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Abstract 

 

Background 

   The recent advances in technology provide the possibility to obtain large genomic 

datasets that contain information on large numbers of variables, while the sample sizes are 

moderate to small. This has lead to statistical challenges in the analysis of multiple genes 

and proteins in relation to complex diseases. In this thesis approaches are investigated to 

analyze large genomic datasets, taking complex relationships between genes, proteins and 

complex diseases into account. These approaches are applied to real data to investigate 

whether biologically relevant information from the dataset could be obtained or whether 

models could be obtained that are useful for diagnostic or prognostic purposes. 

 

Results 

   We developed a general framework for the analysis of genetic, transcriptomic and 

proteomic data to obtain insight in biological mechanisms. This framework consists of the 

following steps: detection of heterogeneity, dimensionality reduction to deal with the large 

numbers of variables, statistical interpretation and biological interpretation. We found that 

within this multi-step approach application of a combination of methods, including methods 

that take interactions into account, is useful within the dimensionality reduction step. In this 

way more information is captured compared to applying only one method. After selection 

of relevant variables in the dimensionality reduction step, applying visualization tools, e.g. 

the interaction entropy graph, together with traditional statistical methods showed to be 

helpful for statistical interpretation whether variables contribute by their main and/or 

interaction effect to the outcome of interest. In the last step, biological interpretation of the 

statistical results was facilitated by literature search, pathway analysis and database mining. 

 

Discussion 

   The general framework discussed in this thesis provides the possibility to analyze large 

nutrigenomic datasets. Although the contribution of genomic research to public health is at 

the moment limited, new advances in genomic research, e.g. genome-wide association 

studies, statistical approaches as discussed in this thesis, are promising and genomic 

research might in the near future lead to applications that translate into improvement of 

public health. 
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Background 

 

   Proteins carry out the biological processes in the human body. The proper levels and 

functioning of proteins are therefore of vital importance for the health and well-being of 

humans. The synthesis of proteins is encoded by genes. Genes are transcribed into RNA, 

and after post-transcriptional modification mRNA is formed. The sequence of the mRNA 

determines the sequence of the amino acids, and thereby the polypeptide that is synthesized 

at the ribosomes. Finally, post-translational modification of the polypeptide results in the 

formation of the active protein. Thus, the synthesis of proteins is determined by the genetic 

template of the DNA and the flow of information is from the DNA to the RNA to the 

protein [1]. 

   The biological information at the levels of DNA, mRNA and proteins is studied by 

genetics, transcriptomics and proteomics, respectively. These research areas are included 

within the broader field of genomics. Two examples of the application of genomics are 

nutrigenomics and pharmacogenomics. Within the field of nutrigenomics, the aim is to 

identify interactions between genes and nutrition that are involved in health and disease. 

Research is performed to investigate in what way nutrition affects the expression of genes 

and how the genetic background of the individual responds to nutrients and bioactives [2]. 

In pharmacogenomics, instead of nutrition, the response to medication depending on the 

genetic background of the individual is studied. 

   Nowadays, due to the fast development in technology, data on huge numbers of genetic 

polymorphisms, mRNA levels, peptide and protein concentrations can be obtained by 

chips, microarrays, mass-spectrometry and multiplex assays, respectively. This allows 

researchers to obtain not only information about individual effects of genes and proteins, 

but also to study entire processes that are involved in the development of complex diseases. 

In the development of complex diseases, such as cardiovascular diseases, diabetes and 

different types of cancer, large numbers of factors are likely to be involved, each 

contributing with a moderate to small effect. Furthermore, these factors are assumed to be 

associated with the complex disease by ubiquitous and intricate interactions. Providing the 

possibility to measure large numbers of variables, the technological platforms enable 

researchers to study complex diseases in a more global way. However, researchers are 

faced with a huge amount of data and the challenge is to extract information from the data 

that is both relevant and interpretable. The moderate to small effects, together with the 

complexity of many interactions, increases the difficulty to detect the biologically relevant 

variables and the mechanisms that underlie the development of the disease. To test the 

influence of large numbers of variables and their possible interactions to one or several 

outcomes is not straightforward and has given rise to challenges in the statistical analyses 

of nutrigenomic data. The major statistical issues that are encountered in the analyses of 

genomic datasets include the dimensionality problem [3] and the multiple testing problem. 

Another statistical issue concerns the possible presence of heterogeneity [4]. These 

statistical challenges are discussed in more detail in chapter 2. In an attempt to overcome 

these statistical issues, methods have recently been developed for analyses of large numbers 

of single nucleotide polymorphisms (SNPs), mRNA levels and/or proteins, and more 

approaches to study huge amounts of data are currently under development.  
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Diagnosis, prognosis and insight in biological mechanisms 

 

   In genomic studies investigating complex diseases the interest is to obtain models for 

diagnosis, prognosis and/or to obtain insight in the biological mechanisms. In diagnosis, 

distinguishing between diseased individuals (cases) and healthy individuals (controls) is of 

importance. With prognosis the objective is to find biomarkers with prognostic value to 

detect, among others, at a preclinical stage the risk for disease. Statistical analyses for 

diagnostic purposes aim to obtain models that have a good performance in correctly 

classifying cases and controls. Analyses for prognosis aim to obtain models that correctly 

indicate for apparently healthy subjects the risk on developing a certain disease in the 

future. ‘Black box’ approaches that do not provide insight in the model itself but do 

perform well can be applied, such as Support Vector Machines (SVM) [5]. However, even 

for diagnosis and prognosis, interpretability of the model might be useful for and preferred 

by the clinician. In classification of disease status, the aim is to find the smallest set of 

variables that still has equal performance to larger sets of variables.  

   On the other hand, to obtain insight in the biological mechanisms, the largest possible 

amount of information needs to be retrieved from the data. To obtain this information it is 

important to discern between true signals and noise. However, this distinction is not always 

clear-cut, but may be a gray zone. This is especially the case in nutrigenomic studies, in 

which small effects that contribute by their interactions can be expected. With large 

genomic datasets, including information on genetic polymorphisms, mRNA levels, or 

protein concentrations, the consideration of the threshold to be used to select variables is to 

some extent subjective. However, the threshold to be applied to reduce noise should lead to 

biologically relevant, but also practical and interpretable models. From a holistic point of 

view, all variables are involved to some extent. However, we need to select a subset of 

important variables involved that can be worked with in practice. Therefore, methods that 

yield clear interpretable models need to be applied. 

 

Approaches to analyze large genomic datasets to obtain insight in biological 

mechanisms 

 

   Different approaches can be taken to analyze large genomic datasets to understand 

complex traits and diseases. Statistical applications on the one hand are needed to provide 

insight in the significance of associations between variables and the outcome, biological 

information on the other hand is needed to verify whether results obtained from statistical 

analyses do have biological meaning. One approach is to start from statistics and move 

towards biological interpretation, applying statistical methods to select important variables 

and interpret how these variables are related to the outcome of interest. A second approach 

would be to incorporate biological knowledge in the statistical analyses. For example, 

variables can be grouped based on biological similarity, or their presence in the same 

biological process, and statistical analyses are subsequently performed to examine whether 

these groups significantly contribute to the endpoint of interest. In microarray data, gene set 

enrichment analysis (GSEA) [6] is an example of the second approach.  
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   An example of the first approach will now be discussed in more detail. This multi-step 

approach (see figure 1) consists of the following points: 

- Detection of heterogeneity 

- Dimensionality reduction 

- Statistical interpretation 

- Biological interpretation 

This general multi-step approach can be applied to the different biological levels, DNA, 

mRNA and proteins, to identify SNPs, genes and proteins, respectively, and interpret their 

relationship with complex diseases. Although these processes are described as subsequent 

steps, in practice applying statistical methods and interpreting the biological relevance may 

be an interactive process. The different steps will now be discussed in more detail. 

 

Statistical interpretation

Detection of heterogeneity

Biological interpretation

Dimensionality reduction

1 variable

2 variable

240 variable

241 variable

last variable

.

.

.

.

.

..

.

.

.

..

Selection: threshold

Prioritization

all variables

small set of 

combined 

variables

Combine

 
 
Figure 1: Multi-step approach to analyze large genomic datasets. Within the dimensionality reduction 

step two approaches are shown. On the left side the number of variables is reduced by prioritizing all 

variables and selecting a subset of most important variables by a threshold. On the right side the 

number of variables is reduced by combining variables into a smaller set of new variables. 
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Detection of heterogeneity 

   In genomic studies, intervention studies such as randomized controlled trials are 

underpowered if heterogeneity is present, as differences in responses to the treatment in the 

patient group due to individual background differences may affect the findings [7]. 

Subsequently, efficiency of interventions will be increased if directed to the appropriate 

subgroups. The presence of heterogeneity will influence the results if the statistical analyses 

are performed over the total population. Therefore, detection of heterogeneity is important 

as a first step before performing the planned analyses. To be able to detect heterogeneity, 

extensive information on covariate data (including potential genetic and environmental risk 

factors and phenotypic data) for the study population should be present [4].  

 

Dimensionality reduction 

   Different approaches to reduce dimensionality exist (see figure 1). One approach is to 

prioritize the total number of variables in the dataset and subsequently apply a threshold to 

select a subset of important variables for further statistical and biological interpretation. In 

the prioritization step, variables are ranked by a certain measure of importance, for example 

the χ2 or t-statistic. However, univariate test-statistics do not take possible effects of 

combinations of variables into account. Capturing all possible interactions between 

variables in the prioritization step is important, especially in nutrigenomic studies 

investigating complex diseases, in which many variables with small effects mainly 

contribute in interaction with each other. For this purpose multivariate statistical tools are 

needed.  

   The critical point in the step of selecting variables is how to define the threshold to select 

a subset of important variables, as it influences further interpretation. Defining the 

threshold depends on the type of study, which can have different signal to noise ratios, i.e. 

the levels of signals relative to the level of the background noise. For example, signals are 

normally much stronger in pharmacogenomic studies compared to nutrigenomic studies. In 

general, too stringent thresholds results in selection of the most important effects and very 

few false positive results, but leaves out many true positive results that contribute with 

weak effects. This is especially the case in nutritional intervention studies, in which the diet 

may result in many weak effects that by themselves are not strong enough, but in 

combination may result in a strong effect [8]. On the other hand, if the threshold is defined 

too liberal, many false positive results will be included and subsequent biological 

interpretations can be flawed. Thus, defining the threshold is not always straightforward, 

and is a balance between signal and noise, or in other words true and false positive results.  

   A second approach to reduce the dimensionality is to apply methods that combine 

variables into a smaller set of new variables. These newly created variables are 

subsequently related to the endpoint of interest. For example, partial least squares (PLS) [9, 

10] reduces a set of continuous variables to a small number of latent components, taking the 

covariance structure with another (set of) outcome variable(s) into account. The multifactor 

dimensionality reduction (MDR) method [11-13] is a method to study interactions between 

SNPs, which reduces the dimensionality for combinations of SNPs by constructing a new 

variable. This new variable is subsequently used for classification of the endpoint [13]. 
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Statistical interpretation 

   Statistical interpretation is useful to understand how the selected variables are related to 

the disease of interest, whether they contribute by their main effect and/or in interaction 

with other variables. Statistical interpretation can also provide insight in the direction and 

the strength of the association between variables and the disease. Visualization of effects is 

a practical means to interpret the results of the statistical analyses. Visualization tools, e.g. 

interaction graphs [13-15], are available that show graphically the importance of individual 

variables as well as the interactions between variables. 

 

Biological interpretation 

   The biological interpretation of the statistical results is an important last step to verify 

whether the statistical results are biologically meaningful. If the results have not been 

reported previously in the literature, the plausibility of the results should be verified from a 

biological perspective. Also, the statistical results need to be confirmed by mechanistic 

studies, for example real-time PCR to confirm whether selected genes from microarray data 

are truly differentially expressed. 

   Statistical interaction found in the previous step does not per definition imply that 

biological interaction between the interacting variables is present: statistical interaction is 

measured on the population level whereas biological interaction is the physical interaction 

between molecules at the individual level [16]. For example, biological compounds may 

statistically interact in relation to disease, but not to interact at the individual biological 

level; biological compounds can be present within the same pathway but work together via 

different molecules, or the compounds can be present in different pathways and in that way 

may together contribute to the development of disease. Therefore, statistical interaction at 

the population level should be followed by mechanistic studies to gain more knowledge 

about the underlying biological mechanism that leads to the development of disease. 

 

Simulation studies and applied research 

 

   To obtain insight in the biological mechanisms, it is important to know whether statistical 

methods do extract the relevant biological information from the data at hand. As in complex 

diseases many interactions are likely to play a role, it is of interest to know whether a 

method has the power to detect these interactions. But also other features are of importance, 

such as the ability to detect the presence of heterogeneity. Simulation studies to measure the 

performance of methods provides insight in their applicability; for example, they may show 

that a method is able to detect interactions under certain conditions, whereas another 

method may be suitable to detect important effects while controlling the type I error very 

well. These studies provide useful information about what methods are suitable to apply for 

the purpose of the study at hand, as well as useful information for the interpretability of 

their results. The insight simulation studies provide, can also be used to choose a 

combination of methods with different strengths and weaknesses for analyzing real data, 

covering better the detection of different types of effects. Programs are available for the 

generation of simulated datasets for e.g. SNPs [17, 18], microarray data [19] and mass 

spectrometry data [20].  
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   On the other hand, simulation studies are based on synthetic data generated by the 

biostatistician. To mimic data obtained from a real-life study may appear to be difficult. For 

example, mimicking in microarray data the presence of complex interactions between genes 

involved in a dietary intervention study is a daunting task. Therefore, besides performing 

simulation studies to test the performance of methods, application of these methods to real-

life data that show their ability to retrieve biologically relevant information from the data is 

also of importance. Thus, to test the applicability of methods, simulation studies need to go 

hand in hand with applications to real data. 

 

Outline of the thesis 

 

   The objective of the research performed in this thesis was to study what methods are 

available to analyze large numbers of variables (e.g. SNPs, genes, proteins) in moderate to 

small sample sizes, overcoming the statistical problems encountered in the analysis of 

nutrigenomic data. Methods to analyze this type of data are described for both categorical 

and continuous endpoints. Furthermore, approaches to analyze nutrigenomic data have been 

investigated for the purposes of diagnosis, prognosis and obtaining insight in the biological 

mechanisms. Applications of these approaches to real data are shown for SNPs, mRNA 

levels, peptide masses and protein concentrations. Endpoints that were studied include 

coronary heart disease (CHD), body mass index (BMI), weight gain, high-density 

lipoprotein cholesterol (HDL-C), total cholesterol (total-C) and breast cancer. 

   This thesis includes chapters on statistical analyses in the field of genetic epidemiology to 

study SNP data (chapters 2-4), continues with the analyses of microarray data (chapter 5), 

proteomic data (chapter 6 and 7) and finally the results presented in this thesis are placed in 

a broader perspective in the general discussion. A more detailed outline of these chapters is 

described below. 

 

Genetic epidemiology 

   An overview of several available methods to analyze associations of SNPs with 

categorical or continuous endpoints is discussed in chapter 2. These methods are referred to 

as multi-locus methods. Chapter 3 describes the application of different multi-locus 

methods to a real dataset to compare their results regarding the prioritization and selection 

of SNPs. In this chapter, after prioritization and selection of SNPs, application of two types 

of interaction graphs for statistical interpretation of how these SNPs contribute to disease is 

subsequently shown. In chapter 4, a combination of the interaction entropy graph and 

logistic regression analysis for statistical interpretation of a biological model of weight 

regulation is presented. 

 

Transcriptomics 

   We investigated in chapter 5 the application of the multivariate method random forests 

(RF) to two real microarray datasets to take interactions into account in the selection of 

genes, and compare RF with the conventional t-test. Genes selected by RF were 

subsequently analyzed by self-organizing maps (SOM) to find clusters containing genes 

with similar gene expression profiles, in order to retrieve biologically relevant information 

from the microarray data. 
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Proteomics 

   Chapter 6 describes an approach for diagnosis of disease from mass spectrometry data. 

The aim was to obtain a discrimination rule that best discriminates between breast cancer 

cases and controls. This endeavour was part of a classification competition, in which ten 

different research groups applied their approach. In our approach, ranking was performed 

by applying RF. Top-ranked variables showed to be highly correlated and were grouped 

into new variables. These newly created variables were finally included in a model to 

predict breast cancer cases and controls. 

   Applying partial least squares (PLS) as a multivariate statistical technique is shown in 

chapter 7 to conjointly analyze the association of 83 plasma proteins with CHD mortality 

and with intermediate endpoints known to play a role in CHD, namely BMI, HDL-C and 

total-C. PLS was applied to select a set of proteins with prognostic value for CHD mortality 

and to select sets of proteins associated with the intermediate endpoints. Subsequently, the 

proteins that were selected for the different endpoints by PLS, together with the 

intermediate endpoints were included in principal components analysis (PCA) [21] to 

interpret the relationships between identified proteins, intermediate endpoints and CHD 

mortality. The statistical results obtained in this study were subsequently biologically 

interpreted.  

 

General discussion 

   In the general discussion the results from this project are discussed in a broader context. 

First the possibilities and limitations in analyzing large nutrigenomic datasets in relation to 

complex diseases are discussed, including the systems biology approach. This is followed 

by a discussion on the benefits and limitations of genomic research for public health. In the 

last section a future perspective on nutrigenomic research will be discussed. 
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Abstract 

 

   Genetic epidemiologists have taken the challenge to identify genetic polymorphisms 

involved in the development of diseases. Many have collected data on large numbers of 

genetic markers but are not familiar with available methods to assess their association with 

complex diseases. Statistical methods have been developed for analyzing the relation 

between large numbers of genetic and environmental predictors to disease or disease-

related variables in genetic association studies.  

   In this commentary we discuss logistic regression analysis, neural networks, including the 

parameter decreasing method (PDM) and genetic programming optimized neural networks 

(GPNN) and several non-parametric methods, which include the set association approach 

(SAA), combinatorial partitioning method (CPM), restricted partitioning method (RPM), 

multifactor dimensionality reduction (MDR) method and the random forests (RF) approach. 

The relative strengths and weaknesses of these methods are highlighted.  

   Logistic regression and neural networks can handle only a limited number of predictor 

variables, depending on the number of observations in the dataset. Therefore, they are less 

useful than the non-parametric methods to approach association studies with large numbers 

of predictor variables. GPNN on the other hand may be a useful approach to select and 

model important predictors, but its performance to select the important effects in the 

presence of large numbers of predictors needs to be examined. Both SAA and RF are able 

to handle a large number of predictors and are useful in reducing these predictors to a 

subset of predictors with an important contribution to disease. The combinatorial methods 

give more insight in combination patterns for sets of genetic and/or environmental predictor 

variables that may be related to the outcome variable. As the non-parametric methods have 

different strengths and weaknesses we conclude that to approach genetic association studies 

using the case-control design, the application of a combination of several methods, 

including SAA, MDR and RF, will likely be a useful strategy to find the important genes 

and interaction patterns involved in complex diseases. 
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Background 

 

   The field of genetic epidemiology aims to identify genetic polymorphisms involved in the 

development of diseases. Single-locus methods measure the effect of one locus irrespective 

of other loci and are useful to study genetic diseases caused by a single gene, or even loci 

within single genes. To study complex diseases such as cardiovascular disorders or diabetes 

single-locus methods may not be appropriate, as it is possible that loci contribute to a 

certain complex disease only by their interaction with other genes (epistasis), while main 

effects of the individual loci may be small or absent [1]. Single-locus methods can not 

detect complex patterns [2], thus underestimate the genetic contribution to disease in the 

presence of interactions between loci. Therefore, approaches have been developed that take 

into account that complex diseases can be caused by an intricate pattern of genetic variants. 

These approaches are referred to as multi-locus methods and are specifically designed to 

find multiple disease loci, possibly on different chromosomes [3]. Diseases with a 

polygenic background can be studied by multi-locus methods, but also multi-factorial 

diseases by incorporating environmental predictors into the model.  

   Studying the effect of multiple genetic and/or environmental predictors and their 

interactions is fraught with statistical problems. One of these problems involves multiple 

testing. For each tested locus the probability to make a type I error is present, which is the 

probability to accept the hypothesis that the locus has an effect while in reality it does not. 

By testing multiple markers independently the type I error probability of finding a false 

positive result is increased. Two correction procedures for multiple testing are Bonferroni 

procedure and the false discovery rate [4]. Adjusting for multiple testing leads to a decrease 

of power (the probability to detect an effect when the effect is present) which makes it less 

likely to find weak genetic effects. Several multi-locus methods, discussed later in this 

commentary, have been developed to solve the multiple testing problem. These methods 

have greater power to detect susceptibility loci than single-marker tests. 

   The problem of modest sample sizes to test interactions for a large group of predictors 

(high-dimensional data) is referred to as the 'curse of dimensionality' problem [5]. The 

number of observations becomes too small relative to the number of predictors tested as 

few or no observations for combinations of predictors will occur. Traditional parametric 

approaches suffer from the dimensionality problem as it results in inaccurate parameter 

estimates for interaction effects [6]. Multi-locus methods are needed to select from the large 

amount of genetic and environmental predictors a small group of predictors and/or 

interactions between predictors that have a significant effect on the disease outcome. 

Subsequently, parameters for the selected predictors can be estimated by logistic regression 

analysis. 

   A third problem in the analysis of the effect of multiple genetic and environmental 

predictors on disease is the presence of correlated predictors in the dataset. An example is 

the presence of SNPs that are in linkage disequilibrium (LD) among the set of SNPs tested 

for association with disease. The power of a method to detect important predictors can be 

decreased when correlated predictors are tested. Some of the multi-locus methods discussed 

in this commentary are able to handle correlated predictors. Very high correlations between 

predictors, which is referred to as multicollinearity, is always a problem for methods: 

highly correlated predictors have an equal chance to be selected and one predictor may 
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falsely be selected instead of the highly correlated predictor that is truly associated with 

disease. Multicollinearity can be coped with statistically by combining data from multiple 

predictors into a single variable [7], for example combining SNPs that are in high LD into 

haplotypes. 

   Another difficult problem is the presence of heterogeneity [8]. Genetic heterogeneity is 

present if different genetic loci are independently associated with the same disease. The 

genes in which these loci are present can be part of different etiological pathways leading to 

the same disease or be part of the same pathway. Irrespective of the biological mechanism 

that gives rise to genetic heterogeneity, the association of these loci with the disease will be 

reduced if the total sample is used for measuring the association. A method that is not 

robust in the presence of genetic heterogeneity will likely suffer from a decrease in power 

to detect genetic effects. If genetic heterogeneity is not handled it can be accounted for by 

employing cluster analysis of genetic markers to identify groups of individuals with similar 

genetic profiles [8]. If clusters are present, association analyses of markers with the 

outcome variable should be accommodated for cluster effects [9]. Another form of 

heterogeneity that can affect the power to detect markers associated with disease is the 

presence of phenocopies. Phenocopies are individuals affected by the disease while they 

have a low-risk genotype profile. These individuals have developed the disease due to 

certain environmental factors. As in the presence of genetic heterogeneity, phenocopies will 

decrease the association between genetic markers and the disease if the association is 

studied using the total sample. Cluster analysis of environmental factors in the population 

can be used to define subgroups and cluster effects should be taken into account in the 

association analyses.  

   Many genetic epidemiologists have collected data on large numbers of genetic markers 

but are not familiar with the available methods to assess their association with complex 

diseases. In this article we review the strengths and weaknesses of methods for analyzing 

the genetic and/or environmental effects on disease or disease-related variables. These 

methods are presented in figure 1. Logistic regression and neural networks are discussed so 

as to compare non-parametric methods with these more 'traditional' statistical methods. The 

non-parametric methods have been selected as several genetic association studies have been 

conducted using these methods to analyze their data. This field is rapidly in progress and 

more methods are becoming available. This commentary does not pretend to cover all 

available multi-locus methods, nor to provide their statistical background, but aims to 

function as a starting and reference point for researchers in the field of genetic 

epidemiology who want to become more acquainted with multi-locus methods. 
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Figure 1: Diagram containing the different methods described in this commentary. 

 

Method of evaluation 

 

   To provide an overview of the strengths and weaknesses of each method the ability of the 

methods to model the effects of multiple genetic and/or environmental predictors on disease 

outcome is evaluated for the following features: 

- are the methods able to handle large numbers of predictors relative to the number of 

observations (dimensionality problem); 

- number of predictors that can be analyzed in modest sample sizes; 

- power to detect genetic effects; 

- how do the methods handle interactions; 

- do the methods maintain power if correlated predictors are present in the dataset; 

- performance of the method if genetic heterogeneity is present; 

- software availability and whether available software is open-source. 

For each method a description is given followed by the discussion of the performance of the 

method for the different features. First, logistic regression is discussed, followed by neural 

networks, the set association approach, the combinatorial methods and the random forests 

approach. After the discussion of the different methods, strengths and weaknesses of these 

methods are compared and a strategy to analyze the effect of multiple genetic and 

environmental predictors on disease is proposed. As many of these methods use 

permutation testing to determine the statistical significance of predictors a short explanation 

of this test will be given here. 

   For testing the statistical significance of the association between selected predictors and 

the outcome variable permutation tests are used to obtain the distribution of the test-statistic 

under the null hypothesis of no association. Permutation tests generate many samples for 
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which the association between the predictors and the outcome variable has been disrupted 

by randomly distributing the values of the predictors or outcome variable over the 

observations. For each permuted sample the method is applied to calculate the test-statistic 

and together these test-statistics form the distribution of the test-statistic under the null 

hypothesis. The proportion of permutation samples with a value exceeding the value of the 

test-statistic of the observed data gives the significance level for the observed test-statistic 

[10]. 

   To evaluate the ability of a model to classify and predict a certain outcome variable, 

multi-fold cross-validation is often used. This procedure will be explained because different 

methods use multi-fold cross-validation to obtain the classification and prediction error of 

models relating predictors to a certain outcome variable. In multi-fold cross-validation the 

data are randomly divided into groups of approximately the same size. The parameters of 

the model are estimated by all groups except for one, this remaining group is used for 

obtaining the prediction error (or prediction accuracy) of the model. As an example, a ten-

fold cross-validation divides the data into ten groups of equal size. Nine groups are used to 

build the model. For quantitative traits, a fraction of the prediction error of this model is 

computed by the remaining group. By turns the ten groups are used to compute a fraction of 

the prediction error and the sum of the ten fractions forms the prediction error. For 

categorical outcome variables (e.g. disease status) the prediction error is calculated for each 

of the ten groups. To reduce arbitrariness in the division of the data into the different groups 

when estimating the expected (average) prediction error, the multi-fold cross-validation is 

repeated several times. Each time the data is randomly divided into the same number of 

groups. For quantitative traits the sum of the prediction errors obtained by the different 

cross-validations divided by the number of repeats gives an average prediction error. For 

dichotomic traits the average prediction error is the sum of prediction errors over all groups 

divided by the number of groups. The average prediction error is an unbiased estimate of 

the prediction error of the model. 

 

Traditional methods 

 

Logistic regression 

 

   A parametric statistical method often applied in genetic epidemiology is logistic 

regression. It is used to analyze the effect of genetic and environmental predictors on a 

dichotomic outcome, for example disease status. Predictors are linked to the outcome 

variable by the logit function. While many methods can be used to test for an association 

between predictors and disease in case-control studies, in such case-control studies logistic 

regression is the only appropriate method to consistently estimate the strength of 

association between a predictor and disease [11]. The conditional logistic regression (CLR) 

method is appropriate if stratification is present in the data, for example in a study design 

with matched cases and controls. CLR adjusts for the matching of the cases and controls by 

stratifying the matched case-control pairs. 
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Features of the logistic regression method 

 

   One of the disadvantages of the logistic regression method is that it performs poorly in 

the presence of the dimensionality problem; it may lead to false positive results [12] and a 

low power to detect interactions [6]. This may be overcome by stepwise regression 

analysis, which reduces the large number of predictors to a smaller number of predictors 

that are significantly related to disease. With forward selection, significant main effects and 

interactions between these main effects are included in the model. With backward selection, 

non-significant effects are excluded from the full model containing all parameters. There 

are drawbacks to the use of these standard selection procedures. With forward selection, 

interactions can only be tested for the main effects included in the model. Backward 

selection has the disadvantage that it cannot properly work in the presence of too many 

variables relative to the number of cases. Even if it does work, inclusion of too many 

parameters reduces the power of the model. Applying the least absolute shrinkage and 

selection operator (LASSO) [13] for selection of predictors in logistic regression may be 

more useful than standard selection procedures. This procedure shrinks the coefficients of 

predictors that are not important to zero, thereby selecting a subset from a larger number of 

predictors. It appears to have a better performance than standard backwards selection, but 

one disadvantage of the LASSO may be that it does not reduce the number of predictors 

substantially [14]. Therefore, for selection of important predictors it will also be useful to 

apply other selection methods before using logistic regression analysis to estimate the 

strength of association between selected predictors and disease. 

   Correlation between predictors may be a problem for logistic regression as different 

model building strategies may lead to different results [7]. Also, logistic regression does not 

handle genetic heterogeneity well as it models the relation between predictors and risk of 

disease for all individuals in the sample [15] and therefore it does not account for the 

presence of subgroups with different relationships between disease and genetic make-up. If 

different subsets of genes work in different subsets of the sample then logistic regression 

will probably not detect the different genetic causes of disease [16]. To perform logistic 

regression analysis many standard software packages (e.g. SAS, SPSS) are available. 

 

Neural networks 

 

   Artificial neural networks are used to recognize patterns in the observed data and can be 

applied to determine genetic and environmental predictors related to disease. In genetic 

epidemiology, neural networks can be used to select SNPs that may contribute to disease. 

In this section we will describe in the first part the structure of a network that is commonly 

used (the feed forward network) and how neural networks usually are applied to obtain the 

best structure. In the second part we describe the parameter decreasing method [17], which 

can be used to select a subset of important predictors among a larger set of predictors. The 

genetic programming optimized neural network (GPNN) [18] is a strategy that will be 

described separately in the third part as it optimizes the structure of the network in a 

different way and different steps are involved to select the best model. 
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Structure of the feed forward network 

 

   A type of network commonly used consists of an input layer, one or more hidden layers 

and an output layer. Each layer is built up of nodes whereby one layer of nodes is 

connected to the next layer and weights are assigned to the connections. For example, with 

10 input nodes, 6 hidden layer nodes and 1 output node the number of connections, and 

thus weights, equals 10*6 + 6*1 = 66. This type of network has a feed-forward structure: 

the flow of information is from the input layer, via the nodes of the hidden layer(s) to the 

node(s) of the output layer. The values of the predictors are the input values for the neural 

network.  

   The combined input values are processed by each of the nodes of the hidden layer by a 

transfer function. For dichotomic outcome variables the transfer function is for example the 

logistic function. A network containing one hidden layer node with a logistic transfer 

function is equivalent to logistic regression analysis [19] and networks containing more 

hidden nodes with logistic transfer functions are generalizations of logistic regression to 

more complex non-linear relationships between predictors and disease [20]. These non-

linear relationships do not need to be defined. More layers and nodes increase the 

complexity of the model which enables the network to model complex interactions between 

the predictor variables. Networks fall in between parametric and non-parametric approaches 

as they provide large but not unlimited numbers of parameters to analysis methods [20].  

   The output of each node is determined by the outcome of the transfer function and is 

processed by each node of the next hidden layer (if present). The output of the last hidden 

layer is processed by the output node. The network associates the input values of the 

predictors with the output values given by the network. The amount of error between the 

output values of the model and the observed values is measured by an error function, for 

example a sum squared error. 

   Training the network, i.e. essentially estimating all the (hidden) parameters in the transfer 

function, is the process of adjusting the weights of the connections whereby weights are 

increased if they improve the output values and decreased if they result in more error. The 

procedure to optimize the weights is referred to as the back propagation algorithm [19]. The 

aim of the training is to obtain the model containing weight values that minimize the 

classification error of the network. Multi-fold cross-validation is used to divide the data into 

a training set and an evaluation set. The network model is constructed using the training set, 

the evaluation set is used to obtain the prediction error of the model. The error between the 

predicted values and observed values of the evaluation set gives the prediction error of the 

network. Each group created by multi-fold cross-validation is used to obtain the prediction 

error and the average prediction error is given by the sum of the prediction errors divided 

by the number of groups. The best model is the model with the lowest classification and 

prediction error. After the model has been obtained, predictors associated with the disease 

can be selected. 

 

Parameter decreasing method 

 

   To select important SNPs from the total group of SNPs that were used to construct the 

network model, a parameter decreasing method (PDM) can be used [17]. The procedure of 
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PDM starts by deleting one SNP from the total number of SNPs and constructs a model 

containing the remaining SNPs. In turn each SNP is deleted from the total number of SNPs 

and with the remaining SNPs a model is constructed. From the constructed models the 

model with the lowest number of misclassified subjects in both the training and evaluation 

set is selected. This process is repeated until one SNP remains. For each selected model a 

measure of prediction accuracy is calculated by the sum of true predicted cases and controls 

divided by the total number of the evaluation sample. The prediction accuracy is calculated 

for each evaluation set created by multi-fold cross-validation and the sum of the prediction 

accuracies divided by the number of evaluation sets gives the average prediction accuracy.  

   The PDM has been applied to select from 25 SNPs a subset of susceptible SNPs of 

childhood allergic asthma [17]. The average prediction accuracy started to decrease after 

SNPs were excluded from the model containing 10 SNPs. To minimize the effect of 

randomized initial weight values, five PDM trials were performed and the importance of 

SNPs that remained in the last 10 SNPs of each trial was determined. For each trial the 10 

SNPs were ordered from 1 to 10, based on the significance level of each SNP with the 

disease. The sum over the five trials for the SNPs that remained in the different trials was 

computed (sums can range from 1 to 50) and it is assumed that SNPs with higher scores are 

more important. The selected SNPs were used to construct models in order of importance of 

SNPs and for each model the prediction accuracy was calculated. Models with 10 of the 

most important SNPs or more had high prediction accuracy. The model containing the 10 

most important SNPs had the same prediction accuracy as the model containing all 25 

SNPs. 

   A permutation test can be applied to determine whether at least one of the selected SNPs 

is associated with the disease by randomly permuting the values of the selected SNPs [21]. 

To investigate important interactions, Tomita et al. [17] computed for 2-SNP and 3-SNP 

combinations the p-values by χ2-test and selected SNP combinations with a p-value lower 

than 0.05. Combinations obtained in this manner likely contain false positive results 

because correction for multiple testing has not been applied. Therefore they used another 

measure of evaluation which they refer to as the effective combination value (ECV). If 

SNPs in a combination are independent, then the product of their separate p-values is equal 

to the p-value of the combination. ECV is the ratio of a SNP combination p-value divided 

by the product of SNP p-values and ECV < 1 suggests that interaction is present. SNP 

combinations that meet criteria for both χ2 p-values and ECV values are selected. 

 

Genetic programming optimized neural networks 

 

   A different strategy which can be used to select predictors associated with disease is 

referred to as genetic programming optimized neural networks [18]. Ritchie et al. [18] 

developed this strategy to optimize the neural network structure in order to improve 

selection of disease associated predictors. The back propagation algorithm described in the 

first part of the neural network section optimizes the weights. GPNN on the other hand not 

only optimizes the weights, but also a set of inputs that is selected from a larger set of 

predictors, the number of hidden layers and the number of nodes within the hidden layer(s). 

Cross-validation is also applied in GPNN to obtain for each partition of the data the best 

model and the prediction error for this selected model.  
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   The genetic programming procedure starts with random selected models and evolves 

during the process to the model with the best structure. The steps taken by GPNN to obtain 

the best model are described here, more detailed information can be found in [18, 22]. First, 

a sample of all possible different GPNN models is randomly generated, using for each 

model a random subset of predictors from the total number of predictors. These initial 

GPNN models may differ in size. For each of the generated models is determined how well 

it fits the data, for example by its classification error. From these models a new generation 

of models is formed, which is equal to the number of models that were generated at the start 

of the process. This new generation of models is formed by directly copying a predefined 

proportion of the best models (those with the lowest classification error if classification 

error is used as fitness function) as well as by exchanging different parts between the 

models for another subset of best models. Thus, compared to the previous generation the 

new generation consists of similar models (the best proportion of models of the previous 

generation) and new models that are the result of recombining models of the previous 

generation (which is another subset of best models than the models that were copied). The 

size of the recombined models is allowed to change. The new generation of models replaces 

the previous generation and the process is repeated, bringing forth a next generation of 

models. This process continues until GPNN reaches a certain criterion (for example a 

classification error of zero or the maximum number of generations specified by the 

researcher). The model in the last generation that has the best fit (e.g. lowest classification 

error) is denoted as the best GPNN model and the prediction error for this model is 

determined by the remaining part of the data. For each partition created by cross-validation 

a best GPNN model with the corresponding prediction error is obtained. For example, 10-

fold cross-validation will result in 10 best GPNN models.  

   To determine the importance of predictors or predictor combinations, a cross-validation 

consistency measure can be used, which is the number of times a predictor or predictor 

combination is selected in a best model across all validation sets, divided by the number of 

validation sets. The predictor or predictor combination which has the highest cross-

validation consistency is denoted as the final selected model. An example of GPNN 

application to case-control data is the study of Motsinger et al. [22] on Parkinson's disease. 

 

Features of neural networks 

 

   The advantage of neural networks over logistic regression is the possibility to flexibly 

model complex relationships between the predictor variables and the disease status. Tomita 

et al. [17] compared the prediction accuracy of constructed models of neural networks with 

logistic regression analysis for the models containing 25 and 10 SNPs. Constructed models 

by neural networks had high prediction accuracy while the accuracy was low for logistic 

regression analysis. A disadvantage of the PDM is that a cut-off value for the prediction 

accuracy to select SNPs as susceptible is not given.  

   In general, as the network can handle a limited number of predictor variables depending 

on the number of observations in the dataset, faced with testing very large numbers of 

genetic markers the network is subject to the dimensionality problem [3]. GPNN however 

is not subject to the dimensionality problem because it uses only a random selection of 
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predictors to build the initial GPNN models and selects the most important predictors 

during the process.  

   Studies investigating the power for neural networks using PDM have not been found in 

the literature, thus information about the power of the PDM to detect important effects is 

not available at the present time. For GPNN, the power to detect important SNPs in the 

presence of unrelated SNPs is higher compared to the commonly used feed forward NN 

using a back propagation algorithm [18]. Using simulated data, Motsinger et al. [22] 

showed that the power of GPNN to detect gene-gene interactions in two and three locus 

interaction models is high. The number of unrelated SNPs included however was not large 

and further information on the power of GPNN to detect genetic effects among a large set 

of unrelated SNPs is needed.  

   If important interactions between SNPs are present, PDM will likely be able to detect the 

SNPs involved in the interaction, because deleting a SNP would have an effect on the 

prediction accuracy. Important interactions between SNPs will therefore lead to selection of 

these SNPs. Also, most of the 2-SNP and 3-SNP combinations identified by Tomita et al. 

[17] were combinations of SNPs that had been selected by the PDM procedure, followed by 

combinations of selected and unselected SNPs and the least number of combinations was 

found for unselected SNPs. This suggests that neural networks are able to select SNP 

combinations accurately [17].  

   For detection of the genetic polymorphisms involved in disease, correlated markers are a 

problem for neural networks using the PDM. If one marker is associated with disease, but is 

correlated with another marker, deleting the marker associated with disease will result in a 

smaller decrease in the value of the prediction accuracy compared to a situation of 

uncorrelated markers. Therefore, the power to detect the association of the risk marker with 

the disease will be reduced if this marker is correlated with one or more other markers. The 

power of GPNN to detect important predictors will not be reduced when correlation 

between predictors is present. GPNN models containing important predictors are more 

informative and will have lower classification errors than models containing predictors 

correlated with the important predictors. Important predictors will therefore be selected 

during the process.  

   Neural networks can determine substructures within a dataset which enables them to 

handle genetic heterogeneity [20]. Software to perform neural network analysis of case-

control data using PDM is freely available [23], the software is however not open-source. 

At the moment, software for GPNN is not available. 

 

Non-parametric methods 

 

Two step approaches 

 

   Several genetic association studies have employed the two step approach, which consists 

of the following two steps: 

- Step 1: determine a small number of potentially important markers; 

- Step 2: model interactions between important markers and/or environmental predictors. 

In the first step a non-parametric approach is applied to reduce many markers to a small 

number of important markers. For the second step environmental predictors can be 
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introduced to the model and logistic regression or neural networks can be used to test gene-

gene and/or gene-environment interactions. In the two step approach coupled-logistic 

regression can be applied to analyze interactions between the selected markers obtained in 

the first step [24, 25]. The coupled-logistic regression procedure first uses one forward 

selection step to model the two-way and higher-order interactions between the selected 

markers and environmental predictors if included. Then backward selection is employed to 

eliminate non-significant interactions. 

 

Set association approach 

 

   A non-parametric approach for selecting a set of important markers as a first step is the 

set association approach (SAA). SAA is described in this section; more detailed 

information can be found in [26]. Instead of categorical predictors such as marker 

genotypes, SAA can also be used to analyze the effect of quantitative predictor variables 

[27]. 

   SAA starts by calculating a test-statistic for each marker separately, which is a product of 

two test-statistics. The first statistic measures the association of a marker with disease 

outcome. As measure of association χ2 can be calculated from the contingency table of 

alleles (or genotypes) with disease status, but other statistics can be used as well. The 

deviation of a marker from the null-hypothesis of Hardy-Weinberg (HW) equilibrium is 

used as the second test-statistic, which is chi-square distributed. χ2 values for deviations 

from HW equilibrium are calculated in the case group and larger deviations indicate an 

association between the marker and the disease. Very large χ2 values for HW 

disequilibrium in the control group can indicate genotyping errors. To correct for the 

quality of genotyping, markers showing large χ2 values in controls (e.g. χ2 values exceeding 

the χ2 value corresponding to the 99-th percentile) are deleted or set to zero [26]. Thus, for 

the calculation of the test-statistic for each marker, information is used from allelic 

association, deviation from HW equilibrium and genotyping errors. 

   Subsequently, the markers are ordered based on their value for the test-statistic. SAA 

starts with the selection of the marker with the largest test-statistic and calculates sum-

statistics by adding each time the most important marker from the group of unselected 

markers. Increasing sums of markers are formed and the number of markers in the sums 

ranges from 1 to a predefined maximum number of M markers, for example 20. The 

significance level of each sum of markers is tested using a permutation test. SAA uses, and 

holds fixed, the observed genotypes, but randomly permutes the variable that indicates the 

disease status. Many permuted samples are formed and for each sample sum-statistics are 

calculated. The p-value for a certain sum of markers represents the proportion of permuted 

samples exceeding the value of the sum of markers of the observed sample. Instead of 

testing many markers, M sums (e.g. 20) are tested. Increased number of markers in the sum 

with an association with disease will lower the significance level of the sum. At a certain 

point the significance level will no longer decrease but increase as markers not contributing 

to disease are added to the sum. Therefore, from the M sums tested the set of markers with 

the lowest significance level is selected as the best set of markers. This p-value is defined as 

test-statistic and is evaluated by a second permutation test testing the null-hypothesis of no 

association of the selected markers with the disease-outcome. The second round of 
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permutation results in an overall p-value reducing the testing of M sums to one sum. The 

multiple testing problem that arises due to testing many markers has been overcome at this 

stage of SAA.  

   Applications of SAA have been reported for case-control studies on heart disease [27] 

and Alzheimer's disease [28]. 

 

Features of the set association approach 

 

   SAA manages the dimensionality problem by reducing the number of markers to a 

smaller number of important markers. This method also provides an overall significance 

level for the selected markers. In general, the main advantage of two step approaches is that 

large numbers of markers can be evaluated for their importance in contributing to disease. 

Compared to the Bonferonni and the False Discovery Rate procedures that correct for 

multiple testing, SAA has more power to identify genes involved in disease; sum-statistics 

are compounds of marker main effects which have a better performance than approaches 

that test each marker independently [29]. Furthermore, the power of SAA is enhanced by 

using information from allelic association, deviation from HW equilibrium and genotyping 

errors. 

   The main disadvantage of SAA is that genetic interactions are only tested for the markers 

that are selected in the sum. Important interactions with weak main effects will be missed.  

   To handle correlations between markers, Wille et al. [29] proposed a method to adjust the 

test-statistic of a marker for the correlation with the markers that are already present in the 

sum. Using unadjusted test-statistics, markers could be included in the sum while these 

markers are correlated with markers already contained in the sum. If the correlation 

between markers concerns non-susceptibility loci it will result in an overrepresentation of 

non-susceptibility loci in the sums, reducing the power of the approach. By using adjusted 

marker statistics the power of the test is re-established. 

   Genetic heterogeneity will affect the performance of SAA to identify important markers 

as this approach tests the association of markers with disease for the whole sample. 

Individuals affected due to different loci decreases the association between each of the loci 

with the disease and will result in a reduction of power of SAA to detect these loci. SAA is 

implemented in the program Sumstat [26] which is freely available and open-source [30]. 

At the moment, the adjustment of marker statistics for their correlation with markers 

already included in the sum has not been implemented in the software. 

 

Combinatorial methods 

 

   Combinatorial methods search over all possible factor combinations to find combinations 

with an effect on an outcome variable. The combinatorial methods that will be discussed 

are the combinatorial partitioning method (CPM), the restricted partitioning method (RPM) 

and the multifactor dimensionality reduction method (MDR). Respectively, CPM and RPM 

have been described more extensively by Nelson et al. [31] and Culverhouse et al. [32]. 

Several recent reviews are available for MDR [33, 34]. CPM and RPM aim to identify 

factor combinations that explain best the variance of a quantitative phenotype. MDR 

classifies factor combinations as having a low risk or high risk on disease based on the 
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presence of these combinations in cases versus controls. Both CPM and MDR use multi-

fold cross-validation to select the factor combinations that have the best prediction of the 

outcome variable and to compute the average proportion of variability explained (CPM) or 

average prediction accuracy (MDR), which is used to evaluate the validity of the obtained 

factor combinations. It is important to evaluate the validity of the model to verify whether 

the combinations do not present false positive results but are truly associated with the 

disease [35]. 

 

Combinatorial partitioning method 

 

   CPM can be used to study the effect of factor combinations on a quantitative phenotype. 

This phenotype can be a variable underlying the disease of interest. An example is to study 

factor combinations involved in the phenotype blood pressure, which underlies 

cardiovascular disease. To test whether a locus has an effect on a quantitative phenotype, 

analysis of variance (ANOVA) could be used. It performs an overall test of the differences 

between the mean phenotypic values of genotypes. However, with many genotypes a 

posteriori testing the significance of the differences between genotype means leads to the 

problem of multiple testing. CPM has the advantage that it determines the loci 

combinations with an effect on a quantitative phenotype and at the same time defines 

groups of genotypes with similar phenotypic means [31]. In the CPM a group of genotypes 

with similar phenotypic means is referred to as a genotypic partition. Combinations of two 

or more partitions make up a set of genotypic partitions. CPM selects sets of genotypic 

partitions (consisting of multi-locus genotypes) that predict variation of the quantitative 

trait [31]. The CPM consists of three steps: 

- Select loci combinations from all loci studied. For these loci combinations, combine 

genotypes with similar phenotypes into partitions. Select from the total group of partitions 

each combination of genotypic partitions (thus each set) that predicts a certain level of 

variance; 

- Validate each selected set by multi-fold cross-validation; 

- Select the most predictive sets and make inferences about the combinations of loci and the 

genotype-phenotype relationships. 

In the first step the combinatorial partitioning method selects all possible subsets of loci 

from the total group of loci that is studied. For example, if 10 loci are studied and all 2-loci 

combinations are considered, the number of subsets of loci examined is equal to 







2

10

= 45 

pair wise combinations. For each subset of loci all genotypic partitions are examined. For 

two SNPs at autosomal loci the number of genotype combinations equals nine and the 

number of genotypic partitions investigated ranges from two till nine. A set can for example 

consist of two genotypic partitions, one partition containing the multi-locus genotypes 

AAbb, AaBb and aabb and the other partition containing the remaining genotypes. CPM 

evaluates all possible sets of genotype partitions and selects sets based on two criteria. The 

first criterion is the proportion of phenotypic variability explained by a set. For each 

selected set the variability between partitions should be much higher than within the 

partitions because these sets will explain the largest proportion of variance of the 

quantitative phenotype. The other criterion used is the number of individuals in a set. Only 
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a few individuals will be present for genotypes with low frequency alleles and consequently 

for partitions in which these genotypes are present. Small numbers for genotypic partitions 

leads to unreliable estimates of the partition means and partition variance. When the 

number of individuals is set too low, spurious effects may be found by chance. On the other 

hand, genotypic partitions that do have an effect could be discarded from further analyses 

when the number of individuals is set too high [31]. 

   In the second step each selected set is validated by the multi-fold cross-validation method. 

For validation of the selected sets all the groups generated by the cross-validation method, 

except for one, are used to estimate the means of the genotypic partitions of a set. The 

remaining group is used to compute the within partition sum of squares, which is the 

predicted error for this group only. The sum of the fractions of the different groups gives 

the total predicted error of a set. If the multi-fold cross-validation is repeated several times, 

an average predicted error can be calculated. From this averaged predicted error the 

proportion of variability explained by a set is computed, which is a measure of the 

predictive ability of the phenotype by a set of genotypic partitions. Sets with smaller 

proportions of within sum of squares explain more variability of the quantitative phenotype 

and thus have a higher predictive ability.  

   Based on the results of the cross-validation, the most predictive sets are selected in the 

third step. It is useful to select more than one predictive set of genotypic partitions, because 

by comparing the different sets more insight in the relation between combinations of loci 

present in these sets and the quantitative trait can likely be gained. To obtain the statistical 

significance of the most predictive set selected a permutation test can be performed. 

Phenotypic outcomes are randomly assigned to the genotypes and for each permutation 

sample the CPM is performed. The null-hypothesis tested is that the most predictive set is 

not significantly associated with the quantitative trait. The proportion of sets exceeding the 

observed value of proportion of variability explained by the most predictive set results in a 

p-value for the most predictive set.  

   CPM has been applied in studies of plasma triglyceride levels [31], plasma PAI-1 levels 

[36] and the relationship between plasma t-PA and PAI-1 levels [37]. 

 

Restricted partitioning method 

 

   To overcome the computationally intensive search technique used by CPM, Culverhouse 

et al. [32] developed the restricted partitioning method. Where CPM searches over all 

possible combinations, RPM restricts its search in order to avoid evaluation of genotype 

partitions that will not explain much of the variation. The reasoning is that a group 

consisting of genotypes for which the difference between their mean values is large (thus 

having a large within group variance), will not explain much of the total variance of the 

quantitative trait and can therefore be discarded for evaluation.  
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The search procedure that is used by RPM to select genotypic partitions consists of the 

following steps: 

- Using a multiple comparison test, examine whether significant differences between mean 

values of genotype groups are present (at the start of the analysis each group consists of one 

multi-locus genotype); 

- from all the non-significant pairs of genotype groups, combine the pair with the smallest 

difference between their mean values into a new group, thereby reducing the number of 

genotype groups to be evaluated with one; 

- the procedure is reiterated until all differences between pairs of genotype groups are 

significantly different. 

If all the genotypes have significantly different means in the first step the procedure ends at 

this step. Otherwise, the number of genotype groups in the final partitioning is less than the 

number of genotypes present at the start of the analysis. To measure the importance of the 

final model R2 is determined, which is the proportion of the trait variation explained by the 

genotype groups. The significance of the model is estimated by permutation testing, 

generating a null distribution of R2. Bonferroni correction is applied for the number of 

factor combinations that have been tested. Factor combinations are selected if the explained 

variance R2 by the combination is found to be significant. Analysis with RPM has been 

performed for irinotecan metabolism [32]. 

 

Multifactor dimensionality reduction method 

 

   The multifactor dimensionality reduction method analyzes genetic and/or environmental 

effects on a dichotomic outcome variable (e.g. disease status) rather than a quantitative 

trait. MDR has been inspired by the CPM, but the approach differs in many perspectives. 

From the total group of factors studied, MDR evaluates all possible N-factor combinations 

of genetic and/or discrete environmental factors. Each cell of the N-factor combination is 

assigned to either a low risk or high risk group. A certain threshold, defined as the ratio of 

cases to controls, determines the risk group to which a factor combination is assigned. For 

example, for all nine possible genotype combinations of each two loci combination the risk 

status is determined. If the threshold is set to one and the cell for a genotype combination 

contains more cases than controls, that genotype combination is determined as high risk. 

Thus, MDR assigns each combination (e.g. multi-locus genotype) within a N-factor 

combination to a high risk or low risk group, thereby constructing a new factor consisting 

of the two risk groups. The process of constructing a new factor as a function of two or 

more other factors is referred to as constructive induction and MDR can therefore be 

viewed as a constructive induction approach [38]. MDR evaluates the ability of this new 

factor to classify and predict disease status by multi-fold cross-validation.  

   Multi-fold cross-validation divides the observed data in equal subsets. One subset remains 

aside, the other subsets are used to build the model. The N-factor model with the lowest 

classification error is selected and for this model the remaining subset is used to obtain the 

prediction accuracy. By turns each subset is used to obtain the prediction accuracy for the 

best classifying model that has been build by the other subsets. The model with the highest 

prediction accuracy is selected as the best N-factor model.  
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   Different numbers N of factors are evaluated. For each number of factors, multi-fold 

cross-validation is used to select the best classifying N-factor combination by measuring 

the prediction accuracy of the model. Cross-validation consistency (also discussed in the 

genetic programming optimized neural networks section) is another measure for selecting 

the best classifying N-factor combination: it is the number of times a N-factor combination 

is selected as the best model across all validation sets, divided by the number of validation 

sets. The N-factor model with the highest prediction accuracy and/or the highest cross-

validity consistency is selected. If one best model is found with the highest prediction 

accuracy and another model with the highest cross-validation consistency, the most 

parsimonious model is chosen for describing the observed data. For example, if the best 2-

factor combination model has the highest prediction accuracy and the best 3-factor 

combination model has the highest cross-validation consistency, the 2-factor combination 

model is selected. A permutation test is performed to obtain the statistical significance of 

the most predictive N-factor model. For each permuted dataset the best model is selected 

and the prediction accuracy or cross-validity consistency is determined. The p-value is 

obtained using the distribution of the prediction accuracy or cross-validity consistency 

under the null-hypothesis.  

   The MDR approach has been applied for example to case-control data of prostate cancer 

[39], type 2 diabetes [40], myocardial infarction [35], hypertension [41] and sporadic breast 

cancer [42]. 

 

Features of the combinatorial methods 

 

   The combinatorial methods discussed above select from all factor combinations those 

factor combinations that best explain the outcome variable thereby solving the 

dimensionality problem. Because both CPM and MDR are computationally intensive 

procedures the number of factors to be analyzed by these methods is moderate. Selection 

methods to preselect factors can be used as a first step [38] and such filter methods are part 

of the MDR software [43]. These methods can be applied before using MDR, enabling the 

user of the MDR software to analyze large numbers of factors. Although RPM has the 

advantage that it relieves the computational intensity of CPM and thereby has the potential 

to analyze many interacting loci, the multiple testing problem is still a challenge for this 

method.  

   One of the merits of the combinatorial methods is their high power to identify high-order 

interactions between loci while main effects are not present [32, 44]. The power of the 

MDR approach to detect gene-gene interactions in the absence of main effects was 

examined by Ritchie et al. [44]. Using simulated datasets, they studied 6 different models of 

interaction between two loci, including in the datasets noise due to 5 percent genotyping 

error, 5 percent missing data, 50 percent phenocopy and 50 percent genetic heterogeneity. 

Without noise factors, the power of the MDR method to detect the two-locus interaction for 

the 6 models was in between 80 and 100 percent. The drop in power due to genotyping 

errors, missing data or the combination of these noise factors was very small. Phenocopies 

had a large effect on the power for 4 models and genetic heterogeneity had the largest 

impact on the power for 5 of the 6 models. The power is reduced by phenocopies or genetic 

heterogeneity, because different combinations of factors causing the disease will decrease 
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the prediction accuracy and cross-validity consistency of a model [35]. The power to detect 

the interaction for each of the models was decreased to around 1 percent for the 

combination of phenocopies and genetic heterogeneity. If phenocopies are present, the 

power of the MDR approach can be increased if environmental factors causing the disease 

are included in the analysis. Environmental differences in the population can be assessed to 

define subgroups after which MDR can be applied to each group, or the environmental 

factors can be included in the MDR analysis. To account for genetic heterogeneity, cluster 

analysis of genetic markers can be employed (see background section). MDR analysis for 

the different clusters can be performed or the cluster status can be included as a covariate 

[44]. If the presence of genetic heterogeneity is not known beforehand the power for CPM, 

RPM and MDR is largely reduced. 

   As CPM, RPM and MDR select the model that has the best prediction of disease status, 

the model that contains the most information will be selected. Risk predictors contain more 

information than predictors correlated with the risk predictors and the power of these 

methods to detect risk SNPs will not be reduced when correlation between predictors is 

present. Software for CPM is not available, but a program for this method can easily be 

made by a competent statistical geneticist. Software implementing RPM is available from 

Culverhouse et al. [32]. Also, open-source software for RPM is currently under 

development [43]. MDR software, originally discussed by Hahn et al. [45], is freely 

available and is open-source [43]. A MDR Permutation Testing module to perform 

permutation testing is also freely available [43]. 

 

Recursive partitioning methods 

 

   Recursive partitioning methods partition the total dataset recursively into smaller and 

more homogeneous subsets to fit models for predicting the value of a continuous or 

categorical outcome from many predictor variables. These models are called tree-based 

models as the splits of the data into more and more homogeneous subsets can be pictured 

by a tree graph [15]. Regression and classification trees are respectively applied to 

continuous and categorical outcome variables. Here, the application of random forests (RF) 

of classification trees to case-control data is discussed. 

   A tree is made up of internal and terminal nodes, with the first internal node called the 

root node that contains the total sample. The root node is split into two nodes to improve 

the homogeneity of the case group and control group compared to the root node. This split 

is based on a cut-off point of the predictor variable that partitions the total sample best into 

the two groups of cases and controls, for example a split based on a certain SNP with one 

subset containing wild-type homozygous and heterozygous individuals (genotypes AA and 

Aa) and the other subset containing homozygous mutant individuals (genotype aa). Each of 

these two nodes is split again, whereby splits are based on the predictor variable that 

improves the homogeneity of the resulting subsets (this predictor may differ for each node). 

A node that is not further split into two nodes is called a terminal node. A recursive 

partitioning method that can be used for selection of important predictors contributing to 

disease is RF. 
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The random forests approach 

 

   In RF a group of tree-based models is used to select predictors with an important 

contribution to an outcome variable [16, 46]. For each model, every split is based on a 

random selected subset of all predictors studied. More important predictors will 

discriminate best between cases and controls and will therefore be closer to the root node 

and present in most of the trees. On the other hand, less important predictors will be less 

present in the different trees and closer to the terminal nodes [46]. RF has been described in 

more detail by Lunetta et al. [16] and Bureau et al. [46]. 

 

The prediction accuracy of the forest 

 

   For each tree in the forest, the total sample started with at the root node is generated by 

bootstrap sampling. With bootstrap sampling individuals are sampled from the observed 

population sample. The number of individuals in the bootstrap sample equals the number of 

individuals in the observed sample and because sampling is performed with replacement, 

some individuals can be present more than once in the bootstrap sample while other 

individuals are left out. The bootstrap sample is used to build the tree and the left-out 

individuals to obtain the prediction of the forest. The predictor values of a left-out 

individual determine which terminal node, or class, this individual is assigned to for a 

certain tree. The class to which most of the individuals of the bootstrap sample are assigned 

to is the predicted class of the tree for the left-out individual. The prediction for the forest is 

obtained by counting the predictions over the trees for which the individual was left out the 

bootstrap sample. The class with the most predictions is the prediction of the forest. In case-

control data the prediction accuracy of the forest is given by the difference between the 

proportion of correct and incorrect classification of the left-out individuals. The prediction 

accuracy of the forest is used to obtain a measurement of importance of each predictor. 

 

The importance of predictors 

 

   Predictors that best classify the population into cases and controls are assumed to be 

important predictors of disease-status. The importance of a predictor is given by an 

importance index Im which denotes the importance of a predictor taken other predictors into 

account. The values of the predictor for which the index is computed need to be 

randomized for the left-out individuals to remove any association between the predictor and 

disease status. The importance index for predictor A is then the difference in prediction 

accuracy of disease status by the predictor vector and the same predictor vector with 

predictor A randomly permuted for the left-out individuals. Larger differences in prediction 

accuracy between the two predictor vectors indicate more important predictors. RF orders 

the predictors according to their importance. Computing the importance index can be 

extended to pairs of predictors whereby the predictor values of both predictors are 

permuted. 

   Application of RF to case-control data has been reported for asthma [46]. 
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Features of the random forests approach 

 

   As RF selects the most important predictors among all predictors, the dimensionality 

problem is circumvented, but the approach does not provide a cut-off value of the 

importance index to determine which predictors should be retained for further analysis [16]. 

The advantage of RF is that it is able to test many predictors. Permuting the predictor 

values for the left-out individuals does not only remove the association between the 

permuted predictor and the outcome variable, but also the interaction effects of the 

permuted predictor with other predictors, if present. Thereby, the interactions of the 

predictor with other predictors are captured in the importance index. Lunetta et al. [16] 

tested the performance of RF compared to Fisher's Exact test in ranking risk SNPs using 

simulated data. Genetic heterogeneity was included in the disease models. If interaction 

between two risk markers is present, RF has a better performance to rank these risk markers 

than univariate ranking methods because the importance of each marker involved in the 

interaction will increase. More interactions and larger groups that interact increase the 

relative performance [16]. Therefore, markers with weak main effect but significant 

interaction with other markers can be detected by RF. The joint importance of subsets of 

predictors can be tested for all markers if the size of the subset is small, but testing the joint 

importance for larger subsets to capture higher-order interactions becomes computationally 

unfeasible. As Province et al. [15] point out, recursive partitioning methods are able to 

detect genetic heterogeneity. This assertion is confirmed by the study of Lunetta et al. [16]. 

Genetic heterogeneity is handled because different models are fitted to subsets of the data 

defined by early splits in the trees [15, 16]. Limited simulations suggest that correlated 

predictors are a problem for RF as it leads to a decrease of the predictor importance for 

each correlated risk SNP [16]. Software for RF is freely available and is open-source [47]. 

 

Conclusion 

 

   An overview of the strengths and weaknesses of the methods discussed is given in table 1. 

The dimensionality problem is not solved by the method of logistic regression. Applying a 

parameter decreasing method within neural networks to select important predictors is a 

useful approach if moderate numbers of SNPs are tested. However, neural networks can not 

handle the dimensionality problem either if the number of predictors tested becomes too 

large. Logistic regression and neural networks are therefore less useful to approach 

association studies with large numbers of predictor variables. These methods can be applied 

to model the effects of a group of selected predictors, including interaction terms and other 

potential risk factors. For example in the two step approach coupled logistic regression can 

be used after the markers have been selected in the first step. Genetic programming 

optimized neural network is able to select and model important predictors from a set of 

predictors, but the performance of GPNN to detect important SNPs in the presence of large 

numbers of unrelated SNPs needs to be investigated. 



                                                                                         

 

Table 1: Comparison of the different methods. 

 For the problems of dimensionality, correlated predictors and genetic heterogeneity yes and no indicate respectively that a method is able or not 

able to handle the problem. For detection of interactions when main effects are absent yes and no indicate respectively that a method is able or not 

able to detect interactions while main effects of the loci involved in the interaction are small or absent. 

* RPM is subject to the multiple testing problem. 

† MDR can analyze a moderate number of factors, but filter methods that are part of the MDR software can be applied before using MDR, 

enabling the user of the MDR software to analyze large numbers of factors. 

‡ Interactions contribute to the importance of predictors. 

** Adjustment of the test-statistics for correlation between markers is not implemented in the software. 

Neural networks SAA CPM RPM MDR RF  Logistic  

regression PDM GPNN      

Type of outcome  

variable 

dichotomous categorical 

continuous 

categorical 

continuous 

dichotomous continuous continuous dichotomous categorical 

continuous 

Dimensionality no no yes yes yes yes yes yes 

Number of  

predictors 

few moderate many many moderate many* moderate† many 

Power to detect  

important effects 

low no 

information 

high high high high high high 

Detect interactions  

when main effects  

are absent 

no yes yes no yes yes yes yes‡ 

Correlated  

predictors 

no no yes not  

implemented** 

yes yes yes no 

Genetic  

heterogeneity 

no yes yes no no no no yes 

Software available 

Open source 

yes 

 

yes 

no 

no yes 

yes 

no at request 

and to be  

developed 

yes 
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   Both SAA and RF can handle a large number of predictors and are useful in reducing the 

large amount of predictors to those predictors with an important contribution to disease. 

Another argument for employment of RF is the possibility to detect the presence of genetic 

heterogeneity. The combinatorial methods are useful to give more insight in interaction 

patterns for sets of genetic and/or environmental predictor variables. CPM and RPM can be 

applied in the study of quantitative phenotypes underlying the disease of interest, MDR is 

useful for analyzing effects on disease status. 

   As each of the non-parametric methods has its strength and weaknesses, genetic 

association studies should be approached by several methods. For genetic association 

studies using the case-control design to analyze complex diseases, the application of SAA 

in combination with the MDR and RF will most likely be a useful strategy to find the 

important genes and interaction patterns involved, as each of these methods approach the 

analysis of multiple SNP data differently. Similarities and differences in the results 

generated by these methods will provide valuable information whether selected SNPs are 

likely to contribute to disease by their main effects or whether gene-gene interactions play a 

role. Thus the combination of these methods will give more insight in the etiology of 

complex diseases. These methods can also be used in a multi-step approach, discussed by 

Moore et al. [38], to detect and interpret interactions. In the first step of this approach a 

subset of important SNPs is selected from the total number of SNPs. SAA and/or RF could 

be applied as method for selection of important predictors. The next step is to apply a 

constructive induction approach to construct from this subset of SNPs a new factor 

consisting of high risk and low risk genotype combinations. MDR can be used at this 

second step as a constructive induction approach. The ability of this constructed factor to 

classify and predict disease status is evaluated in the third step, for example by multi-fold 

cross-validation which is also implemented in MDR. Besides detecting statistical 

interactions this multi-step approach provides the means to statistically interpret the 

detected interactions in the fourth step.At this last step visual tools can be used for model 

interpretion. This multi-step approach is flexible as at each step many different methods can 

be used [38]. 

   More statistical methods to analyze multiple SNPs in relation to complex diseases are 

becoming available. What the features of other newly developed methods for analysis of 

multiple SNPs will be has to be studied and compared to the methods discussed in this 

commentary. Also, applications of the methods in genetic association studies will have to 

be performed in order to examine their practical value for the field of genetic epidemiology.  

   In this commentary the strengths and weaknesses of methods to approach the statistical 

challenge to detect gene-gene interactions associated with the disease or disease related 

outcome of interest have been discussed. However, these methods test interactions 

statistically, which is only a first step in the unravelling of the interacting underlying 

biological mechanisms. The biological interpretation of statistically detected gene-gene 

interactions is not straightforward and forms another challenge for genetic epidemiologists. 

Statistical interaction is detected on the population level by relating genotype information 

to interindividual differences in phenotype while biological interaction is the result of 

physical interaction of biomolecules which takes place at the individual level [2]. To 

address this challenge, Moore et al. propose the application of systems biology (a synthesis 

of multiple disciplines) to unicellular organisms, reasoning that understanding of the 
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relationship between statistical and biological interaction in these organisms will reveal 

some basic underlying principles and thereby will help to understand how statistical 

interaction is related to human complex diseases [2]. 

   In conclusion, statistical methods have been developed that enable genetic 

epidemiologists to detect important genetic and/or environmental predictors associated with 

disease or disease related variables. These methods have different strengths and 

weaknesses. Applying a combination of these methods will provide insight in the main 

effects and interaction patterns involved in the etiology of complex diseases. 
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Abstract 

 

   Non-parametric approaches have been developed that are able to analyze large numbers 

of single nucleotide polymorphisms (SNPs) in modest sample sizes. These approaches have 

different selection features and may not provide similar results when applied to the same 

dataset. Therefore, we compared the results of three approaches (set association (SAA), 

random forests (RF) and multifactor dimensionality reduction (MDR)) to select from a total 

of 93 candidate SNPs a subset of SNPs that are important in determining high-density 

lipoprotein (HDL)-cholesterol levels.  

   The study population consisted of a random sample from a Dutch monitoring project for 

cardiovascular disease risk factors and was dichotomized into cases (low HDL-cholesterol, 

n=533) and non-cases (high HDL-cholesterol, n=545) based on gender-specific median 

values for HDL-cholesterol.  

   Clearly, all three approaches prioritized three SNPs as important (CETP Taq1B, CETP -

629 C/A and LPL Ser447X). Two SNPs with weaker main effects were additionally 

prioritized by RF (ApoC3 3175 G/C and CCR2 Val62Ile), whereas MTHFR 677 C/T was 

selected in combination with CETP Taq1B as best model by MDR. Obtained p-values for 

the selected models were significant for SAA (p=0.0019), RF (p<0.01) and MDR (p<0.02).  

   In conclusion, the application of a combination of multi-locus methods is a useful 

approach in genetic association studies to select a well-defined set of important SNPs for 

further statistical and epidemiological interpretation, providing increased confidence and 

more information compared with the application of only one method. 
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Introduction 

 

   For common traits it is assumed that many different genes, each with allelic variations, 

contribute to the total observed variability in a trait, with no particular gene having a single 

large effect [1]. Therefore, studying single nucleotide polymorphisms (SNPs) in genetic 

association studies is challenging, as it is likely that SNPs do contribute to a certain 

outcome with only small effects. Logistic regression is the appropriate method to apply to 

case-control data [2]. However, in genetic association studies where the number of genetic 

polymorphisms is very large relative to the number of observations, applying logistic 

regression could easily lead to false positive and false negative results [3]. To overcome 

this dimensionality problem [4], non-parametric methods have been developed that are able 

to analyze the effect of large numbers of SNPs in modest sample sizes. These non-

parametric methods are referred to as multi-locus methods [5] and have the aim to identify 

SNPs and interactions between SNPs that are associated with disease or a disease-related 

endpoint. Multi-locus methods are useful as a first step to select from the large number of 

measured SNPs a smaller set of most important SNPs and/or combinations between SNPs. 

For this selected set, logistic regression analysis can be applied in the second step for an 

epidemiological interpretation. 

   Selection features of different multi-locus methods and their strength and weaknesses 

have been discussed [6], including the approaches of set association (SAA) [7], random 

forests (RF) [8] and multifactor dimensionality reduction (MDR) [9-11]. These non-

parametric methods are able to handle the dimensionality problem and have been frequently 

used in genetic association studies [e.g. 12-17]. Furthermore, software for these methods is 

freely available and open-source. Although these methods have been applied in several 

genetic association studies, to our knowledge they have never been used in combination. 

However, applying methods with different selection features to the same dataset may 

provide different results. Therefore, we compared in this study the application of SAA, RF 

and MDR to a real dataset to select from 93 candidate SNPs, a subset of SNPs that are 

likely to be important in determining HDL-cholesterol levels. After selection of the most 

important SNPs, we visualized the main and interaction effects for the selected SNPs by 

interaction graphs for further statistical interpretation. Logistic regression analysis was 

performed to model important main and interaction effects for an epidemiological 

interpretation. 

 

Methods 

 

Study population 

 

   The study population consisted of a random sample of 1,078 individuals from a Dutch 

monitoring project for cardiovascular disease risk factors [18]. This project was carried out 

between 1987 and 1991 among 35,488 men and women. Participants were between 20 and 

59 years old. Non-fasting blood samples were obtained at the Municipal Health Services in 

three Dutch municipalities (Amsterdam, Doetinchem and Maastricht) and stored in EDTA-

coated vacutainer tubes. All participants gave written informed consent and approval was 
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obtained from the medical ethics committees of Leiden University and the Netherlands 

Organisation for Applied Scientific Research.  

   The random sample of 1,078 individuals was divided into subjects with low (cases) and 

high (non-cases) HDL-cholesterol levels according to gender-specific median HDL-

cholesterol levels. Median values were 1.11 and 1.35mmol/l for men and women, 

respectively. Men and women with HDL-cholesterol levels below the median were 

designated as cases (n=533), whereas those above the median were designated as non-cases 

(n=545). Characteristics of the study population are shown in Table 1. 

 
Table 1: Characteristics of the study population.  

Study population Men 

N=506 

Women 

N=572 

Total 

N=1078 

Age (years) 42.0 ± 10.7 41.5 ± 10.9 41.8 ± 10.8 

HDL-cholesterol   

Median (mmol/l) 

Low (n) 

High (n) 

 

1.11 

250 

256 

 

1.35 

283 

289 

 

1.24 

533 

545 

Total cholesterol (mmol/l) 5.55 ± 1.11 5.48 ± 1.17 5.52 ± 1.14 

BMI (kg/m2) 24.8 ± 3.35 24.6 ± 3.97 24.7 ± 3.69 

Results are presented as mean ± SD unless otherwise stated.  

BMI: Body mass index 
 

Laboratory analyses 

 

HDL-cholesterol  

   HDL-cholesterol was determined enzymatically using a Boehringer test kit (Monotests 

Cholesterol High Performance, Boehringer Mannheim GmbH, Germany) within 3 weeks 

after storage, after precipitation of ApoB containing lipoproteins with magnesium 

phosphotungstate [19, 20]. 

 

Genotyping  

   Genomic DNA was extracted from frozen buffy coats as described by Hoebee et al. [21]. 

A number of 117 SNPs have been genotyped by the RMS research assay for CVD genetics 

and the RMS research assay for inflammatory disease genetics (Roche Molecular Systems, 

Inc., Alameda, CA) [22]. In addition, nine SNPs have been determined by pyrosequencing 

or restriction fragment-length polymorphism analysis (details are available upon request). 

Genotyping was performed without knowledge about the case status of the samples. 
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Data preparation 

 

   Of the 126 SNPs that were determined (see supplemental table), 16 SNPs were genotyped 

by two different methods. For these SNPs, genotypes concorded between methods for 92.8–

99.7% and redundant SNPs were discarded from further analyses (based on the number of 

missing values or deviation from Hardy-Weinberg equilibrium). Additionally, those SNPs 

that clearly deviated from Hardy-Weinberg equilibrium (p<0.01) using a χ2-test, were 

removed from the dataset (n=10). One SNP was removed from the dataset because many 

subjects had missing values (n=357), whereas five SNPs with minor allele frequencies 

lower than 0.01 were also discarded for the analyses. Finally, we removed one of two SNPs 

in the LTA-gene that were highly correlated (r2>0.85), as these SNPs would otherwise 

become interchangeable in the analyses. This resulted in a total of 93 SNPs available for 

analyses. For SNPs containing less than five observations for the homozygous mutant 

genotype (in cases and/or non-cases), homozygous mutant individuals were pooled with 

heterozygous individuals. Missing values were imputed with the value of the most frequent 

class before performing analyses with the different methods. 

 

Statistical analyses 

 

Fisher’s exact test 

   To compare the results of the different methods with the results of univariate analyses, the 

Fisher’s exact test was performed. We used SAS software version 9.1 (SAS institute, Inc., 

Cary, NC) to study univariate associations between SNPs and HDL-cholesterol group. 

 

Set association approach 

   SAA has been developed by Hoh et al. [7]. SAA prioritizes SNPs by a univariate test-

statistic. Sums of test-statistics are computed, starting with the SNP that has the highest 

univariate test-statistic. Each time the SNP with the next highest test-statistic is added to the 

sum. Thereby, sums of test-statistics consisting of increasing numbers of SNPs are formed. 

Permutation tests are performed to obtain p-values for the different sums. SNPs in the sum 

with the smallest p-value are selected and another permutation test is performed to obtain 

an overall p-value.  

   In SAA different test-statistics can be used. We applied both the χ2 of genotype by HDL-

cholesterol group and the χ2 of allele by HDL-cholesterol group as test-statistic. The 

number of permutated datasets used was equal to 10,000. The software we used for SAA is 

freely available at http://www.genemapping.cn/sumstat.html. 

 

Random forests approach  

   RF was developed by Breiman [8]. Application of classification RF to SNP data has been 

described previously [16, 23]. In RF, an ensemble of tree models is used to predict case 

status. Each tree recursively splits the total dataset into smaller and more homogeneous 

subgroups of cases and non-cases, whereby the total sample for each tree is obtained by 

bootstrap sampling. With bootstrap sampling, sampling is performed with replacement and 

some individuals are sampled more than once while others are left out. The sampled 

observations are used to construct the tree, whereas a prediction is obtained for each left-out 
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individual. Aggregating the predictions over the different trees in which the individual was 

left-out, a prediction for this individual is obtained for the ensemble of trees, which is called 

the forest. The proportion of misclassified cases and non-cases provides the prediction error 

of the forest. Another important feature is that the predictor that gives the best partitioning 

in cases and non-cases at a certain split is not selected from the total number of predictors 

but from a smaller random sample of predictors. This parameter is referred to as mtry. The 

default value for mtry is the square root of the number of variables to be analyzed in the 

dataset (in this dataset SNPsofnrtotal    = 9). We varied the value of mtry from 5–20 to 

determine the value of mtry resulting in the lowest prediction error. The lowest prediction 

error was obtained with a mtry value of 5 and results will therefore be shown for this 

number.  

   RF provides a measure of importance for each SNP, referred to as the importance index, 

by comparing the predictive performance of the forest for all SNPs with the predictive 

performance of the forest for all SNPs but with the values for one SNP randomly permuted 

for the left-out individuals. Larger differences in the predictive performance indicate more 

important SNPs. RF does not provide a threshold to define SNPs as being important. To 

define such a threshold we performed several analyses to examine whether there was a 

subset of SNPs that was consistently prioritized. Using the mtry value of 5, a threshold 

choice to select SNPs as important was obtained by performing the analyses several times, 

each time using a different seed value (the seed value controls the random number 

generator). The threshold to select SNPs was defined by the value of importance index Im, 

where the ranking of SNPs started to deviate between different analyses. SNPs with an 

importance index higher than this threshold were selected.  

   To validate whether the RF model does significantly predict case status, a permutation 

test [24, 25] was performed to obtain the significance of the prediction error. A 100 datasets 

were formed with labels of case status permuted randomly. By applying RF to each 

permuted dataset, a prediction error was obtained for each RF model, thereby forming the 

distribution of the prediction error under no association. The number of permuted datasets 

that had a prediction error equal or lower than the prediction error for the observed dataset 

provided the significance of the prediction error. A significant result indicates that 

significant associations are present in the dataset.  

   For each of the different analyses the number of trees in the forest was set to 30,000. For 

the analyses we used the R package randomForest written by [26, 27], which is based on 

the original FORTRAN code from Breiman et al. (freely available at 

www.stat.berkeley.edu/users/breiman/randomforests/). This R package is freely available 

from the CRAN website (http://cran.r-project.org/). 

 

Multifactor dimensionality reduction method 

   MDR was developed by Ritchie et al. [12] and has been described in detail in several 

reviews [9-11]. MDR is a non-parametric data mining approach that uses constructive 

induction or attribute construction to reduce two or more SNPs, for example, to a new 

single variable that is then evaluated using a classifier such as naïve Bayes or logistic 

regression. In MDR, each multi-locus genotype of a SNP combination is assigned to a high-

risk or low-risk group, depending on the ratio of cases and non-cases with this multi-locus 

genotype. If this ratio exceeds a certain threshold, this multi-locus genotype is assigned to 
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as high-risk, otherwise it is assigned to as low-risk. In this study, the ratio of cases to non-

cases present in the dataset was used as threshold. By assigning all multi-locus genotypes 

for a certain combination of SNPs to either high-risk or low-risk, MDR reduces the number 

of multi-locus genotypes to one risk factor consisting of two levels, high-risk or low-risk. 

The aim is to construct a new risk factor that facilitates the detection of non-linear 

interactions among SNPs such that the prediction of the outcome variable is improved over 

the original representation of the data. In the MDR software the performance of a newly 

constructed risk factor to classify and predict case status is evaluated by multi-fold cross-

validation and permutation testing.  

   We applied the MDR software (freely available at http://www.epistasis.org), using 10-

fold cross-validation, to determine for our dataset the best model for main effects, two-SNP 

and three-SNP combinations, yielding one best model for each. The 10-fold cross-

validation was repeated 10 times, using each time a different seed value, to protect against 

chance divisions of the dataset. Of the three best models, the model with the highest 

average testing accuracy and cross-validation consistency was denoted as final best model. 

The cross-validation consistency is the number of times a model is selected as best model 

among the validation sets and thereby indicates the importance of a model. A model 

containing important SNPs will be selected regardless of the division of the data for cross-

validation. For each of the best models with a cross-validation consistency less than 100, 

we performed a forced MDR analysis to obtain an unbiased estimate of the testing 

accuracy. Finally, applying the MDR permutation module we tested the significance of the 

testing accuracy of the final best model to validate whether this model was significantly 

associated with case status. A 100 datasets with case status permuted randomly were 

formed and MDR was applied to each of these datasets. For each permuted dataset the best 

model was determined. The proportion of testing accuracies of the permuted samples that 

equalled or exceeded the testing accuracy of the observed best model provided the 

significance of the final best model. 

 

Interaction graphs  

   For further statistical interpretation, we visualized the importance of the relationships 

between the SNPs selected by the different methods in two interaction graphs [11, 28, 29]. 

First an entropy-based interaction graph is used to compare the independent main effects of 

polymorphisms with the pair-wise interaction effect between polymorphisms. Positive or 

negative entropy values for pair-wise SNP interactions indicate that besides the two 

individual SNP effects additional information is explained by their interaction. Positive 

entropy values indicate a synergistic interaction, whereas negative entropy values indicate 

the presence of redundant information. To create the entropy-based interaction graph the 

Orange machine learning software was used, which is freely available and open source [30] 

at http://www.ailab.si/orange. Second, we used an interaction dendrogram to visualize the 

importance of the relationships between the SNPs. The interaction dendrogram is 

constructed using hierarchical cluster analysis and is implemented as a feature in the MDR 

software. The graph displays the interactions between SNPs whereby strongly interacting 

SNPs are located closely together at the leaves of the tree. Furthermore, information is 

provided whether interactions between SNPs are synergistic or that redundancy is present. 
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Logistic regression analysis  

   Logistic regression analysis has been performed for the important main and interaction 

effects obtained with the multi-locus methods and the interaction graphs. All relevant SNPs 

and SNP combinations were included in one model. For each SNP, wild-type homozygous 

individuals are used as the reference group in the analyses and two dummy variables have 

been created, one for the heterozygous and one for the homozygous mutant individuals. The 

number of homozygous mutant individuals with the ApoC3 3175 G/C polymorphism was 

low, therefore these individuals have been pooled with the heterozygous individuals before 

performing the analyses. SAS software version 9.1 (SAS institute Inc., Cary, NC) was used 

to perform the logistic regression analyses. 

 

Results 

 

Fisher’s Exact test  

   For each SNP in the dataset, the distribution of cases and non-cases over the different 

genotypes and the corresponding significance obtained by Fisher’s exact test are shown in 

the supplemental table (see supplemental data). About ten SNPs were significant at the 0.05 

level. 

 

Set association approach 

   Using χ2 of genotype by HDL-cholesterol group as test-statistic, p-values for the sums of 

test-statistics were obtained by permutation testing. Clearly, p-values largely decreased for 

the three SNPs with the highest test-statistics (CETP Taq1B, CETP -629 C/A and LPL 

Ser447X) included in the sum (see figure 1, results are shown for the first 30 SNPs). 

Adding more SNPs to the sum did not result in a further decrease of the p-value. The sum 

including the first three SNPs resulted in the lowest p-value and therefore the first three 

SNPs were selected as important. The overall p-value for this sum was equal to p=0.0019. 

When these three SNPs with the highest test-statistic were excluded, a non-significant result 

was obtained for the remaining SNPs (p=0.55).  

   For the χ2 of allele by HDL-cholesterol group test-statistic, the sum containing the three 

SNPs with the highest test-statistics (CETP Taq1B, CETP -629 C/A and LPL Ser447X) 

also resulted in the lowest p-value (results not shown). The overall p-value was highly 

significant (p=0.0005) and by excluding the first three SNPs a non-significant result was 

obtained (p=0.40). Thus application of the test-statistic of χ2 of allele by HDL-cholesterol 

group resulted in selection of the same SNPs as with the test-statistic of χ2 of genotype by 

HDL-cholesterol group. 
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Figure 1: Results of SAA using χ2 of genotype by HDL-cholesterol group as test-statistic. P-values 

for the sums of test-statistics are shown. Values at the x-axis correspond to the number of single 

nucleotide polymorphisms included in the sum. 

 

Random Forests 

   For mtry value 5, SNPs were ranked according to their importance index for different seed 

values. Results are shown for seed values 17 and 43 in figure 2, where the importance 

indices of the SNPs are plotted against each other. Ranking of SNPs was similar for the five 

SNPs with the highest importance indices and started to deviate for lower ranked SNPs. 

Different mtry values consistently resulted in prioritization of the same 5 SNPs (results not 

shown). Therefore, these five SNPs (CETP Taq1B, CETP -629 C/A, LPL Ser447X, ApoC3 

3175 G/C and CCR2 Val62Ile) were selected as important.  

   The prediction error for the observed dataset was equal to 45%. None of the 100 

permuted datasets had a lower prediction error compared with the observed prediction 

error. Therefore, the significance of overall prediction error rate of the forest is equal to 

p<0.01, indicating that significant SNP effects are present in this dataset. 
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Figure 2: Importance indices of the single nucleotide polymorphisms obtained by RF. Important 

indices obtained by mtry value 5 using seed 17 are plotted against the importance indices obtained by 

mtry value 5 using seed 43. 

 

Multifactor Dimensionality Reduction method  

   Prioritization of main effects and two-SNP combinations by their classification accuracy 

shows that the four main effects and the four 2-SNP combinations with the highest 

classification accuracy consist of the SNPs LPL Ser447X, CETP Taq1B, CETP -629 C/A 

and MTHFR 677 C/T (see table 2).  

   For the main effects and the two-SNP and three-SNP combinations, the best models are 

shown in table 3. The best two-SNP and three-SNP combinations both had the highest 

average testing accuracy. Therefore, to obtain the final best model we compared the cross-

validation consistency of the two-SNP model with that of the three-SNP model. The model 

containing two SNPs (MTHFR 677 C/T and CETP Taq1B) had the highest cross-validation 

consistency and was therefore selected as final best model. Frequencies of cases and non-

cases for the different multi-locus genotypes for this model are shown in figure 3. Using a 

permutation test, the best model obtained with MDR was found to be significantly 

associated with case status (p<0.02). 
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Table 2: Prioritization by MDR of SNPs and combinations of two SNPs by classification accuracy. 

SNP main effect Average classification  

accuracy 

LPL Ser447X 54.7 

CETP Taq1B 54.6 

CETP -629 C/A 54.5 

MTHFR 677 C/T 54.4 

PON1 met55leu 53.8 

IL5RA 80 G/A 53.6 

NOS2A asp346asp 53.4 

ApoC3 3175 G/C 53.3 

2 SNP-combination  

CETP Taq1B MTHFR 677 C/T 57.9 

CETP -629 C/A LPL Ser447X 57.6 

CETP Taq1B LPL Ser447X 57.4 

CETP -629 C/A MTHFR 677 C/T 57.2 

CETP Taq1B IL5RA 80 G/A 57.0 

CETP Taq1B PON1 met55leu 56.9 

CETP -629 C/A IL5RA 80 G/A 56.8 

CETP -629 C/A IL9 thr113met 56.7 

 
Table 3: Best MDR models for the main effects, two-SNP and three-SNP combinations.  

Model Average testing  

accuracy 

Cross-validation  

consistency 

LPL Ser447X 54.3 34/100 

MTHFR 677 C/T 

CETP Taq1B 

57.9 62/100 

MTHFR 677 C/T 

CETP Taq1B 

C3 Arg102Gly 

57.9 31/100 

Values for the final best model are in bold. 
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Figure 3: Frequencies of cases and non-cases for the different multi-locus genotypes of the best 

model obtained by MDR (combination of MTHFR 677 C/T and CETP Taq1B). For each cell the first 

column represents the number of cases, the second column the number of non-cases. Dark gray cells 

indicate high-risk multi-locus genotypes, light gray cells indicate low risk multi-locus genotypes. For 

each multi-locus genotype the ratio of cases to non-cases is depicted at the upper right corner. 

 

Overall results 

   A summary of the results from the different multi-locus methods and the Fisher’s exact 

test is given in table 4. SNPs with clear main effects (CETP Taq1B, CETP -629 C/A, LPL 

Ser447X) are prioritized by all three multi-locus methods. Additional SNPs are prioritized 

by RF and MDR. RF additionally prioritized ApoC3 3175 G/C and CCR2 Val62Ile, 

whereas MDR additionally selected MTHFR 677 C/T in combination with CETP Taq1B in 

the final best model. The second best two-SNP combination obtained by MDR consisted of 

two SNPs (CETP -629 C/A and LPL Ser447X) that were also selected by SAA and RF. 

Combining these results, the SNPs prioritized by the different methods are CETP Taq1B, 

CETP -629 C/A, LPL Ser447X, MTHFR 677 C/T, ApoC3 3175 G/C and CCR2 Val62Ile. 
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Table 4: Prioritization and selection of SNPs based on Fisher’s Exact test (p<0.05), SAA, RF and 

MDR. 

Fisher’s  

Exact test 

SAA RF MDR SNP 

p-value χ2-genotype 

p-value 

Importance index 

(seed 17) 

 

CETP Taq1B 0.0002 0.0145 1.20 1* 

CETP -629 C/A  0.0005 0.0023 1.04 2† 

LPL Ser447X 0.0008 0.0005 1.10 2† 

ApoC3 3175 G/C 0.007  0.63  

NOS2A Asp346Asp  0.01    

MTHFR 677 C/T 0.01   1* 

CETP -631 C/A 0.03    

PON1 Met55Leu 0.04    

LPA 93 C/T 0.04    

IL5RA -80 G/A 0.05    

CCR2 Val62Ile 0.15  0.43  

Significance of the model  0.0019 <0.01 <0.02‡ 

* Selected as best two-SNP combination 

† Second-best two-SNP combination 

‡ Significance of the best two-SNP combination 

 

Interaction graphs 

   The interaction entropy graph for the six SNPs selected by the different methods is shown 

in figure 4. Although the entropy removed by the different SNPs and interactions between 

SNPs is small, the interaction graph confirms the results obtained in this study. CETP 

Taq1B, CETP -629 C/A and LPL Ser447X remove the most entropy (1.17, 1.02 and 0.91%, 

respectively), which corresponds with the Fisher’s exact test and the prioritization of these 

SNPs by all three multi-locus methods. Also, small synergistic interaction effects between 

the CETP polymorphisms and MTHFR 677 C/T are found. These interactions remove 

about the same amount of entropy (0.74 and 0.71%). This corresponds with the results of 

MDR that selected the combination of MTHFR 677 C/T and CETP Taq1B as final best 

model. Together MTHFR 677 C/T and CETP Taq1B explain 2.45% (1.17+0.57+0.71) of 

the entropy in HDL-cholesterol group.  
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Figure 4: Entropy-based interaction graph. The percentages of entropy of HDL-cholesterol group 

explained by the different SNPs are shown in the boxes. The numbers by the arrows correspond to the 

percentages of entropy of HDL-cholesterol group explained by the two-way interactions between 

single nucleotide polymorphisms. For full color figure, see page 164. 
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   The negative entropy value (-0.77%) between the two CETP polymorphisms indicates 

redundant information that is present in both polymorphisms. The redundancy is an 

indication of the presence of linkage disequilibrium between these SNPs. The effect of 

ApoC3 3175 G/C is small and ApoC3 3175 G/C does not interact with any of the other 

SNPs. Effects including the CCR2 Val62Ile polymorphism are almost absent.  

   The interaction dendrogram obtained with the MDR software is shown in figure 5. 

Redundancy between the CETP polymorphisms is clearly shown in the dendrogram. Also, 

CCR2 Val62Ile is on a separate branch from the other SNPs, indicating that CCR2 Val62Ile 

does not interact with any of the other SNPs. These results correspond to the results 

obtained with the interaction entropy graph. However, we also observed differences 

between the two interaction graphs. In the dendrogram, the interactions between the CETP 

polymorphisms and MTHFR 677 C/T are not clearly present. Also, the dendrogram shows 

redundancy between ApoC3 3175 G/C and the CETP polymorphisms, and between LPL 

Ser447X and MTHFR 677 C/T, which was not found by the interaction entropy graph. 

 

 
 

Figure 5: Interaction dendrogram. Stronger interactions between single nucleotide polymorphisms 

are visualized by depicting SNPs more closely together at the leaves of the tree (right side of the 

graph). For full color figure, see page 165. 

 

Logistic regression analyses  

   Based on the findings of the multi-locus methods and the interaction graphs, logistic 

regression analysis was performed for further epidemiological interpretation. Of the six 

prioritized SNPs, four were included in the model either as main effect (LPL Ser447X and 

ApoC3 3175 G/C) or multi-locus genotype effect (for the combination of MTHFR 677 C/T 

and CETP Taq1B). The interaction between MTHFR 677 C/T and CETP -629 C/A was left 

out of the model because of the redundancy between the CETP polymorphisms. 

Furthermore, CCR2 Ile62Val was left out because of its low entropy value and the absence 

of pair-wise interactions including this SNP.  

   Risk estimates for the main and interaction effects are shown in table 5. Having at least 

one mutant allele for the LPL Ser447X polymorphism results in a significant decrease 

(p<0.01) in risk of low HDL-cholesterol (odds ratio (OR)=0.55). A significant increase in 

risk (p<0.01) was obtained for the ApoC3 3175 G/C polymorphism (OR=1.51). For the 

combination of MTHFR 677 C/T and CETP Taq1B significant multi-locus genotype effects 
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were found. All OR for the multi-locus genotypes are lower than 1, indicating that 

homozygous wildtype genotypes for both polymorphisms give the highest risk for low 

HDL-cholesterol. 

 
Table 5: Odds ratios for low HDL-cholesterol according to LPL Ser447X, ApoC3 3175 G/C and the 

combination of MTHFR 677 C/T with CETP Taq1B. 

Effect Odds ratio 95% Confidence intervals 

LPL Ser447X C/C 1.00 (ref)   

LPL Ser447X C/G G/G 0.55** 0.41 0.74 

Apo C3 3175 G/G 1.00 (ref)   

Apo C3 3175 G/C C/C 1.51** 1.11 2.07 

MTHFR 677 C/C – CETP Taq1B B1/B1 1.00 (ref)   

MTHFR 677 C/C – CETP Taq1B B1/B2 0.73 0.49 1.08 

MTHFR 677 C/C – CETP Taq1B B2/B2 0.47** 0.28 0.80 

MTHFR 677 C/T – CETP Taq1B B1/B1 0.78 0.51 1.19 

MTHFR 677 C/T – CETP Taq1B B1/B2 0.45** 0.30 0.69 

MTHFR 677 C/T – CETP Taq1B B2/B2 0.25** 0.14 0.48 

MTHFR 677 T/T – CETP Taq1B B1/B1 0.35** 0.17 0.73 

MTHFR 677 T/T – CETP Taq1B B1/B2 0.75 0.42 1.35 

MTHFR 677 T/T – CETP Taq1B B2/B2 0.19* 0.05 0.73 

Odds ratios were obtained by including all effects into one multivariate logistic regression model. 

Ref: reference category 

* Significant at the 0.05 level 

** Significant at the 0.01 level 

 

Discussion 

 

   In this study, we have applied three different multi-locus methods that have been 

developed for analyzing large numbers of SNPs in relation to disease or a disease-related 

endpoint. The findings in this study show that applying different multi-locus methods has 

several advantages compared with applying only one method. First, because SNPs with 

clear main effects are prioritized by all the different methods, the confidence is 

strengthened that these SNPs are relevant for the endpoint of interest. A second advantage 

is that by applying different multi-locus methods more information is obtained than 

applying only one method. Different SNPs were additionally prioritized by RF and MDR. 

Furthermore, univariate analyses using Fisher’s exact test resulted in ten SNPs to be 

significantly associated with HDL-cholesterol group at the significance level of p<0.05. By 

applying multi-locus methods a smaller set of six SNPs was selected and the chance to 

falsely select SNPs as important was thereby likely reduced. Thus, in genetic association 

studies, the application of different multi-locus methods to prioritize and select SNPs is a 

useful approach to identify a well-defined set of SNPs that is likely to be important. 

   The three different approaches all yielded significant results, which indicates that 

significant associations are present in this dataset. In MDR, only one best model is selected. 

In our study the combination of MTHFR 677 C/T and CETP Taq1B best predicted low 

HDL-cholesterol levels. However, the second best two-SNP combination, consisting of 

CETP -629 C/A and LPL Ser447X, only had a slightly lower classification performance 
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than the best model (57.6 versus 57.9, respectively). These SNPs were also selected by 

SAA and RF and are therefore likely to have an important contribution to HDL-cholesterol 

levels. By selecting only one best model to predict HDL-cholesterol levels, MDR leaves out 

other SNPs and/or combinations of SNPs that can be important as well. Nevertheless, 

modeling combinations of SNPs, MDR was the only method that was able to capture 

MTHFR 677 C/T as important in combination with CETP Taq1B. Visualizing pair-wise 

interactions by the interaction entropy graph confirmed that this combination explained the 

largest amount in entropy of HDL-cholesterol group. Thus, comparing the results of the 

different methods is useful, as more information can be obtained compared with applying 

only one method. 

   SAA and MDR are developed for analyzing dichotomous endpoints. Therefore, to be able 

to compare the different multi-locus methods we dichotomized HDL-cholesterol levels into 

high and low-HDL-cholesterol based on gender-specific median values. However, we 

realize that by dichotomizing HDL-cholesterol levels not all information is used. RF is the 

only method that can also be applied to continuous endpoints, using regression trees instead 

of classification trees. Therefore, we also performed analyses with RF using regression 

trees to select SNPs that are important in determining continuous HDL-cholesterol levels. 

Applying RF using regression trees resulted also in the prioritization of CETP Taq1B, 

CETP -629 C/A, LPL Ser447X, MTHFR 677 C/T and ApoC3 3175 G/C. However, CCR2 

Val62Ile was not prioritized (results not shown). Adding sex to the RF model slightly 

changed the prioritization of SNPs. Sex was highly prioritized and SNPs prioritized 

included CETP Taq1B, CETP -629 C/A, LPL Ser447X and MTHFR 677 C/T. ApoC3 3175 

G/C was less highly prioritized and again, CCR2 Val62Ile was not prioritized. Thus, the 

results of RF using regression trees replicate the finding of MDR that MTHFR 677 C/T is 

also of importance, whereas the importance of CCR2 Val62Ile was not replicated. Both the 

entropy-based interaction graph and interaction dendrogram showed no important pair-wise 

effects for CCR2 Val62Ile. Additionally, the entropy value for CCR2 Val62Ile was very 

low, indicating that this SNP may not be important. Thus, whether CCR2 Val62Ile is 

relevant in determining HDL-cholesterol levels is questionable and may therefore be a 

chance finding. However, RF is the only method that is able to handle genetic heterogeneity 

and in RF the importance of each SNP is obtained in the context of all other SNPs. 

Therefore, it may also be that CCR2 Val62Ile is of importance in only a subgroup or that 

this SNP is important in interactions containing more than two SNPs. 

   In theory, it could be possible that all methods modeled the same noise in the dataset. 

However, besides statistical interpretation, biological interpretation of the results is also an 

important tool to verify whether selected SNPs are relevant. Of all the 93 SNPs that are 

present in the dataset, only a smaller subset consists of polymorphisms that are located in 

candidate genes of lipid metabolism. Associations between the SNPs selected by the 

different methods (with the exception of the CCR2 polymorphism) and HDL-cholesterol 

levels have been found in previous studies [31, 32]. Thus, the biological relevance of the 

selected SNPs also increases the confidence that the selected SNPs in this study are relevant 

for HDL-cholesterol levels. Although an association between MTHFR 677 C/T and HDL-

cholesterol has been found previously, this association may be indirect. It is suggested that 

the MTHFR polymorphism has an effect on homocysteine levels and that increased 

homocysteine levels lead to a decrease in levels of HDL-cholesterol [31, 33].  
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   How to define a threshold for the selection of SNPs by RF is not straightforward and 

needs to be further examined. Besides the approach used in this study, we also examined 

another approach to define a threshold. In this second approach, we performed a 

permutation test to obtain the significance of the importance index for the different SNPs. 

However, this approach did not yield a clear threshold (results not shown) and was 

therefore not useful to define a threshold in this dataset. Besides comparing different 

analyses within RF, biological verification may also be useful to denote a threshold to 

select SNPs as being important using RF. An example of using biological relevance to 

define a threshold for the selection of prioritized variables is shown by Enot et al. [34]. 

However, biological relevance is not always known beforehand and relying solely on 

biological information may lead to discarding polymorphisms in genes that have a 

relationship with the outcome of interest that has not been found previously in the literature. 

   Genotype discordancies were found for SNPs that have been genotyped by two different 

methods. For this study genotype discordancies did not influence the comparison of results 

of the different methods as all methods have been applied to the same dataset. Still, it may 

have affected the biological interpretation of the results. However, the discordancies were 

found to be random. Furthermore, the performance of MDR to detect risk SNPs has shown 

to be excellent in the presence of 5% genotyping errors [35]. Therefore, we do not think 

that genotype discordancies will have had a large influence on the biological interpretation 

of the results. 

   In this study, we applied a two-step approach. In the first step, three multi-locus methods 

were combined to prioritize and select SNPs related to HDL-cholesterol group. In the 

second step, the set of selected SNPs was used for further statistical and epidemiological 

interpretation. The multi-locus methods applied in this study can also be used within a 

multi-step approach, suggested by Moore et al. [11]. In this multi-step approach SNPs are 

also prioritized and selected in the first step. Prioritization and selection can be performed 

by univariate tests, SAA and/or RF, but other measures of importance can be used as well. 

The advantage of the RF approach is that it can handle genetic heterogeneity in the dataset, 

if present [23, 36]. However, in the multi-step approach of Moore et al. MDR is not used to 

select SNPs, but the constructive induction algorithm of MDR is used in the second step to 

construct new variables for combinations of SNPs. By constructing new variables MDR 

reduces for each SNP combination the number of multi-locus genotypes to one variable 

consisting of two risk groups (high and low risk). These newly constructed variables can 

then be evaluated in the third step by machine learning approaches. At this step, multi-fold 

cross-validation can be used, but also RF [37]. If the number of observations is large 

enough relative to the number of effects selected, logistic regression can also be used for an 

epidemiological interpretation. After evaluation of the constructed variables, statistical 

interpretation of the results can be performed using interaction graphs. Irrespective of the 

approach applied (two-step, multi-step), inferring the biological relevance of the selected 

SNPs is an important last step. For biological interpretation of the selected SNPs and/or 

combinations between SNPs, pathway analyses can be performed (e.g., by GenMAPP, 

freely available at http://www.genmapp.org). Also, systems biology is proposed [38] to 

come to an understanding of how statistical interactions relate to biological interactions. 
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Conclusion  

 

   In this study, three different multi-locus methods have been applied to prioritize and 

select SNPs that are related to HDL-cholesterol. Combining the results of these methods 

strengthens the confidence of the relevance of similarly selected SNPs and more 

information can be obtained as different SNPs are additionally selected by different 

methods. Therefore, the application of different multi-locus methods is a useful approach in 

genetic association studies to select a well-defined set of important SNPs for further 

statistical and epidemiological interpretation. 
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Abstract 

 

   The human proteins ciliary neurotrophic factor (CNTF) and interleukin-6 (IL6) and their 

receptors share structural homology with leptin and its receptor. Experiments have shown 

that CNTF and IL6, like leptin, can influence body weight in humans and animals. In a 

Dutch general population (n=545) we investigated effects of ciliary neurotrophic factor 

(CNTF null G/A, rs1800169), interleukin-6 (IL6 -174 G/C, rs1800795) and uncoupling 

protein-2 (UCP2 A55V, rs660339 and UCP2 del/ins) polymorphisms on weight gain using 

interaction graphs and logistic regression analysis. The average follow-up period was 6.9 

years. Individuals who gained weight (n=264) were compared with individuals who 

remained stable in weight (n=281).  

   In women the CNTF polymorphism (odds ratio (OR)=2.15, 95%CI: 1.27-3.64, p=0.004) 

and in men the IL6 polymorphism by itself (OR=2.26, 95%CI: 1.08-4.75 , p=0.03) or in 

combination with the CNTF polymorphism, were associated with weight gain. 

Furthermore, CNTF and IL6 polymorphisms in interaction with UCP2 polymorphisms had 

similar strong effects on weight gain in women and men, respectively. All observed effects 

were independent of leptin. These results are incorporated in a biological model for weight 

regulation with upstream effects of CNTF and IL6, and downstream effects of UCP2.  

   The results of this study suggest a novel mechanism for weight regulation that is 

independent of leptin and active in both women and men, but strongly influenced by sex. 
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Introduction 

 

   Leptin is a well-studied hormone involved in energy metabolism. Mainly derived from 

adipocytes, leptin is known to be strongly related to body mass index (BMI) [1] and weight 

gain [2]. Besides in peripheral tissue [3, 4], leptin binds to its receptor in hypothalamic 

nuclei, thereby activating intracellular signaling pathways. Other proteins exist of which 

their receptors share structural homology with the leptin receptor. For example, the 

receptors of ciliary neurotrophic factor (CNTF) and interleukin-6 (IL6) have signal 

transduction elements similar to that present in the leptin receptor [5]. Both CNTF and IL6 

receptors activate signaling pathways similar to those activated by the leptin receptor [6, 7]. 

Moreover, the VAST-program (http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml) 

shows that the human proteins leptin, CNTF and IL6 have high similarities in 3D-structure. 

CNTF and IL6 are therefore likely candidates to be involved in the regulation of energy 

homeostasis. 

   Administration of exogenous CNTF has shown to significantly reduce weight in animal 

models [7, 8]. After treatment with CNTF, obese mice that are deficient of functional leptin 

(ob/ob) or have a mutated leptin receptor (db/db) showed a reduction in food intake and 

body weight [7]. Moreover, CNTF is able to activate in hypothalamic nuclei leptin-like 

signaling pathways in diet-induced obese mouse-models that are not responsive to leptin 

[8]. In humans, treatment with recombinant variant CNTF resulted in more weight loss than 

placebo [9]. Thus, CNTF causes weight reduction in animal models and humans by leptin-

like, but possibly leptin-independent pathway. 

   Of the cytokines, IL6 has many characteristics in common with leptin as an adiposity 

signal [10]. Besides in adipose tissue, IL6 is also expressed in hypothalamic nuclei involved 

in the regulation of energy homeostasis [11]. In the brain, IL6 decreases food intake [12] 

and enhances energy expenditure. Loss of circulating IL6 in IL6 null mice was associated 

with mature-onset obesity and low energy expenditure [13]. Central injection of IL6 in 

these animals led to increased energy expenditure. In humans, IL6 levels in the central 

nervous system (CNS) were found to be negatively correlated with fat mass [14].  

   In the CNTF gene, a G-to-A substitution at position -6 from the second exon was 

described by Takahashi et al. [15]. This splice mutation leads to a frame shift resulting in 

the total absence of functional CNTF protein in A/A homozygotes and approximately 

halved expression in heterozygotes [15]. In males homozygous for this CNTF null 

mutation, a higher body weight and BMI was observed [16]. As CNTF administration leads 

to weight loss, lack of CNTF due to the presence of the polymorphism may therefore result 

in decreased activation of anorectic pathways and consequently in an increase in body 

weight.  

   A polymorphism in the promoter region of the IL6 gene is the G-to-C substitution at 

position -174 [17]. The C-allele of this polymorphism was found to be associated with 

lower IL6 expression and lower plasma IL6 levels [17-19]. Subjects with the C/C genotype 

were shown to have lower energy expenditure [18]. In men, the IL6 -174 G/C 

polymorphism was also observed to be related with BMI [20], although this relationship is 

not consistently found [21]. Regarding weight gain, preliminary results from the present 

study indicated possible interaction between IL6 -174 G/C and uncoupling protein-2 

(UCP2) polymorphisms. UCP2 is an inner mitochondrial membrane protein widely 
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expressed, including in white adipose tissue and skeletal muscle [22], and is likely involved 

in energy expenditure [23]. Although UCP2 polymorphisms were not found to be 

associated individually with weight gain [24], these polymorphisms may be involved in 

weight gain in interaction with CNTF null G/A and IL6 -174 G/C. Therefore, we 

investigated in this study the effect of CNTF null G/A, IL6 -174 G/C and their interactions 

with UCP2 polymorphisms on weight gain in a general population. 

 

Methods 

 

Study population 

 

   Two large population-based Dutch cohorts (Maastricht and Doetinchem) have been 

followed up between 1987 and 1998 [25]. For the present study, subjects were selected 

from these cohorts to obtain a group of subjects with stable weight and a group of subjects 

that gained weight during the follow-up period. Criteria to include and exclude subjects for 

participation in this study are shown in Box 1. More detailed information is provided by 

Van Rossum et al. [24]. 

   Subjects with stable weight were frequency matched with weight gainers for age, cohort 

and smoking status. Subjects with missing observations for baseline leptin measurements 

(n=34) and subjects with missing observations for the CNTF polymorphism (n=3) were 

excluded. Totally 545 subjects were available for the analyses, 281 individuals with stable 

weight and 264 individuals that gained weight. Non-fasting blood samples were taken at the 

Municipal Health Services of Maastricht and Doetinchem. Both whole blood samples, in 

EDTA-coated vacutainer tubes, and EDTA-plasma samples were stored. Informed consent 

for using the stored blood samples for research purposes was given by all subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 1 

Criteria to include subjects: 

• Subjects with age between 20 and 40 years 

• Subjects that gained weight, the top decile of distribution of average weight 

gain per year 

o equal to, or more than 1.3 kg/year in Maastricht 

o equal to, or more than 1.4 kg/year in Doetinchem 

• Subjects from both cohorts with stable weight, between -0.3 and 0.3 kg/year  

 

Criteria to exclude subjects: 

• Subjects using a energy or fat restricted diet 

• Subjects using more than five glasses of alcoholic beverages per day 

• Subjects with a chronic disease or serious illness 

• Subjects who changed smoking habits recently 

• Women who were pregnant at baseline or follow up 

• Subjects with a follow-up of less than four years 
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Measurements 

 

Anthropometric measurements 

   Weight at baseline and weight at the second measurement were measured at the 

Municipal Health Centre, with the exception of the second measurement for participants 

from Maastricht, which was self-reported (n=234). Subjects were measured at the 

Municipal Health Centre wearing light indoor clothing without shoes. For self-reported 

measurements it was assumed that subjects wore less clothing. Therefore, 1.5 kg was added 

to the weight of self-reported measurements. Weight at baseline was divided by height 

square (in kg/m2) to obtain the body mass index (BMI) at baseline. The difference in weight 

between the second and first measurement was calculated and divided by the follow-up 

time (in years) to take differences in the follow-up period into account. This average annual 

weight gain was used as outcome measure. 

 

Laboratory analyses 

 

Leptin 

   Leptin concentrations were measured in duplicate in the non-fasting plasma samples by 

radioimmunoassay (HL-81K kit, Linco Research Inc., St. Charles, MO). 

 

Genotyping of CNTF G/A null mutation, IL6 -174 G/C, UCP2 A55V and UCP2 del/ins 

   Genomic DNA was extracted from frozen buffy coats [26]. Genotyping of the G>A null 

mutation at position -6 before the second exon of the CNTF gene (rs1800169), was 

performed by using commercially available TaqMan SNP Genotyping assay (Applied 

Biosystems, Nieuwerkerk a/d IJsel, The Netherlands). The procedure was performed 

according the manufacturer’s protocol and measured on an Applied Biosystems 7900 HT 

Fast Real-Time PCR System. Allelic calls were determined semi-automatically with the aid 

of the allelic discrimination software of Applied Biosystems. 

   UCP2 A55V (rs660339) has been determined by restriction fragment-length 

polymorphism analysis. The PCR products (UCP2 A55V: forward primer 

GGGCCAGTGCGACCTACAG and reverse primer ATGCGGACAGAGGCAAAGC) 

were digested with Ecl HK I, electrophoresed on a 3% agarose gel with ethidium bromide 

and visualized by UV transillumination.  

   IL6 -174 G/C (rs1800795) and UCP2 del/ins were determined by PCR-Pyrosequencing. 

The following primers were used for IL6: forward primer 

GCCTCAATGACGACCTAAGC, reverse biotin labeled primer 

TCATGGGAAAATCCCACATT and pyrosequence primer CCCCTAGTTGTGTCTTGC.  

   Primers used for UCP2 del/ins were: forward primer CAGTGAGGGAAGTGGGAGG, 

reverse biotin labeled primer GGGGCAGGACGAAGATTC. The biotinylated PCR 

products were immobilized on streptavidin-coated Sepharose beads (Amersham 

Biosciences). A sodium hydroxide solution was added to generate single-stranded DNA 

and the samples were washed and dissolved in annealing buffer. After adding the sequence 

primer, annealing was performed at 80°C for 3 min and the sequence reaction was 

performed automatically with a PSQ96 system by using a SNP reagent kit (Pyrosequencing 

AB, Sweden). 
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Statistical analysis 

 

   Hardy-Weinberg equilibrium for the different SNPs was calculated in the weight stable 

group, using the chi-square test. The CNTF, IL6 and UCP2 del/ins polymorphisms were in 

Hardy-Weinberg equilibrium (HWE). For UCP2 A55V deviation from HWE was observed 

(p=0.01). This deviation is not very strong and therefore we included UCP2 A55V in the 

analyses. Linkage disequilibrium (LD) between the UCP2 polymorphisms was present 

(r=0.63, p<0.0001).  

   All further statistical analyses were performed for men and women separately and 

adjusted for matching criteria, i.e. age, cohort and smoking status. The relationship between 

each of the CNTF and IL6 polymorphisms and weight gain was analyzed by the chi-square 

test. Logistic regression analyses were performed to study the effect of these 

polymorphisms and their interaction effect with leptin on weight gain, and to obtain risk 

estimates for the multi-locus genotypes for combinations of CNTF, IL6 and UCP2 

polymorphisms that were shown to have an important effect on weight gain by the 

interaction graph (see below). Weight at baseline was also included in the logistic 

regression model, as a significant difference between the stable weight and weight gainers 

group was observed. To perform the analyses SAS software version 9.1 (SAS institute Inc., 

Cary, NC, USA) was used. 

 

Interaction entropy graph 

   To obtain a measure of importance for the different SNP-SNP interactions we obtained an 

interaction entropy graph [27-29], for men and women separately. This graphical model is 

useful to compare the independent main effects of polymorphisms with the pair-wise 

interaction effect between polymorphisms. Positive or negative entropy values for pair-wise 

SNP interactions indicate that besides the two individual SNP effects information is 

explained by their interaction. Positive entropy values for interactions indicate a synergistic 

interaction whereas negative entropy values indicate the presence of redundant information. 

To create the entropy-based interaction graph the Orange machine learning software was 

used, which is open-source and freely available [30] at http://www.ailab.si/orange. 

 

Results 

 

Study population 

   The mean age at baseline for the individuals in this study population was 29.3 years, with 

a range from 20.2 to 39.8 years (table 1). BMI at baseline was on average 23.0 kg/m2, 

ranging from 16.3 to 37.8 kg/m2. 
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Table 1: Characteristics of the study population. 

Results are presented as mean ± SD, except for smoking status which is given in percentages. 

 

Effect of CNTF and IL6 polymorphisms on weight gain 

   The interaction entropy graphs (figure 1A and 1B) show the individual effects of CNTF, 

IL6 and the two UCP2 polymorphisms and the pair-wise interactions between these 

polymorphisms on weight gain for men and women, respectively. For men, the amount of 

entropy explained by IL6 -174 G/C is 1.32% and a smaller effect was found for CNTF G/A 

(1.01%). CNTF G/A in combination with IL6 -174 G/C explained 2.36% in addition to the 

individual effects, suggesting interaction between these two polymorphisms. For women, 

the CNTF polymorphism explained 2.11% of the entropy, whereas an effect of the IL6 -174 

G/C is absent (0.58%). Also, no interaction effect between CNTF G/A and IL6 -174 G/C is 

present (0.41%). These results of the interaction graphs are in accordance with the results of 

traditional methods. In table 2 the allele and genotype frequencies for CNTF G/A and IL6 -

174 G/C are shown. An association between IL6 -174 G/C and weight gain was observed in 

men, a tendency for weight gain when taken dichotomously (p=0.09) and a significant 

effect when taken as a continuous trait (p=0.03). In women, a clear significant association 

of CNTF G/A with weight gain was found, both when taken dichotomously (p=0.004) and 

continuously (p=0.0008).  

Stable weight Weight gain Population characteristics 

Men Women Men Women 

Number of subjects 134 147 127 137 

     

Baseline     

Age (years) 28.9 ± 5.6 29.9 ± 6.0 28.1 ± 5.9 30.0 ± 5.9 

Weight (kg) 76.6 ± 10.0 63.5 ± 8.1 79.4 ± 10.9 66.3 ± 11.5 

Height (cm) 1.80 ± 0.07 1.67 ± 0.06 1.82 ± 0.07 1.67 ± 0.07 

BMI (kg/m2) 23.3 ± 2.8 22.3 ± 2.8 23.6 ± 3.0 23.1 ± 3.9 

Leptin (µg/L) 3.47 ± 2.19 10.6 ± 6.07 4.02 ± 2.56 13.5 ± 10.8 

Smoking status (%) 35.1 33.3 36.2 35.0 

     

Follow-up     

Follow-up time (years) 7.2 ± 1.9 6.8 ± 1.6 6.9 ± 1.7 6.7 ± 1.5 

Weight (kg) 75.5 ± 10.0 62.5 ± 8.0 90.5 ± 11.5 77.6 ± 12.5 

Weight gain (kg/year) 0.06 ± 0.17 0.08 ± 0.16 1.86 ± 0.54 1.95 ± 0.60 

BMI (kg/m2) 23.4 ± 2.8 22.5 ± 2.8 27.4 ± 3.3 27.7 ± 4.3 
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A       B 

 
Figure 1A and 1B: Entropy based interaction graph for men and women, respectively. The 

percentages in the boxes represent the amount of entropy of weight gain explained by the individual 

SNP-effects, whereas the percentages at the arrows represent the amount of entropy of weight gain 

explained by pair-wise interaction effects, on top of the two individual SNP effects. Positive entropy 

values for pair-wise SNP interactions indicate a synergistic interaction whereas negative entropy 

values indicate the presence of redundant information.  

 

   Similar results were obtained using logistic regression analyses (adjustment for age, 

cohort, smoking status and weight at baseline did not alter the results). Men with the IL6 -

174 C/C genotype had an increased risk for weight gain (odds ratio (OR)=2.26, 95%CI: 

1.08-4.75, p=0.03) compared to men with the G/G genotype. Including interaction between 

CNTF and IL6 polymorphisms in the model, significant multi-locus effects were observed 

in men. The nine multi-locus genotypes are depicted in figure 2. 



  

 

Table 2: Relationship between CNTF G/A and IL6 -174 G/C polymorphisms with weight gain dichotomous and weight gain continuous. 

Men Weight gain/year  Women Weight gain/year  

SNP genotype 

stable  

weight 

(n=134) 

weight  

gainers 

(n=127) 

χ2  

p-value 

continuous 

p-value 

stable  

weight 

(n=147) 

weight  

gainers 

(n=137) 

χ2  

p-value 

continuous 

p-value 

CNTF G/A G/G 100 (75%) 92 (72%) 0.17 0.40 116 (79%) 87 (64%) 0.004 0.0008 

 G/A 27 (20%) 33 (26%)   31 (21%) 50 (36%)   

 A/A 7 (5%) 2 (2%)   - -   

 
allele         

 G 0.85 0.85 0.81  0.89 0.82 0.009  

 A 0.15 0.15   0.11 0.18   

 
genotype         

IL6 -174 G/C G/G 60 (45%) 46 (36%) 0.09 0.03 57 (39%) 56 (41%) 0.32 0.33 

 G/C 59 (44%) 55 (43%)   74 (50%) 59 (43%)   

 C/C 15 (11%) 26 (20%)   16 (11%) 22 (16%)   

 
allele 

        

 G 0.67 0.58 0.04  0.64 0.62 0.70  

 C 0.33 0.42   0.36 0.38   
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Conclusions for multi-locus genotypes including the CNTF A/A genotype and for the 

multi-locus genotype CNTF G/A with IL6 -174 C/C can not be drawn as the number of 

subjects for these multi-locus genotypes are too small. The results show that having two 

mutant alleles in IL6 (OR=2.74, 95%CI: 1.14-6.59, p=0.02) or a mutant allele for both 

CNTF and IL6 increases the risk of weight gain (OR=2.98, 95%CI: 1.10-8.07, p=0.03). For 

women, an increased risk for weight gain was observed for the CNTF G/A genotype 

(OR=2.15, 95%CI: 1.27-3.64, p=0.004). No significant association with weight gain was 

observed for the combination of CNTF and IL6 polymorphisms.  

   Including baseline leptin level in the model did not alter the results for both men and 

women. Furthermore, interaction effects of CNTF G/A with leptin (p=0.65 and p=0.55 for 

men and women, respectively), or IL6 -174 G/C with leptin (p=0.97 and p=0.28 for men 

and women, respectively) on weight gain were found to be non-significant. 

 

 
 

Figure 2: Combination of CNTF G/A with IL6 -174 G/C in men.  

* Significant at the 0.05 level 

** Significant at the 0.01 level 

ref: reference group 

In each cell, the left bar indicates the number of weight gainers and the right bar the number of stable 

weight individuals. The odds ratio estimate is shown at the upper right corner.  
 

Effect of CNTF and IL6 polymorphisms in interaction with UCP2 polymorphisms on weight 

gain 

   The interaction graphs (figure 1A and 1B) confirm previous results [24] that main effects 

of both UCP2 polymorphisms on weight gain were absent in both men and women. 

However, in men, the amount of entropy explained by the interactions between IL6 -174 



Effects of CNTF, IL6 and UCP2 on weight gain 

77 

G/C and UCP2 A55V and between IL6 -174 G/C and UCP2 del/ins was high (3.14% and 

3.55%, respectively), indicating interaction effects between these polymorphisms on weight 

gain. In women, interaction effects between CNTF G/A and the UCP2 polymorphisms were 

present (1.93% and 2.35%).  

   For men, the combination of IL6 -174 G/C with the UCP2 polymorphisms are depicted in 

figure 3A and 3B. A strongly increased risk is observed for individuals who have the IL6 -

174 C/C genotype in combination with the wild-type homozygous or heterozygous 

genotype for UCP2 A55V (OR=4.57, 95%CI: 1.54-13.6, p=0.006 and OR=5.33, 95%CI: 

1.44-19.8, p=0.01, respectively). A significantly increased risk of weight gain is also 

observed for the multi-locus genotypes of IL6 -174 G/C with UCP2 55 A/A (OR=2.49, 

95%CI: 1.10-5.65, p=0.03) and IL6 -174 G/G with UCP2 55 V/V (OR=3.35, 95%CI: 1.08-

10.4, p=0.04). The frequency bars show a similar pattern for the combination of IL6 

polymorphism with the UCP2 del/ins polymorphism (figure 3B), although only the multi-

locus genotype of IL6 -174 C/C with UCP2 del/ins was found to be significant at the 0.05 

level (OR=8.25, 95%CI: 1.69-40.3, p=0.009). 

 

 
 
Figure 3A: Combination of IL6 -174 G/C with UCP2 A55V in men.  

* Significant at the 0.05 level 

** Significant at the 0.01 level 

ref: reference group 

In each cell, the left bar indicates the number of weight gainers and the right bar the number of stable 

weight individuals. The odds ratio estimate is shown at the upper right corner.   
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Figure 3B: Combination of IL6 -174 G/C with UCP2 del/ins in men. 

* Significant at the 0.05 level 

** Significant at the 0.01 level 

ref: reference group 

In each cell, the left bar indicates the number of weight gainers and the right bar the number of stable 

weight individuals. The odds ratio estimate is shown at the upper right corner.  
 

   For women, the combinations of CNTF G/A with the UCP2 polymorphisms are shown in 

figure 4A and 4B. From these figures it can be seen that a significantly increased risk is 

present for the group with one mutant allele for the CNTF polymorphism in combination 

with the wild-type or heterozygous genotype for either of the UCP2 polymorphisms. This 

risk pattern corresponds with the risk pattern observed in men, only, instead of the IL6 -174 

G/C polymorphism, the CNTF polymorphism plays a role in women. In women with one 

mutant allele for CNTF, a significant increased risk is observed in combination with UCP2 

55 A/A (OR=6.98, 95%CI: 2.54-19.2, p=0.0002) and UCP2 55 A/V (OR=2.28, 95%CI: 

1.02-5.08, p=0.04). This increased risk was also observed in women with one mutant allele 

for CNTF in combination with UCP2 del/del (OR=4.18, 95%CI: 1.92-9.13, p=0.0003) and 

UCP2 del/ins (OR=2.30, 95%CI: 1.03-5.12, p=0.04). 
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A       B 

  
Figure 4A: Combination of CNTF G/A with UCP2 A55V in women.  

Figure 4B: Combination of CNTF G/A with UCP2 del/ins in women.  

* Significant at the 0.05 level 

** Significant at the 0.01 level 

ref: reference group 

In each cell, the left bar indicates the number of weight gainers and the right bar the number of stable 

weight individuals. The odds ratio estimate is shown at the upper right corner. 
 

Discussion 

 

   We report in a Dutch general population the sex-specific effects of CNTF G/A, IL6 -174 

G/C and their pair-wise interactions with UCP2 polymorphisms on weight gain. CNTF and 

IL6 individually are associated with weight gain in this cohort in women and men, 

respectively. As shown by Kubaszek et al. [18], subjects with the C/C genotype of IL6 -174 

polymorphism had significantly lower energy expenditure and basal metabolic rate 

compared to carriers of the G allele, which corresponds to the results obtained for men in 

this study. Although in their study this effect was measured in men and women together, 

the number of men in their study outnumbered the number of women. In our study no main 

effect for CNTF was present in men, but the combination of CNTF and IL6 increased the 

risk for weight gain. The number of observations present for some multi-locus genotypes 

was not sufficiently large to draw strong conclusions. However, together these results 

indicate that in men IL6 is more potent than CNTF in weight regulation and that two 

mutant alleles in IL6 or at least one mutant allele in both CNTF and IL6 polymorphisms 

increase the risk of weight gain.  
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   No interaction effects between CNTF and IL6 were found in women, while a main effect 

was present for the CNTF G/A genotype. The IL6 polymorphism was not associated with 

weight gain in women. This can be due to the high estrogen level present in premenopausal 

women that blunts the effect of IL6 [31, 32]. In our study population the presence of one 

mutant allele in the CNTF polymorphism, most likely lowering the concentration of CNTF, 

in women was already a sufficient condition to increase the risk for weight gain.  

   From the results of both men and women it is tentative to speculate that in general a 

strong decrease in IL6 protein concentrations or a mild decrease in both CNTF and IL6 

proteins is sufficient to increase the risk for weight gain. This hypothesis suggests a 

biological model in which IL6 and CNTF cross-activate each other’s receptors and/or 

activate parallel energy expenditure pathways (figure 5). As the human proteins CNTF and 

IL6 have high similarities in 3D-structure, as can been seen from the VAST-program 

(http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml), and their receptors show similar 

signaling capabilities [6], cross-activation seems reasonable. The VAST-program also 

shows structural homology between leptin and CNTF or IL6. However, associations 

between CNTF and IL6 polymorphisms and weight gain did not change after adjusting for 

leptin at baseline in the model. Furthermore, interaction effects between these 

polymorphisms and leptin were non-significant. Therefore, CNTF and IL6 presumably 

influence weight regulation independently from leptin. 

 

 
 
Figure 5: Biological model including the effect of CNTF, IL6, leptin and UCP2 on energy 

expenditure. For simplicity, direct effects of IL6 and leptin on peripheral tissue are not included. 

Dashed lines indicate that CNTF and IL6 may cross-activate each other’s receptors. The interaction 

between CNTF and IL6 is present in men, whereas IL6 is blunted in women due to high estrogen 

levels. ARC: arcuate nucleus. PVN: paraventricular nucleus. VMN: ventricular medial nucleus. 

DMN: dorsomedial nucleus. LHA: lateral hypothalamic area. β-AR: beta adrenergic receptor. 
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   In this study, the UCP2 polymorphisms were not individually associated with weight 

gain. This is in line with other studies in which UCP2 polymorphisms were not associated 

with obesity-related phenotypes [24, 33, 34]. However, taking interactions between 

polymorphisms into account, UCP2 polymorphisms were found to have an effect in 

combination with CNTF and IL6 polymorphisms in women and men, respectively. This 

finding shows that relying only on univariate analyses is not sufficient for the detection of 

important SNPs. We found that the multi-locus genotypes of IL6 -174 C/C with UCP2 55 

A/A and A/V in men and CNTF G/A with UCP2 55 A/A and A/V in women show a 

significantly increased risk for weight gain. In men strong interactions of IL6 with UCP2 

polymorphisms are present, but not between CNTF with UCP2. This is also an indication 

that IL6 may be more dominant than CNTF in weight regulation. As IL6 in women may be 

blunted, only interactions between CNTF and UCP2 are present in women.  

   The interactions of CNTF and IL6 with UCP2 have an effect on weight gain most likely 

via influencing energy expenditure. CNTF, IL6, and leptin have an effect on hypothalamic 

nuclei, which in turn alter the activity of the sympathetic nervous system (SNS). By the 

secretion of norepinephrine, the SNS controls the UCP2 expression and thereby 

thermogenesis in peripheral tissue [35]. Studies in rats demonstrate that leptin increases 

sympathetic activation of UCP1 gene expression in brown adipose tissue [36]. IL6 

administration to CNS also increases sympathetic induction of UCP1 in brown adipose 

tissue, reducing body weight [37]. Whereas UCP1 is primarily expressed in brown adipose 

tissue, UCP2 is widely expressed including in white adipose tissue and skeletal muscle 

[38]. As UCP2 is structurally homologous to UCP1 [38], similar effects can be expected for 

UCP2. Indeed, central infusion of leptin was shown to increase the expression of UCP2 in 

white adipose tissue [39]. Similar effects for CNTF and IL6 may be expected.  

   Some issues regarding this study should be considered. First, for IL6, CNTF and UCP2, 

results were obtained at the SNP level and not the protein level. Biological interpretations at 

the protein levels should therefore be considered as indicative. However, CNTF [15] and 

IL6 [17-19] polymorphisms were found to influence their corresponding protein levels. 

Therefore it is likely that their results correspond to the protein level. Secondly, in this 

study UCP2 A55V was not in HWE, therefore conclusions for this polymorphism should be 

considered cautiously. However, similar results were obtained for the UCP2 del/ins 

polymorphism, which was in HWE. These UCP2 polymorphisms were in LD. Therefore it 

is likely that a true association between UCP2 A55V, in interaction with either CNTF or 

IL6 polymorphisms, and weight gain exists. Also, weight at the second measurement was 

self reported for participants from Maastricht. However, the distribution of weight gainers 

and weight stable group over the CNTF and IL6 genotypes was similar between the two 

cohorts (Doetinchem and Maastricht), in both men and women, suggesting that the self-

reported measurements did not influence the associations found in this study. Furthermore, 

self-reported measurements are invariably under reported [40], resulting in an attenuation 

of the observed associations. Therefore, true associations would be even stronger than the 

associations found in our study. 

   In conclusion, CNTF and IL6 polymorphisms are sex-specifically related to weight gain, 

independently of circulating leptin level. CNTF and IL6 polymorphisms in interaction with 

UCP2 polymorphisms also have strong effects on weight gain, in women and men 

respectively. These results suggest that CNTF and IL6, via leptin-independent pathways, 
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together with UCP2 influence energy expenditure and thereby weight gain in a sex-specific 

manner.  
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Abstract 

 

   In whole genome microarray studies major gene expression changes are easily identified, 

but it is a challenge to capture small, but biologically important, changes. Pathway-based 

programs can capture small effects but may have the disadvantage of being restricted to 

functionally annotated genes. A structured approach toward the identification of major and 

small changes for interpretation of biological effects is needed. We present a structured 

approach, a framework, that addresses different considerations in 1) the identification of 

informative genes in microarray datasets and 2) the interpretation of their biological 

relevance. The steps of this framework include gene ranking, gene selection, gene 

grouping, and biological interpretation. Random forests (RF), which takes gene-gene 

interactions into account, is examined to rank and select genes. For human, mouse, and rat 

whole genome arrays, less than half of the probes on the array are annotated. Consequently, 

pathway analysis tools ignore half of the information present in the microarray dataset. The 

framework described takes all genes into account. RF is a useful tool to rank genes by 

taking interactions into account. Applying a permutation approach, we were able to define 

an objective threshold for gene selection. RF combined with self-organizing maps 

identified genes with coordinated but small gene expression responses that were not fully 

annotated but corresponded to the same biological process. The presented approach 

provides a flexible framework for biological interpretation of microarray datasets. It 

includes all genes in the dataset, takes gene-gene interactions into account, and provides an 

objective threshold for gene selection. 
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Introduction 

 

   Transcriptome analysis using whole genome microarrays is an elegant and widely used 

approach for identification of the molecular mechanisms underlying diet-induced cellular or 

physiological changes. Both major effects as well as a wide overview of more subtle 

changes can be obtained. While the major differences are important for classification and 

identification of individual response genes, the smaller changes are an integral part of the 

physiological response and are essential for the identification of the physiological processes 

that are affected by the challenge or intervention. This is especially true in nutrition, where 

dietary interventions result in modest, but biologically important gene expression changes 

[1-3]. In the medical field it is also increasingly recognized that the more subtle changes 

contribute importantly to the outcome [4-6].  

   To translate microarray data into functional physiological information, a set of genes with 

the maximum amount of information and a minimum of noise is needed. Although a large 

number of methods exist to select genes from microarray datasets, most methods aim to 

identify the smallest possible set of genes that still can discriminate, for example, to classify 

malignancies, predict therapeutic outcomes, or diagnose physiological responses [6, 7]. 

These methods may not always be appropriate to select a larger set of genes for biological 

interpretation that includes the smaller changes. These smaller changes are part of the 

response to medication or disease, which occurs through the interactions of multiple genes, 

via signaling pathways or other functional relationships. Small changes, variability among 

individuals, and the often small sample sizes on one hand and the large number of genes 

tested on the other make it difficult to distinguish true differences from noise [4, 8]. Careful 

planning and execution of microarray experiments nowadays offers technically high-quality 

data, with a minimum of noise. However, the combination of small gene expression 

changes and the needed selection of the largest informative set of genes demands 

sophisticated selection methods. A structured framework that incorporates the different 

considerations in the identification of informative genes and the interpretation of their 

biological relevance is needed. Here we describe the steps of such a framework and address 

the following considerations: gene ranking, gene selection, gene grouping, and biological 

interpretation. 

 

Gene ranking 

   To identify genes of relevance within the total dataset, genes are ranked by a measure of 

importance. As such, fold change has often been used. However, fold change is not a 

reliable measure because it does not take variability in the data into account [9, 10]. 

Therefore, other measures that do take variability into consideration should be used. The 

most commonly used approach for gene selection in two-class microarray studies that takes 

variability into account is the conventional t-test, while ANOVA is used for multi-class 

studies. Genes are tested independently, and a p-value is assigned to each gene, which can 

be used to rank genes by their importance. However, by ranking genes by a univariate test-

statistic such as the t-statistic, all genes in the dataset are assumed to be independent and 

gene-gene interactions are not taken into account. In biological responses, gene-gene 

interactions will take place because these responses often result from coregulation of genes 

[11, 12]. Consequently, by testing each gene independently, weak to small genetic effects 
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that only in interaction make an important distinction between different study groups will 

not be detected by using a univariate test. 

 

Gene selection 

   For functional interpretation the total ranked gene set can be used, but this will include 

noise, and selection of the most important genes is needed. The difficulty in gene selection 

is how to define the threshold. The threshold for selecting the differentially expressed genes 

influences the functional interpretation. Selection of genes is to some extent subjective, 

because there are no clear thresholds for existing methods. For the t-test, the threshold 

choice is flexible and the significance level is chosen by the researcher [13, 14]. However, a 

threshold should preferably be defined in an objective way. Procedures can be applied to 

correct for multiple testing, such as the family-wise error rate (FWER) or the false 

discovery rate (FDR) [15, 16]. However, these procedures can be overly stringent, resulting 

in identification of only the most important changes and possibly discarding other relevant 

genes [5]. 

 

Gene grouping 

   Each probe on a microarray corresponds to a specific nucleotide sequence, which 

represents a specific gene. Most genes known to be involved in a functional category are 

annotated in annotation databases, such as the Gene Ontology (GO) database [17], Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [18], or Entrez Gene [19]. Whole genome 

microarrays contain annotated genes as well as non-annotated genes. Although the extent to 

which spots on whole genome microarrays are annotated has not exactly been established, 

many known genes are not annotated in functional analysis tools, for example, GO 

annotated, and are thus lost for biological interpretation when a pathway program uses the 

GO database as source [19, 20]. However, the non-annotated genes may provide important 

new targets. Clues on the function of these genes can be obtained by establishing 

similarities in expression behavior to known genes. Genes with similar gene expression can 

be identified with self-organizing maps (SOM) and hierarchical clustering [21-23]. SOM 

has the advantage that it provides an ordering of clusters, whereby each cluster consists of a 

group of genes with similar gene expression profiles. Grouping based on similarity in 

expression behavior is also useful for functional interpretation of known genes.  

   Biological interpretation is the final step in this framework. A useful way to interpret 

microarray data is pathway analysis. In pathway analysis the effects of treatment on 

biological processes or coregulated gene sets are studied, rather than effects on individual 

genes [19, 24]. A commonly used approach is to import a list of genes that meets the 

threshold criteria into a pathway program, such as the freely available ErmineJ [25], 

GeneMapp, David/EASE, SAFE [13], or PLAGE [26] or commercially available programs 

like Metacore [27] or Ingenuity. These programs search through public or private databases 

to link related genes that are grouped in biological processes.  

   Recently, new methods have been developed for functional interpretation that circumvent 

the need to preselect genes [28]. One of these methods is gene set enrichment analysis 

(GSEA) [29]. This method enables detection of important pathways where all genes in a 

predefined set (for instance a GO category) change in a coordinated manner [4, 30]. This is 

highly relevant for studies where subtle, but coordinated changes in expression can be 
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expected. However, GSEA may have the disadvantage that it is restricted to, and therefore 

only informs about, functionally annotated genes. Thus not all information that is available 

in the dataset is used. Nevertheless, the application of GSEA has shown that small effects 

can be captured when coordinate gene expression changes are taken into account [29].  

   In this study we describe a framework for functional interpretation of microarray-based 

expression studies using two real gene expression datasets. For gene ranking and selection, 

we have examined the usefulness of random forests (RF) [31]. RF is one of the statistical 

methods that have been developed to select genes from large datasets containing many 

variables in small sample sizes. RF and other supervised methods like support vector 

machines (SVM) and discriminant analysis (DA) have mainly been used to select genes that 

provide the best classification performance for diagnostic purposes (see, e.g. [32, 33]). In 

microarray studies, RF was shown to outperform other classification methods, especially 

when the number of classes is moderate [34, 35]. RF could also be a suitable tool to rank 

and select a larger subset of genes for further interpretation, because it has many advantages 

[34]. One major advantage of RF is that it provides an importance measure for each gene, 

which can be used to rank the genes. Furthermore, the advantage of this importance 

measure is that it takes gene-gene interactions in the ranking of genes into account. In this 

way, RF is able to capture not only the main effects in a dataset but also the variables with 

weak to small genetic effects that mainly contribute by interactions with other genes. 

Interaction between genes increases the importance of the individual interacting genes, 

making them more likely to be given high importance relative to other genes. Genes with a 

higher importance index (Im) are more associated with differences resulting from the 

treatment. A simulation study has been performed, showing that RF outperforms a 

univariate method [36]. This study showed that the more interactions are present, the better 

RF performs compared with a univariate method. Because RF takes gene-gene interactions 

into account in the ranking of genes, this method was applied within this framework as a 

tool to rank genes at the first step. However, RF does not provide a threshold to define 

which genes should be selected for further interpretation. Therefore, after applying RF to 

rank genes by their Im, we examined an approach to define a threshold for the genes ranked 

by RF to select biologically important genes in an objective way. After selection, genes 

were clustered by SOM, which clusters genes with similar gene expression in ordered 

profile groups. The advantage of combining results obtained with SOM and information 

obtained at previous steps is that insight can be obtained as to whether genes within the 

same profile contribute by their main effect and/or whether interaction effects are present 

and whether profiles containing relevant biological information are obtained. Finally, for 

each gene expression dataset, the selected genes obtained by RF were incorporated in 

pathway programs (Metacore and ErmineJ) and compared with the results obtained with 

GSEA. Together this provides a stepwise framework focusing on the different 

considerations in the identification of informative genes and the interpretation of their 

biological relevance. 
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Methods 

 

Datasets 

   To illustrate and examine the framework considerations, we used two whole genome gene 

expression datasets obtained from the same dietary study. The animal welfare committee of 

Wageningen University approved the experimental protocol. In this study, two groups of 

Wistar rats were fed different diets for 2 weeks. One group of rats received a control diet 

(n=12) and the other an experimental diet (n=12). The experimental diet was identical to 

the control diet but additionally contained fructo-oligosaccharides. Detailed analysis of the 

effects of the diet is the subject of another paper. The two datasets were obtained from two 

different tissues, colon and cecum. RNA from colon mucosa and cecum mucosa was 

isolated, reverse transcribed into cDNA, labeled, and individually hybridized to Agilent-

Whole Rat Genome Microarrays (G4131A). Labeling was performed by incorporating Cy5 

for individual samples and Cy3 for pooled RNA. Hybridization and washing were carried 

out according to Agilent protocols. A total of 24 arrays for colon were analyzed; one array 

did not pass the quality controls based on MA-plot and signal intensity distribution [9, 37]. 

Therefore, the colon dataset contained 23 arrays in total. The cecum dataset contained 22 

arrays in total, since two cecum RNA samples were excluded because of poor quality of 

RNA. We preprocessed the microarray datasets as described previously [38]. Only genes 

with an average signal 1.5 times above the background were taken into account for further 

data analysis, equal to 28,180 genes for colon and 21,049 genes for cecum. Gene 

expression values were log-transformed before statistical analyses were performed. The 

data have been deposited in NCBI’s Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession 

numbers GSE5943 and GSE8587. 

 

Statistical analyses 

   t-test. t-tests to obtain t-statistics and corresponding p-values for the differences in mean 

gene expression between the two treatment groups were performed with the program 

GeneMaths XT (Applied Math, Sint-Martens-Latem, Belgium). Within the same program 

FDR analyses according to the Benjamini and Hochberg procedure [15] were performed.  

 

   Random forests. In RF a group of tree-based models (the forest) can be used to rank genes 

with an important contribution to the treatment variable. Each tree starts with the total 

dataset, which is recursively split into smaller and more homogeneous groups to fit models 

for predicting the different treatment groups from the selected genes. Within the forest, 

different trees are obtained by bootstrap sampling and random subset selection. In more 

detail, each tree is constructed from a bootstrap sample of the total dataset. A bootstrap 

sample is obtained by sampling observations (e.g., rats) from the original dataset with 

replacement. The bootstrap sample contains the same number of observations as the 

original dataset, but some observations are sampled more than once, while others are left 

out. The sampled observations are used to construct the tree, whereas a class prediction is 

obtained for each left-out observation, based on its gene expression values. A prediction for 

the forest is obtained by aggregating the predictions over all trees for which the observation 

was left out. The prediction error of the forest is then the proportion of misclassified 
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samples, indicating the performance of the forest to correctly predict the class labels of the 

different observations. For each split in a tree, the gene that gives the best split is not 

selected from the total set of genes but from a random subset of genes. The number of 

randomly selected genes that is used to be searched through for the best split is referred to 

as mtry. RF performance is usually not sensitive to this parameter, and it is suggested to use 

genesofnrtotal    as a default value for mtry [31, 39]. Comparing the default value and values 

lower and higher than the default for both colon and cecum, we obtained similar prediction 

errors for different mtry values (data not shown). Therefore, default values for mtry 

( genesofnrtotal    ) were chosen for both colon (167 genes) and cecum (145 genes) to 

perform the RF analyses.  

   More important genes will discriminate better between the treatment groups and will 

therefore be present in most of the trees and more often selected at a split close to the total 

sample. On the other hand, less important genes will be less present in the different trees 

and selected at splits farther from the total sample. Importance of genes is defined by a 

measure referred to as the importance index, Im. For each gene, this Im is obtained by 

comparing the predictive performance of the forest for all genes with the predictive 

performance of the forest in which the values of the gene are randomly permuted in the 

trees for the left-out observations. Larger differences in the predictive performance give a 

larger Im, indicating more important genes. By permuting the values for one gene, not only 

is the effect of this gene taken into account, but also all possible interactions of this gene 

with other genes. Interactions between genes increase the Im for each of the genes that are 

part of the interaction. In this way, RF takes interactions between genes into account. 

Several measures of importance are available [39, 40]. To perform the RF analyses we used 

the scaled mean decrease in classification accuracy. Genes are ranked according to their 

importance. To obtain stable estimates of the Im, large numbers of trees in the forest are 

needed [36, 39]. Also, to capture as many important interactions as possible, huge numbers 

of trees are required. RF does not overfit; therefore we performed the analyses with a large 

number of trees (40,000). We used all genes in the dataset in the analysis, and Im was used 

as measure to rank the genes.  

   To obtain a threshold for selection of genes for subsequent interpretation, the permutation 

test [41, 42] was applied. We used 100 permutation datasets, in which the group labels are 

randomly permuted. For each permutation dataset, RF analysis was performed with the 

same parameter settings as for the observed dataset. Next, for each permutation dataset Im 

values for the genes were obtained and genes were ranked. The distribution of the Im values 

derived from the permutation datasets indicates how the Im values of the genes behave in 

the absence of a true association with the treatment. To define the threshold for selecting 

genes, two approaches were taken. The first approach was to determine the value of Im 

where the Im of the observed dataset was equal to, or lower than, the Im for at least 1 of the 

100 permutation datasets. This corresponds to a significance level of p<0.01. The second 

approach to define the threshold, which is explained and illustrated at the GeneSrF website 

[43], was to determine the number of genes with Im larger than the mean value of Im for the 

first ranked gene obtained from the 100 permutation datasets. However, this second 

approach yielded only a small number of genes, 11 for colon and 20 for cecum, with highly 

stringent p-values of 7 x 10-7 for colon and 9 x 10-6 for cecum. Since this limited number of 
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genes does not provide sufficient information for pathway analysis, we only used the first 

approach.  

   To examine whether RF provides reproducible results over different analyses, we 

performed several analyses (runs), each time using the same parameter settings but a 

different seed value. The seed value controls the random number generator, and different 

seed values generate different forests. The results can be repeated if the same seed value is 

used. We examined the reproducibility of RF by comparing the Im of the genes for different 

runs. Each run can return slightly different results because in RF each tree is constructed on 

a bootstrap sample of the observations (rats), and at each split of the tree the best 

discriminating gene is selected from a random subset of genes (mtry).  

   The permutation test that was used to determine the threshold of the Im was also used to 

obtain the significance of the prediction error of the RF model. For each permuted dataset, a 

prediction error was obtained by RF. The proportion of permutation datasets with a 

prediction error equal to or lower than the prediction error of the RF model of the observed 

dataset provided the significance of the model.  

   Software for RF is freely available, including R-packages [39, 44-46] and the original 

Fortran code [40]. For analyses with RF we have applied the R-package randomForest to 

obtain the Im for the different genes. 

 

Gene grouping: SOM 

   For the gene sets selected with the obtained RF threshold (935 genes in colon, 165 genes 

in cecum), SOM analyses were performed, in which genes with similar expression are 

grouped into gene expression profiles. We chose the number of profiles based on the 

number of genes per profile we expected to be biologically related, and it was therefore set 

at a mean of 10 genes per profile. This corresponds to 90 SOM profiles for colon and 16 for 

cecum. To distinguish between genes that mainly contribute by their interaction effect or 

their main effect, genes selected by RF were compared with the same number of genes 

ranked by t-test. We explored whether profiles consisting of genes only selected by RF 

were present, which indicate profiles consisting of gene-gene interaction effects.  

   To perform SOM analysis, both commercial (e.g., GeneMaths XT) and free open-source 

(e.g., Orange machine learning software [47] at http://www.ailab.si/orange) are available. 

In this study we used GeneMaths XT (Applied Math) software packages to obtain the SOM 

profiles. 

 

Biological interpretation: pathway analysis 

   For the genes selected by RF, we performed pathway analyses for biological 

interpretation. The pathway results obtained for genes selected by RF were compared with 

pathway results obtained for the same number of genes selected by t-test, to ensure 

comparability. For pathway analysis we used the freely available software ErmineJ [25] and 

the commercial program Metacore [27]. ErmineJ is a web-based application for 

identification of GO processes on input gene sets. Metacore is a package of GeneGo (St. 

Joseph, MI).  

   In ErmineJ we used overrepresentation analysis (ORA); in Metacore GO processes were 

used for pathway analysis. For both ErmineJ ORA analysis and Metacore GO processes, 

gene sets existing of 5–250 genes were tested. In both analyses, gene lists selected by RF or 
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t-test were classified into GO processes. These processes were ranked according to their p-

value, which represents the probability that a particular process is selected by chance. Each 

pathway program uses different statistical tests to calculate these probabilities; this issue is 

beyond the scope of this paper and is discussed by others [19, 48, 49]. For both programs 

we selected pathways with two selection criteria: 1) the pathways should have a p<0.001, 

and 2) the pathways should include at least three selected genes.  

   We also analyzed which biological pathways were enriched with GSEA [29]. In GSEA, 

enrichment of genes in a gene set is based on the ranking of the genes within the whole 

dataset [28]. We included functional c2 gene sets originated from KEGG, GenMapp, and 

BioCarta with 5–500 genes with FDR q-value<0.25 and ranked on normalized enrichment 

score (NES) and nominal p-value. 

 

Results 

 

Whole genome arrays are not fully examined in pathway analysis programs 

   Whole genome microarray analysis combined with pathway analysis is an attractive 

approach to identification of the effects of an intervention, but the analysis is limited to 

those genes that are annotated in the database used by the program. To assess completeness 

of annotation of whole genome arrays in pathway programs, we examined first the extent to 

which genes were incorporated in the analysis in three different pathway programs, 

Metacore (GeneGo), ErmineJ, and GSEA. This was performed for the two most widely 

used array platforms, Agilent and Affymetrix, and for three different species, human, 

mouse, and rat. Only 23–48% of the probes on whole genome microarrays are translated to 

functional categories by these programs (table 1). ErmineJ was not included because it does 

not provide the number of incorporated genes. Annotation in this program is based on the 

specific GO term(s) linked to the gene, which for the Agilent 44K rat array applies to 7,437 

genes (18%). Altogether, analysis only based on functional annotation and co-occurrence in 

gene sets leaves out at least half of the microarray data, and thereby potential new targets.  

 
Table 1: Percentage of probes from whole genome microarrays identified by the pathway programs 

Metacore and GSEA. 

Number of probes linked to program database 

Metacore* GSEA† 

Number of probes imported 

Number  Percentage Number Percentage 

Agilent      

Human 41675 12976 31 17517 42 

Mouse 41534 13714 33 19589 47 

Rat 41372 9489 23 14631 35 

Affymetrix      

Human 54675 22792 42 20606 38 

Mouse 45102 18105 40 21891 48 

Rat 44761 12259 39 13342 43 

* Spots linked to a GO-term 

† Spots linked to a gene symbol 
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Information content of gene expression datasets 

   In both gene expression datasets (p=28,180 for colon, p=21,049 for cecum) the extent of 

differential gene expression induced by the dietary treatment was small: in colon, 179 genes 

were differentially expressed with a change of >1.5-fold, while in cecum the number of 

differentially expressed genes was 164. Based on fold change the two datasets are similar in 

number of expressed genes and magnitude of differential expression (fold change). 

However, the datasets differed in the significance of expression, with the colon dataset 

containing substantially more significantly differentially expressed genes (table 2). With a 

t-test threshold of p<0.001, 803 genes were differentially expressed in the colon dataset, 

while 123 genes were differentially expressed in cecum. Application of FDR using a 

threshold of q<0.01 resulted in selection of 231 genes in colon and 19 genes in cecum. RF 

models were found to be significant in both colon (p<0.02) and cecum (p<0.01), indicating 

that gene expression differences were present.  

 
Table 2: Characteristics of the colon and cecum dataset. 

Fold change t-test FDR Dataset Total number of genes  

in dataset >1.5 fold* p<0.001 q<0.01 

Colon 28180 164 803 231 

Cecum 21049 179 123 19 

*Fold change experimental diet/control diet. 

 

Gene ranking: taking gene-gene interactions into account 

   Genes were ranked according to their Im obtained by RF. To obtain insight into the 

ranking of genes by RF, we compared the results from RF with the ranking of genes by the 

commonly used t-test. For the genes present in the dataset the absolute values for the t-

statistics are plotted against the Im of RF (see figure 1). In both datasets, Im obtained from 

RF does show a similar trend with t-statistics. Both RF and t-test rank genes in common 

(figure 1, Box A), indicating strong gene effects related to the treatment. Genes ranked high 

by RF, compared with t-test (figure 1, Box B), are indicative of weak gene effects that are 

likely to be related to the treatment in interaction with other genes. 
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Gene selection: defining an objective threshold 

   We aimed to define an objective threshold for Im by using a permutation approach (see 

Methods). This permutation test provides an indication of where noise starts to interfere 

with real gene effects. For both colon and cecum the highest-ranked genes from the 

observed dataset had Im values higher than the ranked Im values obtained from the permuted 

datasets (see figure 2). To define the threshold, we determined the Im value where genes in 

the observed dataset have equal or higher Im values relative to the genes in the permuted 

datasets. The point at which the Im values of the observed dataset equaled that of at least 1 

of the 100 permutated datasets was chosen as threshold, which is equal to a significance 

level for the Im of p<0.01. 

 

Figure 1: Plot of absolute value of t-statistics against Im for colon (left) and cecum (right) dataset. 

Box A: Genes highly ranked by both RF and t-test. Box B: Genes highly ranked exclusively by RF. 

 

   We performed 15 runs (each with a different seed value) resulting in very similar 

thresholds (results not shown). For colon a mean threshold of Im=0.906 and for cecum a 

mean threshold of Im=1.753 were obtained. For each run, the genes with Im values above the 

threshold were determined. Genes with higher Im values were always selected over the 

different runs. However, genes with ranking close to the threshold (lower Im values) were 

not selected over all runs; thus the selection of these genes varied between different runs. 

We chose to include all genes that were selected in at least one run and not only the 

overlapping genes, because the number of genes that were additionally selected over 

increasing numbers of runs decreased rapidly (table 3; figures 3A and B, for colon and 

cecum, respectively).  
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Figure 2A and 2B: Genes, of 100 random sets (black lines) and real sets with different seed values 

(colored lines), ranked by the Im values. For colon (A) and cecum (B) datasets. For full color figure, 

see page 165. 

 

 
 
 
 
 
 
 
 

 

 

Figure 3A and 3B: Genes selected by RF thresholds Im> 0.906 for colon (A) and Im>1.753 for 

cecum (B). The total number of selected genes is plotted against the number of runs. 

 

This likely indicates that additionally selected genes are truly affected by the treatment and 

not randomly selected noise. After 10 runs for colon and 11 runs for cecum, the proportion 

of genes additionally selected became and remained <2%. Therefore, more runs were not 

performed. Combining the results of different runs resulted in the selection of 935 genes 

above the threshold for colon and 165 genes above the threshold for cecum. These genes 

were selected as the set of genes being related to the treatment. 
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Table 3: Selection of genes by RF threshold. 

B: Cecum 

Genes added 

Run 

Number of  

genes* 

Total number  

of genes† Number Percentage 

1 110 110 - - 

2 109 120 10 9.1 

3 118 131 11 9.2 

4 112 138 7 5.3 

5 111 144 6 4.3 

6 108 147 3 2.1 

7 112 150 3 2.0 

8 108 154 4 2.7 

9 112 158 4 2.6 

10 115 161 3 1.9 

11 111 165 4 2.5 

12 114 166 1 0.6 

13 108 167 1 0.6 

14 115 168 1 0.6 

15 108 170 2 1.2 

* Number of genes selected with threshold Im>1.753.  

† The number of genes selected after each additional run. 

A: Colon     

Genes added 

Run 

Number of 

genes* 

Total number  

of genes† Number Percentage 

1 558 558 - - 

2 552 665 107 19.2 

3 558 740 75 11.3 

4 558 791 51 6.9 

5 557 825 34 4.3 

6 562 849 24 2.9 

7 542 873 24 2.8 

8 557 891 18 2.1 

9 564 911 20 2.2 

10 549 935 24 2.6 

11 560 945 10 1.1 

12 554 955 10 1.1 

13 540 966 11 1.2 

14 573 977 11 1.1 

15 547 985 8 0.8 

* Number of genes selected with threshold Im>0.906.  

† The number of genes selected after each additional run. 
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Comparison of gene selection by RF, t-test, and fold change 

   Genes selected based on the RF threshold (935 genes in colon and 165 genes in cecum) 

were compared with an equal number of genes selected by t-test. For t-test this resulted in 

inclusion of genes with p<0.0014 (q<0.04) for colon and p<0.0018 (q<0.23) for cecum. In 

colon 679 genes (72.6%) and in cecum 112 genes (67.9%) overlapped between RF and t-

test. As shown in the volcano plots (figure 4), gene sets selected by RF include the most 

significant genes based on t-test, as was also seen in figure 1. Furthermore, the volcano 

plots show that RF and t-test also differ in selection of genes. Several genes with high fold 

change, which would not have been selected based on t-test alone, are also selected by RF.  

   For both datasets, the set of selected genes by RF were used for subsequent gene grouping 

and biological interpretation. 

 

Figure 4: Volcano plots for colon (A) and cecum (B). Fold change is plotted against p-value. All 

genes are shown, genes selected by RF are shown in black (935 for colon, 165 for cecum).  

 

Gene grouping: obtaining gene expression profiles by SOM 

   For grouping of the genes selected by RF, we applied SOM analysis to find groups of 

highly correlated genes. While SOM is mostly used to identify patterns in time or as a result 

of multiple treatments [22], it will also identify patterns of coordinate changes over a 

number of animals. In figure 5, A and B, the groups of genes with similar expression are 

shown for colon and cecum, respectively. For both colon and cecum, profiles are present 

that consist mainly of genes that are selected exclusively by RF (light gray in figure 5). 

SOM analyses for genes selected by the t-test did not result in profiles consisting of genes 

exclusively selected by t-test (data not shown). Apparently, RF selects genes with main 

effects similarly to the t-test, but additionally selects genes (not selected by t-test) that can 

be grouped in profiles, which are likely to be related to the treatment by gene-gene 

interaction effects.  

   We examined whether the genes exclusively selected by RF and highly enriched within 

one profile shared similar biological functions. Therefore we selected profiles consisting of 

mainly RF-selected genes. For colon two profiles and for cecum one profile was selected 

(figure 5, white boxes). 
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Figure 5: SOM profiles for colon (A) and cecum (B). The total number of SOM-profiles was 

arbitrarily set to 90 for colon and 16 for cecum, corresponding to an average of approximately 10 

genes per profile. The size of the circles corresponds to the number of genes included in the group 

(range of genes per profile: colon 1-19, cecum 2-27). Within each profile, genes that overlap between 

RF and t-test are shown in dark gray, and genes exclusively selected by RF are shown in light gray. 

Genes in profiles 1, 2 and 3 were analyzed in more detail. 

 

The first colon profile (profile 1) consisted of nine genes, four genes with unknown 

function expressed sequence tags (ESTs) and five genes that were annotated but not 

classified to a known GO process. After literature and database search these five genes 

could not be linked to a single biological process (table 4). The second colon profile 

(profile 2) consisted of 13 genes, of which 12 were only selected by RF. Five genes were 

annotated in a GO process (bold gene names in table 4), of which four are part of the same 

GO process: cellular component organization and biogenesis. The remaining eight genes 

consisted of two ESTs and six genes that are presently poorly understood, because further 

database and literature mining did not reveal a relation to a known biological process. One 

of these six (palladin) was recognized to play a role in maintaining normal actin 

cytoskeleton architecture [50], indicating a possible role in the same biological process as 

the four annotated genes within this SOM profile. 

   The cecum profile consisting of exclusively RF-selected genes (profile 3) consisted of 13 

genes, comprising 10 unique genes. Three of the 10 genes were annotated by GO, of which 

2 are part of the GO process immune response. Further database and literature mining 

revealed that six of the seven other genes had a function related to immune response (table 

4). This confirms the notion that genes with a similar expression profile selected from a 

microarray dataset exclusively by RF may be enriched in the same biological process. It 

further indicates that this is a strategy to hunt for biological function of genes and to reveal 

new biological processes related to treatment. 
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Table 4: Genes mainly selected exclusively by RF, grouped in SOM profiles (white boxes figure 5).  

A: Colon SOM profile number 1. 

Gene name* Sequence ID Gene symbol† FC‡ p-value q-value 

3222401M22Rik protein (LOC363231) XM_343571 - 1.39 0.005 0.08 

2410024A21Rik protein (LOC314415) XM_234506 - 1.21 0.014 0.13 

Rattus norvegicus cDNA clone UI-R-A1-dv-f-02-0-UI 5' BF558849 - 1.20 0.007 0.10 

Uronyl-2-sulfotransferase XM_341728 Ust 1.12 0.074 0.31 

Ring finger protein 10  XM_213797 Rnf10 1.21 0.026 0.18 

Midnolin TC480469 Midn 1.31 0.002 0.05 

Mitsugumin 29  XM_342316 Mg29 1.16 0.012 0.13 

Carbonic anhydrase I (Carbonate dehydratase I)  XM_226922 Ca1 1.28 0.007 0.10 

Polyglutamine-containing protein BF546374 - 1.22 0.001 0.04 

* None of these genes were annotated by GO.  

† Genes without official gene symbol are indicated with -.  

‡ Fold change experimental diet/control diet. 
 
B: Colon SOM profile number 2. 

Gene name* Sequence ID Gene symbol† FC‡ p-value q-value 

Hypothetical protein FLJ32871  XM_219819 - 1.26 0.025 0.18 

GCD14/PCMT domain containing protein NM_001007706 - 1.23 0.015 0.14 

Telomeric repeat binding factor 2 XM_341683 Terf2 1.26 0.002 0.05 

Probable nocturnin protein  XM_344988 - 1.11 0.184 0.48 

cGMP-dependent protein kinase 1, beta isozyme  XM_219807 Prkg1 1.21 0.010 0.11 

High mobility group nucleosomal binding domain 1  BI303604 Hmgn1 1.11 0.156 0.44 

Cyclin-dependent kinase 5  NM_080885 Cdk5 1.18 0.021 0.16 

Beta-sarcoglycan  XM_223355 Sgcb 1.11 0.096 0.35 

Phosphodiesterase isoform  AF053097 Pde 1.18 0.005 0.08 
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Table 4B (continued) 

Gene name* Sequence ID Gene symbol† FC‡ p-value q-value 

Palladin, cytoskeletal associated protein  XM_214338 Palld 1.20 0.010 0.11 

splA/ryanodine receptor domain and SOCS box containing 3  XM_220230 Spsb3 1.20 0.003 0.07 

Kinesin family member 5B  XM_341538 Kif5b 1.24 0.001 0.03 

Acyl Transferase  XM_235527 Mct 1.13 0.010 0.11 

* Genes annotated by GO are presented in bold.  

† Genes without official gene symbol are indicated with -.  

‡ Fold change experimental diet/control diet. 
 
C: Cecum SOM profile number 3. 

Gene name* Sequence ID Gene symbol† FC‡ p-value  q-value  

Anti-NGF30 antibody light-chain , variable and constant regions U39609 - 2.65 0.005 0.31 

Ig germline kappa-chain gene C-region M12981 Igkc 2.63 0.007 0.34 

Immunoglobulin joining chain  XM_341195 Igj 2.11 0.009 0.35 

Immunoglobulin rearranged κ-chain mRNA variable (V) region CO562777 Igkv 1.92 0.005 0.31 

Anti-acetylcholine receptor antibody gene, κ-chain, VJC region L22655 - 2.25 0.013 0.39 

Ig germline kappa light chain joining (J) segments J00746 Igkjca 1.72 0.009 0.35 

Periostin, osteoblast specific factor  XM_342245 Postn 1.93 0.002 0.23 

Immunoglobulin kappa light chain variable region  AF217591 Igkv 1.73 0.009 0.35 

Chemokine (C-X-C motif) ligand 12  NM_022177 Cxcl12 1.63 0.020 0.46 

2.20 0.004 0.28 

1.56 0.008 0.35 

1.56 0.008 0.34 

Ig active kappa-chain mRNA VJ-region from immunocytoma 

IR162 

 

M15402 

 

 

 

Igkac 

Igkac 

Igkac 

Igkac 1.58 0.004 0.29 

* Genes annotated by GO are presented in bold.  

† Genes without official gene symbol are indicated with -.  

‡ Fold change experimental diet/control diet. 

1
0
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Biological interpretation: pathway analysis to obtain biological processes 

   To examine whether pathway programs are able to identify differences between RF-

selected genes and t-test-selected genes, we applied pathway analysis for the set of genes 

selected by RF and compared this with the same number of genes selected by t-test (935 

genes for the colon dataset and 165 for the cecum dataset). To ensure that we covered 

different pathway analysis methods, we used two pathway programs, Metacore and 

ErmineJ. For both colon (table 5) and cecum (table 6) the comparison between RF- and t-

test-based selection showed highly comparable results per pathway program. However, the 

ranking of processes was somewhat different, and each selection method (RF or t-test) 

identified some unique processes.  

   GSEA does not require preselection of genes, although information may be lost because 

of incomplete annotation. GSEA is especially suited to identifying processes based on 

interaction. To see whether similar or complementary information is obtained, we analyzed 

the complete colon and cecum datasets with GSEA. We focused on pathway-related GSEA 

gene sets, obtained from GO, GenMapp, and Biocarta, to allow for comparison. Only a few 

gene sets were found to be significantly enriched (FDR<0.25 according to GSEA): 12 in 

colon and 6 in cecum. The small number of processes identified by GSEA analysis suggests 

that information is lost. The program does give some overlapping pathways in colon, but in 

cecum other processes are selected. In both cases no overlap with processes only selected 

with RF was found. 

 

Discussion 

   We described a framework for physiological interpretation of gene expression data. This 

framework (see Box 1) consists of the following steps: genes are first ranked, the relevant 

genes are selected, and the selected genes are grouped according to their expression profile 

and then biologically interpreted. The considerations underlying the different steps are 

illustrated with two real gene expression datasets. We show several features of RF that 

should be part of any data analysis framework. These are 1) all genes in the dataset are 

included in the analysis, 2) interaction between genes is taken into account, and 3) a well-

defined gene set can be selected by using an objective threshold. 

   For human, mouse, and rat whole genome arrays, the number of annotated genes is less 

than half of the genes present on the array. Consequently, analysis only based on functional 

annotation and co-occurrence in gene sets filters out half of the information present in the 

microarray dataset. Well-studied biological processes are better represented in pathway 

databases [19]. Therefore, conclusions obtained from data analysis based only on pathway 

programs are biased toward the well-annotated biological processes. By including all genes 

from a whole genome dataset, it is possible to find genes or processes less defined in 

databases but could be attractive new targets for drug development or nutritional 

intervention. For both colon and cecum, genes exclusively selected within one SOM profile 

belonged to the same biological process: cellular component organization and biogenesis 

(colon) and immune response (cecum), respectively. Because only a few genes within these 

profiles were GO annotated, these processes were not selected by the different pathway 

programs. By literature and database search we could clearly identify these genes as part of 

this process. 
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Table 5: Biological processes in the colon dataset selected by Metacore, ErmineJ and GSEA.  

 

A: Metacore and GSEA 

t-test* p-value RF* p-value GSEA genesets† NES p-value 

mitochondrial electron 

transport, NADH to ubiquinone  
3E-10 

mitochondrial electron 

transport, NADH to ubiquinone  
6E-08 Mitochondria 2.09 0.00 

oxidative phosphorylation  4E-09 
protein targeting to 

mitochondrion  
1E-07 

Electron transport 

chain 
1.97 0.00 

organelle ATP synthesis 

coupled electron transport  
5E-09 mitochondrial transport  2E-07 

Oxidative 

phosphorylation 
1.96 0.00 

ATP synthesis coupled electron 

transport  
5E-09 oxidative phosphorylation  3E-07 

Propanoate 

metabolism 
1.92 0.00 

protein targeting to 

mitochondrion  
1E-08 electron transport  3E-07 

Proteasome 

degradation 
1.86 0.01 

mitochondrial transport  2E-08 
organelle ATP synthesis coupled  

electron transport  
5E-07 Proteasome 1.83 

0.01 

electron transport  2E-06 
ATP synthesis coupled electron 

transport  
5E-07 

Free Radical 

Induced Apoptosis 
1.80 0.01 

regulation of carbohydrate 

metabolic process  
2E-05 

regulation of carbohydrate 

metabolic process  
2E-05 

Butanoate 

metabolism 
1.79 0.00 

muscle filament sliding  1E-04 coenzyme metabolic process  2E-05 
Tricarboxilic acid 

cycle 
1.78 0.00 

coenzyme metabolic process  1E-04 
energy derivation by oxidation of 

organic compounds  
1E-04 

Programmed cell 

death 
1.77 0.00 

regulation of insulin secretion  2E-04 regulation of insulin secretion  1E-04 

Valine leucine and 

isoleucine 

degradation 

1.75 0.02 

main pathways of carbohydrate 

metabolic process  
2E-04 cofactor metabolic process  2E-04    

biopolymer catabolic process  2E-04 response to inorganic substance  2E-04    

response to copper ion  2E-04 response to copper ion  2E-04    
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Table 5A (continued) 

t-test* p-value RF* p-value GSEA genesets† NES p-value 

nucleosome assembly  3E-04 nucleosome assembly  3E-04    

feeding behavior  4E-04 insulin secretion  3E-04    

insulin secretion  4E-04 regulation of secretion  4E-04    

chromatin assembly  4E-04 aerobic respiration  6E-04    

energy derivation by oxidation 

of organic compounds  
4E-04 response to metal ion  6E-04    

monocarboxylic acid metabolic 

process  
6E-04 

main pathways of carbohydrate 

metabolic process  
8E-04    

response to toxin  9E-04 
chromatin assembly or 

disassembly  
8E-04    

  response to toxin  8E-04    

  
positive regulation of 

pseudopodium formation  
8E-04    

  regulation of hormone secretion  9E-04    

  peptide hormone secretion  9E-04    

  peptide secretion  9E-04    

  protein targeting  9E-04    

* Gene subsets of t-test and RF were used as input for Metacore. Overlapping processes between the two genesets (t-test and RF) are presented in 

bold.  

† For GSEA the whole dataset was used, only the genesets compiled from publicly available databases are included. 
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B: ErmineJ and GSEA 

t-test* p-value RF* p-value GSEA genesets† NES p-value 

Mitochondrial electron 

transport, NADH to ubiquinone 
5E-18 

mitochondrial electron 

transport, NADH to ubiquinone 
2E-14 Mitochondria 2.09 0.00 

ATP synthesis coupled electron 

transport (sensu Eukaryota) 
3E-15 

ATP synthesis coupled electron 

transport (sensu Eukaryota) 
6E-12 

Electron transport 

chain 
1.97 0.00 

protein biosynthesis 5E-14 aerobic respiration 2E-11 
Oxidative 

phosphorylation 
1.96 0.00 

Macromolecule biosynthesis 1E-13 tricarboxylic acid cycle 7E-09 
Propanoate 

metabolism 
1.92 0.00 

aerobic respiration 2E-11 
protein targeting to 

mitochondrion 
1E-08 

Proteasome 

degradation 
1.86 0.01 

Tricarboxylic acid cycle 2E-10 
main pathways of carbohydrate 

metabolism 
5E-08 Proteasome 1.83 0.01 

main pathways of carbohydrate 

metabolism 
4E-09 acetyl-CoA catabolism 2E-07 

Free Radical 

Induced Apoptosis 
1.80 

0.01 

acetyl-CoA catabolism 7E-09 protein biosynthesis 4E-07 
Butanoate 

metabolism 
1.79 0.00 

protein targeting to 

mitochondrion 
1E-08 

generation of precursor 

metabolites and energy 
3E-06 

Tricarboxilic acid 

cycle 
1.78 0.00 

generation of precursor 

metabolites and energy 
1E-07 proton transport 6E-06 

Programmed cell 

death 
1.77 0.00 

proton transport 5E-07 macromolecule biosynthesis 6E-06 

Valine leucine and 

isoleucine 

degradation 

1.75 0.02 

pyruvate metabolism 2E-06 oxidative phosphorylation 2E-05    

hexose biosynthesis 5E-06 pyruvate metabolism 2E-05    

oxidative phosphorylation 2E-05 
DNA fragmentation during 

apoptosis 
4E-05    

hydrogen transport 2E-05 ATP biosynthesis 6E-05    
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Table 5B (continued) 

t-test* p-value RF* p-value GSEA genesets† NES p-value 

Establishment and/or maintenance 

of chromatin architecture 
2E-05 cellular respiration 7E-05    

DNA fragmentation during 

apoptosis 
4E-05 DNA catabolism 7E-05    

fatty acid beta-oxidation 5E-05 
disassembly of cell structures 

during apoptosis 
7E-05    

ATP biosynthesis 6E-05 
ATP synthesis coupled proton 

transport 
7E-05    

DNA catabolism 7E-05 coenzyme metabolism 8E-05    

Disassembly of cell structures 

during apoptosis 
7E-05 hexose biosynthesis 9E-05    

ATP synthesis coupled proton 

transport 
7E-05 protein secretion 9E-05    

protein secretion 9E-05 
tricarboxylic acid cycle 

intermediate metabolism 
1E-04    

cellular metabolism 1E-04 apoptotic nuclear changes 1E-04    

apoptotic nuclear changes 1E-04 sensory perception of sound 2E-04    

DNA packaging 1E-04 hydrogen transport 2E-04    

sensory perception of sound 2E-04 acyl-CoA metabolism 2E-04    

acyl-CoA metabolism 2E-04 
purine ribonucleoside 

triphosphate biosynthesis 
2E-04    

purine ribonucleoside 

triphosphate biosynthesis 
2E-04 electron transport 3E-04    

electron transport 3E-04 carbohydrate metabolism 9E-04    

protein targeting 3E-04      

fatty acid oxidation 4E-04      

protein amino acid deacetylation 5E-04      

fatty acid metabolism 5E-04      
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Table 5B (continued) 

t-test* p-value RF* p-value GSEA genesets† NES p-value 

Establishment of protein 

localization 
7E-04      

coenzyme metabolism 8E-04      

oxygen and reactive oxygen 

species metabolism 
9E-04      

*Gene subsets of t-test and RF were used as input for ErmineJ. Overlapping processes between the two genesets (t-test and RF) are presented in 

bold. 

† For GSEA the whole dataset was used, only the genesets compiled from publicly available databases are included. 
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Table 6: Biological processes in the cecum dataset selected by Metacore, ErmineJ and GSEA.  

A: Metacore and GSEA 

t-test * p-value RF* p-value GSEA genesets† NES p-value 

feeding behavior  2E-08 feeding behavior  6E-10 Cell cycle regulator 1.75 0.01 

regulation of insulin secretion  4E-08 leading edge cell differentiation  1E-08 Cholesteron biosynthesis 1.67 0.02 

regulation of carbohydrate 

metabolic process  
3E-07 regulation of insulin secretion  3E-08 cell proliferation 1.66 0.00 

insulin secretion  9E-07 eating behavior  9E-08 Interleukin 10 pathway 1.61 0.03 

regulation of hormone secretion  3E-06 
regulation of carbohydrate 

metabolic process  
3E-07 Caspase cascade 1.56 0.04 

peptide hormone secretion  3E-06 insulin secretion  7E-07 Proliferation  1.56 0.00 

peptide secretion  3E-06 regulation of hormone secretion  2E-06   

eating behavior  6E-06 peptide hormone secretion  2E-06  

peptide transport  9E-06 peptide secretion  2E-06  

regulation of lipid metabolic 

process  
5E-05 peptide transport  7E-06  

hormone secretion  5E-05 epithelial cell differentiation  2E-05  

regulation of angiogenesis  2E-04 regulation of secretion  3E-05  

regulation of secretion  4E-04 hormone secretion  4E-05  

generation of a signal involved in 

cell-cell signaling  
5E-04 regulation of lipid metabolic process  4E-05  

monocarboxylic acid transport  5E-04 morphogenesis of an epithelium  1E-04  

  cellular defense response  3E-04  

  
generation of a signal involved in 

cell-cell signaling  
4E-04  

*Gene subsets of t-test and RF were used as input for Metacore. Overlapping processes between the two genesets (t-test and RF) are presented in 

bold.  

† For GSEA the whole dataset was used, only the genesets compiled from publicly available databases are included.  
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B: Ermine J and GSEA 

t-test* p-value RF* p-value GSEA genesets† NES p-value 

digestion 2E-06 cellular defense response 1E-06 Cell cycle regulator 1.75 0.01 

regulation of angiogenesis 6E-06 epithelial cell differentiation 1E-05 Cholesteron biosynthesis 1.67 0.02 

cellular defense response 4E-05 
oxygen and reactive oxygen species 

metabolism 
3E-05 cell proliferation 1.66 0.00 

muscle development 6E-05 neuron migration 3E-05 Interleukin 10 pathway 1.61 0.03 

wound healing 3E-04 T cell activation 4E-05 Caspase cascade 1.56 0.04 

actin cytoskeleton organization and 

biogenesis 
4E-04 response to wounding 5E-05 Proliferation  1.56 0.00 

oxygen and reactive oxygen 

species metabolism 
5E-04 digestion 5E-05  

tissue development 6E-04 defense response 1E-04  

regulation of cell differentiation 9E-04 cell migration 2E-04  

  wound healing 3E-04  

  cell motility 7E-04  

 regulation of cell differentiation 8E-04  

 neurogenesis 9E-04  

*Gene subsets of t-test and RF were used as input for ErmineJ. Overlapping processes between the two genesets (t-test and RF) are presented in 

bold.  

† For GSEA the whole dataset was used, only the genesets compiled from publicly available databases are included. 
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   A major strength of whole genome microarray studies is that the expression levels of all 

genes are displayed, allowing for identification of gene-gene interactions. RF was chosen to 

rank genes because its measure of importance takes possible interactions between genes 

into account. Compared with the results obtained by t-test, RF selected genes with main 

effects but additionally was able to capture weak effects. In studies with small gene 

expression changes that are not significant independently but occurring in one group may 

be of large relevance, this is an advantage. For example, it enables identification of possible 

side effects in drug studies or expected subtle differences in nutritional studies. In our 

study, application of RF in combination with SOM indeed showed enriched profiles 

containing mainly genes selected exclusively by RF and not by t-test. Genes within these 

profiles are therefore contributing by gene-gene interactions.  

 

Box 1: A framework for identification of physiological responses in microarray based 

gene expression studies. The  framework is composed of the following steps: Gene 

ranking, gene selection, gene grouping and biological interpretation. Essential 

features of the data-analysis framework are that 1) all genes (annotated and non-

annotated) in the dataset are included in the analysis, 2) interaction between genes is 

taken into account and, 3) an objective threshold is used for selection of a well-

defined gene set. Random forest has these features. Gene grouping can provide 

information on new targets and add information above pathway analysis. Despite loss 

of information due to incomplete annotation of the complete dataset, Gene set 

enrichment analysis can provide additional information on related genes with small 

differences.  
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   By applying a permutation test, we defined a threshold for RF to select genes in an 

objective way. Comparison of different runs showed that the most important genes were 

consistently selected. However, selection of genes ranked closely above the threshold 

varied between different runs. We chose to include genes that were additionally selected 

over different runs in the total selected gene set. By including genes selected additionally 

by different runs there is a chance that more false positives were included in the selection. 

If we would have chosen to select the set of genes that overlapped in all runs, we might 

discard truly relevant genes (false negatives). We reasoned that the increased information 

available for pathway analysis outweighed the potential disadvantage of including some 

noise, especially since in dietary studies gene expression changes of interest are usually 

small. Furthermore, the results show that the number of additionally selected genes 

decreased rapidly for each additional run. Because there was large overlap, it is less likely 

that many of the additionally selected genes were noise. Thus, within this framework, RF is 

a useful tool to select a well-defined set of genes for further interpretation.  

   SOM was applied to find groups of genes with similar gene expression profiles. Other 

approaches to find gene groups, such as hierarchical clustering, can be used with the same 

objective [21]. However, SOM has the advantage, compared with other clustering methods, 

that it provides an ordering of the profiles. While individual genes may have small gene 

expression differences, groups of similarly behaving genes can be biologically significant. 

When SOM analysis is applied to whole genome datasets, unrelated data will also produce 

clusters, without any physiological relevance [21]. This can be overcome by selecting a 

subset of genes and examining whether biological valid clusters are obtained. The number 

of clusters is specified by the user. Specifying larger and smaller numbers of profiles within 

a certain range does not impact the interpretation of the results, since SOM provides an 

ordering in the profiles. For both colon and cecum, genes selected by RF and analyzed by 

SOM provided profiles consisting of genes with similar biological function. In the colon 

dataset, a SOM profile consisted of genes belonging to the same GO process and genes 

with poorly identified functions. This could be a starting point to identify possible 

biological function of the non-identified genes. Using SOM within this framework can 

provide information on genes with unknown function and help to identify biological 

processes not captured by pathway analyses. Therefore SOM is a useful tool for 

identification of biological processes in addition to pathway analysis.  

   The pathway analysis based on the subset of genes obtained by RF and t-test shows 

overlap for the selected processes; however, different processes were additionally obtained 

by RF. Remarkably, GSEA only returned a few gene sets connected to public databases that 

were significantly enriched in colon or in cecum. The small number of processes identified 

by GSEA analysis suggests that information is lost. On the other hand, GSEA did provide 

biological processes not found in the other pathway programs. Although only a few 

processes were found by GSEA, these are worth exploring because they may consist of 

related genes with small differences. Thus, in the context of the framework discussed in this 

paper, GSEA may additionally be applied. 

   The advantage of this framework is that different methods can be applied at different 

steps, depending on the aim and preferences of the researcher. For example, other methods 

that take interactions into account could be used instead of RF. A next step is to extensively 

compare different methods that take gene-gene interaction into account to select 
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biologically relevant genes. There are several advantages to the use of RF within this 

framework to rank and select genes. In a previous simulation study, Lunetta et al. [36] 

showed that the more interactions that are present in the dataset, the more RF outperforms a 

univariate test-statistic in prioritizing the important variables. In our study we used two real 

datasets with subtle gene expression changes and showed that RF in combination with 

SOM can be used to extract a biologically meaningful group of genes, such as the set of 

immune response genes in the cecum dataset that would be discarded with univariate tests 

such as the t-test. As mentioned above, it returns an importance factor for each gene (Im) in 

which gene-gene interactions are taken into account. On the basis of this Im, we showed an 

approach that can be used to define an objective threshold for selection of genes. Besides 

two classes, RF can also be applied to multi-class problems. Furthermore, free software is 

available for RF whereby only a few parameters need to be defined [39]. Also, users can 

easily obtain a gene list for further interpretation without the need to understand the finer 

details of the method thoroughly. Therefore, within this framework RF is a suitable and 

practical tool to rank and select genes. Combined with gene grouping by SOM and pathway 

programs, this framework is helpful to obtain insight in the biological processes. These 

physiological effects are the main focus for further confirmatory and mechanistic studies. 

   In conclusion, in this study we have examined the application of a framework in which all 

genes in a microarray dataset are analyzed. Within this framework, application of RF has 

the advantage that it takes gene-gene interactions in the ranking of genes into account. 

Also, selection of genes by an objective threshold provides a well-defined set of genes for 

further interpretation. Groups of genes within this set are identified by SOM analysis. In 

combination with pathway analyses it provides valuable information on biological 

processes involved in the treatment. 
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Abstract 

 

   To discriminate between breast cancer patients and controls, we used a three-step 

approach to obtain our decision rule. First, we ranked the mass/charge values using random 

forests, because it generates importance indices that take possible interactions into account. 

We observed that the top ranked variables consisted of highly correlated contiguous 

mass/charge values, which were grouped in the second step into new variables. Finally, 

these newly created variables were used as predictors to find a suitable discrimination rule. 

In this last step, we compared three different methods, namely Classification and 

Regression Tree (CART), logistic regression and penalized logistic regression. Logistic 

regression and penalized logistic regression performed equally well and both had a higher 

classification accuracy than CART. The model obtained with penalized logistic regression 

was chosen as we hypothesized that this model would provide a better classification 

accuracy in the validation set. The solution had a good performance on the training set with 

a classification accuracy of 86.3%, and a sensitivity and specificity of 86.8% and 85.7%, 

respectively. 
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Introduction 

 

   To develop a decision rule that discriminates well between individuals with breast cancer 

(cases) and individuals without (controls), we applied a three-step approach, viz. 1) variable 

selection/reduction; 2) synthesis of new variables by grouping selected variables to make 

use of the correlation structure; and 3) actual discrimination and classification on the basis 

of the variables developed in step 2. In step 1, in order to make a reduction in the large 

numbers of variables present in the dataset we applied random forests (RF). RF appears to 

be the most appropriate method for prioritizing variables and selection of a small set of 

most important variables, i.e. variables that appear to hold promise of having discriminatory 

power in conjunction with other variables. The latter clause is important, as selection of 

variables on the basis of individual discriminatory power is unsatisfactory in view of the 

correlation between many variables. Also, as it is based on cross-validation, one can expect 

the selected variables to work (i.e. to be discriminatory) not only in the training dataset, but 

also from validation datasets collected from different patients and controls from the same 

population. RF was developed by Breiman [1]. This machine learning approach has proven 

to have excellent performance in many classification tasks, and is now available as an off-

the-shelf method. RF has shown to outperform other classification methods in applications 

to microarray data [2] and mass spectrometry data [3]. One of the features of RF is that it 

provides a measure of importance for each of the variables, referred to as the importance 

index. The importance index was used to prioritize and select the variables that best 

discriminate between cases and controls. 

   Contiguous variables with approximately identical mass are highly correlated due to 

physical properties and the smoothing applied in the pre-processing steps. Therefore, it can 

be expected that among the highly prioritized variables highly correlated, contiguous 

variables will be present. Therefore, in the second step we searched over the most important 

variables whether groups of highly correlated variables would be present. These highly 

correlated variables can then be grouped into a new variable. In the third step we used these 

newly created variables as predictors and applied different methods to find a suitable 

discrimination rule. The methods compared at this step are Classification and Regression 

Tree (CART) [4], logistic regression and penalized logistic regression [5, 6]. The decision 

rules obtained by the different methods and their classification performance were compared 

and the decision rule with the best performance was finally chosen to be applied to the 

validation set.  

 

Methods 

 

Step 1: Prioritization of variables by random forests 

   To reduce the number of variables to be used to make a decision rule, we used RF to 

prioritize and select the apparently best discriminating candidate variables in the first step. 

   In RF, an ensemble of tree models is used to predict case-control status (bagging). Each 

tree recursively splits the total dataset into smaller and more homogeneous subgroups of 

cases and controls, whereby the total sample for each tree is obtained by bootstrap 

sampling. With bootstrap sampling, sampling is performed with replacement and some 

individuals are sampled more than once while others are left out, while keeping the 
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bootstrap sample size the same as that of the original sample. This method involves cross-

validation as the (bootstrap) sampled observations are used to construct the classification 

tree whereas a prediction is obtained for each left-out individual. Aggregating the 

predictions over the different trees in which the individual was left-out, a prediction for this 

individual is obtained for the ensemble of trees, which is called the forest. The proportion 

of misclassified cases and controls provides the prediction error of the forest. Another 

important feature is that the predictor that gives the best partitioning in cases and controls at 

a certain split is not selected from the total number of predictors but from a smaller random 

sample of predictors. This parameter is referred to as mtry. We used the default value for 

mtry, which is the square root of the number of variables to be analyzed in the dataset (in 

this dataset equal to 105). Multiple thousands of trees in the forest are needed to obtain 

stable estimates of the importance indices [7]. Also, each tree captures only the possible 

interactions for the variables selected by that tree only, and large numbers of trees are 

required to capture as many interactions as possible. Therefore, the number of trees in the 

forest was set to 30,000 for each of the different analyses. We performed several analyses 

with RF to verify whether the ranking of the variables by their importance index did not 

change over the different analyses. This is done by using different seed values for the 

different analyses (the seed value controls the random number generator). 

   RF provides an importance index for each variable by comparing the predictive 

performance of the forest for all variables with the predictive performance of the forest for 

all variables but with the values for one variable randomly permuted for the left-out 

individuals. Larger differences in the predictive performance indicate more important 

variables. Permuting the predictor values for the left-out individuals does not only remove 

the association between the permuted predictor and the outcome variable, but also the 

interaction effects of the permuted predictor with other predictors, if present. Thereby, the 

interactions of the predictor with other predictors are taken into account in the importance 

index. We used the importance index as a first step to prioritize and select the best 

discriminating variables.  

   For the RF analyses we used the R-package randomForest written by Liaw and Wiener 

[8, 9], freely available from the CRAN website (http://cran.r-project.org/). Because the 

predictors are all of the same type, the RF variable importance indices obtained with the 

randomForest R-package can be used [10]. This R-package is based on the original 

FORTRAN code from Breiman et al. [11] (freely available at 

www.stat.berkeley.edu/users/breiman/randomforests/).  

 

Step 2: Grouping highly correlated variables 

   Among the highest prioritized variables we tried to exploit the correlation between 

variables. Adjacent variables were very highly correlated (generally r>0.9) which made 

adjacent variables almost duplicate measurement of the same underlying “parameter”. If 

groups of adjacent variables were identified, we combined these variables into a new 

variable by taking the sum of the variables. Small “gaps” were ignored, i.e. variables of 

which both its neighbours were selected, were included even if that variable itself was not 

selected.  
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Step 3: Obtaining the decision rule 

   The newly created variables, each consisting of a group (sum) of highly correlated 

variables, were used as candidate predictors for case-control status. We tried the following 

methods to predict the individuals in the calibration dataset: CART, logistic regression and 

penalized logistic regression. For CART we used the program QUEST [12], which is freely 

available at http://www.stat.wisc.edu/~loh/quest.html. To perform logistic regression 

analysis, SPSS version 13.0 was used (SPSS, Inc., Chicago, Illinois). For penalized logistic 

regression, we applied the R-package brlr written by Firth [6]. This method penalizes the 

likelihood by the Jeffrey’s prior, and has the effect of “mildly” shrinking parameter 

estimates to 0. The decision rule obtained by the method with the best classification 

performance was chosen to obtain the prediction for the individuals in the validation 

dataset.  

 

Results 

 

Step 1: Prioritization of variables by random forests 

   The prioritization of variables by RF for two different seed values are shown in figure 1. 

For both seed values the same variables were highly prioritized. Thus RF provides similar 

results over different analyses, indicating the robustness of the method. 

 

 
Figure 1: RF results. Prioritization of m/z values by their importance index for two different seed 

values. 
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Step 2: Grouping highly correlated variables 

   As expected, visual inspection of the most important variables showed that highly 

prioritized m/z values consisted of different groups of contiguous variables. Therefore, we 

combined adjacent variables into a new variable, summing the scores of the individual 

variables. In this way, nine new variables were formed (see Box 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Step 3: Obtaining the decision rule 

   The nine variables obtained in step 2 were used as predictors to obtain a decision rule. At 

this step we compared the classification performance of CART, logistic regression and 

penalized logistic regression. Table 1 shows the classification accuracy for the different 

methods. 

 
Table 1: Classification accuracy obtained with CART, logistic regression and penalized logistic 

regression. 

Method Classification  

accuracy (%) 

CART 78.1 

Logistic regression 86.3 

Penalized logistic regression 86.3 

 

Logistic regression and penalized logistic regression both had a higher classification 

accuracy compared to CART. For both logistic regression and penalized logistic regression 

neither interactions nor logarithmically transformed variables did improve the classification 

performance and were therefore not included in the final model. Both types of logistic 

regression performed equally well, in fact they gave identical classification results and we 

chose the model obtained with penalized logistic regression as we hypothesized that this 

solution, as its estimators have been designed to have less bias, would give a better 

Box 1: New variables (Y1-Y9) formed by summing the scores of adjacent individual 

variables. The numbers of the individual variables represent mass/charge values. 

Y1 = v3454 + v3455 + v3456 + v3457 + v3458 + v3459 + v3460. 

Y2 = v3496 + v3497 + v3498 + v3499. 

Y3 = v3830 + v3831 + v3832 + v3833 + v3834 + v3835 + v3836. 

Y4 = v3844 + v3845 + v3846 + v3847 + v3848 + v3849 + v3850 + v3851 + v3852 + 

v3853 + v3854 + v3855 + v3856 + v3857 + v3858. 

Y5 = v3924 + v3925 + v3926 + v3927 + v3928 + v3929 + v3930.  

Y6 = v6607 + v6608 + v6609 + v6610. 

Y7 = v9531 + v9532 + v9533 + v9534 + v9535. 

Y8 = v5380 + v5381. 

Y9 = v6606 + v6607. 
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classification accuracy for the validation set. Thus, using penalized logistic regression, we 

obtained the following solution: 

Logit{Pr(individual belongs to group (Cases))} = 1572.13 – 57.36·Y1 + 4.98·Y2 – 

13.32·Y3 – 13.04·Y4 + 4.36·Y5 + 69.07·Y6 – 19.88·Y7 + 124.08·Y8 – 1191.26·Y9  

 

Performance on training data 

   The cross-classification table is shown in table 2. The classification accuracy equals 

86.3%. For sensitivity and specificity, very similar percentages were obtained (86.8% and 

85.7%, respectively). 

 
Table 2: Cross-classification table, based on the decision rule obtained with penalized logistic 

regression at the third step of the three-step approach. 

 

 True group  

control 

True group 

cases 

Assigned group 

control 
66 10 

Assigned group 

cases 
11 66 

 

Discussion 

 

   The three-step approach we applied to obtain a decision rule to discriminate between 

cases of breast cancer and controls has several advantages. The use of RF in the first step 

has the advantage that the interdependence between variables is taken into account in the 

importance index, and therefore in the prioritization and selection of variables. Also, 

standard stepwise procedures tend to reject or select variables on the basis of their 

individual discriminating power, which may be far from optimal in a context of many 

highly correlated variables. The high correlation between (prioritized) variables is also 

taken into account in the second step by combining adjacent variables into new variables, 

with the idea that these variables essentially measure the same “peak” or other feature and 

that therefore the measurement errors of these new “sum” variables is less than that of 

individual variables. Furthermore, a clear interpretation of the predictors on which the 

decision rule is based can be made in the third step. 

   However, there are also limitations to this three-step approach. There is a methodological 

discrepancy or disconnect between using trees in variable selection and using logistic 

regression in the final (third step) analysis. As logistic regression was chosen because it 

clearly outperformed CART, one may conjecture whether in the selection phase a logistic 

regression approach, but one that would make use of bootstrapping and cross-validation in 

a similar way as RF would have been better at selecting variables. Unfortunately, this 

method is not available off-the-shelf using readily available software. Also, the grouping of 

variables in the second step of our analysis was done, more or less ad hoc, by eye and hand, 

and therefore this step is not amenable to cross-validation. This step should have been 

formalized and automated and used in cross-validation. Finally, Jeffreys prior may well be 

too “flat” and heavier shrinkage might have yielded classifiers with great predictive 

efficiency. 
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   Another limitation of our approach, or any other approach that is based on variable 

selection, is that it is based on an untested assumption, viz. that the classification problem is 

“sparse” in the sense that only a small minority of variables have any discriminating power 

and that the rest is essentially “noise”. While this seems to be supported by the finding that 

only the importance index of variables with a high importance index tends to be 

reproducible across different runs of the random forests program, this is by no means 

certain. If this “sparseness” does not hold true then the additional discriminating power of 

many weakly informative variables is ignored by our approach. With such a limited sample 

size however, the task of making effective use of such variables would seem daunting. 

   A further limitation of our three step approach is lack of methodological coherence. This 

was largely due to our objective of developing an easy-to-apply discrimination score, and 

our idea that we had to take into account the correlation structure among (neighbouring) 

variables. However, this mixture of methods makes it harder to identify the causes of 

misclassifications. These are much easier to identify and perhaps correct when only a single 

method is used, for example RF. For the application of only RF the selection of variables 

for classification as performed by Diaz et al. [2] could be used. Although this approach 

leads to a small set of variables that still has good performance, it does not lead to readily 

usable classification rules for clinical diagnostic purposes, and neither does it give rise to 

classification rules that are easy to interpret.  

   Finally we want to address the possible sensitivity of our approach to experimental 

effects. Plates on which the experiments were run were not known to us. Thus our method 

may be sensitive to “plate effects”. If some plates yield (locally) systematically higher or 

lower values than other plates this may influence and bias the classification results. 

Perhaps, instead of new synthetic variables consisting of sums of variables, sums of 

contrasts, i.e. sums of signed variables, with as many positive as negative signs, would be 

less sensitive to such plate effects. Preferably, perhaps, any variables with negative signs 

should be matched with, and chosen relatively close to variables with a positive sign. 

However, of course, such control variables should be chosen sufficiently distant to avoid 

strong correlations with their positive “matches”. 
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Abstract 

  

   In this study we applied the multivariate statistical tool Partial Least Squares (PLS) to 

analyze 83 plasma proteins in relation to coronary heart disease (CHD) mortality and the 

intermediate endpoints body mass index, HDL-cholesterol and total cholesterol. From a 

Dutch monitoring project for cardiovascular disease risk factors men who died of CHD 

between initial participation (1987-1991) and end of follow up (January 1, 2000) (N=44) 

and matched controls (N=44) were selected. Baseline plasma concentrations of proteins 

were measured by a multiplex immunoassay. Applying PLS we identified 15 proteins with 

prognostic value for CHD mortality and sets of proteins associated with the intermediate 

endpoints. Subsequently, sets of proteins and intermediate endpoints were analyzed 

together by Principal Components Analysis, indicating that proteins involved in 

inflammation explained most of the variance, followed by proteins involved in metabolism 

and proteins associated with total cholesterol. This study is one of the first in which the 

association of a large number of plasma proteins with CHD mortality and intermediate 

endpoints is investigated by applying multivariate statistics, providing insight in the 

relationships among proteins, intermediate endpoints and CHD mortality, and a set of 

proteins with prognostic value. 
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Introduction 

 

   Coronary heart disease (CHD) often manifests at a later stage of life. CHD is mainly 

caused by narrowed arteries due to atherosclerosis, diminishing the supply of blood, oxygen 

and nutrients to the heart [1], which finally can lead to a myocardial infarction. Besides 

treatment of CHD, detecting the risk of CHD at a preclinical stage is of vital importance. 

To realize this objective, proteins that have prognostic value for CHD need to be identified. 

Furthermore, insight in the relationships between plasma proteins and important risk factors 

involved in the etiology of CHD (e.g. high body mass index (BMI) [2], low HDL-

cholesterol (HDL-C) [3] and high total cholesterol (total-C) [1]) can provide useful 

information for prevention of CHD later in life.  

   Nowadays, technological advances in proteomics such as multiplex assays provide the 

opportunity to simultaneously measure large numbers of protein concentrations in plasma. 

This enables researchers to study, besides individual associations, the relationships of 

groups of proteins with the outcome of interest. To analyze proteomic data Partial Least 

Squares (PLS) is a suitable multivariate statistical tool [4]; in contrast to univariate 

statistics, PLS takes the information of all proteins into account with respect to a certain 

endpoint. In this study we applied PLS to investigate in men the association of 83 proteins 

with CHD mortality, and the intermediate endpoints BMI, HDL-C and total-C, with the 

objectives to identify a set of proteins with prognostic value for CHD mortality and to 

identify sets of proteins associated with BMI, HDL-C and total-C. Subsequently we applied 

Principal Component Analyses (PCA) [5] to interpret the relationships between all 

identified proteins, intermediate endpoints and CHD mortality. 

 

Methods 

 

Study population 

 

   For this study 44 male subjects who died of CHD and 44 male controls were selected 

from a monitoring project for cardiovascular disease risk factors [6], which was carried out 

in three towns (Amsterdam, Doetinchem and Maastricht) in the Netherlands. Cases were 

randomly selected from the 162 men who died of CHD (ICD-9 410-414 or ICD-10 I20-I25) 

between their baseline examination (1987-1991) and end of follow up (January 1, 2000). 

On average the cases died 5.83 ± 3.05 years after baseline examination. From the men who 

did not experience a CHD event during follow up controls were randomly selected, but 

were matched for town of investigation, age, smoking status and year of baseline 

examination. Informed consent for using the stored blood samples for research purposes 

was given by all subjects. Characteristics of the study population are shown in table 1. 
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Table 1: Characteristics of the study population. 

CHD mortality  

Cases 

(N=44) 

Controls 

(N=44) 

p-value 

Age (years) 51.9 ± 5.37 51.5 ± 5.86  

BMI (kg/m2) 27.1 ± 3.58 25.8 ± 3.41 0.10 

HDL-C (mmol/l) 0.97 ± 0.23 1.13 ± 0.31 0.01** 

Total-C (mmol/l) 6.41 ± 1.27 5.94 ± 1.04 0.07 

For cases and controls their mean ± sd are shown 

** Significant at the 0.01 level 

 

Measurements 

 

Intermediate endpoints 

   Weight at baseline was measured at the Municipal Health Centre, whereby subjects were 

wearing light indoor clothing without shoes. To obtain the BMI at baseline, weight at 

baseline was divided by height squared (in kg/m2). 

   At baseline non-fasting blood samples were obtained in EDTA-coated vacutainer tubes. 

Plasma total-C and HDL-C were determined enzymatically using a Boehringer test-kit 

within three weeks after storage [7]. HDL-C was determined after precipitation of ApoB 

containing lipoproteins with magnesium phosphotungstate [8]. 

 

Proteins 

   The concentrations of 89 proteins were measured by Rules-Based Medicine (RBM) in 

non-fasting plasma by a multiplex immunoassay (HumanMAP Version 1.6, Rules-Based 

Medicine, Inc., Austin, TX). The set of proteins present on this assay consists of selected 

factors that are implicated in different types of diseases. 

   Prior to the statistical analyses, 7 proteins were removed from the dataset for which more 

than half of the samples were not measurable on the standard curve. For other proteins, 

values not measurable on the standard curve were imputed with 0.1*Least Detectable Dose. 

For 62 proteins all samples were measurable, whereas for 13, 4 and 3 proteins the number 

of samples not measurable was between 1 and 5, between 6 and 10, or more than 10, 

respectively. ApoB levels were additionally measured on a Hitachi 912 autoanalyser 

(Roche, Lelystad, The Netherlands) using a commercially available kit (Roche cat. nr. 

1551779). Together, 83 proteins were included in the statistical analyses. 

 

Statistical analyses 

 

Univariate analyses 

   The difference in mean plasma levels between cases and controls for each protein was 

tested with the conventional t-test. If proteins were not normally distributed (determined by 

Kolmogorov-Smirnov test), the Mann-Whitney U-test was applied. BMI, HDL-C and total-

C were slightly skewed for the total population, therefore Spearman correlation coefficients 

were calculated between proteins concentrations and the values of these intermediate 
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endpoints, and for the associations among the intermediate endpoints. As the intermediate 

endpoints were normally distributed for cases and controls separately, differences between 

the values of the intermediate endpoints for CHD cases and controls were determined by t-

tests. These analyses were performed using SAS software version 9.1 (SAS institute Inc., 

Cary, NC, USA). 

 

PLS-DA and PLS-regression 

   Partial least squares (PLS) is a multivariate method aimed at relating measured data to an 

outcome of interest. PLS is able to handle large numbers of variables in moderate to small 

sample sizes. It reduces the dimensionality of the data by constructing latent components, in 

such a way that these components have maximal covariance with the outcome variable 

whereas the latent components themselves are uncorrelated. PLS can be applied to classify 

categorical outcome variables using PLS in combination with discriminant analyses (DA), 

referred to as PLS-DA, and in regression problems to analyze continuous outcome 

variables, referred to as PLS-regression. More detailed information on PLS-DA and PLS-

regression can be obtained from Boulesteix and Strimmer [4]. In this study we applied PLS-

DA to analyze the relation of 83 proteins with CHD mortality, whereas PLS-regression was 

applied to analyze the relation of the 83 proteins with baseline levels of BMI, HDL-C and 

total-C. 

   To take the differences in measurement scales of the proteins into account, proteins were 

auto-scaled before performing the PLS analyses, resulting in a mean of 0 and a standard 

deviation of 1 for each protein [9]. Double cross-validation was applied to unbiasedly 

determine both the number of latent components in the PLS-model and the classification 

error (PLS-DA) or R2 (PLS-regression) of the model [10, 11]. Briefly, first 10-fold cross-

validation was applied, splitting the total dataset into ten subsets. A 9-fold cross-validation 

was applied for each 9/10 of the ten subsets to determine the number of latent components 

for the PLS-model that provided the smallest error (or largest R2). The remaining 1/10 of 

the data of the 10-fold cross-validation was used as a test set to evaluate the error of the 

PLS-model. The 10 errors obtained for each of the PLS-models were averaged to obtain an 

unbiased estimate of the classification error (PLS-DA) or R2 (PLS-regression). A 

permutation test [12, 13] using 1000 permuted datasets was applied to obtain the statistical 

significance for the PLS-model of CHD. 

   Proteins were considered to be associated with the different endpoints if the confidence 

interval (mean ± 2*standard error) of their model coefficient deviated from 0. This cut-off 

corresponds to a Relative Standard Deviation (RSD: standard deviation divided by the 

mean) smaller than 0.5. The standard deviations of the model coefficients have been 

determined as described by Faber [14].  

   PLS-DA and PLS-regression analyses were performed in Matlab 7.3.0 (The Mathworks, 

Natick, MA, USA) and the PLS Toolbox 3.5.4 (Eigenvector Research, Manson, WA, 

USA). 

 

PCA 

   Principal components analyses (PCA) [5] was applied to visualize the relationships 

among all selected proteins by PLS-DA and PLS-regression together with the intermediate 

endpoints. PCA is based on different statistical concepts than PLS, because these 
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techniques serve different aims: whereas PLS constructs latent components that have 

maximal covariance with the outcome variable, PCA constructs factors that maximally 

explain the variance in the data, without relating the factors to another outcome variable (or 

set of outcome variables). We applied GeneMaths XT version 1.6.1 (Applied Math) 

software to obtain the PCA plots. 

 

Results 

 

Associations among endpoints 

 

   CHD cases had on average 0.15 mmol/l lower HDL-C levels compared to controls (95% 

confidence interval: -0.27– -0.04, p=0.01, see table 1). They also tended to have a higher 

BMI (mean difference [95% confidence interval]=1.3, [-0.23–2.73], p=0.10) and  higher 

total-C levels (mean difference [95% confidence interval]=0.46, [-0.03–0.95], p=0.07). A 

significant inverse relationship was also present between BMI and HDL-C (r=-0.41, 

p<0.0001), whereas no significant correlations were observed of BMI and HDL-C with 

total-C (r=0.05, p=0.61 and r=-0.11, p=0.29, respectively). 

 

Univariate associations of proteins with CHD and intermediate endpoints 

 

   The univariate relationships between the 83 proteins and CHD mortality, BMI, HDL-C 

and total-C are shown in the supplemental tables 1 and 2 (see supplemental data). Eight 

proteins were significantly (p<0.05) related to CHD mortality (ApoA1, ApoB, β-2 

Microglobulin, CRP, PAI-1, PAPP-A, VCAM-1 and VEGF). Except for ApoA1, higher 

concentrations were observed for these proteins in CHD cases compared to controls. For 

BMI, HDL-C and total-C the number of proteins found to be significantly (p<0.05) 

associated was equal to 11, 22 and 7, respectively. As BMI and HDL-C are inversely 

related, proteins that were significantly associated with both endpoints showed opposite 

relationships. The proteins most (p<0.005) related to BMI included complement 3, ferritin, 

IL-1ra, insulin, leptin (all positively), growth hormone and SHBG (both negatively). 

Adiponectin and ApoA1 were most (p<0.005) positively associated with HDL-C, whereas 

ApoB, complement 3, CRP, IL-1ra, insulin, PAI-1, and TBG were most negatively 

associated. Finally, total-C was highly correlated (r= 0.87) with ApoB, and to a lesser 

extent positively correlated with MCP-1 (r= 0.41). 

 

PLS-DA and PLS-regression 

 

Reducing the noise of non-important proteins 

   The PLS-model for CHD including all proteins was not statistically significant 

(classification accuracy= 53%, p= 0.63). However, proteins in the model (see figure 1A) for 

which the 95%-confidence interval of their model coefficient deviated from 0 were 

previously found to be biologically relevant in relation to CHD in the literature, for 

example ApoA1 [15], CRP [16], VCAM1 [17] and VEGF [18, 19]. This may indicate that 

the noise of non-important proteins obscures the signals of important proteins. The PLS-

models including all proteins also had limited predictive performance for BMI, HDL-C and 
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total-C (R2=0.36, R2=0.14 and R2=0.30, respectively; see figures 1B-D). As for CHD, 

biologically relevant proteins for these intermediate endpoints were also found. For 

example, leptin was found to be strongly positively correlated with BMI, ApoA1 with 

HDL-C and ApoB with total-C.  

 

A 

 
B 

 
C 

 
D 

 
Figure 1: PLS model of 83 proteins in relation to CHD mortality (A), BMI (B), HDL-C (C) and total-

C (D). The regression vector ± 2*standard deviation is shown. Numbers correspond to the numbers of 

the proteins listed in the supplemental table (see supplemental data). 



Chapter 7 

134 

   As these results are supported by results previously reported in the literature [20-22], we 

reanalyzed the relationship between the proteins and the different endpoints, reducing the 

noise by taking only those proteins with a relative standard deviation (RSD) of smaller than 

0.5 into account. For total-C no PLS-model could be obtained applying a cut-off of 

RSD<0.5, therefore for total-C a cut-off of RSD<1.0 was used. Within the reduced PLS 

models, proteins were again considered to be important if their confidence interval (mean ± 

2*standard error) within the model deviated from 0. 

 

Association of proteins with CHD mortality 

   The newly obtained PLS model for CHD including only those proteins with RSD<0.5 

improved and was statistically significant (classification accuracy= 65%, p=0.038). In this 

reduced multivariate model, 15 proteins were associated with CHD mortality, with inverse 

relationships for ApoA1 and growth hormone and positive relationships for other proteins 

(see figure 2A and table 2).  

 

A 

 
B 
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C 

 
D 

 
Figure 2: PLS model of proteins in relation to CHD mortality (A), BMI (B), HDL-C (C) using cut-

off point of RSD<0.5 and total-C (D) using cut-off point of RSD<1.0. The regression vector ± 

2*standard deviation is shown. 

 

   Six of these proteins (ApoA1, β-2 Microglobulin, CRP, PAPP-A, VCAM-1, VEGF) also 

showed an association with CHD in the univariate analysis, while the other proteins 

univariately only showed a trend (IL-1ra, TNF RII) or were found to be non-significant (α-

2 macroglobulin, CD40, fibrinogen, growth hormone, Ig M, MDC, MIP-1β).  

 



 

 

1
3
6
 Table 2: PLS-models for the different endpoints including proteins selected based on cut-off of RSD<0.5 to reduce noise, except for the PLS-

model of total-C, which is obtained with RSD<1.0.  

CHD mortality BMI  HDL-C  Total-C  

Protein sign univariate 

p-value 

protein sign univariate 

p-value 

Protein sign univariate 

p-value 

protein sign univariate 

p-value 

α-2 

Macroglobulin 

+ 0.61 α-1 Antitrypsin – 0.11  Adiponectin + 0.0007  α-2 

Macroglobulin 

 0.68 

ApoA1 – 0.02 Adiponectin – 0.01 ApoA1 + <0.0001  ApoA1 + 0.38 

β-2 

Microglobulin + 0.009 

ApoB + 0.10 ApoB – 

0.0004 

ApoB + <0.0001  

CD40 

+ 0.24 

Complement 3 + 

0.0001 

Β-2 

Microglobulin 

  

0.005  

ApoC3   

0.46 

CRP + 0.01 Calcitonin + 0.15 Complement 3 – <0.0001 CRP   0.13 

Fibrinogen + 0.12 Ferritin + 0.002 CD40   0.04  CA 125   0.39 

Growth 

Hormone 

– 0.22 Growth Hormone – 0.003 CD40 Ligand   0.35 CEA   0.37 

IL-1ra + 0.10 IL-12p70  0.13 CRP   0.0002 ENA-78   0.70 

Ig M + 0.12 LPA – 0.14 Fibrinogen   0.01 ENRAGE   0.14 

MDC + 0.58 Leptin + <0.0001 Haptoglobin   0.05 Endothelin-1   0.52 

MIP-1β + 0.21 SHBG – <0.0001 ICAM-1   0.005 Eotaxin – 0.91 

PAPP-A + 0.04 Tissue Factor – 0.08 IL-16 – 0.006 Fibrinogen   0.44 

TNF RII + 0.08       Ig E + 0.08 ICAM-1   0.45 

VCAM-1 + 0.03       Insulin –  0.0005 IL-13   0.47 

VEGF + 0.004       Leptin – 0.008 IL-12p70   0.73 

            MIP-1β   0.07 Ig A – 0.03 

            PAI-1 – <0.0001 Ig E   0.91 

            Stem Cell Factor   0.06 LPA   0.10 

            TBG – <0.0001  Leptin + 0.04 

 



 

 

1
3
7
 

Table 2 (continued) 
CHD mortality BMI  HDL-C  Total-C  

Protein sign univariate 

p-value 

protein sign univariate 

p-value 

Protein sign univariate 

p-value 

protein sign univariate 

p-value 

            TIMP-1   0.16 MCP-1   <0.0001 

            TNF RII   0.007  PAPP-A   0.09 

                  SGOT + 0.15 

                  TNF RII   0.95 

                  VCAM-1   0.59 

Plus and minus signs indicate that, within the multivariate model, the protein is positively respectively inversely related with the endpoint.
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Association of proteins with intermediate endpoints 

   The predictive performance of the newly obtained PLS models for BMI (R2=0.45), HDL-

C (R2=0.35) and total-C (R2=0.75) (see figures 2B-D, respectively, and table 2) also 

improved, as more variance is explained. Leptin was clearly positively related to BMI as 

well as complement 3 and ferritin, and to a lesser extent ApoB and calcitonin. Furthermore, 

growth hormone and SHBG were strongly negatively related to BMI, whereas smaller 

negative effects in the model where found for α-1 antitrypsin, adiponectin, LPA and tissue 

factor. As HDL-C was negatively correlated with CHD and BMI, HDL-C shows a pattern 

that is opposite to that of CHD, and more clearly to that of BMI. ApoA1 was strongly 

positively related to HDL-C. Adiponectin, ApoB, complement 3 and leptin showed an 

opposite relation with HDL-C compared to BMI. Other proteins related to HDL-C were Ig 

E (positive) and IL-16, insulin, PAI-1 and TBG (negative). For total-C a strong positive 

relation was observed with ApoB. Besides ApoB, ApoA1, eotaxin, Ig A, leptin and SGOT 

were found in relation to total-C levels. 

 

PCA plots: relationships between identified proteins, intermediate endpoints and CHD 

mortality 

 

   PCA analysis was applied to analyze all proteins associated with the different endpoints 

together with the intermediate endpoints (see figure 3A and 3B for the loading and score 

plot, respectively). The amount of variance explained by the first three components was 

equal to 19.2%, 10.8% and 6.6%, respectively. Most proteins that showed to be positively 

related with CHD mortality in the PLS model are located at the right side of the loading 

plot (see figure 3A): i.e. Ig M, MDC, VCAM-1, β2-microglobulin, CD40, TNF RII, 

fibrinogen, CRP, VEGF, MIP-1β and IL-1ra. This corresponds with the score plot (see 

figure 3B), where more cases are found on the right side of the graph and more controls at 

the left side. ApoA1 and growth hormone, together with HDL-C, were negatively related to 

CHD, which also corresponds to the fact that controls are more located at the left side. 

Although PAPP-A and α-2 macroglobulin were also positively related to CHD in the PLS-

model their contribution can however not be clearly interpreted from the PCA plots. 

   Insulin and leptin, as well as C3 and PAI-1, group together, indicating the positive 

relationship between these proteins. Corresponding to the PLS results, these proteins show 

to be positively or negatively related to BMI and HDL-C, respectively. The PCA analysis 

also confirmed the positive relation of calcitonin and ferritin with BMI, whereas IL-16 and 

TBG were negatively related to HDL-C, but these relationships were less strong. On the 

opposite side of the graph SHBG, adiponectin, growth hormone and ApoA1 group together 

and were strongly negatively or positively related to BMI and HDL-C, respectively. Tissue 

factor and Ig E, located closely together, were also negatively or positively related to BMI 

and HDL-C, but to a lesser extent. As the PCA plot shows, ApoB was closely related to 

total-C, whereas a positive relation with this intermediate endpoint was also the case for 

SGOT. The positive relationship of leptin with total-C found in the PLS-model was not 

clearly present in the PCA-plot. Ig A and to a lesser extent eotaxin are located opposite of 

total-C, which corresponds with the negative relationships found for these proteins in the 

PLS model of total-C. 
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Figure 3A: PCA loading plot including selected proteins and the intermediate endpoints BMI, HDL-

C and total-C. In the PCA loading plot the proteins are plotted based on their loadings on the first 

three principal components. The further proteins are located from the origin, the stronger their 

contribution in explaining the variance. As most variance is explained by the first component, 

proteins that have high loadings on the first component contribute most. Proteins and intermediate 

endpoints grouped together show positive relationships with each other, whereas proteins and 

intermediate endpoints that are located opposite to each other (as seen from the origin) show negative 

relationships with each other. Proteins in red and green were respectively positively and negatively 

associated with CHD mortality. For full color figure, see page 180. 
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Figure 3B: PCA score plot corresponding to the loading plot. In the PCA score plot the individuals 

are plotted based on their scores on the first three principal components. Red dots indicate cases of 

CHD mortality, green dots indicate controls. Observations that are located in the direction of certain 

proteins score high on these proteins, whereas observations that are located in the opposite direction 

of certain proteins score low on these proteins (see also figure 3A). For full color figure, see page 

181. 

 

Discussion 

 

   In this study we investigated the association of 83 proteins with CHD mortality, BMI, 

HDL-C and total-C in men. Besides studying the individual relationships of the proteins 

with the different endpoints, we applied PLS to conjointly analyze the proteins in relation to 

the different endpoints, thereby taking relationships between the proteins into account. For 

CHD mortality a set of 15 proteins was included in the model, which predicted 65 percent 

of CHD mortality later in life. This set of proteins can serve as a lead for subsequent larger 

epidemiological studies. Besides validating the results presented in this study, monitoring 
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the concentrations of this set of proteins in individuals over time could provide useful 

information about the levels that in an early stage indicate an increased risk for CHD 

mortality. The proteins associated with CHD mortality in this study do not belong to one 

functional cluster, but are involved in different biological processes (see table 3). All these 

processes play a role in atherosclerosis [1, 3, 23, 24].  

   Applying PLS to select proteins in combination with PCA to visualize the relationships 

among the proteins and endpoints provided insight in the relationships of proteins and 

intermediate endpoints with CHD mortality. Groups of proteins involved in inflammation 

were found to explain most of the variance, as these proteins had high loadings on the first 

principal component (see PCA loading plot, figure 3A). This result corresponds to the 

notion of atherosclerosis, which is the main cause of CHD, as an inflammatory disease [24, 

25]. Subdividing these inflammatory proteins into functionally related clusters appeared to 

be difficult; proteins with similar roles were not always projected close to each other. 

Proteins with high loadings on the second principal component showed to be involved in 

metabolism. Besides the well-established positive and negative relationships of, 

respectively, leptin and adiponectin with BMI [20, 26-28], growth hormone and SHBG 

were also negatively related to BMI and projected closely to adiponectin. Previous studies 

have shown that growth hormone is inversely related to obesity [29, 30], which may be due 

to the involvement of this protein in lipolysis [31]. Also, the influence of high insulin levels 

due to the insulin resistant state that accompanies increased BMI may contribute to the 

suppression of growth hormone [32].  
 

Table 3: Proteins selected in the PLS-model for CHD and the corresponding biological process in 

which these proteins are involved. 

Protein Biological process References 

α-2 Macroglobulin protease activity 

immune response 

inflammation 

lipid metabolism 

[33-35] 

ApoA1 cholesterol metabolism [15, 22] 

β-2 Microglobulin immune response 

inflammation 

[36-38] 

CD40 immune response 

inflammation 

[39, 40] 

CRP inflammation [16] 

Fibrinogen coagulation [41] 

Growth hormone lipid metabolism [30, 31] 

IL-1ra inflammation [42, 43] 

Ig M immune response [44] 

MDC inflammation [45] 

MIP-1β inflammation [46, 47] 

PAPP-A inflammation [48-50] 

TNF RII immune response [51, 52] 

VCAM-1 endothelium/adhesion [17] 

VEGF angiogenesis [19] 
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Furthermore, growth hormone deficient hypopituitary patients were previously shown to 

have significantly increased BMI, and decreased levels of HDL-C and ApoA1 [53], which 

supports the results of the PCA loading plot. These patients showed to have a greater 

absolute risk of a fatal or non-fatal coronary event during the next 5 years compared to 

controls [53]. Also in our study growth hormone was not only inversely related to BMI, but 

also to CHD mortality. The inverse association between SHBG levels and BMI has also 

been found in previous studies [54]. This association may reflect insulin resistance that 

accompanies increased BMI; insulin was shown to regulate SHBG production with higher 

insulin levels resulting in reduced SHBG levels [55]. Additionally, complement 3, 

projected closely to leptin, was also positively related to BMI which is consistent with 

previous findings from literature [56, 57]. This relationship may be partly mediated by 

insulin resistance [57]. As BMI is inversely related with HDL-C, adiponectin, ApoB, 

complement 3 and leptin were also shown to be related to HDL-C. These relationships have 

also been reported in the literature before [26, 28, 58-60].  

   Total-C had a high loading on the third component.  Proteins with high loadings on the 

third component include ApoB and Ig A, which are positively and inversely related to total-

C, respectively. In the PLS-model for total-C, besides ApoB and Ig A, the proteins eotaxin 

and SGOT also have a distinct effect. Whereas ApoB is well-known to be related to total-C 

[21, 61], the relationships of eotaxin, Ig A, and SGOT with total-C are to our knowledge 

not previously observed in literature and may be a lead for further studies. 

   Applying the multivariate method PLS provided a more complete view of how groups of 

proteins relate to the endpoint of interest compared to univariate analysis. The strength of 

PLS is that, taking other proteins into account, it can detect the importance of proteins 

which univariately may not seem significant. For example, the individual relationship 

between growth hormone and CHD mortality was non-significant (p=0.22), but the PLS 

model for CHD mortality clearly showed growth hormone to be of importance. On the 

other hand, some proteins found to be significant univariately were not selected in the PLS-

models. Significant proteins from the univariate analysis have a higher chance to be false 

positive results; by applying a double cross-validation in the PLS analysis the chance of 

selecting false positive results is reduced. Another reason may be that the influence of some 

proteins in the PLS models may be diminished due to the presence of other proteins that 

have a stronger relationship with the endpoint studied. For example, insulin and BMI were 

correlated (r= .44, p<0.0001) in the univariate analysis, but insulin was not associated with 

BMI in the reduced multivariate PLS-model. Leptin, which is more strongly related to 

BMI, correlated with insulin (r= 0.32, p<0.002). Excluding leptin from the PLS analyses 

resulted in a model very similar to the model with leptin included, but now insulin, and also 

PAI-1 (in the univariate analysis significantly correlated with BMI, r=0.21, p=0.04, and 

leptin, r=0.32, p=0.003) were additionally included in the model. 

   PLS is not only able to handle large numbers of variables in moderate to small sample 

sizes, but also the presence of multicollinearity among the proteins [62]. On the other hand, 

the application of traditional statistical methods (e.g. logistic regression, multiple linear 

regression) likely yields unreliable parameter estimates if the number of variables is 

relatively large compared to the number of observations [63] or when multicollinearity is 

present [62]. Therefore, to analyze high-dimensional proteomic data PLS is a more suitable 

tool compared to traditional statistical methods [4].  
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   The threshold to be used for reducing the noise is to some extent subjective. In our PLS-

analyses we applied a threshold of RSD<0.5 (i.e. 95% confidence interval of significant 

effects), but other thresholds could have been chosen. However, in our view, this cut-off 

was a proper balance between reducing noise while retrieving a sufficient amount of 

information, providing interpretable PLS-models. Furthermore, proteins that come up as 

important will not change dramatically for different thresholds. 

 

Conclusions 

 

   In this study we applied the multivariate statistical tool PLS to analyze the association 

between 83 proteins and CHD mortality, BMI, HDL-C and total-C. In this way we 

identified a set of 15 proteins with prognostic value of CHD mortality later in life. 

Additionally, sets of proteins were identified to be associated with BMI, HDL-C and total-

C. Visualizing the identified proteins together with intermediate endpoints by PCA 

indicated that proteins involved in inflammation explained most of the variance, followed 

by proteins involved in metabolism and proteins associated with total-C. Together these 

results provide a set of proteins with prognostic value for CHD mortality and insight in the 

relationships among proteins and intermediate endpoints involved in CHD mortality. 
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Introduction 

 

   Genes and proteins play a role in the development of complex diseases in humans by 

complex interactions. Therefore it is of importance to take these interactions into account in 

genomic studies. In this thesis, approaches to analyze genomic datasets to identify these 

complex relationships have been discussed and applications to real datasets have been 

shown. In the general discussion the results of the studies performed will be placed within 

the discussion of the possibilities and limitations currently present in the analysis of large 

nutrigenomic datasets. This is followed by the discussion of the benefits and limitations of 

genomic research for public health. In the last section a future perspective on nutrigenomic 

research will be discussed. 

 

Possibilities and limitations in analyzing large genomic datasets in relation to complex 

diseases 

 

   In this section possibilities and limitations in the analysis of genomic datasets will be 

discussed for the aim of obtaining insight in the biological mechanisms and for the aim of 

diagnosis and prognosis.  

 

Insight in the biological mechanisms 

 

   For the aim of obtaining insight in the biological mechanisms, possibilities and 

limitations in the analysis will be discussed according to the points of the multi-step 

approach that was presented in chapter 1: detection of heterogeneity, dimensionality 

reduction, statistical interpretation and biological interpretation. 

 

Detection of heterogeneity 

   In chapter 2 an overview of the strengths and weaknesses of multi-locus methods to 

handle statistical challenges in the analysis of large numbers of SNPs was provided. 

Besides other issues, the performance of the multi-locus methods in the presence of 

heterogeneity was discussed. As indicated in this chapter, methods that test the association 

between predictors and disease for the total sample will be affected by the presence of 

heterogeneity, whereas neural networks and recursive partitioning methods are assumed to 

be able to handle heterogeneity [1, 2]. However, contradictory findings for the ability of 

recursive partitioning methods to handle heterogeneity were found in different simulation 

studies [3, 4]. Further work is needed to investigate the conditions whereby recursive 

partitioning methods are able to detect heterogeneity. Besides neural networks and 

recursive partitioning methods, other methods can be applied to handle heterogeneity [5, 6], 

including cluster methods [7]. If different clusters have been obtained by cluster analysis, 

subsequent analyses should be performed separately for each cluster (stratified analyses) or 

the cluster variable should be included in the analysis.  

 

Dimensionality reduction 

   For dimensionality reduction, first the approach of prioritization and selection will be 

discussed. The methods discussed in chapter 2 were previously shown to have good power 
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to detect true associations [4, 8-10]. As these methods have different strengths and 

weaknesses in the prioritization and selection of important SNPs, the main conclusion of 

this chapter was that the application of a combination of methods is likely a useful strategy 

to analyze SNPs in relation to complex diseases. This is underscored by a simulation study 

in which different multi-methods were compared in their performance to select SNPs and 

detect interactions between SNPs from simulated data [3]. As indicated in chapter 3 of this 

thesis, application of different multi-locus methods to select SNPs from real data showed 

that this combined analytical strategy indeed has several advantages compared to applying 

only one method. It should be noted that more methods have become available that can be 

applied for analysis of large SNP datasets, but which are not addressed in this thesis, e.g. 

[11-13].  

   Some of the methods discussed in chapter 2 were specifically developed for the analysis 

of SNP data, to identify important SNPs and SNP combinations in relation to traits and 

complex diseases. Other methods included in this chapter can also be applied to microarray 

and proteomic data, such as neural networks [14] and random forests (RF) [15, 16]. RF is a 

suitable method to capture all possible interactions in the prioritization of variables, and 

was therefore applied in chapter 3, 5 and 6 for prioritization of SNPs, genes and 

mass/charge ratios, respectively. It is useful to analyze data that consists of either 

continuous predictors, or categorical predictors consisting of similar number of categories. 

However, caution must be taken if categorical predictors consisting of different number of 

categories or both categorical and continuous predictors are analyzed simultaneously. In 

that case the application of RF will likely lead to biased results and conditional inference 

trees can be used in the forest [17, 18]. Another issue is that RF does not provide a 

threshold to denote which variables should be selected for further statistical and biological 

interpretation. In this thesis we investigated several ways to define the threshold, including 

robustness of the ranking of variables (chapter 3) and a permutation approach (chapter 5). 

Another way would be to screen the top-ranked variables for biological relevance. 

However, this is not preferred, as biological information is not always known beforehand 

and relevant information unknown to the researcher could be disregarded. 

   Of course, applying a combination of different methods will also likely be a viable 

approach to analyze microarray data and proteomic data. Methods to select a subset of 

genes from microarray data have been compared by others, but these methods did not take 

interactions into account [19]. Therefore, the next step will be to compare methods that take 

interactions into account to select important variables in the analyses of microarray and 

proteomic data. 

   The approach of reducing the dimensionality by methods that combine variables into a 

smaller set of new variables will now be discussed. In this respect, PLS is a suitable tool to 

analyze high-dimensional genomic data [20]. In chapter 7 we applied partial least squares 

(PLS) to analyze the association of 83 plasma proteins with CHD mortality, body mass 

index (BMI), HDL-cholesterol (HDL-C), and total cholesterol (total-C). This study points 

out that the noise of non-important variables may obscure the signals of important 

variables. Therefore, if statistical results are obtained that are biologically plausible, but not 

statistically significant, a reduction in the number of variables to reduce the noise is an 

option. PLS may not always be able to detect variables with small effects [21] and therefore 

it may not retrieve all biologically relevant information from the data. In chapter 7, 
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application of PLS indeed showed that proteins with smaller effects were not always 

selected. As indicated in this chapter, a reason for this may be that these proteins were 

related to another protein that showed to have a larger effect on the endpoint studied. 

 

Statistical interpretation 

   As indicated above, applying a combination of methods can help in the selection of SNPs, 

but such a combined analytical strategy can also help for statistical interpretation to 

understand how variables contribute to the studied disease. Similarities and differences in 

results between methods provide information on the type of effects that are found (see for 

example chapter 3). Also, comparing advanced methods that take interaction into 

consideration with univariate results provides insight whether variables selected in a 

multivariate model contribute by themselves and/or in interaction with other variables. For 

example, although RF does take all possible interactions into account, it does not provide 

information on whether predictors contribute by their main effect or in interaction, and 

therefore it is useful to compare the ranking by RF with the ranking by a univariate test, as 

shown in chapters 3 and 5.  

   Visualization tools are available that show graphically the importance of individual 

variables as well as the interactions between variables. The visualization tools that were 

applied for statistical interpretation were the interaction entropy graph (see chapters 3 and 

4) and the interaction dendrogram (see chapter 3) [22-24]. Besides these visualization tools, 

the parametric method logistic regression analysis was applied. The application of logistic 

regression analysis is valid at this step if the number of observations is sufficiently large 

compared to the number of selected variables [25]. The associations that were found by the 

interaction entropy graph in both chapters 3 and 4 were confirmed by logistic regression 

analysis. This indicates that the interaction entropy graph is a useful tool for statistical 

interpretation of a selected subset of variables. Another visualization tool (not discussed in 

this thesis) that can be applied for statistical interpretation of SNP data is Bayesian 

networks [26].  

   The interaction dendrogram that was applied in chapter 3 is a hierarchical clustering 

method. Besides this method, other cluster methods can be applied to find among the 

selected variables groups of variables that statistically are closely related. In chapter 5 we 

used for statistical interpretation the cluster method self-organizing maps (SOM) [27] to 

find groups of clusters with similar gene expression patterns. Clusters containing genes 

exclusively selected by RF but not by t-test were assumed to be involved by their 

interaction. These clusters were shown to have biological meaning. SOM was chosen above 

other cluster methods as it has the advantage that it provides an ordering in the clusters, 

which is very useful in the context of large numbers of clusters. Still, different cluster 

algorithms have different strengths and weaknesses in clustering genes by their expression 

profile into functional groups; therefore application of several cluster methods and 

evaluation by existing biological information has been recently recommended [28]. 

   In chapter 7, after the selection of proteins by PLS, we applied for further statistical 

interpretation principal component analysis (PCA). Combining PLS with PCA seems a 

useful approach to obtain an overview of the proteomic data; in our study this approach 

provided insight in the relationships among identified proteins, intermediate endpoints and 

CHD mortality.  
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Biological interpretation 

   To improve biological interpretation for a set of selected important genes or proteins, 

pathway analysis can be helpful to provide a more global overview of what biological 

processes are significantly related to the endpoint of interest. Different pathway analysis 

tools are available, including methods that import a subset of preselected genes and assess 

enrichment of biological processes [29, 30] and gene set analysis methods that circumvent 

the need to preselect genes [31]. However, pathway analysis programs currently have the 

limitations to take only those genes into account that are annotated in the database used by 

the program. Therefore, in order to overcome these limitations, we developed in chapter 5 a 

framework to analyze microarray data in which both gene ontology (GO)-annotated and 

non-annotated genes are taken into account. In this chapter it is shown that more than half 

of the microarray data is not included if pathway analysis programs are applied that are 

solely based on functional annotation and co-occurrence in gene sets. Applying this 

framework taking both GO-annotated and non-annotated genes into account, more 

biological information could be retrieved from the data compared to gene set enrichment 

analysis (GSEA), indicating that it is important to include all microarray data in the 

analysis. For biological interpretation, data mining and literature search were also 

performed to obtain more insight.  

   Within genomics, besides the study of the different biological levels by genetics, 

transcriptomics and proteomics, a systems biology approach is nowadays more and more 

emerging [32]. For systems biology, which is also referred to as integrative biology [33], 

many different definitions are available [34]. One way to define systems biology is as a 

holistic approach for studying biological systems that analyzes multiple macromolecular 

species (e.g. DNA polymorphisms, RNA, protein, metabolites) in one experiment [35]. In 

the systems biology approach, data of the different omics techniques is integrated and a 

combined analytical approach is applied for interpretation [36]. Now genetics, 

transcriptomics and proteomics are more and more established, integrating the information 

from the different biological levels is a logical and important next step. Integration of 

information from different omics techniques will help to reduce false positive and false 

negative results obtained from single omics approaches. Furthermore, this approach enables 

researchers to combine results from different biological levels to improve biological 

interpretation and construct a more all-inclusive biological model. Systems biology has 

shown to have advantages in finding underlying biological patterns [36].  

 

Summary of the multi-step approach 

   For the different points considered within the multi-step approach to obtain insight in 

biological mechanisms, a summary of the results obtained within the studies performed in 

this thesis are included in the grey boxes in figure 1. 
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Figure 1: Multi-step approach to analyze large genomic datasets. For each step, grey boxes include 

methods that can be used for this specific step. 

 

Diagnosis and prognosis 

 

   Based on the results obtained from the studies performed in this thesis, first the 

possibilities and limitations in the analysis for the aim of diagnosis will be discussed, 

followed by the discussion of the analysis for the aim of prognosis.  

 

Diagnosis 

   In chapter 6 a three-step approach to develop a discrimination rule for classification of 

breast cancer patients and control subjects was described. This endeavour was part of a 

classification competition in which 10 research groups applied each their preferred 

approach. The objective of the competition was to see what approach would yield the best 

classification and prediction accuracy to discriminate between breast cancer patients and 

control subjects. This classification competition has been described in a special journal 

issue [37]. In chapter 6 we developed our approach on the training dataset, which yielded a 

good classifying model with a sensitivity and specificity of 86.8% and 85.7%, respectively. 
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Approaches that have been applied by other groups include RF, RF in combination with 

linear discriminant analysis, principal components discriminant analysis, support vector 

machine, logistic ridge regression (see table 1). The advantage of the three-step approach 

we applied is that our model can be simply interpreted, which is hard to do with for 

example a forest model or a model obtained by SVM. Valkenborg et al. [38], one of the 

participating research groups, first compared different classification techniques and found 

that RF and SVM yielded the best classification. The classification of SVM was only 

marginally better, therefore the classification results based on SVM were reported (see table 

1). For microarray data it has also been shown previously that RF, SVM, but also diagonal 

linear discriminant analysis yielded good classification results [39]. The disadvantage of 

SVM is that it is not straightforward to extend this method to more than two classes, 

whereas RF can be easily applied to multi-class problems. For RF a variable selection 

approach for classification purposes has been developed that can be applied to select genes 

from microarray data [15, 40].  

   As can be seen from table 1, one of the outcomes of the classification competition was 

that different approaches yielded different rules with similar performance. The finding that 

different subsets of variables may have equal performance in classifying cases and controls 

is more often observed in applying different classification techniques [41, 42]. However, 

this may also depend on the type of data; mass spectrometry data often contains more 

variables with large effects, yielding different possible solutions with equal classification 

performance.  

   On the other hand, classification of a complex disease using SNP data appears to be more 

problematic. In a separate study we also investigated whether we could improve the 

prediction of a binary outcome using SNP data by a modified approach of MDR. This 

modified approach was based on the idea that there is likely more than one combination of 

SNPs involved in complex diseases and that by predicting the outcome variable based on 

several SNP combinations we could improve the prediction compared to the prediction 

based on only one SNP combination. In this modified approach, the total dataset was split 

in a training set and a test set. MDR was applied to analyze the training set in order to select 

the most important single SNPs and 2-SNP combinations. Subsequently, for each of these 

top single SNPs and 2-SNP combinations dummy variables were created based on the risk 

group assigned to each genotype or multi-locus genotype by MDR: low risk genotypes 

were coded as 0 and high risk genotypes as 1. These dummy variables were included in a 

stepwise manner in the logistic regression model to predict the case status for the 

individuals in the test set. In this way a prediction accuracy based on several single SNPs 

and 2-SNP combinations was obtained. However, only a marginal improvement in the 

prediction accuracy was observed compared to the best SNP combination (results not 

shown) and therefore this approach was not further developed. Thus, obtaining good 

predictions of complex diseases based on SNP data is often difficult to achieve. This is one 

of the current limitations of genomic research for public health, as is also discussed below. 

 



Chapter 8 

154 

Table 1: Comparison of the different approaches that were applied to correctly classify cases of 

breast cancer and controls. The approaches are ranked by their total accuracy on the training dataset. 

Approach Sensitivity 

(%) 

Specificity 

(%) 

Classification  

accuracy (%) 

Reference 

RF 81.6 85.7 83.7 [43] 

PCDA 81.6 85.7 83.7 [44] 

SVM 81.6 87.0 84.3 [38] 

PCDA 82.9 89.6 86.3 [45] 

Three-step approach  86.8 85.7 86.3 Chapter 6 

RF+LDA 90.8 84.4 87.6 [46] 

Empirical bayes LR 88.2 89.6 88.9 [47] 

Autocorrelated LRR 89.5 89.6 89.5 [48] 

Conformal predictor 

(based on SVM) 

89.5 92.2 90.8 [49] 

SVM 89.5 98.7 94.1 [50] 

PCDA: principal component discriminant analysis 

LR: Logistic regression 

LRR: Logistic ridge regression 

SVM: Support vector machine 

 

Prognosis 

   In chapter 7 we applied PLS to identify a set of proteins with prognostic value for CHD 

mortality later in life. As PLS iteratively maximizes the covariance between the latent 

components and the response variable, PLS is advantageous in prediction problems. CHD 

cases died on average six years after baseline, and a PLS model including a set of 15 

proteins was identified that predicted 65% of CHD mortality later in life. We also 

investigated whether we could predict the number of years cases died after baseline 

examination based on the total set of proteins. However, it was not possible to obtain a PLS 

model with good predictive performance.  

   The selection of the 15 proteins was based on a cut-off of a relative standard deviation 

(RSD) ≤ 0.5, which is a valid approach to select variables. We did not formalize the 

application of PLS as a variable selection method to obtain the smallest set of proteins that 

would yield the best prediction. Other possible ways for variable selection can be used, 

among others, a recursive feature elimination (RFE) procedure (similar to the parameter 

decreasing method (PDM) discussed in chapter 2), uninformative variable elimination and a 

genetic algorithm [51]. Variable selection strategies for classification are subject for further 

investigation. 

   Principal components regression (PCR) [52, 53] is a technique related to PLS. The first 

step in PCR is to perform PCA to construct the components in order to maximize the 

variance explained in a set of predictor variables. This is followed by a multiple linear 

regression step whereby the scores obtained by PCA are related to the outcome. Thus, in 

PCR the components are constructed without taking the covariance structure with the 

outcome variable into account. Therefore PCR may yield less predictive models than PLS. 
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Benefits and limitations of genomic research for public health 

 

   Human genetic/genomics research has shown to have an impact for Mendelian disorders 

[54], but not yet for complex diseases. The number of genes that have been really identified 

so far in relation to complex diseases is still limited and only very few evidence-based 

guidelines in genetics have been made [55]. BRCA mutation testing for breast cancer 

susceptibility is one of the genetic/genomic applications that could be used according to 

recommendations of U.S. Preventive Services Task Force (USPSTF) [56]. As discussed 

above, the predictive value of SNPs is limited for complex diseases. Also in our study 

performed in chapter 3 the prediction accuracy of SNPs in relation to dichotomized HDL 

was limited for the models obtained by RF (55%) and MDR (57.9%). This is due to the 

many genetic, environmental and social factors involved in intermediate endpoints and 

complex diseases; most SNPs will therefore have a low predictive value and associated 

attributable risk and the clinical application of SNPs is questionable [57]. For example, the 

predictive performance of SNPs is lower compared to other risk factors [58]. To identify 

individuals with an increased risk of a complex disease, family history might be more 

useful as a screening tool [59]. Subsequently, personalized prevention strategies could be 

provided to these individuals. 

   Another limitation of most genetic association studies that have been performed so far is 

that replication of associations between SNPs and complex diseases in independent studies 

has often failed [60, 61]. This is due to several reasons, including technical issues regarding 

genotyping [62], heterogeneous populations [6, 63], the modest to small sample sizes 

resulting in lack of power [64] and false positive results, and absence of performing 

multivariate statistical analyses to investigate complex interactions. Conducting meta-

analyses can be helpful in determining the robustness of the results of reported associations 

between genes and disease [65], see for example [66]. However, although useful, these 

meta-analyses are also subject to the issues present in genetic association studies [67]. For 

example, combining data from different studies may increase heterogeneity and thereby 

dilute true associations. Also, meta-analyses may miss true associations that are present due 

to gene-gene and gene-environment interactions. Therefore meta-analyses should be 

supplemented with large epidemiological studies that apply approaches such as discussed in 

this thesis to investigate these interactions. The use of this type of complex information for 

health care is only starting to be discussed [55]. 

   Despite the current limitations of the contribution of genomic research for public health, 

the application of genomics can provide the opportunity to improve public health. For 

example, identifying biomarkers for diagnostic and prognostic tests may be used in the 

clinical setting. In this respect, the results of chapter 6 and 7 show the value of genomic 

research for diagnosis and prognosis, respectively, of complex diseases. Furthermore, with 

the current development in technology and possibilities to measure large numbers of 

variables for a decreasing price, epidemiological studies including many factors are more 

and more feasible. The study performed in chapter 7 is unique as it is one of the first studies 

in which the concentrations of large numbers of plasma proteins are investigated in relation 

to CHD and intermediate endpoints. In contrast to univariate statistics, applying 

multivariate statistics to take the simultaneous effects of many proteins into account yielded 

interpretable models for CHD, BMI, HDL- and total cholesterol, that provided more 
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complete information. This information is therefore more useful for development of 

possible treatment procedures. Also, genome wide association studies are a first step to 

genomic applications for complex diseases in humans and evidence from the first large 

genome wide association studies are promising [68-71]. As discussed in this thesis, 

approaches (e.g. RF) are nowadays available that are useful to analyze the large amount of 

data obtained in these studies and have the advantage of taking interactions into account 

(see also [72]). These new advances might bring discoveries that are useful for public 

health. 

   Effective translation of genomic research into improved public health is needed. 

Recently, a framework was described consisting of four phases for integration of results 

from genomic studies into health care and disease prevention, viz. 1) from gene discovery 

to candidate health applications; 2) from health application to evidence-based guidelines; 3) 

from evidence-based guidelines to health practice; and 4) from practice to population health 

impact [55]. Most of the human genetics and genomics articles (>350,000) have been 

published on the first phase, while less than 3% deals with translation research from phase 

2 and beyond [55]. If results from genomic research applications in public health yield 

applications and evidence-based guidelines it is also important to evaluate how well this 

information will translate into better prevention, diagnosis, and treatment. At the moment 

there is a gap in translation of evidence-based guidelines into health practice that is 

especially present in preventive medicine [55, 73], which is the focus of nutrigenomic 

research. To evaluate the contribution of genomic applications to public health, research 

should integrate studies of health outcomes with studies of ethical, legal and social 

implications [57]. Genomic research has raised many ethical issues on how to deal with 

information obtained from genomic research, e.g. how to deal with incidental findings in 

genomic research [74], genetic information of individuals that reveals information about 

other family members [75], implications of genetic testing for discrimination of health 

insurance [75, 76] and the potential harm (e.g. increased anxiety, unnecessary treatment) 

and benefits of genetic testing [77-79]. In contrast to other applications of genomic research 

where the focus is on discerning patients from non-diseased individuals, nutrigenomic 

research is directed to public health and prevention of disease shifting the focus from 

patients to apparently healthy individuals, which raises specific ethical issues [80, 81]. At 

the moment ethics is still separate from genomic research and it is important that ethics will 

become an integral part of genomic research [57].  

 

Future perspectives 

 

   In this thesis approaches have been discussed to analyze genetic polymorphisms, mRNA 

levels, peptide and protein concentrations in relation to complex diseases in humans. As 

discussed, the next step will be to combine genetic, transcriptomic and proteomic data in a 

systems biology approach. This may in the near future show to be useful to generate more 

global and comprehensive biological hypotheses regarding the development of complex 

diseases in humans, but also for the detection of biomarkers for clinical purposes. Also, 

validation of effects on different biological levels will reduce the number of false positive 

and false negative results. For statistical analyses of genomic datasets an important aspect 

that will increase the progress within genomic research is the free availability of easy-to-use 
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software to perform the analyses. The analyses that have been performed in this thesis have 

been mainly performed with freely available software, and useful sources for free software 

include R-packages [82], MDR [83], Orange software [84], and Weka [85]. Computer 

memory and calculation performance at the moment are also a bottleneck to easily perform 

analyses, limiting the possibility for exhaustive searches over all possible combinations of 

variables. In our studies we also made use of a computer cluster to be able to perform the 

RF analyses with large numbers of trees, which was not feasible on a normal PC. Increase 

in computer memory and calculation performance will also move the field of genomics 

forward, providing the possibility to detect intricate interactions among large numbers of 

variables. 

   In genomics, studying SNPs, mRNA levels and proteins in relation to complex diseases is 

nowadays a joined effort of researchers from different disciplines, e.g. epidemiologists, 

statisticians, bioinformaticians and biologists. For genomics research to become successful, 

besides integration of information from different omic techniques, communication and 

collaboration between different research groups is important. Large genomic research 

networks exist [86] that facilitate cooperation between different research groups. 

Multidisciplinary and interdisciplinary [57] nutrigenomic research would also be enhanced 

by including the disciplines of public health, ethics, behavioral and social sciences [55]. 

Hopefully the large nutrigenomic research networks can extend to form a global scientific 

community to make an effort to reduce the prevalence of disease, develop prevention 

strategies and enhance the health and well-being of human beings. 

   Finally, besides providing evidence leading to improvements of health and well-being, it 

is the responsibility of biomedical scientists to increase public awareness on health and 

health-related technologies, especially in the low socio-economic group. With respect to 

genomics, promoting genetic literacy of both the public and health professionals [57] and 

communicating the complexity of genetic risk are of importance [77, 87, 88]. Besides 

communication of genetic information, policy should also continue to be directed at 

changes in environmental factors that contribute to public health. Policy directed at 

smoking cessation has been successful over the last decades, but obesity reverses this gain 

in public health [89]. Therefore, similar advances as made in smoking cessation are needed 

in promoting recommendations for healthy life-style behavior including healthful nutrition 

[90], to not only reduce risk factors and the prevalence of corresponding complex diseases, 

but also to improve human well-being.  
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Chapter 3 Color figures 

 
Figure 4: Entropy-based interaction graph. The percentages of entropy of HDL-cholesterol group 

explained by the different SNPs are shown in the boxes. The numbers by the arrows correspond to the 

percentages of entropy of HDL-cholesterol group explained by the two-way interactions between 

single nucleotide polymorphisms. 
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Chapter 3 Color figures (continued) 

 
 

Figure 5: Interaction dendrogram. Stronger interactions between single nucleotide polymorphisms 

are visualized by depicting SNPs more closely together at the leaves of the tree (right side of the 

graph). 

 

 
Chapter 5 Color figure  

Figure 2A and 2B: Genes, of 100 random sets (black lines) and real sets with different seed values 

(colored lines), ranked by the Im values. For colon (A) and cecum (B) datasets.  
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Chapter 3 Supplemental table: In the table information is provided for the SNPs genotyped in this study. For SNPs included in the analyses, 

minor allele frequencies and numbers of non-cases and cases for the genotypes are shown. For these SNPs p-values obtained by Fisher’s Exact 

test are shown in the last column. 

Chromosome rs number SNP minor allele 

frequency 

genotype non- 

cases 

cases Fisher´s Exact  

test p-value 

1 rs699 AGT met235thr (T/C) C 0.42 T/T 183 188 0.65 

    T/C 259 238  

    C/C 103 107  

1 rs6025 F5 arg506gln (G/A) A 0.02 G/G 514 515 0.08 

    G/A | A/A 31 18  

1 rs1800872 IL-10 -571 C/A A 0.23 C/C 342 319 0.37 

    C/A 176 178  

    A/A 27 36  

1 rs1801133 MTHFR ala222val (677 C/T) T 0.32 C/C 235 277 0.01 

    C/T 248 203  

    T/T 62 53  

1 rs5063 NPPA 664 G/A A 0.04 G/G 508 489 0.42 

    G/A | A/A 37 44  

1 rs5065 NPPA 2238 T/C C 0.16 T/T 394 369 0.26 

    T/C 139 144  

    C/C 12 20  

1 rs5361 SELE ser149arg (A/C) * C 0.11 A/A 434 420 0.76 

    A/C | C/C 111 113  

 1 rs5355 SELE leu554phe (C/T) T 0.04 C/C 501 500 0.24 

    C/T | T/T 44 33  
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Chapter 3 Supplemental table (continued) 

Chromosome rs number SNP minor allele 

frequency 

genotype non- 

cases 

cases Fisher´s Exact 

test p-value 

1 rs6131 SELP ser330asn (G/A) A 0.18 G/G 378 360 0.48 

    G/A 149 148  

    A/A 18 25  

1 rs6133 SELP val640leu (G/T) T 0.12 G/G 417 419 0.66 

    G/T 116 105  

    T/T 12 9  

1 rs1041163 VCAM-1 -1594 T/C C 0.14 T/T 406 401 0.85 

    T/C 126 122  

    C/C 13 10  

2 rs1367117 ApoB thr71ile (C/T) T 0.32 C/C 264 246 0.13 

    C/T 233 220  

    T/T 48 67  

2 rs5742904 ApoB arg3500gln (G/A) minor allele frequency <0.01 

2 rs5742909 CTLA4 -318 C/T  T 0.07 C/C 488 460 0.11 

    C/T | T/T 57 73  

2 rs231775 CTLA4 thr17ala (A/G) G 0.38 A/A 205 204 0.35 

    A/G 273 249  

    G/G 67 80  

2 rs1800587 IL-1A thr(-889)cys (T/C) C 0.71 T/T 56 44 0.48 

    T/C 198 204  

    C/C 291 285  
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Chapter 3 Supplemental table (continued) 

Chromosome rs number SNP minor allele 

frequency 

genotype non-

cases 

cases Fisher´s Exact 

test p-value 

2 rs16944 IL-1B -1418 C/T T 0.34 C/C 231 223 0.48 

    C/T 258 243  

    T/T 56 67  

2 rs1143634 IL-1B phe105phe (C/T) T 0.24 C/C 321 310 0.82 

    C/T 197 192  

    T/T 27 31  

3 rs5186 AGTR1 1166 A/C C 0.30 A/A 263 267 0.84 

    A/C 236 223  

    C/C 46 43  

3 rs1799864 CCR2 Val62Ile (G/A) A 0.08 G/G 453 460 0.15 

    G/A | A/A 92 73  

3 rs5742906 CCR3 Pro39Leu (C/T) minor allele frequency <0.01 

3 rs333 CCR5 32-bp ins/del  del 0.11 ins/ins 433 429 0.70 

    ins/del | del/del 112 104  

3 rs1799987 CCR5 -2459 G/A A 0.55 G/G 107 106 0.61 

    G/A 273 280  

    A/A 165 147  

3 rs2290608 IL-5ra -80 G/A A 0.24 G/G 338 292 0.05 

    G/A 176 207  

    A/A 31 34  
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Chapter 3 Supplemental table (continued) 

Chromosome rs number SNP minor allele 

frequency 

genotype non- 

cases 

cases Fisher´s Exact 

test p-value 

3 rs1801282 PPARG pro12ala (C/G) G 0.12 C/C 409 421 0.26 

    C/G 125 105  

    G/G 11 7  

4 rs4961 ADD1 gly460trp (G/T) T 0.20 G/G 350 356 0.55 

    G/T 165 154  

    T/T 30 23  

4 rs1800790 FGB -455 G/A A 0.19 G/G 363 357 0.75 

    G/A 162 152  

    A/A 20 24  

4 rs7041 GC glu416asp (G/T) T 0.45 G/G 160 167 0.62 

    G/T 269 264  

    T/T 116 102  

4 rs4588 GC thr420lys (C/A) A 0.28 C/C     289 274 0.23 

    C/A 209 225  

    A/A 47 34  

        

 5 rs1042713 ADRB2 arg16gly (A/G) * G 0.60 A/A 78 92 0.35 

    A/G 276 269  

    G/G 191 172  
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Chapter 3 Supplemental table (continued) 

Chromosome rs number SNP minor allele 

frequency 

genotype non- 

cases 

cases Fisher´s Exact 

test p-value 

5 rs1042714 ADRB2 gln27glu (C/G) * G 0.41 C/C 168 186 0.26 

    C/G 287 273  

    G/G 90 74  

5 rs1800888 ADRB2 thr164ile (C/T) T 0.01 C/C 532 524 0.52 

    C/T | T/T 13 9  

5 rs2569190 CD14 -260 C/T T 0.49 C/C 143 127 0.54 

    C/T 275 286  

    T/T 127 120  

5 rs25882 CSF2 ile117thr (T/C) C 0.22 T/T 326 345 0.07 

    T/C 195 157  

    C/C 24 31  

5 rs2243250 IL-4 -590 C/T T 0.17 C/C 359 376 0.18 

    C/T 173 142  

    T/T 13 15  

5 rs2069885 IL-9 thr113met (C/T) T 0.11 C/C 433 429 0.70 

    C/T | T/T 112 104  

5 rs1295686 IL-13 4045 C/T T 0.21 C/C 340 336 0.25 

    C/T 185 167  

    T/T 20 30  
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Chapter 3 Supplemental table (continued) 

Chromosome rs number SNP minor allele 

frequency 

genotype non-

cases 

cases Fisher´s Exact 

test p-value 

5 rs1062535 ITGA2 873 G/A A 0.39 G/G 203 199 0.98 

    G/A 260 256  

    A/A 82 78  

5 rs730012 LTC4S -444 A/C C 0.30 A/A 284 269 0.50 

    A/C 206 218  

    C/C 55 46  

5 rs244656 TCF7 -1459 A/T T 0.14 A/A 405 390 0.90 

    A/T 129 131  

    T/T 11 12  

5 rs5742913 TCF7 Pro19Thr (C/T) Hardy Weinberg Disequilibrium (p<0.01) 

6 rs1853021 LPA 93 C/T T 0.15 C/C 372 396 0.04 

    C/T 161 132  

    T/T 12 5  

6 rs1800769 LPA 121 G/A A 0.15 G/G 398 392 0.97 

    G/A 134 128  

    A/A 13 13  

6 rs1041981 LTA thr26asn (C/A) A 0.34 C/C 227 241 0.50 

    C/A 255 234  

    A/A 63 58  

6 rs909253 LTA intronA A/G correlated with LTA thr26asn (r>0.85) 

6 rs1800750 TNF -376 G/A Hardy Weinberg Disequilibrium (p<0.01) 
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Chapter 3 Supplemental table (continued) 

Chromosome rs number SNP minor allele 

frequency 

genotype non-

cases 

cases Fisher´s Exact 

test p-value 

6 rs1800629 TNF -308 G/A* A 0.17 G/G 379 362 0.60 

    G/A 149 158  

    A/A 17 13  

6 rs673 TNF -244 G/A minor allele frequency <0.01 

6 rs361525 TNF -238 G/A* A 0.04 G/G 504 496 0.73 

    G/A | A/A 41 37  

7 rs1800796 IL-6 -572 G/C Hardy Weinberg Disequilibrium (p<0.01) 

7 rs1800795 IL-6 -174 G/C C 0.38 G/G 229 200 0.30 

    G/C 236 245  

    C/C 80 88  

7 rs1800779 NOS3 -922 A/G* G 0.36 A/A 225 214 0.93 

    A/G 251 250  

    G/G 69 69  

7 rs3918226 NOS3 -690 C/T T 0.07 C/C 469 457 0.93 

    C/T | T/T 76 76  

7 rs1799983 NOS3 glu298asp (G/T)* T 0.31 G/G 262 251 0.94 

    G/T 232 230  

    T/T 51 52  

7 rs1799768 PAI-1 -675 G5G4  del 0.53 G/G 118 132 0.35 

    G/del 260 255  

    del/del 167 146  
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Chapter 3 Supplemental table (continued) 

Chromosome rs number SNP minor allele 

frequency 

genotype non-

cases 

cases Fisher´s Exact 

test p-value 

7 rs7242 PAI-1 11053 G/T T 0.56 G/G 108 110 0.41 

    G/T   270 243  

    T/T 167 180  

7 rs854560 PON1 met55leu (A/T) T 0.64 A/A 68 67 0.04 

    A/T 274 229  

    T/T 203 237  

7 rs662 PON1 gln192arg (A/G) G 0.30 A/A 285 262 0.29 

    A/G 199 219  

    G/G 61 52  

7 rs6954345 PON2 ser311cys (C/G) G 0.25 C/C 317 295 0.56 

    C/G 193 197  

    G/G 35 41  

8 rs4994 ADRB3 trp64arg (T/C) C 0.08 T/T 470 454 0.91 

    T/C 70 74  

    C/C 5 5  

8 rs1800590 LPL -93 T/G Hardy Weinberg Disequilibrium (p<0.01) 

8 rs1801177 LPL asp9asn (G/A) * A 0.02 G/G 531 511 0.18 

    G/A | A/A 14 22  

8 rs268 LPL asn291ser (A/G) * G 0.02 A/A 527 507 0.22 

    A/G | G/G 18 26  
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Chapter 3 Supplemental table (continued) 

Chromosome rs number SNP minor allele 

frequency 

genotype non-

cases 

cases Fisher´s Exact 

test p-value 

8 rs328 LPL Ser447X (C/G) * G 0.12 C/C 397 438 0.0008 

    C/G 142 90  

    G/G 6 5  

9 rs17611 C5 ile802val (A/G) G 0.59 A/A 95 85 0.81 

    A/G 269 266  

    G/G 181 182  

10 rs1801157 SDF1 800 G/A A 0.18 G/G 375 357 0.68 

    G/A 148 157  

    A/A 22 19  

11 rs670 ApoAI -75 G/A  A 0.19 G/G 346 359 0.41 

    G/A 180 157  

    A/A 19 17  

11 rs675 ApoA4 thr347ser (A/T) T 0.19 A/A 350 353 0.68 

    A/T 178 167  

    T/T 17 13  

11 rs5110 ApoA4 gln360his (G/T) T 0.08 G/G 463 459 0.60 

    G/T | T/T 82 74  

11 rs2542052 ApoC3 -641 C/A Hardy Weinberg Disequilibrium (p<0.01) 

11 rs2854117 ApoC3 -482 C/T T 0.28 C/C 292 264 0.34 

    C/T 213 221  

    T/T 40 48  



 

 

S
u
p
p
lem

en
ta
l d

a
ta
 

1
7
5
 

Chapter 3 Supplemental table (continued) 

Chromosome rs number SNP minor allele 

frequency 

genotype non-

cases 

cases Fisher´s Exact 

test p-value 

11 rs2854116 ApoC3 -455 T/C  C 0.37 T/T 219 203 0.42 

    T/C 247 262  

    C/C 79 68  

11 rs4520 ApoC3 1100 C/T  T 0.29 C/C 281 261 0.54 

    C/T 229 230  

    T/T 35 42  

11 rs5128 ApoC3 3175 G/C* C 0.10 G/G 456 411 0.007 

    G/C | C/C 89 122  

11 rs4225 ApoC3 3206 T/G  G 0.40 T/T 188 192 0.68 

    T/G 275 255  

    G/G 82 86  

11 rs1799963 F2 20210 G/A Hardy Weinberg Disequilibrium (p<0.01) 

11 rs569108 FCER1B glu237gly (A/G) G 0.02 A/A 530 511 0.24 

    A/G | G/G 15 22  

11 rs3025058 MMP3 -1171 A5A6 A 0.48 del/del 148 151 0.89 

    del/A 267 260  

    A/A 130 122  

11 rs3741240 UGB 38 G/A A 0.34 G/G 233 220 0.24 

    G/A 262 247  

    A/A 50 66  
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Chapter 3 Supplemental table (continued) 

Chromosome rs number SNP minor allele 

frequency 

genotype non-

cases 

cases Fisher´s Exact 

test p-value 

12 rs5443 GNB3 825 C/T T 0.30 C/C 268 262 0.95 

    C/T 226 224  

    T/T 51 47  

12 rs5742912 SCNN1A trp493arg (T/C) C 0.02 T/T 529 506 0.09 

    T/C | C/C 16 27  

12 rs2228576 SCNN1A ala663thr (G/A) A 0.34 G/G 227 241 0.43 

    G/A 257 231  

    A/A 61 61  

12 rs2228570 VDR met1thr (T/C) C 0.61 T/T 77 85 0.16 

    T/C 278 241  

    C/C 190 207  

12 rs1544410 VDR intron8 G/A A 0.40 G/G 187 203 0.41 

    G/A 266 241  

    A/A 92 89  

13 rs5742910 F7 -323 10-bp del/ins ins 0.11 del/del 436 414 0.63 

    del/ins 104 114  

     ins/ins 5 5  

13 rs6046 F7 arg353gln (G/A) A 0.09 G/G 457 429 0.15 

    G/A | A/A 88 104  
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Chapter 3 Supplemental table (continued) 

Chromosome rs number SNP minor allele 

frequency 

genotype non-

cases 

cases Fisher´s Exact 

test p-value 

15 rs1800588 LIPC -480 C/T  T 0.12 C/C 317 331 0.40 

    C/T 202 181  

    T/T 26 21  

16 rs1800776 CETP -631 C/A A 0.08 C/C 476 440 0.03 

    C/A | A/A 69 93  

16 rs1800775 CETP -629 C/A A 0.46 C/C 139 183 0.0005 

    C/A 268 258  

    A/A 138 92  

16 rs708272 CETP Taq1B (G/A)* A 0.39 G/G 172 217 0.0002 

    G/A 270 257  

    A/A 103 59  

16 rs5882 CETP ile405val (A/G)* G 0.31 A/A 252 267 0.19 

    A/G 227 218  

    G/G 66 48  

16 rs2303790 CETP asp442gly (A/G) minor allele frequency <0.01 

16 - CETP intron14 1 G/A Hardy Weinberg Disequilibrium (p<0.01) 

16 - CETP intron14 3 insT Hardy Weinberg Disequilibrium (p<0.01) 

16 rs1805010 IL4R ile75val (A/G) G 0.46 A/A 136 152 0.21 

    A/G 294 288  

    G/G 115 93  
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Chapter 3 Supplemental table (continued) 

Chromosome rs number SNP minor allele 

frequency 

genotype non-

cases 

cases Fisher´s Exact 

test p-value 

16 rs1805015 IL-4R ser503pro (T/C)  C 0.17 T/T 375 380 0.64 

    T/C 154 137  

    C/C 16 16  

16 rs1801275 IL-4R gln576arg (A/G) G 0.22 A/A 327 336 0.26 

    A/G 193 166  

    G/G 25 31  

17 rs1799752 ACE intron16 ins/del Hardy Weinberg Disequilibrium (p<0.01) 

17 rs5918 ITGB3 leu33pro (T/C) C 0.16 T/T 381 386 0.65 

    T/C 147 132  

    C/C 17 15  

17 rs1137933 NOS2A asp346asp (C/T) T 0.22 C/C 349 319 0.01 

    C/T 162 195  

    T/T  34 19  

17 rs4795895 SCYA11 -1328 G/A A 0.17 G/G 381 374 0.97 

    G/A 146 143  

    A/A 18 16  

17 rs3744508 SCYA11 ala23thr (G/A) A 0.18 G/G 363 376 0.38 

    G/A 160 138  

    A/A 22 19  
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Chapter 3 Supplemental table (continued) 

Chromosome rs number SNP minor allele 

frequency 

genotype non-

cases 

cases Fisher´s Exact 

test p-value 

19 rs429358 ApoE cys112arg (T/C)* C 0.14 T/T 408 390 0.81 

    T/C 124 129  

    C/C 13 14  

19 rs7412 ApoE arg158cys (C/T)* T 0.07 C/C 468 463 0.66 

    C/T | T/T 77 70  

19 rs2230199 C3 arg102gly (C/G) G 0.19 C/C 355 358 0.07 

    C/G 174 147  

    G/G 16 28  

19 rs5491 ICAM-1 Lys56Met (A/T) minor allele frequency <0.01 

19 rs1799969 ICAM-1 gly241arg (G/A)* A 0.12 G/G 423 407 0.66 

    G/A 111 118  

    A/A 11 8  

19 rs5742911 LDLR Ncol +/– Hardy Weinberg Disequilibrium (p<0.01) 

19 rs1800469 TGFB1 -509 C/T T 0.26 C/C 301 290 0.58 

    C/T 205 212  

    T/T 39 31  

21 rs5742905 CBS ile278thr 68-bp ins large numbers of missing values 

* Genotyped by two different methods 
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Chapter 7 Color figures 

 
 

Figure 3A: PCA loading plot including selected proteins and the intermediate endpoints BMI, HDL-

C and total-C. In the PCA loading plot the proteins are plotted based on their loadings on the first 

three principal components. The further proteins are located from the origin, the stronger their 

contribution in explaining the variance. As most variance is explained by the first component, 

proteins that have high loadings on the first component contribute most. Proteins and intermediate 

endpoints grouped together show positive relationships with each other, whereas proteins and 

intermediate endpoints that are located opposite to each other (as seen from the origin) show negative 

relationships with each other. Proteins in red and green were respectively positively and negatively 

associated with CHD mortality. 
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Chapter 7 Color figures (continued) 

 
 

Figure 3B: PCA score plot corresponding to the loading plot. In the PCA score plot the individuals 

are plotted based on their scores on the first three principal components. Red dots indicate cases of 

CHD mortality, green dots indicate controls. Observations that are located in the direction of certain 

proteins score high on these proteins, whereas observations that are located in the opposite direction 

of certain proteins score low on these proteins (see also figure 3A). 
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Chapter 7 Supplemental table 1: Univariate associations of 83 proteins with CHD mortality. 

CHD mortality Protein Unit 

cases controls p-value 

1 α-1 Antitrypsin mg/ml 1.71 [1.45-2.04] 1.60 [1.34-1.81] 0.19 

2 α-2_Macroglobulin mg/ml 6.24 [5.43-10.2] 6.16 [4.93-8.66] 0.61 

3 α Fetoprotein ng/ml 2.12 [1.84-2.57] 2.15 [1.79-2.70] 0.83 

4 Adiponectin µg/ml 3.29 ± 1.36 3.46 ± 1.17 0.55 

5 ApoA1 mg/ml 0.33 [0.28-0.38] 0.36 [0.32-0.43] 0.02* 

6 ApoB mg/ml 1.41 ± 0.29 1.24 ± 0.28 0.007** 

7 ApoC3 µg/ml 141 ± 39.9 156 ± 44.8 0.10 

8 ApoH µg/ml 180 [162-212] 177 [159-203] 0.75 

9 β-2 Microglobulin µg/ml 1.84 [1.66-2.25] 1.62 [1.47-1.95] 0.009** 

10 BDNF ng/ml 3.65 [1.41-7.96] 2.94 [1.37-6.44] 0.69 

11 Complement 3 mg/ml 1.33 ± 0.21 1.26 ± 0.29 0.25 

12 CD40 ng/ml 0.33 [0.26-0.37] 0.31 [0.26-0.36] 0.24 

13 CD40 Ligand ng/ml 0.07 [0.05-0.18] 0.08 [0.04-0.14] 0.66 

14 CRP µg/ml 3.47 [1.78-7.05] 1.86 [0.86-4.04] 0.01* 

15 Calcitonin pg/ml 2.46 [0.60-3.57] 1.91 [0.60-3.77] 0.91 

16 CA 125 U/ml 6.83 ± 3.35 7.11 ± 3.66 0.71 

17 CA 19-9 U/ml 1.62 [1.02-2.60] 1.52 [0.79-4.15] 0.89 

18 CEA ng/ml 1.54 [1.03-2.56] 1.47 [1.19-1.75] 0.51 

19 CK-MB ng/ml 0.26 [0.18-0.32] 0.24 [0.19-0.32] 0.78 

20 EGF pg/ml 1.81 [0.74-7.59] 0.74 [0.74-5.55] 0.30 

21 ENA-78 ng/ml 0.77 [0.48-1.41] 0.63 [0.38-1.08] 0.54 

22 ENRAGE ng/ml 6.80 [4.00-14.4] 7.04 [4.36-13.4] 0.92 

23 Endothelin-1 pg/ml 12.4 [9.07-15.3] 11.5 [8.62-15.3] 0.69 

24 Eotaxin pg/ml 93.5 [79.2-114] 88.1 [64.8-115] 0.27 

25 Factor VII ng/ml 364 ± 154 406 ± 125 0.16 

26 FABP ng/ml 0.70 [0.53-0.98] 0.65 [0.52-0.95] 0.68 

27 Ferritin ng/ml 232 [127-280] 238 [134-352] 0.35 

28 Fibrinogen mg/ml 3.67 [2.91-4.87] 3.27 [2.77-4.17] 0.12 

29 GM-CSF pg/ml 53.3 [43.7-61.4] 53.0 [44.0-61.4] 0.77 

30 G-CSF pg/ml 4.65 [0.50-5.85] 4.76 [0.50-7.54] 0.61 

31 Growth Hormone ng/ml 0.12 [0.10-0.19] 0.16 [0.10-0.29] 0.22 

32 Haptoglobin mg/ml 1.85 [1.05-2.47] 1.27 [0.93-1.89] 0.14 

33 ICAM-1 ng/ml 122 ± 31.6 115 ± 30.8 0.28 

34 IL-2 pg/ml 22.2 ± 8.33 22.7 ± 6.27 0.76 

35 IL-3 ng/ml 0.22 ± 0.11 0.25 ± 0.12 0.25 

36 IL-4 pg/ml 45.0 ± 16.7 45.2 ± 13.6 0.95 

37 IL-5 pg/ml 12.4 ± 5.45 12.7 ± 4.53 0.79 
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Chapter 7 Supplemental table 1 (continued) 
CHD mortality Protein Unit 

cases controls p-value 

38 IL-7 pg/ml 115 ± 32.6 112 ± 23.7 0.70 

39 IL-8 pg/ml 17.2 [12.8-18.8] 15.1 [12.8-17.1] 0.21 

40 IL-10 pg/ml 15.7 [12.2-18.3] 15.0 [12.2-16.5] 0.33 

41 IL-13 pg/ml 41.5 ± 16.8 42.5 ± 13.9 0.77 

42 IL-15 ng/ml 1.03 [0.88-1.13] 1.04 [0.93-1.07] 0.63 

43 IL-16 pg/ml 593 [523-668] 568 [487-650] 0.41 

44 IL-18 pg/ml 270 [218-321] 256 [223-293] 0.57 

45 IL-12p40 ng/ml 0.85 ± 0.32 0.85 ± 0.21 0.90 

46 IL-12p70 pg/ml 328 ± 70.7 346 ± 64.3 0.22 

47 IL-1ra pg/ml 38.3 [26.3-64.4] 31.2 [20.0-46.8] 0.10 

48 Ig A mg/ml 1.88 ± 0.74 1.92 ± 0.67 0.79 

49 Ig E ng/ml 53.2 [28.3-127] 42.6 [31.6-119] 0.78 

50 Ig M mg/ml 1.03 [0.71-1.30] 0.86 [0.66-1.12] 0.12 

51 Insulin µlU/ml 6.32 [2.10-14.2] 5.89 [2.23-11.2] 0.84 

52 LPA µg/ml 55.9 [31.9-158] 39.4 [31.2-66.9] 0.10 

53 Leptin ng/ml 2.69 [1.77-4.50] 3.03 [1.70-4.36] 0.55 

54 Lymphotactin ng/ml 0.35 [0.29-0.39] 0.31 [0.27-0.41] 0.50 

55 MCP-1 pg/ml 138 [113-160] 139 [123-155] 0.88 

56 MDC pg/ml 357[287-465] 346 [301-419] 0.58 

57 MIP-1α pg/ml 39.3 ± 11.3 36.9 ± 8.26 0.25 

58 MIP-1β pg/ml 168 [128-201] 153 [128-182] 0.21 

59 MMP-2 ng/ml 774 [635-1060] 779 [648-1020] 1.00 

60 MMP-3 ng/ml 0.16 [0.11-0.29] 0.19 [0.13-0.27] 0.54 

61 MMP-9 ng/ml 208 [99.1-287] 146 [96.2-275] 0.32 

62 Myeloperoxidase ng/ml 50.3 [27.4-107] 39.8 [24.1-95.8] 0.45 

63 Myoglobin ng/ml 11.1 [8.04-14.9] 10.3 [7.64-13.7] 0.48 

64 PAI-1 ng/ml 95.7 [76.1-115] 81.5 [59.3-101] 0.05* 

65 PAP ng/ml 0.12 [0.09-0.15] 0.12 [0.09-0.14] 0.80 

66 PAPP-A mlU/ml 0.05 [0.04-0.07] 0.04 [0.03-0.05] 0.04* 

67 PSA, Free ng/ml 0.40 [0.27-0.62] 0.45 [0.30-0.64] 0.61 

68 RANTES ng/ml 19.3 [9.63-28.1] 16.7 [9.82-26.9] 0.72 

69 SGOT µg/ml 11.4 ± 2.87 11.1 ± 2.80 0.63 

70 SHBG nmol/l 28.0 [23.8-36.2] 31.6 [22.0-42.3] 0.48 

71 Serum Amyloid P µg/ml 39.1 ± 10.2 39.1 ± 9.56 0.99 

72 Stem Cell Factor pg/ml 169 [117-229] 131 [114-182] 0.19 

73 TBG µg/ml 46.8 ± 10.3 48.1 ± 13.9 0.64 

74 TIMP-1 ng/ml 80.4 [64.3-97.5] 76.4 [66.5-88.7] 0.73 

75 TNF-α pg/ml 5.67 ± 1.58 5.31 ± 1.38 0.26 
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Chapter 7 Supplemental table 1 (continued) 
CHD mortality Protein Unit 

cases controls p-value 

76 TNF-β pg/ml 45.2 ± 16.8 44.6 ± 12.0 0.84 

77 TNF RII ng/ml 3.34 [2.65-4.14] 3.03 [2.54-3.39] 0.08 

78 TSH µlU/ml 1.07 [0.76-1.49] 1.01 [0.75-1.36] 0.60 

79 Thrombopoietin ng/ml 2.21 ± 0.59 2.12 ± 0.68 0.49 

80 Tissue Factor ng/ml 1.12 ± 0.19 1.10 ± 0.25 0.73 

81 VCAM-1 ng/ml 398 [338-463] 349 [319-412] 0.03* 

82 VEGF pg/ml 264 [232-327] 229 [213-260] 0.004** 

83 vWF µg/ml 4.77 [1.92-11.3] 3.15 [2.00-5.69] 0.38 

Numbers of the proteins correspond with the numbers of the proteins in figures 1A-D. Results are 

presented as mean ± SD for proteins that were normally distributed or as median [interquartile range] 

for proteins with skewed distributions. 

* Significant at the 0.05 level 

** Significant at the 0.01 level 
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Chapter 7 Supplemental table 2: Univariate associations of 83 proteins with BMI, HDL-C and 

total-C. 

BMI HDL-C Total-C Protein 

r p-value r p-value r p-value 

1 α-1 Antitrypsin -0.17 0.11 -0.17 0.11 0.03 0.81 

2 α-2_Macroglobulin 0.005 0.96 -0.02 0.89 0.04 0.68 

3 α Fetoprotein -0.06 0.61 0.06 0.60 0.24 0.03* 

4 Adiponectin -0.26 0.01* 0.35 0.0007** -0.02 0.88 

5 ApoA1 -0.22 0.04* 0.50 <0.0001** 0.10 0.38 

6 ApoB 0.18 0.10 -0.37 0.0004** 0.87 <0.0001** 

7 ApoC3 0.02 0.87 0.19 0.07 0.08 0.46 

8 ApoH -0.05 0.61 -0.20 0.07 0.02 0.86 

9 β-2 Microglobulin 0.08 0.47 -0.30 0.005** 0.003 0.98 

10 BDNF -0.06 0.57 -0.06 0.55 0.13 0.23 

11 Complement 3 0.40 0.0001** -0.46 <0.0001** 0.12 0.28 

12 CD40 0.10 0.35 -0.22 0.04* 0.02 0.88 

13 CD40 Ligand -0.05 0.62 -0.10 0.35 0.09 0.42 

14 CRP 0.18 0.10 -0.39 0.0002** 0.16 0.13 

15 Calcitonin 0.15 0.15 -0.15 0.15 -0.08 0.44 

16 CA 125 0.02 0.84 0.00 0.98 -0.09 0.39 

17 CA 19-9 0.02 0.82 0.11 0.32 -0.19 0.08 

18 CEA -0.10 0.37 0.06 0.60 0.10 0.37 

19 CK-MB 0.13 0.23 0.08 0.45 -0.13 0.22 

20 EGF -0.14 0.19 -0.04 0.71 0.03 0.76 

21 ENA-78 0.09 0.43 -0.11 0.31 -0.04 0.70 

22 ENRAGE 0.02 0.85 -0.08 0.46 0.16 0.14 

23 Endothelin-1 -0.11 0.30 0.13 0.24 0.07 0.52 

24 Eotaxin 0.05 0.65 -0.04 0.71 -0.01 0.91 

25 Factor VII 0.006 0.95 -0.04 0.69 0.23 0.03* 

26 FABP 0.07 0.51 0.03 0.80 0.01 0.93 

27 Ferritin 0.33 0.002** -0.08 0.47 -0.03 0.75 

28 Fibrinogen 0.07 0.53 -0.26 0.01* 0.08 0.44 

29 GM-CSF 0.006 0.95 0.08 0.45 -0.004 0.97 

30 G-CSF 0.09 0.41 -0.09 0.40 0.14 0.18 

31 Growth Hormone -0.31 0.003** 0.23 0.03* 0.001 0.99 

32 Haptoglobin -0.06 0.58 -0.21 0.05* 0.16 0.14 

33 ICAM-1 0.11 0.29 -0.30 0.005** -0.08 0.45 

34 IL-2 -0.07 0.52 0.01 0.93 -0.06 0.57 

35 IL-3 0.03 0.77 -0.10 0.34 0.009 0.94 

36 IL-4 0.01 0.93 0.01 0.91 -0.06 0.57 

37 IL-5 -0.06 0.56 0.21 0.05* -0.12 0.26 



Supplemental data 

186 

Chapter 7 Supplemental table 2 (continued) 
BMI HDL-C Total-C Protein 

r p-value r p-value r p-value 

38 IL-7 0.05 0.65 0.04 0.73 -0.05 0.66 

39 IL-8 0.08 0.48 -0.21 0.05* 0.01 0.92 

40 IL-10 -0.001 0.99 -0.03 0.75 -0.09 0.42 

41 IL-13 -0.14 0.18 0.17 0.12 0.08 0.47 

42 IL-15 -0.05 0.64 -0.15 0.17 -0.03 0.75 

43 IL-16 0.13 0.24 -0.29 0.006** -0.10 0.37 

44 IL-18 0.04 0.73 -0.16 0.13 -0.06 0.57 

45 IL-12p40 -0.004 0.97 -0.01 0.95 -0.10 0.37 

46 IL-12p70 0.16 0.13 -0.04 0.69 0.04 0.73 

47 IL-1ra 0.31 0.004** -0.31 0.003** 0.05 0.67 

48 Ig A 0.10 0.36 -0.07 0.52 -0.24 0.03* 

49 Ig E -0.04 0.73 0.19 0.08 -0.01 0.91 

50 Ig M 0.01 0.92 0.05 0.65 0.006 0.96 

51 Insulin 0.44 <0.0001** -0.36 0.0005** -0.03 0.75 

52 LPA -0.16 0.14 -0.05 0.66 0.18 0.10 

53 Leptin 0.72 <0.0001** -0.28 0.008** 0.22 0.04* 

54 Lymphotactin -0.04 0.73 0.00 0.97 -0.03 0.79 

55 MCP-1 0.07 0.51 -0.05 0.66 0.41 <0.0001** 

56 MDC -0.08 0.49 -0.13 0.24 -0.04 0.68 

57 MIP-1α -0.20 0.06 -0.06 0.56 -0.08 0.44 

58 MIP-1β 0.16 0.14 -0.19 0.07 0.18 0.10 

59 MMP-2 -0.13 0.23 0.04 0.71 -0.04 0.72 

60 MMP-3 -0.22 0.04* 0.15 0.15 0.07 0.54 

61 MMP-9 0.05 0.66 -0.06 0.58 0.03 0.75 

62 Myeloperoxidase 0.11 0.30 -0.20 0.06 -0.04 0.69 

63 Myoglobin 0.09 0.42 -0.05 0.64 -0.02 0.88 

64 PAI-1 0.21 0.04* -0.45 <0.0001** 0.22 0.04* 

65 PAP -0.15 0.17 -0.02 0.87 -0.03 0.81 

66 PAPP-A 0.17 0.11 -0.04 0.73 -0.18 0.09 

67 PSA, Free -0.12 0.25 0.13 0.23 0.06 0.60 

68 RANTES 0.02 0.87 -0.05 0.63 0.01 0.92 

69 SGOT 0.04 0.73 0.03 0.81 0.16 0.15 

70 SHBG -0.45 <0.0001** 0.18 0.09 -0.03 0.75 

71 Serum Amyloid P 0.18 0.10 -0.24 0.02* 0.19 0.07 

72 Stem Cell Factor 0.14 0.19 -0.20 0.06 -0.02 0.88 

73 TBG 0.12 0.26 -0.42 <0.0001** 0.11 0.29 

74 TIMP-1 0.16 0.15 -0.15 0.16 0.008 0.94 

75 TNF-α -0.10 0.34 -0.07 0.51 -0.11 0.31 
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Chapter 7 Supplemental table 2 (continued) 
BMI HDL-C Total-C Protein 

r p-value r p-value r p-value 

76 TNF-β -0.03 0.78 0.07 0.55 -0.08 0.46 

77 TNF RII 0.03 0.78 -0.29 0.007** -0.007 0.95 

78 TSH -0.03 0.77 -0.18 0.10 0.03 0.75 

79 Thrombopoietin -0.06 0.59 -0.04 0.71 0.02 0.84 

80 Tissue Factor -0.19 0.08 0.08 0.46 -0.08 0.45 

81 VCAM-1 0.02 0.83 -0.19 0.08 -0.06 0.59 

82 VEGF 0.13 0.22 -0.29 0.007** 0.12 0.26 

83 vWF 0.004 0.97 -0.15 0.17 0.02 0.88 

Numbers of the proteins correspond with the numbers of the proteins in figures 1A-D. Results are 

presented as mean ± SD for proteins that were normally distributed or as median [interquartile range] 

for proteins with skewed distributions. 

* Significant at the 0.05 level 

** Significant at the 0.01 level 
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Summary 

 

   In the field of nutrigenomics large numbers of variables can nowadays be obtained due to 

the development in technology. This provides the opportunity for researchers not only to 

study the individual effects of genes and proteins, but also the combined effects of groups 

of genes and/or proteins in relation to complex diseases. In complex diseases it is assumed 

that many factors play a role, whereby each variable by itself will only have a small to 

moderate effect. Furthermore, factors likely contribute to complex diseases by intricate and 

ubiquitous interactions. The large numbers of variables obtained in moderate to small 

sample sizes and the complexity by which these variables can relate to the outcome of 

interest has led to challenges in the statistical analysis of nutrigenomic datasets. In this 

thesis approaches to analyze large nutrigenomic datasets are investigated, including the 

analysis of genetic, transcriptomic and proteomic data. These approaches are incorporated 

within a general framework for nutrigenomic data analysis with the objective to obtain 

insight in biological mechanisms involved in the development of complex diseases. 

Applications of these approaches to real data to obtain biologically relevant information or 

to obtain models for diagnostic or prognostic purposes are also presented.  

   An overview of methods to analyze SNP data is provided in chapter 2, in which the 

strengths and weaknesses of both traditional statistical methods and non-parametric 

methods are discussed. Traditional statistical methods are not suitable to analyze large 

numbers of single nucleotide polymorphisms (SNPs), because these methods can only 

handle a limited number of variables in moderate to small sample sizes. On the other hand, 

non-parametric methods are currently available that are able to overcome the statistical 

challenges in the analyses of large numbers of SNPs. As these methods have different 

selection features, the main conclusion of chapter 2 is that a combination of several non-

parametric methods seems to be a useful strategy to analyze SNPs in relation to complex 

diseases. To investigate this conjecture, we carried out a study in which we applied 

different non-parametric methods to a real dataset to compare their prioritization and 

selection of SNPs, as is described in chapter 3. In this study we analyzed the association of 

93 SNPs with plasma HDL-cholesterol levels. The results show that applying a 

combination of different methods to the same dataset has advantages compared to applying 

only one method. After selection of a subset of SNPs, we applied interaction graphs for 

statistical interpretation. The interaction entropy graph appeared to be a useful tool to 

visualize whether SNPs contribute to the outcome of interest by their main and/or 

interaction effect. For statistical interpretation we additionally applied logistic regression 

analysis, which can also be useful at this stage if the number of observations is sufficiently 

large relative to the number of selected SNPs. In chapter 4 we applied both the interaction 

entropy graph and logistic regression analysis for statistical interpretation of a biological 

model of weight regulation. In this study we identified sex-specific associations of CNTF, 

IL6 and UCP2 polymorphisms with weight gain. These associations were shown to be 

independent of leptin. 

   In general, sample sizes are smaller in microarray studies compared to genetic 

epidemiological studies. Therefore the statistical analysis of microarray data is even more 

challenging. In nutrigenomic datasets the effects of genes are likely to be small, but in 

combination these genes may have an important effect. Therefore, to detect these combined 
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effects, it is necessary to take in the selection of genes interactions into account. In that 

respect, the features of random forests (RF) make it an attractive method for the analysis of 

microarray data: besides the ability to handle large numbers of variables in small sample 

sizes, it provides an importance index for each gene in which all possible interactions with 

other genes are taken into account. In chapter 5 we developed a framework for the analysis 

of microarray data, taking both GO-annotated and non-annotated genes into account. We 

applied RF to two real microarray datasets to show its advantage in the selection of genes. 

For statistical interpretation, genes selected by RF were subsequently analyzed by Self-

Organizing Maps (SOM) to cluster genes with similar gene expression profiles. It appeared 

that we identified clusters consisting of genes that were only important in interaction with 

other genes. Genes within these clusters were found to belong to the same biological 

process and therefore have biological meaning. This indicates the importance of taking 

interactions in the selection of genes into account. Thus, in this study we showed that 

applying RF in combination with a cluster method helped in retrieving biologically relevant 

information from microarray data. 

   In proteomics, mass spectrometry data can be analyzed to detect biomarkers for 

diagnostic purposes. As part of a classification contest to best classify and predict breast 

cancer cases and controls, we applied a three-step approach to analyze mass spectrometry 

data to come to a discrimination rule (see chapter 6). Peptide masses were prioritized by 

RF. As the top-ranked variables consisted of highly correlated variables, new variables 

were created to group these highly correlated variables. These newly created variables were 

finally included in a model to predict breast cancer cases and controls, yielding a good 

classifying and interpretable model. The sensitivity and specificity of this model was 86.8% 

and 85.7%, respectively. 

   To overcome the problem of high-dimensional data, methods exist that reduce the 

dimensionality of the data by creating a smaller set of variables. For example, partial least 

squares (PLS) reduces the dimensionality of the data by constructing latent components. In 

chapter 7 we applied PLS to study the association of 83 plasma proteins with coronary heart 

disease (CHD) mortality and intermediate endpoints involved in the etiology of CHD, 

namely body mass index (BMI), HDL-cholesterol (HDL-C) and total cholesterol (total-C). 

In this way we identified a set of 15 proteins which predicted 65% of CHD mortality, and 

sets of proteins associated with BMI, HDL-C and total-C. Subsequently, we analyzed 

identified sets of proteins together with intermediate endpoints by applying principal 

components analysis (PCA). This provided a comprehensive view of the relationships 

between identified proteins, intermediate endpoints and CHD mortality, showing that 

proteins involved in inflammation explained most of the variance, followed by proteins 

involved in metabolism and proteins related to total-C. 

   In this thesis approaches to analyze large nutrigenomic datasets have been discussed that 

overcome the statistical challenges present in this type of data. Applying these approaches 

to real nutrigenomic datasets, we were able to obtain clear interpretable statistical models 

and retrieve biologically meaningful information from the data. The results provided insight 

in the genes and proteins involved in intermediate endpoints and in complex diseases. The 

next step in nutrigenomic research is to combine data from different biological levels in the 

systems biology approach to generate more complete biological hypotheses regarding the 

development of complex diseases in humans. Hopefully, nutrigenomic research will in the 
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near future also lead to detection of more biomarkers with clinical relevance. The 

translation of genomic research into public health benefits has been limited up till now, but 

new advances in genomic research are promising, and may lead to applications that 

improve public health. 
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Samenvatting 

 

   In het vakgebied van nutrigenomics kunnen door de huidige ontwikkeling van de 

technologie grote aantallen variabelen worden verkregen. Dit geeft onderzoekers de 

mogelijkheid om niet alleen individuele effecten van genen en eiwitten, maar ook 

gecombineerde effecten van groepen van genen en/of eiwitten in relatie tot complexe 

ziektes te bestuderen. Veel factoren spelen een rol bij complexe ziektes door middel van 

vele interacties, waarbij iedere factor afzonderlijk een klein effect zal hebben. De grote 

aantallen variabelen verkregen in relatief kleine steekproeven en de complexiteit waardoor 

deze variabelen gerelateerd kunnen zijn aan de ziekte, hebben geleid tot uitdagingen voor 

de statistische analyses van nutrigenomic datasets. In deze thesis zijn manieren onderzocht 

voor het analyseren van grote nutrigenomic datasets, inclusief het analyseren van 

genetische, transcriptomic and proteomic data. Deze aanpak is ondergebracht in een 

algemeen kader voor het analyseren van nutrigenomic data.  

   Een overzicht van methodes voor het analyseren van single nucleotide polymorphism 

(SNP) data is beschreven in hoofdstuk 2. In dit hoofdstuk worden de sterke en zwakke 

kanten van zowel traditionele statistische methodes als non-parametrische methodes 

besproken. Traditionele methodes zijn niet geschikt voor het analyseren van grote aantallen 

SNPs, aangezien het met deze methodes alleen mogelijk is om een beperkte hoeveelheid 

variabelen te analyseren bij relatief kleine steekproeven. Daarentegen zijn non-

parametrische methodes in staat om te gaan met de statistische moeilijkheden die zich 

voordoen in het analyseren van grote aantallen SNPs. Deze methodes hebben verschillende 

kenmerken in het selecteren van de belangrijkste SNPs. Daarom is de conclusie van 

hoofdstuk 2 dat een combinatie van verscheidene non-parametrische methodes een 

bruikbare strategie lijkt te zijn voor het analyseren van grote aantallen SNPs in relatie tot 

complexe ziektes. Om deze stelling te onderzoeken hebben we een studie uitgevoerd waarin 

we verschillende non-parametrische methodes hebben toegepast op een echte dataset om de 

rangschikking en selectie van SNPs te vergelijken. Dit is beschreven in hoofdstuk 3. In 

deze studie hebben we de associatie van 93 SNPs met plasma HDL-cholesterol niveaus 

geanalyseerd. De resultaten laten zien dat het toepassen van een combinatie van meerdere 

methodes op dezelfde dataset voordelen heeft boven het toepassen van slechts één methode. 

Na het selecteren van de belangrijkste SNPs hebben we interactiegrafieken toegepast om 

statistisch te interpreteren of SNPs op zich al een effect hebben of een effect hebben in 

interactie met andere SNPs. Daarnaast hebben we logistische regressie-analyse toegepast. 

Het gebruik van de interactie-entropy grafiek in combinatie met logistische regressie-

analyse bleek een goede aanpak te zijn voor het statistisch interpreteren van de bijdrage van 

SNPs aan de uitkomst, zij het door middel van hoofd- en/of interactie-effecten. In 

hoofdstuk 4 hebben we zowel de interactie-entropy grafiek alsook logistische regressie-

analyse toegepast om een biologisch model betreffende gewichtsregulatie statistisch te 

interpreteren. In deze studie hebben we geslachtsspecifieke associaties van CNTF, IL6 and 

UCP2 polymorfismes met gewichtstoename geïdentificeerd.  

   Over het algemeen zijn in transcriptomic studies de steekproeven kleiner dan in genetisch 

epidemiologische studies, wat het statistisch analyseren van microarray-data nog moeilijker 

maakt. In nutrigenomic datasets zijn de effecten van genen naar verwachting klein, maar in 

combinatie kunnen deze genen een belangrijk effect hebben. Het is daarom noodzakelijk 
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om bij de selectie van genen rekening te houden met interacties. Wat dat betreft is random 

forests (RF) een aantrekkelijke methode voor het analyseren van microarray-data, 

aangezien deze om kan gaan met grote aantallen variabelen bij kleine steekproeven, maar 

ook omdat het een waarde van belangrijkheid toekent aan elk gen waarbij alle mogelijke 

interacties met andere genen zijn inbegrepen. In hoofdstuk 5 hebben we een kader 

ontwikkeld voor het analyseren van microarray-data, daarbij rekening houdend met alle 

genen aanwezig in de dataset. We hebben RF op twee echte microarray-datasets toegepast 

om de voordelen van deze methode in het selecteren van genen te laten zien. Voor de 

geselecteerde genen hebben we onderzocht of deze genen op zich een effect hebben of in 

interactie met andere genen. Voor de statistische interpretatie hebben we Self-Organizing 

Maps (SOM) toegepast om de genen met vergelijkbare genexpressie-profielen te groeperen 

in clusters. Met SOM hebben we clusters geïdentificeerd die bestonden uit genen die alleen 

belangrijk waren in interactie met andere genen. Genen binnen deze clusters behoorden tot 

hetzelfde biologische proces. Dit geeft aan dat het belangrijk is om bij de selectie van genen 

rekening te houden met interacties. Dus in deze studie tonen wij aan dat het toepassen van 

RF in combinatie met een clustermethode (bijvoorbeeld SOM) helpt in het verkrijgen van 

biologisch relevante informatie uit de microarray-dataset. 

   In proteomics kunnen massa-spectrometrie-data worden geanalyseerd om biomarkers te 

detecteren voor diagnostische en prognostische doeleinden. Als onderdeel van een 

competitie – die tot doel had om een aanpak te vinden die het beste onderscheid kan maken 

(discrimineren) tussen patiënten met borstkanker en controlepersonen – hebben wij een 

aanpak bestaande uit drie stappen toegepast voor het analyseren van mass-spectrometry-

data om tot een discriminatieregel te komen (zie hoofdstuk 6). Peptide massa’s werden 

gerangschikt met behulp van RF. Aangezien de variabelen die als hoogst gerangschikt 

werden bestonden uit sterk gecorreleerde variabelen, werden nieuwe variabelen 

aangemaakt om deze sterk gecorreleerde variabelen te groeperen. Deze nieuwe variabelen 

werden uiteindelijk geïncludeerd in een model om borstkankerpatiënten van 

controlepersonen te kunnen onderscheiden. Dit leverde een goed model op met een 

sensitiviteit en specificiteit van respectievelijk 86.8% en 85.7%. 

   Om iets aan het probleem van grote aantallen variabelen in nutrigenomic data te doen, 

bestaan er ook methodes die de hoeveelheid variabelen reduceren door middel van het 

creëren van een kleinere set van nieuwe variabelen. Bijvoorbeeld, partial least squares 

(PLS) reduceert het aantal variabelen door middel van het construeren van latente 

componenten. In hoofdstuk 7 hebben we PLS toegepast om de associatie van 83 plasma-

eiwitten met coronaire hartziekte (CHZ) mortaliteit te bestuderen, alsook de associatie van 

deze eiwitten met intermediaire eindpunten die betrokken zijn bij de etiologie van CHZ 

(namelijk body mass index (BMI), HDL-cholesterol (HDL-C) en totaal-cholesterol. Op 

deze manier hebben we een set van 15 eiwitten geïdentificeerd welke 65% van de CHZ-

mortaliteit kon voorspellen, alsook sets van eiwitten geassocieerd met BMI, HDL-C en 

totaal-cholesterol. Om een overzicht te krijgen van de relaties tussen geïdentificeerde 

eiwitten, intermediaire eindpunten en CHZ-mortaliteit hebben we vervolgens principale 

componenten analyse (PCA) als statistische methode toegepast. Deze toepassing liet zien 

dat eiwitten die betrokken zijn bij inflammatie de meeste variantie verklaarden, gevolgd 

door eiwitten betrokken bij het metabolisme en door eiwitten gerelateerd aan totaal-

cholesterol. 
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   In deze thesis zijn manieren van analyseren van grote nutrigenomic datasets behandeld 

hoe met de statistische moeilijkheden die in dergelijke data aanwezig zijn om te gaan. Met 

het toepassen van deze manieren op echte nutrigenomic datasets waren we in staat om 

duidelijk interpreteerbare statistische modellen alsook biologisch relevante informatie te 

verkrijgen. De resultaten hebben inzicht gegeven in de genen en eiwitten die betrokken zijn 

bij intermediaire eindpunten en bij complexe ziektes zoals borstkanker en CHZ. De 

volgende stap in nutrigenomic onderzoek is het combineren van data van verschillende 

biologische niveaus om meer complete biologische hypotheses te genereren betreffende de 

ontwikkeling van complexe ziektes bij mensen. Hopelijk zal nutrigenomics onderzoek in de 

nabije toekomst ook leiden tot de detectie van meer biomarkers met klinische relevantie. De 

vertaling van genomics onderzoek naar de volksgezondheid is tot nu toe beperkt geweest, 

maar nieuwe ontwikkelingen in het genomics onderzoek zijn veelbelovend en kunnen 

leiden tot toepassingen die de volksgezondheid verbeteren. 
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Abbreviations 

 

ACE  Angiotensin I converting enzyme 

ADD  Adducin  

ADRB  Adrenergic beta receptor 

AGT  Angiotensinogen  

AGTR   Angiotensin receptor  

Apo  Apolipoprotein 

BDNF  Brain derived neurotrophic factor 

BMI  Body mass index 

C   Complement 

CA   Cancer antigen 

CBS  Cystathionine beta synthase 

CCR  Chemokine receptor 

CEA  Carcinoembryonic antigen 

CETP  Cholesteryl ester transfer protein 

CHD  Coronary heart disease 

CK-MB  Creatine kinase muscle brain 

CNTF  Ciliary neurotrophic factor 

CRP  C Reactive protein 

CSF  Colony stimulating factor 

CTLA  Cytotoxic T-lymphocyte-associated protein 

EDTA  Ethylenediaminetertraccetic acid 

EGF  Epidermal growth factor 

ENA  Epithelial-derived neutrophil-activating peptide 

F  Factor 

FABP  Fatty acid binding protein 

FCER1B Fc fragment of IgE high affinity I receptor for beta polypeptide 

FGB  Fibrinogen beta chain 

GC  Group-specific component 

G-CSF  Granulocyte colony-stimulating factor 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

GNB  Guanine nucleotide binding protein (G protein) beta polypeptide 

HDL-C  High-density lipoprotein cholesterol 

ICAM  Intercellular adhesion molecule 

Ig  Immunoglobulin 

IGF  Insulin-like growth factor 

IL  Interleukin 

IL-1 ra  Interleukin-1 receptor antagonist 

IL-5 ra  Interleukin-5 receptor alpha 

ITGA  Integrin alpha 

ITGB  Integrin beta 

LDLR  Low density lipoprotein receptor 

LIPC  Lipase, hepatic 

LPA  Lipoprotein (a) 
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LPL  Lipoprotein lipase 

LTA  Lymphotoxin alpha 

LTC4S  Leukotriene C4 synthase 

MCP  Monocyte chemotactic protein 

MDC  Macrophage-derived chemokine 

MIP  Macrophage inflammatory protein 

MDR  Multifactor dimensionality reduction 

MMP  Matrix metalloproteinase 

MTHFR  Methylenetetrahydrofolate reductase 

NOS  Nitric oxide synthase 

NPPA  Natriuretic peptide precursor A 

PAI  Plasminogen activator inhibitor 

PAP  Prostatic acid phosphatase 

PAPP-A  Pregnancy-associated plasma protein A 

PON  Paraoxonase 

PPAR  Peroxisome proliferator-activated receptor 

PSA  Prostate-specific antigen 

RF  Random forests 

SAA  Set association approach 

SCNN1A Sodium channel nonvoltage-gated 1 alpha 

SCYA  Small inducible cytokine A 

SDF  Stromal cell-derived factor 

SELE  Selectin E 

SELP  Selectin P 

SGOT  Soluble glutamic-oxaloacetic transaminase 

SHBG  Sex hormone-binding globulin 

TBG  Thyroxine-binding globulin 

TCF  Transcription factor 

TF  Tissue factor 

TGFB  Transforming growth factor beta 

TIMP  Metalloproteinase inhibitor 

TNF  Tumor necrosis factor 

TNF RII  Tumor necrosis factor receptor-like 2 

Total-C  Total cholesterol 

TSH  Thyroid-stimulating hormone 

UCP  Uncoupling protein 

UGB  Uteroglobin 

VCAM  Vascular cell adhesion molecule 

VDR  Vitamin D receptor 

VEGF  Vascular endothelial growth factor 

vWF  von Willebrand factor



 

200 



 

 

Dankwoord – Acknowledgements  



Dankwoord – Acknowledgements 

202 

Dankwoord – Acknowledgements 
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iedereen geluisterd werd. Dit vond ik altijd een leuk moment van de week en gaf me ook 
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om met je samen te werken! Jaap, naast het initiëren van de analyses van de microarray 

studie heb je ook aan het artikel zelf een grote bijdrage gehad. Je enthousiasme, ideëen en 

inhoudelijke kennis die je naar voren bracht tijdens het overleggen waren een goede 

stimulans. Ping, thank you for your kind help, I appreciate this. Wish you and Kaimei the 



Dankwoord – Acknowledgements 

203 

best! Daphne, dank je voor je goede begeleiding en de uitleg die je hebt gegeven. Ik vond 

het erg leuk om bij je binnen te kunnen lopen om iets te vragen of een persoonlijk praatje te 

maken. 

   De eerste 2 jaren van mijn project heb ik een fijne en leuke tijd gehad bij de afdeling 

CVG van het RIVM. Deze leuke tijd is mede te danken aan de collega’s: Marion, Daphne, 

Saskia, Brian, Frederike, Janneke, Du, Joop, Hans, Martinet, Heidi, Jan, Elly, Jeljer, 

Maryse, Martine bedankt voor de gezellige lunches! Marion, je was een fijne kamergenote, 

waarbij je me goed aanvoelde. Ondanks de hitte van de kamer konden we lachen en was het 

gezellig. Verder dank ik ook de secretaresses voor hun hulp, in het bijzonder Karin van 

Mourik, dank je voor je warme belangstelling. Ook was ik blij met de hulp van Hans van 

der Westelaken bij computerproblemen en de hulp van Gerda Doornbos met SAS. 

   In mijn tweede jaar kreeg ik ook een werkplek in Wageningen bij de groep van Michael 

Müller, waar ik een paar dagen per week kon werken. Het was fijn dat ik deze mogelijkheid 

kreeg, ik had het naar m’n zin op deze afdeling. Saskia, het was leuk om af en toe een 

praatje met je te kunnen maken. Linda, it was a nice surprise to meet you again at 

Wageningen. Verder bedank ik Mark Boekschoten voor de hulp bij het vinden van een 

geschikt pathway programma voor m’n analyses. Anand, thank you for your help with 

accessing the computer cluster of Wageningen. It was a pleasure to talk with you. Kevin, it 

is nice to work together with you, you are a friendly and excellent PhD-student. I also thank 

the other PhD-students of Wageningen University. Du, thank you for your help and your 

friendship. The dinner in the chinatown of Boston was nice. Antonie, leuk om je te hebben 

leren kennen. Een mooie nieuwe tijd toegewenst met wat je gaat doen. Akke, bedankt voor 

je gezelligheid. Gerda, leuk dat we nog even kamergenoten kunnen zijn. Anastasia, thank 

you for the nice conversations, it is great to talk so open with you. Also thank you Rina for 

being my buddy during the PhD-tour, it was a great pleasure to meet you. Many, many 

thanks for the organizers of the PhD-tour in the United States and all the PhD-students who 

participated. It was a great journey together, with many beautiful moments. Thank you all!  

   Ook de laatste twee jaren bij de afdeling van Humane Biologie (HB) heb ik een leuke tijd 

gehad. Dit is te danken aan de collega’s en in het bijzonder de Fungen group. Freek, je 

humor en ontspannen houding maakten de omgang aangenaam. Dank ook voor al je hulp, 

van analyst tot installeren van software en beantwoorden van computervragen. Janneke, het 

was leuk om af en toe bij je binnen te kunnen lopen en een praatje te maken over van alles 

en nog wat. Kaatje, je openheid tijdens gesprekken hebben me in positieve zin geraakt. Ook 

bedank ik natuurlijk Egbert, Ronny, Johan (Renes), Jonathan, Anja en Anke voor de leuke 

tijd samen bij HB! Verder bedank ik Loek en Paul voor de hulp met de computer als er iets 

aan de hand was, alsook de secretaresses van HB voor hun hulp bij praktische zaken. 

Ralph, bedankt voor de gezelligheid en je tips. Jos en Johan (de Vogel), leuk dat jullie er 

ook bij het afscheidsetentje bij waren. De meeste tijd bij HB heb ik doorgebracht met m’n 

kamergenoten: Sander, Sandy, Uriëll en Floortje, bedankt voor de vele leuke momenten! 

Sander, je was een aangename kamergenoot met een positieve en goedlachse instelling. Je 

stond altijd klaar om mij en anderen te helpen bij vragen en als er iets te regelen viel voor 

anderen, dan was dat goed verzorgd. Veel dank en ik wens je succes met het afronden van 

je thesis en met alles wat je daarna gaat doen. Ook wens ik je een goede tijd toe samen met 

Patricia en Coen. Sandy, bedankt voor de vele goede zorgen die je aan de dag legde voor 

ons en de plant. Ook de geweldige nieuwtjes waarmee je ons iedere week opnieuw wist te 



Dankwoord – Acknowledgements 

204 
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