 EINECS 
compounds.  Further analysis of these compounds revealed that 18 367 (40 %) of them do 
not have a defined molecular formula.  These include for example fish oils (e.g. cod liver 
oil; CAS 8001-69-2 ), plant oils (e.g. rape oil monoglycerides; CAS 85586-30-7), botanical 
extracts (e.g. sweet pea extract; CAS 90604-48-1), animal extracts (civet secretion; CAS 
68916-26-7), crude oil distillates (e.g. low temperature crude tar bases; CAS 141785-66-2), 
enzymes (e.g. luciferase; CAS 9014-00-0), and wastes (e.g. ethylene oxide absorber reactor 
waste gases; CAS 68513-74-6).  Botanical extracts (n = 2 819) and animal extracts (n = 
119) in total (n = 2 938) account for 16 % of the compounds without a defined molecular 
formula.  

The remaining 27 552 compounds which ECOSAR was unable to classify fall into 
the groups of for example, medicines (e.g. streptomycin B; CAS 128-45-0, morphine 
hydrochloride, CAS 52-26-6) and salts (e.g. formic acid lead salt; CAS 7056-83-9). 
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dIscussIon 

The REACH legislation focuses on providing toxicity information for about 30 000 
EINECS chemicals with an annual production volume greater than 1 ton (4).   The rationale 
for focusing on production volume is that large production volumes increase the potential 
for exposure, and therefore the potential risks associated with the chemical (15).  In the 
present study, we chose to focus on the complete EINECS list, rather than being restricted 
by production volumes.  This is because it is not known to what extent production volume 
actually predicts exposure, and chemicals with low toxicity may be overrepresented among 
high volume chemicals.  Therefore, there can be a  bias towards less acutely toxic chemicals 
when one would only consider the 30 000 chemicals with annual production volumes greater 
than 1 ton (15).  Equally important is the fact that during development of QSAR models, 
toxicity data from both low and high production volume chemicals is often used, so one might 
also expect to predict toxicity of both low and high volume chemicals by these QSARs.

In order to implement QSAR models successfully, one needs to be able to classify 
compounds into  specific groups, based on chemical structure or mechanism of action (16).  
In the present study, using the ECOSAR software, we classified approximately 54 % of the 
100 196 EINECS chemicals into 49 classes (Table 5.1) that can be potentially covered by 
QSAR models.  As far as we are aware, this is the first attempt to categorize the complete 
EINECS list into specific classes.  The usefulness of ECOSAR for classification of chemicals 
has been previously demonstrated.  Hulzebos and Posthumus used ECOSAR to categorize 70 
chemicals into chemical classes with 87 % accuracy, and this compared well (90 % accuracy) 
with using DEREK,  a commercial software package (17).  Thus, the ECOSAR software, 
which is freely available for download on the internet, seems an appropriate method for 
chemical classification.

Using the classification scheme proposed previously by Verhaar et al. (1992), we further 
grouped the ECOSAR classes into four groups.  It has been frequently demonstrated that 
the acute toxicity of both non-polar and polar narcotics can be adequately explained by their 
hydrophobicity, as they are assumed to exert their toxicity via a non-specific mode of action 
(14, 18-20).  Most of the QSAR models published over the last 30 years have focused on 
both non-polar and polar narcotics and describe QSARs for example, for chlorobenzenes 
(21), alcohols and chlorohydrocarbons (22), halogenated aliphatics (23), chlorinated alkanes 
(11, 18, 24).  Considering that the non-polar and polar narcotics (Fig. 5.3; total of n = 38 310) 
cover about 40 % of the EINECS compounds, the potential application of QSAR models for 
these compounds looks promising.  
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Figure 5.3:  Further grouping of ECOSAR classes into non-polar and polar narcotics according to the 
classification scheme proposed by Verhaar et al (14).  The polar narcotics group (smaller pie chart) is 
made up of esters, aliphatic amines, aromatic amines, and anilines.

However, one needs to be aware that even within each of the specific classes, a single 
QSAR model would probably not cover all of the compounds.  This is illustrated in Figure 5.4, 
showing that a QSAR model developed for substituted mononitrobenzenes could not cover 
substituted nitrobenzenes that (i) are ionized at physiological pH of 7.4, i.e. nitrophenols and 
nitrobenzoic acids (□), (ii) have two nitro groups (∆), (iii) contain a cyano substituent (О), or 
(iv) have two phenyl rings (◊), because they were clearly outliers in the model probably due 
to a different mechanism of action (9).

The ECOSAR software classifies nitrophenols (ECOSAR class 26) and dinitrobenzenes 
(ECOSAR class 33) into different classes than the substituted mononitrobenzenes 
(ECOSAR class 1), thus confirming their outlier status.  Although nitrobenzoic acids and 
cyanonitrobenzenes fall into the same ECOSAR class as the substituted mononitrobenzenes, 
(ECOSAR class 1), other QSAR models would need to be defined for them.  

The ECOSAR software does not separately categorize specifically reactive compounds 
(e.g. organophosphorous, pyrethroids, carbamates etc).  For example, organophosphorous 
compounds exert their specific acute toxic effects primarily by inhibiting the enzyme 
acetylcholinesterase (AChE) (25, 26) and pyrethroids interfere with the closing of sodium 
channels in neurons (27).  Most of the specifically reactive compounds are used as pesticides 
and they have been the focus of several QSAR modeling efforts as demonstrated by 
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Figure 5.4:  QSAR for the correlation between the decadic logarithm of the 48 h experimental toxicity 
of substituted mononitrobenzenes to the protozoan Tetrahymena pyriformis and the toxicity predicted 
on the basis of log Kow  for  (r2 = 0.815; n = 33), N.B.  Data points not included represent substituted 
nitrobenzenes that (i) are ionized at physiological pH of 7.4, i.e. nitrophenols and nitrobenzoic acids 
(□), (ii) have two nitro groups (∆), (iii) contain a cyano substituent (О), or (iv) have two phenyl rings 
(◊).  IGC50 = IC50 for growth inhibition.  Adapted from literature (9).
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QSARs described for e.g. organophosphorous compounds (28-34), pyrethroids (35-38), and 
carbamates (31, 33, 34, 39).  Thus, it can be expected that compounds of ECOSAR classes 
that would fall into these groups of chemicals with a specific mechanism of action can all be 
covered by QSARs. 

For some of the compounds that the ECOSAR software was not able to classify, it is 
clear that QSAR models would never apply to them.  Substances that fall into the categories 
petroleum and coal based substances and waste gases cannot be tested with conventional test 
systems due to their complex and variable composition (40), making the application of QSAR 
models unrealistic.  On the other hand, the safety assessment of botanical extracts could be 
conducted based on further development of an approach used for natural flavor ingredients 
in food (41).  The approach developed for essential oils is based on the concept that the 
types of chemicals in natural flavor complexes are not infinite in structural variation, because 
chemical constituents in plants originate from a limited number of biosynthetic pathways (41).  
Therefore, if more than 95% of the essential oil constituents can be adequately characterized 
and assigned to well defined congeneric groups, the safety of the structural classes of 
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identified individual compounds can be judged using toxicity information on structurally 
similar congeners in the respective classes (41) in a SAR approach.  Considering the rapid 
improvement and reduced costs of analytical tools, compared to the ever increasing costs for 
traditional toxicity testing, this approach may prove to be potentially useful and applicable 
for a wider range of  botanical extracts (n = 2 819), and/or animal extracts (n = 119).  This 
would lead to an increase in the coverage of the EINECS list by (Q)SAR approaches from 54 
277 to 57 215 compounds, equivalent to 57 % of the EINECS list.

As classification of compounds is an important first step for the implementation of QSAR 
models on the regulatory scene, a next step would be to evaluate the quality of the existing 
QSAR models for the identified classes, a process that is currently ongoing at the ECB (8).  
Altogether, the results of the present study reveal that, despite the fact that individual QSARs 
may often each cover only limited, i.e. less than 1%, of the EINECS compounds, the potential 
for applying (Q)SAR approaches for safety assessment of EINECS compounds may prove 
to be significant.  
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The new EU legislation for managing chemicals called Registration, Evaluation and 
Authorization of Chemicals (REACH) (1) aims to fill in gaps in toxicity information that 
exist for the chemicals listed on the European Inventory of Existing Chemical Substances 
(EINECS) (2).  Within the REACH framework, manufacturers are required by the year 2018 
to provide toxicity information for about 30 000 chemicals with annual production volumes 
greater than 1 ton (1).  The amount of toxicity data required for a chemical increases with an 
increase in its production volume.  There is currently ongoing debate about the potentially 
large number of animals that have to be used for experimental toxicity testing as an outcome 
of REACH.  In 2005, about 12 million animals were used within the EU (3).  Within the 
REACH framework, there are provisions to allow alternative testing methods e.g. in vitro 
and in silico approaches.  Due to the large amount of toxicity information that is required 
within the next 10 years, methods that can help to direct priorities for future toxicity testing 
will help to save time, money, and animals.  In this regard, in silico methods such as those 
based on (Quantitative) Structure-Activity Relationships [(Q)SARs] are expected to provide 
toxicity information or identify hazards of chemicals, and this information can then be used 
to identify priority chemicals for further risk evaluation or even predict toxicity of congeners 
within the applicability domain of the QSAR.  

A QSAR is based on the assumption that the biological activity of a new or untested 
chemical can be inferred from the molecular structure, or properties of similar compounds 
whose activities have already been assessed (4). Traditional QSARs use experimentally 
determined descriptors (5, 6).  However, due to lack of large data sets of experimentally 
derived descriptors, QSARs approaches have been developed that are based on descriptors 
defined using quantum-mechanical computer calculations.  Due to the increasing power of 
computers, quantum-mechanical computer calculations have become a valuable and widely 
applicable tool in (bio)chemical research.  They provide the possibility to calculate, using 
the chemical structure of a compound as the sole input, parameters that define the physico-
chemical properties and relative reactivity of a compound.  Computational approaches offer 
the advantages of ease of use, speed, and low costs.  

In 2007, the Organization for Economic Cooperation and Development (OECD) 
published a guidance document for (Q)SAR model development and validation in order to help 
increase the acceptability of (Q)SAR models for regulatory purposes (7). These guidelines 
state that in order to facilitate the consideration of a (Q)SAR model for regulatory purposes, 
the (Q)SAR model should be associated with the following five categories of information:1) 
a defined endpoint, 2) an unambiguous algorithm, 3) a defined domain of applicability, 4) 
appropriate measures of goodness-of-fit, robustness, and predictivity, and 5) a mechanistic   
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interpretation (7).  The aim of this thesis was to develop computational chemistry-based 
QSAR approaches that enable identification of priorities within various selected groups of 
EINECS chemicals, and to investigate to what extent QSAR approaches can be of use in 
predicting toxicty of the large number of EINECS chemicals. To this end, validated QSAR 
models for acute toxicity of selected groups of EINECS chemicals were developed taking 
into account the OECD guidelines and the actual number of EINECS compounds covered by 
these QSAR approaches was established.

summAry of methods And results

In this thesis, QSAR models were developed for nitrobenzenes (chapter 2), chlorinated 
alkanes (chapter 3), and organothiophosphate pesticides (chapter 4), Three descriptors were 
investigated for their suitability in modeling the toxicity of the chemicals in the three groups 
to various organisms.  These were; 

the logarithm of the octanol/water partition coefficient (log (i) Kow), which generally 
models a compound’s hydrophobicity, which is important in describing the 
passage of a compound through membranes, 
the energy of the lowest unoccupied molecular orbital (ii) Elumo (eV), which models 
the electrophilic nature of the chemicals, and 
the energy of the highest occupied molecular orbital (iii) Ehomo (eV), which models 
the nucleophilic nature of the chemicals.  

In a final step, a science-based estimate was made of the percentage of EINECS chemicals 
that can be grouped into specific chemical classes, and thus in theory be subject to QSAR 
modeling (chapter 5).

The initial task in this thesis was to identify suitable software packages, descriptor 
calculation protocols, and statistical techniques for use for the rest of the thesis.  This was 
done using a group of compounds called substituted nitrobenzenes as they had sufficient 
experimental toxicity data from the literature for modeling purposes (chapter 2).  Substituted 
nitrobenzenes are widely used in industry during the synthesis of dyes, explosives, solvents, 
plastics, anilines, and various bioactive products such as insecticides, pesticides, and 
pharmaceuticals (8, 9).  As a result of their varied origins and uses, substituted nitrobenzenes 
are widespread in ecosystems and consequently have a high potential for causing ecotoxic 
effects (9).  Out of six software packages, ClogP was identified as the most suitable one 
for estimating log Kow values, a conclusion based on the highest correlation (r2 = 0.98) 
between experimental and predicted log Kow values for a set of substituted nitrobenzenes.  
Using experimental literature data sets on the acute toxicity of substituted nitrobenzenes to 
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algae, daphnids, fish, protozoans, bacteria, and yeast the possibilities to establish quantum 
chemistry-based QSARs were investigated.  The log Kow was a sufficient descriptor (0.65 < 
r2 < 0.98) in explaining the toxicity of substituted mononitrobenzenes to protozoans, fish, 
daphnids, yeast, with an additional electronic descriptor, Elumo, being required for algae.  The 
QSARs were valid for neutral substituted mononitrobenzenes with no -OH, -COOH, or -CN 
substituents attached directly to the ring.  Based on these substituent criteria, 497 EINECS 
compounds were identified that fit the selection criteria for the established QSARs.  The log 
Kow based QSARs for the substituted mononitrobenzenes were compared to literature QSARs 
that describe the minimum or baseline toxicity of chemicals due to narcotic action in order 
to identify log Kow cutoff points, above which one should apply the baseline QSAR models 
instead of the ones defined in our studies.  Based on these comparisons, an advisory tool 
was developed that directs users to the appropriate QSAR model to apply for five types of 
organisms within specified log Kow ranges.  

In a next step, QSAR models were developed for chlorinated alkanes, a group of 
chemicals with large production volumes that are widely used as industrial and household 
solvents, fumigants, and intermediates in chemical synthesis (10), and therefore, have a 
large potential for environmental pollution.  Whereas in chapter 2 there were sufficient 
experimental toxicity data for substituted mononitrobenzenes available in the literature for 
developing QSAR models, this was not the case for the chlorinated alkanes.  Therefore, in 
chapter 3, Chinese hamster ovary (CHO) cells were exposed to varying concentrations of 
a series of chlorinated alkanes in an in vitro cytotoxicity assay in order to generate in vitro 
toxicity data that could be used to develop QSAR models and eventually be correlated to 
the limited available in vivo data to describe their acute in vivo toxicity.  Cytotoxicity of the 
series of chlorinated alkanes to CHO cells was observed at concentrations similar to those 
that had been shown previously to be toxic to fish (11).  Strong correlations were observed 
between the acute in vitro toxicity of the chlorinated alkanes and (i) log Kow (r2 = 0.88) and 
(ii) in vivo acute toxicity to fish (r2 = 0.76).  A QSAR model was developed to predict in vivo 
acute toxicity to fish based on the in vitro data and even on in silico log Kow data only.  The 
QSAR models were validated both internally and externally.  The developed QSAR models 
are applicable to chlorinated alkanes with up to 10 C-atoms, up to eight Cl-atoms, and log Kow 
values lying within the range from 1.71 to 5.70, and they cover 77 EINECS chemicals.  

The QSAR methodologies applied to substituted mononitrobenzenes (chapter 
2) and chlorinated alkanes (chapter 3) were extended to a third group of chemicals, 
organothiophosphates (chapter 4).  Organothiophosphates are the most widely used pesticides 
since the banning of organochlorines in the 1970s (12) as they have lower environmental 



120

Chapter 6

persistence, but they are often implicated in wildlife and human poisonings (12).  They exert 
their primary acute toxic effects by inhibiting the enzyme acetylcholinesterase (AChE).  As a 
result AChE can no longer hydrolyze its natural substrate, the neurotransmitter acetylcholine, 
and acetylcholine accumulates at the synaptic terminals leading to overstimulation of the 
postsynaptic receptor (13, 14).  In order to exert their full toxicity, organothiophosphates 
need to be oxidized to their active oxo-form form by cytochrome P450 enzymes (15).  In 
this chapter, the descriptors investigated were log Kow, Ehomo (to model the oxidation of the 
organothiophosphate to its active oxo-form by cytochrome P450 enzymes), and Elumo (to model 
the binding of the active oxo-form of the organothiophosphate to AChE).  Toxicity data sets 
used were from (i) acute immobilization experiments conducted in the present thesis with 
Daphnia magna and from (ii) the literature describing toxicity to fish.  Additionally, it was 
investigated if toxicity data for the invertebrate D. magna could be used to build a QSAR 
model to predict toxicity to fish.  Suitable QSAR models (0.80 < r2 < 0.82) were derived 
to predict acute toxicity of organothiophosphates to fish and D. magna.  Toxicity data for  
D. magna correlated well (r2 = 0.94) with toxicity data for fish.  This implied that by performing 
toxicity tests with D. magna, one could use our interspecies QSAR model to predict the acute 
toxicity of organothiophosphates to fish.  The three QSAR models were validated either both 
internally and externally (D. magna) or internally only (carp and D. magna to carp).  For 
each QSAR model, an applicability domain was defined based on the chemical structures 
and the ranges of the descriptor values of the training set compounds.  Eighty-three EINECS 
compounds were identified that fit the selection criteria for the QSAR models.

The QSAR models for the mononitrobenzenes (chapter 2), chlorinated alkanes 
(chapter 3), and organothiophosphates (chapter 4) covered respectively 0.5 %, 0.1 %, and 
0.1 % of the 100 196 EINECS compounds respectively, together amounting to a total of 660 
compounds, making up about 0.7 % of the EINECS list.  As the three QSAR models appeared 
to cover only a small percentage of the EINECS list, in a next step, an estimate was made 
of the percentage of EINECS chemicals that can be grouped into specific chemical classes, 
and thus in theory be subject to QSAR modeling (chapter 5).  To this end, ECOSAR, a 
software package that can be freely downloaded over the internet, was used to group the 
EINECS chemicals into various classes based on chemical structure.  The ECOSAR software 
classified 54 % of the 100 196 EINECS chemicals into 49 classes that can be potentially 
covered by (Q)SAR models.  The largest proportion of the classified compounds (40 % of 
the EINECS list) fall into the classes of non-polar and polar narcotics.  Compounds that 
were not classified include, for example, fish oils, botanical and animal extracts, and crude 
oil distillates.  We proposed that the safety assessment of botanical extracts could be done 



Summary, general discussion & future perspectives

121

C
ha

pt
er

 6

by further development of a method recently reported for the safety assessment of natural 
flavour complexes used as ingredients in food (16). The approach developed for essential 
oils is based on the concept that the types of chemicals in natural flavour complexes are 
not infinite in structural variation, because chemical constituents in plants originate from a 
limited number of biosynthetic pathways (16).  Therefore, if more than 95% of the essential 
oil constituents can be adequately characterized and assigned to well defined congeneric 
groups, the safety of the structural classes of identified individual compounds can be judged 
using toxicity information on structurally similar congeners in the respective classes (16) in a 
SAR approach.   This would result in an additional 3 % of the EINECS compounds that could 
be covered by SAR approaches, bringing the total percentage of EINECS compounds that 
can be covered by (Q)SAR approaches to 57 %.  A summary of the QSAR models for acute 
toxicity developed in this thesis, their applicability domains and the organisms for which the 
QSAR models can acute toxicity predictions are shown in Figure 6.1
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generAl dIscussIon 

The main objective of this thesis was to develop validated computational chemistry-
based QSAR models for selected groups of EINECS chemicals and to investigate to 
what extent QSAR approaches can be of use in predicting toxicty of the large number of 
EINECS list chemicals.  This was done using experimental toxicity data from literature for 
substituted mononitrobenzenes (chapter 2) and organothiophosphates (chapter 4), and using 
experimental toxicity data from our own experimental work for chlorinated alkanes (chapter 
3) and organothiophosphates (chapter 4).  Since the application of the five OECD guidelines 
for (Q)SAR model development and validation was central in this thesis, in the following 
sections, the application of these guidelines is discussed in detail.

Clearly defined endpoint i) 
This guideline states that it should be clear which endpoint is being modeled and how 

it is experimentally defined, since a given endpoint could be determined under different 
experimental conditions and protocols (7).  Throughout the thesis, the toxicity endpoints 
were clearly defined, e.g. 24 h EC50 (μM) for CHO cells in the MTT cytotoxicity assay 
(chapter 3) and 24 h EC50 (M) for D. magna in the acute immobilization test (chapter 4) and 
the conditions under which the toxicity data were derived were provided.  With the provision 
of this information, there can be no confusion as to the period of exposure, test organism, and 
the units of the test concentrations. 

ii)   Unambiguous algorithm
An unambiguous algorithm seeks to ensure transparency of the model that is used to 

generate predictions of a toxicity endpoint based on chemical structure and/or physicochemical 
properties (7). For each of the three descriptors used in this thesis (log Kow, Elumo and Ehomo) 
their relevance to the toxicity endpoint was described, the calculation methods, software 
packages and the predicted values of the descriptors for each compound were described and 
the latter were generated by methods that are publicly available.  For all compounds, CAS 
numbers were provided, to enable easier identification, as some compounds e.g. pesticides 
(chapter 4) are known by multiple names.  The statistical technique, linear regression used 
to analyze the relationship between toxicity and the physicochemical descriptors is simple to 
use and sufficient especially where few descriptors (in this thesis, one or two) are involved 
(17).  All experimental data used in this thesis were from the same laboratory in order to 
avoid inter-laboratory variation (18).  All QSAR models developed in this thesis meet the 
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requirement of a maximum of one descriptor (k) for every five compounds (n/k > 5) (19), e.g. 
our QSAR model for D. magna (n = 10, k = 1, n/k = 10) (chapter 4), whilst a comparable 
model for the same organism and endpoints from literature (20) does not (D. magna, n = 22, 
k = 6, n/k = 3.6).  In general, the larger the number of descriptors used, and the fewer the 
observations in the training set, the significantly higher the probability for the occurrence of 
a correlation by chance (21).

iii) Defined domain of applicability 
As models are a simplification of reality, their limits should be well defined (22). This 

principle reflects the fact that QSARs are associated with limitations regarding the types of 
chemical structures, physicochemical properties, and mechanism(s) of action for which a 
model generates reliable predictions.  The domains of applicability of our QSAR models 
were defined by taking into account the similarities in chemical structure and the ranges 
of descriptor values of the training set chemicals (chapters 2–4).  For example, the QSAR 
model for describing toxicity of organothiophosphates to D. magna (chapter 4) only applies 
to molecules containing a P=S moiety and with log Kow values lying between 0.75 and 5.50.  
In cases where log Kow was used as a descriptor, cut-off points were set by comparing QSAR 
equations to those for non-polar narcotics (where available).  Above the cutoff point, the 
non-polar narcotics QSAR should be applied in order to avoid underestimating the toxicity 
of compounds within the chemical domain of the QSAR (chapter 2) (18).  In this thesis, 
we went a step further developing a methodology for extracting chemicals that fit into the 
applicability domain of our QSAR models (chapter 2), and providing lists of EINECS 
chemicals that fit into the applicability domains of the QSAR models for the three chemical 
groups (chapters 2–4). 

iv)  Appropriate measures of goodness-of-fit, robustness, and predictivity
This principle requires that parameters that reflect both the internal performance of the 

QSAR model as well as its predictivity should be provided (7).  The internal performance 
of the models was characterized based on the goodness-of-fit (r2) and robustness (r2

int), both 
determined based on the training set chemicals.  The robustness of the models was tested 
by internal validation using a leave-out-many cross validation method, with 20% of the 
calibration compounds left out at each step.  The validation groups were created using the 
method of unsupervised stratification of cross validation to reduce bias introduced by random 
sampling.  The external performance of the QSAR models was evaluated by testing a series 
of additional compounds that fitted into the applicability domain of the model, and then 
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comparing the predicted and experimental toxicity values.  In this thesis, we validated our 
QSAR models internally (chapters 2–4) and externally (chapters 3 and 4), parts of the five 
OECD requirements for QSAR models that are most often neglected in most QSAR studies 
published in the literature.  

v)  A mechanistic interpretation
The OECD guidelines also state that a QSAR should be associated with a mechanistic 

interpretation, whenever this is possible.  Such a mechanistic interpretation links the 
descriptors used in the model and the endpoint being predicted (7).  When a QSAR is based 
on mathematical descriptors that do not relate to a mechanistic interpretation this limits the 
impact of a QSAR.  The descriptors used to define a QSAR model should reflect the rate-
limiting step in the biological process and/or endpoint that is modeled, otherwise significant 
correlations will not be obtained.  This was demonstrated for chlorinated alkanes (chapter 3) 
when the use of Elumo as an additional descriptor to log Kow did not improve the correlation.  
Similarly, for organothiophosphates, the lack of improvement in the correlation after the 
use of Ehomo or Elumo as additional descriptors to log Kow suggests that for D. magna, the 
conversion of the organothiophosphates to the organophosphates (modeled by Ehomo) or the 
rate of reaction of the oxidized metabolite of the organothiophosphate with AChE (modeled 
by Elumo) are not the rate-limiting steps in the mechanism underlying the toxicity (chapter 
4).

The QSAR models developed in this thesis showed a high dependence on log Kow 
in explaining toxicity of the three chemical groups to various organisms (chapters 2–4), 
and even to cellular systems (chapter 3).  This agrees well with the ECOSAR software 
classification results (chapter 5) where substituted mononitrobenzenes and chlorinated 
alkanes were grouped into the neutral organics class, and organothiophosphates were 
classified into the esters class.  According to the classification scheme proposed by Verhaar et 
al. (1992), neutral organics and esters would fall into the non-polar and polar narcotic groups 
respectively (23).  It has been frequently demonstrated that the toxicity of both non-polar and 
polar narcotics can be adequately explained by their hydrophobicity, as they are assumed to 
exert their toxicity via a non-specific mode of action (11, 23-25), which is in agreement with 
the results of this thesis

When developing QSAR models one also needs to be aware that even within each 
specific class, a single QSAR model would probably not cover all of the compounds as 
shown with substituted mononitrobenzenes (chapter 2).  The QSAR model developed for 
substituted mononitrobenzenes could not cover substituted nitrobenzenes that (i) are  ionized 
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at physiological pH of 7.4, i.e. nitrophenols and nitrobenzoic acids, (ii) have two nitro 
groups, (iii) contain a cyano substituent, or (iv) have two phenyl rings, because they were 
clearly outliers in the model probably due to a different mechanism of action (chapter 2).  
Substituted dinitrobenzenes have been shown previously to have enhanced toxicity when 
compared to substituted mononitrobenzenes, probably due to their fast reduction to the 
corresponding aryl-hydroxylamines (26-28), which justifies their exclusion.  Compounds 
that can ionize at physiological pH (e.g., benzoic acids and nitrophenols) have different 
kinetics of uptake in the body than those that are neutral  and may have additional toxicity by 
interfering with proton gradients during oxidative phosphorylation (18). With respect to 2-, 
3-, and 4-cyanonitrobenzene, only 2-cyanonitrobenzene was an outlier.  This could be due to 
experimental error, or a mechanistic reason, which remains to be established. 

In this thesis, Elumo, a reactivity parameter, was only needed as an additional descriptor 
to describe toxicity of mononitrobenzenes to algae (chapter 2), which is in agreement to an 
earlier trend observed after combining log Kow and another reactivity parameter, Hammett’s 
Σσ when modeling the toxicity of substituted mononitrobenzenes to Chlorella pyrenoidosa 
(27).

An insight into the total number of EINECS compounds that QSAR models can potentially 
cover would be of interest for a potential successful application of these models within 
REACH.  Using the ECOSAR software 54 % of the EINECS compounds were grouped into 
classes that can be potentially covered by QSAR models, and 40 % of them fall into the non-
polar and polar narcotics groups (chapter 5).  Since log Kow values can be easily estimated 
with software (chapter 1), and also since most of the QSAR models published over the last 
30 years cover non-polar and polar narcotics, the potential application of QSAR models to 
the non-polar and polar compounds looks promising.  For other compounds that ECOSAR 
was unable to classify, e.g. botanical extracts, analytical identification of the individual 
constituents using an adapted safety assessment approach used for natural flavor ingredients 
in food (16) could be a way forward  Considering the rapid improvement and reduced costs 
of analytical tools, compared to the ever increasing costs for traditional toxicity testing, this 
approach may prove to be potentially useful and applicable for a wider range of  botanical 
extracts (n = 2 819), and/or animal extracts (n = 119).  This would lead to an increase in the 
coverage of the EINECS list by (Q)SAR approaches from 54 277 to 57 215 compounds, 
equivalent to 57 % of the EINECS list.
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future perspectIves And conclusIons

Within REACH, the range of possible uses of (Q)SARs includes screening and 
establishment of priorities, identification of inherent toxicity (29) and classification and 
labeling of chemical substances  under the Globally Harmonized System (GHS) (30).   The 
successful implementation of (Q)SAR approaches as demonstrated in this thesis further 
supports the belief that there is a future for (Q)SAR approaches in the risk assessment of 
chemicals.  According to Bradbury et al. (2004), the best step forward in the risk assessment 
of chemicals is to use what are called Intelligent Testing Strategies (ITS) (Figure 6.2). 

Figure 6.2:   A scheme for implementing intelligent testing strategies (ITS). Implementation of QSARs 
into ITS can help to reduce costs, limit animal testing, and speed up the risk assessment process (31).  
TTC = thresholds of toxicological concern.

  Intelligent testing strategies are defined as any approach to the evaluation of toxicity 
that is based on the use of two or more of the following: physicochemical data, in vitro 
data, human data (e.g. clinical case reports), animal data (where unavoidable), computational 
methods such as (Q)SAR and biokinetic models (32, 33) and thresholds of toxicological 
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concern (TTC) (31) where TTC is an exposure threshold value for chemicals, below which 
no significant risk is expected (31).  The results of this thesis (Figure 6.1) can be integrated 
into an ITS and used to help reduce the number of animals used for experimental purposes.
 The impact that (Q)SARs will have on the regulatory scene will depend on how 
much regulators are willing to incorporate (Q)SARs into their decision making.  Estimates 
indicated that implementation of QSARs into the ITS would result in cost savings between 
€ 800 and 130 million (Table 6.1) (34), and saving of between 1.3 and 1.9 million animals  
(35).

Table 6.1:  Costs of animal tests with and without implementing QSARs into integrated testing 
strategies  (34)

Test costs (million €) Production volume (tons) per annum Total
1–10 10–100 100–1 000 > 1 000

No use of  QSAR 230 690 510 710 2130

Maximum use of QSAR 130 260 260 540 1190

Internationally, considerable efforts are in progress to help increase the use of  
(Q)SAR models for regulatory purposes.  The OECD has developed a software package called  
(Q)SAR Application Toolbox that member countries can use to fill toxicity gaps in (eco)
toxicity data needed for assessing the hazards of chemicals (36).  The European Chemicals 
Bureau (ECB) is currently compiling an inventory of (Q)SAR models that can be used for 
regulatory purposes.  For this purpose, they are developing a harmonized template, (Q)SAR 
Prediction Reporting Format, which will be used to summarize and report substance-specific 
predictions generated by (Q)SAR models (37).  The ECB has developed a (Q)SAR tool 
named Toxtree to be implemented into an ITS.  (38, 39)  Toxtree is an open source application 
and it contains a data mining tool, Leadscope, that can be used to provide a hierarchical 
clustering of chemicals (29). 

Over a period of 11 years, REACH will assemble data with a value of approximately   
€ 10 billion (29).  It is still unclear to what extent this large volume of data can be made 
available for research purposes.  Public access to this data will enable the development 
of more (Q)SAR models, and the external validation of existing models.  Currently,                                                            
(Q)SAR approaches are widely used in the pharmaceutical industry to predict pharmacological 
properties of compounds, thus allowing for the selection of desirable candidate compounds 
for synthesis.  This approach could also be extended to industrial chemicals in order to 
optimize their toxicological and/or ecotoxicological properties.  Such an approach could also 
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be used for the development of safer chemicals as well (29).
Overall, it is concluded that QSAR models are expected to play an important role in the 

risk assessment of chemicals within REACH.  The inclusion of QSAR approaches in ITS 
will result in considerable savings in costs and in animal numbers.  The implementation of 
the OECD guidelines for QSAR development and validation at every step of the modeling 
process will help to increase the acceptability of data generated by (Q)SARs, and also to 
promote their mutual acceptance by regulatory authorities.  Altogether, the results of this 
thesis reveal that, (i) in vitro experiments and even in silico calculations can help to reduce or 
replace animals used for experimental testing and (ii) despite the fact that individual QSARs 
may often each cover only limited, i.e. less than 1%, of the EINECS compounds, (Q)SAR 
approaches have the potential to cover about 57 % of the EINECS compounds. 
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Het is algemeen bekend dat er onvoldoende (eco)toxicologische informatie beschikbaar 
is over de mogelijk gevaarlijke eigenschappen van meer dan 100 000 chemicaliën die binnen 
de Europese Unie geregistreerd zijn in de “European Inventory of Existing Chemicals” 
(EINECS).  Met het onlangs geïntroduceerde nieuwe EU-managementinformatiesysteem 
voor chemische stoffen, genaamd Registration, Evaluation and Authorization of Chemicals 
(REACH), zouden in de komende tien jaar de nog ontbrekende toxiciteitgegevens van de 
EINECS-stoffen moeten worden aangevuld.

Er is momenteel een discussie gaande over het mogelijk grote aantal proefdieren dat 
nodig zou zijn voor experimentele toxiciteitstesten als gevolg van de invoering van REACH. 
Deze bezorgdheid komt mede voort uit het feit dat er binnen de EU op dit moment 12 miljoen 
proefdieren worden gebruikt voor experimentele doeleinden. Methoden die kunnen helpen 
om prioriteiten te stellen voor toekomstige toxiciteitstesten, kunnen tijd, geld en proefdieren 
besparen. In dit verband bestaat de verwachting dat in silico methoden, gebaseerd op 
(Quantitative) Structure Activity Relationships [(Q)SARs], informatie over toxiciteit 
of risico’s van chemicaliën kunnen verschaffen. Deze informatie kan vervolgens worden 
gebruikt om prioriteiten te stellen bij het bepalen welke chemicaliën voor verdere risico-
evaluatie in aanmerking komen.

Een QSAR is gebaseerd op de aanname dat de biologische activiteit van een nieuwe- 
of nog niet geteste chemische stof kan worden afgeleid uit de moleculaire structuur, of uit 
de eigenschappen van vergelijkbare stoffen waarvan de werking al is beoordeeld.  Met de 
chemische structuur van een stof als enig gegeven, kan een voorspellend model voor toxiciteit 
worden ontwikkeld gebaseerd op parameters die de fysisch-chemische eigenschappen en de 
relatieve reactiviteit van reeds geteste stoffen definiëren.

Dit proefschrift beschrijft de ontwikkeling van gevalideerde QSAR modellen voor 
de drie volgende chemische groepen: mononitrobenzenen (hoofdstuk 2), gechlorineerde 
alkanen (hoofdstuk 3) en organothiofosfaten (hoofdstuk 4), rekening houdend met de 
richtlijnen die onlangs zijn goedgekeurd door de Organization for Economic Cooperation 
and Development (OECD). Deze chemische groepen worden op grote schaal gebruikt en 
impliceren dientengevolge een groot potentieel risico op (eco)toxicologische effecten.
Twee relevante fysisch-chemische parameters bij de modellering van de toxiciteit van de 
chemische stoffen uit de drie groepen voor verscheidene organismen waren:

de logaritme van de octanol/water partitiecoëfficiënt (log (i) Kow), die 
doorgaans de hydrofobe eigenschap van een stof weergeeft, van belang 
bij de beschrijving van het passeren van een stof door membranen en 
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de energie van de laagste onbezette moleculaire orbitaal (ii) Elumo(eV), die de 
electrofiele aard van een stof weergeeft.

Gebaseerd op experimentele toxiciteitgegevens uit de literatuur en in silico log Kow waarden, 
werd een QSAR adviesinstrument ontwikkeld dat gebruikers op het spoor zet van het meest 
geschikte QSAR model dat toegepast moet worden om de toxiciteit te voorspellen van 
gesubstitueerde mononitrobenzenen voor vijf typen organismen (protozoa, vis, daphnia’s, 
algen en gist) binnen een gespecificeerde range aan log Kow –waarden (hoofdstuk 2).  Elumo 
was vereist als een extra parameter naast log Kow voor de toxiciteitvoorspellingen voor 
algen. 

In een volgende studie werden QSAR modellen ontwikkeld om in vivo acute toxiciteit 
te voorspellen van gechloreerde alkanen voor vis, gebaseerd op data van eigen in vitro 
experimenten, en zelfs op basis van uitsluitend in silico log Kow data (hoofdstuk 3). Bovendien 
is een interspecies QSAR model ontwikkeld om toxiciteit van organothiofosfaten voor vis 
te voorspellen met gebruikmaking van toxiciteitgegevens uit proeven met acute inactivering 
van Daphnia magna, gebaseerd op D. magna data en in silico log Kow-waarden (hoofdstuk 
4).

De QSAR-modellen voor de mononitrobenzenen (hoofdstuk 2), gechloreerde alkanen 
(hoofdstuk 3), en organothiofosfaten (hoofdstuk 4) bleken respectievelijk 0.5 %, 0.1 %, 
en 0.1 % te beslaan van de 100 196 EINECS stoffen. tezamen oplopend tot 660 stoffen 
ofwel 0.7 % van de EINECS lijst. Gezien het feit dat de QSAR modellen slechts een klein 
percentage van de EINECS lijst bleken te omvatten, is in een volgende stap een schatting 
gemaakt van het percentage van EINECS-chemicaliën die in specifieke chemische klassen 
kunnen worden ingedeeld en daardoor in theorie geschikt zouden kunnen zijn voor QSAR 
modellering (hoofdstuk 5).

ECOSAR, een gratis te downloaden software pakket, verdeelde 54% van de EINECS-
stoffen in 49 klassen die in beginsel kunnen worden gebruikt voor QSAR modellen.  Voor stoffen 
die niet geclassificeerd konden worden, zoals botanische extracten, zou de risicoschatting 
kunnen worden uitgevoerd door verdere ontwikkeling van een onlangs beschreven methode 
voor de risicoschatting van natuurlijke smaakstoffen die als voedselingrediënten worden 
gebruikt. Dit zou resulteren in een extra 3% van de EINECS-stoffen die in principe kunnen 
worden bestudeerd met SAR-methoden, waarmee het totale percentage van EINECS-stoffen 
die met (Q)SAR benaderingen kunnen worden beoordeeld op 57% uitkomt.

Concluderend kan worden gesteld dat de resultaten van dit proefschrift uitwijzen dat 
in vitro (i) experimenten en zelfs in silico berekeningen kunnen helpen om 
dierproeven voor experimentele toxiciteitproeven te reduceren of te vervangen 
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en dat
ondanks het feit dat individuele QSARs vaak slechts een beperkte hoeveelheid (ii) 
EINECS-stoffen omvatten, d.w.z. minder dan 1% daarvan, (Q)SAR methodes 
het mogelijk maken ongeveer 57% van de EINECS-stoffen te beoordelen.
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Supplementary information for Chapter 4

Table S4.1:  Chemical Abstract Service (CAS) numbers, calculated descriptors and experimental 
toxicity data (Johnson and Finley, 1980) describing 96 h toxicity of organothiophosphates to fathead 
minnow (Pimephales promelas)

No. CAS # name log Kow Ehomo Elumo 96 h log LC50 (M)

(P=S) eV (P=O) eV
1 86-50-0 Azinphos methyl 2,549 -9,415 1,551 -4,262
2 298-04-4 Disulfoton 4,173 -9,247 4,37 -5,634
3 563-12-2 Ethion 5,569 -9,51 3,473 -5,842

4 122-14-5 Fenitrothion 3,209 -9,758 1,642 -5,875
5 55-38-9 Fenthion 3,839 -8,921 3,116 -5,581
6 121-75-5 Malathion 2,475 -9,459 3,715 -4,364
7 56-38-2 Parathion ethyl 3,468 -9,879 1,203 -5,784
8 298-00-0 Parathion-methyl 2,79 -9,931 1,188 -5,619
9 2310-17-0 Phosalone 4,31 -9,052 2,799 -5,671
10 732-11-6 Phosmet 3,109 -9,352 1,255 -4,614
11 14816-18-3 Phoxim 4,385 -9,488 1,191 -4,793
12 3383-96-8 Temephos 5,736 -8,355 3,148 -5,01
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Table S4.2:  Chemical Abstract Service (CAS) numbers, calculated descriptors and experimental toxicity 
data describing 96 h toxicity of organothiophosphates to rainbow trout (Oncorhynchus mykiss)

No. CAS # name Ehomo Elumo log LC50 
(M)a

log LC50 
(M)b

(P=S) eV (P=O) eV
1 2642-71-9 Azinphos-ethyl -9,29 1,53 -7,24 -7,24

2 86-50-0 Azinphos methyl -9,42 1,55 -7,87
3 2921-88-2 Chlorpyrifos ethyl -9,58 1,60 -7,39 -7,69

4 5598-13-0 Chlorpyriphos methyl -9,62 1,65 -6,44
5 56-72-4 Coumaphos -9,02 1,48 -5,50 -5,61

6 333-41-5 Diazinon -9,23 2,98 -5,68

7 97-17-6 Dichlofenthion -9,29 2,88 -5,40
8 60-51-5 Dimethoate -9,45 3,92 -4,53 -7,57

9 298-04-4 Disulfoton -9,25 4,37 -5,17

10 563-12-2 Ethion -9,51 3,47 -5,89

11 299-84-3 Fenchlorphos -9,48 2,46 -5,77

12 122-14-5 Fenitrothion -9,76 1,64 -8,06
13 55-38-9 Fenthion -8,92 3,12 -5,52 -5,48

14 18181-70-9 Iodofenphos -9,10 2,54 -7,41
15 121-75-5 Malathion -9,46 3,72 -6,47 -6,22
16 950-37-8 Methidathion -9,38 3,75 -7,33 -7,33

17 56-38-2 Parathion ethyl -9,89 1,20 -5,31
18 298-00-0 Parathion-methyl -9,93 1,19 -4,91 -4,85

19 298-02-2 Phorate -9,26 4,15 -7,30
20 2310-17-0 Phosalone -9,05 2,80 -6,39 -6,39
21 732-11-6 Phosmet -9,35 1,26 -5,78 -6,02

22 14816-18-3 Phoxim -9,49 1,19 -6,23

23 29232-93-7 Pirimiphos-methyl -8,55 3,30 -5,65

24 3383-96-8 Temephos -8,36 3,15 -8,13

LC50 values from a Bermudez-Saldana et al, 2004; b Johnson and Finley, 1980



140

Appendix

Table S4.3:  Chemical Abstract Service (CAS) numbers, calculated descriptors and experimental 
toxicity data describing 96 h toxicity of organothiophosphates to bluegill (Lepomis macrochirus)
EC50 values from a Johnson and Finley, 1980;  b Bermudez-Saldana et al, 2004   

No. CAS # name log Kow Ehomo Elumo log LC50 (M)a  log LC50   (M)b

(P=S) eV (P=O) eV
1 2642-71-9 Azinphos-ethyl 3,43 -9,29 1,53 -6,49 -8,50

2 86-50-0 Azinphos methyl 2,55 -9,42 1,55 -5,06

3 786-19-6 Carbophenothion 5,94 -9,18 1,81 -5,66
4 2921-88-2 Chlorpyrifos ethyl 4,51 -9,58 1,60 -6,27 -8,07

5 5598-13-0 Chlorpyriphos methyl 3,83 -9,62 1,65 -5,56
6 56-72-4 Coumaphos 4,33 -9,02 1,48 -4,11 -6,30
7 333-41-5 Diazinon 3,32 -9,23 2,98 -4,32 -6,25

8 97-17-6 Dichlofenthion 5,04 -9,29 2,88 -3,61
9 60-51-5 Dimethoate 0,75 -9,45 3,92 -5,10 -4,58

10 298-04-4 Disulfoton 4,17 -9,25 4,37 -4,14

11 563-12-2 Ethion 5,57 -9,51 3,47 -4,42

12 299-84-3 Fenchlorphos 4,97 -9,48 2,46 -3,58

13 122-14-5 Fenitrothion 3,21 -9,76 1,64 -5,93
14 55-38-9 Fenthion 3,84 -8,92 3,16 -3,44 -5,26
15 121-75-5 Malathion 2,48 -9,46 3,72 -4,38 -6,57
16 950-37-8 Methidathion 2,78 -9,38 3,75 -5,49 -7,53

17 56-38-2 Parathion ethyl 3,47 -9,88 1,20 -3,94
18 298-00-0 Parathion-methyl 2,79 -9,93 1,19 -2,80 -4,91

19 298-02-2 Phorate 3,84 -9,26 4,19 -6,28
20 2310-17-0 Phosalone 4,31 -9,05 2,80 -4,63 -6,57
21 732-11-6 Phosmet 3,11 -9,35 1,26 -4,19 -5,88

22 14816-18-3 Phoxim 4,39 -9,49 1,19 -4,73

23 29232-93-7 Pirimiphos-methyl 3,38 -8,55 3,30 -5,03

24 3383-96-8 Temephos 5,74 -8,36 3,15 -5,42
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AbbrevIAtIons

General
AChE   Acetylcholinesterase
CHO   Chinese hamster ovary
DMSO   Dimethyl sulfoxide
ECB   European Chemicals Bureau
ECOSAR   Ecological Structure Activity Relationships
EINECS   European inventory of existing commercial chemical substances
Ehomo   Energy of the highest occupied molecular orbital
Elumo    Energy of the lowest unoccupied molecular orbital
HPV   High production volume
ITS   Intelligent testing strategy
Kow   Octanol-water partition coefficient
LCA   Lower chlorinated alkane
LMO   Leave-many-out
LOO   Leave-one-out
MMFF   Merck molecular force field  
MTT   [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]  
OECD   Organization for Economic Cooperation and Development
PCA   Polychlorinated alkane
P=O   Organophosphate
P=S   Organothiophosphate
(Q)SAR   (Quantitative) structure-activity relationship
3Rs   Replacement, reduction and refinement
REACH   Registration Evaluation and Authorization of Chemicals 
SMILES   Simplified molecular input line entry system
SDR   Studentized deleted residual
SPSS   Statistical Package for Social Scientists
ZonMw   Netherlands Organization for Health Research and Development
   Nederlandse Organisatie voor Gezondheidsonderzoek en   
   Zorginnovatie

Statistical
F   variance ratio 
n   number of compounds used for developing model
PRESS   predictive sum of squares 
r2   coefficient of determination 
r2

int     internally cross validated coefficient of determination 
r2

ext    externally validated coefficient of determination 
s   standard error of the estimate 
SSD   sum-of-squares deviation
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Abstract—Fifteen experimental literature data sets on the acute toxicity of substituted nitrobenzenes to algae (Scenedesmus obliquus,
Chlorella pyrenoidosa, C. vulgaris), daphnids (Daphnia magna, D. carinata), fish (Cyprinus carpio, Poecilia reticulata), protozoa
(Tetrahymena pyriformis), bacteria (Phosphobacterium phosphoreum), and yeast (Saccharomyces cerevisiae) were used to establish
quantum chemistry based quantitative structure–activity relationships (QSARs). The logarithm of the octanol/water partition co-
efficient, log Kow, and the energy of the lowest unoccupied molecular orbital, Elumo, were used as descriptors. Suitable QSAR models
(0.65 � r2 � 0.98) to predict acute toxicity of substituted mononitrobenzenes to protozoa, fish, daphnids, yeast, and algae have
been derived. The log Kow was a sufficient descriptor for all cases, with the additional Elumo descriptor being required only for algae.
The QSARs were found to be valid for neutral substituted mononitrobenzenes with no -OH, -COOH, or -CN substituents attached
directly to the ring. From the 100,196 European Inventory of Existing Commercial Substances (EINECS), 497 chemicals were
identified that fit the selection criteria for the established QSARs. Based on these results, an advisory tool has been developed that
directs users to the appropriate QSAR model to apply for various types of organisms within specified log Kow ranges. Using this
tool, it is possible to obtain a good indication of the toxicity of a large set of EINECS chemicals and newly developed substituted
mononitrobenzenes to five different organisms without the need for additional experimental testing.


Keywords—Substituted mononitrobenzene Octanol/water partition coefficient Quantitative structure–activity relationships
Acute toxicity Quantum mechanics


INTRODUCTION


The European Inventory of Existing Commercial Substanc-
es (EINECS) contains 100,196 chemicals that were on the
European Union market between 1971 and September 1981.
Any chemical marketed after September 1981 is called a ‘‘new
chemical’’ ([1]; http://europa.eu.int/eur-lex/en/search/search�
dpi.html). It is recognized that insufficient (eco)toxicological
information exists on the hazardous properties of many of the
EINECS chemicals. This is mainly because EINECS chemicals
were exempted from premarket testing, unlike ‘‘new chemi-
cals,’’ even though EINECS chemicals constituted 99% of the
total volume of all substances on the market at that time [1].
In October 2003, the European Commission adopted a proposal
for a new chemical control system called Registration, Eval-
uation, and Authorization of Chemicals (REACH). One of the
goals of REACH is the development of computational pre-
diction models to fill existing toxicity data gaps [1]. General
information for about 30,000 existing chemicals marketed in
the European Union in volumes greater than one ton per year
is required before 2012 [2].


In the field of toxicological risk assessment, the present
view is that validated quantitative structure–activity relation-
ships (QSARs) can be valuable tools to rapidly screen the


* To whom correspondence may be addressed
(elton.zvinavashe@wur.nl).


toxicological potential of chemical compounds and also to help
set up research priorities in toxicological testing programs
([3,4]; http://www.epa.gov/EPA-PEST/2002/December/Day-30/
p32853.htm). One of the principal assumptions that underlie
the description of QSARs is that physical-chemical properties
dominate the behavior of chemical compounds. Traditional
QSARs use experimentally derived descriptors, such as ioni-
zation potential, vapor pressure, octanol/water partition co-
efficient (Kow), and Hammett, Taft, Sterimol, and Abraham
parameters to quantify these physical-chemical characteristics
[5,6]. However, because of a lack of large data sets of exper-
imentally derived parameters, attempts have been made to de-
fine parameters to establish QSARs based on quantum me-
chanical computer calculations. As the power of computers
continues to increase, quantum mechanical computer calcu-
lations have become a valuable and widely applicable tool in
(bio)chemical research. Quantum mechanical calculations pro-
vide the possibility to calculate, using the chemical structure
of a compound as the sole input, parameters that define the
physical-chemical properties and relative reactivity of a com-
pound. The possibilities for the uses of computational quantum
mechanical calculations in QSAR studies in toxicology have
already been demonstrated. From these previous initial studies,
several classes of compounds have been identified for which
a possibility exists to use computational chemistry–based pa-
rameters to estimate their toxicity [7–9]. Computational mod-
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els offer the advantages of ease of use, speed, and low costs.
Furthermore, they are in principle not susceptible to experi-
mental errors, although slightly different output descriptors can
sometimes result because of numerical deviations or the dif-
ferent prediction algorithms used by the available software. In
order to establish the accuracy of quantum chemistry based
data, they need to be rigorously validated with experimental
data of good quality.


Currently, attempts are being made to define QSARs for
several compound classes. Substituted nitrobenzenes are a
good starting point for two reasons. First, sufficient experi-
mental toxicity data exist, and, second, no attempt has been
made to aggregate the data and use them to define priorities
for future toxicity testing. Substituted nitrobenzenes are widely
used in industry during the synthesis of dyes, explosives (e.g.,
trinitrotoluene), solvents, plastics, anilines, and various bio-
active products, such as insecticides, pesticides, and phar-
maceuticals [10,11]. Substituted nitrobenzenes are also found
as by-products of fuel combustion in vehicles and power plants
and as secondary pollutants from reactions with hydroxyl and
nitrate radicals. As a result of their varied origins and uses,
substituted nitrobenzenes are widespread in ecosystems and
consequently have a high potential for causing ecotoxic effects
[11]. Substituted nitrobenzenes are generally electrophilic tox-
icants because of the presence of the strong electron-with-
drawing nitro substituent [9]. The presence of other substit-
uents on the nitrobenzene ring results in different toxicities in
part because of different susceptibilities to nitro-reduction by
enzymes, giving rise to nitro radical anions, nitrosobenzenes,
or N-hydroxylamines [12].


In this study, to estimate the sub(acute) toxicity of various
substituted nitrobenzenes to aquatic organisms, QSARs were
developed based on computer calculated descriptors, namely,
the logarithm of the octanol/water partition coefficient (log
Kow) and the energy of the lowest unoccupied molecular orbital
Elumo (eV). The log Kow generally models a compound’s hy-
drophobicity, which is important in describing the passage of
a compound through membranes. The Elumo models the elec-
trophilic nature of the nitrobenzenes, which is important in
their nitroreduction and/or covalent reaction with biological
macromolecules. The log Kow and Elumo have a clear link to
the toxicity of substituted nitrobenzenes as shown from pre-
vious studies [9,13–15]. The applicability and limits of the
QSARs were also identified by noting certain types of com-
pounds that are outliers and certain log Kow ranges where one
should apply the QSARs for the nonpolar narcotic models
instead. Thus, from this, it is possible to estimate the acute
toxicity of substituted mononitrobenzenes to several aquatic
organisms. To this end, an advisory tool was established to
direct the user to the appropriate QSAR for a given organism
and log Kow range.


MATERIALS AND METHODS


Data sets


The 15 experimental data sets used in this study contained
acute toxicity data of substituted nitrobenzenes to six types of
organisms. These were the protozoan Tetrahymena pyriformis
[9,10]; algae Scenedesmus obliquus [13,16], Chlorella py-
renoidosa [15], and C. vulgaris [17]; daphnids Daphnia mag-
na [15] and D. carinata [13]; fish Cyprinus carpio [13] and
Poecilia reticulata [14]; bacteria Phosphobacterium phos-
phoreum [15]; yeast Saccharomyces cerevisiae [11]; and sub-
acute toxicity data to D. magna [15]. The European Chemicals


Bureau supplied the EINECS list, from which the list of sub-
stituted nitrobenzenes falling into the applicability domain of
the QSARs developed in this study was extracted.


Molecular descriptors


Seven commercially available software packages were
compared for their accuracy in estimating log Kow values of
77 substituted nitrobenzenes. The software packages used were
CLogP Version 4.0 (Biobyte, Claremont, CA, USA) [18],
ALogPs Version 2.102 (VCCLab, Munich, Germany) [19],
KowWIN Version 1.66 (Syracuse Research, Syracuse, NY,
USA) [20], IA LogP (Chem Silico, MA, USA; http://
www.logp.com), Spartan 04 for Windows� Version 1.0.3
(Wavefun, Irvine, CA, USA; http://www.wavefun.com),
SPARC online calculator (http://ibmlc2.chem.uga.edu/sparc/
index.cfm), and ACD/LogP Version 4.67 (Advanced Chem-
istry Development, Toronto, ON, Canada) [21]. The estimated
log Kow values were compared to experimental values obtained
from the PHYSPROP database (Syracuse Research; http://
www.syrres.com/esc/physdemo.htm). To input the structure of
each molecule into the software, the simplified molecular input
line entry system (SMILES) code was used. The SMILES
codes are widely used to represent a molecular structure by a
linear string of symbols [22]. The SMILES codes were ob-
tained from the SMILES-CAS database (Syracuse Research).


The Elumo values were calculated using a semiempirical
method, applying the Austin Model 1 (AM1) Hamiltonian [23]
from the program Spartan 04 for Windows� Version 1.0.3
(Wavefun) for Windows, v1.0.3, on a Pentium 4 computer with
Windows XP Professional Service Pack 2 and 1 GB memory.


Statistical analyses


Linear regression analysis, performed in Microsoft� Excel
2000 (Microsoft, Redmond, WA, USA), was used to select the
most suitable log Kow estimation software for the substituted
nitrobenzenes. Experimental log Kow was plotted against log
Kow predicted from the different software packages, and the
resulting coefficient of determination (r2) and standard error
of the estimate (SE) values were recorded.


The Statistical Package for Social Scientists (SPSS�) 10.1
for Windows (SPSS, Chicago, IL, USA) was used to analyze
the QSARs. For QSAR descriptions, log (toxicity endpoint)
was the dependent variable, while log Kow and Elumo were the
independent variables. All QSAR equations were presented in
the form


log toxicity (�M) � x(log K ) � y(E ) � zow lumo (1)


where x, y, and z are fitting parameters. The quality of the
QSAR models was characterized by the number of compounds
used in the study (n), r2, SE, variance ratio (F ), and the in-
ternally cross-validated coefficient of determination (q2). Cross
validation of the models was done using the leave-out-many
method, with 20% of the calibration compounds left out at
each step. Cross validation was done only for models with r2


� 0.65 and n/k � 5, where k is the number of descriptors [24].
The models were considered acceptable for further use when
q2 � 0.5 and r2 � q2 � 0.3 [25]. The validation groups were
created using the method of unsupervised stratification of cross
validation to reduce bias introduced by random sampling [26].
The data were ranked according to increasing log Kow values,
and then the compounds were alternately classified into five
groups, and q2 was calculated according to the formula


2q � 1 � (PRESS/SSD) (2)
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Fig. 1. Quantitative structure–activity relationships (QSARs) for the
correlation between the decadic logarithm of the experimental toxicity
of substituted mononitrobenzenes and the toxicity predicted on the
basis of log Kow for different organisms and periods of exposure: (a)
48 h for Tetrahymena pyriformis [10] (r2 � 0.815; n � 33), (b) 12
h for Saccharomyces cerevisiae [11] (r2 � 0.850, n � 14), and (c)
21 d for Daphnia magna [15] (r2 � 0.826, n � 15). Note that only
the neutral, substituted mononitrobenzenes with no cyano substituent
(�) are included in the QSAR descriptions. Data points not included
represent substituted nitrobenzenes, which are ionized at physiological
pH of 7.4; that is, nitrophenols and nitrobenzoic acids (□) have two
nitro groups (�), contain a cyano substituent (�), or have two phenyl
rings (#). The log Kow values were estimated using CLogP Version
4.0 (Biobyte, Claremont, CA, USA) [18]. IGC50 � concentration
inhibiting growth by 50 %.


where predictive sum of squares (PRESS) is the sum of the
squared differences between actual and predicted toxicity
when the compounds are omitted from the regression and SSD
is the sum-of-squares deviation for each actual toxicity from
the mean toxicity of all the compounds [27].


The chemical applicability domain of the models was de-
fined in three ways. First, the degree of extrapolation was
defined by the average leverage value, h, where leverage is a
measure of the distance of a compound from the model ex-
perimental space. The warning leverage, hw, was set at three
times the average leverage value. Any compound with h � hw


falls outside the optimum prediction space of the model [24].
Second, external predictions are restricted to substituted ni-
trobenzenes that contain only the substituents present in the
calibration set. Third, log Kow cutoff points were set by com-
paring our QSAR equations to those for nonpolar narcotics.
Above the cutoff point, the nonpolar narcotics QSAR should
be applied in order to avoid underestimating the toxicity of
compounds within the chemical domain of the QSAR [28].


RESULTS


Theoretically determined descriptors


The 15 data sets used to obtain experimental toxicity data
to establish QSARs contained 103 substituted nitrobenzenes.
The Elumo, log Kow values (estimated and experimental) for
these substituted nitrobenzenes are presented as an appendix
in Table S1. The Elumo values ranged from �2.67 eV to �0.79
eV, while the estimated log Kow values ranged from �0.14 to
5.03. Because of the large size of the experimental toxicity
data sets, they are also presented as appendices in Tables S2
to S9.


Log Kow estimation


Out of the 103 substituted nitrobenzenes, experimental log
Kow values were available for 77 (Table S1). The following
values (r2 � SE) were obtained for the various software pack-
ages: Spartan (0.826 � 0.383), SPARC (0.872 � 0.329), IA
LogP (0.882 � 0.315), ACD/LogP (0.939 � 0.146), ALogPs
(0.948 � 0.209), KowWIN (0.963 � 0.176), and CLogP (0.975
� 0.146). A comparison of the highest r2 value (CLogP) with
the other r2 values resulted in a statistically significant differ-
ence ( p � 0.05) only with the r2 values for SPARC and Spar-
tan. Based on the highest r2 value, the log Kow values estimated
using CLogP were used to establish QSARs.


Definition of selection criteria for QSARs


The acute toxicity data set of substituted nitrobenzenes to
the ciliated protozoa T. pyriformis [10] was considered a suit-
able starting point for QSAR development, as it contains sub-
stituted nitrobenzenes with a wide variety of substituents rang-
ing from halogen, carboxyl, hydroxyl, oxime, cyano, amide,
to phenyl, all in the ortho, para, and/or meta positions. Figure
1a presents a plot of the decadic logarithm of the experimental
concentration that inhibits growth by 50 % (IGC50) for these
substituted nitrobenzenes against values predicted on the basis
of the estimated log Kow. From Figure 1a, it can be seen that
the following compounds are outliers: dinitrobenzenes, nitro-
phenols, nitrobenzoic acids, nitrodiphenyls, and cyanonitro-
benzenes. The absolute standardized residuals for these com-
pounds were all above the set limit of 1.5, confirming their
outlier status. Selection criteria were established for the
QSARs, therefore, which exclude these compound classes.
Note that nitrobenzoic acids and nitrophenols do not apply to
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Fig. 2. Summary of included and excluded substituents for the sub-
stituted mononitrobenzene quantitative structure–activity relation-
ships.


the QSAR also because they are likely to be ionized at phys-
iological pH [28]. Repeating the QSAR according to the se-
lection criteria resulted in an improved correlation (r2 � 0.815)
when compared to the QSAR that included all the nitroben-
zenes (r2 � 0.268).


The selection criteria were corroborated using results for
the remaining data sets. Figure 2b and c shows the QSARs
for the correlations between the decadic logarithm of the ex-
perimental toxicity of substituted mononitrobenzenes to S. cer-
evisiae and D. magna, respectively, compared with the toxicity
predicted based on log Kow. After excluding outliers, improved
correlations were obtained for both Figure 1b (r2 � 0.850
instead of 0.018) and Figure 1c (r2 � 0.826 instead of 0.081).
For the remaining data sets, Table 1 displays statistical param-
eters for comparisons between correlations obtained in QSARs
described with and without selection criteria. Notable im-
provements were with Scenedesmus obliquus (Eqn. 6), where
r2 increased from 0.023 to 0.805, and with D. magna (Eqn.
7), where r2 increased from 0.023 to 0.826 after applying the
selection criteria. Not all QSARs improved after applying se-
lection criteria as shown by C. vulgaris (Eqn. 8) and P. phos-
phoreum (Eqn. 9), where r2 slightly increased from 0.476 to
0.598 and from 0.035 to 0.125, respectively. A summary of
the inclusion and exclusion criteria based on the substituents
present on the substituted mononitrobenzenes is shown in Fig-
ure 2.


Two-parameter QSARs


In a next step, it was investigated whether the addition of
a second parameter, Elumo, in the QSARs for the substituted
mononitrobenzenes meeting the selection criteria would result
in improved correlations between experimental and predicted
toxicity. This was in line with the observations of Cronin et
al. [9], who demonstrated an improved QSAR relationship for
nitrobenzenes after combining log Kow and Elumo as predictors.
The use of Elumo as an additional descriptor improved the
QSARs only for algae species (Table 1) and was an unnec-
essary descriptor for the other species. For C. vulgaris, com-
bining log Kow and Elumo resulted in a better correlation (Eqn.
10; r2 � 0.848) than using log Kow alone (Eqn. 8; r2 � 0.598).
A similar improvement was also noted for C. pyrenoidosa
(Eqns. 11 and 12). Slight improvements were noted for the
other algae genus, Scenedesmus (Eqns. 6 and 13–15).


Log Kow cutoff values


The 10 nonpolar narcotics models describing toxicity to
different organisms that were compared to the log Kow–based
QSARs developed in this study are shown in Table 2. These
QSARs were developed using toxicity data of simple alcohols,
ketones, substituted aromatic hydrocarbons, ethers, and chlo-
rinated hydrocarbons [29]. The specific substituted mononi-
trobenzene QSARs of the present study to which they were
compared are also indicated in this table. Where the nonpolar
narcotics QSAR was not available for an identical organism
and endpoint, a comparison was made to the nonpolar narcotics
QSAR of a similar organism; for example, the QSAR for 96-
h effective concentration to 50% of population (EC50) to C.
carpio (Table 1, Eqn. 19) was compared to the nonpolar nar-
cotics QSAR describing 96-h toxicity to the fish Pimephales
promelas (Table 2, Eqn. 28). All nonpolar narcotics QSARs
shown in Table 2 had r2 � 0.810. Figure 3 shows plots of log
Kow versus 48-h EC50 to D. magna for the QSAR for nonpolar
narcotics toxicity (Table 2, Eqn. 26) and the one developed in
this study (Table 1, Eqn. 18). The two plots intersect at a log
Kow value of 4.08, which is then set as the upper limit for
applying our QSAR for D. magna. Similar plots were made
for the rest of the QSARs, and the log Kow cutoff values are
shown in Table 1. The log Kow cutoff values ranged from 2.96
to �10.


Extraction of substituted mononitrobenzenes meeting the
selection criteria from the EINECS list


The EINECS list supplied by the European Chemicals Bu-
reau contained 100,196 compounds with none of them con-
taining a SMILES code. Cross-referencing the EINECS list
with the SMILES-CAS database resulted in 54,277 compounds
with SMILES codes. In Microsoft Excel 2000, based on se-
lected aspects in the name, molecular formula, and SMILES
code, compounds satisfying the set criteria were filtered out.
Two attributes were most important in extracting the relevant
substituted mononitrobenzenes from the EINECS list. These
were the presence of N(�O) and c1 in the SMILES code,
which indicate the presence of a nitro group and a ring, re-
spectively. These attributes accounted for the extraction of
3,074 compounds out of 54,277. From the 45,919 compounds
with no SMILES codes, 14 neutral, substituted mononitro-
benzenes with no cyano substituent were extracted on the basis
of the presence of carbon, nitrogen, and oxygen in the mo-
lecular formula. Full details of the extractions steps are shown
as an appendix in Table S10. The final list of substituted mono-
nitrobenzenes satisfying the conditions of the selection criteria
for the newly defined QSARs contained 497 compounds and
is shown as an appendix in Table S11.


DISCUSSION


Quality of developed QSAR models


The QSAR models were developed following the recom-
mended guidelines set by the Organization for Economic Co-
operation and Development (OECD) in November 2004 [30].
The guidelines state that the following five major categories
should be defined for each QSAR model: endpoint, unambig-
uous algorithm, internal performance and predictivity, domain
of applicability, and a mechanistic interpretation, if possible
[30]. The biological data used were from well-standardized
assays with clearly defined endpoints. The log Kow estimation
software models tested in this study are of good predictive
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Fig. 3. Quantitative structure–activity relationships for the correlation
between the decadic logarithm of the experimental toxicity and log
Kow for substituted mononitrobenzenes (—) and for nonpolar narcotics
(– – –) for 48-h log effective concentration to 50% of population
(EC50) of Daphnia magna. The QSAR equations used for these plots
are shown in Table 1 (Eqn. 18) and Table 2 (Eqn. 26). LC50 is lethal
concentration to 50% of population.


quality, as plotting experimental against predicted log Kow re-
sulted in high coefficients of determination (r2 � 0.81). Similar
results were obtained previously for nitroaromatics by Petraus-
kas and Kolovanov [21]. The differences that exist in the pre-
dictions made by the different software packages could be due
mainly to the following aspects in the training set of the model:
number and type of compounds, fragments, atoms, bond types,
and correction factors. If more of the substituted nitrobenzenes
in our QSARs are present in the training set of a particular
model, then that model is likely to have a better predictive
power. The prediction algorithms in IALogP and ALogPs are
based on neural networks and a combination of electronic and
topological attributes [31]. CLogP, ACD/LogP, and KowWIN
base their calculations on assigning values to different frag-
ments in a molecule and then applying correction factors for
the interactions between the fragments [18,21]. Spartan assigns
contribution values to the different atoms in the molecule rath-
er than to fragments [32]. The performance of the software
models could be further tested by comparing the correctness
of the theoretical assumptions behind the calculation algo-
rithms [21], which is not always easy with commercial prod-
ucts, as the algorithms are not always transparent. Furthermore,
for untested compound classes, one should be aware that any
estimation software may give inaccurate estimations, and this
always has to be checked.


The chemical domain of the QSAR models was system-
atically developed. Outliers (dinitro-, cyano-, and ionizing ni-
trobenzenes) were omitted from the final QSARs because of
their different uptake and reaction mechanisms. Substituted
dinitrobenzenes have been shown previously to have enhanced
toxicity when compared to substituted mononitrobenzenes,
probably because of their fast reduction to the corresponding
aryl-hydroxylamines [9,14,15], which justifies their exclusion.
Compounds that can ionize at physiological pH (e.g., benzoic
acids and nitrophenols) have different kinetics of uptake in the
body than those that are neutral and may have additional tox-
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Fig. 4. Advisory tool for predicting acute toxicity of substituted mon-
onitrobenzenes to five organisms (Poecilia reticulata, Daphnia mag-
na, Scenedesmus obliquus, Saccharomyces cerevisiae, and Tetra-
hymena pyriformis). The gray bars represent log Kow ranges where
the quantitative structure–activity relationships (QSARs) developed
in this study are applicable. The white/open bars show log Kow ranges
where the nonpolar narcotic QSARs yield the lowest effect levels.
The numbers inside the bars refer to the appropriate QSAR models
(Tables 1 and 2, respectively) to apply within that log Kow range. Error
bars show the error associated with the log Kow cutoff points. The
lower and upper (vertical dotted line) log Kow limits are set at 0 and
6, respectively.


icity by interfering with proton gradients during oxidative
phosphorylation [28]. With respect to 2-, 3-, and 4-cyanoni-
trobenzene, only 2-cyanonitrobenzene was an outlier. It could
be due to experimental errors or to a mechanistic reason that
is unclear at this moment.


The toxicity data used to establish the QSARs were from
the same laboratory sources to avoid interlaboratory variation
[28]. The statistical technique, linear regression, applied to
analyze the relationship between toxicity and the physical-
chemical descriptors is simple to use and sufficient, especially
where two descriptors are involved.


Nonalgal QSARs showed a high dependence on log Kow


for prediction of the toxicity of the substituted mononitroben-
zenes, a relationship that has been demonstrated previously
[9,14,15]. Using the toxicity data of Deneer et al. [14], Ba-
nerjee and Williams [33] reported poor correlations between
log Kow and toxicity to the guppy P. reticulata. For the same
data set, excluding substituted dinitrobenzenes from the QSAR
analysis improved this poor correlation. With respect to the
use of log Kow as a toxicity descriptor, it is important to note
that the relation between log Kow and toxicity often remains
quite empiric. Although log Kow is often the most dominant
descriptor for predicting the toxicity of certain compound clas-
ses to certain species, it is not universal, as was shown by its
inapplicability to dinitro- and cyanonitrobenzenes in the pres-
ent study. Furthermore, as octanol does not adequately rep-
resent the type of lipids found in membranes, other researchers
have recommended replacing octanol with dimyristoyl phos-
phatidylcholine (DMPC) and thus log Kow with log KDMPC/water


[34].
In addition to log Kow as a predictor, the inclusion of the


reactivity parameter Elumo improved the QSARs describing tox-
icity only to the algae C. vulgaris, C. pyrenoidosa, and S.
obliquus. In the studies of Deneer et al. [15], a similar trend
was observed after combining log Kow and Hammett’s reac-
tivity parameter (	
�) when modeling the toxicity of substi-
tuted mononitrobenzenes to C. pyrenoidosa. They suggested
that the mode of action or the toxicokinetic behavior of the
substituted mononitrobenzenes in algae could be different from
that of other organisms [15]. Other QSARs of comparable
quality describing the toxicity of substituted nitrobenzenes to
various organisms have been reviewed by Katrizky et al. [35].
Some of these QSARs have descriptors that are different from
those used in this study. Roy and Ghosh [36] used the extended
topochemical atom indices to model (r2 � 0.920) toxicity to
T. pyriformis. Although the extended topochemical indices
show a significant potential for QSAR development, they still
need extensive evaluation. In describing toxicity to T. ther-
mophila, the best QSAR obtained by Xu et al. [37] used 	
�


and the indicator variable I as descriptors (r2 � 0.852) The
indicator variable denotes the number and position of the nitro
groups. However, no model validation was performed. Using
the CODESSA-PRO software, Katrizky et al. [35] combined
constitutional, topological, geometric, electrostatic, and quan-
tum chemical descriptors and obtained a decent QSAR (r2 �
0.724) to describe toxicity to T. pyriformis. However, they
combined toxicity data from two independent laboratories. The
three QSARs mentioned previously could be improved by de-
fining the applicability domain more clearly.


Toxicity prediction and priority setting


For new and existing chemicals, the OECD requires at least
three basic acute ecotoxicity tests for risk assessment purposes.


These tests describe acute toxicity to algae (72-h EC50 for
growth), daphnids (48-h EC50 for immobilization), and fish
(96-h median lethal concentration LC50) [38]. These tests
evaluate toxicity at three trophic levels: primary producer, pri-
mary consumer, and top predator. In order to get a quick and
broad overview of the toxicity of substituted mononitroben-
zenes, for each organism in each of the trophic levels, the
‘‘best’’ QSAR was selected on the basis of three criteria: q2


� 0.5, a long exposure period (�96 h), and the presence of a
log Kow cutoff value. Based on the three criteria, an advisory
tool was developed and is shown in Figure 4. Within the log
Kow ranges represented by the gray bars, the QSAR models
developed in this study are applicable. Above this range,
shown in white/open bars, a risk manager should use the non-
polar narcotics QSAR models. The lower and upper log Kow


limits of using Figure 4 are set at 0 and 6, respectively. Since
log Kow describes the kinetics of the uptake of chemicals from
water, chemicals with log Kow greater than 6 are generally taken
up too slowly to show acute toxic effects, while those with
log Kow less than 0 would need unrealistically high concen-
trations to display toxicity [39].


Using the scheme in Figure 4, a risk manager selects the
appropriate QSAR to use for prediction of toxicity based on
the log Kow of the compound. For example, a hypothetical
substituted mononitrobenzene with log Kow � 2 can have its
toxicity to all species predicted by using the QSARs developed
in this study. Another hypothetical substituted mononitroben-
zene with log Kow � 5 can have its toxicity predicted by using
a combination of both nonpolar narcotics QSARs and the
QSARs developed in this study. Table 3 shows the predicted
toxicities of five substituted mononitrobenzenes randomly se-
lected from the list of 497 compounds meeting the selection
criteria set. Table 3 shows that predicted toxicities increase
with an increase in the log Kow values. Predicted toxicities to
D. magna after 21 d of exposure are consistently higher for
all compounds when compared to the toxicity toward other
organisms.


Although the advisory tool in Figure 4 shows QSARs for
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five specific species, it is a generally accepted approach in
safety assessment in environmental toxicity that it can be used
to predict the toxicity of other similar organisms as well [40],
such as other fish, besides the specific species (P. reticulata)
used for the QSAR. Although Figure 4 shows our recom-
mended QSARs, other cross-validated QSARs (q2 � 0.5)
shown in Table 1 can be used as well. The tool has two strong
points. First, it quickly provides an overview of toxicity across
different types of organisms, and, second, only high-quality
cross-validated QSARs have been included. Whenever addi-
tional data become available, external validation and addition
of QSARs for more animal species will help strengthen the
tool further.


Future perspective


In case industry considers producing a new substituted
mononitrobenzene that fits the selection criteria, using the
methodology established here, it is possible to estimate the
toxicological effects of this new compound with no additional
toxicological or animal testing. Although the QSARs presented
here refer to 497 out of the more than 100,000 EINECS chem-
icals (i.e., 0.5%), QSARs will often be restricted to specific
chemical classes, as it is unlikely that one QSAR model will
ever describe the full set of EINECS chemicals. Considering
this, it is a step forward that 0.5% of the EINECS chemicals
can be included in the QSARs described in the present study.


Supporting information


Supplementary information is available in 11 tables (SETAC
Supplemental Data Archive, Item ETC-25-09-001; http://
etc.allenpress.com). Table S1: log Kow and Elumo values used
to develop the QSARs in Table 1; Tables S2 to S9: experi-
mental toxicity data sets; Table S10: step-by-step procedure
for extracting the compounds from the EINECS list satisfying
the selection criteria of our QSARs; and Table S11: the list of
the extracted 497 EINECS compounds.
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Table S1.  List of nitrobenzenes used in this study, their Chemical Abstracts Service (CAS) numbers and physical-chemical descriptors


Compound name CASa number Experimental log K OW
b Estimated log K OW


c E lumo
d (eV)


1 4-Chloronitrobenzene 100-00-5 2.39 2.60 -1.344
2 4-Nitroaniline 100-01-6 1.39 1.26 -1.000
3 4-Nitrophenol 100-02-7 1.91 1.85 -1.070
4 4-Ethylnitrobenzene 100-12-9 3.03 2.91 -1.034
5 4-Nitrobenzyl Chloride 100-14-1 2.45 -1.326
6 4-Methoxynitrobenzene 100-17-4 2.03 2.10 -0.983
7 1,4-Dinitrobenzene 100-25-4 1.46 1.63 -2.208
8 4-Ethoxynitrobenzene 100-29-8 2.53 2.63 -0.948
9 4-Nitrobenzaldoxime 1129-37-9 1.95 1.93 -1.405
10 2,3,5,6-Tetrachloronitrobenzene 117-18-0 4.38 4.32 -1.760
11 2,4-Dinitrotoluene 121-14-2 1.98 2.05 -1.841
12 3-Chloronitrobenzene 121-73-3 2.46 2.60 -1.286
13 4-Nitro-2-Chloroaniline 121-87-9 2.07 -0.910
14 3-Acetylnitrobenzene 121-89-1 1.42 1.49 -1.357
15 3-Nitrobenzoic acid 121-92-6 1.83 1.84 -1.460
16 2-Fluoronitrobenzene 1493-27-2 1.69 1.73 -1.301
17 2,3,4-Trichloronitrobenzene 17700-09-3 3.61 3.63 -1.660
18 2,4,6-Trichloronitrobenzene 18708-70-8 3.69 3.72 -1.674
19 2,3,5,6-Tetrachloro-1,4-Dinitrobenzene 20098-38-8 4.05 -2.669
20 3-Phenylnitrobenzene 2113-58-8 3.87 4.42 -1.106
21 2,4,5-Trichloro-1,3-Dinitrobenzene 2678-21-9 3.32 -2.323
22 4,6-Dichloro-1,2-Dinitrobenzene 28689-08-9 2.90 -2.300
23 2,3,4,6-Tetrafluoronitrobenzene 314-41-0 1.79 -2.074
24 2,4,6-Trifluoronitrobenzene 315-14-0 1.71 -1.807
25 2,3-Dichloronitrobenzene 3209-22-1 3.05 3.04 -1.434
26 2,5-Dibromonitrobenzene 3460-18-2 3.41 -1.539
27 3-Chloro-4-Fluoronitrobenzene 350-30-1 2.74 -2.210
28 4-Fluoronitrobenzene 350-46-9 1.80 2.03 -1.353
29 6-Chloro-2,4-Dinitroaniline 3531-19-9 2.50 -1.670
30 2,5-Difluoronitrobenzene 364-74-9 1.86 1.87 -1.573
31 3-Fluoronitrobenzene 402-67-5 1.90 2.03 -1.337
32 2,4-Difluoronitrobenzene 446-35-5 1.87 -1.583
33 2,4-Dinitrophenol 51-28-5 1.67 1.82 -1.888
34 1,2-Dinitrobenzene 528-29-0 1.69 1.63 -1.988







Compound name CASa number Experimental log K OW
b Estimated log K OW


c E lumo
d (eV)


35 4-Chloro-2,6-Dinitroaniline 5388-62-5 2.50 -1.870
36 2-Nitrobenzoic acid 552-16-9 1.46 1.47 -1.508
37 2-Nitrobenzaldehyde 552-89-6 1.74 1.78 -1.422
38 3-Nitrophenol 554-84-7 2.00 1.85 -1.160
39 3-Methoxynitrobenzene 555-03-3 2.16 2.10 -1.072
40 4-Nitrobenzaldehyde 555-16-8 1.56 1.50 -1.674
41 4-Nitrophenyl Acetonitrile 555-21-5 1.37 1.35 -1.334
42 2-Bromonitrobenzene 577-19-5 2.52 2.55 -1.296
43 6-Bromo-1,3-Dinitrobenzene 584-48-5 2.29 -2.180
44 3-Bromonitrobenzene 585-79-5 2.64 2.75 -1.306
45 4-Bromonitrobenzene 586-78-7 2.55 2.75 -1.413
46 2,3-Dinitrotoluene 602-01-7 2.05 -1.710
47 2,4,6-Trimethylnitrobenzene 603-71-4 3.22 -0.935
48 2,6-Dinitrotoluene 606-20-2 2.10 1.97 -1.748
49 2,4-Dichloro-6-Nitrophenol 609-89-2 3.09 -1.430
50 2-Nitrobenzamide 610-15-1 -0.12 -0.14 -1.296
51 3,4-Dinitrotoluene 610-39-9 2.08 2.13 -1.786
52 2,4-Dichloronitrobenzene 611-06-3 3.07 3.16 -1.516
53 2-Cyanonitrobenzene 612-24-8 1.02 1.02 -1.580
54 2-Nitrobenzyl Alcohol 612-25-9 1.24 1.22 -1.146
55 3,5-Dichloronitrobenzene 618-62-2 3.09 3.31 -1.488
56 3,5-Dinitroaniline 618-87-1 1.89 1.21 -1.717
57 3-Cyanonitrobenzene 619-24-9 1.17 1.32 -1.511
58 3-Nitrobenzyl Alcohol 619-25-0 1.21 1.30 -1.137
59 4-Nitrobenzoic Acid Methyl Ester 619-50-1 1.89 1.85 -1.650
60 4-Cyanonitrobenzene 619-72-7 1.19 1.32 -1.721
61 4-Nitrobenzyl Alcohol 619-73-8 1.26 1.30 -1.193
62 4-Nitrobenzamide 619-80-7 0.82 0.76 -1.543
63 4-Nitrobenzoic Acid 62-23-7 1.89 1.84 -1.730
64 2,4,6-Trichloro-1,3-Dinitrobenzene 6284-83-9 3.32 -2.355
65 1,2-Dichloro-4,5-Dinitrobenzene 6306-39-4 2.93 -2.363
66 3-Nitrobenzamide 645-09-0 0.77 0.76 -1.345
67 6-Iodo-1,3-Dinitrobenzene 709-49-9 2.75 -2.160
68 3,5-Dinitrobenzyl Alcohol 71022-43-0 1.04 -1.931
69 3-Methyl-4-Bromonitrobenzene 7149-70-4 3.25 -1.348
70 4-Butoxynitrobenzene 7244-78-2 3.50 2.43 -0.939







Compound name CASa number Experimental log K OW
b Estimated log K OW


c E lumo
d (eV)


71 2,3,4-Trifluoronitrobenzene 771-69-7 1.87 -1.848
72 3,4-Dinitrobenzyl Alcohol 79544-31-3 1.04 -1.906
73 2,6-Dimethylnitrobenzene 81-20-9 2.95 2.72 -0.956
74 Pentachloronitrobenzene 82-68-8 4.64 5.03 -1.946
75 2,3-Dimethylnitrobenzene 83-41-0 2.83 2.75 -0.952
76 2 Methyl-3-Chloronitrobenzene 83-42-1 3.09 3.02 -1.205
77 4-Nitrodiphenylamine 836-30-6 1.39 1.26 -1.005
78 2-Phenylnitrobenzene 86-00-0 3.77 -1.237
79 2,3,4,5-Tetrachloronitrobenzene 879-39-0 3.93 4.35 -1.827
80 2-Nitrotoluene 88-72-2 2.30 2.30 -1.011
81 2-Chloronitrobenzene 88-73-3 2.24 2.45 -1.257
82 2-Nitroaniline 88-74-4 1.85 1.80 -0.793
83 2-Nitrophenol 88-75-5 1.79 1.85 -1.014
84 4-Chloro-2-Nitrotoluene 89-59-8 3.05 3.02 -1.225
85 2,5-Dichloronitrobenzene 89-61-2 3.09 3.16 -1.468
86 2,4,5-Trichloronitrobenzene 89-69-0 3.48 3.75 -1.692
87 2-Nitroanisole 91-23-6 1.73 1.82 -1.010
88 6-Chloro-1,3-Dinitrobenzene 97-00-7 2.17 2.19 -2.118
91 2,4-Dinitroaniline 97-02-9 1.75 -1.475
92 Nitrobenzene 98-95-3 1.85 1.88 -1.068
93 3-Nitrotoluene 99-08-1 2.45 2.38 -1.017
94 3-Nitroaniline 99-09-2 1.37 3.54 -0.859
95 2,6-Dibromo-4-Nitrophenol 99-28-5 3.57 3.16 -1.450
96 2,6-Dichloro-4-Nitroaniline 99-30-9 2.80 2.82 -1.096
97 1,3,5-trinitrobenzene 99-35-4 1.37 -2.530
98 3,4-Dimethylnitrobenzene 99-51-4 2.91 2.83 -0.997
99 3,4-Dichloronitrobenzene 99-54-7 3.12 3.19 -1.525
100 3-Nitrobenzaldehyde 99-61-6 1.47 1.50 -1.421
101 1,3-Dinitrobenzene 99-65-0 1.49 1.63 -1.911
102 4-Nitrobenzoic Acid Ethyl Ester 99-77-4 2.33 2.38 -1.619
103 4-Methyl Nitrobenzene 99-99-0 2.37 2.38 -1.045


a Chemical Abstracts Service
b Logarithm of octanol/water partition coefficient.  Experimental values obtained from the PHYSPROP database (Syracuse Research, 
 Syracuse, NY, USA; http://www.syrres.com/esc/physdemo.htm).
 c The log K OW values estimated using CLogP Version 4.0 (Biobyte, Claremont, CA, USA) 
d Energy of the lowest unoccupied molecular orbital (expressed in electron volts, eV) calculated using Spartan 04 for Windows® 
Version 1.0.3 (Wavefun, Irvine, CA, USA).







Table S2:  Chemical Abstract Service (CAS) numbers, calculated descriptors and experimental toxicity data [9] describing 40 h toxicity of nitrobenzenes to Tetrahymena pyriformis.  


Compound name CAS number  log K OW
a E lumo


b (eV) 40 h log IGC50-1c (mM) 


1 4-Chloronitrobenzene 100-00-5 2.60 -1.344 0.430
2 1,4-Dinitrobenzene 100-25-4 1.63 -2.208 1.300
3 2,3,5,6-Tetrachloronitrobenzene 117-18-0 4.32 -1.760 1.820
4 2,4-Dinitrotoluene 121-14-2 2.05 -1.841 0.870
5 3-Chloronitrobenzene 121-73-3 2.60 -1.286 0.730
6 2,3,4-Trichloronitrobenzene 17700-09-3 3.63 -1.660 1.510
7 2,4,6-Trichloronitrobenzene 18708-70-8 3.72 -1.674 1.430
8 2,3,5,6-Tetrachloro-1,4-Dinitrobenzene 20098-38-8 4.05 -2.669 2.740
9 4,6-Dichloro-1,2-Dinitrobenzene 28689-08-9 2.90 -2.300 2.420
10 2,3-Dichloronitrobenzene 3209-22-1 3.04 -1.434 1.070
11 2,5-Dibromonitrobenzene 3460-18-2 3.41 -1.539 1.370
12 1,2-Dinitrobenzene 528-29-0 1.63 -1.988 1.250
13 2-Bromonitrobenzene 577-19-5 2.55 -1.296 0.750
14 3-Bromonitrobenzene 585-79-5 2.75 -1.306 1.030
15 4-Bromonitrobenzene 586-78-7 2.75 -1.413 0.380
16 3,4-Dinitrotoluene 610-39-9 2.13 -1.786 1.520
17 2,4-Dichloronitrobenzene 611-06-3 3.16 -1.516 0.990
18 3,5-Dichloronitrobenzene 618-62-2 3.31 -1.488 1.130
19 2,4,6-Trichloro-1,3-Dinitrobenzene 6284-83-9 3.32 -2.355 2.190
20 1,2-Dichloro-4,5-Dinitrobenzene 6306-39-4 2.93 -2.363 2.210
21 6-Iodo-1,3-Dinitrobenzene 709-49-9 2.75 -2.160 2.120
22 3,5-Dinitrobenzyl Alcohol 71022-43-0 1.04 -1.931 0.530
23 3-Methyl-4-Bromonitrobenzene 7149-70-4 3.25 -1.348 1.160
24 3,4-Dinitrobenzyl Alcohol 79544-31-3 1.04 -1.906 1.090
25 2,6-Dimethylnitrobenzene 81-20-9 2.72 -0.956 0.300
26 2,3-Dimethylnitrobenzene 83-41-0 2.75 -0.952 0.560
27 2 Methyl-3-Chloronitrobenzene 83-42-1 3.02 -1.205 0.680
28 2,3,4,5-Tetrachloronitrobenzene 879-39-0 4.35 -1.827 1.780
29 2-Nitrotoluene 88-72-2 2.30 -1.011 0.052
30 2-Chloronitrobenzene 88-73-3 2.45 -1.257 0.680
31 4-Chloro-2-Nitrotoluene 89-59-8 3.02 -1.225 0.820
32 2,5-Dichloronitrobenzene 89-61-2 3.16 -1.468 1.130
33 2,4,5-Trichloronitrobenzene 89-69-0 3.75 -1.692 1.530
34 6-Chloro-1,3-Dinitrobenzene 97-00-7 2.19 -2.118 1.980
35 Nitrobenzene 98-95-3 1.88 -1.068 0.140
36 3-Nitrotoluene 99-08-1 2.38 -1.017 0.054
37 3,4-Dichloronitrobenzene 99-54-7 3.19 -1.525 1.160
38 1,3-Dinitrobenzene 99-65-0 1.63 -1.911 0.890
39 4-Methyl Nitrobenzene 99-99-0 2.38 -1.045 0.170


a Logarithm of octanol/water partition coefficient.  Values estimated using CLogP Version 4.0 (Biobyte, Claremont, CA, USA).
b Energy of the lowest unoccupied molecular orbital (expressed in electron volts, eV) calculated using Spartan 04 for Windows® Version 1.0.3 (Wavefun, Irvine, CA, USA).
c IGC50 = concentration inhibiting growth by 50 %.







Table S3:  Chemical Abstract Service (CAS) numbers, calculated descriptors and experimental toxicity data [10] describing 48 h toxicity of nitrobenzenes to Tetrahymena pyriformis.  


Compound name CAS number  log K OW
a E lumo


b (eV)
48 h log IGC50-1c (mM) 


1 4-Chloronitrobenzene 100-00-5 2.60 -1.344 0.559
2 4-Ethylnitrobenzene 100-12-9 2.91 -1.034 0.804
3 4-Nitrobenzyl Chloride 100-14-1 2.45 -1.326 1.180
4 4-Methoxynitrobenzene 100-17-4 2.10 -0.983 0.544
5 1,4-Dinitrobenzene 100-25-4 1.63 -2.208 1.301
6 4-Ethoxynitrobenzene 100-29-8 2.63 -0.948 0.829
7 4-Nitrobenzaldoxime 1129-37-9 1.93 -1.405 0.678
8 3-Chloronitrobenzene 121-73-3 2.60 -1.286 0.836
9 3-Acetylnitrobenzene 121-89-1 1.49 -1.357 0.317
10 3-Nitrobenzoic acid 121-92-6 1.84 -1.460 -1.089
11 3-Phenylnitrobenzene 2113-58-8 4.42 -1.106 1.569
12 4-Fluoronitrobenzene 350-46-9 2.03 -1.353 0.253
13 1,2-Dinitrobenzene 528-29-0 1.63 -1.988 1.252
14 2-Nitrobenzoic acid 552-16-9 1.47 -1.508 -1.637
15 2-Nitrobenzaldehyde 552-89-6 1.78 -1.422 0.174
16 3-Nitrophenol 554-84-7 1.85 -1.160 0.506
17 3-Methoxynitrobenzene 555-03-3 2.10 -1.072 0.670
18 4-Nitrobenzaldehyde 555-16-8 1.50 -1.674 0.203
19 4-Nitrophenyl Acetonitrile 555-21-5 1.35 -1.334 0.132
20 2-Bromonitrobenzene 577-19-5 2.55 -1.296 0.863
21 3-Bromonitrobenzene 585-79-5 2.75 -1.306 1.215
22 4-Bromonitrobenzene 586-78-7 2.75 -1.413 0.461
23 2-Nitrobenzamide 610-15-1 -0.14 -1.296 -0.721
24 2-Cyanonitrobenzene 612-24-8 1.02 -1.580 1.076
25 2-Nitrobenzyl Alcohol 612-25-9 1.22 -1.146 -0.155
26 3-Cyanonitrobenzene 619-24-9 1.32 -1.511 0.451
27 3-Nitrobenzyl Alcohol 619-25-0 1.30 -1.137 -0.220
28 4-Nitrobenzoic Acid Methyl Ester 619-50-1 1.85 -1.650 0.398
29 4-Cyanonitrobenzene 619-72-7 1.32 -1.721 0.569
30 4-Nitrobenzyl Alcohol 619-73-8 1.30 -1.193 0.101
31 4-Nitrobenzamide 619-80-7 0.76 -1.543 0.179
32 4-Nitrobenzoic Acid 62-23-7 1.84 -1.730 -0.862
33 3-Nitrobenzamide 645-09-0 0.76 -1.345 -0.193
34 4-Butoxynitrobenzene 7244-78-2 2.43 -0.939 1.420
35 4-Nitrodiphenylamine 836-30-6 1.26 -1.005 1.886
36 2-Phenylnitrobenzene 86-00-0 3.77 -1.237 1.301
37 2-Nitrotoluene 88-72-2 2.30 -1.011 0.479
38 2-Chloronitrobenzene 88-73-3 2.45 -1.257 0.676
39 2-Nitroaniline 88-74-4 1.80 -0.793 0.077
40 2-Nitrophenol 88-75-5 1.85 -1.014 0.770
41 Nitrobenzene 98-95-3 1.88 -1.068 0.350
42 3-Nitrotoluene 99-08-1 2.38 -1.017 0.572
43 3-Nitroaniline 99-09-2 3.54 -0.859 0.026
44 3-Nitrobenzaldehyde 99-61-6 1.50 -1.421 0.140
45 1,3-Dinitrobenzene 99-65-0 1.63 -1.911 0.762
46 4-Nitrobenzoic Acid Ethyl Ester 99-77-4 2.38 -1.619 0.710
47 4-Methyl Nitrobenzene 99-99-0 2.38 -1.045 0.796


a Logarithm of octanol/water partition coefficient.  Values estimated using CLogP Version 4.0 (Biobyte, Claremont, CA, USA).
b Energy of the lowest unoccupied molecular orbital (expressed in electron volts, eV) calculated using Spartan 04 for Windows® Version 1.0.3 (Wavefun, Irvine, CA, USA).
c IGC50 = concentration inhibiting growth by 50 %.







Table S4:  Chemical Abstract Service (CAS) numbers, calculated descriptors and experimental toxicity data [11] describing 12 h toxicity of nitrobenzenes   
to Saccharomyces cerevisiae.


Compound name CAS number  log K OW
b E lumo


b (eV) 12 h log EC50-1c (M) 


1 4-Chloronitrobenzene 100-00-5 2.60 -1.344 1.650
2 4-Nitroaniline 100-01-6 1.26 -1.000 0.960
3 4-Nitrophenol 100-02-7 1.85 -1.070 1.240
4 1,4-Dinitrobenzene 100-25-4 1.63 -2.208 3.230
5 2,4-Dinitrotoluene 121-14-2 2.05 -1.841 2.060
6 3-Chloronitrobenzene 121-73-3 2.60 -1.286 1.650
7 4-Nitro-2-Chloroaniline 121-87-9 2.07 -0.910 1.420
8 3-Nitrobenzoic acid 121-92-6 1.84 -1.460 1.520
9 3-Chloro-4-Fluoronitrobenzene 350-30-1 2.74 -2.210 1.560
10 1,2-Dinitrobenzene 528-29-0 1.63 -1.988 2.820
11 6-Bromo-1,3-Dinitrobenzene 584-48-5 2.29 -2.180 2.470
12 4-Bromonitrobenzene 586-78-7 2.75 -1.413 2.130
13 2,3-Dinitrotoluene 602-01-7 2.05 -1.710 1.970
14 2,6-Dinitrotoluene 606-20-2 1.97 -1.748 1.610
15 2-Nitrotoluene 88-72-2 2.30 -1.011 1.290
16 2-Chloronitrobenzene 88-73-3 2.45 -1.257 1.640
17 2-Nitroaniline 88-74-4 1.80 -0.793 1.080
18 6-Chloro-1,3-Dinitrobenzene 97-00-7 2.19 -2.118 2.020
19 Nitrobenzene 98-95-3 1.88 -1.068 1.010
20 3-Nitrotoluene 99-08-1 2.38 -1.017 1.520
21 3-Nitroaniline 99-09-2 3.54 -0.859 0.880
22 3,4-Dichloronitrobenzene 99-54-7 3.19 -1.525 2.200
23 1,3-Dinitrobenzene 99-65-0 1.63 -1.911 1.450
24 4-Methyl Nitrobenzene 99-99-0 2.38 -1.045 1.500


a Logarithm of octanol/water partition coefficient.  Values estimated using CLogP Version 4.0 (Biobyte, Claremont, CA, USA).
b Energy of the lowest unoccupied molecular orbital (expressed in electron volts, eV) calculated using Spartan 04 for Windows® Version 1.0.3 (Wavefun, Irvine, CA, USA).
c EC50 = effective concentration to 50 % of population.







Table S5:  Chemical Abstract Service (CAS) numbers, calculated descriptors and experimental toxicity data [13] describing toxicity of nitrobenzenes to three organisms.  


Compound name CAS number  log K OW
a E lumo


b (eV) Cyprinus carpio Daphnia carinata Scenedesmus obliquus


96 h log LC50-1c (M) 48 h log IC50-1d (M) 96 h log EC50-1e (M) 


1 4-Chloronitrobenzene 100-00-5 2.60 -1.344 3.790 3.940 4.010
2 4-Nitroaniline 100-01-6 1.26 -1.000 3.480 3.870 3.400
3 4-Nitrophenol 100-02-7 1.85 -1.070 3.980 3.570
4 4-Methoxynitrobenzene 100-17-4 2.10 -0.983 3.600 3.950 3.650
5 1,4-Dinitrobenzene 100-25-4 1.63 -2.208 5.170 5.400 4.960
6 2,4-Dinitrotoluene 121-14-2 2.05 -1.841 3.830 4.000
7 3-Chloronitrobenzene 121-73-3 2.60 -1.286 3.800 3.530 3.950
8 1,2-Dinitrobenzene 528-29-0 1.63 -1.988 5.310 5.090 5.040
9 3-Nitrophenol 554-84-7 1.85 -1.160 3.900 3.910 3.750
10 3-Bromonitrobenzene 585-79-5 2.75 -1.306 4.320
11 4-Bromonitrobenzene 586-78-7 2.75 -1.413 3.880
12 2,6-Dinitrotoluene 606-20-2 1.97 -1.748 3.960 3.910 4.060
13 2-Chloronitrobenzene 88-73-3 2.45 -1.257 3.790 3.870 3.940
14 2-Nitroaniline 88-74-4 1.80 -0.793 3.930 4.120 3.330
15 2-Nitrophenol 88-75-5 1.85 -1.014 3.580 3.840 3.510
16 2,5-Dichloronitrobenzene 89-61-2 3.16 -1.468 4.540 4.280 4.310
17 2,4-Dinitroaniline 97-02-9 1.75 -1.475 4.250 3.970 4.680
18 Nitrobenzene 98-95-3 1.88 -1.068 3.120 3.490 3.260
19 3-Nitrotoluene 99-08-1 2.38 -1.017 3.910
20 3-Nitroaniline 99-09-2 3.54 -0.859 3.350 3.820 3.480
21 3,4-Dichloronitrobenzene 99-54-7 3.19 -1.525 4.480 4.370 4.520
22 1,3-Dinitrobenzene 99-65-0 1.63 -1.911 4.070 4.100
23 4-Methyl Nitrobenzene 99-99-0 2.38 -1.045 3.530 3.980 3.740


a Logarithm of octanol/water partition coefficient.  Values estimated using CLogP Version 4.0 (Biobyte, Claremont, CA, USA).
b Energy of the lowest unoccupied molecular orbital (expressed in electron volts, eV) calculated using Spartan 04 for Windows® Version 1.0.3 (Wavefun, Irvine, CA, USA).
c LC50 = concentration lethal to 50 % of population.
d IC50 = concentration immobilizing 50 % of population.
e EC50 = effective concentration to 50 % of population.







Table S6:  Chemical Abstract Service (CAS) numbers, calculated descriptors and experimental toxicity data [17] describing 15 min toxicity of nitrobenzenes to Chlorella vulgaris .  


Compound name CAS number  log K OW
a E lumo


b (eV) 15 min log EC50-1c 


1 4-Chloronitrobenzene 100-00-5 2.60 -1.344 1.250
2 1,4-Dinitrobenzene 100-25-4 1.63 -2.208 0.410
3 2,3,5,6-Tetrachloronitrobenzene 117-18-0 4.32 -1.760 2.340
4 2,4-Dinitrotoluene 121-14-2 2.05 -1.841 0.700
5 6-Chloro-2,4-Dinitroaniline 3531-19-9 2.50 -1.670 0.800
6 2,4-Dinitrophenol 51-28-5 1.82 -1.888 0.400
7 1,2-Dinitrobenzene 528-29-0 1.63 -1.988 1.230
8 4-Chloro-2,6-Dinitroaniline 5388-62-5 2.50 -1.870 1.190
9 2,4,6-Trimethylnitrobenzene 603-71-4 3.22 -0.935 0.250
10 2,4-Dichloro-6-Nitrophenol 609-89-2 3.09 -1.430 1.500
11 3,5-Dinitroaniline 618-87-1 1.21 -1.717 0.030
12 2,4,6-Trichloro-1,3-Dinitrobenzene 6284-83-9 3.32 -2.355 1.890
13 2 Methyl-3-Chloronitrobenzene 83-42-1 3.02 -1.205 1.170
14 2,5-Dichloronitrobenzene 89-61-2 3.16 -1.468 0.970
15 2,4,5-Trichloronitrobenzene 89-69-0 3.75 -1.692 1.880
16 2,4-Dinitroaniline 97-02-9 1.75 -1.475 -0.360
17 Nitrobenzene 98-95-3 1.88 -1.068 -0.780
18 3-Nitrotoluene 99-08-1 2.38 -1.017 -0.500
19 2,6-Dibromo-4-Nitrophenol 99-28-5 3.16 -1.450 0.810
20 2,6-Dichloro-4-Nitroaniline 99-30-9 2.82 -1.096 0.640
21 3-Nitrobenzaldehyde 99-61-6 1.50 -1.421 0.450
22 1,3-Dinitrobenzene 99-65-0 1.63 -1.911 0.380


a Logarithm of octanol/water partition coefficient.  Values estimated using CLogP Version 4.0 (Biobyte, Claremont, CA, USA).
b Energy of the lowest unoccupied molecular orbital (expressed in electron volts, eV) calculated using Spartan 04 for Windows® Version 1.0.3 (Wavefun, Irvine, CA, USA).
c EC50 = effective concentration to 50 % of population.







Table S7:  Chemical Abstract Service (CAS) numbers, calculated descriptors and experimental toxicity data [16] describing 48 h toxicity of nitrobenzenes to Scenedesmus obliquus .  


Compound name CAS number  log K OW
a E lumo


b (eV) 48 h log EC50-1c (M)


1 4-Chloronitrobenzene 100-00-5 2.60 -1.344 4.010
2 4-Nitroaniline 100-01-6 1.26 -1.000 3.400
3 4-Nitrophenol 100-02-7 1.85 -1.070 3.570
4 4-Methoxynitrobenzene 100-17-4 2.10 -0.983 3.650
5 1,4-Dinitrobenzene 100-25-4 1.63 -2.208 4.960
6 2,4-Dinitrotoluene 121-14-2 2.05 -1.841 4.520
7 3-Chloronitrobenzene 121-73-3 2.60 -1.286 3.950
8 2,4-Dinitrophenol 51-28-5 1.82 -1.888 4.160
9 1,2-Dinitrobenzene 528-29-0 1.63 -1.988 5.040
10 3-Nitrophenol 554-84-7 1.85 -1.160 3.750
11 3-Methoxynitrobenzene 555-03-3 2.10 -1.072 3.710
12 3-Bromonitrobenzene 585-79-5 2.75 -1.306 4.320
13 4-Bromonitrobenzene 586-78-7 2.75 -1.413 3.880
14 2,6-Dinitrotoluene 606-20-2 1.97 -1.748 4.060
15 2-Chloronitrobenzene 88-73-3 2.45 -1.257 3.940
16 2-Nitroaniline 88-74-4 1.80 -0.793 3.330
17 2-Nitrophenol 88-75-5 1.85 -1.014 3.510
18 2,5-Dichloronitrobenzene 89-61-2 3.16 -1.468 4.310
19 2-Nitroanisole 91-23-6 1.82 -1.010 3.440
20 2,4-Dinitroaniline 97-02-9 1.75 -1.475 4.680
21 Nitrobenzene 98-95-3 1.88 -1.068 3.260
22 3-Nitroaniline 99-09-2 3.54 -0.859 3.480
23 3,4-Dichloronitrobenzene 99-54-7 3.19 -1.525 4.520
24 1,3-Dinitrobenzene 99-65-0 1.63 -1.911 4.850
25 4-Methyl Nitrobenzene 99-99-0 2.38 -1.045 3.740


a Logarithm of octanol/water partition coefficient.  Values estimated using CLogP Version 4.0 (Biobyte, Claremont, CA, USA).
b Energy of the lowest unoccupied molecular orbital (expressed in electron volts, eV) calculated using Spartan 04 for Windows® Version 1.0.3 (Wavefun, Irvine, CA, USA).
c EC50 = effective concentration to 50 % of population.







Table S8:  Chemical Abstract Service (CAS) numbers, calculated descriptors and experimental toxicity data [15] describing 48 h toxicity of nitrobenzenes to three organisms. 


Compound name CAS number  log K OW
a E lumo


b (eV)
Photobacterium 
phosphoreum


Daphnia magna D. magna D. magna D. magna Chlorella  
pyrenoidosa


15 min log EC50c
 (µM) 48 h log IC50d (µM) 21 d. log IC50 (µM) 21 d. log LRCTrm


e (µM) 21 d. log LRCTlength
f (µM) 96 h log EC50 (µM) 


1 4-Chloronitrobenzene 100-00-5 2.60 -1.344 2.330 1.630 1.460 1.050 1.310 1.490
2 1,4-Dinitrobenzene 100-25-4 1.63 -2.208 0.030 0.890 -0.230 0.280 -0.720 0.670
3 2,4-Dinitrotoluene 121-14-2 2.05 -1.841 2.450 2.270 0.520 0.740 0.740 0.700
4 3-Chloronitrobenzene 121-73-3 2.60 -1.286 1.920 2.100 1.770 1.050 1.800 1.080
5 2,3-Dichloronitrobenzene 3209-22-1 3.04 -1.434 0.890 1.340 1.260 0.970 0.720 1.180
6 1,2-Dinitrobenzene 528-29-0 1.63 -1.988 1.770 1.285 0.980 0.770 0.770 1.050
7 2,3-Dinitrotoluene 602-01-7 2.05 -1.710 1.520 1.490 0.990 1.240 0.740 0.700
8 2,6-Dinitrotoluene 606-20-2 1.97 -1.748 1.200 2.270 1.720 1.740 0.740 1.570
9 3,4-Dinitrotoluene 610-39-9 2.13 -1.786 1.580 1.490 0.780 0.240 0.240 0.610
10 2,4-Dichloronitrobenzene 611-06-3 3.16 -1.516 0.950 1.340 1.360 0.720 1.220 1.100
11 3,5-Dichloronitrobenzene 618-62-2 3.31 -1.488 1.970 1.590 1.150 0.460 0.720 0.490
12 2,3-Dimethylnitrobenzene 83-41-0 2.75 -0.952 0.550 1.440 1.400 1.330 1.330 1.620
13 2 Methyl-3-Chloronitrobenzene 83-42-1 3.02 -1.205 0.710 1.390 1.300 1.020 1.270 1.600
14 2-Nitrotoluene 88-72-2 2.30 -1.011 1.130 1.900 1.730 1.860 1.860 2.540
15 2-Chloronitrobenzene 88-73-3 2.45 -1.257 1.460 2.180 1.830 1.800 1.800 1.640
16 4-Chloro-2-Nitrotoluene 89-59-8 3.02 -1.225 1.450 1.730 1.600 1.020 1.270 1.540
17 2,5-Dichloronitrobenzene 89-61-2 3.16 -1.468 1.640 1.760 1.300 0.970 1.220 1.040
18 Nitrobenzene 98-95-3 1.88 -1.068 2.160 2.430 2.290 2.160 2.160 2.160
19 3-Nitrotoluene 99-08-1 2.38 -1.017 1.460 1.740 1.780 1.370 1.120 2.010
20 3,4-Dimethylnitrobenzene 99-51-4 2.83 -0.997 1.150 2.020 1.590 1.330 1.330 1.770
21 1,3-Dinitrobenzene 99-65-0 1.63 -1.911 2.380 2.630 1.080 1.280 0.770 0.150
22 4-Methyl Nitrobenzene 99-99-0 2.38 -1.045 1.900 2.140 1.710 1.610 1.610 2.210


a Logarithm of octanol/water partition coefficient.  Values estimated using CLogP Version 4.0 (Biobyte, Claremont, CA, USA).
b Energy of the lowest unoccupied molecular orbital (expressed in electron volts, eV) calculated using Spartan 04 for Windows® Version 1.0.3 (Wavefun, Irvine, CA, USA).
c EC50 = effective concentration to 50 % of population.
d IC50 = concentration immobilizing 50 % of population.
e Lowest rejected concentration that significantly (p  < 0.01) lowered the population growth constant (rm) of daphnids
f Lowest rejected concentration that significantly (p < 0.01) lowered the mean length of daphnids







Table S9:  Chemical Abstract Service (CAS) numbers, calculated descriptors and experimental toxicity data [14] describing 48 h toxicity of nitrobenzenes to Poecilia reticulata . 


Compound name CAS number  log K OW
a E lumo


b (eV) 14 d LC50c (µM)


1 4-Chloronitrobenzene 100-00-5 2.60 -1.344 1.580
2 4-Nitroaniline 100-01-6 1.26 -1.000 2.590
3 1,4-Dinitrobenzene 100-25-4 1.63 -2.208 0.370
4 2,4-Dinitrotoluene 121-14-2 2.05 -1.841 1.840
5 3-Chloronitrobenzene 121-73-3 2.60 -1.286 1.990
6 2,3-Dichloronitrobenzene 3209-22-1 3.04 -1.434 1.340
7 1,2-Dinitrobenzene 528-29-0 1.63 -1.988 0.850
8 2,3-Dinitrotoluene 602-01-7 2.05 -1.710 1.000
9 2,6-Dinitrotoluene 606-20-2 1.97 -1.748 1.990
10 3,4-Dinitrotoluene 610-39-9 2.13 -1.786 0.920
11 2,4-Dichloronitrobenzene 611-06-3 3.16 -1.516 1.540
12 3,5-Dichloronitrobenzene 618-62-2 3.31 -1.488 1.470
13 2,3-Dimethylnitrobenzene 83-41-0 2.75 -0.952 1.610
14 2 Methyl-3-Chloronitrobenzene 83-42-1 3.02 -1.205 1.480
15 2-Nitrotoluene 88-72-2 2.30 -1.011 2.380
16 2-Chloronitrobenzene 88-73-3 2.45 -1.257 2.280
17 2-Nitroaniline 88-74-4 1.80 -0.793 1.850
18 4-Chloro-2-Nitrotoluene 89-59-8 3.02 -1.225 1.560
19 2,5-Dichloronitrobenzene 89-61-2 3.16 -1.468 1.410
20 Nitrobenzene 98-95-3 1.88 -1.068 2.700
21 3-Nitrotoluene 99-08-1 2.38 -1.017 2.340
22 3-Nitroaniline 99-09-2 3.54 -0.859 2.570
23 1,3,5-trinitrobenzene 99-35-4 1.37 -2.530 0.710
24 3,4-Dimethylnitrobenzene 99-51-4 2.83 -0.997 1.790
25 1,3-Dinitrobenzene 99-65-0 1.63 -1.911 1.360
26 4-Methyl Nitrobenzene 99-99-0 2.38 -1.045 2.430


a Logarithm of octanol/water partition coefficient.  Values estimated using CLogP Version 4.0 (Biobyte, Claremont, CA, USA).
b Energy of the lowest unoccupied molecular orbital (expressed in electron volts, eV) calculated using Spartan 04 for Windows® Version 1.0.3 (Wavefun, Irvine, CA, USA).
c LC50 = concentration lethal to 50 % of population.







Table S10.  Extraction of neutral, mononitrobenzenes with no cyano substituent from European Inventory of Existing Commercial Substances (EINECS) list in Microsoft ® Excel 2000 (Microsoft, Redmond, WA, USA).
The initial number of compounds with Simplified Molecular Input Line Entry System (SMILES) code was 54277


Filtering criteria Reason(s) for choice of filtering criteria Number of compounds satisying 
selection criteria


a)  “c1”  and “N(=O)” in SMILES code c1 = part of a ring; N(=O) = contains Nitrogen in a double bond with Oxygen, suggesting 
presence of a nitro group


2875


b)  “1” and not “2” in SMILES code “2” means there is more than one ring present, single phenyl desired. 1323


c) Molecular formula begins with “C5” or “C3” Less than 6 C-atoms means compound does not contain a phenyl ring. 1278


d) Name does not contain “di”- or “trinitro”                      Only mononitro compounds desired 1073


e) Name does not contain “sulph” Sulphone group not part of the training set 961


e) Name does not contain “acid” Possibility of ionising at pH 7.4 872


f) SMILES code does not contain  “n1” “n1” means nitrogen is part of the phenyl ring 809


g)  “Na” or “Pb” in molecular formula; name does not 
contain picrate


Salts have different uptake characteristics from neutral nitrobenzenes. 791


h) Looked at the individual structures of the remaining 
791 compounds 


No suitable filtering criteria could be used on the name, molecular formula and SMILES 
code.


Deleted the following: 
Carbamate   -                   = 3
Silicon containing   -       = 2
fatty acid         -               = 4
organophosphate   -         = 6
nitro not attached 
to ring carbon         -        = 13
> one nitro       -               =  19
complex structures   -      = 20
cyano substituent      -      = 19
salt                -                  = 3 0
non phenyl ring      -         = 28
stereochemistry         -      = 37
ionising at pH 7.4  -          = 112
containing iodine              = 11


Total  = 304, Left with 487


1) Molecular formula contains “C”, “N” and “O” &. 
Name contains “benzene” from the list of 45 919 
compounds without SMILES code


Presence of carbon, nitrogen and oxygen is the best link to a nitrobenzene where there is 
no SMILES code. 


10 nitrobenzenes selected.  The final list 
contained 487 + 10 = 497 
nitrobenzenes.







Table S11: Compounds extracted from the European Inventory of Existing Commercial Substances (EINECS) list satisfying the selection criteria: neutral (no -OH or -COOH substituent),
single phenyl mononitrobenzenes, with no cyano substituent directly attached to the ring


CASa number Name Molecular formula SMILESb code log K OW
c E lumo


d (eV)


1 100-00-5 1-chloro-4-nitrobenzene C6H4ClNO2 O=N(=O)c(ccc(c1)Cl)c1 2.598 -1.344
2 100-01-6 4-nitroaniline C6H6N2O2 O=N(=O)c(ccc(N)c1)c1 1.258 -1.000
3 100-11-8 .alpha.-bromo-4-nitrotoluene C7H6BrNO2 O=N(=O)c(ccc(c1)CBr)c1 2.667 -1.353
4 100-12-9 1-ethyl-4-nitrobenzene C8H9NO2 O=N(=O)c(ccc(c1)CC)c1 2.913 -1.030
5 100-14-1 .alpha.-chloro-4-nitrotoluene C7H6ClNO2 O=N(=O)c(ccc(c1)CCl)c1 2.447 -1.330
6 100-15-2 N-methyl-4-nitroaniline C7H8N2O2 O=N(=O)c(ccc(NC)c1)c1 2.032 -0.695
7 100-16-3 4-nitrophenylhydrazine C6H7N3O2 O=N(=O)c(ccc(NN)c1)c1 1.656 -0.882
8 100-17-4 4-nitroanisole C7H7NO3 O=N(=O)c(ccc(OC)c1)c1 2.104 -0.983
9 100-19-6 4'-nitroacetophenone C8H7NO3 CC(=O)c1ccc(cc1)N(=O)=O 1.486 -1.601
10 100-23-2 N,N-dimethyl-4-nitroaniline C8H10N2O2 O=N(=O)c(ccc(N(C)C)c1)c1 2.416 -0.685
11 100-27-6 4-nitrophenethyl alcohol C8H9NO3 O=N(=O)c(ccc(c1)CCO)c1 1.076 -1.160
12 100-28-7 4-nitrophenyl isocyanate C7H4N2O3 O=C=Nc(ccc(N(=O)=O)c1)c1 2.198 -1.505
13 100-29-8 4-nitrophenetole C8H9NO3 O=N(=O)c(ccc(OCC)c1)c1 2.633 -0.950
14 1009-36-5 2-chloro-5-nitroanisole C7H6ClNO3 O=N(=O)c(ccc(c1OC)Cl)c1 2.636 -1.306
15 10112-15-9 N-ethyl-2-nitroaniline C8H10N2O2 N(=O)(=O)c1c(NCC)cccc1 2.711 -0.745
16 1016-58-6 6-nitroveratryl alcohol C9H11NO5 N(=O)(=O)c1cc(OC)c(OC)cc1CO 0.705 -1.007
17 10228-03-2 2-[N-methyl-4-(methylamino)-3-nitroanilino]ethanol C10H15N3O3 OCCN(C)c1cc(N(=O)=O)c(NC)cc1 1.716 -0.754
18 10298-80-3 4-chloro-3-nitroanisole C7H6ClNO3 COc1ccc(Cl)c(c1)N(=O)=O 2.716 -1.245
19 10342-59-3 1-nitro-4-propylbenzene C9H11NO2 N(=O)(=O)c1ccc(CCC)cc1 3.442 -1.035
20 10342-60-6 1-isobutyl-4-nitrobenzene C10H13NO2 N(=O)(=O)c1ccc(CC(C)C)cc1 3.841 -1.027
21 10397-30-5 4-methyl-3-nitrobenzoyl chloride C8H6ClNO3 N(=O)(=O)c1c(C)ccc(C(=O)Cl)c1 1.728 -1.557
22 10397-58-7 3-nitro-p-anisamide C8H8N2O4 O=C(N)c(ccc(OC)c1N(=O)=O)c1 0.579 -1.164
23 10403-47-1 2-bromo-5-nitroaniline C6H5BrN2O2 Nc1c(Br)ccc(N(=O)=O)c1 2.269 -1.233
24 104-04-1 4'-nitroacetanilide C8H8N2O3 O=C(Nc(ccc(N(=O)=O)c1)c1)C 1.456 -1.237
25 104-30-3 p-nitrophenethyl acetate C10H11NO4 O=C(OCCc(ccc(N(=O)=O)c1)c1)C 2.022 -1.290
26 10552-74-6 diisopropyl 5-nitroisophthalate C14H17NO6 c1c(N(=O)(=O))cc(C(=O)OC(C)C)cc1C(=O)OC(C)C 3.499 -1.448
27 10560-13-1 diethyl 5-nitroisophthalate C12H13NO6 CCOC(=O)c1cc(N(=O)=O)cc(C(=O)OCC)c1 2.881 -1.822
28 1129-37-9 4-nitrobenzaldehyde oxime C7H6N2O3 ON=Cc1ccc(N(=O)=O)cc1 1.928 -1.410
29 117-18-0 tecnazene C6HCl4NO2 Clc1cc(Cl)c(Cl)c(N(=O)=O)c1Cl 4.317 -1.760
30 118-83-2 5-chloro-.alpha.,.alpha.,.alpha.-trifluoro-2-nitrotoluene C7H3ClF3NO2 C(F)(F)(F)c1cc(Cl)ccc1N(=O)=O 3.481 -1.839
31 119-10-8 methyl 2-nitro-p-tolyl ether C8H9NO3 O=N(=O)c(c(OC)ccc1C)c1 2.323 -0.889
32 119-21-1 1-chloro-2,4-dimethoxy-5-nitrobenzene C8H8ClNO4 O=N(=O)c(c(OC)cc(OC)c1Cl)c1 2.401 -1.015
33 119-23-3 1,4-diethoxy-2-nitrobenzene C10H13NO4 O=N(=O)c(c(OCC)ccc1OCC)c1 2.951 -0.923
34 119-32-4 3-nitro-p-toluidine C7H8N2O2 O=N(=O)c(c(ccc1N)C)c1 1.677 -0.905
35 119-76-6 N,N'-(4-nitro-1,3-phenylene)bis(acetamide) C10H11N3O4 O=C(Nc(c(N(=O)=O)ccc1NC(=O)C)c1)C 0.181 -1.076
36 119-81-3 4'-methoxy-2'-nitroacetanilide C9H10N2O4 CC(=O)Nc1c(N(=O)(=O))cc(OC)cc1 1.060 -1.103
37 1199-36-6 1-chloro-4-(methylthio)-2-nitrobenzene C7H6ClNO2S O=N(=O)c(c(ccc1SC)Cl)c1 3.147 -1.098
38 120-48-9 butyl 4-nitrobenzoate C11H13NO4 N(=O)(=O)c1ccc(C(=O)OCCCC)cc1 3.441 -1.733
39 121-01-7 4-nitro-.alpha.,.alpha.,.alpha.-trifluoro-o-toluidine C7H5F3N2O2 N(=O)(=O)c1cc(C(F)(F)F)c(N)cc1 2.313 -1.133
40 121-17-5 4-chloro-.alpha.,.alpha.,.alpha.-trifluoro-3-nitrotoluene C7H3ClF3NO2 O=N(=O)c(c(ccc1C(F)(F)F)Cl)c1 3.331 -1.617
41 121-73-3 1-chloro-3-nitrobenzene C6H4ClNO2 O=N(=O)c(cccc1Cl)c1 2.598 -1.286
42 121-86-8 2-chloro-4-nitrotoluene C7H6ClNO2 O=N(=O)c(ccc(c1Cl)C)c1 3.097 -1.248
43 121-87-9 2-chloro-4-nitroaniline C6H5ClN2O2 O=N(=O)c(ccc(N)c1Cl)c1 2.069 -0.910
44 121-89-1 3'-nitroacetophenone C8H7NO3 O=C(c(cccc1N(=O)=O)c1)C 1.486 -1.360
45 121-90-4 3-nitrobenzoyl chloride C7H4ClNO3 O=C(c(cccc1N(=O)=O)c1)Cl 1.309 -1.631
46 121-95-9 N-methyl-N-(4-nitrophenyl)acetamide C9H10N2O3 N(=O)(=O)c1ccc(N(C)C(=O)C)cc1 1.150 -1.292
47 122-04-3 4-nitrobenzoyl chloride C7H4ClNO3 O=C(c(ccc(N(=O)=O)c1)c1)Cl 1.309 -1.939
48 122-28-1 3'-nitroacetanilide C8H8N2O3 O=C(Nc(cccc1N(=O)=O)c1)C 1.456 -1.014
49 13120-77-9 methyl 5-nitro-o-tolyl ether C8H9NO3 O=N(=O)c(ccc(c1OC)C)c1 2.603 -1.056
50 13138-53-9 4-nitrophthaldiamide C8H7N3O4 O=C(N)c(c(ccc1N(=O)=O)C(=O)N)c1 -1.847 -1.621
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51 13142-74-0 (4-methyl-2-nitrophenyl)urea C8H9N3O3 NC(=O)Nc1c(N(=O)=O)cc(C)cc1 1.735 -1.167
52 13287-49-5 p-nitrobenzyl thiocyanate C8H6N2O2S N(=O)(=O)c1ccc(CSC#N)cc1 1.737 -1.610
53 13290-74-9 2-chloro-5-nitrotoluene C7H6ClNO2 O=N(=O)c(ccc(c1C)Cl)c1 3.097 -1.283
54 13290-96-5 dimethyl 5-nitroisophthalate C10H9NO6 O=C(OC)c(cc(N(=O)=O)cc1C(=O)OC)c1 1.823 -1.871
55 13296-94-1 2-bromo-4-nitroaniline C6H5BrN2O2 O=N(=O)c(ccc(N)c1Br)c1 2.269 -0.910
56 13303-10-1 tert-butyl p-nitrophenyl carbonate C11H13NO5 O=C(OC(C)(C)C)Oc(ccc(N(=O)=O)c1)c1 2.551 -1.360
57 13311-84-7 flutamide C11H11F3N2O3 c1c(C(F)(F)F)c(N(=O)=O)ccc1NC(=O)C(C)C 3.335 -1.467
58 13324-11-3 methyl 2-chloro-4-nitrobenzoate C8H6ClNO4 N(=O)(=O)c1cc(Cl)c(C(=O)OC)cc1 2.127 -1.918
59 13414-54-5 o-(2-methylallyloxy)nitrobenzene C10H11NO3 O=N(=O)c(c(OCC(=C)C)ccc1)c1 2.997 -0.878
60 134-19-0 5-methyl-4-nitro-o-anisidine C8H10N2O3 O=N(=O)c(c(cc(N)c1OC)C)c1 1.925 -0.804
61 13438-30-7 5-nitroisophthaloyl chloride C8H3Cl2NO4 N(=O)(=O)c1cc(C(=O)Cl)cc(C(=O)Cl)c1 0.733 -3.456
62 135-15-9 1,4-dibutoxy-2-nitrobenzene C14H21NO4 N(=O)(=O)c1c(OCCCC)ccc(OCCCC)c1 5.067 -0.917
63 13544-07-5 methyl (2-nitro-4-trifluorobenzyl)acetate C10H8F3NO4 FC(F)(F)c1cc(N(=O)=O)c(CC(=O)OC)cc1 2.366 -1.843
64 13790-14-2 2,4-dichloro-3-nitrotoluene C7H5Cl2NO2 N(=O)(=O)c1c(Cl)c(C)ccc1Cl 3.510 -0.980
65 13852-51-2 6-chloro-4-nitro-o-toluidine C7H7ClN2O2 Nc1cc(Cl)c(N(=O)=O)cc1C 2.368 -0.821
66 1427-07-2 2-fluoro-4-nitrotoluene C7H6FNO2 N(=O)(=O)c1cc(F)c(C)cc1 2.527 -1.300
67 14309-42-3 pentyl 4-nitrobenzoate C12H15NO4 O=C(OCCCCC)c(ccc(N(=O)=O)c1)c1 3.970 -1.617
68 1466-88-2 2-nitrocinnamaldehyde C9H7NO3 N(=O)(=O)c1c(C=CC=O)cccc1 1.792 -1.656
69 1481-68-1 1-chloro-2,4-difluoro-5-nitrobenzene C6H2ClF2NO2 N(=O)(=O)c1cc(Cl)c(F)cc1F 2.584 -1.774
70 1493-27-2 1-fluoro-2-nitrobenzene C6H4FNO2 O=N(=O)c(c(F)ccc1)c1 1.728 -1.301
71 15121-84-3 2-nitrophenethyl alcohol C8H9NO3 O=N(=O)c(c(ccc1)CCO)c1 0.996 -1.077
72 16133-49-6 5methoxy-2-nitroaniline C7H8N2O3 COc1ccc(N(=O)=O)c(N)c1 1.867 -0.712
73 1635-61-6 5-chloro-2-nitroaniline C6H5ClN2O2 Nc1cc(Cl)ccc1N(=O)=O 2.609 -1.062
74 1635-84-3 6-nitro-2,4-xylidine C8H10N2O2 Nc1c(C)cc(C)cc1N(=O)=O 2.746 -0.743
75 16365-27-8 2-(4-nitrophenoxy)ethanol C8H9NO4 O=N(=O)c(ccc(OCCO)c1)c1 1.231 -0.960
76 16383-89-4 4-nitro-o-phenetidine C8H10N2O3 O=N(=O)c(ccc(N)c1OCC)c1 2.036 -0.835
77 1644-21-9 .alpha.,.alpha.,.beta.,.beta.-tetrafluoro-m-nitrophenetole C8H5F4NO3 N(=O)(=O)c1cc(OC(F)(F)C(F)F)ccc1 3.965 -1.367
78 16554-45-3 6-nitro-o-anisidine C7H8N2O3 N(=O)(=O)c1c(N)c(OC)ccc1 1.867 -0.838
79 16588-06-0 4-chloro-3-nitrobenzamide C7H5ClN2O3 O=C(N)c(ccc(c1N(=O)=O)Cl)c1 1.380 -1.377
80 16588-34-4 4-chloro-3-nitrobenzaldehyde C7H4ClNO3 N(=O)(=O)c1c(ccc(c1)C=O)Cl 2.108 -1.634
81 17090-48-1 2,2-dichloro-N-(4-chloro-2-nitrophenyl)acetamide C8H5Cl3N2O3 N(=O)(=O)c1cc(Cl)ccc1NC(=O)C(Cl)Cl 3.125 -1.500
82 1734-79-8 p-nitrocinnamaldehyde C9H7NO3 O=CC=Cc(ccc(N(=O)=O)c1)c1 1.792 -1.750
83 17408-16-1 3'-nitropropiophenone C9H9NO3 N(=O)(=O)c1cc(C(=O)CC)ccc1 2.015 -1.325
84 17484-36-5 4-methyl-3-nitroanisole C8H9NO3 N(=O)(=O)c1c(C)ccc(OC)c1 2.523 -1.034
85 17700-09-3 4-nitro-1,2,3-trichlorobenzene C6H2Cl3NO2 Clc1ccc(N(=O)=O)c(Cl)c1Cl 3.634 -1.660
86 1777-84-0 N-(4-ethoxy-3-nitrophenyl)acetamide C10H12N2O4 O=C(Nc(ccc(OCC)c1N(=O)=O)c1)C 1.769 -0.878
87 17809-36-8 2-fluoro-6-nitroaniline C6H5FN2O2 Nc1c(F)cccc1N(=O)=O 1.959 -1.064
88 1817-47-6 p-nitrocumene C9H11NO2 O=N(=O)c(ccc(c1)C(C)C)c1 3.312 -1.007
89 18226-17-0 2,2'-[(4-nitrophenyl)imino]bisethanol C10H14N2O4 O=N(=O)c(ccc(N(CCO)CCO)c1)c1 0.935 -0.837
90 18349-11-6 4-chloro-2-fluoro-5-nitrotoluene C7H5ClFNO2 N(=O)(=O)c1c(Cl)cc(F)c(C)c1 3.090 -1.315
91 18515-14-5 .alpha.-chloro-3-methyl-4-nitrotoluene C8H8ClNO2 N(=O)(=O)c1c(C)cc(CCl)cc1 2.866 -1.266
92 18640-58-9 1-(4-bromo-3-nitrophenyl)ethan-1-one C8H6BrNO3 N(=O)(=O)c1c(Br)ccc(C(=O)C)c1 2.175 -1.210
93 1865-01-6 4-nitrophenyl formate C7H5NO4 O=COc(ccc(N(=O)=O)c1)c1 1.318 -1.403
94 18708-70-8 1,3,5-trichloro-2-nitrobenzene C6H2Cl3NO2 O=N(=O)c(c(cc(c1)Cl)Cl)c1Cl 3.724 -1.670
95 1886-57-3 1-tert-butyl-2-nitrobenzene C10H13NO2 N(=O)(=O)c1c(C(C)(C)C)cccc1 3.631 -0.954
96 19013-11-7 4-methyl-3-nitrobenzamide C8H8N2O3 O=C(N)c(ccc(c1N(=O)=O)C)c1 1.177 -1.347
97 19064-24-5 1,3-difluoro-2-nitrobenzene C6H3F2NO2 N(=O)(=O)c1c(F)cccc1F 1.571 -1.529
98 19370-34-4 1-sec-butyl-2-nitrobenzene C10H13NO2 N(=O)(=O)c1c(C(CC)C)cccc1 3.761 -0.948
99 1955-04-0 methyl 3-(chlorocarbonyl)-5-nitrobenzoate C9H6ClNO5 N(=O)(=O)c1cc(C(=O)Cl)cc(C(=O)OC)c1 1.278 -1.783
100 1956-06-5 4-nitrophenyl propionate C9H9NO4 N(=O)(=O)c1ccc(cc1)OC(=O)CC 2.063 -1.490
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101 1958-93-6 2-(bromomethyl)-1-fluoro-3-nitrobenzene C7H5BrFNO2 N(=O)(=O)c1c(CBr)c(F)ccc1 2.730 -1.390
102 20098-48-0 1,2,3-trichloro-5-nitrobenzene C6H2Cl3NO2 N(=O)(=O)c1cc(Cl)c(Cl)c(Cl)c1 3.784 -1.660
103 20132-75-6 methyl 4-(aminocarbonyl)-2-nitrobenzoate C9H8N2O5 NC(=O)c1cc(N(=O)=O)c(C(=O)OC)cc1 0.644 -1.628
104 20142-88-5 (4-nitrophenoxy)acetyl chloride C8H6ClNO4 N(=O)(=O)c1ccc(OCC(=O)Cl)cc1 1.766 -1.241
105 20200-22-0 N-methyl-2-nitro-4-(trifluoromethyl)aniline C8H7F3N2O2 O=N(=O)c(c(NC)ccc1C(F)(F)F)c1 3.250 -1.196
106 20357-25-9 6-nitroveratraldehyde C9H9NO5 N(=O)(=O)c1c(C=O)cc(OC)c(OC)c1 1.583 -1.312
107 20367-33-3 N-(2-nitro-4-propoxyphenyl)acetamide C11H14N2O4 N(=O)(=O)c1cc(OCCC)ccc1NC(=O)C 2.118 -1.220
108 20367-34-4 2-nitro-4-propoxyaniline C9H12N2O3 N(=O)(=O)c1c(N)ccc(OCCC)c1 2.924 -0.854
109 20651-75-6 1-butyl-4-nitrobenzene C10H13NO2 N(=O)(=O)c1ccc(CCCC)cc1 3.971 -1.033
110 20651-76-7 1-butyl-3-nitrobenzene C10H13NO2 N(=O)(=O)c1cc(CCCC)ccc1 3.971 -1.004
111 2105-61-5 1,2,4-trifluoro-5-nitrobenzene C6H2F3NO2 N(=O)(=O)c1c(F)cc(F)c(F)c1 1.944 -1.853
112 2106-49-2 1-chloro-2-fluoro-3-nitrobenzene C6H3ClFNO2 N(=O)(=O)c1c(F)c(Cl)ccc1 2.441 -1.492
113 2106-50-5 2-chloro-4-fluoro-1-nitrobenzene C6H3ClFNO2 N(=O)(=O)c1c(Cl)cc(F)cc1 2.591 -1.530
114 2131-61-5 4-nitrobenzyl-isothiocyanate C7H4N2O2S O=N(=O)c(ccc(N=C=S)c1)c1 3.408 -1.630
115 21397-07-9 2-chloro-1-fluoro-3-nitrobenzene C6H3ClFNO2 N(=O)(=O)c1c(Cl)c(F)ccc1 2.591 -1.501
116 21397-11-5 2-fluoro-3-nitroaniline C6H5FN2O2 Nc1c(F)c(N(=O)=O)ccc1 1.119 -1.180
117 21731-56-6 4-mesyl-2-nitroaniline C7H8N2O4S O=S(=O)(c(ccc(N)c1N(=O)=O)c1)C 0.548 -1.233
118 2207-68-3 1-(4-nitrophenyl)glycerol C9H11NO5 N(=O)(=O)c1ccc(C(O)C(O)CO)cc1 -0.285 -1.169
119 2216-15-1 N,N-diethyl-4-nitroaniline C10H14N2O2 O=N(=O)c(ccc(N(CC)CC)c1)c1 3.474 -0.664
120 2227-64-7 2-bromo-1-(3-nitrophenyl)ethan-1-one C8H6BrNO3 N(=O)(=O)c1cc(C(=O)CBr)ccc1 1.739 -1.446
121 2265-94-3 1,3-difluoro-5-nitrobenzene C6H3F2NO2 c1c(F)cc(F)cc1N(=O)=O 2.171 -1.603
122 22913-12-8 isopropyl 3-nitro-p-toluate C11H13NO4 N(=O)(=O)c1c(C)ccc(C(=O)OC(C)C)c1 3.111 -1.290
123 22996-18-5 4-chloro-3-nitrobenzyl alcohol C7H6ClNO3 N(=O)(=O)c1cc(Cl)ccc1CO 1.93 -1.277
124 23082-50-0 1-(2-chloro-5-nitrophenyl)ethan-1-one C8H6ClNO3 N(=O)(=O)c1cc(C(=O)C)c(Cl)cc1 1.965 -1.523
125 23132-52-7 1-tert-butyl-3-nitrobenzene C10H13NO2 N(=O)(=O)c1cc(C(C)(C)C)ccc1 3.711 -0.999
126 23222-97-1 2-nitro-p-xylene-.alpha.,.alpha.'-diol C8H9NO4 N(=O)(=O)c1c(CO)ccc(CO)c1 -0.271 -1.214
127 2369-11-1 5-fluoro-2-nitroaniline C6H5FN2O2 Nc1cc(F)ccc1N(=O)=O 2.039 -1.058
128 2369-12-2 3-fluoro-5-nitroaniline C6H5FN2O2 Nc1cc(F)cc(N(=O)=O)c1 1.499 -1.106
129 2369-13-3 3-fluoro-4-nitroaniline C6H5FN2O2 Nc1cc(F)c(N(=O)=O)cc1 1.199 -0.959
130 23876-13-3 2-methyl-3-nitrobenzyl alcohol C8H9NO3 N(=O)(=O)c1c(C)c(CO)ccc1 1.216 -1.076
131 2487-26-5 o-nitrophenyl butyrate C10H11NO4 N(=O)(=O)c1c(OC(=O)CCC)cccc1 2.312 -1.313
132 24905-87-1 2-(4-amino-3-nitroanilino)ethanol C8H11N3O3 N(=O)(=O)c1c(N)ccc(NCCO)c1 0.761 -0.776
133 25026-97-5 2-amino-5-nitrothiobenzamide C7H7N3O2S O=N(=O)c(ccc(N)c1C(=N)S)c1 0.111 -1.116
134 25186-43-0 N-isopropyl-4-nitroaniline C9H12N2O2 O=N(=O)c(ccc(NC(C)C)c1)c1 2.870 -0.749
135 2524-76-7 1-(methylthio)-3-nitrobenzene C7H7NO2S N(=O)(=O)c1cc(SC)ccc1 2.564 -1.081
136 25784-91-2 2-chloro-5-nitrobenzoyl chloride C7H3Cl2NO3 O=C(c(c(ccc1N(=O)=O)Cl)c1)Cl 2.022 -1.865
137 25889-38-7 4-chloro-2-nitro-1-(trifluoromethyl)benzene C7H3ClF3NO2 N(=O)(=O)c1cc(Cl)ccc1C(F)(F)F 3.481 -1.803
138 26039-74-7 diethyl (3-chloro-4-nitrophenyl)methylmalonate C14H16ClNO6 N(=O)(=O)c1c(Cl)cc(CC(C(=O)OCC)C(=O)OCC)cc1 3.160 -1.296
139 26196-45-2 2,5-diamino-4-chloronitrobenzene C6H6ClN3O2 Nc1c(Cl)cc(N)c(N(=O)=O)c1 1.591 -1.053
140 26791-93-5 methyl 4,5-dimethoxy-2-nitrobenzoate C10H11NO6 O=C(OC)c(c(N(=O)=O)cc(OC)c1OC)c1 1.679 -1.524
141 2683-43-4 2,4-dichloro-6-nitroaniline C6H4Cl2N2O2 Nc1c(Cl)cc(Cl)cc1N(=O)=O 3.356 -1.221
142 2719-14-4 N-(4-methyl-3-nitrophenyl)acetamide C9H10N2O3 N(=O)(=O)c1c(C)ccc(NC(=O)C)c1 1.875 -0.915
143 2784-94-3 2,2'-[[4-(methylamino)-3-nitrophenyl]imino]bisethanol C11H17N3O4 O=N(=O)c(c(NC)ccc1N(CCO)CCO)c1 0.976 -0.597
144 28202-30-4 .alpha.,.alpha.,.beta.,.beta.-tetrafluoro-2-methyl-4-nitrophenetole C9H7F4NO3 N(=O)(=O)c1cc(C)c(OC(F)(F)C(F)F)cc1 4.464 -1.436
145 28202-31-5 .alpha.,.alpha.,.beta.,.beta.-tetrafluoro-o-nitrophenetole C8H5F4NO3 N(=O)(=O)c1c(OC(F)(F)C(F)F)cccc1 3.685 -1.169
146 28202-32-6 .alpha.,.alpha.,.beta.,.beta.-tetrafluoro-p-nitrophenetole C8H5F4NO3 O=N(=O)c(ccc(OC(F)(F)C(F)F)c1)c1 3.965 -1.294
147 28491-95-4 4-chloro-N-ethyl-2-nitroaniline C8H9ClN2O2 O=N(=O)c(c(NCC)ccc1Cl)c1 3.530 -0.974
148 2871-01-4 2-(4-amino-2-nitroanilino)ethanol C8H11N3O3 O=N(=O)c(c(NCCO)ccc1N)c1 0.371 -0.876
149 2879-79-0 N-(2-methyl-5-nitrophenyl)acetamide C9H10N2O3 N(=O)(=O)c1cc(NC(=O)C)c(C)cc1 1.305 -0.985
150 28819-89-8 2,2'-[(3-nitrophenyl)imino]bisethyl diacetate C14H18N2O6 O=C(OCCN(c(cccc1N(=O)=O)c1)CCOC(=O)C)C 2.728 -0.965
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151 2923-96-8 4-fluoro-2-nitrobenzaldehyde C7H4FNO3 N(=O)(=O)c1cc(F)ccc1C=O 1.968 -1.678
152 2929-91-1 4-nitrobenzylidene di(acetate) C11H11NO6 N(=O)(=O)c1ccc(C(OC(=O)C)OC(=O)C)cc1 1.446 -1.366
153 29682-39-1 1-bromo-2-chloro-4-nitrobenzene C6H3BrClNO2 Clc1cc(ccc1Br)N(=O)=O 3.321 -1.591
154 29682-46-0 2,6-dichloro-3-nitrotoluene C7H5Cl2NO2 N(=O)(=O)c1c(Cl)c(C)c(Cl)cc1 3.660 -1.231
155 29705-38-2 2,2'-[(4-fluoro-3-nitrophenyl)imino]bisethanol C10H13FN2O4 O=N(=O)c(c(F)ccc1N(CCO)CCO)c1 0.838 -1.192
156 2973-21-9 N-methyl-2-nitrobenzene-1,4-diamine C7H9N3O2 N(=O)(=O)c1c(N)ccc(NC)c1 1.525 -0.773
157 29949-19-7 3-nitrobenzylidene di(acetate) C11H11NO6 N(=O)(=O)c1cc(C(OC(=O)C)OC(=O)C)ccc1 1.446 -1.395
158 3034-19-3 2-nitrophenylhydrazine C6H7N3O2 c(cc(c1)N(=O)=O)c(c1)NN 1.656 -0.937
159 3034-94-4 1-ethynyl-3-nitrobenzene C8H5NO2 O=N(=O)c(cccc1C#C)c1 2.155 -1.157
160 30377-62-9 N-ethyl-2-nitro-4-(trifluoromethyl)aniline C9H9F3N2O2 O=N(=O)c(c(NCC)ccc1C(F)(F)F)c1 3.779 -1.178
161 30388-44-4 4-mesyl- N-methyl-2-nitroaniline C8H10N2O4S S(=O)(=O)(C)c1cc(N(=O)=O)c(NC)cc1 0.957 -1.204
162 3107-19-5 1,3-dichloro-2-fluoro-5-nitrobenzene C6H2Cl2FNO2 N(=O)(=O)c1cc(Cl)c(F)c(Cl)c1 3.454 -1.730
163 3123-13-5 N-[1-(hydroxymethyl)-2-(4-nitrophenyl)-2-oxoethyl]acetamide C11H12N2O5 N(=O)(=O)c1ccc(C(=O)C(CO)NC(=O)C)cc1 -0.357 -1.498
164 314-41-0 1,2,3,5-tetrafluoro-4-nitrobenzene C6HF4NO2 Fc(cc(F)c1N(=O)=O)c(F)c1F 1.787 -2.074
165 315-14-0 1,3,5-trifluoro-2-nitrobenzene C6H2F3NO2 N(=O)(=O)c1c(F)cc(F)cc1F 1.714 -1.807
166 31680-07-6 3-nitro-p-tolualdehyde C8H7NO3 N(=O)(=O)c1c(C)ccc(C=O)c1 1.921 -1.363
167 3209-22-1 1,2-dichloro-3-nitrobenzene C6H3Cl2NO2 O=N(=O)c(c(c(cc1)Cl)Cl)c1 3.041 -1.434
168 3284-77-3 1-(dichloromethyl)-2-nitrobenzene C7H5Cl2NO2 N(=O)(=O)c1c(C(Cl)Cl)cccc1 2.880 -1.496
169 328-75-6 .alpha.,.alpha.,.alpha.,.alpha.',.alpha.',.alpha.'-hexafluoro-5-nitroxylene C8H3F6NO2 FC(F)(F)c1cc(N(=O)=O)cc(C(F)(F)F)c1 3.651 -2.019
170 3320-86-3 2-nitrophenyl isocyanate C7H4N2O3 O=C=Nc(c(N(=O)=O)ccc1)c1 2.198 -1.402
171 3320-87-4 m-nitrophenyl isocyanate C7H4N2O3 O=C=Nc(cccc1N(=O)=O)c1 2.198 -1.332
172 33432-52-9 2-methyl-4-(3-nitrophenyl)-3-butyn-2-ol C11H11NO3 O=N(=O)c(cccc1C#CC(O)(C)C)c1 1.405 -1.109
173 33696-00-3 4-bromo-2-nitroanisole C7H6BrNO3 N(=O)(=O)c1cc(Br)ccc1OC 2.736 -1.153
174 33721-54-9 N-(2-methoxy-5-nitrophenyl)acetamide C9H10N2O4 O=C(Nc(c(OC)ccc1N(=O)=O)c1)C 0.930 -0.928
175 33844-22-3 2-nitro-p-anisamide C8H8N2O4 NC(=O)c1c(N(=O)=O)cc(OC)cc1 -0.041 -1.272
176 34408-25-8 methyl 2,5-dichloro-3-nitrobenzoate C8H5Cl2NO4 O=C(OC)c(c(c(N(=O)=O)cc1Cl)Cl)c1 2.690 -1.768
177 345-17-5 1-chloro-4-fluoro-2-nitrobenzene C6H3ClFNO2 N(=O)(=O)c1c(Cl)ccc(F)c1 2.591 -1.519
178 345-18-6 4-chloro-1-fluoro-2-nitrobenzene C6H3ClFNO2 N(=O)(=O)c1cc(Cl)ccc1F 2.441 -1.516
179 3460-18-2 1,4-dibromo-2-nitrobenzene C6H3Br2NO2 N(=O)(=O)c1c(Br)ccc(Br)c1 3.411 -1.540
180 3460-29-5 4-nitro-2,5-xylidine C8H10N2O2 Nc1c(C)cc(N(=O)=O)c(C)c1 2.126 -0.714
181 350-30-1 2-chloro-1-fluoro-4-nitrobenzene C6H3ClFNO2 Fc1ccc(cc1Cl)N(=O)=O 2.741 -2.210
182 350-31-2 1-chloro-2-fluoro-4-nitrobenzene C6H3ClFNO2 N(=O)(=O)c1cc(F)c(Cl)cc1 2.741 -1.591
183 350-46-9 1-fluoro-4-nitrobenzene C6H4FNO2 O=N(=O)c(ccc(F)c1)c1 2.028 -1.350
184 351-32-6 N-(4-fluoro-3-nitrophenyl)acetamide C8H7FN2O3 O=C(Nc(ccc(F)c1N(=O)=O)c1)C 1.389 -1.527
185 364-74-9 1,4-difluoro-2-nitrobenzene C6H3F2NO2 Fc1ccc(F)cc1N(=O)=O 1.871 -1.573
186 364-76-1 4-fluoro-3-nitroaniline C6H5FN2O2 O=N(=O)c(c(F)ccc1N)c1 1.199 -1.181
187 364-78-3 4-fluoro-2-nitroaniline C6H5FN2O2 Nc1c(N(=O)=O)cc(F)cc1 2.039 -1.065
188 3655-05-8 4-nitrophenyl N-[(1,1-dimethylethoxy)carbonyl]glycinate C13H16N2O6 N(=O)(=O)c1ccc(OC(=O)CNC(=O)OC(C)(C)C)cc1 2.340 -1.361
189 36556-55-5 1-chloro-3,5-difluoro-2-nitrobenzene C6H2ClF2NO2 N(=O)(=O)c1c(Cl)cc(F)cc1F 2.434 -1.745
190 36556-59-9 2-chloro-1,5-difluoro-3-nitrobenzene C6H2ClF2NO2 N(=O)(=O)c1c(Cl)c(F)cc(F)c1 2.734 -1.760
191 3663-21-6 N-(4-butyl-2-nitrophenyl)acetamide C12H16N2O3 CC(=O)Nc1c(N(=O)(=O))cc(CCCC)cc1 3.082 -1.039
192 3663-22-7 4-butyl-2-nitroaniline C10H14N2O2 Nc1c(N(=O)=O)cc(CCCC)cc1 3.884 -0.759
193 3665-80-3 N-ethyl-4-nitroaniline C8H10N2O2 N(=O)(=O)c1ccc(cc1)NCC 2.561 -0.662
194 367-86-2 3-nitro-.alpha.,.alpha.,.alpha.,4-tetrafluorotoluene C7H3F4NO2 O=N(=O)c1cc(ccc1F)C(F)(F)F 2.611 -1.799
195 369-34-6 1,2-difluoro-4-nitrobenzene C6H3F2NO2 N(=O)(c1cc(F)c(F)cc1)=O 2.100 -1.621
196 369-36-8 2-fluoro-5-nitroaniline C6H5FN2O2 Nc1c(F)ccc(N(=O)=O)c1 1.419 -1.225
197 3694-52-8 3-nitro-o-phenylenediamine C6H7N3O2 Nc1c(N)c(N(=O)(=O))ccc1 0.751 -0.843
198 3696-22-8 (p-nitrophenyl)thiourea C7H7N3O2S N(=O)(=O)c1ccc(NC(N)=S)cc1 1.136 -1.541
199 370-47-8 1-nitro-3-[(trifluoromethyl)thio]benzene C7H4F3NO2S O=N(=O)c(cccc1SC(F)(F)F)c1 3.673 -1.779
200 3714-62-3 1,2,3,5-tetrachloro-4-nitrobenzene C6HCl4NO2 N(=O)(=O)c1c(Cl)c(Cl)c(Cl)cc1Cl 4.317 -1.813
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201 37460-43-8 2-ethoxyethyl 4-nitrobenzoate C11H13NO5 O=C(OCCOCC)c(ccc(N(=O)=O)c1)c1 2.120 -1.564
202 37682-29-4 1-nitro-2-(octyloxy)benzene C14H21NO3 O=N(=O)c(c(OCCCCCCCC)ccc1)c1 5.527 -1.005
203 38120-06-8 isopentyl 4-nitrobenzoate C12H15NO4 N(=O)(=O)c1ccc(C(=O)OCCC(C)C)cc1 3.840 -1.554
204 38177-07-0 5-nitroisophthaldiamide C8H7N3O4 O=C(N)c(cc(N(=O)=O)cc1C(=O)N)c1 -0.487 -1.553
205 38411-17-5 N-(2,5-dichloro-4-nitrophenyl)acetamide C8H6Cl2N2O3 O=C(Nc(c(cc(N(=O)=O)c1Cl)Cl)c1)C 2.004 -1.272
206 384-22-5 2-nitro-.alpha.,.alpha.,.alpha.-trifluorotoluene C7H4F3NO2 FC(F)(F)c1ccccc1N(=O)=O 2.768 -1.593
207 38512-82-2 5-methyl-2-nitroanisole C8H9NO3 N(=O)(=O)c1c(OC)cc(C)cc1 2.323 -0.912
208 38818-49-4 5-methyl-2-nitrobenzoyl chloride C8H6ClNO3 N(=O)(=O)c1c(C(=O)Cl)cc(C)cc1 1.808 -1.520
209 38818-50-7 4-chloro-3-nitrobenzoyl chloride C7H3Cl2NO3 N(=O)(=O)c1c(Cl)ccc(C(=O)Cl)c1 1.872 -1.863
210 38939-88-7 3-chloro-4-nitrotoluene C7H6ClNO2 N(=O)(=O)c1c(Cl)cc(C)cc1 2.947 -1.055
211 3913-23-3 2-(bromomethyl)-4-nitroanisole C8H8BrNO3 N(=O)(=O)c1cc(CBr)c(OC)cc1 2.886 -1.105
212 39182-88-2 N-(2,4-dimethyl-3-nitrophenyl)acetamide C10H12N2O3 O=C(Nc(c(c(N(=O)=O)c(c1)C)C)c1)C 1.644 -0.659
213 39562-22-6 2-methoxyethyl 2-[(3-nitrophenyl)methylene]acetoacetate C14H15NO6 N(=O)(=O)c1cc(C=C(C(=O)C)C(=O)OCCOC)ccc1 1.665 -1.402
214 3958-57-4 .alpha.-bromo-3-nitrotoluene C7H6BrNO2 O=N(=O)c(cccc1CBr)c1 2.667 -1.210
215 3958-60-9 .alpha.-bromo-2-nitrotoluene C7H6BrNO2 N(=O)(=O)c1c(CBr)cccc1 2.587 -1.174
216 3970-40-9 2-chloro-3-nitrotoluene C7H6ClNO2 N(=O)(=O)c1c(Cl)c(C)ccc1 2.947 -0.958
217 39787-83-2 2-methoxy-4-nitrobenzoyl chloride C8H6ClNO4 N(=O)(=O)c1cc(OC)c(C(=O)Cl)cc1 1.528 -1.848
218 39974-35-1 2-chloro-1-nitro-3-(trifluoromethyl)benzene C7H3ClF3NO2 N(=O)(=O)c1c(Cl)c(C(F)(F)F)ccc1 3.131 -1.496
219 400-98-6 .alpha.,.alpha.,.alpha.-trifluoro-2-nitro-p-toluidine C7H5F3N2O2 N(=O)(=O)c1c(N)ccc(C(F)(F)F)c1 2.852 -1.224
220 40188-83-8 methyl 3,6-dichloro-2-nitrobenzoate C8H5Cl2NO4 O=C(OC)c(c(ccc1Cl)Cl)c1N(=O)=O 2.500 -1.896
221 402-11-9 2-chloro-1-nitro-4-(trifluoromethyl)benzene C7H3ClF3NO2 c1c(Cl)c(N(=O)=O)ccc1C(F)(F)F 3.330 -1.715
222 402-54-0 4-nitro-.alpha.,.alpha.,.alpha.-trifluorotoluene C7H4F3NO2 c1c(C(F)(F)F)ccc(N(=O)=O)c1 2.768 -1.725
223 40257-02-1 (3-nitrophenoxy)acetyl chloride C8H6ClNO4 N(=O)(=O)c1cc(OCC(=O)Cl)ccc1 1.766 -1.329
224 402-67-5 1-fluoro-3-nitrobenzene C6H4FNO2 Fc1cccc(c1)N(=O)=O 2.028 -1.337
225 40371-64-0 2-bromo-4-chloro-5-nitrotoluene C7H5BrClNO2 N(=O)(=O)c1c(Cl)cc(Br)c(C)c1 3.810 -1.339
226 40655-37-6 N-[4-(1,1-dimethylethyl)-2-nitrophenyl]acetamide C12H16N2O3 CC(C)(C)c1cc(N(=O)=O)c(NC(=O)C)cc1 2.822 -0.817
227 4074-25-3 1,3,5-tri(tert-butyl)-2-nitrobenzene C18H29NO2 CC(C)(C)c1c(N(=O)=O)c(C(C)(C)C)cc(C(C)(C)C)c1 7.203 -0.333
228 40870-59-5 4-methyl-3-nitrobenzyl alcohol C8H9NO3 N(=O)(=O)c1c(C)ccc(CO)c1 1.266 -0.942
229 4093-41-8 methyl 4-(acetylamino)-5-nitro-o-anisate C11H12N2O6 CC(=O)Nc1cc(OC)c(C(=O)OC)cc1N(=O)=O 0.944 -1.206
230 41200-97-9 1,5-dichloro-2-(1-methylethoxy)-4-nitrobenzene C9H9Cl2NO3 N(=O)(=O)c1c(Cl)cc(Cl)c(OC(C)C)c1 4.054 -1.245
231 41513-04-6 2-bromo-5-chloronitrobenzene C6H3BrClNO2 N(=O)(=O)c1cc(Cl)ccc1Br 3.261 -1.664
232 4195-17-9 p-nitrophenyl pivalate C11H13NO4 N(=O)(=O)c1ccc(cc1)OC(=O)C(C)(C)C 2.771 -1.189
233 42087-80-9 methyl 4-chloro-2-nitrobenzoate C8H6ClNO4 COC(=O)c1ccc(Cl)cc1N(=O)=O 2.377 -1.708
234 42096-74-2 1,2,4-trifluoro-3-nitrobenzene C6H2F3NO2 N(=O)(=O)c1c(F)c(F)ccc1F 1.644 -1.799
235 4237-40-5 1-sec-butyl-4-nitrobenzene C10H13NO2 O=N(=O)c(ccc(c1)C(CC)C)c1 3.841 -1.015
236 42389-30-0 5-chloro-3-nitro-o-phenylenediamine C6H6ClN3O2 O=N(=O)c(c(N)c(N)cc1Cl)c1 1.591 -1.035
237 42533-63-1 1-(bromomethyl)-2-chloro-4-nitrobenzene C7H5BrClNO2 N(=O)(=O)c1cc(Cl)c(CBr)cc1 3.380 -1.535
238 43002-00-2 2-bromo-6-(mesyl)-4-nitroaniline C7H7BrN2O4S S(=O)(=O)(C)c1c(N)c(Br)cc(N(=O)=O)c1 1.719 -1.363
239 4457-32-3 4-nitrobenzyl chloroformate C8H6ClNO4 O=C(OCc(ccc(N(=O)=O)c1)c1)Cl 2.071 -1.355
240 446-09-3 1-bromo-4-fluoro-2-nitrobenzene C6H3BrFNO2 c1(N(=O)=O)c(Br)ccc(F)c1 2.690 -1.555
241 446-10-6 4-fluoro-2-nitrotoluene C7H6FNO2 N(=O)(=O)c1cc(F)ccc1C 2.447 -1.275
242 446-34-4 3-fluoro-4-nitrotoluene C7H6FNO2 O=N(=O)c(c(F)cc(c1)C)c1 2.227 -1.270
243 446-35-5 1,3-difluoro-4-nitrobenzene C6H3F2NO2 O=N(=O)c(c(F)cc(F)c1)c1 1.871 -1.583
244 455-88-9 2-fluoro-5-nitrotoluene C7H6FNO2 O=N(=O)c(ccc(F)c1C)c1 2.527 -1.292
245 4835-39-6 4'-nitroacetoacetanilide C10H10N2O4 N(=O)(=O)c1ccc(NC(=O)CC(=O)C)cc1 1.097 -1.455
246 4837-88-1 2-methyl-3-nitroanisole C8H9NO3 COc1c(C)c(N(=O)(=O))ccc1 2.523 -1.006
247 4920-79-0 2-chloro-4-nitroanisole C7H6ClNO3 COc1ccc(cc1Cl)N(=O)=O 2.636 -1.160
248 4920-84-7 1,3-dimethoxy-4-nitrobenzene C8H9NO4 N(=O)(=O)c1c(OC)cc(OC)cc1 1.892 -0.834
249 4926-55-0 2-[(2-nitrophenyl)amino]ethanol C8H10N2O3 O=N(=O)c(c(NCCO)ccc1)c1 1.418 -0.722
250 49594-70-9 2-nitrobenzyl acrylate C10H9NO4 N(=O)(=O)c1c(COC(=O)C=C)cccc1 2.228 -1.215
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251 50274-95-8 .alpha.,2-dichloro-4-nitrotoluene C7H5Cl2NO2 N(=O)(=O)c1cc(Cl)c(CCl)cc1 3.160 -1.514
252 50415-69-5 methyl 2-(4-nitrophenyl)propionate C10H11NO4 N(=O)(=O)c1ccc(C(C)C(=O)OC)cc1 1.872 -1.436
253 50424-81-2 4-methyl-2-nitrobenzoyl chloride C8H6ClNO3 N(=O)(=O)c1cc(C)ccc1C(=O)Cl 1.808 -1.498
254 5042-55-7 5-nitrobenzene-1,3-diamine C6H7N3O2 O=N(=O)c(cc(N)cc1N)c1 0.211 -0.822
255 50610-28-1 2-[(4-amino-2-chloro-5-nitrophenyl)amino]ethanol C8H10ClN3O3 N(=O)(=O)c1c(N)cc(Cl)c(NCCO)c1 1.609 -1.140
256 50651-39-3 N-(4-methoxy-3-nitrophenyl)acetamide C9H10N2O4 O=C(Nc(ccc(OC)c1N(=O)=O)c1)C 1.240 -0.909
257 50712-63-5 2-(4-nitrophenyl)propiononitrile C9H8N2O2 N(=O)(=O)c1ccc(C(C)C#N)cc1 1.616 -1.312
258 50712-64-6 ethyl 2-(4-nitrophenyl)propionate C11H13NO4 N(=O)(=O)c1ccc(C(C)C(=O)OCC)cc1 2.401 -1.422
259 50741-92-9 2-methyl-4-nitroanisole C8H9NO3 N(=O)(=O)c1cc(C)c(OC)cc1 2.603 -0.935
260 5081-42-5 methyl 3,4,5-trimethoxy-2-nitrobenzoate C11H13NO7 O=C(OC)c(c(N(=O)=O)c(OC)c(OC)c1OC)c1 1.202 -1.368
261 51072-66-3 4-bromo-5-nitroveratrole C8H8BrNO4 O=N(=O)c(c(cc(OC)c1OC)Br)c1 2.511 -1.186
262 51282-49-6 methyl 5-chloro-2-nitrobenzoate C8H6ClNO4 O=C(OC)c(c(N(=O)=O)ccc1Cl)c1 2.377 -1.872
263 5131-58-8 4-nitro-m-phenylenediamine C6H7N3O2 O=N(=O)c(c(N)cc(N)c1)c1 0.751 -0.526
264 5197-28-4 2-bromo-4-nitroanisole C7H6BrNO3 N(=O)(=O)c1cc(Br)c(OC)cc1 2.786 -1.159
265 52022-77-2 m-nitrophenethyl alcohol C8H9NO3 O=N(=O)c(cccc1CCO)c1 1.076 -1.126
266 52119-38-7 ethyl 3-(m-nitrophenyl)-3-oxopropionate C11H11NO5 N(=O)(=O)c1cc(C(=O)CC(=O)OCC)ccc1 1.787 -1.340
267 52301-88-9 2-chloro-4-nitrobenzyl alcohol C7H6ClNO3 N(=O)(=O)c1cc(Cl)c(CO)cc1 1.560 -1.436
268 52488-28-5 3-bromo-5-nitrotoluene C7H6BrNO2 N(=O)(=O)c1cc(Br)cc(C)c1 3.247 -1.250
269 5292-45-5 dimethyl 2-nitroterephthalate C10H9NO6 O=C(OC)c(ccc(c1N(=O)=O)C(=O)OC)c1 1.633 -2.115
270 53055-05-3 3-methoxy-2-nitrobenzaldehyde C8H7NO4 N(=O)(=O)c1c(C=O)cccc1OC 1.664 -1.468
271 5307-14-2 2-nitro-p-phenylenediamine C6H7N3O2 O=N(=O)c(c(N)ccc1N)c1 0.751 -0.803
272 5326-34-1 4-bromo-3-nitrotoluene C7H6BrNO2 N(=O)(=O)c1c(Br)ccc(C)c1 3.047 -0.910
273 5339-26-4 4-nitrophenethyl bromide C8H8BrNO2 BrCCc(ccc1N(=O)=O)cc1 2.766 -1.238
274 5344-78-5 4-bromo-3-nitroanisole C7H6BrNO3 N(=O)(=O)c1c(Br)ccc(OC)c1 2.816 -1.270
275 5345-42-6 3-methyl-2-nitroanisole C8H9NO3 N(=O)(=O)c1c(C)cccc1OC 2.243 -0.497
276 5345-53-9 N,N'-(2-nitro-1,4-phenylene)bis(acetamide) C10H11N3O4 O=C(Nc(c(N(=O)=O)cc(NC(=O)C)c1)c1)C 0.181 -0.999
277 5367-26-0 3-chloro-2-nitrotoluene C7H6ClNO2 N(=O)(=O)c1c(Cl)cccc1C 2.867 -0.771
278 5367-28-2 3-chloro-6-nitrotoluene C7H6ClNO2 N(=O)(=O)c1c(C)cc(Cl)cc1 3.017 -1.280
279 5367-32-8 3-methyl-4-nitroanisole C8H9NO3 N(=O)(=O)c1c(C)cc(OC)cc1 2.523 -0.928
280 53780-44-2 1-chloro-2,3-difluoro-5-nitrobenzene C6H2ClF2NO2 N(=O)(=O)c1cc(Cl)c(F)c(F)c1 2.814 -1.806
281 5396-71-4 ethyl 3-nitrocinnamate C11H11NO4 N(=O)(=O)c1cc(C=CC(=O)OCC)ccc1 2.737 -1.553
282 53987-32-9 N-(2-amino-4-nitrophenyl)acetamide C8H9N3O3 O=C(Nc(c(N)cc(N(=O)=O)c1)c1)C 0.443 -1.028
283 54029-45-7 4-amino-3-nitrophenyl thiocyanate C7H5N3O2S N(=O)(=O)c1c(N)ccc(SC#N)c1 2.211 -1.176
284 5445-26-1 ethyl 4-nitrophenylacetate C10H11NO4 O=C(OCC)Cc(ccc(N(=O)=O)c1)c1 2.092 -1.298
285 5465-33-8 2-chloro-6-nitro-p-toluidine C7H7ClN2O2 Nc1c(Cl)cc(C)cc1N(=O)=O 3.108 -0.985
286 5465-65-6 4'-chloro-3'-nitroacetophenone C8H6ClNO3 Clc(ccc1C(=O)C)c(c1)N(=O)=O 2.075 -1.461
287 55034-12-3 1-bromo-2,5-dimethoxy-3-nitrobenzene C8H8BrNO4 c1(Br)cc(OC)cc(N(=O)=O)c1OC 2.550 -1.295
288 552-32-9 2'-nitroacetanilide C8H8N2O3 O=C(Nc(c(N(=O)=O)ccc1)c1)C 0.996 -1.123
289 552-89-6 2-nitrobenzaldehyde C7H5NO3 O=Cc(c(N(=O)=O)ccc1)c1 1.782 -1.420
290 5535-73-9 1-[(2-chloroethyl)thio]-4-nitrobenzene C8H8ClNO2S N(=O)(=O)c1ccc(SCCCl)cc1 3.156 -1.209
291 553-79-7 5-nitro-2-propoxyaniline C9H12N2O3 Nc1cc(N(=O)=O)ccc1OCCC 2.565 -0.921
292 5540-60-3 N-(4-chloro-3-nitrophenyl)acetamide C8H7ClN2O3 N(=O)(=O)c1c(Cl)ccc(NC(=O)C)c1 2.109 -1.297
293 555-03-3 3-nitroanisole C7H7NO3 O=N(=O)c(cccc1OC)c1 2.104 -1.072
294 5551-11-1 4-chloro-2-nitrobenzaldehyde C7H4ClNO3 N(=O)(=O)c1c(C=O)ccc(Cl)c1 2.538 -1.645
295 555-16-8 4-nitrobenzaldehyde C7H5NO3 O=Cc(ccc(N(=O)=O)c1)c1 1.502 -1.670
296 555-21-5 4-nitrophenylacetonitrile C8H6N2O2 O=N(=O)c(ccc(c1)CC#N)c1 1.307 -1.330
297 5580-79-0 2,3,4,5-tetrafluoronitrobenzene C6HF4NO2 N(=O)(=O)c1c(F)c(F)c(F)c(F)c1 2.017 -2.113
298 55912-20-4 4-chloro-3-nitrobenzyl alcohol C7H6ClNO3 N(=O)(=O)c1c(Cl)ccc(CO)c1 1.410 -0.989
299 55950-68-0 (2-chloro-4-nitrophenyl)hydrazine C6H6ClN3O2 NNc1c(Cl)cc(N(=O)=O)cc1 2.475 -1.253
300 5600-63-5 4-(4-nitrophenyl)butyryl chloride C10H10ClNO3 N(=O)(=O)c1ccc(CCCC(=O)Cl)cc1 2.350 -1.221
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301 56185-25-2 2,5-diethoxy-4-nitroaniline C10H14N2O4 N(=O)(=O)c1c(OCC)cc(N)c(OCC)c1 2.269 -0.686
302 56288-95-0 N-ethyl-5-nitro-o-toluidine C9H12N2O2 O=N(=O)c(ccc(c1NCC)C)c1 3.060 -0.903
303 56433-01-3 2-(bromomethyl)-1-chloro-3-nitrobenzene C7H5BrClNO2 N(=O)(=O)c1c(CBr)c(Cl)ccc1 3.300 -1.321
304 56932-44-6 2-(2-amino-4-nitroanilino)ethanol C8H11N3O3 O=N(=O)c(ccc(NCCO)c1N)c1 0.221 -0.903
305 56932-45-7 2-[(2-amino-4-nitrophenyl)amino]-2-(hydroxymethyl)propane-1,3-diol C10H15N3O5 N(=O)(=O)c1cc(N)c(NC(CO)(CO)CO)cc1 0.312 -0.879
306 570-24-1 6-nitro-o-toluidine C7H8N2O2 Cc1cccc(N(=O)=O)c1N 2.247 -0.774
307 57135-68-9 1-chloro-2-isothiocyanato-4-nitrobenzene C7H3ClN2O2S N(=O)(=O)c1cc(N=C=S)c(Cl)cc1 4.180 -1.549
308 57403-35-7 1-chloro-4-(chloromethyl)-2-nitrobenzene C7H5Cl2NO2 N(=O)(=O)c1c(Cl)ccc(CCl)c1 3.010 -1.252
309 577-19-5 1-bromo-2-nitrobenzene C6H4BrNO2 O=N(=O)c(c(ccc1)Br)c1 2.548 -1.300
310 577-59-3 2'-nitroacetophenone C8H7NO3 CC(=O)c1ccccc1N(=O)=O 1.286 -1.253
311 578-46-1 5-methyl-o-nitroaniline C7H8N2O2 Cc1ccc(N(=O)=O)c(N)c1 2.297 -0.771
312 585-79-5 1-bromo-3-nitrobenzene C6H4BrNO2 O=N(=O)c(cccc1Br)c1 2.748 -1.306
313 586-39-0 3-nitrostyrene C8H7NO2 N(=O)(=O)c1cc(C=C)ccc1 2.609 -1.082
314 586-78-7 1-bromo-4-nitrobenzene C6H4BrNO2 O=N(=O)c(ccc(c1)Br)c1 2.748 -1.413
315 59229-75-3 4-nitro-2,6-toluenediamine C7H9N3O2 Nc1c(C)c(N)cc(N(=O)=O)c1 0.610 -0.834
316 59338-84-0 methyl 4-amino-5-nitro-o-anisate C9H10N2O5 N(=O)(=O)c1c(N)cc(OC)c(C(=O)OC)c1 1.762 -1.464
317 59383-11-8 2-chloroethyl 3-nitro-p-toluate C10H10ClNO4 N(=O)(=O)c1c(C)ccc(C(=O)OCCCl)c1 2.865 -1.511
318 59483-54-4 3-chloro-2-nitroaniline C6H5ClN2O2 Nc1c(N(=O)=O)c(Cl)ccc1 2.459 -0.857
319 59820-63-2 2-[3-(methylamino)-4-nitrophenoxy]ethanol C9H12N2O4 N(=O)(=O)c1c(NC)cc(OCCO)cc1 1.382 -0.683
320 601-88-7 1,3-dichloro-2-nitrobenzene C6H3Cl2NO2 N(=O)(=O)c1c(Cl)cccc1Cl 3.011 -1.429
321 603-71-4 2-nitromesitylene C9H11NO2 O=N(=O)c(c(cc(c1)C)C)c1C 3.222 -0.930
322 603-83-8 3-nitro-o-toluidine C7H8N2O2 Nc1c(C)c(N(=O)=O)ccc1 1.627 -0.795
323 60468-54-4 .alpha.-chloro-2-methyl-3-nitrotoluene C8H8ClNO2 N(=O)(=O)c1c(C)c(CCl)ccc1 2.816 -1.119
324 606-26-8 o-nitrobenzohydrazide C7H7N3O3 c1cccc(N(=O)(=O))c1C(=O)NN -0.580 -1.457
325 606-27-9 methyl 2-nitrobenzoate C8H7NO4 O=C(OC)c(c(N(=O)=O)ccc1)c1 1.664 -1.469
326 6086-29-9 N-(4-amino-3-nitrophenyl)acetamide C8H9N3O3 N(=O)(=O)c1c(N)ccc(NC(=O)C)c1 0.983 -1.083
327 610-14-0 2-nitrobenzoyl chloride C7H4ClNO3 O=C(c(c(N(=O)=O)ccc1)c1)Cl 1.309 -1.764
328 610-15-1 2-nitrobenzamide C7H6N2O3 NC(=O)c1ccccc1N(=O)=O -0.142 -1.300
329 610-17-3 N,N-dimethyl-2-nitroaniline C8H10N2O2 O=N(=O)c(c(N(C)C)ccc1)c1 2.416 -0.656
330 610-22-0 dimethyl 4-nitrophthalate C10H9NO6 O=C(OC)c(c(ccc1N(=O)=O)C(=O)OC)c1 1.303 -2.106
331 610-34-4 ethyl 2-nitrobenzoate C9H9NO4 N(=O)(=O)c1c(C(=O)OCC)cccc1 2.193 -1.630
332 610-67-3 2-nitrophenetole C8H9NO3 O=N(=O)c(c(OCC)ccc1)c1 2.353 -0.897
333 610-69-5 2-nitrophenyl acetate C8H7NO4 O=C(Oc(c(N(=O)=O)ccc1)c1)C 1.254 -1.334
334 610-91-3 1,2,4-trimethyl-5-nitrobenzene C9H11NO2 N(=O)(=O)c1c(C)cc(C)c(C)c1 3.252 -0.949
335 611-05-2 4-nitro-m-toluidine C7H8N2O2 Cc1cc(N)ccc1N(=O)=O 1.677 -0.740
336 611-06-3 1,3-dichloro-4-nitrobenzene C6H3Cl2NO2 O=N(=O)c(c(cc(c1)Cl)Cl)c1 3.161 -1.516
337 612-22-6 1-ethyl-2-nitrobenzene C8H9NO2 CCc1ccccc1N(=O)=O 2.833 -0.990
338 612-23-7 .alpha.-chloro-2-nitrotoluene C7H6ClNO2 ClCc1ccccc1N(=O)=O 2.367 -1.136
339 612-25-9 2-nitrobenzyl alcohol C7H7NO3 OCc1ccccc1N(=O)=O 0.767 -1.150
340 612-28-2 N-methyl-2-nitroaniline C7H8N2O2 O=N(=O)c(c(NC)ccc1)c1 2.182 -0.778
341 612-45-3 4'-methyl-2'-nitroacetanilide C9H10N2O3 CC(=O)Nc1c(N(=O)(=O))cc(C)cc1 1.495 -0.864
342 61437-39-6 1,2-dichloro-4-(isopropyl)-5-nitrobenzene C9H9Cl2NO2 c1c(Cl)c(Cl)cc(C(C)C)c1N(=O)=O 4.540 -1.353
343 616-86-4 2-nitro-p-phenetidine C8H10N2O3 O=N(=O)c(c(N)ccc1OCC)c1 2.395 -0.856
344 618-62-2 3,5-dichloronitrobenzene C6H3Cl2NO2 O=N(=O)c(cc(cc1Cl)Cl)c1 3.311 -1.488
345 618-94-0 3-nitrobenzohydrazide C7H7N3O3 c1ccc(N(=O)(=O))cc1C(=O)NN 0.320 -1.402
346 618-95-1 methyl 3-nitrobenzoate C8H7NO4 O=C(OC)c(cccc1N(=O)=O)c1 1.854 -1.517
347 618-98-4 ethyl 3-nitrobenzoate C9H9NO4 O=C(OCC)c(cccc1N(=O)=O)c1 2.383 -1.493
348 619-23-8 .alpha.-chloro-3-nitrotoluene C7H6ClNO2 O=N(=O)c(cccc1CCl)c1 2.447 -1.206
349 619-25-0 3-nitrobenzyl alcohol C7H7NO3 O=N(=O)c(cccc1CO)c1 0.847 -1.140
350 619-27-2 3-nitrophenylhydrazine C6H7N3O2 NNc1cc(N(=O)=O)ccc1 1.656 -1.017
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351 619-31-8 N,N-dimethyl-3-nitroaniline C8H10N2O2 O=N(=O)c(cccc1N(C)C)c1 2.416 -0.813
352 619-50-1 methyl 4-nitrobenzoate C8H7NO4 O=C(OC)c(ccc(N(=O)=O)c1)c1 1.854 -1.650
353 619-73-8 4-nitrobenzyl alcohol C7H7NO3 O=N(=O)c(ccc(c1)CO)c1 0.847 -1.190
354 619-75-0 .alpha.,.alpha.-dibromo-4-nitrotoluene C7H5Br2NO2 O=N(=O)c(ccc(c1)C(Br)Br)c1 3.400 -1.522
355 619-80-7 4-nitrobenzamide C7H6N2O3 O=C(N)c(ccc(N(=O)=O)c1)c1 0.758 -1.540
356 619-90-9 p-nitrobenzyl acetate C9H9NO4 O=C(OCc(ccc(N(=O)=O)c1)c1)C 1.703 -1.211
357 62047-27-2 1-[(2-chloroethyl)thio]-2-nitrobenzene C8H8ClNO2S N(=O)(=O)c1c(SCCCl)cccc1 3.156 -1.121
358 6213-19-0 2-chloro-N,N-dimethyl-4-nitroaniline C8H9ClN2O2 O=N(=O)c(ccc(N(C)C)c1Cl)c1 3.189 -1.160
359 621-52-3 3-nitrophenetole C8H9NO3 N(=O)(=O)c1cc(OCC)ccc1 2.633 -1.058
360 62265-99-0 2,6-dibromo-3-methyl-4-nitroanisole C8H7Br2NO3 O=N(=O)c(c(c(c(OC)c1Br)Br)C)c1 3.855 -1.487
361 62476-60-2 N-(2,4-dimethyl-5-nitrophenyl)acetamide C10H12N2O3 O=C(Nc(c(cc(c1N(=O)=O)C)C)c1)C 1.724 -0.994
362 6259-08-1 5-chloro-4-nitro-o-anisidine C7H7ClN2O3 N(=O)(=O)c1c(Cl)cc(N)c(OC)c1 2.144 -0.929
363 6277-38-9 1-(4-methoxy-3-nitrophenyl)ethan-1-one C9H9NO4 N(=O)(=O)c1cc(C(=O)C)ccc1OC 1.417 -1.218
364 62780-67-0 3-[(4,5-dichloro-2-nitrophenyl)amino]propan-1-ol C9H10Cl2N2O3 O=N(=O)c(c(NCCCO)cc(c1Cl)Cl)c1 3.236 -1.175
365 6283-25-6 2-chloro-5-nitroaniline C6H5ClN2O2 O=N(=O)c(ccc(c1N)Cl)c1 2.069 -1.194
366 63059-56-3 4,5-dichloro-N-ethyl-2-nitroaniline C8H8Cl2N2O2 O=N(=O)c(c(NCC)cc(c1Cl)Cl)c1 4.160 -1.177
367 6310-19-6 4-tert-butyl-2-nitroaniline C10H14N2O2 N(=O)(=O)c1c(N)ccc(C(C)(C)C)c1 3.624 -0.752
368 63105-52-2 methyl 4,5-dichloro-2-nitrobenzoate C8H5Cl2NO4 O=C(OC)c(c(N(=O)=O)cc(c1Cl)Cl)c1 2.970 -2.034
369 63105-53-3 methyl 3,4-dichloro-5-nitrobenzoate C8H5Cl2NO4 O=C(OC)c(cc(N(=O)=O)c(c1Cl)Cl)c1 3.010 -1.883
370 63105-54-4 methyl 2,3-dichloro-5-nitrobenzoate C8H5Cl2NO4 O=C(OC)c(c(c(cc1N(=O)=O)Cl)Cl)c1 2.720 -1.924
371 63105-60-2 methyl 2,3-dichloro-6-nitrobenzoate C8H5Cl2NO4 O=C(OC)c(c(N(=O)=O)ccc1Cl)c1Cl 2.530 -1.983
372 63105-61-3 methyl 2,5-dichloro-4-nitrobenzoate C8H5Cl2NO4 O=C(OC)c(c(cc(N(=O)=O)c1Cl)Cl)c1 2.690 -2.066
373 6313-37-7 2,5-dimethoxy-4-nitroaniline C8H10N2O4 O=N(=O)c(c(OC)cc(N)c1OC)c1 1.211 -0.733
374 63163-96-2 N-(2-chloro-5-nitrophenyl)-4,4-dimethyl-3-oxovaleramide C13H15ClN2O4 O=C(Nc(c(ccc1N(=O)=O)Cl)c1)CC(=O)C(C)(C)C 2.507 -1.477
375 6345-63-7 2-nitrobenzylidene di(acetate) C11H11NO6 N(=O)(=O)c1c(C(OC(=O)C)OC(=O)C)cccc1 1.366 -0.880
376 63468-27-9 ethyl 3-ethoxy-3-[(4-nitrophenyl)imino]propionate C13H16N2O5 O=C(OCC)CC(OCC)=Nc(ccc(N(=O)=O)c1)c1 2.734 -1.091
377 635-22-3 4-chloro-3-nitroaniline C6H5ClN2O2 O=N(=O)c(c(ccc1N)Cl)c1 1.919 -0.896
378 6361-21-3 2-chloro-5-nitrobenzaldehyde C7H4ClNO3 O=Cc(c(ccc1N(=O)=O)Cl)c1 2.258 -1.646
379 6361-22-4 2-chloro-6-nitrobenzaldehyde C7H4ClNO3 N(=O)(=O)c1c(C=O)c(Cl)ccc1 2.538 -1.590
380 636-97-5 p-nitrobenzohydrazide C7H7N3O3 c1cc(N(=O)(=O))ccc1C(=O)NN 0.320 -1.598
381 6378-19-4 4-(chloromethyl)-2-nitroanisole C8H8ClNO3 N(=O)(=O)c1c(OC)ccc(CCl)c1 2.386 -1.060
382 64123-46-2 1-ethyl-2-(methoxymethyl)-4-nitrobenzene C10H13NO3 O=N(=O)c(ccc(c1COC)CC)c1 2.781 -1.054
383 64123-64-4 2-(chloromethyl)-1-(1-methylethyl)-4-nitrobenzene C10H12ClNO2 O=N(=O)c(ccc(c1CCl)C(C)C)c1 3.824 -1.146
384 64182-61-2 1-chloro-3-fluoro-2-nitrobenzene C6H3ClFNO2 c1ccc(F)c(N(=O)=O)c1Cl 2.290 -1.476
385 645-09-0 3-nitrobenzamide C7H6N2O3 O=C(N)c(cccc1N(=O)=O)c1 0.758 -1.350
386 6500-28-3 decyl 2-nitrobenzoate C17H25NO4 N(=O)(=O)c1c(C(=O)OCCCCCCCCCC)cccc1 6.425 -1.246
387 6500-50-1 octyl p-nitrobenzoate C15H21NO4 O=C(OCCCCCCCC)c(ccc(N(=O)=O)c1)c1 5.557 -0.219
388 6526-72-3 o-nitrocumene C9H11NO2 N(=O)(=O)c1c(C(C)C)cccc1 3.232 -0.903
389 654-76-2 4-nitro-2-(trifluoromethyl)anisole C8H6F3NO3 N(=O)(=O)c1cc(C(F)(F)F)c(OC)cc1 3.073 -1.489
390 657-15-8 2,2,2-trifluoro-1-(3-nitrophenyl)ethan-1-one C8H4F3NO3 N(=O)(=O)c1cc(C(=O)C(F)(F)F)ccc1 2.045 -1.830
391 658-78-6 4-nitrophenyl trifluoroacetate C8H4F3NO4 O=C(Oc(ccc(N(=O)=O)c1)c1)C(F)(F)F 2.093 -1.794
392 65879-43-8 1-chloro-2,5-bis(1-methylethoxy)-4-nitrobenzene C12H16ClNO4 O=N(=O)c(c(OC(C)C)cc(c1OC(C)C)Cl)c1 4.077 -1.130
393 6627-34-5 2,5-dichloro-4-nitroaniline C6H4Cl2N2O2 O=N(=O)c(c(cc(N)c1Cl)Cl)c1 2.666 -0.993
394 6627-53-8 5-chloro-2-nitroanisole C7H6ClNO3 O=N(=O)c(c(OC)cc(c1)Cl)c1 2.586 -1.263
395 6628-86-0 5-chloro-2-nitrobenzaldehyde C7H4ClNO3 N(=O)(=O)c1c(C=O)cc(Cl)cc1 2.538 -1.809
396 6635-41-2 2-nitrobenzaldehyde oxime C7H6N2O3 N(=O)(=O)c1c(C=NO)cccc1 1.928 -1.029
397 6641-64-1 4,5-dichloro-2-nitroaniline C6H4Cl2N2O2 Nc1cc(Cl)c(Cl)cc1N(=O)=O 3.236 -1.239
398 6656-49-1 .alpha.,.alpha.,.alpha.-trifluoro-3-nitro-o-xylene C8H6F3NO2 N(=O)(=O)c1c(C)c(C(F)(F)F)ccc1 3.187 -1.480
399 66684-57-9 1,2,5-trifluoro-3-nitrobenzene C6H2F3NO2 c1(F)cc(F)cc(N(=O)=O)c1F 1.940 -1.837
400 66684-58-0 1,2,3-trifluoro-5-nitrobenzene C6H2F3NO2 c1(F)c(F)c(F)cc(N(=O)=O)c1 2.170 -1.884
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401 67083-28-7 3-nitro-2,6-xylidine C8H10N2O2 Nc1c(C)c(N(=O)=O)ccc1C 2.076 -0.781
402 67828-40-4 5-chloro-4-ethoxy-2-nitrotoluene C9H10ClNO3 O=N(=O)c(c(cc(c1OCC)Cl)C)c1 3.584 -1.286
403 68015-94-1 1-sec-butyl-2-(methoxymethyl)-4-nitrobenzene C12H17NO3 O=N(=O)c(ccc(c1COC)C(CC)C)c1 3.709 -1.012
404 68015-95-2 2-(chloromethyl)-1-(1-methylpropyl)-4-nitrobenzene C11H14ClNO2 O=N(=O)c(ccc(c1CCl)C(CC)C)c1 4.353 -1.141
405 68052-07-3 2,5-diethoxy-N,N-diethyl-4-nitroaniline C14H22N2O4 O=N(=O)c(c(OCC)cc(N(CC)CC)c1OCC)c1 4.274 -0.626
406 68052-12-0 N-(2,5-diethoxy-4-nitrophenyl)-N-ethylacetamide C14H20N2O5 O=C(N(c(c(OCC)cc(N(=O)=O)c1OCC)c1)CC)C 2.484 -0.903
407 68133-25-5 2-methoxyethyl N-(2-methoxy-5-nitrophenyl)-.beta.-alaninate C13H18N2O6 O=C(OCCOC)CCNc(c(OC)ccc1N(=O)=O)c1 2.346 -0.921
408 68310-01-0 2-amino-5-nitrophenyl thiocyanate C7H5N3O2S N#CSc(c(N)ccc1N(=O)=O)c1 1.671 -1.121
409 68368-42-3 1-isopropyl-2-(methoxymethyl)-4-nitrobenzene C11H15NO3 O=N(=O)c(ccc(c1COC)C(C)C)c1 3.180 -1.010
410 68459-81-4 1-sec-butyl-3-nitrobenzene C10H13NO2 O=N(=O)c(cccc1C(CC)C)c1 3.841 -0.986
411 68516-50-7 3-chloro-3-(2-nitrophenyl)acrylaldehyde C9H6ClNO3 O=CC=C(c(c(N(=O)=O)ccc1)c1)Cl 1.995 -1.772
412 68527-46-8 m-nitrophenethyl acetate C10H11NO4 O=C(OCCc(cccc1N(=O)=O)c1)C 2.022 -1.280
413 68715-88-8 2-[(2-amino-p-nitrophenyl)amino]propane-1,3-diol C9H13N3O4 O=N(=O)c(ccc(NC(CO)CO)c1N)c1 -0.107 -0.965
414 6921-22-8 1,2-difluoro-3-nitrobenzene C6H3F2NO2 N(=O)(=O)c1c(F)c(F)ccc1 1.801 -1.569
415 6940-53-0 1-chloro-2,5-dimethoxy-4-nitrobenzene C8H8ClNO4 O=N(=O)c(c(OC)cc(c1OC)Cl)c1 2.401 -1.257
416 69628-98-4 1-(2-methoxyethyl)-4-nitrobenzene C9H11NO3 c1(CCOC)ccc(N(=O)=O)cc1 1.790 -0.984
417 6972-71-0 2-nitro-4,5-xylidine C8H10N2O2 O=N(=O)c(c(N)cc(c1C)C)c1 2.746 -0.749
418 700-37-8 4-chloro-2-fluoro-1-nitrobenzene C6H3ClFNO2 N(=O)(=O)c1c(F)cc(Cl)cc1 2.441 -1.568
419 701-45-1 2-bromo-1-fluoro-4-nitrobenzene C6H3BrFNO2 N(=O)(=O)c1cc(Br)c(F)cc1 2.891 -1.564
420 7073-36-1 2-chloro-4-nitrobenzoyl chloride C7H3Cl2NO3 O=C(c(c(cc(N(=O)=O)c1)Cl)c1)Cl 2.022 -2.103
421 709-09-1 4-nitroveratrole C8H9NO4 O=N(=O)c(ccc(OC)c1OC)c1 1.822 -0.992
422 7137-55-5 1-butyl-2-nitrobenzene C10H13NO2 N(=O)(=O)c1c(CCCC)cccc1 3.891 -0.957
423 7149-70-4 2-bromo-5-nitrotoluene C7H6BrNO2 N(=O)(=O)c1c(C)cc(Br)cc1 3.167 -1.350
424 7205-63-2 1-(isopropylthio)-4-nitrobenzene C9H11NO2S N(=O)(=O)c1ccc(SC(C)C)cc1 3.402 -1.095
425 7244-77-1 1-nitro-4-propoxybenzene C9H11NO3 N(=O)(=O)c1ccc(OCCC)cc1 3.162 -0.943
426 7259-89-4 bis(2-hydroxyethyl) 5-nitroisophthalate C12H13NO8 O=C(OCCO)c(cc(N(=O)=O)cc1C(=O)OCCO)c1 0.051 -1.668
427 7356-11-8 methyl 3-nitro-p-toluate C9H9NO4 O=C(OC)c(ccc(c1N(=O)=O)C)c1 2.273 -1.284
428 7369-50-8 1-ethyl-3-nitrobenzene C8H9NO2 N(=O)(=O)c1cc(CC)ccc1 2.913 -1.009
429 7470-50-0 N-(3-nitrophenyl)propionamide C9H10N2O3 N(=O)(=O)c1cc(NC(=O)CC)ccc1 1.985 -1.005
430 76611-16-0 1-chloro-4-isopropyl-3-nitrobenzene C9H10ClNO2 c1(C(C)C)c(N(=O)=O)cc(Cl)cc1 3.940 -1.113
431 769-10-8 2-fluoro-6-nitrotoluene C7H6FNO2 N(=O)(=O)c1c(C)c(F)ccc1 2.447 -1.267
432 769-11-9 2-chloro-6-nitroaniline C6H5ClN2O2 Nc1c(Cl)cccc1N(=O)=O 2.609 -1.023
433 7693-46-1 4-nitrophenyl chloroformate C7H4ClNO4 O=C(Oc(ccc(N(=O)=O)c1)c1)Cl 1.738 -1.507
434 771-69-7 1,2,3-trifluoro-4-nitrobenzene C6H2F3NO2 N(=O)(=O)c1c(F)c(F)c(F)cc1 1.874 -1.848
435 7745-93-9 2-bromo-4-nitrotoluene C7H6BrNO2 N(=O)(=O)c1cc(Br)c(C)cc1 3.247 -1.265
436 7766-38-3 N-(4-nitrophenyl)acrylamide C9H8N2O3 N(=O)(=O)c1ccc(NC(=O)C=C)cc1 1.711 -1.252
437 777-37-7 2-chloro-.alpha.,.alpha.,.alpha.-trifluoro-5-nitrotoluene C7H3ClF3NO2 O=N(=O)c(ccc(c1C(F)(F)F)Cl)c1 3.281 -1.804
438 784-98-5 ethyl 3-(o-nitrophenyl)pyruvate C11H11NO5 N(=O)(=O)c1c(CC(=O)C(=O)OCC)cccc1 1.512 -1.335
439 81-20-9 2-nitro-m-xylene C8H9NO2 O=N(=O)c(c(ccc1)C)c1C 2.723 -0.960
440 82-68-8 quintozene C6Cl5NO2 O=N(=O)c(c(c(c(c1Cl)Cl)Cl)Cl)c1Cl 5.030 -1.946
441 827-94-1 2,6-dibromo-4-nitroaniline C6H4Br2N2O2 O=N(=O)c(cc(c(N)c1Br)Br)c1 3.166 -1.098
442 830-03-5 4-nitrophenyl acetate C8H7NO4 O=C(Oc(ccc(N(=O)=O)c1)c1)C 1.534 -1.506
443 833-43-2 o-nitrophenethyl acetate C10H11NO4 O=C(OCCc(c(N(=O)=O)ccc1)c1)C 1.942 -1.223
444 83-41-0 3-nitro-o-xylene C8H9NO2 O=N(=O)c(c(c(cc1)C)C)c1 2.753 -0.950
445 83-42-1 2-chloro-6-nitrotoluene C7H6ClNO2 O=N(=O)c(c(c(cc1)Cl)C)c1 3.017 -1.205
446 85117-98-2 N-(2-ethylhexyl)-2-nitroaniline C14H22N2O2 N(=O)(=O)c1ccccc1NCC(CCCC)CC 5.755 -0.631
447 85-45-0 3-nitro-o-anisidine C7H8N2O3 O=N(=O)c(c(OC)c(N)cc1)c1 1.227 -0.895
448 86-49-7 2-chloro-N,N-diethyl-4-nitroaniline C10H13ClN2O2 O=N(=O)c(ccc(N(CC)CC)c1Cl)c1 4.247 -1.148
449 879-39-0 2,3,4,5-tetrachloronitrobenzene C6HCl4NO2 Clc1cc(N(=O)=O)c(Cl)c(Cl)c1Cl 4.347 -1.830
450 880-78-4 pentafluoronitrobenzene C6F5NO2 N(=O)(=O)c1c(F)c(F)c(F)c(F)c1F 1.930 -2.336







CASa number Name Molecular formula SMILESb code log K OW
c E lumo


d


451 885-81-4 N-(4-ethoxy-2-nitrophenyl)acetamide C10H12N2O4 O=C(Nc(c(N(=O)=O)cc(OCC)c1)c1)C 1.589 -1.073
452 88-72-2 2-nitrotoluene C7H7NO2 O=N(=O)c(c(ccc1)C)c1 2.304 -1.011
453 88-73-3 1-chloro-2-nitrobenzene C6H4ClNO2 O=N(=O)c(c(ccc1)Cl)c1 2.448 -1.257
454 88-74-4 2-nitroaniline C6H6N2O2 O=N(=O)c(c(N)ccc1)c1 1.798 -0.793
455 89-21-4 4-chloro-2-nitroanisole C7H6ClNO3 N(=O)(=O)c1cc(Cl)ccc1OC 2.586 -1.144
456 89-30-5 1,4-dibutoxy-2-chloro-5-nitrobenzene C14H20ClNO4 O=N(=O)c(c(OCCCC)cc(c1OCCCC)Cl)c1 5.575 -1.195
457 89-39-4 1,4-dimethoxy-2-nitrobenzene C8H9NO4 O=N(=O)c(c(OC)ccc1OC)c1 1.892 -0.979
458 89-58-7 2-nitro-p-xylene C8H9NO2 O=N(=O)c(c(ccc1C)C)c1 2.803 -0.966
459 89-59-8 4-chloro-2-nitrotoluene C7H6ClNO2 O=N(=O)c(c(ccc1Cl)C)c1 3.017 -1.225
460 89-60-1 4-chloro-3-nitrotoluene C7H6ClNO2 O=N(=O)c(c(ccc1C)Cl)c1 2.947 -1.015
461 89-61-2 1,4-dichloro-2-nitrobenzene C6H3Cl2NO2 O=N(=O)c(c(ccc1Cl)Cl)c1 3.161 -1.468
462 89-62-3 2-nitro-p-toluidine C7H8N2O2 O=N(=O)c(c(N)ccc1C)c1 2.297 -0.764
463 89-63-4 4-chloro-2-nitroaniline C6H5ClN2O2 O=N(=O)c(c(N)ccc1Cl)c1 2.609 -1.003
464 89-69-0 5-nitro-1,2,4-trichlorobenzene C6H2Cl3NO2 O=N(=O)c(c(cc(c1Cl)Cl)Cl)c1 3.754 -1.690
465 89-87-2 4-nitro-m-xylene C8H9NO2 O=N(=O)c(c(cc(c1)C)C)c1 2.803 -0.990
466 90-25-5 1-chloro-3,5-dimethoxy-2-nitrobenzene C8H8ClNO4 O=N(=O)c(c(cc(OC)c1)Cl)c1OC 2.481 -0.745
467 91-23-6 2-nitroanisole C7H7NO3 O=N(=O)c(c(OC)ccc1)c1 1.824 -1.010
468 91-43-0 1-chloro-2,5-diethoxy-4-nitrobenzene C10H12ClNO4 O=N(=O)c(c(OCC)cc(c1OCC)Cl)c1 3.459 -1.201
469 93-27-6 N-(2-methoxy-4-nitrophenyl)acetamide C9H10N2O4 O=C(Nc(c(OC)cc(N(=O)=O)c1)c1)C 0.930 -1.056
470 938-71-6 .alpha.,4-dichloro-2-nitrotoluene C7H5Cl2NO2 N(=O)(=O)c1cc(Cl)cc(CCl)c1 3.160 -1.354
471 93951-16-7 ethyl 3-(chlorocarbonyl)-5-nitrobenzoate C10H8ClNO5 N(=O)(=O)c1cc(C(=O)Cl)cc(C(=O)OCC)c1 1.807 -1.957
472 94006-37-8 methyl 3-(2-methoxy-5-nitrophenyl)acrylate C11H11NO5 N(=O)(=O)c1cc(C=CC(=O)OC)c(OC)cc1 2.427 -1.447
473 94266-23-6 3-(2-methyl-4-nitrophenyl)-1-triazene-1-carbonitrile C8H7N5O2 N(=O)(=O)c1cc(C)c(NN=NC(#N))cc1 1.895 -1.626
474 943-15-7 2-nitro-p-cymene C10H13NO2 O=N(=O)c(c(ccc1C(C)C)C)c1 3.731 -0.943
475 953-26-4 ethyl 4-nitrocinnamate C11H11NO4 O=C(OCC)C=Cc(ccc(N(=O)=O)c1)c1 2.737 -1.828
476 96-74-2 2-mesyl-4-nitroaniline C7H8N2O4S O=S(=O)(c(c(N)ccc1N(=O)=O)c1)C 0.808 -1.186
477 96-96-8 2-nitro-p-anisidine C7H8N2O3 O=N(=O)c(c(N)ccc1OC)c1 1.867 -0.877
478 97043-74-8 N,N-dibutyl-2-chloro-4-nitroaniline C14H21ClN2O2 N(=O)(=O)c1cc(Cl)c(N(CCCC)CCCC)cc1 6.363 -1.209
479 97-52-9 4-nitro-o-anisidine C7H8N2O3 O=N(=O)c(ccc(N)c1OC)c1 1.507 -0.848
480 98-46-4 .alpha.,.alpha.,.alpha.-trifluoro-3-nitrotoluene C7H4F3NO2 O=N(=O)c(cccc1C(F)(F)F)c1 2.768 -1.562
481 98-95-3 nitrobenzene C6H5NO2 O=N(=O)c(cccc1)c1 1.885 -1.068
482 99-08-1 3-nitrotoluene C7H7NO2 O=N(=O)c(cccc1C)c1 2.384 -1.017
483 99-09-2 3-nitroaniline C6H6N2O2 O=N(=O)c(cccc1N)c1 1.258 -0.859
484 99-12-7 5-nitro-m-xylene C8H9NO2 O=N(=O)c(cc(cc1C)C)c1 2.883 -0.967
485 99-29-6 2-bromo-6-chloro-4-nitroaniline C6H4BrClN2O2 O=N(=O)c(cc(c(N)c1Cl)Br)c1 3.016 -1.098
486 99-30-9 2,6-dichloro-4-nitroaniline C6H4Cl2N2O2 O=N(=O)c(cc(c(N)c1Cl)Cl)c1 2.816 -1.096
487 99-51-4 4-nitro-o-xylene C8H9NO2 O=N(=O)c(ccc(c1C)C)c1 2.833 -0.997
488 99-52-5 4-nitro-o-toluidine C7H8N2O2 O=N(=O)c(ccc(N)c1C)c1 1.707 -0.748
489 99-54-7 1,2-dichloro-4-nitrobenzene C6H3Cl2NO2 O=N(=O)c(ccc(c1Cl)Cl)c1 3.191 -1.525
490 99-55-8 5-nitro-o-toluidine C7H8N2O2 O=N(=O)c(ccc(c1N)C)c1 1.707 -0.944
491 99-56-9 4-nitro-o-phenylenediamine C6H7N3O2 O=N(=O)c(ccc(N)c1N)c1 0.611 -0.851
492 99-59-2 5-nitro-o-anisidine C7H8N2O3 O=N(=O)c(ccc(OC)c1N)c1 1.507 -0.900
493 99-61-6 3-nitrobenzaldehyde C7H5NO3 O=Cc(cccc1N(=O)=O)c1 1.502 -1.421
494 99-77-4 ethyl 4-nitrobenzoate C9H9NO4 O=C(OCC)c(ccc(N(=O)=O)c1)c1 2.383 -1.620
495 99-81-0 2-bromo-4'-nitroacetophenone C8H6BrNO3 O=C(c(ccc(N(=O)=O)c1)c1)CBr 1.739 -1.628
496 99-99-0 4-nitrotoluene C7H7NO2 O=N(=O)c(ccc(c1)C)c1 2.384 -1.045
497 3282-56-2 1-tert-butyl-4-nitrobenzene C10H13NO2 N(=O)(=O)c1ccc(C(C)(C)C)cc1 3.711 -1.019


a Chemical Abstract Service                 b Simplified Molecular Input Line Entry System
c Logarithm of the octanol/water partition coefficient - calculated using CLogP Version 4.0 (Biobyte, Claremont, CA, USA) 
d Energy of the lowest unoccupied molecular orbital in electron volts (eV) - calculated using Spartan 04 for Windows® Version 1.0.3 (Wavefun, Irvine, CA, USA)
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Quantitative structure–activity relationship (QSAR) models are expected to play a crucial role in reducing
the number of animals to be used for toxicity testing resulting from the adoption of the new European
Union chemical control system called Registration, Evaluation, and Authorization of Chemicals (REACH).
The objective of the present study was to generate in vitro acute toxicity data that could be used to
develop a QSAR model to describe acute in vivo toxicity of chlorinated alkanes. Cytotoxicity of a series
of chlorinated alkanes to Chinese hamster ovary (CHO) cells was observed at concentrations similar to
those that have been shown previously to be toxic to fish. Strong correlations exist between the acute in
vitro toxicity of the chlorinated alkanes and (i) hydrophobicity [modeled by the calculated log Kow (octanol–
water partition coefficient); r2 ) 0.883 and rint


2 ) 0.854] and (ii) in vivo acute toxicity to fish (r2 )
0.758). A QSAR model has been developed to predict in vivo acute toxicity to fish, based on the in vitro
data and even on in silico log Kow data only. The developed QSAR model is applicable to chlorinated
alkanes with up to 10 carbon atoms, up to eight chlorine atoms, and log Kow values lying within the
range from 1.71 to 5.70. Out of the 100204 compounds on the European Inventory of Existing Chemicals
(EINECS), our QSAR model covers 77 (0.1%) of them. Our findings demonstrate that in vitro experiments
and even in silico calculations can replace animal experiments in the prediction of the acute toxicity of
chlorinated alkanes.


Introduction


The European Inventory of Existing Chemicals (EINECS)1


contains over 100000 chemicals that are marketed within Europe
for industrial or consumer needs. For most of these chemicals,
there is insufficient (eco)toxicological information on their
hazardous properties. To close these existing toxicity data gaps,
the European Union parliament recently adopted a new chemical
control system called Registration, Evaluation and Authorization
of Chemicals (REACH) (1). One of the aims of REACH is to
improve the protection of human health and the environment
by requiring industry to provide toxicity information for the
chemicals that they manufacture or distribute. There is currently
an ongoing debate about the potentially large number of animals


that have to be used for experimental toxicity testing as an
outcome of REACH. Within REACH, however, there is a
provision to use, among others, sufficiently validated compu-
tational prediction models based on quantitative structure–ac-
tivity relationships (QSAR) to fill in the toxicity data gaps and
thus save time and costs, reducing the number of experimental
animals used. To increase the acceptability of QSAR models
within REACH, guidelines for QSAR model development and
validation proposed by the Organization for Economic Coopera-
tion and Development (OECD) (2) are now widely accepted.


Chlorinated alkanes are an important group of chemicals on
the EINECS list with widespread use, large production volumes,
and thus a large potential for environmental pollution, and they
are the focus of this article. Chlorinated n-alkanes are built from
straight chains of carbon and hydrogen with varying numbers
of hydrogen atoms replaced by chlorine atoms. The introduction
of chlorine atoms into the hydrocarbon chain alters properties
such as solubility, density, volatility, and toxicity (3). Some of
these changes confer improvements that make the compounds
useful commercially, but these changes can also make them
more toxic. Chlorinated n-alkanes are broadly divided into two
main groups depending on the number of carbon atoms present:
lower chlorinated alkanes (LCA; C1–C9) and polychlorinated
n-alkanes (PCA; C10–C30) (4). Mixtures of commercial PCAs,
known as chlorinated paraffins, are divided into three groups:
short-chain (C10–C13), medium-chain (C14–C17), and long-
chain (C18–C30) paraffins with chlorine contents varying from
35 -70% by weight. The LCAs are widely used as industrial
and household solvents, fumigants, and intermediates in chemi-
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chlorinated alkane; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide; OECD, Organization for Economic Cooperation and
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cal synthesis (5). The PCAs are often used as lubricating
additives, adhesives, and flame retardants in rubber and textiles.
The annual production volume of PCAs is greater than 300
kilotons (4). For the PCAs, toxicity is believed to decrease from
the short to the long chain PCAs, due to a decrease in solubility
(4). It has been suggested that the short-chain PCAs should be
included in the list of persistent organic pollutants (6). They
have a high bioaccumulation potential due to their high log Kow


(octanol–water partition coefficient) values, are persistent in the
environment due to their resistance to degradation, and thus have
a potential for long-range environmental transport. Short-chain
PCAs are known to be highly toxic to aquatic organisms (6).


Despite their widespread use and presence, the amount of
toxicological data on PCAs is rather limited. Because they are
produced via free radical chlorination, a single PCA preparation
can consist of many different congeners with a wide range of
physicochemical properties (4). This presents problems in
attempting to estimate the toxicity of these preparations as the
toxicity of individual compounds cannot be identified. Using
synthesized PCA congeners, Fisk and co-workers described their
bioaccumulation in rainbow trout (Onchorhynchus mykiss) (7)
and toxicity to Japanese medaka (Oryzias latipes) embryos (4).


For the LCAs, several studies describe their acute toxicity in
literature. Crebelli and co-workers used electrophilicity descrip-
tors to describe their aneugenic activity to the mold Aspergillus
nidulans (8). The acute toxicity of LCAs to the protozoan
Tetrahymena pyriformis (9), the marine bacterium Photobac-
terium phosphoreum in the Microtox test (10), the fathead
minnow Pimephales promelas (11), the guppy Poecilia reticu-
lata (12), and HeLa cells (13) was determined and related to
the hydrophobicity of the compounds. However, in most of these
studies, the number of chlorinated alkanes tested was either too
small to be used for QSAR modeling or was for a small range
of carbon chain lengths [e.g., C1 to C5 as in studies by
Könemann (12)]. As far as we are aware, there exists no QSAR
model to predict the in vivo acute toxicity of chlorinated alkanes.
The objective of the present study was to generate in vitro acute
toxicity data that could be used to develop a QSAR model to
describe in vivo acute toxicity of chlorinated alkanes. Toxicity
tests were performed for a large set of chlorinated alkanes across
a wide range of hydrophobicity values and carbon chain lengths
(C1–C10). The in vitro toxicity data were used to develop a
validated QSAR model with defined applicability limits fol-
lowing OECD guidelines. The in vitro toxicity data were further
compared to in vivo toxicity data for fish, and a prediction model
for in vivo toxicity was developed using the in vitro data.
Finally, an estimate was made of the number of EINECS
compounds for which the QSAR model can make accurate
predictions.


Materials and Methods


Materials. Unless otherwise indicated, all chemicals were
obtained from Sigma-Aldrich (Zwijndrecht, The Netherlands) and
were at least 98% pure. Stocks of chlorinated alkanes were prepared
in spectrophotometric grade dimethyl sulfoxide (DMSO) obtained
from Acros Organics (Geel, Belgium). Phosphate-buffered saline
(PBS), Hank’s balanced salt solution (HBSS), Dulbecco modified
Eagle’s medium (DMEM)/Ham’s F12, fetal calf serum (FCS), and
Trypsin-EDTA were supplied by Gibco-Invitrogen (Breda, The
Netherlands). Chinese hamster ovary (CHO) wild-type cells were
sourced from the American Type Culture Collection (Manassas,
VA). Cell culture flasks (75 cm2) were supplied by Corning Inc.
(Corning, NY), and culture plates (24 and 96 wells) were provided
by Greiner Bio-one (Alphen aan de Rijn, The Netherlands).


Cell Culture. The CHO cells were grown in 75 cm2 culture flasks
and maintained in a humidified incubator at 37 °C, 95% air/5%


CO2 in DMEM/F12 medium supplemented with 10% FCS. Once
every three days, the cells were rinsed with HBSS, trypsinized,
and then resuspended and cultivated in fresh culture medium. Cells
from culture flasks with confluency of at least 90% were used for
the cytotoxicity assay.


Cytotoxicity Assay. The cytotoxicity of the chlorinated alkanes
to CHO cells was determined in triplicate in 96 well culture plates
using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-
lium bromide] assay following procedures described previously (14)
with some modifications. Where appropriate, dilution of the test
compounds was done in 24 well culture plates. Two methods of
exposure were compared, direct and premix (the most commonly
used exposure method during in vitro testing). For direct exposure,
there was no prior dilution of the test compound in the dilution
plate; the test compound solution in DMSO was added straight into
the medium of the culture plate. For premix exposure, there was
prior dilution of the test compound solution in DMSO using culture
medium, and this culture medium containing the test compound at
the desired concentration was added to the cells in the culture plate.
For both methods, 100 µL of CHO cell suspension was seeded
into each of the inner wells of the culture plate at a final
concentration of 3 × 105 cells/mL, with 200 µL of HBSS added to
the outer wells. The plate was incubated for 24 h to allow the cells
to attach. For the direct exposure, 100 µL of culture medium with
10% FCS (37 °C) was then added to the inner wells followed by
addition of 2 µL of each test compound solution at various
concentrations. For the premix exposure, 50 times concentrated
solutions of the test compounds in DMSO were diluted 50 times
in culture medium with 10% FCS in the dilution plate, and then,
100 µL of these medium samples was transferred to the culture
plate. For both methods in each independent experiment, (i) all
concentrations were tested in 6-fold and (ii) two sets of controls
were used, one with DMSO and another with culture medium
without the test compounds or DMSO. Upon addition of the test
compounds, the plates were shaken at 600 rpm on an orbital shaker
(Incubator 1000, Hieroglyph Instruments, Germany) for 5 min,
followed by 21 h of incubation in the humidified incubator at
37 °C. Then the MTT reagent was added to a final concentration
of 0.5 mg/mL, and incubation continued for a further 3 h, for a
total incubation time of 24 h. After this, the culture medium was
removed with a vacuum pump and 100 µL of DMSO was added
to lyse the cells. The plates were shaken for 5 min to dissolve the
formazan crystals formed after reduction of MTT. Subsequently,
two absorbance readings were recorded as follows: A562 for the
color of the formazan crystals and A620 for cell debris and other
nonspecific absorbance.


Calculation of EC50 Values. The A620 values were subtracted
from the A562 values, and the result was expressed as a percentage
of the response of the DMSO control. The EC50 values of the
chlorinated alkanes were calculated using a Microsoft Excel plug-
in, Life Sciences Workbench (LSW) Data Analysis Toolbox Version
1.1.1 (MDL Information Systems, CA) with the general sigmoidal
curve with Hill slope (a-d) chosen as the best fit model.


Calculation of Theoretical Descriptors. Hydrophobicity of the
chlorinated alkanes was modeled using log Kowvalues calculated
using the software CLogP version 4.0 (Biobyte, Claremont, CA)
(15) as described previously (16). Briefly, the structure of each
molecule was entered into CLogP as a simplified molecular input
line entry system (SMILES) code. The SMILES codes were
obtained from the SMILES-CAS database (Syracuse Research,
Syracuse, NY). Solubility values were calculated using ACD/
Laboratories version 8.14 for Solaris (Advanced Chemistry De-
velopment, Toronto, ON, Canada).


QSAR Modeling. The Statistical Package for Social Scientists
(SPSS) version 13 for Windows (SPSS, Chicago, IL) was used to
analyze the QSARs with log EC50 as the dependent variable and
log Kow as the independent variable. The quality of the QSAR
model was characterized by the number of compounds used in the
study (n), coefficient of determination (r2), standard error of the
estimate (s), variance ratio (F), the internally cross-validated
coefficient of determination (rint


2), and the externally validated
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coefficient of determination (rext
2). Internal validation of the QSAR


model was performed using the leave-out-many cross-validation
method, with 20% of the calibration compounds left out at each
step as described previously (16). The external performance of the
QSAR model was evaluated by testing five additional compounds
that fit into the applicability domain of the model and then
comparing the predicted and experimental toxicity values. The
calculation of rext


2 was performed according to the formula:


rext
2 ) 1- PRESS/SSD (1)


where PRESS (predicted sum of squares) is the sum of the squared
differences between the predicted and the experimental toxicity
values for each molecule in the validation set, and SSD is the sum
of the squared deviations between the experimental toxicity values
for each molecule in the validation set and the mean experimental
toxicity values of the training set (17).


Results


Twenty-one LCAs were tested in the MTT assay with CHO
cells, and these model compounds of the present study are listed
in Table 1, together with their estimated log Kow, water
solubility, and the experimental EC50 values obtained. The MTT
cytotoxicity results were obtained using the direct exposure
method. When comparing the cytotoxicity of the same concen-
tration of LCAs after premix and direct exposure of CHO cells,
major differences were found. After direct exposure to increasing
concentrations of 1-chlorononane, for example, a clear dose-
dependent decrease in cell viability was observed (Figure 1).
After premix exposure, however, none of the tested concentra-
tions induced any cytotoxicity. Microscopic examination of the
96 well plate 10 min after exposure revealed no local cytotox-
icity due to a possible temporary high concentration of DMSO
when the direct exposure method was used. Because of the lack


of a dose-response relationship with the premix method, further
experiments were conducted using the direct exposure method
to determine the EC50 values reported in Table 1.


Influence of Chain Length and Extent of Chlorination
on Toxicity. With an increase in chain length for single
chlorinated compounds from 1-chloropentane, 1-chlorohexane,
1- chloroheptane, and 1-chlorooctane to 1-chlorononane, the
cytotoxicity increased, with 1-chlorodecane showing a deviation
(Table 1). For compounds with the same hydrocarbon backbone,
an additional chlorine atom was associated with a decrease in
toxicity. This is shown for example by 1,6-dichlorohexane vs
1-chlorohexane and 1,8-dichlorooctane vs 1-chlorooctane. The
short-chain PCAs 1,10-dichlorodecane, 1-chlorododecane, and
1-chlorotetradecane did not show cytotoxicity up to the maxi-
mum soluble concentrations tested; therefore, they were ex-
cluded from the modeling process.


Table 1. Chlorinated Alkanes Present in the Training Set of the Present Study, Their Chemical Abstract Service (CAS)
Numbers, Octanol/Water Partitioning Coefficients (Kow), Water Solubility, and in Vitro and in Vivo EC50 Valuesa


in vitro log EC50


(µM) MTT assay
in vivo log EC50


(µM)


no. compd name CAS no. log Kow
b


log H2O
solubilityc


at 25 °C (µM)
CHO cells,d


24 h


rat primary
hepatocytes,e


2 h
HeLa


cells,f 72 h


Poecilia
reticulata,g


7 days


Phosphobacterium
phosphoreum,h


5 min


Pimephales
promelas,i


96 h


1 1,3-dichloropropane 142-28-9 1.71 4.11 2.99 2.87 3.02 3.06
2 1,2-dichloropropane 78-87-5 1.99 4.46 3.03 3.01 3.09
3 1,1,2-trichloroethane 79-00-5 2.05 4.42 3.04 3.40 2.85 2.79
4 1,2-dichlorobutane 616-21-7 2.52 3.87 2.61 2.39k


5 1,1,2,2-tetrachloroethane 79-34-5 2.64 3.85 2.44 3.24 2.34 2.09
6 1-chloro-2,


2-dimethylpropane
753-89-9 2.79 3.76 2.30 2.11k


7 carbon tetrachloride 56-23-5 2.88 3.72 2.40 2.89 1.00 2.20k


8 1-chloro-2-methylbutane 616-13-7 2.92 3.54 2.30 2.11k


9 1-chloropentane 543-59-9 3.05 3.34 2.24 2.05k 2.55
10 1,6-dichlorohexane 2163-00-0 3.29 2.56 2.02 1.85k


11 1-chlorohexane 544-10-5 3.58 2.76 2.24 2.05k


12 1,1-dichloro-3,
3-dimethylbutane


6130-96-7 3.63 2.94 1.67 1.52k


13 1-chloroheptane 629-06-1 4.11 2.18 1.73 1.58k


14 1,8-dichlorooctane 2162-99-4 4.35 1.48 1.72 1.57k


15 1-chlorooctane 111-85-3 4.64 1.61 1.43 1.30k


16 1,9-dichlorononane 821-99-8 4.88 0.94 1.78 1.63k


17 1-chlorononane 2473-01-0 5.17 1.04 1.35 1.23k


18 1-chlorodecane 1002-69-3 5.70 0.52 1.44 1.31k


19 1,10-dichlorodecane 2162-98-3 5.41 0.88 NTASj


20 1-chlorododecane 112-52-7 6.76 0.18 NTAS
21 1-chlorotetradecane 2425-54-9 7.81 1.38 NTAS


a The EC50 values in the present study were determined using an MTT test in CHO cells. b Calculated using ClogP version 4.0. c Calculated using
ACD/Laboratories version 8.14 for Solaris. d Experimental toxicity data from the present study. e Experimental toxicity data from ref 26. f Experimental
toxicity data from ref 27. g Experimental toxicity data from ref 12. h Experimental toxicity data from ref 10. i Experimental toxicity data from ref 11.
j Not toxic at saturation. k EC50 values predicted using eq 3.


Figure 1. Comparison of the cytotoxicity of 1-chlorononane to CHO
cells using direct (2) and premix (9) methods of exposure in the MTT
assay. The points on the graph represent the means ( standard errors
of three experiments.
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QSAR Modeling. An investigation of the relationship
between log Kow and the experimental toxicity data from the
MTT test revealed a good correlation (Figure 2) and can be
described by the following equation:


log EC50 (µM))-0.446(log Kow)+ 3.685 (2)


where n ) 18, s ) 0.193, F ) 120, r2 ) 0.883, and
rint


2 ) 0.854.
An increase in log Kow was associated with an increase in


toxicity (Figure 2). However, with increasing log Kow values,
also the solubility decreased until above log Kow ) 4.53, where
the EC50 becomes higher than the calculated water solubility
(Figure 2). However, 1-chlorononane (log Kow ) 5.17) was still
able to show toxicity above this cutoff value.


Applicability Domain of the QSAR Model. The range of
compounds for which the model is valid (applicability domain)
was determined by taking into account the minimum and
maximum values of both the (i) carbon chain length (C1–C10),
(ii) the chlorine atoms (Cl1-Cl8), and (iii) the log Kow values
(1.71–5.70) of the compounds included in the training set. For
models within a one-dimensional descriptor space, the interpola-
tion region is simply taken as the interval between the minimum
and the maximum values of the training data set (18). The
theoretical toxicity cutoff limit of log Kow ) 4.53 was not taken
into account here as compounds with higher log Kow values
were able to show toxicity. Taking these criteria into consid-
eration, our QSAR model is thus applicable to chlorinated
alkanes with up to 10 carbon and eight chlorine atoms and log
Kow values between 1.71 and 5.70. These limits were used as
selection criteria to extract compounds with similar properties
from the EINECS list. Using procedures described previously
(16), molecular formula, name, and SMILES codes of the
EINECS compounds were used as filtering criteria in Microsoft
Excel 2003 to extract 59 compounds satisfying the selection
criteria. The 59 compounds and their predicted EC50 values are
shown in Table 2. This implies that including the 18 compounds
used to develop the MTT assay-based in vitro QSAR in CHO
cells, our QSAR model covers 77 (∼0.1%) of the EINECS list
compounds.


External Validation of QSAR Model. From Table 2, five
compounds, with log Kow values within the applicability domain
of the training set, were selected for additional testing to
externally validate our QSAR model. Suitable test concentrations
were selected based on the predicted in vitro toxicity values,
thereby skipping range-finding tests. The experimental toxicity
values, shown in Table 2, correlated well with predicted values
(rext


2 ) 0.741).


In Vitro to in Vivo Correlation. In a final step, it was
investigated whether the acute in vitro toxicity data generated
in the present study could be used to build a model for making
acute in vivo toxicity predictions for fish. Tables 1 and 2 show
the acute in vivo toxicity data for the fish, P. reticulata (12),
for the compounds that were also tested in the present study. A
correlation of the in vitro and in vivo toxicity data is shown in
Figure 3 and can be described by the following equation:


in vivo log LC50 (µm)) 0.926[in vitro log EC50 (µm)]-
0.023 (3)


where n ) 7, r2 ) 0.758, s ) 0.230, and F ) 16.
This equation was used to make predictions for the com-


pounds tested in vitro for which no acute in vivo fish toxicity
data were available, and the results thus obtained are presented
in Tables 1 and 2.


Discussion


During the development of QSAR models, it is usually
recommended where possible to (i) use experimental data
from the same laboratory to avoid interlaboratory variation
(19) and (ii) use data sets where the ratio of number of test
compounds to descriptors used for modeling is at least five
(20). Both conditions have been satisfied in this study by
generating toxicity data within the same laboratory for 26
compounds and developing a QSAR model based on one
descriptor, log Kow. The developed QSAR model also satisfies
the five basic requirements for OECD guidelines for QSAR
models: clearly defined end point, unambiguous algorithm,
appropriate measures of goodness of fit, robustness and
predictivity, a defined domain of applicability, and a mecha-
nistic interpretation. First, the end points are clearly defined
(24 h EC50 to CHO cells and 7 days LC50 to P. reticulata).
Second, the methods for data collection and calculation of
descriptors have been clearly described. Third, the QSAR
model has been validated both internally and externally.
Fourth, the applicability domain in terms of descriptor range
and the actual list of compounds that fit into the domain have
been provided. Fifth, hydrophobicity has been confirmed as
an important parameter to describe the toxicity of the
chlorinated alkanes. The strong correlation between toxicity
and hydrophobicity found in the current study (Figure 2)
supports a nonpolar narcotic mechanism of action for
chlorinated alkanes described previously (12, 21, 22). Because
hydrophobicity is important for the toxicity of chlorinated
alkanes, it was essential to choose a suitable method of
exposure. The direct method of exposure resulted in higher
toxicity than the premix method (Figure 1). Hydrophobic
compounds have been shown previously to readily adhere
to plastic surfaces of culture plates (23). This situation can
easily arise during the dilution step of the premix method
where the medium containing the chlorinated alkanes is
prepared in a premixing well before transfer to wells
containing the cells. This provides an additional possibility
for the chlorinated alkanes to adhere to the plastic surface
of the well before the solution is actually transferred to the
cells. During the direct exposure method, more of the
compound is immediately available to the cells. However,
one needs to mix the test compound thoroughly into the
culture medium by carefully pipetting up and down several
times to avoid any local cytotoxicity that can occur due to
high concentrations of solvent or test compound. The
presence or absence of local cytotoxicity should always be
confirmed with microscopic observations. The in vitro toxicity


Figure 2. QSAR for the correlation between the decadic logarithm of
the 24 h in vitro toxicity (EC50) of chlorinated alkanes (C1–C10) to
CHO cells in the MTT assay and the toxicity predicted based on log
Kow (9) shows a plot of log Kow vs water solubility of the chlorinated
alkanes (n ) 18, r2 ) 0.96). The two plots cross where log Kow )
4.53.
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of compounds with log Kow > 4.53 (Figure 2) can be
explained in three ways. First, the predicted solubility values
of the chlorinated alkanes are for water only and the solvent
used in this study, DMSO, is known to increase their
solubility. Second, DMSO may increase the absorption of
compounds across membranes (23, 24); thus, its use as a


cosolvent could enhance their entry into the cells. Third, the
test compounds can bind to the proteins or lipids in the FCS
in the growth medium, thus increasing their solubility.
Previous attempts to use hydrophobicity to explain the
toxicity of chlorinated alkanes to bacteria in the Microtox
test failed (r2 ) 0.193, n ) 18) (25), possibly due to the


Table 2. List of EINECS Compounds That Fit into the Applicability Domaina of the QSAR Model Developed in This Studyb


in vitro log EC50 (µM)
to CHO cells in MTT assay


in vivo log LC50 (µM)
to the fish (Poecilia reticulata)e


compd name CASc no. log Kow
d experimental predictede experimentalf predictedg,h


1 1,2,3-trichloropropane 96-18-4 1.98 3.12 2.80 2.45 2.87
2 1-chlorobutane 109-69-3 2.52 3.27 2.56 3.02 3.01
3 1,5-dichloropentane 628-76-2 2.77 2.82 2.45 2.59
4 pentachloroethane 76-01-7 3.63 2.17 2.07 1.87 1.99
5 1,1,1,2,2,2,2,


3-heptachloropropane
594-89-8 4.74 1.62 1.57 1.48


6 hexachloroethane 67-72-1 4.61 1.63 1.49
7 1,1-dichloroethane 75-34-3 1.78 2.89 2.66
8 1,3-dichloro-2,2-bis


(chloromethyl)propane
3228-99-7 1.93 2.82 2.59


9 trichloromethane 67-66-3 1.95 2.81 2.58
10 1-chloropropane 540-54-5 1.99 2.80 2.57
11 2-chloropropane 75-29-6 1.99 2.80 2.57
12 1,3-dichlorobutane 1190-22-3 2.24 2.69 2.47
13 1,4-dichlorobutane 110-56-5 2.24 2.69 2.47
14 1,1-dichloropropane 78-99-9 2.31 2.66 2.44
15 2,2-dichloropropane 594-20-7 2.31 2.66 2.44
16 1,2,3-trichloro-2-methylpropane 1871-58-5 2.38 2.62 2.41
17 1,2-dichloro-2-methylpropane 594-37-6 2.39 2.62 2.40
18 1-chloro-2-methylpropane 513-36-0 2.39 2.62 2.40
19 2-chloro-2-methylpropane 507-20-0 2.39 2.62 2.40
20 1,1,1-trichloroethane 71-55-6 2.48 2.58 2.36
21 1,2,3,4-tetrachlorobutane 3405-32-1 2.50 2.57 2.36
22 2,3-dichlorobutane 7581-97-7 2.52 2.56 2.35
23 2-chlorobutane 78-86-4 2.52 2.56 2.35
24 1,1,3-trichlorobutane 13279-87-3 2.55 2.55 2.34
25 1,1,2,3-tetrachloropropane 18495-30-2 2.57 2.54 2.33
26 1,2,2,3-tetrachloropropane 13116-53-5 2.57 2.54 2.33
27 1,1,2-trichloropropane 598-77-6 2.58 2.53 2.32
28 1,2,2-trichloropropane 3175-23-3 2.58 2.53 2.32
29 1,3-dichloro-3-methylbutane 624-96-4 2.63 2.51 2.30
30 tetrachloroethane 25322-20-7 2.64 2.51 2.30
31 1,1,1,3-tetrachloropropane 1070-78-6 2.72 2.47 2.27
32 1,1-dichlorobutane 541-33-3 2.84 2.42 2.22
33 2,2-dichlorobutane 4279-22-5 2.84 2.42 2.22
34 1,1,3,3-tetrachlorobutane 39185-82-5 2.86 2.41 2.21
35 1-chloro-3-methylbutane 107-84-6 2.92 2.38 2.18
36 2-chloro-2-methylbutane 594-36-5 2.92 2.38 2.18
37 trichloropropane 25735-29-9 3.01 2.34 2.15
38 1,1,1,2-tetrachloroethane 630-20-6 3.03 2.33 2.14
39 2,3-dichloropentane 600-11-3 3.05 2.33 2.13
40 2-chloropentane 625-29-6 3.05 2.32 2.13
41 3-chloropentane 616-20-6 3.05 2.32 2.13
42 1,1,2,2,3-pentachloropropane 16714-68-4 3.17 2.27 2.08
43 1,1,1,3-tetrachlorobutane 13275-19-9 3.25 2.24 2.05
44 1-chloro-3,3-dimethylbutane 2855-08-5 3.32 2.20 2.02
45 1,1,1-trichlorobutane 13279-85-1 3.54 2.11 1.93
46 1,1,1,2-tetrachloropropane 812-03-3 3.56 2.10 1.92
47 1,1,1,3,3-pentachlorobutane 21981-33-9 3.57 2.10 1.92
48 2-chlorohexane 638-28-8 3.58 2.09 1.91
49 3-chlorohexane 2346-81-8 3.58 2.09 1.91
50 2-chloro-2,3,3-trimethylbutane 918-07-0 3.72 2.03 1.85
51 2,5-dichloro-2,5-dimethylhexane 6223-78-5 4.09 1.86 1.70
52 2-chloroheptane 1001-89-4 4.11 1.85 1.69
53 3-chloroheptane 999-52-0 4.11 1.85 1.69
54 1,1,1,3-tetrachloro-4-methylpentane 62103-09-7 4.18 1.82 1.66
55 1-chloro-2,2,4-trimethylpentane 2371-06-4 4.25 1.79 1.64
56 3-(chloromethyl)heptane 123-04-6 4.51 1.67 1.53
57 2-chlorooctane 628-61-5 4.64 1.62 1.47
58 3-chlorooctane 1117-79-9 4.64 1.62 1.47
59 4-chlorooctane 999-07-5 4.64 1.62 1.47


a Chlorinated alkanes with up to 10 carbon atoms and log Kow values between 1.71 and 5.70. b This list excludes the 18 compounds in Table 1 that
were used for the model development. The first five compounds were used as the external validation set. c Chemical Abstracts Service. d Kow values
calculated using ClogP version 4.0. e EC50 values predicted using eq 2. f EC50 values obtained from ref 12. g EC50 values predicted using eq 3.
h Compounds selected for external validation of eq 2.
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short exposure time of the assay premix exposure as in the
present study (Figure 1), and also the absence of serum in
the medium that could increase the bioavailability of the test
compounds.


Toxicity results for three of our training set compounds have
been reported in other published studies and are comparable to
our data. For example, there is close agreement between the
cytotoxicity of 1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane,
and carbon tetrachloride to CHO cells (current study) and to
rat primary hepatocytes, both measured with the MTT assay
(Table 1). The lower EC50 value of carbon tetrachloride to HeLa
cells than to the CHO cells of the present study could be due to
a longer exposure period (72 h as compared to 24 h in the
present study). There is also close similarity between the EC50


values obtained in the current study to the concentrations that
were toxic to the guppy and fathead minnow (Table 1). This
similarity was extended to develop a prediction model for in
vivo toxicity based on in vitro or in silico data. The good
correlation (Figure 2, r2 ) 0.883) between the in silico-predicted
log Kow and the in vitro toxicity and the good correlation (Figure
3; r2 ) 0.758) obtained between in vitro and in vivo toxicity to
fish support the possible use of QSAR approaches in the safety
assessments within the framework of REACH, thereby reducing
the use of experimental animals. Therefore, the results of the
present study demonstrate that instead of performing toxicity
testing of chlorinated alkanes (that fit into the applicability
domain) on fish, one can carry out an in vitro CHO MTT test
or even only calculate the log Kow by available in silico models
and use the QSAR models defined in the present study. On the
basis of the QSAR models that we developed, one can use in
vitro or even only in silico results to predict the in vivo toxicity
to fish.


The experimental and predicted (Tables 1 and 2) in vivo
toxicity data to fish can be used as a starting point for further
risk assessment of the chlorinated alkanes. A toxicity ranking
of the compounds will allow the identification of the most toxic
and priority compounds. This will help to direct priorities for
future testing to the most toxic compounds, thereby further
refining and reducing the use of experimental animals.
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The description of quantitative structure-activity relationship (QSAR) models has been a topic for
scientific research for more than 40 years and a topic within the regulatory framework for more than 20
years. At present, efforts on QSAR development are increasing because of their promise for supporting
reduction, refinement, and/or replacement of animal toxicity experiments. However, their acceptance in
risk assessment seems to require a more standardized and scientific underpinning of QSAR technology
to avoid possible pitfalls. For this reason, guidelines for QSAR model development recently proposed by
the Organization for Economic Cooperation and Development (OECD) [Organization for Economic
Cooperation and Development (OECD) (2007) Guidance document on the validation of (quantitative)
structure-activity relationships [(Q)SAR] models. OECD EnVironment Health and Safety Publications:
Series on Testing and Assessment No. 69, Paris] are expected to help increase the acceptability of QSAR
models for regulatory purposes. The guidelines recommend that QSAR models should be associated
with (i) a defined end point, (ii) an unambiguous algorithm, (iii) a defined domain of applicability, (iv)
appropriate measures of goodness-of-fit, robustness, and predictivity, and (v) a mechanistic interpretation,
if possible [Organization for Economic Cooperation and Development (OECD) (2007) Guidance document
on the validation of (quantitative) structure-activity relationships [(Q)SAR] models. The present
perspective provides an overview of these guidelines for QSAR model development and their rationale,
as well as the promises and pitfalls of using QSAR approaches and these guidelines for predicting
metabolism and toxicity of new and existing chemicals.
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1. Introduction


There are currently more than 100000 chemicals that are
marketed for industrial or consumer needs. Within Europe, these
chemicals are registered on the European Inventory of Existing
Chemical Substances (EINECS) list. For most of these chemi-
cals, there is insufficient toxicological information on their
hazardous properties. In 2006, the European Union (EU) adopted
a new legislation called Registration, Evaluation, and Authoriza-
tion of Chemicals (REACH) (2, 3), which came into force on
June 1, 2007, and which shifts the responsibility of assessing
and managing the risks posed by chemicals to human health
and the environment from governments to industry. It has been
argued that to generate the required toxicity data, many
experimental animal studies may have to be performed (4).
However, within REACH, there is a provision to use, among
others, sufficiently validated computational prediction models


based on (quantitative) structure-activity relationships [(Q)SARs]
to predict and evaluate the toxicity of new and existing
chemicals, thereby supporting the three Rs, representing reduc-
tion, refinement,and/orreplacementofanimal toxicityexperiments.


As a result, there is an increasing scientific effort to define
suitable (Q)SAR models. The description of (Q)SAR models
has been a topic for scientific research for more than 40 years
and a topic within the regulatory framework for more than 20
years, but their acceptance in risk assessment seems to require
a more standardized and scientific underpinning of (Q)SAR
technology. For this reason, guidelines for (Q)SAR model
development recently proposed by the Organization for Eco-
nomic Cooperation and Development (OECD) are expected to
help increase the acceptability of QSAR models for regulatory
purposes (1). The present perspective provides an overview of
these guidelines for (Q)SAR model development and their use
in the field of predicting the metabolism and toxicity of
chemicals.


2. Guidelines for QSAR Development


The guidelines for (Q)SAR model development as recently
proposed by the OECD recommend that to facilitate the
consideration of a (Q)SAR model for regulatory purposes, the
QSAR model should be associated with the following five
categories of information: (i) a defined end point, (ii) an
unambiguous algorithm, (iii) a defined domain of applicability,
(iv) appropriate measures of goodness-of-fit, robustness, and
predictivity, and (v) a mechanistic interpretation, if possible (1).
In the following sections, each of these categories is discussed
in some detail.
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2.1. A Defined End Point. A QSAR model needs to be based
on a clearly defined end point that can be defined as any
physicochemical, biological, or environmental effect that can
be experimentally determined and thus modeled. This implies
that it should be not only clear which end point is being modeled
but also how it is experimentally defined, since a given end
point could be determined under different experimental condi-
tions and protocols (1).


Although toxicity end points are often well-defined for the
various data sets, there may be large differences in the
experimental conditions and test organisms within single data
sets. For example, an analysis of a rainbow trout data set from
literature (5) done by other researchers (6) revealed the
following: weight of the fish (0.2-23 g), incubation temperature
(2-18 °C), pH (6.5-9.5), and water hardness (12-320 mg/L).
Thus, data produced by different protocols are often combined
and may underlie deviations form QSAR correlations. The use
of variable protocols underlying QSAR training set data may
thus introduce unnecessary experimental variability and should
be avoided. It may even be suggested that to facilitate the use
of QSAR models for regulatory decisions for untested chemicals,
it would be most promising to use end points that are used in
safety assessment protocols and defined by harmonized test
protocols.


2.2. An Unambiguous Algorithm. An unambiguous algo-
rithm seeks to ensure transparency of the model that is used to
generate predictions of a toxicity end point based on chemical
structure and/or physicochemical properties (1). This holds for
the algorithm defining the QSAR model but also for the
descriptors used in these algorithms. Descriptors relevant to the
toxicity end point, calculation methods, software packages, and
algorithms should preferably be generated by methods that are
publicly available. The statistical technique, used to analyze the
relationship between the toxicity and the physicochemical
descriptors, should be transparent. Multiple linear regression
(MLR) analysis can often be the model of choice since it is
simple to use and sufficient, especially where few descriptors
are involved (7). The use of more descriptors than the number
of observations often introduces problems such as multicol-
linearity between the variables. This is often better tackled using
approaches based on principal component analysis (PCA), for
example, principal component regression (PCR) or partial least-
squares regression (PLR). PCA is a procedure used to transform
a large number of possibly correlated variables into a smaller
number of uncorrelated variables called principal components,
each of which is derived from a linear combination of the
original variables (8, 9). In PCR, one obtains a reduced order
model by neglecting some components of the PCA modeling
of the independent variables and relating the maintained
principal components to the dependent variables. Whereas PCR
attempts to maximize the variance in the independent variables,
PLR goes a step further by also trying to obtain a good
correlation between the dependent and the independent variables
(10-12).


During development of QSAR models, external data sets for
model validation are often not available. Thus, many researchers
resort to splitting the available data set into a training set and
test set. In the model algorithm, it should also be clear what
methods one uses to perform the splitting. Methods available
include those based on similarity analysis, for example, D-
optimal distance (13, 14), Kohonen map-artificial neural
network (K-ANN) or self-organizing map (SOM) (15, 16), or
random selection through activity sampling (17). Methods based
on random selection should be used with caution as there is a


large possibility of having chemicals that do not fall into the
applicability domain of the model (17).


The number of descriptors used to define the QSAR is an
important possible pitfall in proper definition of QSAR algo-
rithms. There is a minimum requirement stating that the number
of data points/compounds (n) should be at least five times the
number of descriptors (k) included (n/k g 5) (18). Examples of
QSAR models not fulfilling this requirement are often encoun-
tered. An example can be found in a study describing QSAR
models for the acute toxicity of organophosphorous compounds
toward Daphnia magna and to the honeybee (Apis mellifera),
using six descriptors to model a data set of 14 (n/k ) 2.3) and
22 (n/k ) 3.6) compounds, respectively (19). It should be
realized that in general, the larger the number of descriptors
used and the fewer the observations in the training set, the
significantly higher the probability for the occurrence of a chance
correlation (8, 20, 21).


Selection of the descriptors to be used also requires careful
consideration. One of the principal assumptions underlying the
description of QSARs is that the behavior of chemical com-
pounds is dominated by their physicochemical properties.
Traditional QSARs use experimentally derived descriptors, for
example, ionization potentials, log Kow (n-octanol-water parti-
tion coefficients), and Hammett, Taft, and Sterimol parameters
to quantify these physicochemical characteristics (22-24).
However, in an approach beyond the classical QSAR ap-
proaches, and to some extent driven by the lack of large enough
data sets of experimentally derived parameters, attempts have
been made to define parameters for the QSAR studies on the
basis of quantum mechanical computer calculations. With the
continuously increasing power of computers, quantum mechan-
ical computer calculations have become a valuable and widely
applicable tool in QSAR research (25, 26). These quantum
mechanical calculations provide the possibility to calculate, from
the chemical structure of a compound as the sole input,
parameters that define the (relative) physicochemical parameters
and reactivity of a compound. Molecules of the size of
polycyclic aromatic hydrocarbons (and smaller) can now be
treated by computational methods of reasonable theoretical level.
Some examples of such parameters often used in QSAR studies
in toxicology are the energies of the so-called frontier orbitals,
the energy of the highest occupied molecular orbital (EHOMO)
and the energy of the lowest unoccupied molecular orbital
(ELUMO), which direct the nucleophilic and electrophilic reactiv-
ity of a compound, respectively. A possible pitfall in this
approach for describing descriptors in QSAR models is that the
optimized geometry of a molecule for which the ultimate
descriptors are calculated may influence the ultimate quantum
chemical characteristics obtained. Especially for molecules with
several degrees of freedom, energy optimization may end in
so-called local minima, reflecting local minima on the energy
landscape but not the real minima that are the energetically most
favorable conformations of the molecule. This results in
calculated descriptors that do not match the energetically most
favorable, and thus most relevant structure, of a compound.
Another pitfall would be that the calculated parameter chosen
has no validity for the physical end point modeled, because
proper selection of a quantum chemical parameter may need
insight in the mechanism and rate-limiting factor underlying
the effect.


Furthermore, in recent years, commercially available com-
puter software systems for toxicity prediction have become
available. These include DEREK, MultiCASE, TOPKAT,
HazardExpert, TOXSYS, COMPACT, and OncoLogic. These
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programs can be classified into two main types of approaches
(27). The first group presents knowledge-based systems such
as DEREK, OncoLogic, and HazardExpert, which use rules
about generalized relationships between structure and biological
activity. The second group consists of statistically based systems,
for example, TOPKAT and MultiCASE, which use calculated
parameters, structural connectivity, and the application of various
statistical methods to derive mathematical relationships for a
training set. The algorithms used in these commercial programs
are generally less transparent, but a review on their progress
and use in toxicity predictions can be found in a publication by
Greene (27). This author concluded that the current commercial
systems cannot be used without adequate care and input of
human experts and that they work best when (i) applied to a
series of chemicals that interact with a biological system via a
single, common mechanism and (ii) when taking the applicabil-
ity domain of the model into account, taking care not to
extrapolate beyond the limits defined (see next section).


2.3. A Defined Domain of Applicability. As models are a
limited description of reality, their limits should be well-defined
(28). This principle reflects the fact that QSARs are associated
with limitations regarding the type of chemical structures,
physicochemical properties, and mechanism(s) for which a
model generates reliable predictions. In the most simple
approach, the domain of applicability can be defined by the
boundaries of the descriptor values for the compounds in the
training set (29-33). The boundaries may also be extended
beyond that, allowing extrapolation instead of only interpolation
within the data set. The latter could be based on, for example,
a similar mechanism of action. One should be aware that even
extending a homologous series might lead to a change in the
mechanism of action as shown, for example, by Deneer et al.
(34) for a series of aldehydes. They showed that aldehyde
congeners with 10 or more carbon atoms show a shift to a
narcotic mechanism of action, because they may tend to
accumulate in the lipid phase, thus becoming unavailable for
interactions that proceed in the aqueous phases of the organism
(34). In another example, it was demonstrated that acrolein,
which is the first in a series of R,�-unsaturated aldehydes, was
considerably more toxic toward Tetrahymena pyriformis than
predicted by the QSAR for the higher molecular weight
homologues, whereas molecules in which the reactive carbonyl
center was sterically hindered by an alkyl group were less toxic
than predicted (35).


The chemical applicability domain of the models can also
be defined using the average leverage value, h (17, 18). The
leverage determines whether a new chemical (i) lies within
the structural domain of the model, hence toxicity data are
considered as interpolated (reduced uncertainty, and hence
reliable), or (ii) lies outside the structural domain, hence toxicity
data are extrapolated (high uncertainty, hence unreliable)
(17, 18). A warning leverage, h* (where h* ) 3p′/n, where p′
is the number of model variables plus one and n is the number
of the objects used to calculate the model) can be defined, and
any compound with h > h* falls outside the optimum prediction
space of the model (18). A plot of h vs standardized cross-
validated residuals (called a Williams plot) can be used for an
immediate and simple graphical detection of both response
outliers (i.e., compounds with standardized cross-validated
residuals greater than three standard deviation units, >3σ) and
structurally influential chemicals (h > h*) (17). A detailed
explanation of the Williams plot is available in a recent review
(17). The chemical applicability domain of the models can be
further defined based on structural characteristics of the training


set compounds. An example would be to define that the QSAR
model only applies to organothiophosphates, and thus to
molecules containing a P ) S moiety, or that external predictions
are restricted to substituted mononitrobenzenes that contain only
the substituents present in the calibration set (31).


Finally, in cases where log Kow is used as a descriptor, cutoff
points can be set by comparing QSAR equations to those for
nonpolar narcotics. Above the cutoff point, the nonpolar
narcotics QSAR should be applied to avoid underestimating the
toxicity of compounds within the chemical domain of the QSAR
(45). Figure 1 gives an example showing QSARs for the
correlation between the decadic logarithm of the experimental
toxicity and the log Kow for substituted mononitrobenzenes (s)
(31) and for nonpolar narcotics (- - -) (36) for the 48 h EC50


toward D. magna. The QSAR equations used for these plots
are included in the legend of the figure. The two plots intersect
at a log Kow value of 4.08, which is then set as the upper limit
for applying the QSAR for the acute toxicity of substituted
mononitrobenzenes toward D. magna. Above that value, the
QSAR plot for substituted mononitrobenzenes underestimates
toxicity, and toxicity can better be explained based on the QSAR
for nonpolar narcotics. This illustrates that definition of the
domain of applicability should take into account the mechanism
of action and possible shifts in the mechanism of action and
the QSAR to be used in a certain domain of the descriptor.
Clearly, when log Kow is used as the descriptor for toxicity,
comparison of the QSAR to the QSAR for nonpolar narcotics
seems an essential step in defining the applicability domain.


2.4. Appropriate Measures of Goodness-of-Fit, Robust-
ness, and Predictivity. This principle requires that parameters
that reflect both the internal performance of a QSAR model
and its predictivity should be provided. The internal performance
is characterized by the goodness-of-fit and robustness of the
model. The goodness-of-fit measures how well the model
accounts for the variation in the response in the training set
(1). Robustness measures the stability of the parameters and
predictions when one or more of the training set chemicals is
removed, and the model is regenerated excluding the removed
compounds (1). The quality of QSAR models can be character-
ized by the number of compounds used in the study (n),
coefficient of determination (r2sa measure of the goodness-
of-fit), standard error of the estimate (s), variance ratio (F), and
the internally cross-validated coefficient of determination
(rint


2sa measure of robustness). The predictivity of the QSAR
model can be characterized by the externally validated coef-
ficient of determination (rext


2).


Figure 1. QSARs for the correlation between the decadic logarithm of
the experimental toxicity and log Kow for substituted mononitrobenzenes
(s) and for nonpolar narcotics (- - -) for 48 h log EC50 to D. magna.
The QSAR equations used for these plots are 48 h log EC50 (µM) )
-0.63 log Kow + 3.50 (s) and 48 h log EC50 (µM) ) -0.95 log Kow
+ 4.81 (- - -). Adapted from ref 31.
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Internal validation of the QSAR model can be performed
using the leave-out-many cross-validation method (18), with
varying proportions of the calibration compounds left out at
each step (17). The validation groups can be created using a
method of unsupervised stratification of cross-validation to
reduce bias introduced by random sampling (37). The rint


2 is
calculated according to the formula:


rint
2 ) 1- (PRESS/SD) (1)


where the predictive sum of squares (PRESS) is the sum of the
squared differences between actual and predicted toxicity when
the compounds are omitted from the regression, and SD is the
sum of squares deviation for each actual toxicity from the mean
toxicity of all of the compounds (38). The models can be
considered acceptable for further use when rint


2 > 0.5 and r2 -
rint


2 < 0.3 (39).
The external performance of the QSAR model can be


evaluated by testing a series of additional compounds that fit
into the applicability domain of the model and then comparing
the predicted and experimental toxicity values. The calculation
of rext


2 can be performed according to the formula:


rext
2 ) 1- (PRESS/SD) (2)


where PRESS (predicted sum of squares) is the sum of the
squared differences between the predicted and the experimental
toxicity values for each molecule in the external validation set
and SSD is the sum of the squared deviations between the
experimental toxicity values for each molecule in the validation
set and the mean experimental toxicity values of the training
set (17, 40).


In this perspective, we have presented a few of the many
methods that are available for internal and external validation
and determining the applicability domain. An extended overview
of other applicable methods is available in the literature
(17, 18, 33, 39, 41-45).


2.5. A Mechanistic Interpretation. The OECD guidelines
also state that a QSAR model should be associated with a
mechanistic interpretation whenever this can be done. Such a
mechanistic interpretation links the descriptors used in the model
and the end point being predicted. This fifth principle also relates
to the question as to how much can be learned from QSAR
studies. Clearly, when a QSAR is based on mathematical
descriptors that do not relate to a mechanistic interpretation,
this limits the impact of the QSAR.


QSARs for metabolism of chemicals can often be based on
a mechanistic approach because the conversion of relatively
small molecules within the active sites of biotransformation
enzymes can be expected to follow general rules of chemistry
(26). Examples are the (i) QSAR for predicting the site of
hydroxylation by cytochromes P450 of a series of fluoroben-
zenes, based on the calculated distribution of the highest
occupied molecular orbitals, reflecting the distribution of the
nucleophilic reactivity of the fluorobenzenes, and thus the site
of attack by the electrophilic high-valency iron-oxo porphyrin
cofactor within the P450 active site (46), and (ii) QSARs for
the rate of conjugation of a series of fluoronitrobenzenes by
glutathione S-transferases, which correlated with the calculated
electrophilic reactivity described by the ELUMO (47, 48). When
chemicals to be converted increase in size, obviously other
parameters than their chemical reactivity start to influence their
binding to and thus their conversion within the active site of
biotransformation enzymes. This will require the use of ad-
ditional descriptors mechanistically modeling these binding


characteristics to the active site of the biotransformation
enzymes. An example can be found in modeling the rate of
glutathione conjugation of a series of 2-substituted-1-chloro-4-
nitrobenzenes by glutathione S-transferases, which could only
be modeled adequately when in addition to ELUMO; the Van
der Waals volume of the compounds was used as a second
descriptor (26).


In addition to QSARs based on quantum chemical descriptors,
metabolism of chemicals has been modeled based on 3D
modeling and pharmacophore modeling (49-51). The 3D
methods are limited by the need for defined 3D structures of
the biotransformation enzymes, since they are based on model-
ing substrate binding into the active site pocket of these
biotransformation enzymes, such as, for example, cytochromes
P450. To this end, often models derived by homology modeling
of mammalian, including human, cytochromes P450 that are
involved in exogenous metabolism are used in generating
QSARs for cytochrome P450 substrates. On the basis of 3D
modeling or pharmacophore modeling, models for conversion
of substrates by, for example, CYP2D6, CYP3A4, CYP2C9,
and CYP1A2 have been described (49-55).


Another important reason why it is essential to take the
mechanism of action into account is that the descriptor used to
define the QSAR model should reflect the rate-limiting step in
the biological process and/or end point that is modeled;
otherwise, significant correlations will not be obtained. This was
illustrated by the correlation (r ) 0.96) between the natural
logarithm of the apparent maximum reaction rate for 4-hy-
droxylation of a series of aniline substrates in the iodosobenzene-
supported microsomal cytochrome P450-catalyzed reaction and
the EHOMO of the anilines (56). In the iodosobenzene-supported
aniline 4-hydroxylation, the electrophilic attack of the high
valency iron-oxo cytochrome P450 (FeO)3+ intermediate on the
frontier π electrons of the aniline substrates is the rate limiting
step. In the NADPH/oxygen-supported cytochrome P450-
catalyzed 4-hydroxylation of the anilines, a correlation of the
natural logarithm of the apparent maximum reaction rate for
4-hydroxylation with EHOMO was not observed, and the reaction
rates were lower than observed in the iodosobenzene-supported
reaction. In the NADPH/oxygen-supported reaction, the attack
of the reactive cytochrome P450 (FeO)3+ intermediate on the
π electrons of the aniline substrates is not rate limiting, and
thus, a correlation is not observed (56).


To consider the actual rate-limiting step in a biological process
to be modeled is also important when modeling toxicity end
points, because toxicological end points can very often be the
result of more than one physicochemical interaction of the
compound with the model system of interest. In the past, this
has been an important reason why the descriptions of QSARs
for toxicity end points often do not follow a mechanistic
approach but start at the other end, describing QSARs by
multiparameter approaches without a priori consideration of the
mechanism involved. Multiparameter approaches using multiple
regression or multivariate techniques such as PCA and PLS have
been be applied (8, 57-59). In these approaches, insight into
the mechanism of action is often an outcome rather than a
starting point for the studies. Because of the large number of
descriptors (k), often much larger data sets (n) are required to
fulfill the n/kg 5 requirement and eliminate chances of artificial
correlations in these multiparameter-based approaches. However,
in the end, such an approach may still provide a mechanistic
explanation and thus fulfill the requirement for a mechanistic
interpretation of the QSAR model.
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Furthermore, it is generally accepted that QSARs for toxicity
should be applied to classes of chemicals with a similar mode
of action, and this further supports the request for mechanistic
insight. To this end, even classification schemes have been
developed including, for example, nonpolar narcotics, polar
narcotics, reactive chemicals, and/or specifically acting chemi-
cals (60-62). On the other hand, some commercially available
programs for prediction of toxicity, for example, TOPKAT and
mCASE (63, 64), generally rely on molecular characteristics
without a clear insight in the underlying common mode of action
of compounds classified in a specific group. Because they are
often proprietary black boxes, one cannot easily get an insight
into the assumptions made during toxicity prediction (63). These
programs could increase their integration and exploitation of
chemical theory information to explain the modes of action of
chemicals for which they make predictions (63).


In general, the toxicity of nonpolar narcotics, like substituted
hydrocarbons with no specific functional groups, is mediated
by nonspecific action on cell membranes and has been shown
to be directly related to their log Kow (36, 65-73). This relation
is often described as baseline toxicity. Other researchers have
attributed the effects of nonpolar narcotics to their interaction
with ion channels and receptor sites formed from protein
complexes embedded within the cell membranes (74, 75) or
with both lipid and protein interfaces (76). The polar narcotics
include chemicals such as phenols, anilines, pyridines, nitroben-
zenes, and aliphatic amines, which generally show a 5-10 times
higher toxicity than expected on the basis of their log Kow (77).
Their toxicity can rather be modeled by taking hydrogen-
bonding donor capacities into account in addition to the log


Kow, to model the interaction of the acidic protons in the
xenobiotic with the negatively charged groups in the phospho-
lipids, facilitating membrane interactions (78). In addition to
narcosis type of chemicals, reactive compounds have also been
modeled in QSAR studies. Reactive compounds, for example,
alkylating agents, are generally more toxic than narcosis type
compounds (79). Often, QSARs for reactive compounds can
be defined using a descriptor that models uptake across the
membrane in combination with a descriptor for the apparently
rate-determining step in the toxic mechanisms of action. From
a mechanistic point of view, such QSARs for toxicity are often
a function of partitioning and reactivity.


To facilitate the mechanistic interpretation of QSAR models,
Table 1 provides an overview of classical as well as quantum-
chemical computer calculation-based descriptors commonly used
in QSAR models on metabolism and toxicity of xenobiotics
and their mechanistic interpretation.


3. Promises and Pitfalls


In the field of toxicological risk assement, the present view
is that validated QSARs can be valuable tools to allow rapid
high-throughput screening of the toxicological potential of new
and existing chemical compounds and also to allow definition
of research priorities in toxicological testing progammes
(80, 81), thus supporting the three Rs (82). QSAR models for
biotransformation and toxicity will certainly provide the pos-
sibility to define the compounds of highest risk and greatest
priority in a series of structurally related chemicals. This will
reduce the number of animal tests to be performed, in line with


Table 1. Commonly Used Classical as Well as Quantum Mechanical Calculation-Based Descriptors in QSAR Studies and Their
Physicochemical and Mechanistic Interpretations


parameter physicochemical interpretation possible mechanistic involvement


classical


octanol/water partition
coefficient: log Kow


hydrophobicity/lipophilicity may influence absorption, binding
to active sites and/or receptors,
bioaccumulation(34, 68, 69, 86-88)


Hammett electronic substituent
constant (σ)


electron-donating or -accepting properties of an
aromatic substituent in the
ortho, meta, or para position


models electrophilic or
nucleophilic reactivity(25, 89, 90)


Taft steric parameter (Es) steric substituent constant describes the intramolecular
steric effects on reactivity(91-93)


aqueous solubility (Saq) hydrophilicity may influence absorption
or binding to active sites
and/or receptors(86, 94)


molecular refractivity (MR) molecular volume and
polarizability of a molecule


models reactivity and
binding characteristics(95, 96)


dissociation constant (pKa) ionization models reactivity(97-99)


molecular orbital calculation based parameter


dipole moment charge separation in a molecule may influence binding characteristics,
interaction with the cell membrane,
and/or bioavailability(86, 100, 101)


atomic charge determines the electrostatic potential
around a molecule


influences electrostatic interaction,
binding and reactivity
characteristics(87, 102)


EHOMO and ELUMO energy of the highest occupied molecular
orbital and energy of the lowest
unoccupied molecular orbital


reflect nucleophilic and electrophilic
reactivity of a compound,
respectively(25, 47, 48, 56, 68, 87)


HOMO/LUMO density distribution spatial distribution of the HOMO/LUMO
orbital in the molecule


reflects the spatial distribution
of nucleophilic/electrophilic
reactivity(46, 103)


hydrogen bonding electrostatic interactions
between molecules


models chemical reactivity and/or
binding interactions(78, 104)


molecular weight, molecular volume,
molecular surface area


molecular size descriptors model binding characteristics
and other processes sensitive to
steric interactions(88, 105, 106)


molecular polarizability molecular volume and hardness/softness
of a chemical


models solubility
and reactivity(104, 107, 108)
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the objectives of REACH (3), because it will become possible
to identify in a homologous series the compound(s) with the
greatest hazard, on which the risk assessment and risk manage-
ment of the other congeners in the series can be based.


However, to suggest that QSAR models will apply to the
vast majority of chemical compounds and the assessment of
their risk to humans is beyond what will emerge to be realistic.
There are several arguments that underlie this conclusion. First,
in chemical safety assessment, information on adverse effects
after repeated dose and chronic exposure to low levels of
hazardous compounds is essential for estimating human risks.
However, QSAR approaches have so far been mainly directed
at predicting acute toxicity data. It is important that future
models predict the effects of repeated dose human exposure.
This is why the requirement for a mechanistic interpretation of
a defined QSAR will become even more important in the future.
Second, once an applicability domain has been defined, one has
the possibility to estimate how many chemical compounds
would actually match these criteria of the applicability domain.
An example to illustrate this can be found in a recent paper
that described QSARs for the acute toxicity of substituted
nitrobenzenes to algae (Scenedesmus obliquus, Chlorella pyrenoi-
dosa, and C. Vulgaris), daphnids (D. magna and D. carinata),
fish (Cyprinus carpio and Poecilia reticulata), protozoa (T.
pyriformis), bacteria (Phosphobacterium phosphoreum), and
yeast (Saccharomyces cereVisiae). After defining the applicabil-
ity domain, it was determined that from the 100196 EINECS
compounds, 497 chemicals (0.5%) could be identified to match
the selection criteria for the established QSARs (31). Similarly,
a QSAR model was described for predicting in vivo toxicity of
chlorinated alkanes to fish, which was applicable to chlorinated
alkanes with up to 10 carbon atoms, up to eight chlorine atoms,
and log Kow values lying within the range from 1.71 to 5.70.
Out of the 100196 EINECS compounds, the QSAR model
covers 77 (0.1%) of them (30). These findings demonstrate that
QSARs can replace animal experiments in the prediction of the
acute toxicity of groups of homologous compounds but that each
defined QSAR may cover only a limited percentage of the total
number of chemicals in use. Overinterpretation of the possible
predictive power and the potential of QSAR approaches to
actually limit animal experiments are therefore expected to be
other pitfalls of papers in this field. It also points at the need
for defining the number of chemicals expected to fall within
the applicability domain of a defined QSAR to adequately define
its impact on risk assessment of the wide range of chemicals
still to be evaluated for their toxic properties.


A third problem still to be solved is the limited insight into
the possibilities for interspecies extrapolation of QSAR models.
The possibilities for these extrapolations have been demonstrated
previously between D. magna and fish Pimephales promelas
(83), C. Vulgaris and T. pyriformis (84), and T. pyriformis to
P. promelas (83, 85). The use of toxicity data for one species
to predict toxicity to another species is a promising field that
has received little attention. Especially considering the avail-
ability of a large database of acute toxicity data to T. pyriformis
(TETRATOX database), this could be utilized to make toxicity
predictions to fish (P. promelas), thus potentially reducing the
numbers of fish that could be used for experimental testing.


Furthermore, in the field of QSAR models for prediction of
drug metabolism, predictability for novel drugs may turn out
to be a bottleneck, for example, because of their complex
chemical structures that may hardly fit into the applicability
domain of existing QSARs.


4. Conclusions


With the important role that QSAR models are expected to
play in the risk assessment of chemicals within REACH, the
implementation of the OECD guidelines for QSAR development
and validation at every step of the modeling process will greatly
increase the impact of QSAR models on the regulatory scene.
More importantly, the choice of descriptors for modeling should
take into account the mechanism of action and the rate-limiting
step in the biological process and/or end point being modeled.
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