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Samenstelling promotiecommissie:
Prof.dr.ir. A. Leijnse, Wageningen Universiteit
Prof.dr. A. Bronstert, Potsdam University, Germany
Prof.dr.ir. M.F.P. Bierkens, Universiteit Utrecht
Prof.dr.ir. M.S. Hassanizadeh, Universiteit Utrecht

Dit onderzoek is uitgevoerd binnen de onderzoeksschool SENSE.



Low-dimensional modeling of hillslope sub-
surface flow processes

Developing and testing the hillslope-storage Boussi-
nesq model

Arno Gerardus Jeanne Hilberts

Proefschrift

ter verkrijging van de graad van doctor
op gezag van de rector magnificus
van Wageningen Universiteit,
Prof.dr. M.J. Kropff,
in het openbaar te verdedigen
op dinsdag 31 oktober 2006
des namiddags te half twee in de Aula.



Hilberts, A.G.J.
Low-dimensional modeling of hillslope subsurface flow processes
Developing and testing the hillslope-storage Boussinesq model
Dissertation Wageningen Universiteit, Wageningen, 2006
ISBN 90-8504-516-9

Copyright c© A.G.J. Hilberts, 2006.



Abstract

Hilberts, A.G.J. Low-dimensional modeling of hillslope subsurface flow processes
- Developing and testing the hillslope-storage Boussinesq model. Ph.D. thesis,
Wageningen University, The Netherlands.

In this thesis the focus is on investigating the hillslope hydrological behav-
ior, as a crucial part in understanding the catchment hydrological response.
To overcome difficulties associated with most of the existing models, i.e., high
computational costs and difficulties in model parameterization and calibration,
the focus is on low-dimensional physically based models. The central question
is whether it is possible to formulate low-dimensional physically based models
such that the essential physical behavior of the natural system is preserved.

Several models are compared to each other and to measurements from a
laboratory and from a field site. The comparisons are carried out for a diversity
of bedrock slopes, hillslope shapes, and profile curvatures. The low-dimensional
models that are formulated are essentially based on the hillslope-storage Boussi-
nesq (HSB) model. Several modifications to the model are conducted in order
to investigate the model response under different conditions: a) a generalized
HSB formulation is derived that allows model evaluation on curved bedrock
profiles, b) a new HSB model is derived in which the effects of capillarity are
partly accounted for based on the assumption of hydraulic equilibrium in the
unsaturated zone, and c) a coupled saturated-unsaturated HSB model is derived
in which the unsaturated zone dynamics are described with a one-dimensional
Richards model. Evaluation of the developed low-dimensional models generally
shows that: a) the HSB model saturated zone dynamics alone can describe the
outflow rates and water table dynamics accurately when the influence of capil-
larity is small; b) for very shallow soils or water tables in the proximity of the
soil surface, the effects of capillarity are more clearly noticeable and it is possi-
ble to improve the simulated water table dynamics during drainage experiments
significantly by regarding the parameter drainable porosity as a state-dependent
parameter of which the value depends on the unsaturated depth; c) for drainage
and recharge scenario’s, a low-dimensional coupled saturated-unsaturated model
that is developed to dynamically account for the unsaturated zone processes is
very well capable of describing outflow rates and water table dynamics; d) the
comparison of the results of the coupled model run in an uncalibrated mode to
field data yields a reasonable match in terms of hydrographs and water table
dynamics. However, the water table response is highly sensitive due to limited
free pore space caused by capillarity effects.
Key words: hillslope hydrology, low-dimensional modeling, Boussinesq equa-
tion, Richards equation, water table dynamics.
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Chapter 1

Introduction

1.1 Background

Catchment hydrological processes determine the transportation of water, sedi-
ments and pollutants, as well as the height, timing and duration of flood peaks.
Since landscape form and catchment hydrological processes show many interac-
tions and feedbacks, it is of crucial importance for catchment scale water and
land management to understand the mechanisms behind these interactions and
feedbacks.

Hillslopes can be regarded as the basic elements of many landscapes. In an
attempt to advance our understanding of the functioning of catchment hydro-
logical processes, there has been a strong emphasis on investigating hillslope
hydrological processes since the 1960’s. Among the first to acknowledge the
importance of hillslope processes in the generation of stream flood peaks in tem-
perate regions, were Betson [1964] and Ragan [1968]. These papers demonstrated
that during rainfall events, the bulk of stream runoff originates from a relatively
small part of the catchment area that gradually becomes saturated. The areas
were termed “partial areas” or “variable sources areas”, and they were found
to be mostly located at the foot of hillslopes and around the channel network
([Kirkby , 1988]). In Dunne and Black [1970], a field experiment was conducted
in which the importance of the variable source areas was confirmed. In papers by
Whipkey [1965], Hewlett and Hibbert [1967], and Freeze [1972a], the important
contribution of subsurface flow to the stream hydrographs, and its importance
in generating variable source areas was shown. The conclusions from these pa-
pers, that understanding variable source areas and subsurface flow on hillslopes
are crucial in understanding the catchment response was a breakthrough, since
for a long time infiltration-excess (a concept stemming from the work of Horton
[1933]) had been commonly accepted as the driving mechanism behind produc-
tion of overland flow. These benchmark papers have therefore brought about a
new view on catchment and hillslope hydrology, and triggered many new studies
that investigate hillslope processes either experimentally or numerically.

In books edited by Kirkby [1978] and Anderson and Brooks [1996], an overview
is given of the hillslope modeling studies that were developed over the past
decades. All of the models intended for catchment and hillslope research that are
presented in these books are essentially either based on complex numerical inte-
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grations of the three-dimensional flow equations, or simplified hydraulic ground-
water equations. With regard to the complex numerical models, the conclusion
can be drawn that they generally show little forecasting advantage over simpler
approaches [Kirkby , 1988]. However, the simplified hydraulic groundwater mod-
els are typically one-dimensional, and do not account for the three-dimensional
hillslope shape in which the groundwater flow and storage processes take place.
Thus, simple but physically realistic models that represent hydrological processes
at the hillslope and catchment scales, and that account for catchment and hills-
lope geometry are needed for reliable simulation of overland flow and subsurface
flow [Beven, 2001; Hornberger and Boyer , 1995].

1.2 Research objectives

In an attempt to accurately model the three-dimensional hillslope hydrological
processes, three-dimensional numerical Richards equation models are often used.
The Richards equation was derived by Richards [1931] and, within its range of
validity, it provides the most accurate description of flow processes through vari-
ably saturated porous media. However, these types of models typically require
fine spatio-temporal grids to avoid numerical convergence problems, which places
large demands on the computational costs and memory usage, even for modeling
studies on the hillslope scale. Moreover, the parameterization and calibration
of these models is often cumbersome due to the small amount and low accuracy
of the available data. Therefore, in order to improve our understanding of the
hydrological response hillslopes, and ultimately catchments, to atmospheric forc-
ings, simplified yet physically-based models are required. The central research
question in this thesis is:

Can low-dimensional dynamic models of hillslope-scale flow and storage processes
be formulated, such that the essential physical behavior of the natural system is
preserved?

Towards the end of the 1990’s several breakthroughs were realized in the field
of low-dimensional catchment and hillslope modeling. Duffy [1996] presented a
two-state integral-balance model for soil moisture and groundwater dynamics in
complex terrain. Later Reggiani et al. [1998] extended this approach by including
other subregions of the hydrological cycle (e.g., overland flow, saturated areas
and the channel network). Parallel to these developments, models were formu-
lated by Fan and Bras [1998], and Troch et al. [2002, 2003] that are based on
hydraulic groundwater theory ([Boussinesq , 1877]). In Fan and Bras [1998] the
concept of mapping the three-dimensional soil mantle onto a one-dimensional
pore or storage space is introduced. The governing equations in Fan and Bras
[1998] and Troch et al. [2002, 2003] are one-dimensional partial differential equa-
tions of saturated moisture storage on complex hillslopes, which can be solved
numerically, or analytically under certain restrictive conditions. The major ad-
vantage of this kind of formulation is that the interaction between hillslope shape
and hydrological response can easily be quantified.
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The main objectives of this thesis is to thoroughly test the theory underlying
the work of Troch et al. [2003], to further develop the hillslope hydrological model
that was developed by Troch et al. [2003], and to advance our understanding of
the interactions between hillslope shape and hydrological response.

In the following an introduction will be given to the models that are used and
analyzed in this thesis, and an overview of the numerical and analytical solutions
that were already derived will be presented.

1.3 Hydraulic groundwater models

1.3.1 The Boussinesq equation

Subsurface flow along a unit-width hillslope with sloping bedrock can be de-
scribed with the Boussinesq equation [Boussinesq , 1877], which is obtained when
the flow equation

q = −kh

(
∂h

∂x
cos(i) + sin(i)

)
(1.1)

is substituted in the mass-balance equation

f
∂h

∂t
= − ∂q

∂x
+ N (1.2)

yielding:
∂h

∂t
=

k

f

[
cos i

∂

∂x

(
h

∂h

∂x

)
+ sin i

∂h

∂x

]
+

N

f
(1.3)

where h(x, t) is the elevation of the groundwater table measured perpendicular
to an underlying impermeable layer which has a slope angle i, k is the hydraulic
conductivity, f is the drainable porosity, x is the distance from the outlet mea-
sured parallel to the impermeable layer, t is time, and N represents the recharge
to the groundwater table.

The application of Equation 1.3 is limited because it does not account for
the three-dimensional soil mantle in which flow processes take place, whereas
literature shows that the three-dimensional shape of a hillslope (i.e., geometry
and topography) forms a dominant control on the hydrological response (e.g,
McDonnell [1990]; Woods et al. [1997])

1.3.2 The hillslope-storage Boussinesq model

In Troch et al. [2003] a reformulation of the Boussinesq equation is given, that
allows us to account for complex hillslope geometries (e.g., convergent and diver-
gent plan shapes), through the introduction of a hillslope width function w(x),
where it is assumed that no flow occurs in the lateral direction perpendicular
to x. The derived model’s behavior for free drainage and under recharge is in-
vestigated on a set of seven characteristic hillslopes. The governing equation in
[Troch et al., 2003] was termed the hillslope-storage Boussinesq (HSB) equation,
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Figure 1.1: A three dimensional view of a convergent hillslope overlying a straight
bedrock profile (left), and a definition sketch of the cross section of a one-dimensional
hillslope aquifer overlying a bedrock with a constant bedrock slope angle (right).

and reads:

f
∂S

∂t
=

k cos i

f

∂

∂x

[
S

w
(
∂S

∂x
− S

w

∂w

∂x
)

]
+ k sin i

∂S

∂x
+ fNw (1.4)

where S = S(x, t) = wfh is the subsurface water storage, h = h(x, t) is the water
table height averaged over the width of the hillslope, and w(x) is the hillslope
width function. The total storage capacity along the hillslope can be expressed
as Sc(x) = fw(x)d(x), where d is the soil depth averaged over the width of the
hillslope. The hillslope properties and coordinates are illustrated in Figure 1.1.

Several simplified and linearized versions of Equation 1.4 are investigated
and compared in Troch et al. [2003] on a set of seven hillslopes and two bedrock
slope angles. In Paniconi et al. [2003], the HSB model is compared to a three-
dimensional Richards based model on the same set of hillslopes and for the same
bedrock slopes.

In Troch et al. [2004] analytical solutions to a linearized HSB equation are
determined using Laplace transformation, under the assumption that the hills-
lope width function w(x) can be described with an exponential function, and an
expression for a hillslope Péclet number is derived.

1.3.3 The hillslope-storage kinematic wave model

In Fan and Bras [1998] a simplified version of Equation 1.4 is investigated. It is
assumed that the subsurface flow rates can be described with a kinematic wave
(KW) approximation of Darcy’s law:

Q = −k
S′

f

dz

dx′ (1.5)

where S′ = S′(x′, t) is the saturated storage as in Equation 1.4, but measured
vertically, and z and x′ are respectively the vertical and horizontal coordinate.
The hillslope topography is described using a quadratic polynomial. The derived
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equations are solved analytically using the method of characteristics, and applied
to three differently shaped hillslopes.

In Troch et al. [2002], the approach of Fan and Bras [1998] is generalized
by describing the bedrock shape and curvature with a n-th order polynomial,
that allows for a more flexible fit of the function to the available topographic
data. Analytical solutions are determined, and the results of model runs on nine
characteristic hillslopes, ranging from convergent to divergent plan shape and
from concave to convex profile shape, are presented in dimensionless variables.

1.4 Outline of dissertation

The HSB model as described in Troch et al. [2003] is developed for and analyzed
on hillslopes with various plan shapes (i.e., convergent, divergent), but the ap-
plication is limited to non-curved (i.e., straight) bedrock shapes. In Chapter 2,
the HSB model of Troch et al. [2003] is cast in a generalized formulation enabling
the model to handle non-constant bedrock slope. The generalized HSB model
response is investigated on the nine hillslopes described in Troch et al. [2002],
with varying curvature of bedrock shape. The model is compared to the KW
model of Troch et al. [2002], and the three-dimensional Richards model of Pan-
iconi and Wood [1993] for a free drainage scenario for 5% and 30% bedrock slope.

Chapter 3 deals with the effects of unsaturated storage on groundwater dy-
namics. A physically-based analytical expression for the drainable porosity is
derived to account, in part, for the unsaturated zone effects in shallow aquifers
during drainage experiments. The derived equations are implemented in the HSB
model. The model is compared to the original HSB model, and to measurements
from a 6.0x2.5x0.5m laboratory setup for a divergent and convergent slope shape
and for bedrock slope angles of 5%, 10%, and 15%.

Chapter 4 describes an application of the theory described in Chapter 3 to a
tidal aquifer study described in Cartwright et al. [2005]. In Cartwright et al.
[2005] the effects of oscillating water tables in a tidal aquifer on the drainable
porosity are investigated, and a curious phenomenon for high frequency oscilla-
tions is noted. This chapter comments on the work by Cartwright et al. [2005]
and suggests a possible explanation for the particular behavior mentioned in that
paper.

In Chapter 5, a coupling is presented between a one-dimensional Richards equa-
tion model to describe the unsaturated zone processes, and the HSB model de-
scribing the saturated zone processes. The coupled formulation allows for quanti-
tative investigation of the role of unsaturated storage on the relationship between
rainfall and recharge. The model results are compared to the HSB model and
the three-dimensional Richards model of Paniconi and Wood [1993] on the seven
characteristic hillslopes described in Troch et al. [2003] and for a bedrock slope
angle of 5%.
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In Chapter 6, the coupled model described in Chapter 5 is slightly adapted
to enable handling of saturated hydraulic conductivity to vary with depth, and
to allow for a seepage face type downslope boundary condition. The model is
applied to a well-instrumented 36x18x0.67m hillslope plot near Troy (ID), USA.
The effects of using a seepage face instead of a fixed-head type boundary con-
dition are investigated. The model results are compared on an hourly basis to
measurements obtained from the plot over a period of approximately 130 days.

In Chapter 7 the most important conclusions are summarized and suggestions
for future research are given.
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Chapter 2

The hillslope-storage Boussinesq
model for non-constant bedrock
slope

Abstract

In this study the recently introduced hillslope-storage Boussinesq (HSB)
model is cast in a generalized formulation enabling the model to handle non-
constant bedrock slopes (i.e. bedrock profile curvature). This generalization
extends the analysis of hydrological behavior to hillslopes of arbitrary geomet-
rical shape, including hillslopes having curved profile shapes. The generalized
HSB model performance for a free drainage scenario is evaluated by comparison
to a full three-dimensional Richards equation (RE) based model. The model
results are presented in the form of dimensionless storage profiles and dimension-
less outflow hydrographs. In addition, comparison of both models to a storage
based kinematic wave (KW) model enables us to assess the relative importance
of diffusion processes for different hillslope shapes, and to analyze the influence
of profile curvature on storage and flow patterns specifically. The comparison
setup consists of a set of nine gentle (5% bedrock slope) and nine steep (30%
bedrock slope) hillslopes of varying plan shape and profile curvature. Interpre-
tation of the results shows that for highly conductive soils the simulated storage
profiles and outflow hydrographs of the generalized HSB model and RE model
match remarkably for 5% bedrock slope and for all plan and profile curvatures.
The match is slightly poorer on average for 30% bedrock slope, in particular on
divergently shaped hillslopes. In the assessment of the influence of hydraulic
diffusion, we find good agreement in simulation results for the KW model com-
pared to results from the generalized HSB model and the RE model for steep
divergent and uniform hillslopes, due to a relatively low ratio between water
table gradient and bedrock slope compared to convergent or gentle hillslopes.
Overall, we demonstrate that, in addition to bedrock slope, hillslope shape as
represented by plan and profile curvature is an important control on subsurface
flow response.

This chapter is based on the paper “Hilberts, A.G.J., E.E. van Loon, P.A. Troch and
C. Paniconi, The hillslope-storage Boussinesq model for non-constant bedrock slope,
Journal of Hydrology, 291, 160–173, 2004.”
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2.1 Introduction

Landscape geometry influences hydrological response, thus clear insight into the
effects of the shape and characteristics of landscape elements is required to fur-
ther our understanding of and our ability to model hydrological processes. For
some time research has focused on identifying and quantifying hillslope processes
as a first step towards assessment of (sub)catchment response. In catchment hy-
drology the importance of subsurface flow processes in generating variable source
areas was first addressed by Dunne and Black [1970] and Freeze [1972a,b]. Later
Kirkby [1988] reported that almost all of the water in streamflow has passed over
or through a hillside and its soils before reaching the channel, thereby emphasiz-
ing the role of hillslope hydrological processes. These references indicate a need
for quantifying the hydrological processes on hillslopes, and for the development
of appropriate models to describe these processes. Many models have been de-
veloped over the past 30 years. Pikul et al. [1974] formulated a coupled model
based on the Richards and Boussinesq equations and evaluated it by comparison
to a two-dimensional Richards based model. Sloan and Moore [1984] compared
Richards equation based models of Nieber and Walter [1981] and Nieber [1982],
a kinematic wave model of Beven [1981] and a storage discharge model to mea-
surements on a hillslope with a uniform width function. Other examples include
Fipps and Skaggs [1989], who applied a two-dimensional Richards based model
to a unit-width hillslope with a constant slope inclination; Verhoest and Troch
[2000], who determined the analytical solution to the Boussinesq equation ap-
plied to a non-curved unit-width aquifer; and Ogden and Watts [2000], who
analyzed the behavior of a numerically solved two-dimensional model for steady
and unsteady flow types on a unit-width non-curved hillslope. None of these
studies present models that account for the effect of the three-dimensional hill-
slope shape on storage and flow patterns, although other recent research has
begun to address these issues. For example Paniconi and Wood [1993] presented
a three-dimensional Richards based model for subsurface flow on complex hill-
slopes; Duffy [1996] formulated a volume-weighted integral-balance model for
complex terrain types and applied it to steep slightly curved hillslope to analyze
subsurface flow, overland flow and variable source areas; and Woods et al. [1997]
modeled subsurface flow processes using a topographic index and compared re-
sults to extensive field measurements on thirty steep inclined shallow troughs of
various shape (convergent, planar and divergent).

To overcome difficulties associated with three-dimensional models, a series of
new low-dimensional hillslope models have been developed [Troch et al., 2002,
2003]. These models are able to treat geometric complexity in a simple way
based on a concept presented by Fan and Bras [1998], resulting in a significant
reduction in model complexity, and they can cope with varying hillslope width
functions and bedrock slope. In Troch et al. [2002] the analytical solutions to a
kinematic wave equation that is expressed in terms of storage using the mapping
method of Fan and Bras [1998] are evaluated by applying them to nine hillslopes
with different plan and profile curvature. The resulting hillslope-storage kine-
matic wave (KW) model shows quite different dynamic behavior during a free
drainage and a recharge experiment. The authors conclude that the kinematic
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wave assumption is limited to moderate to steep slopes, and that for more gen-
tle slopes a new model formulation based on the Boussinesq equation would be
necessary. In Troch et al. [2003] the hillslope-storage Boussinesq (HSB) model
together with several simplified versions (e.g., linearized) are derived and eval-
uated under free drainage and recharge scenarios. The evaluation is conducted
on a subset of the nine hillslopes presented in Troch et al. [2002]. Results are
compared to those of the KW model and the authors find that dynamic response
of the hillslopes is strongly dependent on plan shape and bedrock slope, and that
convergent hillslopes tend to drain much more slowly than divergent ones due
to a reduced flow domain near the outlet. Concerning the several simplified ver-
sions of the HSB model it is concluded that for gentle slopes (5% bedrock slope)
none of these simpler models is able to fully capture the dynamics of the full
HSB model, while for steep slopes (30% bedrock slope) the performance is bet-
ter. In Paniconi et al. [2003] the HSB model is compared to a three-dimensional
Richards equation (RE) based model on the same subset of hillslopes, in order
to identify the circumstances under which the different models generate compa-
rable responses. In this work the RE model is regarded as the benchmark. The
overall conclusion is that the HSB model is able to capture the general features of
storage and outflow response. Overall a closer match between the HSB and RE
models was observed for convergent hillslopes than divergent, and the match was
quite independent of slope steepness. A poorer match was observed in case of
the recharge simulations compared to the free drainage scenario, most likely due
to absence of a description of the unsaturated zone in the HSB model, important
in the transmission of water through a hillslope soil during a rainfall or recharge
event. The absence of an unsaturated zone component in the HSB model also
causes the water table heights for the HSB model to be slightly higher and the
flow values to be slightly lower than the RE model in almost all cases.

These previous papers on the HSB model suggested several extensions of the
model to make it more representative of complex hillslopes, including the capa-
bility to handle non-constant bedrock slope in order to more accurately account
for hillslope profile curvature, which is the focus of the present paper. An il-
lustration of the importance of profile curvature in hillslope response is shown
in Figure 2.1 where simulated water table profiles and outflow hydrographs for
a shallow sand loam soil overlying a bedrock with an average slope of 5% are
depicted for a concave, straight, and convex profile shape. The outflow hydro-
graphs clearly differ: after approximately 5 days, we see a rising hydrograph for
the concave hillslope, whereas the straight and convex hillslopes show a falling
and a relatively constant hydrograph respectively. After 10 days we also see dif-
ferently shaped water tables: “compacted” for the concave hillslope, “stretched”
for the convex hillslope (with high water table values, due to low outflow), and
intermediate for the straight hillslope.

The objectives of this paper are thus to 1) derive a more general formulation
of the HSB model for non-constant bedrock slope; 2) assess the effects of topog-
raphy and plan and profile curvature of hillslopes on the dynamical hydrological
response; 3) intercompare free drainage simulation of the HSB, KW and RE
models for hillslopes with varying plan and profile curvature. The generalized
HSB model allows a quantitative analysis of water tables and hydrographs, and
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Figure 2.1: Simulated water table heights and outflow hydrographs for a free drainage
experiment on a concave, a straight, and a convex hillslope profile, using a three-
dimensional Richards equation based model. The hillslopes have an average bedrock
slope of 5%, a constant width of 50 m, a length of 100 m, and a depth of 2 m. The soil
is a sandy loam with a saturated conductivity of 1 m/h, and a porosity of 0.30. The
water table outputs are at t = 10 days.

thereby enables us to conduct a very accurate analysis of the effects of topogra-
phy and geometry on hydrological processes on these hillslopes, since it allows
simulations for virtually any hillslope shape and bedrock slope. The general-
ized HSB model will be compared to the full three-dimensional RE model that
was also applied in Paniconi et al. [2003]. The behavior of the models will be
analyzed for the nine hillslopes of varying plan and profile curvature that are
described in Troch et al. [2002], and model results will be presented in dimen-
sionless variables. In addition the relative influence of diffusion processes in both
models will be evaluated by comparison to the hillslope-storage kinematic wave
model of Troch et al. [2002].

2.2 Development of the generalized hillslope-storage
Boussinesq model

The mass balance equation for describing subsurface flow along a unit-width
hillslope reads:

∂

∂t
(fh) = − ∂q

∂x
+ N (2.1)
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Figure 2.2: Three-dimensional view (top), and a two-dimensional plot of the contour
lines and slope divides (bottom) of the nine hillslopes considered in this study.

where h = h(x, t) is the elevation of the groundwater table measured perpendic-
ular to the underlying impermeable layer, f is drainable porosity, x is distance to
the outlet measured parallel to the impermeable layer, q = q(x, t) is subsurface
flux along the hillslope bedrock, t is time, and N is a source term, representing
rainfall recharge to the groundwater table. Equation 2.1 is derived for a unit-
width hillslope and therefore does not account for the three-dimensional shape
of a hillslope. Investigating the effect of geometry on hydrological response thus
requires a more general form of Equation 2.1. This is obtained by first expressing
the equation in terms of storage by using the relationship of Fan and Bras [1998]
to map the three-dimensional soil mantle onto a one-dimensional soil pore space:
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S = f ·w ·h, where S = S(x, t) is actual storage, w = w(x) is hillslope width at
position x, and h = h(x, t) is the width averaged water table height:

h(x, t) =
1

w(x)

∫
w

h(x, y, t)dy (2.2)

where y is the perpendicular direction to x. Including hillslope width as
an integral part of Equation 2.1 allows description of subsurface flow within a
hillslope of arbitrary plan geometry:

∂

∂t

(
fwh

)
= − ∂

∂x
(wq) + Nw (2.3)

Subsurface flux q = q(x, t) is formulated by Boussinesq [1877] as:

q = −kh

(
∂h

∂x
cos i + sin i

)
(2.4)

where k is hydraulic conductivity, and i is bedrock slope. Combining Equations
2.3 and 2.4 yields the HSB equation as formulated by Troch et al. [2003],

f
∂S

∂t
=

k cos i

f

∂

∂x

[
S

w
(
∂S

∂x
− S

w

∂w

∂x
)

]
+ k sin i

∂S

∂x
+ fNw (2.5)

Equation 2.5 allows us to investigate the hydrological behavior of the original
Boussinesq equation on hillslopes of variable plan geometry. In order to analyze
the effect of non-constant profile curvature, we need to define the bedrock slope
as being non-constant (i.e. i = i(x)). Treating the bedrock slope parameter
as such, upon combining Equations 2.3 and 2.4 we obtain the generalized HSB
equation:

f
∂S

∂t
=

∂

∂x

(
kS

f
cos i(x)

∂(S/w)
∂x

)
+

∂

∂x
(kS sin i(x)) + fNw (2.6)

which when expanded yields the governing equation of the HSB model for non-
constant bedrock slope:

f
∂S

∂t
=

k

f
cos i(x)

[
B

∂S

∂x
+ S

∂B

∂x
+ fS

∂i(x)
∂x

]

+
k

f
sin i(x)

[
f

∂S

∂x
− SB

∂i(x)
∂x

]
+ fNw (2.7)

where

B =
∂

∂x

(
S

w

)
Note that the flow lines for Equations 2.5 and 2.7 are assumed to be parallel to
the bedrock. For the original HSB Equation 2.5 this implies uncurved flow lines;
the flow lines for the generalized HSB model of Equation 2.7 allow a curved
flow path. For constant bedrock slope i(x) = i, Equation 2.7 reduces to the
HSB equation (Equation 2.5). For convenience we will henceforth refer to the
extended model described by Equation 2.7 as the HSB model.
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2.3 The hillslope-storage kinematic wave model
and the Richards equation based model

In Troch et al. [2002] a kinematic wave model is presented that is also based
on the principle of Fan and Bras [1998] for collapsing a three-dimensional soil
mantle into a one-dimensional pore space. The governing equation for the KW
model reads:

f
∂S

∂t
= k

∂S

∂x′
∂z

∂x′ + kS
∂2z

∂x′2 + fNw(x′) (2.8)

in which z is elevation of the impervious layer above a given datum and x′ is
the horizontal distance to the hillslope crest. The third model to be evaluated is
fully three-dimensional, and is based on Richards’ equation:

η(ψ)
∂ψ

∂t
= ∇· (KsKr(ψ)(∇ψ + ez)) (2.9)

where η = SwSs + θs(dSw/dψ) is the general storage term, Sw is the water satu-
ration defined as θ/θs ,θ is the volumetric moisture content, θs is the saturated
moisture content, Ss is the aquifer specific storage coefficient, ψ is pressure head,
ez is the vector (0, 0, 1)T (positive upward), and the hydraulic conductivity ten-
sor is expressed as a product of the saturated conductivity Ks and the relative
conductivity Kr(ψ). Ks corresponds to hydraulic conductivity k of the HSB and
KW models. The nonlinear unsaturated zone characteristics are described using
the Brooks-Corey relationships [Brooks and Corey , 1964]:

Se(ψ) = (ψc/ψ)β , ψ < ψc (2.10)
Se(ψ) = 1, ψ ≥ ψc

and

Kr(ψ) = (ψc/ψ)2+3β , ψ < ψc (2.11)
Kr(ψ) = 1, ψ ≥ ψc

where Se is the effective saturation, defined as (θ−θr)/(θs−θr), θr is the residual
moisture content, β is a constant representing the pore size distribution index,
and ψc represents the capillary fringe height. The RE model used in this work
is the subsurface module of a coupled surface-subsurface numerical model [Bixio
et al., 2000] using a tetrahedral finite element discretization in space, a weighted
finite difference scheme in time, and Newton or Picard iteration to resolve the
nonlinearity [Paniconi and Putti , 1994]. It can be applied to hillslopes and
subcatchments of arbitrary geometry, and handles heterogeneous parameters and
boundary conditions, including atmospheric forcing and seepage faces.
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2.4 Experiment setup

2.4.1 Nine characteristic hillslopes

To evaluate hillslope hydrologic response as a function of profile and plan cur-
vature we apply the HSB, KW, and RE models to a set of nine characteristic
hillslopes. The nine characteristic hillslopes consist of three divergent, three
straight and three convergent hillslopes with profile curvature varying from con-
vex to straight to concave. The same hillslope parameterization as in Troch et al.
[2002] is used, with the exception that slope length is measured parallel to the
bedrock and is set at L = 100 m for all slopes.

It has been reported in the literature that for high slope inclination the kine-
matic wave assumption becomes valid [Beven, 1981; Henderson and Wooding ,
1964; Woolhiser and Liggett , 1967] and that the Boussinesq equation is applicable
for settings in which there are relatively shallow highly conductive soils [Childs,
1971; Freeze, 1972a; Sloan and Moore, 1984]. To thoroughly test the different
approaches and to assess the limits within which they are valid, simulations on
the nine hillslopes are carried out for gentle (5% bedrock slope) and steep slope
types (30% bedrock slope). A three-dimensional view of the nine hillslopes and
the two-dimensional plot of contour lines and slope divides is given in Figure
2.2. The hillslopes have a flow path of length L = 100 m and soil depth is set at
d = 2 m, corresponding to a relatively shallow unconfined aquifer. Hillslope re-
sponse can be studied by performing either free drainage experiments after initial
(partial) saturation, or constant recharge experiments to equilibrium. In Troch
et al. [2002] it is noted that for a kinematic wave model, drainage response and
recharge experiments contain the same information of the hydrological model,
since outflow and storage changes in both cases can be converted to overlapping
functions in space and time by means of dimensional analysis. In this work we
have therefore selected drainage response experiments for a first assessment of
the characteristic response of the three different hydrological models.

2.4.2 Discretization

In this study for the RE simulations the hillslopes were discretized using �x =
L/200 = 0.5 m and �y = w(x)/6 m, giving a surface mesh of 2400 triangles. The
vertical coordinate was discretized with �z = d/40 = 0.05 m yielding a total of
288000 tetrahedra. For the HSB simulations Equation 2.7 is discretized in the
spatial coordinate (�x = 0.5 m) and then solved using a variable-order ordinary
differential equation solver based on the numerical differentiation formulas. For
the KW model analytical solutions obtained by Troch et al. [2002] were used.

2.4.3 Initial and boundary conditions

For all models we impose as an initial condition a uniformly distributed water
table height along the hillslopes. Water table height is set to h = 0.40 m (20% of
the storage capacity), for all models. We selected these initial conditions in order
to avoid occurrence of saturation on the hillslopes, enabling us to investigate
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subsurface processes alone in almost all cases. For the RE model an initial
condition of vertical hydrostatic pressure distribution was used, with a water
table height at 0.40 m vertically above bedrock level, giving a pressure head
value of −1.6 m at the hillslope surface and 0.40 m at the bedrock. Note that
for the RE model the water table is at 0.40 m above the bedrock whereas the
boundary of the saturated zone is at a higher level, due to the water bound in
the capillary fringe zone.

For all models the bedrock, hillslope crest and lateral hillslope divides are
treated as zero-flux boundaries. At the outlet free drainage conditions apply
for all models: storage and consequently also water table height is assigned a
fixed value of zero (Dirichlet-type boundary condition) for the HSB and the
KW models. For the RE model the bottom layer of nodes at the outlet have a
constant head boundary of zero pressure head. To keep the boundary conditions
as close to those of the HSB and KW model, the nodes in the layers above are
assigned a zero-flux condition. Consequently, only the most downslope node(s)
form an outlet for soil moisture for all three models.

2.4.4 Parameterization

In the simulations presented in this paper parameters are used that correspond
to those of a highly conductive sandy loam soil [Bras, 1990]: k = Ks = 1
m/h, θs = 0.30, θr = 0, β = 3.3, ψc = −0.12 m, and Ss = 0.01 m-1. The
drainable porosity parameter f in the HSB and KW models is an ambiguously
defined parameter that in most cases serves the purpose of representing some
of the effects of the unsaturated zone. This parameter may be interpreted as
the fraction of the total soil volume (matrix and pore space) that is available
for transport of soil moisture. Typically, drainable porosity is estimated as the
volume of water that an unconfined aquifer releases from or takes into storage
per unit aquifer area per unit change in water table depth [Bear , 1972]. In this
study the drainable porosity is fitted as [Paniconi et al., 2003],

f = θs ·Vtfinal/Vi (2.12)

where θs is saturated moisture content (which is treated as being equal to poros-
ity), Vtfinal is the cumulative volume of water drained from the hillslope in a
steady state situation at the end of simulation and Vi is the initial volume of
water present in the soil calculated on the basis of the results of the RE model.
The drainable porosity is a dynamical parameter that is dependent on hillslope
shape, initial conditions and other factors, and therefore values for f are differ-
ent for all hillslopes and simulation settings. In Table 2.1 the values for f that
were used to run the HSB and KW models are listed for the nine hillslopes, and
we note that all porosity values are in the range [0.25, 0.30] except for the 30%
hillslope number 1, for which a lower value is likely due to the extremely slow
subsurface drainage of the hillslope.
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2.4.5 Dimensional analysis

Differences exist in hydrological system behavior (i.e. hydrographs, storage pro-
files) on gently sloping hillslopes compared to steep slopes. The same holds for
hillslopes with differences in conductivity, soil depth, hillslope length and for
simulations with different initial conditions. In order to generalize the results a
dimensional analysis is conducted. A dimensionless representation will lead to
model results that are “scaled” for the parameters mentioned above. The work
of Troch et al. [2002] shows that for the kinematic wave case, simulation results
under different conditions (i.e. varying slope angle, recharge rate, soil properties
etc.) all collapse into a single characteristic response function, when the appro-
priate dimensionless variables are selected. We define the following dimensionless
variables:

τ =
tkī

fL

χ = 1 − x

L

χ =
x′

L

φ =
Qcum(t)

Vi

σ =
S(x, t)
Sc(x)

=
h(x, t)

d

where ī is the average bedrock slope (in this work 5% or 30%), defined as

i =
1
L

∫ L

0

i(x)dx

Qcum(t) is cumulative flow volume up to time t:

Qcum(t) =
∫ t

0

Q(t)dt

where Q(t) is the outflow at the outlet, and Sc(x) = f ·w(x) · d is the storage
capacity at a given position on the hillslope. The variable τ defines kinematic
time [Ogden and Watts , 2000] generalized for varying values for f as in [Beven,
1981], χ defines flow distance as a fraction of the total length of the flow path L,

Table 2.1: Drainable porosity values (in %) for the nine characteristic hillslopes used
in this study. The superscript indicates hillslope number. The left number within a
cell corresponds to results obtained on the 5% slopes, and right number corresponds to
the 30% results.

1 26 , 22 2 27 , 26 3 25 , 26
4 28 , 26 5 28 , 27 6 28 , 29
7 28 , 27 8 28 , 28 9 28 , 30
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and φ and σ are the new dimensionless flow and storage variables respectively.
Note that the variable χ is defined differently for the KW model, when compared
to the HSB and RE models, since the x′-axis of the KW model differs from the
x-axis of the HSB and RE models: the x′-axis is horizontal, originates from the
hillslope crest, and is positive in the direction of the outlet, whereas the HSB
and RE x-axes originate from the outlet and are positive slope upward. To
intercompare the results the HSB and RE χ-axes have been reversed by using
the relationships above.

As the values of saturated conductivity k and average bedrock slope i in-
crease, and the values of drainable porosity f and hillslope length along the
flow path L decrease, the hydrological system will drain more rapidly. Mapping
the variables onto a dimensionless time space using time variable τ causes a
scaling (“compression” or “stretching”) of the time axis, which facilitates com-
parison of the results obtained, since results are scaled for convective processes
and consequently also scaled for the kinematic component in the flow process. If
no overland flow occurs, differences between dimensionless outflow hydrographs
φ(τ) and dimensionless storage plots σ(χ, τ) can thus be ascribed to diffusion
processes. The flow variable φ can be regarded as the fraction of the total initial
soil water storage that has drained from the hillslope up to kinematic time τ ,
and the storage variable σ is the saturation fraction for a given time and point
on the hillslope. Note that for the HSB and KW models initial volume of stored
water is defined as Vi = A · f ·h(x, 0), where A is the slope surface area, whereas
for the RE model it is defined as Vi = Vtfinal. The rationale behind using total
cumulative flow volume instead of Vi as a basis for calculating the dimensionless
flow value for the RE model is that for the RE model, a fraction of the initial
storage will be retained in the hillslope as residual unsaturated storage. Val-
ues for Vtfinal are slope and simulation dependent and are directly related to
drainable porosity values through Equation 2.12.

2.5 Drainage response

2.5.1 Introduction

We will analyze the spatio-temporal behavior of the three models using pseudo-
color plots of (dimensionless) storage patterns σ(χ, τ) and dimensionless hydro-
graphs φ(τ). In these figures the value of σ(χ, τ) is indicated by color: low values
tend towards the blue end of the spectrum whereas the higher values tend to-
wards the red end. A scaling bar is depicted next to all plots. Note that for
maximum detail three different types of scaling are applied: for the convergent
slopes (i.e. slope numbers 1, 4, and 7) the values for σ range up to 0.6, for the
straight slopes (i.e. 2, 5, and 8) up to 0.4 and for the divergent slopes (i.e. 3,
6, and 9) up to 0.2. Looking at an individual figure, a horizontal transect for a
given kinematic time τ will show a saturation fraction σ over the hillslope length
fraction χ. A vertical transect of the figures for a given χ shows a dimensionless
stage hydrograph: the variation of saturation fraction in kinematic time τ at a
given location χ on the hillslope. In all the plots the outlet of the hillslopes is at
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χ = 1, and the top at χ = 0.
An important note on the different coordinate systems for the models was

made in Paniconi et al. [2003], where it was shown that despite some differences
in hillslope configuration for the HSB and RE models, the models are fully com-
parable. This also holds for the comparison of the HSB and RE models with
the KW model. The KW model has no diffusion dynamics, making the outflow
hydrograph and storage patterns solely dependent on hillslope geometry once
the appropriate dimensionless variables have been selected.

2.5.2 Interpretation of the KW storage profiles for 5% and
30% bedrock slope

In Figure 2.3a the dimensionless storage patterns of the KW models are de-
picted for all nine hillslopes for a bedrock slope of both 5% and 30% and different
drainable porosity values. Due to the selection of appropriate (kinematic) dimen-
sionless variables, storage patterns for the 5% and 30% bedrock slopes and for
different drainable porosity values all can be collapsed into one σ profile. On all
nine slopes we see a clear propagation of a discontinuity in σ in the χ, τ -domain
without any diffusion characteristics. After initiation of the simulation we can
trace the tail of the wave by looking at the line that divides the blue area (zero
storage) from the rest (non-zero values). Note that the inverse of the tangent
to this divide in the χ, τ -domain is a measure of dimensionless wave velocity
(celerity). Also note that for equal profile curvature the propagation of the tail
of the wave is identical. For slope numbers 1, 2 and 3 we see that the tail velocity
decreases as τ and χ increase, since the slope steepness decreases near the outlet
( i.e. concave slope profile). For the straight profile shapes (i.e 4, 5 and 6) we
see a constant tail velocity and for the convex profiles (i.e. 7, 8 and 9) we get
an increase in tail velocity as χ and τ increase. Note that for the convex profile
shapes, the wave shape tends to disperse and the σ profiles tend to flatten out,
as can be seen for slopes 8 and 9. For slope 7 however we see an accumulation,
especially in the middle segment of the hillslope, due to a convergent slope shape.
Whereas the velocity of the wave is determined by bedrock slope, the storage
values are determined by both plan curvature (through the width function) and
profile curvature.

2.5.3 Interpretation of storage profiles for 5% bedrock slope

In Figure 2.3b the dimensionless storage profiles for the HSB model when applied
to a 5% bedrock slope are depicted . Foremost we notice that the wave front is
less pronounced than for the KW model. Due to diffusion, strong gradients in
storage values (and consequently in σ values) tend to smoothen out. This effect
is clearest for hillslopes 1, 2, 3, 4 and 7 where σ values are significantly lower than
for the KW model. For slopes 1 to 3 concavity of profile shape causes strong
gradients in storage value (and consequently large effect of diffusion) and for
slopes 1, 4 and 7 the effect is caused by convergence of plan shape. Consequently,
the diffusive effect of profile curvature on σ profiles is amplified on slope number
1. Slopes 5, 6, 8 and 9 show a relatively good resemblance to the KW results
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due to low gradients and consequently a marginal effect of diffusion. This is
best illustrated looking at hillslope 5, where results are very similar to the KW
results except for the front and rear end of the wave where strong gradients cause
diffusion in the HSB results, whereas the KW model shows the expected ramp
function during drainage. Note that for the front end (at the outlet), gradients
are a result of the imposed boundary condition σ(1, τ) = 0.

It is interesting to compare the results of these relatively simple one-dimensional
models (Figures 2.3a and 2.3b) to the results of the more complex three-dimensional
RE model when applied to 5% hillslopes (Figure 2.3c). The RE results show a
remarkable match with the results obtained with the HSB model for all hillslope
shapes. On the convergent slopes (1, 4 and 7) we notice slightly higher σ values
and a small delay in drainage for the RE model compared to the HSB results.
On the divergent slopes (3, 6 and 9) the HSB model produces slightly higher
σ values and a somewhat faster drainage. Some irregularities for low σ values
are visible in Figure 2.3c on slopes 2 and 3 in particular. They are caused by
numerical difficulties in solving the strong nonlinearity in the Brooks-Corey re-
lations for small pressure head values. This implies that a finer spatio-temporal
discretization is required for the RE simulations, especially for the steeper slopes
discussed next.

2.5.4 Interpretation of storage profiles for 30% bedrock
slope

The drainage response on the 30% hillslopes using the HSB model and the RE
model is depicted in Figures 2.3d and 2.3e respectively. Figure 2.3e displays
numerical irregularities more clearly than for the 5% RE hillslopes: practically
all slopes now show small wiggles in the σ values. When Figures 2.3d and
2.3e are compared, we again see a very good agreement in the shape of storage
profiles in the spatial as well as the temporal dimension (ignoring the numerical
oscillations). Unlike for the 5% hillslopes we now obtain the best match for the
convergent and straight hillslopes, although the RE model shows a slightly more
diffused pattern. On the divergent slopes the HSB model has structurally higher
storage values than the RE model, but the shape of the storage profiles and
the timing of the storage peaks in the χ, τ -domain are in good agreement. This
was also ascertained in [Paniconi et al., 2003] for simulations on slopes with a
straight profile shape (i.e. no profile curvature). This behavior may be caused
by the relatively large effect of the unsaturated zone on these slopes due to low
storage values.

2.5.5 Comparison of storage profiles for 5% and 30% bedrock
slope

When Figures 2.3d and 2.3e (30% hillslopes) are compared to Figures 2.3b and
2.3c (5% hillslopes), we notice that the former two show overall higher σ values.
This is caused by the fact that on all 30% hillslopes despite high gradients in
storage values the effect of diffusion on storage and flow is relatively small when
compared to the effect of increased convection due to high values for bedrock
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slope. The small response times on the 30% hillslopes do not allow for diffu-
sion to take full effect. This results in an increased accumulation of storage in
the 30% case. On the 5% hillslopes however, these counter balancing processes
of convection and diffusion are more dominated by diffusion. A clear indication
thereof is that hillslope 1 for 30% bedrock slope generates overland flow, whereas
no overland flow occurs on the 5% hillslopes (see Figures 2.3d and e: the satu-
rated area is enclosed by a black line). The HSB model generates overland flow
for 46 ≤ τ ≤ 125, the RE model for 72 ≤ τ ≤ 122, and the KW model for
42 ≤ τ ≤ 166. The KW results also show a small saturated area on hillslope 4
for 30% bedrock slope for 81 ≤ τ ≤ 100. The large saturated area in the KW
simulations is caused by the low flow values at the outlet. Due to the absence of
a flow component driven by gradients in water tables in the KW model, water
accumulates at the outlet when the plan shape is convergent or when the local
bedrock slope is small. In general the effect of an increased storage accumulation
is clearest for the convergent slopes where the width function intensifies the ac-
cumulation process, and less pronounced for the divergent slopes where also due
to the width function diffusion remains a relatively important process. Thus, the
resemblance of the σ profiles of both models for the 5% compared to the 30%
slopes is clearest for divergent slopes. When the storage profiles of the 5% slopes
(Figures 2.3b and c) are compared to those of the 30% slopes (Figures 2.3d and
e) and the KW results (Figure 2.3a), we notice that the profiles for the steep
slopes show a better match to the KW profiles than the 5% profiles. Illustrative
of this is the comparison of slope numbers 2, 3 and 4 in Figures 2.3a, b, and
d, also indicating that diffusion on the 30% slopes has less impact on flow and
storage of soil water than on the 5% slopes, as expected.

2.5.6 Comparison of hydrographs for 5% and 30% bedrock
slope

In Figure 2.4 we analyze the (dimensionless) hydrographs of both simulation
settings (i.e. 5% and 30% bedrock slope) and three models (i.e. KW, HSB
and RE) for the nine characteristic hillslopes. We note that the KW model
has the fastest response for all hillslope types and all bedrock slopes. The HSB
hydrograph shows a fast initial climb for hillslope 1 in particular, which originates
from the fact that the HSB model produces more overland flow than the RE
model on the 30% slopes, thus draining more rapidly initially. Furthermore it
appears that for slope numbers 5, 6, 8 and 9 the KW, HSB and the RE model
show a remarkably good match. The hydrographs of slopes 2, 3 and 7 show that
the HSB and RE results match well, but despite the dimensionless representation
the 5% and 30% results differ slightly, indicating that the effect of diffusion varies
for different bedrock slopes. The shape of the hydrographs of the RE and the
HSB model are remarkably similar in shape but somewhat displaced‘ in time,
indicating a delayed yield of the RE model probably caused by the capillarity
effect of the soil.
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2.6 Discussion and conclusions

In this paper we have generalized the hillslope-storage Boussinesq model to non-
constant bedrock slope and we have conducted an comparison of a Richards
equation based (RE) model, taken as a benchmark, with the generalized hillslope-
storage Boussinesq (HSB) and hillslope-storage kinematic wave (KW) models
in order to investigate within which settings application of the KW and HSB
models is valid. In relation to the validity of applying a KW model we can
conclude that it is limited to simulation settings in which hydraulic diffusion
has a marginal impact on storage. The impact is determined by water table
gradients and bedrock slope. When water table gradients are high and bedrock
slope is relatively small, diffusive components are predominant, which is the
case for the convergent hillslopes and gentle bedrock slopes in this study. On
these hillslopes the KW model shows the poorest match to the HSB and RE
models. For the straight and divergent slopes with a high bedrock slope, the ratio
between water table gradient and bedrock slope is low, making convection the
predominant process and a kinematic wave approximation increasingly accurate.
Gradients in storage profiles or water tables are determined by a combination
of slope inclination, plan shape, and profile curvature. When the flow process is
divided into a convective and a diffusive part, we conclude that the relevance of
the diffusive component does not solely depend on slope steepness, but also on
water table gradients. The importance of this last conclusion is that it refutes a
widespread belief that has been based on analysis of straight, unit-width slopes,
namely that bedrock slope alone determines the validity of the KW assumption.
A new criterion to determine validity of the KW assumption should therefore be
developed.

The most general conclusion with respect to the validity of the HSB model is
that it provides a broadly accurate description of subsurface storage profiles and
subsurface flow in a hillslope of arbitrary geometrical shape, in the same way as
the HSB equation for straight slopes was found to be accurate [Paniconi et al.,
2003].

On a more specific case by case basis, a dimensionless representation enabled
us to investigate the influence of diffusion in different simulation settings. We
conclude that the results of the three models on the 5% and 30% slopes in di-
mensionless representation show the best agreement in terms of storage profiles
as well as hydrographs on divergent slope types due to a relatively low influence
of diffusion, and the poorest agreement on convergent slopes because of high dif-
fusivity. For convergent slope forms the KW model loses its ability to accurately
describe water tables and hydrographs, whereas the HSB model remains close
to the RE solution in all simulations. Analyzing the shape of the RE and HSB
hydrographs in particular, we see that the shapes are very similar but the RE
hydrograph is delayed. This is caused by capillarity effects of the soil. An exten-
sion of the HSB and KW model with a component describing the unsaturated
zone is expected to improve model results significantly.

A basic assumption underlying the hillslope-storage concept is that subsur-
face flow can be described by saturated flow processes only. This implies that the
unsaturated zone is not expected to have a large influence on the flow process. A
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second assumption is that movement of water through the soil down the hillslope
is parallel to the underlying impervious layer (i.e. second Dupuit-Forchheimer
assumption). This requires marginal head differences perpendicular to the hill-
slope bedrock. Both assumptions are only valid for relatively shallow, highly
conductive soils. This limits the application of models based on the Boussinesq
equation to these settings. When the application of the HSB or KW model is
valid, the advantages of these models compared to RE models are significant,
and include computational efficiency, numerical robustness, scope for analytical
or other simplified formulations, and low-dimensionality (implying easier para-
meterization and calibration).

For the model simulations presented in this paper, soil properties (e.g. hy-
draulic conductivity, soil depth, drainable porosity) are considered to be spatially
uniform over the hillslope domain and constant in time. Ongoing research is fo-
cussed on investigating the impact of spatio-temporal variation of the model
parameters and extension of the model to incorporate processes as overland flow
and macropore flow.
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Figure 2.3: Dimensionless storage patterns for free drainage scenarios for a) the KW
model (5% and 30% bedrock slope), b) the HSB model, (5% bedrock slope), c) the
RE model, (5% bedrock slope), d) the HSB model, (30% bedrock slope), and e) the
RE model, (30% bedrock slope). The black lines in Figures a), c), and d) indicate and
enclose the saturated areas in the χ, τ -domain. In Figure a) the saturated area only
occurs for a bedrock slope of i = 30%.

23



0

0.5

1
11 22 33

0

0.5

1
44 55 66

0 100 200
0

0.5

1
77

τ [ ]

φ 
[ ]

0 100 200

88

0 100 200

99

Figure 2.4: Dimensionless hydrograph for a free drainage scenario of the KW (5% and
30%), HSB and RE model for nine characteristic hillslopes for 5% and 30% bedrock
slope. Black lines correspond to the results for 5% bedrock slope, and gray lines to
those for 30%. Solid lines correspond to the HSB results, and dashed lines to the RE
results. The black dash-dotted lines corresponds to the results of the KW model for
5% and 30% bedrock slope.
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Chapter 3

Storage-dependent drainable
porosity for complex hillslopes

Abstract

In hydraulic groundwater theory, the parameter drainable porosity f (a stor-
age coefficient that accounts for the effect of the unsaturated zone on water table
dynamics) is usually treated as a constant. For shallow unconfined aquifers the
value of this parameter, however, depends on the depth to the water table and
the water retention characteristics of the soil. In this study, an analytical expres-
sion for f as a function of water table depth is derived under the assumption of
quasi steady-state hydraulic equilibrium, in this way accounting in part for the
effects of the unsaturated zone on groundwater dynamics. The derived expres-
sion is implemented in the nonlinear hillslope-storage Boussinesq (HSB) model
[Troch et al., 2003] to simulate the drainage response of complex hillslopes.
The model’s behavior is analyzed by comparison to (i) the HSB model with a
constant value for f , and (ii) measurements of water tables and outflow hydro-
graphs on a 6.0x2.5x0.5 m laboratory hillslope experiment. The comparison is
conducted for a pure drainage case on two different hillslope shapes (linearly con-
vergent and divergent) and for three different slope inclinations (5%, 10%, and
15%). Comparison (i) is run in an uncalibrated and a fully calibrated mode and
it enables us to evaluate the effect of a dynamic, state-dependent value for f on
model output. Comparison (ii) allows us to test the HSB model on several hill-
slope configurations and to analyze whether the concept of a storage-dependent
f enhances the model performance. The comparison of the HSB models to the
measurements from the laboratory hillslopes shows that it is possible to capture
the general features of the outflow hydrograph during a drainage experiment us-
ing either one of the HSB models. Overall the original (constant f) HSB model,
with one fitting parameter more than the revised HSB model, shows a slightly
better fit on the hydrographs when compared to the revised (variable f) HSB
model. However the peak outflow values (the first few minutes after initiation
of the experiments) are better captured by the revised HSB model. The revised
HSB model’s performance in simulating water table movements is much more
accurate than that of the original HSB model. The improved match of the re-
vised HSB model to piezometric measurements is worth stressing because the
ability to model water tables is a key attribute of the model, making it possible
to investigate phenomena such as saturation excess runoff. Also noteworthy is
the good match between the revised HSB model and the outflow measurements,
without any calibration, for the divergent slopes. The changing values of the
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calibrated drainable porosity parameter for the original HSB model as differ-
ent configurations are simulated (slope angle, plan shape, initial conditions),
together with the ability of the revised HSB model to more accurately simu-
late water table dynamics, clearly demonstrates the importance of regarding
drainable porosity as a dynamic, storage-dependent parameter.

This chapter is based on the paper “Hilberts, A.G.J., P.A. Troch and C. Paniconi,
Storage-dependent drainable porosity for complex hillslopes, Water Resources Re-
search, 41, W06001, doi:10.1029/2004WR003725, 2005.”
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3.1 Introduction

Within its range of validity, Richards equation [Richards, 1931] provides the
most accurate description of flow processes through variably saturated porous
media. However, in catchment and hillslope hydrological modeling practices,
the application of Richards’ equation is generally cumbersome due to difficulties
in the parameterization of the equation, and due to the typically large compu-
tational time that is required for solving the equation. For this reason much
research has been devoted to investigating the possibility of using simpler mod-
els (analytical and numerical) that still reflect the true physical behavior of a
catchment or a part thereof (e.g., Beven [1981]; Duffy [1996]; Fan and Bras
[1998]; Hogarth et al. [1999]; Ogden and Watts [2000]; Parlange et al. [2001];
Stagnitti et al. [1986]; Troch et al. [2002, 2003]; Woods et al. [1997]; Zecharias
and Brutsaert [1988]). The drainable porosity parameter (also in some cases re-
ferred to as specific yield) is introduced in hydraulic groundwater equations for
the purpose of mass conservation, i.e., matching the modeled outflow volumes
to groundwater table dynamics, thereby accounting in some way for capillarity
and unsaturated zone effects. It is generally treated as a parameter with a con-
stant value. However, studies carried out under nearly-saturated conditions (e.g.
Abdul and Gillham [1989]; Gillham [1984]), and preliminary results from our
recent experimental work on a laboratory hillslope suggest that this parameter
varies in time and space, which indicates the influence of storage dynamics in
the unsaturated zone on the hydraulic groundwater model. Moreover, in Pan-
iconi et al. [2003] and Hilberts et al. [2004] (where comparisons are made with
a three-dimensional Richards based model) it is shown that the water table dy-
namics and outflow rates are sensitive to this parameter value. The preliminary
experimental results mentioned above, and the conclusions from the comparison
to a three-dimensional Richards equation based model in the papers motivate
us to search for an appropriate (analytical) expression that links the drainable
porosity to the state of the (unconfined) aquifer. Our intention is to investigate
the possibility of capturing some of the unsaturated zone’s influence on ground-
water movement by introducing a physically-based description of the drainable
porosity parameter.

In the literature we find two slightly different definitions of drainable porosity
or specific yield for unconfined aquifers. Johnson [1967] and Bear [1972] define
specific yield as (i) the ratio of the volume of water that a saturated rock or
soil will yield by gravity to the total volume of the rock or soil. These authors
consider the yield starting from complete saturation to complete gravitational
drainage, and it is thus regarded as an aquifer property. In Luthin [1966], Freeze
and Cherry [1979], Neuman [1987], and Dingman [2002] however, specific yield is
defined as (ii) the volume of stored groundwater released per unit area per unit
decline of water table. This definition implies a parameter that is dependent
on the state (water table position) of the system. Bear [1972] summarizes by
noting that the parameter as defined under (ii) is the drainable porosity and
is sometimes used to denote the “instantaneous” specific yield. In this paper,
Bear’s definition for drainable porosity as defined in (ii) is adopted, and it can
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therefore be expressed as
f =

v

�h′ (3.1)

where v is the amount of water drained (i.e. drainage volume per unit surface
area) [L], and h′ is the water table elevation above an arbitrary horizontal datum
[L]. The vertical water table height is indicated with a prime because the coordi-
nate system will in this paper be changed to water tables measured perpendicular
to the bedrock. Although often treated as such, drainable porosity is not a static
soil characteristic: it typically changes during the course of a rainfall or drainage
event (e.g. Moench [2003]; Szilagyi [2004]; Tritscher et al. [2000]; Weiler and Mc-
Donnell [2004]). It has been reported that the drainable porosity is a function
of soil moisture conditions in the unsaturated zone above the water table [Bear ,
1972; Hillel , 1980; Luthin, 1966]. More specifically, Kim and Bierkens [1995] (in
reply to Su [1994]) suggested to regard the drainable porosity parameter that
was used in a Boussinesq-type model as a function of the groundwater level un-
der the assumption of hydraulic equilibrium conditions in the unsaturated zone.
In Bierkens [1998] drainable porosity was directly linked to the depth to the
water table for the case of horizontal bedrock. In Nachabe [2002] the concept
is put forward that for shallow unconfined aquifers the drainable porosity (i.e.,
transient or instantaneous specific yield) can be significantly influenced by cap-
illarity effects, especially in early stages of drainage experiments. Other studies
that have examined capillary fringe effects on subsurface dynamics, both theoret-
ically and experimentally, include Parlange and Brutsaert [1987], Parlange et al.
[1990], Fink et al. [2001], Walter et al. [2000], and Nielsen and Perrochet [2000].
Nachabe [2002] describes a relationship between drainable porosity and depth to
the water table, including effects of delayed drainage for rapidly moving water
tables using a Brooks-Corey parameterization for the unsaturated zone. Except
for Bierkens [1998] and Nachabe [2002], the literature provides little theoretical
work that quantitatively links drainable porosity to moisture content, suction
head, or water table height. Moreover, the classical techniques and methods to
determine drainable porosity experimentally are a topic of discussion. Different
methods often lead to results that differ by as much as an order of magnitude in
the early stages of drawdown experiments [Heidari and Moench, 1997; Moench,
1994; Neuman, 1987; Nwankwor et al., 1992].

Tritscher et al. [2000] showed the dependency of drainable porosity on the
degree of saturation under a variety of conditions. Both this study and Nachabe
[2002] draw the conclusion that the drainable porosity can be strongly influenced
by water table depth. In Tritscher et al. [2000], the authors report differences as
high as a factor 100 between the drainable porosity values for the deepest versus
the shallowest water tables. In view of these previous studies, the question arises
as to how varying values of drainable porosity affect the (modeled) water table
movements and outflow patterns.

In this paper we first derive an analytical expression for drainable porosity
as a function of water table depth. By assuming a vertical hydrostatic soil water
pressure distribution in the unsaturated zone, we express drainable porosity as
a storage-dependent variable (that is, as a function of water table depth and
the hydraulic parameters of the soil) for horizontal and sloping bedrock types.
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The derived expression is then implemented in the physically based nonlinear
“hillslope-storage Boussinesq” (HSB) model as developed by Troch et al. [2003],
Paniconi et al. [2003], and Hilberts et al. [2004]. This implementation enables
us to test the validity of the derived equation and also allows for an analysis of
the effect of variability in the drainable porosity value on the dynamic hydro-
logical behavior of a physically-based model. The model results are evaluated
by comparing them to i) the results of the original (constant f) nonlinear HSB
model to explicitly assess the effect of storage-dependent drainable porosity, and
ii) to measurements of water tables and outflow rates on a scaled hillslope labo-
ratory experiment of 6.0x2.5x0.5m. By comparison to laboratory measurements
we are able to assess whether the HSB model is capable of reproducing water
table movements and outflow patterns, and if the concept of storage-dependent
drainable porosity offers any advantages in terms of accuracy when compared to
the original HSB model.

3.2 Drainable porosity and groundwater storage

3.2.1 Storage in the saturated and unsaturated zone for a
horizontal bedrock

In an unconfined aquifer a drainage event causes the water table to move down-
ward, thereby decreasing the size of the saturated zone and enlarging the un-
saturated zone. Consequently, drainage of groundwater can result in a decrease
in groundwater level directly and in changes in storage in the unsaturated zone.
Assuming there is no recharge, we can define the drainable porosity as the change
in total storage with respect to a unit change in water table depth. However, the
choice of the length of a “unit change” is undefined and arbitrary. A clearer de-
finition is obtained when taking the limit case in Equation 3.1 of f for �h′ → 0,
from which we obtain the expression

f(ψ, h′) =
ds

dh′ (3.2)

where ψ = ψ(z) is pressure head [L], t is time [T ], and s = s(ψ, h′) is the total
storage of soil moisture [L] (see Figure 3.1) which can be expressed as:

s(ψ, h′) = s1(ψ) + s2(h′) (3.3)

where s1(ψ) is the total available storage of soil moisture above the water table
[L] and s2(h′) is the total available storage of water in the saturated zone [L].
The available soil moisture storage above the water table can be expressed as

s1(ψ) =
∫ Z

h′
(θ(ψ) − θr)dz (3.4)

where θ(ψ) is the soil water content [−], z is the vertical coordinate (positive
upward) [L], Z is the location of the ground surface above a horizontal datum,
and θr is the residual soil moisture content [−]. The integration of Equation 3.4
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is taken over (Z − h′) which corresponds to the depth of the unsaturated zone
above the water table. The storage of groundwater in the saturated zone is given
by :

s2(h′) = (θs − θr)(h′ − z0) (3.5)

where z0 is the height of the bedrock above a given horizontal datum [L] and
θs is the moisture content at saturation. Note that we implicitly assume that
water that is released as a result of compressibility of the groundwater and the
porous matrix is negligible compared to the water that is released as a result of
the emptying of the pore space (i.e., specific storage coefficient is equal to 0).

3.2.2 Integration of soil moisture curves for a horizontal
bedrock

To solve Equation 3.4 we require a relationship between soil moisture content θ
and suction head ψ, and a relationship between ψ and z. To solve Equation 3.2
we need an expression for storage s1 in terms of water table depth h′. Under the
assumption of zero vertical flux, and that the suction head profile changes from
one steady-state situation to another over the time it takes to impose dh′ (quasi
steady-state assumption), the relationship between ψ and z is that of hydraulic
equilibrium:

ψ = h′ − z (3.6)

This assumption is valid either when the movement of the water table is rela-
tively slow, so that an equilibrium state can be reached above the water table
[Luthin, 1966], or for shallow systems where redistribution of soil moisture is
rapid [Bierkens, 1998]. The constitutive relationship between θ and ψ used in
this study is the van Genuchten function [van Genuchten, 1980]:

θ(ψ) = θr + (θs − θr)
{

1
1 + (αψ)n

}m

(3.7)

where α [L−1], n (> 0) [−], and m [−] are van Genuchten parameters. Combining
Equations 3.6 and 3.7 we obtain

θ(h′) = θr + (θs − θr)
{

1
1 + (α(h′ − z))n

}m

(3.8)

Troch [1992] found that for the θ(ψ)-relationship it is possible to assume that
the relationship between m and n is given by

m = 1 + 1/n (3.9)

instead of the more common definition m = 1−1/n (e.g., van Genuchten [1980]),
without losing the ability to aptly fit the soil moisture retention data for a wide
range of soil types. Using Equations 3.8 and 3.9 in 3.4, we obtain a simple
mathematical expression for the unsaturated zone storage s1, given the position
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of the water table h′:

s1(h′) =
∫ Z

h′
{θs − θr}

{
1

1 + (α(h′ − z))n

}m

dz

= (Z − h′) (θs − θr)
(
1 + (α (h′ − Z))n)(−1/n) (3.10)

The total storage can now be expressed as

s(h′) = s1(h′) + s2(h′)

= (Z − h′) (θs − θr)
(
1 + (α (h′ − Z))n)(−1/n)

+ (θs − θr)(h′ − z0) (3.11)

3.2.3 Drainable porosity for a horizontal bedrock

The first order derivative of s with respect to h′ yields the drainable porosity
(see Equation 3.2):

f(h′) = (θs − θr)
{

1 − (1 + (α(h′ − Z))n)−( n+1
n )

}
(3.12)

Equation 3.12 is an analytical expression that relates drainable porosity to
local water table depth and is dependent on the soil moisture retention char-
acterization through the van Genuchten parameters. An analogous expression
was also derived by Bierkens [1998] based on the integration described by Troch
[1992]. Note that the derived expression assumes zero vertical flux. Generalizing
to non-zero fluxes is possible (e.g., Rockhold et al. [1997]), although in this case
we would not obtain closed form solutions for the storage-dependent drainable
porosity.

3.2.4 Drainable porosity for a sloping bedrock

To implement the derived expression for drainable porosity for horizontal bedrock
into Boussinesq-type hillslope models (e.g., Boussinesq [1877]; Troch et al. [2003]),
the coordinate system has to be modified such that the water table depth is taken
perpendicular to the bedrock. This can be done by substituting

h′ − z0 =
h

cos(i)
(3.13)

Z − h′ =
D − h

cos(i)
(3.14)

into Equation 3.11, where D [L] and h(x, t) [L] are the soil depth and the water
table height measured perpendicular to the bedrock and i = i(x) [−] is the
bedrock slope at coordinate x [L] parallel to the bedrock (see Figure 3.2). From
Equation 3.13 we obtain

f(h) =
ds

dh
=

ds

dh′ ·
dh′

dh
=

f(h′)
cos(i)

(3.15)
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Figure 3.1: Sketch of hypothetical soil moisture profiles and corresponding changes
in saturated and unsaturated storage, in relation to water table depth h′ at two time
instances (t and t + dt).

Substitution of Equations 3.12, 3.13, and 3.14 into 3.15 yields the expression for
drainable porosity that will be implemented into the HSB model:

f(h) = (θs − θr)

·
{

1 −
(

1 +
(

α

(
h − D

cos(i)

))n)−( n+1
n )

}
(3.16)

By choosing this coordinate system we thus assume that the saturated zone
fluxes are parallel to the bedrock (the extended Dupuit-Forchheimer assumption
[Childs, 1971]), and that the relationship between outflow and water table fluc-
tuations is characterized by drainable porosity, which in turn is dependent on
the water table height and the soil water retention characteristics.
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Figure 3.2: Sketch of a sloping unconfined aquifer with bedrock slope (i), water table
elevation h′, soil surface elevation Z, and bedrock elevation z0, together with water
table height h, depth to water table (D − h), hillslope length (L), and soil depth (D)
defined with respect to a reference frame perpendicular to the bedrock and parallel to
coordinate x.

3.2.5 Interpretation

Under the assumption that leads to Equation 3.16 (i.e. no recharge and hydrosta-
tic pressure distribution in the unsaturated zone), we can analyze the behavior
of this expression. To interpret it let us first analyze the limit values of the
function. For shallow unconfined aquifers under humid conditions (i.e. relatively
high water tables), h will approach D. This limit case yields:

lim
h↑D

f(h) = 0

For very deep aquifers with deep groundwater tables, D approaches ∞ and there-
fore:

lim
D→∞

f(h) = θs − θr

The drainable porosity for completely saturated soils is very close to 0 because
an infinitesimal change in water table location will not result in any outflow,
due to the binding of water in the capillary fringe. As the water table drops,
the marginal effect of capillarity decreases and as a result drainable porosity
values initially increase. This was also noted by Kim and Bierkens [1995] and
Nachabe [2002]. When water tables are deep, a drop in water table will result
in a downward shift of the soil moisture profile without a significant change of
shape of the profile. Consequently the change in unsaturated storage (ds1/dh)
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will then approach 0, and the drainable porosity converges to ds2/dh = θs − θr.
In Figure 3.3 the drainable porosity from Equation 3.16 for a characteristic sand,
loam, and clay soil is plotted as a function of the depth to the water table. The
van Genuchten parameters used to produce these results are given in Table 3.1.
Figure 3.3 shows that for nearly saturated conditions drainable porosity for all
soil types goes to zero. For deep groundwater tables, the drainable porosity
converges asymptotically to θs − θr. Because sandy soil has a low retention
capacity, and consequently the range in which capillarity has a significant effect
on storage is small, the maximum of f is reached relatively quickly (in terms of
depth to the water table) in comparison to loam and clay soils.

3.3 Implementation of storage-dependent drain-
able porosity into the HSB model

The mass balance equation for a three-dimensional hillslope reads:

∂S

∂t
= −∂{wq}

∂x
+ Nw (3.17)

where w = w(x) [L] is the hillslope width at x, N is the recharge to the ground-
water table [LT−1], q = q(h) [L2T−1] is the Darcy flux, and S = S(x, t) [L2]
is the total storage in a hillslope at time t and position x along the slope. The
Darcy flux reads

q = −kh

(
∂h

∂x
cos i(x) + sin i(x)

)
(3.18)

where k [LT−1] is the hydraulic conductivity. The storage S is defined as [Fan
and Bras, 1998; Troch et al., 2003]

S = γwh (3.19)

Table 3.1: Van Genuchten parameters (regular and modified) for sand, loam, clay,
and the laboratory sand.

Regular (m = 1 − 1/n)

Parameter Sand Loam Clay Lab sand

θs (-) 0.26 0.37 0.47 0.32
θr (-) 0.01 0.05 0.16 0.05
α (1/cm) -0.0324 -0.0161 -0.0066 -0.0630
n (-) 6.6600 2.6632 1.8601 4.4545

Modified (m = 1 + 1/n)

Parameter Sand Loam Clay Lab sand

θs (-) 0.26 0.38 0.48 0.32
θr (-) 0.01 0.06 0.19 0.05
α (1/cm) -0.0301 -0.0090 -0.0020 -0.0532
n (-) 5.9940 1.7608 1.1830 3.7708
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table under the assumption of hydrostatic pressure head conditions for four different
soil types. The corresponding parameter values are given in Table 3.1.

where γ = γ(x, t) [−] can be regarded as the specific yield according to the
definition of Bear [1972], and is defined as:

γ =
1
h

∫ h

h=0

fdh (3.20)

which by using Equation 3.15 can also be expressed as:

γ =
1
h

∫ h

h=0

ds =
s(h) − s(0)

h
(3.21)

Note that in the given context the term specific yield (γ) represents a porosity,
whereas drainable porosity is actually a storage-coefficient. Note also that for
a constant drainable porosity, f and γ have the same value. Substitution of
Equations 3.19, 3.20, and 3.21 into 3.17 yields

wf
∂h

∂t
= −∂{wq}

∂x
+ Nw (3.22)

or
∂h

∂t
= − 1

wf

∂{wq}
∂x

+
N

f
(3.23)

which is the governing equation for the HSB model [Troch et al., 2003]. Note
that the parameter f is now a function of h. Equation 3.23 may be expanded,
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using Equation 3.18, into [Hilberts et al., 2004]

∂ (wq)
∂x

= −
{

kw
∂h

∂x
+ kh

∂w

∂x

}{
∂h

∂x
cos i(x) + sin i(x)

}

− kwh

{
∂2h

∂x2
cos i(x) − ∂h

∂x

∂i(x)
∂x

sin i(x) +
∂i(x)
∂x

cos i(x)
}

(3.24)

Upon substitution of Equations 3.16 and 3.24 in 3.23 we obtain an expression
for ∂h/∂t that is explicit in h and that reads

∂h

∂t
=

1

(θs − θr)

{
1 −

(
1 +

(
α

(
h−D
cos(i)

))n)−( n+1
n )

}

·
{

N +
1
w

{{
kw

∂h

∂x
+ kh

∂w

∂x

}{
∂h

∂x
cos i(x) + sin i(x)

}}}
+

1

(θs − θr)

{
1 −

(
1 +

(
α

(
h−D
cos(i)

))n)−( n+1
n )

}

·
{

kh

{
∂2h

∂x2
cos i(x) − ∂h

∂x

∂i(x)
∂x

sin i(x) +
∂i(x)
∂x

cos i(x)
}}

(3.25)

The outflow from the hillslope is calculated using the mass-conservative scheme:

Q(t) =
∫ L

x=0

(
−wf

∂h

∂t
+ Nw

)
dx (3.26)

3.4 Experimental setup

3.4.1 The laboratory hillslopes and the drainage experi-
ment

The concept of storage dependent drainable porosity is analyzed by compar-
ing the results of the HSB model to measurements of water tables and outflow
rates from a drainage experiment in a laboratory setup. The experiments are
conducted for two distinct hillslope configurations: linear convergent and linear
divergent. A constant and uniform rainfall rate is applied by a rainfall generator
to both the convergent and divergent hillslope, until a steady-state water table
is reached. Then the rainfall generator is stopped and from this steady-state
initial condition the drainage experiment is started. For each hillslope shape
we investigate the hydrological response for 5%, 10%, and 15% bedrock slope.
The two hillslopes, their dimensions, and the location of the piezometers on the
slopes are shown in Figure 3.4. Two versions of the HSB model will be eval-
uated: the original HSB model, where drainable porosity and conductivity are
constant, and the revised, more general HSB model where drainable porosity is
a state dependent parameter, calculated according to Equation 3.16.
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Figure 3.4: Plan view of the convergent and divergent laboratory slopes and the
position of the piezometers (indicated by small circles).

Both HSB models are first run in an uncalibrated mode with the hydraulic
conductivity k set to the value that was measured on a core sample in the labo-
ratory, and for the original HSB model the drainable porosity is set to θs − θr.
In the second experiment the two models are run in a fully calibrated mode.
The methods used to determine the parameter values for the two models are
described in Sections 2.4.4 and 3.4.4.

3.4.2 Boundary conditions

All sides of the hillslope, except the outlet and the soil surface, are made im-
permeable by means of plastic sheets. At the outlet a highly permeable filter is
placed at 0.05m above the ’bedrock’, for a total height of 0.20m. The outlet is
thus subject to a Dirichlet-type boundary condition, with the pressure head set
to 0.05m.

Every 24 seconds automated water table readings are obtained from the
piezometers. All piezometers are connected to a Campbell data logger with a
multiplexer. Outflow rates are measured every minute using a calibrated vessel
with a floating device. To reduce the noise in the signals, the water table read-
ings are averaged over 2-minute intervals and the outflow rates over 10-minute
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intervals.

3.4.3 Parameterization of the revised HSB model

For the revised HSB model, the drainable porosity is calculated using Equation
3.16, which is parameterized using the relationship m = 1 + 1/n to determine
the van Genuchten parameter values for the coarse sand used in the labora-
tory experiment. We will hereafter refer to these parameters as the modified van
Genuchten parameters, whereas the parameters that are optimized using the reg-
ular relationship m = 1 − 1/n will be referred to as the regular van Genuchten
parameters. They are given in Table 3.1. The retention curves fitted to the
measurements are plotted in Figure 3.5. The soil depth (D) was measured sepa-
rately for each hillslope shape, and is given in Table 3.2. Because the laboratory
bedrock has a negligible leakage and vertical fluxes in the unsaturated zone are
assumed to be 0, the sink/source term N is set to 0 for all simulations.

In the uncalibrated runs the hydraulic conductivity k is set to 40 m/d, which is
the value that was measured on a laboratory core sample. In the calibrated runs
the conductivity is the only fitting parameter in this version of the model, and
it is optimized by minimizing the summed absolute difference between measured
and modeled outflow rates (i.e. the 1-norm). The calibrated value is given in
Table 3.2.

3.4.4 Parameterization of the original HSB model

In the uncalibrated runs the hydraulic conductivity k is set to 40 m/d as above.
The value for drainable porosity is set to (θs−θr), which seems the most suitable
value for an a priori estimate, since we expect the aquifer to reach full gravita-
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Table 3.2: Calibrated conductivity values k (m/d) for the original and revised HSB
model, specific yield (γ′) values (-), and soil depth D (m) for all six hillslope configu-
rations.

Original HSB

k 5% k 10% k 15% γ′ 5% γ′ 10% γ′ 15%

con 35 40 43 0.12 0.18 0.23
div 30 29 31 0.18 0.26 0.31

Revised HSB All HSB

k 5% k 10% k 15% D

con 44 49 56 0.48
div 32 34 31 0.44

tional drainage under the assumptions of Dupuit-Forchheimer. In the calibrated
runs the parameters of the original HSB model are both regarded as fitting pa-
rameters. The drainable porosity is calculated as [Paniconi et al., 2003]:

γ′ =
Vc

Vi
(3.27)

where Vc is the cumulative outflow from the laboratory drainage experiment,
and Vi is the volume of soil (pore space plus solid matrix) occupied by the water
in the saturated zone at time zero. Note that based on the definitions given in
Section 3.1, γ′ is better described as the specific yield ([Bear , 1972; Johnson,
1967]) of the aquifer under study, and it can be regarded as an estimate for γ
as given in Equation 3.20. Note also that for a constant value for f (as was
assumed in Troch et al. [2003], Paniconi et al. [2003], and Hilberts et al. [2004])
the three parameters collapse into the same value: γ′ = γ = f . The calculated
specific yield values are given in Table 3.2. The optimal value for conductivity
is then found by minimizing the 1-norm of the difference between measured and
modeled outflow rates. The optimal parameter values are also given in Table
3.2.

3.4.5 Parameter interpretation

The revised HSB model has four additional unsaturated zone parameters: θs,
θr, α, and n compared to one (γ′) in the original HSB model. These four mod-
ified van Genuchten parameters are all determined a priori on the basis of soil
water retention characteristics (which can be derived for most soil types using
pedotransfer functions or are otherwise relatively easy to estimate from soil core
samples). The original HSB model involves the parameter specific yield (γ′),
which can be calculated a posteriori on the basis of hydrographs and initial
groundwater storage. As stated in the introduction of this paper, the value of
drainable porosity (or specific yield in the case of the original HSB model) is
not unique for a given soil or hillslope. As is apparent from Table 3.2, it will
vary with slope angle and plan shape of the hillslope, and with other factors
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as well (profile shape, initial water table level and moisture status, etc.). Using
the modified van Genuchten parameterization to describe the drainable porosity
removes a parameter from the model that has a poor physical basis (γ′), and
replaces it with a storage dependent parameter that is clearly physically defined
(f) and that does not need to be calibrated on outflow data and piezometric
measurements, but instead can be calculated based on the soil water retention
characteristics (measured a priori) and the simulated depth to the water table.
Thus our approach has potential for hydrological analysis in ungauged basins.

3.5 Results

3.5.1 Uncalibrated models

The outflow of the original HSB model, the revised HSB model, and laboratory
measurements are shown in Figure 3.6. Note that the y-axis is scaled differently
for the different bedrock slope angles. Figure 3.6 shows that the convergent
hillslopes drain more slowly than the divergent ones, which is primarily caused
by a smaller outlet width [Troch et al., 2003]. Furthermore we notice that for
the 5% slopes the fluxes for the original HSB model are clearly overestimated,
especially for the convergent slope. The revised HSB model shows a much better
fit. For the 10% convergent hillslope we notice that the original HSB model has
an almost perfect fit, whereas the revised HSB model slightly underestimates the
fluxes at early times and overestimates for large times. For the 10% divergent
slope both models show a good fit to the data. For the 15% convergent slope the
revised HSB model again underestimates the fluxes at early times and slightly
overestimates for large times. The original HSB model displays the same pattern,
although the underestimation at early times is smaller and the overestimation
for large times is larger. For the 15% divergent slope, both models show slightly
underestimated fluxes.

In Figure 3.7 the water table profiles are plotted for the six hillslope config-
urations at times 0, 60, 120, and 300 minutes. The initial conditions (which are
steady-state profiles as a result of the applied rainfall) show higher saturation
degrees on the upper parts of the three convergent slopes when compared to the
divergent ones, due to the difference in outflow width. We notice that the origi-
nal HSB model systematically overestimates the water table height for all slope
shapes and all bedrock slope angles, especially at early times. The revised HSB
model is clearly more accurate, even though it still overestimates the water table
values. The improvement of the revised HSB model is most evident at early
times, when a low value for the drainable porosity in the revised HSB model
causes the water tables to drop relatively quickly. For large times the simulated
water table profiles for the two models converge.

3.5.2 Calibrated models

Table 3.2 gives the optimized conductivity values for both models and the cal-
ibrated specific yield values for the original HSB model. Figure 3.8 shows the
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Figure 3.6: Outflow rates for the uncalibrated HSB models for the six hillslope con-
figurations. Measured values are shown as black circles, the original HSB model is the
grey line, and the revised HSB model is the black line.

outflow of the original HSB model, the revised HSB model, and laboratory mea-
surements. Figure 3.9 shows the evolution of the space-averaged drainable poros-
ity value as function of time for the revised model.

The specific yield value increases for steeper slopes, as expected since less
water is retained in the unsaturated zone on steep hillslopes, due to increased
gravitational drainage. The relatively low values for the 5% hillslopes explain the
large overestimation of the uncalibrated original HSB model on these hillslopes
in Figure 3.6. Noteworthy is that the specific yield value for the 15% divergent
slope (γ′ = 0.31) exceeds the value (θs − θr) = 0.29. This indicates that more
water has drained than is estimated based on the initial saturated storage (Vi),
from which we can conclude that also water from the initial unsaturated zone
has drained.

With regard to the optimized conductivity values, we notice that the values
are slightly higher for the convergent slopes and lower for the divergent slopes
when compared to the laboratory determined value of 40 m/d. This may be
caused by the higher initial water table values for the convergent slopes when
compared to the divergent slopes, thereby increasing the average conductivity
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Figure 3.7: Water table profiles for the uncalibrated HSB models at time 0 (black),
at 60 minutes (dark grey), at 120 minutes (grey) and at 300 minutes (light grey) for
the six hillslope configurations. The measured values are the circles, the original HSB
model are the dashed lines, and the revised HSB model the solid lines.

for these slopes.
Overall we notice that compared to the hydrographs in Figure 3.6, the fit

of both models has improved (not greatly though), as expected. The overall
fit of the revised HSB model is slightly poorer compared to the original HSB
model. However, at early times when the impact of capillarity on storage and
flow is highest due to high saturation degree, the fit has improved. For the 5%
convergent slope we see that the match is good at the beginning of the drainage
experiment, but is overestimated at large times. An improvement in the fitting
of the tail part of the hydrograph is achieved at the expense of the goodness-
of-fit at early times: the drop of the flux rate is then too sharp. The fact that
this sharp decrease in modeled fluxes is not reflected in the measurements may
indicate that there is some recharge from the unsaturated zone during the early
stages of drainage, due to the applied rainfall just before the experiment. For the
10% slope the fit to the data is very good for small times and the overestimation
for large time is small. For the 15% slope the fit to the data is good for small
times, but there is underestimation of flux for large times. The 5% divergent
slope shows an almost perfect fit. For the 10% and the 15% divergent slopes, the
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fluxes initially drop too quickly, but for larger times the fit improves. The space-
averaged drainable porosity in Figure 3.9 shows a quick convergence towards
θs − θr for the hillslopes that drain quickly (i.e. divergent and steep slopes),
and show slow convergence for slowly draining slopes. When convergence is
reached, the advantages of the revised HSB model vanish, because effectively f
then remains constant.

It is noteworthy in this context that although the time and space averaged
value of f may in some cases be (almost) equal to the value of γ′, the modeled
states and fluxes can be very different for the two models. A low value of f
at early times causes the water tables to drop quickly (and fastest where the
water tables are closest to the surface), thereby changing the water table profiles
fundamentally from the original HSB model. Even when the values of f and
γ′ are equal afterwards, the outflow behavior and water table dynamics remain
different for the two models. The opposite effect can also be noticed: the averaged
value of f and the value of γ′ can in some cases be different, whereas the modeled
outflow for both models can be almost indistinguishable. This effect can for
example be seen in Figure 3.8 for the 5% divergent slope, where the time and
space averaged value of drainable porosity is equal to f = 0.25, and for the
original HSB model γ′ = 0.18, whereas the modeled outflow is very much alike.

In Figure 3.10 the water table profiles are plotted for the six hillslope config-
urations at times 0, 60, 120, and 300 minutes. As in Figure 3.6, we notice that
both models overestimate the water table values. Once again the revised HSB
model is clearly more accurate. However, due to the calibration of the original
HSB model (i.e. the lower values of specific yield), the differences between both
models have decreased slightly although the differences between the original and
revised HSB models for early times still range up to 0.10m.

3.6 Discussion and conclusions

In this paper we have presented, for horizontal and sloping bedrock aquifers,
an analytical expression for storage-dependent drainable porosity (for horizontal
and sloping bedrock), thereby incorporating some of the effects of the unsatu-
rated zone on groundwater storage and fluxes. The assumption underlying the
derivation is that during drainage the pressure head in the unsaturated zone
is permanently in vertical hydraulic equilibrium. The derived expressions (i.e.
Equations 3.12 and 3.16) link drainable porosity directly to the depth to the wa-
ter table, thereby transforming it from a fitting parameter into a state-dependent
parameter. The derived expression is then incorporated into the HSB model and
compared (in terms of water table height and outflow values) to the results of
the original (constant f) HSB model and to a series of laboratory measurements.
The validation of the model is conducted on a convergent and a divergent hill-
slope, for 5%, 10%, and 15% bedrock slope inclination (i.e. 6 different hillslope
configurations). Two simulation settings were analyzed: an uncalibrated model
run, where the model parameters were determined based on conductivity and
water retention measurements on soil cores; and a fully calibrated run, where
the optimized parameter values (i.e. specific yield and conductivity in the case
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Figure 3.8: Outflow rates for the calibrated HSB models for the six hillslope config-
urations. Measured values are shown as black circles, the original HSB model is the
grey line, and the revised HSB model is the black line.

of the original HSB and only conductivity in the case of the revised HSB) were
used.

The comparison of the HSB models to the measurements from the laboratory
hillslopes shows that it is possible to capture the general features of a drainage
experiment using either one of the HSB models. Overall the original HSB model
(having one fitting parameter more than the revised HSB model) shows a slightly
better fit on the hydrographs when compared to the revised HSB model. The
peak outflow values however (the first few minutes after initiation of the experi-
ments) are better captured by the revised HSB model. The revised HSB model’s
performance in simulating water table movements is much more accurate than
that of the original HSB model. The improved match of the revised HSB model
to piezometric measurements is worth stressing because the ability to model
water tables is a key attribute of the model, making it possible to investigate
phenomena such as saturation excess runoff.

The difference between the original and the revised HSB model performance
on outflow results is most clearly visible for the uncalibrated model runs on gen-
tle slopes: the large overestimation of fluxes by the original HSB model here
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Figure 3.9: Space-averaged drainable porosity values for the calibrated revised HSB
models for the six hillslope configurations. The dashed line indicates the value (θs−θr).

clearly advocates the calculation of f as a storage-dependent parameter. Also
remarkable is the good match between the revised HSB model and outflow mea-
surements without any calibration for the divergent slopes. The fact that the
performance of the original HSB model is not independent of slope inclination
and initial conditions, together with the ability of the revised model to more
accurately simulate water table dynamics, clearly demonstrates the importance
of regarding drainable porosity as a function of storage.

A further comment on the storage-dependent drainable porosity concept
worth mentioning is that even when the time and space averaged value of f
is equal to the calibrated value of γ′, the dynamic behavior of both models can
be significantly different. A low value of f at early times can change the water
table profiles such that the hydrographs for both models remain different there-
after. The opposite also holds: even when the averaged value of f and the value
of γ′ differ significantly, the outflow behavior may be almost identical.

In relation to the hydrographs we notice that for some drainage experiments
the fluxes as modeled with the revised HSB model drop too quickly at early
times during drainage, although the cumulative modeled outflow is generally in
accordance with the measurements. Since changing the van Genuchten para-
meters would influence the cumulative volumes, one can conclude that for the
revised HSB model it is not possible to obtain a better fit for the hydrographs
by tuning these parameters. This leads to the conclusion that in the early stages
of our drainage experiments, the assumptions underlying the drainable porosity
expression might not be completely valid. Since the experiment is started right
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Figure 3.10: Water table profiles for the calibrated HSB models at time 0 (black),
at 60 minutes (dark grey), at 120 minutes (grey) and at 300 minutes (light grey) for
the six hillslope configurations. The measured values are the circles, the original HSB
model are the dashed lines, and the revised HSB model the solid lines.

after a rainfall event, it is probable that there is still some vertical downward flux
in the unsaturated zone, violating our assumption of zero recharge and hydraulic
equilibrium in the unsaturated zone.

In Vachaud and Vauclin [1975] it is concluded that the capillary fringe plays
an important role in the flow of water. Incorporating the capillary fringe as an
integral part of the Boussinesq aquifer (i.e. substituting h by h + ψc, where ψc

is the capillary fringe) will improve the simulated water tables. The substitu-
tion effectively implies changing from the assumption that transport only occurs
below the water table (underlying Boussinesq-type models) into the assumption
that transport only takes place in the saturated zone.

Ongoing work is aimed at generalizing the expression for drainable poros-
ity such that it can be calculated as a storage-dependent parameter in case of
non-zero steady-state fluxes in the unsaturated zone. Analytical integration of
the corresponding soil moisture profiles is then not possible, but semi-analytical
solutions may be derived by means of piecewise integration of the soil hydraulic
characteristics (see Rockhold et al. [1997]). In the case of non-zero recharge
we may also have to consider hysteresis phenomena in the soil water retention
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characteristic. It is expected that a more general expression would improve the
revised HSB model’s performance, especially just after initiation of the drainage
experiments. Moreover, it would enable us to extend the analysis of the con-
cept of storage-dependent drainable porosity to recharge scenarios, rendering
the revised HSB model suitable for rainfall-runoff simulations in poorly gauged
catchments. Future work will also evaluate these concepts by comparison to a
three-dimensional Richards equation based model and to field data.
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Chapter 4

An attempt to explain the high
and low frequency behavior of the
complex drainable porosity in a
tidal aquifer

Abstract

In Cartwright et al. [2005] and in a preceding paper by Nielsen and Perrochet
[2000], an investigation is conducted to assess the effects of an oscillating water
table on the effective porosity. Both papers present results from a thorough
laboratory experiment and numerical simulations. We wish to comment on
some of the findings and conclusions in Cartwright et al. [2005] with regards to
the effect of capillarity, and the response at very high and very low oscillation
frequencies. We also present some results from a simple numerical solution to a
non-hysteretic one-dimensional Richards equation model, and compare these to
the original data and the modeling results presented in Cartwright et al. [2005].

This chapter is based on the paper “Hilberts, A.G.J and P.A. Troch, Comment on
“Influence of capillarity on a simple harmonic oscillating water table: Sand column
experiments and modeling” by N. Cartwright et al., in press, Water Resources Research,
doi:10.1029/2006WR005042, 2006.”
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4.1 The frequency response and the influence of
capillarity

In Cartwright et al. [2005] a complex effective porosity,nω, is defined as

n
dhtot

dt
= nω

dh

dt
(4.1)

|F | =
|η|
|η0| (4.2)

and
F (ω) = |F |e−iφ =

1
1 + iω nωD

K

(4.3)

where htot is the equivalent height of the total storage of soil moisture, h is
the water table height (calculated according to Equation 12 from Nielsen and
Perrochet [2000]), t is time, n = (θs−θr), θs is the saturated soil moisture content,
θr is the residual soil moisture content, |η| and |η0| are respectively the amplitudes
of the water table height and driving head, φ is the phase shift between measured
water table height h(t) and driving head h0(t), D is the average water table
height, K is the saturated hydraulic conductivity, ω = 2π/T is the angular
frequency, T is the period of the oscillation, i =

√−1, and nω is the effective
porosity which is a complex number. Equation (4.3) can be reformulated as

nω = (
1

F (ω)
− 1)

K

iωD
(4.4)

From equation 1 in the paper by Cartwright et al. [2005] the authors draw the
conclusion that for low frequencies, nω should converge towards n = (θs − θr)
since the phase lag will approach 0, thereby eliminating the imaginary part of
nω. An alternative motivation for the same conclusion follows from the limit
case behavior of Equation 5 in Cartwright et al. [2005], however, this function is
the result of a function fit to the data which is extrapolated quite far outside the
range of measured values, and no physical basis for the function form is given.
For high frequencies, they note that |nω| decays linearly on a double-logarithmic
scale and they mention a curious relationship between the decay and the van
Genuchten parameters. In this comment we state that, under the influence of
capillarity, nω can converge to other values than n for low frequencies. For high
frequencies we attempt to explain the sharp decay of |nω| with ω, and we present
a quantitative analysis of the processes involved.

4.1.1 Low frequency response

First, the conclusion that nω converges to (θs − θr) for low frequencies is only
expected to hold when the water table is not in the proximity of the soil surface:
for these frequencies it can be expected that h0 and h will be in phase with equal
amplitude, indeed causing the complex nω to converge towards n. However,
when the water table fluctuations occur sufficiently close to the soil surface, the
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temporal changes in total storage htot will be very small compared to the changes
in h, causing the value of nω in Equation 4.1 to approach a value lower than
(θs − θr) (e.g., [Hilberts et al., 2005]). In Cartwright et al. [2005] it is mentioned
that the presented experiments are unaffected by the proximity of the water
table to the soil surface. However, Table 2 and Figure 3 indicate that for the
glass-beads soil this assumption is dubious. Table 2 shows that the minimal
average driving head level is about 50 cm above the base of the column (total
height of 180 cm) which leaves approximately 130 cm unsaturated zone depth
on average. Figure 3 shows that the glass-beads soil (i.e. d50 = 0.082 mm) at
pressure head ψ = −130 cm is still not fully drained. We expect therefore that
the proximity to the soil surface is quite strongly affecting the values of nω for
the glass-beads soil. This also seems to be indicated by the results in Table 2,
from which we can conclude that the highest value for |nω| of the glass-beads
soil is 0.013 even though the value of the oscillation frequency is very low (viz.
2.4910−4 s−1, which corresponds to an oscillation period T = 7 hours).

A second issue is that the limit case limω→0(nω) cannot be determined from
Equation 4.4, since it has no solution. Also equation 4.1 offers no solution for
the limit case where frequencies approach 0, since the derivatives dhtot/dt and
dh/dt will approach 0, leaving the relationship between nω and n undetermined.

In relation to the response at very low frequencies, Figure 7 in Cartwright
et al. [2005] indicates that the value of |nω/n| for a numerical solution to Richards
equation for the glass-beads soil (i.e., solid circles in their figure) converges to
1 relatively quickly, i.e., |nω| converges to n. Here, we compare the results of
a simple numerical solution of a non-hysteretic Richards equation model to the
results of Cartwright et al. [2005]. For our simulations we use identical soil
parameter settings as in Cartwright et al. [2005], (i.e., for the glass-beads soil
K = 2.8 · 10−5 m/s, θs = 0.38, θr = 0.06, α = 0.68 1/m, and β = 10, where
α and β are van Genuchten parameters), and we used an oscillation amplitude
|η0| = 0.15 m, an average driving head D = 0.50 m, and a column depth of 1.8
m. In our Figure 4.1, the results of these simulations, together with the original
data listed in Table 2 of Cartwright et al. [2005], are plotted as a function of ω.
Note that the data that derive from the paper by Nielsen and Perrochet [2000]
are left out because the average water table height significantly deviates from
that in Cartwright et al. [2005] and this paper.

Figure 4.1 illustrates that for the glass-beads soil (black circles) even for
very low frequencies (e.g., ω = 6.2832 · 10−6 rad/s or T 
 11.6 days), the
value for |nω/n| based on our modeling exercise is still clearly lower than 1,
viz. |nω/n| = 0.24. If we compare this to Figure 7 in Cartwright et al. [2005],
it can be seen that for the same frequency (i.e., nωHψ/K = 0.1091, where Hψ

is the equivalent capillary fringe height) the indicated value of |nω/n| based on
their model result is much higher (approximately 0.9). However, for the fine and
course sand (respectively diamonds and squares in the figures), |nω/n| converges
to 1 as indicated by Cartwright et al. [2005].

Figure 4.2 shows the same data as Figure 4.1, however, the x-axis is scaled
according to Cartwright et al. [2005]. When we compare Figure 4.2 to Figure 7
of Cartwright et al. [2005], we notice a clear distinction: where Figure 7 shows a
clear overestimation of |nω/n| for approximately nωHψ/K < 101 for all three soil
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Figure 4.1: The frequency response of |nω/n| for the three soil types used in this study
(viz., glass-beads (circles), fine sand (diamonds) and coarse sand (squares)). The grey
symbols are the data from Cartwright et al. [2005], and the black lines and symbols are
the results of the modeling exercise in this paper.

types, Figure 4.2 shows lower drainable porosity values for the coarse sand and
the glass-beads soil than presented in the Richards model results in Cartwright
et al. [2005]. For the coarse sand, the fit to the measurements is better than for
the other soil types and better that presented in Cartwright et al. [2005]. An
explanation for the good performance for the coarse sand is yet to be found.
Based on our model results, we cannot dismiss a non-hysteretic Richards equa-
tion model for all soil types, since it performs reasonably well when confronted
with the measurements for the coarse sand. However, the authors agree with
Cartwright and co-workers in that an improved match can be obtained by in-
corporation of the effects of hysteresis into modeling practise (e.g., [Werner and
Lockington, 2003]).

4.1.2 High frequency response

Also for high frequencies, Equations 4.1 and 4.4 prove troublesome: for the limit
case limω→∞(nω), Equation 4.4 has no solution. For high frequency oscillations
of the driving head, the amplitude of the water table oscillations will converge
to 0, causing the right hand side of Equation 4.1 to become 0 which causes nω

to be undefined.
The data obtained by Cartwright et al. [2005] show that the calculated values

of |nω/n| decay apparently linearly (on a double- logarithmic scale) for higher
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Figure 4.2: The frequency response of |nω/n| for the three soil types used in this
study, scaled according to Cartwright et al. [2005]. The colors and symbols are as
defined in Figure 4.1.

frequencies, with a computed slope of −2/3. The results of the Richards equation
modeling exercise in the same paper show a slope of approximately −1 (see Figure
6). The high frequency response of our modeling exercise shown in Figures 4.1
and 4.2 indicates that all three slopes show a very similar decay, which ranges
from −0.90 to −0.93.

The decay of |nω| for increasing frequencies can be ascribed to the inability of
a part of the unsaturated zone to reach a new equilibrium situation for high fre-
quency oscillations. If there is an equilibrium initial condition in the unsaturated
zone and h0 is increased rapidly, merely a small part of the unsaturated zone will
become saturated before h0 starts to drop. However, at higher elevations above
the water table, where conductivities get increasingly smaller, the response to
changes in h0 gradually become negligible. For increasing frequencies of h0(t),
|η| will become smaller, as will the changes in the unsaturated zone storage close
to the soil surface. For small |η| and large ω, the fluctuations of h(t) will mainly
occur within the nearly saturated part of the retention curve (i.e., the capillary
fringe), causing the value of |nω| to drop rapidly. In Cartwright et al. [2005], in
paragraph [21] it is stated that this drop occurs due to an increased influence
of capillarity for higher frequencies, and therefore |nω| << n. Here, we propose
a more quantitative explanation for the observed decay of |nω| with increasing
frequencies.

53



4.1.3 An attempt to explain the modeled and measured
high frequency decay of |nω—

We shall assume that the response of the unsaturated zone is restricted to the
domain over which water table fluctuations take place (viz., over a range 2|η|).
This assumption implies that above D+|η| no changes in soil moisture conditions
take place (i.e., θ(z > D + |η|, t) = θ(z > D + |η|, t + dt), see Figure 4.3). The
assumption is expected to become more valid for increasing frequencies. The
integrated soil moisture in the profile (or total storage) at time t can be calculated
as

s(t) = h(t)(θs − θr) +
∫ Z

h(t)

(θ(t, z) − θr)dz (4.5)

where Z is the location of the soil surface. Substitution of t + dt into Equation
4.5 allows us to express the change in storage from time t to t + dt

ds = dh(θs − θr) −
∫ h(t+dt)

h(t)

(θ(t, z) − θr)dz (4.6)

where dh = h(t + dt) − h(t) is the water table change over a time increment dt.
As stated before, we assume that there is an equilibrium soil moisture profile
above the lowest water table height h = D − |η| that returns each cycle (at
t = kT , where k = 0, 1, 2, ...). According to the integration described in Hilberts
et al. [2005] which uses an alternative van Genuchten parameterization (viz.,
m = 1 + 1/β), Equation 4.6 can then be expressed as

ds = dh(θs − θr)
[
1 −

(
1 + (α′dh)β′)−1/β′]

(4.7)

where α′, and β′ are the modified van Genuchten parameters. The parameter
values for the three soils used in this study are listed in Table 4.1. Equation
4.7 describes the total storage change over a time interval dt, which is equal to
ndhtot from Equation 4.1. Combination of Equations 4.1 and 4.7 allows us to
derive a simple expression for |nω| for high frequencies:

|nω| = (θs − θr)
[
1 −

(
1 + (α′dh)β′)−1/β′]

(4.8)

Given that the total water table change dh = 2|η|, the value of |nω| can
be calculated using Equation 4.8 and the results of the numerical solution to
Richards equation. The results are shown in Figure 4.4.

Table 4.1: The modified (i.e., m = 1 + 1/β) van Genuchten parameters for the three
soil types used in this study.

Parameter Glass-bead Fine sand Coarse sand

θs (-) 0.38 0.38 0.41
θr (-) 0.06 0.09 0.08
α′ (1/cm) -0.0066 -0.0163 -0.11
β′ (-) 9.33 8.27 20
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Figure 4.3: Sketch of the assumed soil moisture profile response (from time t to t+dt)
as a result of oscillations in the pressure head with amplitude |η|.

We note that the value of |nω/n| based on Equation 4.8 (in grey) are clearly
underestimated compared to the values obtained using Equation 4.4 (in black).
This indicates that the assumption of a static soil water profile above D + |η| is
too conservative: a larger part of the unsaturated zone than assumed (probably
a significant part of the capillary fringe) will respond to the oscillations in the
driving head. However, the slope of the grey curves show convergence towards
a slope of approximately 0.90 that we observed in our modeling results. Also
Cartwright et al. [2005] makes note of slopes equal to (1−1/β) in their modeling
results, which is very close to 0.90 for the given parameters. Their Section 7 is
devoted to this curious relationship between the van Genuchten parameters and
the slopes of the curves for high frequencies, for which no apparent cause was
found. Based on Equation 4.8, we expect a power-law relationship between dh
and |nω|, where the slope of this curve is (−1/β′). Furthermore, from analysis
of the results of our modeling exercise we find that ω and dh also have an
approximate power-law relationship for high frequencies. This implies that ω
and the modeled |nω| also have a power-law relationship, of which the slope is
determined by β′. However, since we lack a functional relationship between dh
and ω, we cannot present an analytical expression for the modeled |nω| as a
function of ω.
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Figure 4.4: The high-frequency response of |nω/n| for the three soil types used in
this study, scaled according to Cartwright et al. [2005]. The symbols are as defined
in Figure 4.1, however, the black lines indicate results based on Equation 4.4 whereas
grey lines indicate results based on Equation 4.8.

4.2 Criteria to determine the influence of capil-
larity

In paragraph [26] of Cartwright et al. [2005] it is mentioned that the effects
of capillarity become important when the distance from the water table to the
sand surface is approximately half the value of the equivalent saturated capillary
fringe height (Hψ) for the cases that were investigated. Table 1 in their paper
lists 1.50 m, 0.60 m, and 0.085 m for Hψ for respectively the glass-beads soil,
the fine sand, and the course sand. For deep water tables, the uptake of water
as a result of an increase of the pressure head dh (or yield in case of drainage)
will be (θs − θr)dh. The effect of capillarity (or rather, the unsaturated storage
effect) becomes noticeable when the change in water table height dh does no
longer lead to constant uptake or yield of water but is reduced instead. This
effect is reflected in the shape of the differential soil moisture capacity function,
which is defined as the derivative of the soil moisture profile with respect to the
pressure head (i.e., dθ/dψ). The point where the uptake or yield is no longer
constant (viz. θs − θr) is the point at which dθ/dψ is no longer 0, because at
this point the yield changes depend on the actual suction head as well as the
suction head changes. The differential soil moisture capacity for the three soil
types investigated in this study is depicted in Figure 4.5.

The suction head for which the capillarity effect were noticeable according
to Cartwright et al. [2005] were approximately 0.75 m, 0.30 m, and 0.043 m.
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Figure 4.5: The differential moisture capacity functions for the three soil types used
in Cartwright et al. [2005] (black = glass-beads soil, dark shaded grey = fine sand, and
light shaded grey = coarse sand).

These values correspond nicely to the suction heads at which the differential soil
moisture capacity starts to rise in Figure 4.5 (going from ψ = 0 towards smaller
ψ, i.e., the drying direction). Inspection of the differential soil moisture capacity
may form an easy and elegant way to assess the expected effects of unsaturated
storage on water table changes.
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Chapter 5

Low-dimensional modeling of
hillslope subsurface flow: the
relationship between rainfall,
recharge, and unsaturated storage
dynamics

Abstract

We present a coupling between the one-dimensional Richards equation for
vertical unsaturated flow and the one-dimensional hillslope-storage Boussinesq
equation (HSB, see [Troch et al., 2003]) for lateral saturated flow along com-
plex hillslopes. Here, the capillary fringe is included in the flow domain as an
integral part of the Boussinesq aquifer. The coupling allows quantitative inves-
tigation of the role of unsaturated storage in the relationship between rainfall
and recharge. The coupled model (HSB-coupled) is compared to the original
HSB model (HSB-original) and a three-dimensional Richards equation (RE)
based model (taken to be the benchmark) on a set of seven synthetic hillslopes,
ranging from convergent to divergent. Using HSB-original the water tables are
overestimated and the outflow rates are generally underestimated, and there is
no delay between rainfall and recharge. The coupled model, however, shows
a remarkably good match with the RE model in terms of outflow rates, and
the delay between rainfall and recharge is captured well. We also see a clear
improvement in the match to the water tables, even though the values are still
overestimated for some hillslope shapes, in particular the convergent slopes. We
show that, for the hillslope configurations and scenarios examined in this paper,
it is possible to reproduce hydrographs and water table dynamics with a good
degree of accuracy using a low-dimensional hydrological model.

This chapter is based on the paper “Hilberts, A.G.J., P.A. Troch, C. Paniconi and J.
Boll, Low-dimensional modeling of hillslope subsurface flow: the relationship between
rainfall, recharge, and unsaturated storage dynamics, in review, Water Resources Re-
search, doi:10.1029/2006WR004964, 2006.”
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5.1 Introduction

Our understanding of hillslope subsurface flow processes and their effect on catch-
ment response to atmospheric forcing is incomplete and has been the subject of
much research for several decades. Among the first to reveal the importance of
hillslope subsurface flow with regard to catchment stormflow were Hewlett and
Hibbert [1967] and Dunne and Black [1970]. They concluded that for humid cli-
mates water table dynamics in hillslopes have a large effect on channel stormflow
through the formation of areas of saturation along the channel network, often
called saturated source areas, which cause saturation-excess overland flow. Since
then many studies have investigated subsurface flow processes experimentally
(e.g. McGlynn et al. [2004]; O’Loughlin [1981]; Torres et al. [1998]; Woods et al.
[1997]) and through modeling. The two-part paper by Freeze [1972a], where
storm flow processes are examined using a three-dimensional Richards-based
model to describe subsurface processes, is one of the first (computer) model-
ing studies of hillslope processes, and since then many have followed.

In addition to the rather complex, three-dimensional models that are often
used in these modeling studies (e.g., [Abbott et al., 1986; Wigmosta et al., 1994]),
several simplified low-dimensional models have been proposed, because of the
computational expense and parameterization difficulties associated with the for-
mer type of model. Efforts include Beven and Kirkby [1979], who describe the
original version of TOPMODEL, Duffy [1996] who develops a two-state vari-
able integral-balance (hillslope) model, Reggiani et al. [1998], who describe the
”Representative Elementary Watershed” (REW) model, and Sloan [2000] who
describes a storage-discharge type model which is derived from hydraulic ground-
water theory. Among the simplified models, many studies have focused on analy-
sis of the Boussinesq equation (e.g. Brutsaert [1994]; Chapman [2005]; Childs
[1971]; Szilagyi et al. [1998]). Most of these studies were conducted on straight
hillslopes, sometimes using linearized versions of the Boussinesq equation, aim-
ing at an increased fundamental understanding of the flow and storage dynamics
in hillslopes.

In recent work by the authors, the Boussinesq equation was generalized to
account for the three-dimensional soil mantle in which the flow processes take
place [Hilberts et al., 2004; Paniconi et al., 2003; Troch et al., 2003]. The ef-
fect of slope shape (i.e. convergent, divergent, straight) and bedrock curvature
on storage and outflow processes was examined for drainage and recharge sce-
narios, and compared to the three-dimensional Richards equation (RE) based
model of Paniconi and Wood [1993]. A general conclusion of our recent work
with the hillslope-storage Boussinesq (HSB) model is that the modeled outflow
rates compared relatively well to results of the RE model, but capturing the
water table dynamics was less successful. Results from a recent laboratory ex-
periment [Hilberts et al., 2005] indicated that this may be caused by the strong
effect of capillarity (or, more precisely, the unsaturated storage) on groundwater
dynamics, especially for shallow soils as typically encountered on hillslopes.

The capillary fringe is an (almost) entirely saturated transition zone between
the unsaturated zone and groundwater, of which the effects on groundwater flow
are often ignored. However, the literature provides evidence that in the capillary
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fringe, fluxes can have considerable lateral components, thereby adding to lateral
groundwater flow (e.g., Jayatilaka and Gillham [1996]; Luthin and Miller [1953]).
These flow processes were investigated numerically (e.g., Luthin and Day [1955];
Vachaud and Vauclin [1975]), and experimentally (e.g., Berkowitz et al. [2004]),
and all of these studies clearly show large lateral flow components in the capillary
fringe. Vachaud and Vauclin [1975] demonstrated that the fluxes in the capillary
fringe are of the same order of magnitude as groundwater fluxes, and that they
often have a large lateral component. They estimated that, for their experiment,
roughly 14% of the lateral flux takes place above the water table.

The effect of capillarity on water table dynamics, which in hydraulic ground-
water models is usually accounted for through parameters such as specific yield,
effective porosity or drainable porosity, has been noted in previous studies such
as Hooghoudt [1947], who referred to it as the ”Wieringermeer effect”, and later
by Gillham [1984], Abdul and Gillham [1989], Parlange et al. [1990], Kim and
Bierkens [1995] and Nielsen and Perrochet [2000]. However, only few have tried
to account for the effect. In a benchmark paper by Parlange and Brutsaert
[1987], the capillarity effect on groundwater systems is modeled, assuming a
deep profile for which θ = θr holds at the land surface. Assuming instantaneous
equilibrium in the unsaturated zone, an analytical expression to account for cap-
illarity effects is derived that can be added to the Boussinesq equation. In Barry
et al. [1996] the equations derived in Parlange and Brutsaert [1987] are extended
to include higher-order capillarity effects, and they are used to investigate the
inland propagation of oscillations in water tables for a coastal aquifer. Nachabe
[2002] derives an analytical expression to account for dynamic capillarity effects,
which also includes delayed recharge due to rapidly dropping water tables. In
Hilberts et al. [2005] an analytical expression is derived to account for capillar-
ity effects under equilibrium in shallow groundwater systems, and its influence
on hillslope dynamics is investigated. All of these studies are mainly applicable
in situations where recharge is negligibly small. To extend the investigation of
the effect of unsaturated zone storage on saturated flow to recharge scenarios, a
coupling of the saturated zone model to a dynamic unsaturated zone model is
needed, and the impact of the capillary fringe on water table dynamics needs to
be incorporated.

Hydrological studies at the hillslope and catchment scale, as well as land sur-
face modeling, have put much emphasis on the processes that occur in the soil
layer close to the soil surface. This is because the interactions of the unsaturated
zone with the atmospheric boundary layer are known to have an important effect
on surface fluxes, and therefore also on climate [Koster et al., 2003]. It is well-
known that subsurface flow processes are currently not well-simulated in land
surface models [Liang et al., 2003]. A more thorough understanding of the in-
teractions between (shallow) groundwater and soil moisture in the unsaturated
zone is needed if we are to improve model results significantly [Koster et al.,
2000].

Several authors have described a coupling of separate models for unsaturated
and saturated flow under a diversity of assumptions. Pikul et al. [1974] coupled a
one-dimensional Boussinesq model to a one-dimensional RE model for the unsat-
urated zone. The coupled system was solved as a boundary value problem, and
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the drainable porosity for the saturated zone model was taken to be a constant
(viz. θs − θm), where θs [−] is saturated soil moisture content and θm [−] is
”the minimum soil moisture content below the depth from which moisture may
be removed directly by evapotranspiration.” As no functional form is given for
θm, its value is somewhat arbitrary [Vachaud and Vauclin, 1975]. A very similar
approach was used by Kim et al. [1999], but also here no relationship describing
the drainable porosity was given. Smith and Hebbert [1983] coupled a Boussi-
nesq model to a kinematic wave model for the unsaturated zone. To calculate the
recharge from the unsaturated zone to the saturated zone, they assumed that the
soil moisture pulses in the unsaturated zone have attenuated when they reach
the groundwater table. The coupled system was solved as a system of ordinary
differential equations. A similar approach was taken by Beven [1982], however in
this work two kinematic wave models were coupled. Liang et al. [2003] described
a coupling between a one-dimensional RE model for the unsaturated zone and a
generalized bucket-model for lateral subsurface flow, which was linked to the VIC
model [Wood et al., 1992]. The coupled system was also solved as a boundary
value problem. However, in none of the mentioned papers that deal with cou-
pling of models, the actual functional interactions between the saturated zone
and the unsaturated zone are investigated.

In this work the one-dimensional Richards equation is coupled to the HSB
equation. In the coupled model, the capillary fringe is treated as an integral
part of a Boussinesq aquifer, i.e., lateral groundwater transport takes place over
the entire saturated depth (and not only below the atmospheric pressure plane).
By introducing the unsaturated zone matric pressure head as a system-state
and reformulating the derived equations in state-space notation, we solve the
coupled system simultaneously as a set of ordinary differential equations, and
obtain a functional state-dependent expression for the drainable porosity. With
a Richards equation representation for the unsaturated zone and a functional
form for the drainable porosity, this coupled model allows us to investigate more
accurately the interactions between the saturated and unsaturated zone and the
relationship between rainfall intensity, unsaturated storage (and drainable poros-
ity), and recharge. We assume that a single (space-averaged) soil moisture profile
can sufficiently describe the unsaturated zone processes, which is an assumption
that is done to retain the coupled model’s low-dimensionality. A similar as-
sumption underlies the work of Boussinesq [1877], where recharge was assumed
uniform over a hillslope. The coupled HSB model’s behavior is compared to the
original HSB model of Troch et al. [2003] and the three-dimensional RE model
of Paniconi and Wood [1993] (which is taken to be a benchmark model) for a
set of seven synthetic hillslopes.

5.2 Governing equations

5.2.1 Unsaturated and saturated zone of the coupled model

If we assume that the soil water movement in the unsaturated zone is predomi-
nantly vertical, it can be described using the one-dimensional Richards equation:
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∂θ

∂t
=

dθ

dψ
· ∂ψ

∂t
=

∂qv

∂z
(5.1)

where θ = θ(x, z, t) [−] is the volumetric soil moisture content, ψ = ψ(x, z, t) [L]
is the matric pressure, t is time, z is the vertical coordinate, positive downward
(see Figure 5.1), and qv is the vertical soil moisture flux [L/T], expressed as

qv(z, t) = −K(ψ)(−∂ψ

∂z
+ 1) (5.2)

where K(ψ) [L/T ] is the hydraulic conductivity as a function of matric pressure.
To describe θ(ψ) and K(ψ) we use the van Genuchten [1980] relationships:

θ(ψ) = θr + (θs − θr)
(

1
1 + (αψ)n

)m

(5.3)

K(ψ) = k

(
−1 +

(
1 −

(
(1 + (α ψ)n)−m

)m−1)m
)2

(1 + (α ψ)n)m/2
(5.4)

where k [L/T ] is the saturated hydraulic conductivity, θr [−] is the residual
soil moisture content, n [−], m [−], and α [1/L] are fitting parameters, and m =
1−1/n. To integrate the soil water retention curve, an alternate parameterization
is more convenient:

θ(ψ) = θr + (θs − θr)
(

1
1 + (α′ψ)n′

)m′

(5.5)

where n′, m′, and α′ are again fitting parameters, and m′ = 1 + 1/n′ (see Troch
[1992] and Hilberts et al. [2005]). Both parameterizations of the unsaturated zone
are used in our modeling approach. The conventional parameterization is used
to describe the relationships between pressure head, soil moisture content, and
hydraulic conductivity for Richards’ equation, whereas the alternate parameter-
ization in a later stage is used to determine the value for the state-dependent
drainable porosity (see Section 5.2.2).

The saturated zone dynamics are modeled with the HSB model [Hilberts
et al., 2004; Paniconi et al., 2003; Troch et al., 2003]:

wγ
∂h

∂t
= −∂(wq)

∂x
+ N cos(i)w (5.6)

where w = w(x) [L] is the hillslope width at x [L] running along the bedrock slope
(positive in the upslope direction), γ [−] is the drainable porosity, h = h(x, t) [L]
is the water table height perpendicular to the bedrock, t [T] is time, N = N(x, t)
[L/T] is the vertical recharge to the groundwater table, and q = q(x, t) [L2/T]
is the lateral Darcy-flux which is assumed to be parallel to the bedrock (i.e.
Dupuit-Forchheimer assumption):

q(x, t) = −kh

(
∂h

∂x
cos(i) + sin(i)

)
(5.7)
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Figure 5.1: Definition sketch showing a hillslope cross-section with relevant parame-
ters, and the coordinate systems for the unsaturated zone (vertical flow) and saturated
zone (lateral flow).

where i = i(x) [−] is the bedrock slope. In Figure 5.1 both the hillslope coordi-
nate system and the vertical coordinate system are depicted.

5.2.2 Interactions between the saturated and the unsatu-
rated zone

Using the unsaturated zone model, it is possible to calculate the recharge N
based on the position of the water table and the actual soil moisture profile.
Mass conservation requires that for each location on the hillslope the following
relationship holds

N(x, t) = r(t) − ∂

∂t

(∫ (D−h)
cos(i)

0

(θ(x, z, t) − θr)dz

)
(5.8)

where D [L] is the soil depth and r(t) [L/T ] and N(x, t) [L/T ] are the vertical
rainfall rate and recharge rate, respectively. Note that all terms in Equation 5.8,
including the integration boundaries, are in vertical coordinates. Chapman [2005]
argued that although many studies use rainfall and recharge rates perpendicular
to the bedrock, it is more realistic to consider the vertical fluxes. Furthermore,
Chapman [2005] shows that both approaches yield similar results in terms of
average water table height as long as the recharge/conductivity ratio is relatively
small.

For notational convenience we will use

λ(h) =
(D − h)
cos(i)

(5.9)
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to indicate the depth to the water table in the vertical coordinate. Equation 5.8
can then also be formulated as

N(x, t) = r(t) − ∂

∂t
(
∫ λ

0

(θe(x, z, t) − θr)dz)

− ∂

∂t
(
∫ λ

0

(θ(x, z, t) − θe(x, z, t))dz) (5.10)

where θe(x, z, t) is the soil moisture profile under hydraulic equilibrium conditions
at t for a given water table position and zero recharge. The changes in unsat-
urated storage are now expressed as storage changes relative to the hydraulic
equilibrium storage profiles. This is done to avoid a singularity in the coupled
model, as will be explained in Section 5.2.4. Equation 5.10 can be written as

N(x, t) = r(t) − ∂h′

∂t

d
dh′

(∫ λ

0

(θe(x, z, t) − θr)dz

)

− ∂

∂t

(∫ λ

0

(θ(x, z, t) − θe(x, z, t))dz

)
(5.11)

where h′ = h/ cos(i) is the vertical water table height above the bedrock. Because
∂h′/∂t = 1/ cos(i)∂h/∂t, and d/dh′ = cos(i)d/dh, Equation 5.11 is equivalent
to:

N(x, t) = r(t) − ∂h

∂t

d
dh

(∫ λ

0

(θe(x, z, t) − θr)dz

)

− ∂

∂t

(∫ λ

0

(θ(x, z, t) − θe(x, z, t))dz

)
(5.12)

The term d/dh
(∫ λ

0
(θe(x, z, t) − θr)dz

)
is the change of storage in the unsat-

urated zone (in hydraulic equilibrium) with respect to a change in water table
height, which in Hilberts et al. [2005] was denoted −ds1/dh and for which an
analytical expression was derived:

d
dh

(∫ λ

0

(θe(x, z, t) − θr)dz

)

= − (θs − θr)
(
1 + (−α′λ)n′)−( n′+1

n′ )

(5.13)

where α′ and n′ are modified van Genuchten parameters defined by Equation
5.5.

65



The second term within the square brackets in Equation 5.11 can be expanded
by applying Leibniz’ rule:

∂

∂t

(∫ λ

0

(θ(x, z, t) − θe(x, z, t))dz

)
=

− 1
cos(i)

∂h

∂t
· (θ(x, λ, t) − θe(x, λ, t))

+
∫ λ

0

∂θ

∂t
dz −

∫ λ

0

∂θe

∂t
dz (5.14)

Note that both the equilibrium and the actual soil moisture content are at full
saturation at the position of the water table (i.e., θ(x, λ, t) = θe(x, λ, t) = θs),
which allows Equation 5.14 to be further reduced. The changes in the equilibrium
profile depend directly on the changes in water table height (i.e., the profile is
displaced according to the displacement of the water table):

∫ λ

0

∂θe(x, z, t)
∂t

dz =
∫ λ

0

dθ

dψ

∂ψe(x, z, t)
∂t

dz

=
∫ λ

0

dθ

dψ

∂h′(x, t)
∂t

dz

=
1

cos(i)

∫ λ

0

dθ

dψ

∂h(x, t)
∂t

dz (5.15)

where ψe is the equilibrium pressure head. Upon combination of Equations 5.12,
5.13, 5.14, and 5.15, Equation 5.8 becomes:

N(x, t) = r(t) +
∂h

∂t
(θs − θr)

(
1 + (−α′λ)n′)−( n′+1

n′ )

−
∫ λ

0

∂θ

∂t
dz +

1
cos(i)

∫ λ

0

dθ

dψ

∂h

∂t
dz (5.16)

For a Boussinesq-type aquifer (i.e., without any retention effects of the unsat-
urated zone), the drainable porosity parameter in Equation 5.6 is a constant

γ = (θs − θr) (5.17)

Substitution of Equations 5.16 and 5.17 into 5.6 yields the expression for the
saturated zone model, and taking the derivative of Equation 5.2 with respect
to z and substituting this into Equation 5.1 yields the unsaturated zone model.
Together these form a coupled system with a state-dependent drainable porosity,
without inclusion of the capillary fringe in the Boussinesq flow domain:
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wf
∂h

∂t
= −∂(wq)

∂x
+ w cos(i)

·
{

r −
∫ λ

0

∂θ

∂t
dz +

1
cos(i)

∫ λ

0

dθ

dψ

∂h

∂t
dz

}
(5.18)

C
∂ψ

∂t
= −∂K(ψ)

∂z
(1 − ∂ψ

∂z
) + K(ψ)

∂2ψ

∂z2
(5.19)

where f = f(h) is the drainable porosity after Hilberts et al. [2005], modified
such that recharge rate is vertical instead of perpendicular to bedrock:

f(h) = (θs − θr)

{
1 − cos(i)

(
1 + (−α′λ)n′)−( n′+1

n′ )
}

(5.20)

and C = C(ψ) is the differential moisture capacity:

C(ψ) =
dθ

dψ
(5.21)

5.2.3 Governing equations with inclusion of the capillary
fringe

The conclusions of Paniconi et al. [2003] are that the high outflow rates and the
relatively low water table values for the RE model compared to the HSB models
indicate that the HSB models are draining too slowly. Given the findings from
this study and the importance of the capillary fringe on lateral groundwater flow
and water table dynamics that as reported in the literature reviewed earlier, we
will include the capillary fringe in our coupled model.

When a capillary fringe ψc is introduced as an integral part of the aquifer,
the governing equations for the coupled model are not greatly altered . If we
define

h∗ = h − ψc (5.22)

to be the saturated depth over which lateral transport takes place [L], and we
substitute this expression into Equations 5.18 and 5.19, the equations essentially
remain the same. In Equation 5.18 the integral boundary becomes λ = (D −
h)/ cos(i) − ψc, and Equation 5.19 does not change. However, flow equation 5.7
changes to

q(x, t) = −kh∗
(

∂h

∂x
cos(i) + sin(i)

)
(5.23)

and the drainable porosity f (Equation 5.20) is now calculated based on the new
value for λ.

We will refer to the model based on Equations 5.18, 5.19, and 5.23 as HSB-
coupled, and this model’s behavior will be compared to the original HSB model
and an RE based model.
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We will test the hypothesis that the term within accolades in Equation 5.18
can be approximated using a single soil moisture profile derived for the entire
hillslope, analogous to the assumption underlying the original work of Boussinesq
[1877] that recharge is uniform . If this hypothesis leads to acceptable levels
of accuracy, it allows for a significant reduction in the dimensionality of the
model. This hypothesis implies that θ(x, z, t) is assumed equal for all x, and
the integration over the profile θ(x, z, t) therefore is conducted using boundaries
based on a hillslope-averaged water table height:

λ = λ(h∗) =
(D − h∗)

cos(i)
(5.24)

where

h∗(t) = 1/(wL)
∫ L

0

w(x)h∗(x, t)dx

i = 1/(wL)
∫ L

0

w(x)i(x)dx

w = 1/L

∫ L

0

w(x)dx

where h∗ is the average height of the saturated zone (the capillary fringe in-
cluded), w is the average width, i is the average bedrock slope, and L [L] is
the hillslope length measured along the bedrock. By introducing a state vector
X = [h(x, t), ψ(z, t)], and discretizing in the spatial coordinates z and x (see
Figure 5.1), Equations 5.18 and 5.19 can be solved simultaneously as a set of
ordinary differential equations.

5.2.4 An alternate derivation involving singularity

The most obvious manner to expand Equation 5.8 would be to directly regard
soil moisture profile changes with respect to θr. Applying Leibniz’ rule in this
case yields:

N(x, t) = r(t) −
∫ λ

0

(
∂θ(x, z, t)

∂t
)dz +

∂h

∂t
(θ(x, λ, t)) − θr) (5.25)

The third term on the right hand side of Equation 5.25 would normally be
brought to the left hand side, thereby altering the constant parameter γ in
Equation 5.6 to become a state-dependent parameter f(h). However, since
θ(x, λ, t) = θs, upon combination of Equations 5.25 and 5.6 a singularity arises
on the left hand side of Equation 5.6:

f = (θs − θ(x, λ, t)) (5.26)

and since at the water table θ(x, λ, t) = θs, it causes a singularity in Equation
5.6.

In the derivation of Section 5.2.2 this singularity is avoided by regarding the
changes of soil water profile with respect to equilibrium profile, for which the
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drainable porosity is expressed analytically and subsequently corrected by an
extra source term (viz.

∫ λ

0
dθ
dψ

∂h
∂t dz) that accounts for changes in equilibrium

profile.

5.2.5 The three-dimensional Richards equation-based model

The governing equation for the three-dimensional RE model is [Paniconi and
Wood , 1993]:

η(ψ)
∂ψ

∂t
= ∇ · (K(ψ)(∇ψ + ez)) (5.27)

where η = SwSs + θs(dSw/dψ) is the general storage term, Sw is the water
saturation defined as θ/θs , Ss is the aquifer specific storage coefficient, ez is
the vector (0, 0, 1)T (positive upward), and the hydraulic conductivity tensor is
K(ψ) as in Equation 5.4. The nonlinear retention characteristics are described
using the van Genuchten relationship given in Equation 5.3. The RE model used
in this work is the subsurface module of a coupled surface-subsurface numeri-
cal model using a tetrahedral finite element discretization in space, a weighted
finite difference scheme in time, and Newton or Picard iteration to resolve the
nonlinearity [Paniconi and Putti , 1994; Putti and Paniconi , 2004].

5.3 Interpretation

5.3.1 Interpretation of the equations for the coupled model

In the coupled model (Equation 5.16) the unsaturated zone affects the water
table dynamics in two distinct ways. First, the unsaturated zone replenishes the
groundwater (viz. the third and fourth terms on the right hand side of Equation
5.16). These terms together indicate the total change in soil moisture storage
for a certain depth to the water table λ. Second, the soil moisture profile in
the unsaturated zone determines the available storage capacity in the soil above
the water table, which is reflected in the second term on the right hand side of
Equation 5.16, thereby directly influencing the drainable porosity.

In Figure 5.2 hypothetical soil moisture profiles for times t and t + dt (and
corresponding depth to water table values λ(h(t)) and λ(h(t+dt))) are depicted
for a drainage and a rainfall scenario. The solid lines give the actual soil moisture
profiles (at two different times), the dashed lines are the equilibrium soil moisture
profiles, the black lines correspond to the profiles at t = t, and the grey lines
correspond to those at t + dt. For convenience let us name the term within
accolades in Equation 5.18:

N∗(x, t) = r(t) −
∫ λ

0

∂θ

∂t
dz︸ ︷︷ ︸

actual

+
1

cos(i)

∫ λ

0

dθ

dψ

∂h

∂t
dz︸ ︷︷ ︸

equilibrium

(5.28)
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Figure 5.2: Sketch of soil moisture profile, and changes in soil moisture content for a
drainage (A) and a recharge (B) scenario at times t and t + dt

For a drainage scenario (Figure 5.2a) starting from hydraulic equilibrium, the
total change in actual soil moisture content (the second term on the right hand
side of Equation 5.28) is always equal to or greater (i.e., less negative) than
the total change in equilibrium soil moisture storage (the third term). Note
that because initially all the soil moisture changes will be negative for a drainage
experiment, the absolute value of the second term will be smaller than the value of
the third term. Therefore, for a short time at the onset of a drainage experiment,
N∗ will be negative. Later in the drainage process the water tables will drop
more slowly and the unsaturated zone replenishes the saturated zone, causing
N∗ to become positive. The drainable porosity f (Equation 5.20) accounts for
the changes in equilibrium profile and is smaller than (θs − θr), and greater than
zero. In the case where the actual profiles collapse into the equilibrium profiles
N∗ becomes zero, and the solution converges to the solution derived in Hilberts
et al. [2005] but modified for vertical drainage.

In the case of rainfall, the value and sign of N∗ depends strongly on the
water table height, the soil moisture conditions and the rainfall rate. When the
water table is steady (i.e., λ(h(t)) = λ(h(t + dt))) and the unsaturated zone is
initially relatively dry, most water from rainfall will be stored in the unsaturated
zone. In Equation 5.28 this means that the third term on the right hand side
becomes zero, the first and second term become equal, thereby causing N∗ to be
zero. When the unsaturated zone initially is relatively wet (Figure 5.2b), only
part of the water coming from rainfall will be stored in the unsaturated zone,
and the remainder will recharge the groundwater. In case the water table is
dropping, and a soil moisture pulse is traveling towards the water table, a mix
of the responses above will occur.
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5.3.2 The relationship between rainfall, recharge, and un-
saturated storage

The interaction between rainfall and recharge rates is illustrated in Figure 5.3,
showing the (simplified) response of the unsaturated and saturated zones to
a constant rainfall rate. We distinguish three stages: stage A, where a soil
moisture wave due to rainfall is traveling towards a static water table in an
initially relatively dry profile, stage B where the soil moisture pulse reaches the
water table and causes the water table to rise, and stage C where the water
table has reached a new equilibrium under recharge. In stage A all the rain
water that infiltrates is stored in the unsaturated zone and recharge is zero.
Stage B shows the situation just after the soil moisture front has reached the
groundwater, causing a rapid rise in water table height. Note that during this
stage of rising water tables, the recharge is higher than the rainfall rate. For a
static water table, the flux across the water table surface would be equal to the
rainfall rate, but since the water table is rising and thereby “taking up” water
from the unsaturated zone, the recharge is higher than the rainfall rate. The
phenomenon of the unsaturated and saturated zones competing for unsaturated
storage just above the water table was also mentioned in studies such as Duffy
[1996], Seibert and McDonnell [2002], and Weiler and McDonnell [2004]. When
a new steady-state water table position is reached (i.e., stage C), the water table
is static, and the flux across it is equal to the rainfall rate.

Since the increased recharge of stage B is due to movement of the water table
∂h/∂t, and is therefore brought to the left hand side of Equation 5.6, the term
determines the value of drainable porosity f . The second term on the right hand
side of Equation 5.16 can thus be either regarded as an input term, or as a
correction term for the storage coefficient γ in Equation 5.6.

5.4 Model comparison setup

5.4.1 The models and hillslopes

We compare the coupled HSB (HSB-coupled) model’s response to that of the
three-dimensional Richards equation (RE) model described in Section 5.2.5, and
the original uncoupled HSB model (HSB-original) described in Troch et al. [2003]
and given by Equation 5.6. The original HSB model is run in an uncalibrated
mode assuming that the value of drainable porosity is γ = (θs−θr), which can be
considered a reasonable and conservative a priori estimate for a sandy soil when
precise retention characteristics are unknown. Moreover, this is the value of γ
one would obtain for a perfectly draining soil, which corresponds to a Boussinesq
aquifer. We test the model’s response under rainfall and during drainage on a set
of seven artificial hillslopes that were also used in Troch et al. [2003], consisting
of three convergent, three divergent, and one straight hillslope. The hillslope
outlines are based on the nine geometries described in Troch et al. [2002], but
have non-curved bedrock, thus the three straight slopes in Troch et al. [2002]
collapse into a single slope, yielding seven hillslopes as depicted in Figure 5.4.
The aquifer properties are given in Section 5.4.3. The hillslopes have a length of
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Figure 5.3: Schematic representation of the interactions between soil moisture dy-
namics (as a result of rainfall) and recharge rates, before (A), during (B), and after (C)
a soil moisture pulse reaches the water table.

100m and range in width from 50m to 1.72m. A sandy soil of 3m depth overlies
an impervious bedrock layer. On these hillslopes the models are compared under
a constant rainfall intensity of 10mm/day for the first 50 days, followed by a free
drainage period.

We use a sandy soil in our simulations since its properties correspond best
with the original assumptions underlying Boussinesq’s theory, developed for
highly conductive and relatively shallow soils. Moreover, the effect of capillarity
is likely to be smallest for these soil types. Thus, if inclusion of unsaturated zone
effects leads to improved results for a sandy soil, we will have demonstrated the
importance of unsaturated storage for a “worst-case” scenario, with even more
noticeable effects expected for less conductive soil types.

Even though the unsaturated zone varies in depth, the vertical and lateral
coordinates are both situated in a static frame of reference and discretized using
a fixed number of nodes. The node spacing for the simulations in this work are
Δz = 0.075m and Δx = 1m.

5.4.2 Boundary and initial conditions

For the saturated zone, it is assumed that the downhill boundary condition is
h(0, t) = 0, and the uphill boundary condition is a zero-flux boundary as are all
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Figure 5.4: Three-dimensional view of three convergent (a,b,c), three divergent (d,e,f),
and a straight hillslope (g) used in the model comparison study.

sides and the bedrock. At the upper boundary of the unsaturated zone we assume
that the flux across the soil surface is equal to the rainfall rate: qv(0, t) = r(t). At
the lower boundary (i.e., the bedrock) the pressure head is equal to the average
water table height ψ(D/ cos(i), t) = h(t)/ cos(i) for the coupled HSB model.

The initial condition for all models is a uniform water table h(x, 0) = 0.10m
above the bedrock, measured perpendicular to the bedrock for the coupled and
original HSB models and vertical for the RE model, yielding comparable ini-
tial conditions (see Paniconi et al. [2003] for details). For HSB-coupled and
the RE model we furthermore assume that the initial condition in the unsat-
urated zone is that of vertical hydraulic equilibrium. This yields a positive
pressure head at the bedrock ψ(D/ cos(i), t) = h(t)/ cos(i) for HSB-coupled, and
ψ(D/ cos(i), t) = h(t)/ cos(i) for the RE model. The two formulations for the
initial conditions differ slightly because HSB-coupled uses a single unsaturated
zone profile, whereas the RE model is fully three-dimensional.

5.4.3 Hillslope and soil parameters

The hillslope plan shapes and dimensions are shown in Figure 5.4. For the
simulations a bedrock slope of i(x) = 5% is used. The sandy soil overlaying
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Figure 5.5: The retention characteristics of the sandy soil used in the model compar-
ison. The black line depicts the conventional van Genuchten curve (m = 1 − 1/n) and
the grey line is the modified van Genuchten curve (m′ = 1 + 1/n′)

the impervious bedrock has a saturated hydraulic conductivity of k = 5m/d,
and a aquifer specific storage coefficient Ss = 0.01m−1. Table 5.1 lists the van
Genuchten parameters for the conventional parameterization (i.e., m = 1−1/n),
and for the modified parameterization of Troch [1992] and Hilberts et al. [2005]
(i.e., m′ = 1 + 1/n′). The corresponding soil water retention characteristics are
plotted in Figure 5.5.

5.4.4 Parameterization of the capillary fringe

The capillary fringe is a narrow zone that serves as a transition between the
vadose zone and the groundwater zone. The lower limit of the capillary fringe
is commonly accepted to be the surface where pressure head is equal to zero,
but the upper limit is scarcely definable ([Hillel , 1980]), with different authors
placing it anywhere between 75% and 100% water saturation. Berkowitz et al.
[2004] argued that the term “capillary fringe” should be replaced by the term
“partially saturated fringe”, because just above (and below) the water table we

Table 5.1: Van Genuchten parameters (conventional and modified) for the sandy soil
used in the comparison study.

Parameter Sanda Sandb

θs (-) 0.408 0.408
θr (-) 0.054 0.054
α (1/cm) -0.0254 -0.0081
n (-) 1.9529 1.4154
a for conventional m = 1 − 1/n
b for modified m = 1 + 1/n
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often find small inclusions of entrapped air or inclusions of partially saturated soil
causing the water content to be less than 100%. A range of ψ-values for which
θ(ψ) is “close” to θs therefore is a more appropriate definition [Bear , 1972].
For the soils in this study the capillary fringe (or partially saturated fringe) is
defined as the lowest value of ψ for which the soil moisture value is higher than
0.85 · θs 
 0.35, which corresponds to a capillary fringe ψc 
 −0.27m. The value
is set at 85% water saturation because this is in good agreement with textbook
values (e.g. Bear [1972]), and the resulting value for ψc is also in the range of
values for a sandy soil (e.g. [Bear , 1972; Harr , 1962].

5.5 Model comparison results

5.5.1 Hydrographs and water tables

We describe the results of the model runs using HSB-coupled and we compare
them with HSB-original and the RE model.

Figure 5.6 shows the outflow rates of the RE model, HSB-original, and HSB-
coupled. The fit of the hydrographs of both HSB models compared to the RE
model, for the rising and falling limbs, is summarized in Table 5.2. From Figure
5.6 we notice that for short times after initiation of the experiment, HSB-original
shows higher fluxes than the RE model, which is due to the absence of an un-
saturated zone description in this model, causing an instantaneous reaction to
rainfall. This is most clearly visible for the divergent slopes (i.e., hillslopes d, e,
f), where the hydrographs only climb after approximately 5-10 days for both the
RE and the HSB-coupled model, whereas the HSB-original model shows an in-
crease in flux starting at t = 0. At later times, however, the HSB-original fluxes
are generally underestimated. These findings are supported by the values of the
mean absolute errors given in Table 5.2. We see that HSB-original has higher
mean absolute error values for all slopes in both the rising and falling limbs, with
the exception of slope 3 (rising limb only) where due to a low estimation of the
initial flux the errors for HSB-original and HSB-coupled are comparable.

Comparing the hydrographs of HSB-coupled and the RE model, we see a re-
markably good agreement on all hillslopes. Also the timing of both hydrographs
(i.e., the time at which the hydrograph starts to climb, and the time when peak
outflow is reached) matches well. The goodness of fit suggests that a single
soil moisture profile yields an adequate approximation of the unsaturated zone
processes (as hypothesized in Section 5.2.2) is accepted.

In Figure 5.7 the water tables are shown for HSB-coupled, the RE model,
and HSB-original, after 5 days, 20 days, 50 days, and 100 days. Table 5.3 sum-
marizes the mean absolute errors in the water table values for each of these times
when compared to the benchmark RE model. The water tables after 5 days are
remarkable: whereas HSB-original is performing very poorly (i.e., large overes-
timation of water tables), the HSB-coupled water tables match almost perfectly
on all hillslopes; the modeled water tables are in many cases indistinguishable
from the RE results. The water tables after 20 days also show a remarkable
match for HSB-coupled for all hillslopes. Looking at the results after 50 and 100
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Figure 5.6: Outflow hydrographs as a result of a rainfall rate of 10 mm/day for the first
50 days followed by a pure drainage period, for HSB-coupled (solid lines), HSB-original
(dashed lines), and the RE model (circles).

days, we see that both HSB models produce similar water table heights for the
convergent slopes, with both models overestimating the water table heights. For
the divergent slopes both models again overestimate the water table height, but
the match for the HSB-coupled model is much better than that of HSB-original.

Overall we conclude that HSB-coupled is clearly better able to reproduce
the hydrographs for all hillslopes, and in particular for the divergent slopes. The
same holds for the water table values, except that the advantages of HSB-coupled
over HSB-original for the convergent slopes at later times in the experiment is
less noticeable. The differences between the HSB-coupled and RE water table
profiles, for the convergent slopes in particular, may be caused by errors intro-
duced when using a single soil moisture profile for HSB-coupled. We expect
that this error will be largest for convergent slope shapes and steep slope an-
gles, because of the relatively sharp gradients in water tables at later times in
the experiment. The validity of using a single soil moisture profile for higher
bedrock slopes and more convergent shapes will be investigated in future work,
especially considering that overland flow may occur in these simulations, causing
very different local responses.
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Figure 5.7: Water tables for HSB-coupled (solid lines), HSB-original (dashed lines),
and the RE model (circles), after 5 (black), 20 (dark grey), 50 (grey), and 100 days
(light grey).

5.5.2 Recharge rates

Figure 5.8 shows the value of the recharge term N in Equation 5.16 and the
rainfall rates during the experiment. We see that the values of N are initially
negative due to a rapidly dropping water table and little water supply by the
unsaturated zone. When the soil moisture front (due to rainfall) approaches
the water table (roughly between t = 2 and t = 4 days), the value of N rises
to positive values. The positive recharge rates cause the water tables to rise,
thereby taking up water from the unsaturated zone, which in turn causes en-
hanced recharge rates (roughly between t = 4 and t = 10 days). As the water
table rises, the lateral flux increases and (roughly around t = 10 days) the water
table and outflow rate start to converge towards steady state. A new equilibrium
is reached when r = N , which on the divergent hillslopes (d to f) is approached
around t = 50 days. Because the rainfall rates drop to 0 mm/day at t = 50
days, the equilibrium is not fully reached. Just after t = 50 days we see that the
recharge rates decline quickly, and eventually drop to below N = 0 due to the
falling water tables.
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Figure 5.8: Rainfall rates (grey) and recharge rates (black) calculated using Equation
(5.16)

5.6 Discussion

In the Introduction we indicated that over the past decades there have been many
attempts to model hillslope and catchment hydrological processes. Most of these
attempts have been aimed at predicting outflow rates, but recently several model
studies have also investigated the water table dynamics (or saturated storage dy-
namics) that are of crucial importance in determining the location and size of
variable source areas, and thereby also to assess the risk for flood peaks in the
channel network draining a hillslope or catchment. Examples include Wigmosta
et al. [1994] and Ivanov et al. [2004], who present high-dimensional catchment
scale models, and Seibert and McDonnell [2002], Weiler and McDonnell [2004]
and Brooks et al. [2006] who present the results of a conceptual modeling study
applied to the hillslope scale. Even though these models have been applied suc-
cessfully in the studies presented, they are all partly or fully conceptual instead
of physically based, which makes the investigation of the exact interactions be-
tween the saturated and unsaturated zones cumbersome. In this work we have
presented a physically based low-dimensional hillslope model. In the test cases
we assumed that the conductivity, soil depth and other soil properties are con-
stant in depth and in the direction along the hillslope, but the saturated module
of the coupled model and the original HSB model are capable of handling spatial
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Table 5.2: The mean absolute errors (mm/day) in the hydrographs of HSB-original
and HSB-coupled when compared to the RE model.

rising limb error (mm/d)

slope # 1 2 3 4 5 6 7

HSB-orig. 0.23 0.36 0.33 0.80 0.58 0.56 0.54
HSB-coup. 0.22 0.32 0.36 0.41 0.36 0.35 0.35

falling limb error (mm/d)

HSB-orig. 0.38 0.51 0.44 1.00 0.66 0.61 0.62
HSB-coup. 0.06 0.13 0.16 0.39 0.47 0.51 0.26

variability along these axes. On the other hand, since all variables and properties
are assumed to be constant over the width of the hillslope, we cannot account
for spatial variability along this axis. In the current version of the coupled for-
mulation we also cannot account for spatial variability in rainfall rate or soil
hydraulic properties of the unsaturated zone, because a single soil moisture pro-
file is used to model the unsaturated zone dynamics. Moreover, we assume that
groundwater fluxes are parallel to the bedrock, and we do not use an infiltration
model, thus the rainfall is assumed to infiltrate fully into the soil column (i.e.,
no infiltration-excess runoff).

The properties of the sandy soil in our simulations correspond best with the
original assumptions underlying Boussinesq’s theory, as the equations were de-
rived for highly conductive and relatively shallow soils. Sandy soils have a smaller
capillarity effect than silt, loam or clay soils. Hence, the improvement in hydro-
logical simulations when coupling the saturated and unsaturated zones presented
here, provides a good test case in terms of saturated properties and retention
characteristics. For less conductive soils, we expect greater improvement than
achieved for the sandy soil type.

The developed HSB-coupled model is an efficient, parsimonious model that
can be used in investigations of variable source areas, which play an impor-
tant role in the generation of saturated overland flow and floods. Because the
described model also outputs pressure heads and soil moisture contents in the

Table 5.3: The mean absolute errors (m) in the water tables of HSB-original and
HSB-coupled when compared to the RE model for slope numbers 1 to 7.

slope number

model time (days) 1 2 3 4 5 6 7

HSB-orig. 5 0.16 0.17 0.17 0.18 0.18 0.18 0.17
HSB-coup. 5 0.01 0.01 0.01 0.02 0.01 0.01 0.01
HSB-orig. 20 0.26 0.26 0.26 0.25 0.26 0.26 0.26
HSB-coup. 20 0.06 0.05 0.06 0.02 0.01 0.02 0.03
HSB-orig. 50 0.34 0.37 0.39 0.30 0.31 0.30 0.35
HSB-coup. 50 0.29 0.27 0.32 0.09 0.09 0.08 0.16
HSB-orig. 100 0.40 0.39 0.44 0.15 0.16 0.14 0.26
HSB-coup. 100 0.35 0.31 0.36 0.07 0.08 0.09 0.17
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unsaturated zone, it has potential applications in combination with land-surface
models, where unsaturated zone processes and interactions with shallow ground-
water are generally not simulated well. Overall, the low dimensionality of the
HSB model makes it appealing for poorly gauged catchments, since the required
parameters are relatively easily accessible and since the model is much less com-
putationally demanding than a full three-dimensional RE (or analogous) model.
Future work includes testing the model in the field, for instance on the experi-
mental hillslope and small catchment described in Brooks et al. [2004, 2006], and
accounting for hysteresis and macropore flow.

5.7 Conclusions

In this work we have presented a coupling between the one-dimensional Richards
equation for unsaturated flow and the one-dimensional hillslope-storage Boussi-
nesq model (HSB, [Troch et al., 2003]) for lateral saturated flow along complex
hillslopes. In the model we have included the capillary fringe in the Boussinesq
flow domain, i.e., the aquifer depth was taken to be the sum of the water table
height and the height of the capillary fringe, ψc. We assumed the fluxes in the un-
saturated zone to be vertical, and in the saturated zone parallel to the underlying
impervious bedrock (i.e., Dupuit-Forchheimer assumption). We assumed that an
average soil moisture profile derived for the entire hillslope provides an adequate
description of unsaturated zone processes. This assumption, which proves to
yield sufficiently accurate results based on the timing of the hydrographs, to-
gether with the manner in which the HSB formulation is able to represent a
three-dimensional soil mantle as a one-dimensional flow system, makes possible
a very efficient low-dimensional model of unsaturated and saturated hillslope
dynamics.

The role of the unsaturated zone in transmitting the soil moisture pulses as a
result of rainfall is investigated, and the relationships between rainfall, recharge,
drainable porosity and unsaturated storage are analyzed. Besides the expected
delaying effect of the unsaturated zone on recharge rates, the simulations also
showed that the unsaturated zone does not always dampen the rainfall signal,
but can also amplify it, causing recharge rates to exceed rainfall rates under
certain conditions. This effect is caused by water tables including water from
the unsaturated zone into the saturated zone as they rise.

The coupled model (HSB-coupled) was compared (in terms of hydrographs
and water table distributions) to the original HSB model (HSB-original) and to
a three-dimensional RE model (taken to be the benchmark) on a set of seven
synthetic hillslopes, ranging from convergent to divergent. The modeled outflow
rates of HSB-original are systematically lower than those of the RE model. For
the HSB-coupled model, the outflow rates and the timing of the hydrographs
(the time to the first increase in outflow, the time to peak, etc.) very closely
matched that of the RE model for all hillslopes at all times. Also the match
to the water tables is significantly better than that of HSB-original, especially
for the divergent slopes. The correct timing of the HSB-coupled hydrographs
suggests that a single soil moisture profile suffices to describe the unsaturated
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zone dynamics. We conclude that for the hillslope configurations and scenarios
examined in this paper it is possible to reproduce hydrographs and water table
dynamics with a good degree of accuracy.
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Chapter 6

Evaluation of a low-dimensional
coupled hillslope-hydrological
model using data from a
plot-scale experimental site in
Troy (ID), USA.

Abstract

In this study we evaluate a low-dimensional coupled saturated-unsaturated
hillslope hydrological model described in Hilberts et al. [2006] by comparing the
outflow response and the space-time evolution of water table heights with mea-
surements obtained from a hillslope plot near Troy (ID), USA. In the model,
a one-dimensional Richards model for unsaturated zone dynamics is coupled to
the HSB-model for lateral subsurface flow described in Troch et al. [2003]. The
model was adapted such that available information on the relationship between
saturated hydraulic conductivity and depth k(z) could be implemented. The
water retention characteristics are determined based on soil core analysis and
the k(z)-relationship is parameterized based on outflow measurements, and no
calibration is conducted. Different boundary conditions and different parame-
terizations for the k(z)-relationship are investigated.

We conclude that the model’s hydrograph response is reasonable, showing
slight underestimations of most peak flows, and slight overestimations during
most recession periods. The timing of the peaks in the hydrographs and the
water tables is generally well captured. Also the water table response is well cap-
tured, but also here the peaks are generally underestimated. This phenomenon
may be caused by the small free pore space during nearly saturated conditions,
which causes a very sensitive response of the water tables under these condi-
tions. Thus, the underestimations for peak water table values may be caused
by small differences in the calculated precipitation, recharge or subsurface flux.
The overestimation of water tables and fluxes during recession periods may be
caused by using a single van Genuchten parameterization for the entire soil
profile, whereas several soil horizons with slightly different retention character-
istics are present. Recent experimental results indicate that also the porosity
decreases with depth, which may explain the quick water table responses and
decreased outflow rates.
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6.1 Introduction

In catchment hydrology, numerical models are widely used to investigate the
hydrological response to rainfall events. Over the last decades the hydrological
community has acknowledged the importance of variable source areas in the gen-
eration of flood peaks (e.g., Dunne and Black [1970]; Freeze [1972b]; Niedzialek
and Ogden [2004]), and for this reason an increasing emphasis has been put on
hydrological models that are able to accurately simulate the water table dynam-
ics. However, a restriction that modelers have to deal with is the structural lack
of appropriate data to parameterize and calibrate/validate the applied models.
This restriction in particular applies to distributed, physically-based models, that
typically require a large amount of data for this purpose (e.g, Beven and Moore
[1992]; Freeze [1972a]). To overcome this problem, models have been developed
that are capable of simulating water table dynamics (e.g., [Beven and Kirkby ,
1979; Bierkens, 1998; Bronstert , 1999; Chapman, 2005; Duffy , 1996; Reggiani
et al., 1998; Smith and Hebbert , 1983]), but still evaluation of the performance is
typically cumbersome due to a lack of distributed measurements of water table
dynamics. Only few papers have been published in which model performance is
thoroughly evaluated using distributed field measurements (e.g., [Brooks et al.,
2006; Frankenberger et al., 1999; Torres et al., 1998]).

Recently, Hilberts et al. [2006] developed a low-dimensional coupled saturated-
unsaturated hillslope hydrological model (HSB-coupled) that is capable of simu-
lating outflow rates and water table dynamics. The model performs remarkably
well when compared to a three-dimensional Richards model applied to hillslopes
with different plan and profile shapes. In this study we adapt the model to in-
corporate available information on the relationship between saturated hydraulic
conductivity and depth, and we evaluate the model’s performance by comparing
model results to distributed measurements from a well-instrumented hillslope-
plot experiment. We also investigate the effect of the fixed-head lower boundary
condition by comparing it to a free-surface boundary condition (i.e. seepage face)
as described in Chapman [2005], and we analyze the effect of the parameteriza-
tion of the relationship between conductivity and depth.

6.2 Model description

The model used in this study (HSB-coupled) couples a one-dimensional Richards
equation model to describe the unsaturated zone processes the HSB model of
Troch et al. [2003] for lateral subsurface flow. In the modeling approach, the
capillary fringe is regarded as an integral part of the Boussinesq aquifer. Thus,
lateral groundwater fluxes are assumed to take place over the entire saturated
domain, instead of only below the water table, which is typically assumed in
Boussinesq-type modeling approaches. The model is described as a system of
two partial differential equations which are solved simultaneously [Hilberts et al.,
2006]. The governing equations read:
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where w = w(x) is the width-averaged hillslope width at distance x from the
outlet, h = h(x, t) is the water table height measured perpendicular to the re-
strictive layer, t is time, q = −k(h− ψc)(∂h/∂x cos(i) + sin(i)) is the Darcy flux
parallel to the restrictive layer, ψc is the capillary fringe value (always negative
in sign), k is the saturated hydraulic conductivity, i is the restrictive layer slope
angle, r = r(t) is the rainfall rate, λ = λ(t) is the hillslope-averaged depth to
the saturated zone (i.e., the average depth from the soil surface to the top of the
capillary fringe), θ = θ(z, t) is the corresponding (vertical) soil moisture profile,
z is the vertical coordinate (positive downward), ψ = ψ(z, t) is the suction head
in the profile, K = K(ψ) is the unsaturated hydraulic conductivity, f = f(h)
is the drainable porosity after Hilberts et al. [2005], modified such that recharge
rate is vertical instead of perpendicular to restrictive layer:

f(h) = (θs − θr)

{
1 − cos(i)

(
1 + (−α′λ)n′)−( n′+1

n′ )
}

(6.3)

and the soil water retention function is parameterized using the van Genuchten
relationship [van Genuchten, 1980]:

θ(ψ) = θr + (θs − θr)
(

1
1 + (αψ)n

)m

(6.4)

where θs, θr, n, and m are fitting parameters. Equation 6.4 is parameterized such
that m = 1−1/n, yielding the regular van Genuchten parameters. An alternative
parameterization is also conducted, assuming that m = 1 + 1/n, yielding the
modified van Genuchten parameters described in Hilberts et al. [2005]. The
modified parameters will be indicated with a prime (i.e., α′, n′, and m′), and are
used to analytically integrate the soil water retention curve and thereby derive
the analytical expression for drainable porosity (Equation 6.3), that is required
to solve the system of coupled differential equations (i.e., Equations 6.1 and 6.2).

Equation 6.3 is derived in Hilberts et al. [2005], and gives an analytical expres-
sion for the drainable porosity, assuming that the unsaturated zone above the
water table is in vertical hydraulic equilibrium. The drainable porosity can then
be expressed as a function of the depth to the unsaturate zone and the van (mod-
ified) Genuchten parameters. Since the unsaturated zone is not in equilibrium
due to constantly changing precipitation, the deviations from an equilibrium con-
dition are accounted for through the recharge term within accolades in Equation
6.1. C = C(ψ) is the differential moisture capacity:

C(ψ) =
dθ

dψ
(6.5)
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Figure 6.1: The hillslope plot with the location of the piezometers, the tile drains for
subsurface flow and surface runoff.

6.3 Site description

The experimental site is located 8 km North of Troy (ID) in the eastern Palouse
region and is described in Brooks et al. [2004] and Brooks et al. [2006]. The
hillslope plot has a length of 36m and a width of 18m. The average soil depth
is approximately 0.67m. All borders are lined with plastic sheets from the soil
surface to the restrictive layer and the side slopes and upslope divide are also
covered with metal sheeting to prevent run-on and side losses. A buried tiledrain
is installed upslope to prevent upslope subsurface flux from entering the hillslope
plot. The soil types are classified as silt-loam, overlying a impermeable fragipan
layer. The soil profile consists of three silt-loam horizons with different conduc-
tivities and different soil water retention characteristics [Brooks et al., 2004].

At this hillslope plot three (automated) piezometers are installed that monitor
on an hourly basis pressure head levels at the depth of the fragipan, i.e., at
approximately 0.67m below the soil surface. To monitor air temperature and
precipitation, a weather station is located on the hillslope. At the base of the
plot a tile drain is installed to separately monitor subsurface flow and overland
flow, using two tipping buckets. The locations of the tile drains, and the three
piezometers are indicated in Figure 6.1.

6.4 Modeling procedure

6.4.1 Assumptions underlying the modeling procedure

In this work we assume that the hillslope has a constant depth of 0.67m, that
the soil hydraulic properties (see section 6.4.2) do not vary in the lateral or
vertical direction, except for the saturated hydraulic conductivity, which proved
to be a sharply declining function of depth (see Brooks et al. [2004]). We also
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assume that saturated subsurface flow takes place in the lateral direction only
(i.e., parallel to the fragipan and downslope), and that the fluxes across the width
of the hillslope are negligible. For the unsaturated zone fluxes, it is assumed
that the fluxes are vertical. The capillary fringe is regarded as an integral part
of the Boussinesq aquifer, since experimental evidence shows that the fluxes
in the capillary fringe are typically laterally directed (e.g., [Berkowitz et al.,
2004; Vachaud and Vauclin, 1975]). The precipitation (see section 6.4.4) is also
assumed uniform over the hillslope. For the model runs in this study, we used 73
nodes for the lateral discretization (Δx = 0.50m), and 68 nodes (Δz = 0.01m)
for the vertical discretization.

6.4.2 Soil parameters

To apply the HSB-coupled model to the hillslope plot, we need to set the soil
hydraulic parameters (i.e., α, n, and the k(z)-relation), and to define hillslope
geometry. We use the double exponential conductivity-to-depth relationship that
is derived based on experimental results and that is reported in Brooks et al.
[2004] and Brooks et al. [2006]:

K(ψ) = k(z)kr = (a1 exp(−a2z) + a3 exp(−a4z))kr (6.6)

where a1 to a4 are fitting parameters, z is the vertical coordinate taken positive
downward. We adapted the model code such that this relationship between
conductivity and depth could be implemented. The relationship is parameterized
using outflow measurements from the tile drain and recordings from piezometer
8, 3 for two time periods: the first being from the 26th March to the 14th of
April 2002 [Brooks et al., 2004], the second from the 26th of March to the 26th
of April 2003. The parameterization based on the first set yields the parameter
values a1 = 1.2731 · 10−4 ms−1, a2 = 5.5, a3 = 1.0417 · 10−3 ms−1, and a4 = 50.
The parameterization based on the second set yields the parameter values a1 =
1.4363 · 10−4 ms−1, a2 = 7.8, a3 = 2.5382 · 10−4 ms−1, and a4 = 17.60. Both
sets of parameters will be used to evaluate the model response.

The relative conductivity kr is defined as

kr = ((1 + (αψ)n)−m)1/2(1 − (1 − (1 + (αψ)n)−1)m)2 (6.7)

The lateral conductivity k = k(h(x, t)) is defined as the integral of k(z) (see
Equation 6.6) over h:

k(h) =
1
h

(
a1

a2
(exp(−a2h) − exp(−a2D))

+
a3

a4
(exp(−a4h) − exp(−a4D))) (6.8)

where D is the soil depth. Note that k is varying in space and time through
it’s dependency on h(x, t). The regular (i.e., m = 1 − 1/n) and modified (i.e.,
m′ = 1 + 1/n′, see [Hilberts et al., 2005]) van Genuchten parameters for the
silt-loam soil are calculated based on core sample measurements and are listed
in Table 6.1.
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Note that we use a single parameterization to describe the soil water retention
characteristics of the entire soil profile, which consists of three horizons with
different retention characteristics [Brooks et al., 2004].

Given that 1/α can be regarded as a good approximation for the capillary
fringe [Cho and Rooij , 1999], we estimate its value ψc 
 −0.25m, which corre-
sponds to the top 10% of θ-values of the retention curve, which is within the
range of values that is normally considered to belong to the capillary fringe (e.g.,
[Berkowitz et al., 2004]).

6.4.3 Boundary and initial conditions

For the hillslope plot, the divides and the restrictive layer are treated as a zero-
flux boundary, except for the outlet, where either a fixed-head (h = 0 at the
outlet) or a free-surface (i.e., seepage face) boundary condition is assumed. The
fluxes across the soil surface are assumed to be equal to the net precipitation, thus
no infiltration model is used and all precipitation is assumed to fully infiltrate
into the soil.

To investigate the effect of the boundary condition on water table dynam-
ics, we also apply a free-surface boundary condition, allowing a seepage face
to develop. The relationships used to describe the boundary condition derive
from Chapman [2005] and are adapted to suit the small differences in model
description between Chapman [2005] and Hilberts et al. [2006]. Chapman [2005]
derived

Hs = (0.82 + 0.42 tan i)Q (6.9)

where Hs = h′/L′ is the dimensionless seepage face pressure head, h′ is the seep-
age face pressure head measured vertically, and L′ is the length of the hillslope
measured horizontally, Q = q′/(kL′) is the dimensionless outflow rate, and q′

is the (horizontal) subsurface flux. Reformulating Equation 6.9 in the hillslope-
storage Boussinesq coordinate system yields an equation that can be used to
describe the free-surface lower boundary condition:

dh

dx
= − tan i +

1
cos3 i(0.82 + 0.42 tan i)

(6.10)

The equation implies that the water table gradient nea the outlet is solely deter-
mined by the restrictive layer slope angle i. In the following we will assume that
this relationship can be used to describe the seepage face height, however, the

Table 6.1: The regular (m = 1− 1/n) and modified (m′ = 1 + 1/n′, see Hilberts et al.
[2005]) van Genuchten parameters for the silt-loam soil type of the hillslope plot.

parameter regular modified

θs (-) 0.49 0.49
θr (-) 0.19 0.19
α (1/cm) -0.0395 -0.0009
n (-) 1.2627 0.6927

88



0 20 40 60 80 100 120

0

20

40

60

80

100

120

time (days)

p
re

ci
p

it
a

ti
o

n
 (

m
m

/d
a

y
)

Figure 6.2: Precipitation rates (rainfall + snow melt) for the period 1st of January
to 10th of May 2003.

authors are aware of the fact that the relationship is likely to become less accu-
rate as the seepage face height gets closer to the soil surface. After discretization
of Equation 6.10, the seepage face pressure head can be calculated based on the
adjacent upslope pressure head value.

As an initial condition we use a uniform water table profile that corresponds
to 60% saturation. The first 20 days of the simulation are used for the model
to spin-up, and allows the effect of the initial conditions to gradually fade away.
Analysis of the water table response showed that after 20 days, the effect of the
initial condition was not noticeable anymore (not shown here). The outflow rates
and temporal evolution of the water tables are not evaluated during the spin-up:
the model response is analyzed starting after the spin-up period.

6.4.4 Model inputs

The net precipitation for the HSB-coupled model is calculated as

r = qp − qet (6.11)

where qp is the precipitation rate [LT−1] (i.e., rainfall + snow melt, calculated
according to Brooks [2003]), and qet is the evapotranspiration rate [LT−1] cal-
culated according to Thornthwaite and Mather [1955]. Hourly data of the net
precipitation rate from 0.00h on the 1st of January 2003 until 24.00h on the 10th
of May 2003 are depicted in Figure 6.2.
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Figure 6.3: Subsurface outflow rates (i.e., tile outflow (A)) and the temporal evolution
of the water table heights (B/D) from the 21st January onwards, using a Dirichlet
boundary condition. Grey dots indicate measurements and the black lines are the
model results.

6.5 Hydrograph response and perched ground-
water dynamics

6.5.1 Fixed-head lower boundary condition

Figure 6.3 compares modeled subsurface flow at the outlet and water table dy-
namics at the three piezometer locations with observations. The hydrograph
response (Figure 6.3-A) shows that the timing of the peaks is generally well re-
produced, except for the peak at approximately t = 71 days. The height of the
peak flows is captured well at the beginning of the observation period. However,
in later stages of the simulation the height of the peaks is often underestimated.
We also note that the recession periods initially show slightly overestimated out-
flow rates. Note that the overestimation after the peak at approximately t = 26
days is due to a malfunction of the tipping bucket from t = 26 to t = 28 days
caused by frost.

Also for the piezometer response (Figures 6.3-B/D) we see that the peaks are
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generally timed well, and also the peak values are initially captured well, but in
later stages of the simulation period, the piezometric levels are underestimated.
This is particularly the case for piezometers 8, 3 (B) and 8, 5 (D). However, for
piezometer 8, 4 (C) we see a very good agreement between modeled and measured
water tables.

6.5.2 Seepage face lower boundary condition

The modeled water tables dynamics in space and time and the outflow rates
using a seepage face lower boundary condition (see section 6.4.3) are given in
Figure 6.4. We see that the outflow rates (A) are very similar to those of Figure
6.3-A, except for the values for the first two peaks. Also the water table heights
in piezometers 8, 4 (C) and 8, 5 (D) are almost identical to those in Figure 6.3.
However, for the piezometer closest to the outlet (B), we see that compared to
the runs with a Dirichlet (h = 0m) boundary condition, the water table heights
have increased slightly. We note that, even though still underestimated, the peak
water tables at t 
 45 − 53 days are more accurately simulated. Also the peak
water table value at t 
 68 days is better simulated using a seepage face.

6.6 Discussion

In relation to the peak water table values, we note that especially for nearly
saturated conditions the empty pore space is limited due to the effect of capil-
larity. This effect was already noted by Hooghoudt [1947] and referred to as the
”Wieringermeer-effect”. In the modeling approach, this effect is reflected in small
values for drainable porosity [Hilberts et al., 2005]. The small amount of empty
pore space causes a very sensitive response of the water tables under these con-
ditions. Thus, the underestimations for peak water table values may be caused
by very small differences in the calculated lateral volume flux, precipitation or
recharge.

The slight underestimation of the peak values and the simultaneous overesti-
mation of recession values for water tables and outflow rates may be a result of
using a single van Genuchten parameterization for the entire soil profile. Recent
experimental results indicate that not only the saturated hydraulic conductivity
is much smaller for the soil layer closest to the fragipan, but also the porosity
decreases with depth. Lower porosity values in the layer closest to the fragipan
will cause the available pore space (drainable porosity) to be smaller, which in
turn causes a quicker water table response and decreased outflow rates [Paniconi
et al., 2003].

Also the relationship between saturated hydraulic conductivity and depth,
which in Brooks et al. [2004] is estimated from data obtained during low pre-
cipitation rates compared to those in this paper, is likely to affect the under-
estimated outflow rates and water table heights. In section 6.4.2, two different
parameterizations of the conductivity-to-depth relationship are given. Both pa-
rameterizations are derived using data collected over a comparable time span.
The second set of parameters is used here to illustrate the effect of different,
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Figure 6.4: Subsurface outflow rates (A) and water table heights (B/D) from the
21st January onwards, using a seepage face boundary condition. Grey dots indicate
measurements and the black lines are the model results.

but equivalent parameterizations of the k(z)-relationship. The results obtained
using this set of parameters for two different types of boundary conditions (i.e.,
fixed-head and seepage face) are given in Figure 6.5.

We note that the recession periods of the hydrograph are slightly better cap-
tured using this parameterization, but the differences are very small. For all
piezometers we see that the peak water tables are modeled more accurately, e.g.,
the peaks at approximately t = 45− 53 and t = 68 days. However, the increased
accuracy for peak water tables goes at the expense of reduced accuracy during
recession periods. Also for this parameterization we note that different boundary
condition only significantly affect the most downslope piezometer: for piezome-
ters 8, 4 and 8, 5 (C and D) the results for the different boundary conditions are
indistinguishable.
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Figure 6.5: Subsurface outflow rates (A) and water table heights (B/D) from the 21st
January onwards, for an alternative K(z)-parameterization, using a Dirichlet (grey
lines) and a seepage face (black lines) boundary condition. Grey dots indicate mea-
surements.

6.7 Conclusions

In this paper we evaluate the low-dimensional HSB-coupled model described
in Hilberts et al. [2006] by comparing the outflow response and the tempo-
ral evolution of the water table heights with measurements obtained from a
well-instrumented hillslope plot of approximately 18x36m near Troy (ID), USA.
The HSB-coupled model was adapted such that the available information on
the double-exponential relationship between saturated hydraulic conductivity
and depth could be implemented. Apart from the parameterization of the van
Genuchten relationship and the relationship between conductivity and depth,
which are determined a priori, no calibration is conducted. In the modeling pro-
cedure we assume a) a constant soil depth, b) that the soil hydraulic properties
do not vary in the lateral or vertical direction, except for the saturated hydraulic
conductivity, c) that the fluxes in the unsaturated zone are vertical, d) that fluxes
in the saturated zone take place in the lateral direction only (i.e., parallel to the
fragipan and directed downslope), e) that the fluxes across the width of the hill-
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slope are negligible, and f) that the precipitation is uniform over the hillslope.
The capillary fringe is regarded as an integral part of the Boussinesq aquifer.

We analyze the effect of using a free-surface downslope boundary condition
instead of a Dirichlet boundary condition, and we investigate what the effects
are of using a different parameterization for the relationship between saturated
hydraulic conductivity and depth.

We conclude that the models hydrograph response is reasonable, showing
slight underestimations of most peak flows, and slight overestimations during
most recession periods. The timing of the peaks in the hydrographs and the
water tables is generally good. Also the water table response is well captured,
but also here the peaks are generally underestimated. This phenomenon may be
caused by the low drainable porosity values during nearly saturated conditions,
which causes a very quick response of the water tables under these conditions.
Thus, the underestimation for peak water table values may be caused by small
differences in the calculated precipitation and recharge. The overestimation of
water tables and fluxes during recession periods may be caused by using a sin-
gle van Genuchten parameterization for the entire soil profile, whereas several
soil horizons with slightly different retention characteristics are present. Recent
experimental results indicate that also the porosity decreases with depth, which
may explain the quick water table responses and decreased outflow rates.
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Chapter 7

Summary and conclusions

7.1 Principal conclusions

In Chapter 2 a generalized HSB model is presented that enables handling of
non-constant bedrock slopes, and a comparison to a three-dimensional RE model
and a hillslope-storage KW model is conducted for 5% and 30% bedrock slope
and nine different characteristic hillslopes. In relation to the validity of the KW
model we conclude that it is limited to applications where the effects of hydraulic
diffusion are limited, which is determined by bedrock slope and water table
gradients. Water table gradients are determined by bedrock slope, hillslope plan
shape, and profile curvature. When water table gradients are high and bedrock
slope is small, the effect of diffusion is most prominent. On these hillslopes the
KW model compares least favorable to the RE model. For increasing degrees of
divergence the water table gradients decrease. Also for increasing bedrock slopes,
the effect of diffusion becomes less noticeable, due to the fact that the soil drains
too quickly for diffusion to take full effect. Therefore, the KW model compares
best to the RE model for high bedrock slopes and divergent slope shapes. It is
noteworthy to mention that a convergent plan shape or a concave profile shape
may cause the KW model to perform relatively poorly, even when bedrock slopes
are high.

Regarding the comparison between the HSB and the RE model we conclude
that the water tables (or storage profiles) compare well on all hillslopes. Also
the hydrographs show good agreement, however, the RE hydrograph is delayed,
which is caused by the delayed recharge effects of the unsaturated zone.

In Chapter 3 the effects of the unsaturated zone on groundwater storage and
fluxes are partly accounted for by introduction of an analytical expression for
the parameter drainable porosity for horizontal and sloping bedrock. The ex-
pression is derived for drainage experiments and links drainable porosity directly
to the depth of the unsaturated zone, and provides a physical basis for the inter-
pretation of the parameter. The expression is implemented in the HSB model,
and the results obtained using this model are compared to measurements from a
scaled hillslope in a laboratory setup, and to results from the uncalibrated and
calibrated original HSB model. On the outflow rates the original HSB model,
having two fitting parameters, performs better than the revised HSB model, ex-
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cept for the initial peak outflow rates that occur during the first few minutes
after initiation of the experiments. For the uncalibrated hydrographs, the best
performing model depends on the bedrock slope; the original HSB model shows
the best agreement for the 10% and 15% slopes, and the revised HSB model for
the 5% slope. The revised HSB model shows a much more accurate simulation
of the water table profiles for all runs.

It is concluded that the simulated water table dynamics improve when the
capillary fringe is incorporated in the Boussinesq aquifer. Since the dynamic
effects of the unsaturated zone appear to affect the outflow response at early
times, it is concluded that a dynamic representation of these processes is ex-
pected improve the models accuracy.

Chapter 4 describes an application of the theory described in Chapter 3 to a
tidal aquifer study described in Cartwright et al. [2005]. Cartwright et al. [2005]
shows the effects of oscillating water tables in a tidal aquifer on the value of
the drainable porosity. The drainable porosity in Cartwright et al. [2005] is a
complex number that expresses the attenuation and delay between the driving
head (representing the driving tidal influence), and the water table height in an
aquifer. A curious phenomenon for high frequency oscillations is noted, namely
the linear decay on a double logarithmic scale of the absolute value of complex
drainable porosity with increasing frequencies, and the relationship between the
slope of the linear decay and the parameter β, which is a water retention para-
meter. In this chapter, we show that for low-frequency oscillations, the value of
drainable porosity does not necessarily converge to (θs − θr), but instead may
converge to lower values when the oscillations take place close to the soil surface
or in the zone of influence of the capillary fringe. For the curious phenomena
at high-frequencies, we formulate a possible explanation by assuming that only
the zone in which the oscillations in the water table take place have time to
fully reach hydraulic equilibrium in case of high-frequency oscillations. Using
the theory described in Chapter 3, we show that there is a power-law relation-
ship between the absolute value of complex drainable porosity and the frequency,
of which the slope is determined by the parameter β.

In Chapter 5 a coupling is presented between a one-dimensional RE model to
describe unsaturated zone dynamics, and the original HSB model. The capillary
fringe in included as an integral part of the Boussinesq aquifer. The coupled
model is formulated as two partial differential equations which are solved si-
multaneously, and the results are compared to those of a three-dimensional RE
model and of the original HSB model.

The role of the unsaturated zone in transmitting the soil moisture pulses as a
result of rainfall is investigated, and the relationships between rainfall, recharge,
drainable porosity and unsaturated storage are analyzed. Besides the expected
delaying effect of the unsaturated zone on recharge rates, the simulations also
show that the unsaturated zone does not always dampen the rainfall signal,
but can also amplify it, causing recharge rates to exceed rainfall rates under
certain conditions. This effect is caused by water tables including water from
the unsaturated zone into the saturated zone as they rise.

96



Comparison of the model results shows a very good match between the out-
flow rates of the HSB-coupled model and the RE model, whereas the original
HSB model shows systematically underestimated outflow rates. Also the water
table dynamics are modeled more accurately with the HSB-coupled model when
compared to the original HSB model.

In Chapter 6, the HSB-coupled model is applied to a 36x18m hillslope plot near
Troy (ID), USA. The model is slightly modified to allow handling of decreasing
hydraulic conductivities with depth. The model is parameterized beforehand
using data of soil water retention characteristics, and using the relationship be-
tween conductivity and depth. No further calibration was conducted. The model
behavior is evaluated and compared to outflow and piezometric measurements
from the hillslope plot obtained over a period of 130 days.

We conclude that the models hydrograph response is reasonable, showing
slight underestimations of most peak flows, and slight overestimations during
most recession periods. The timing of the peaks in the hydrographs and the water
tables is generally good. Also the water table response is well captured, but also
here the peaks are generally underestimated. This phenomenon may be caused
by the low drainable porosity values during nearly saturated conditions, which
causes a very quick response of the water tables under these conditions. The
overestimation of water tables and fluxes during recession periods may be caused
by using a single van Genuchten parameterization for the entire soil profile,
whereas several soil horizons with slightly different retention characteristics are
present. Recent experimental results indicate that porosity decreases with depth,
which may explain the quick water table responses and decreased outflow rates.

7.2 Perspectives

The work presented in this thesis is aimed at an increased understanding of hill-
slope hydrological processes through (low-dimensional) modeling. Naturally, the
research in this field is far from being finished. In this section, topics will be put
forward that have not been mentioned before and that I believe are relevant to
this field of research, and suggestions for future research are given.

Hillslope hydrological research is conducted to eventually better understand
the catchments response as a whole. In order to fully test the value of the devel-
oped models, an effort should be made to scale from hillslope to catchment. A
crucial step in this process is breaking down the catchment into a collection of
hillslopes, such that the assumptions underlying the modeling work are not (or
least) violated. To this end, one first has to determine how big the hillslopes are
([Dietrich and Montgomery , 1998]), and how to delineate the hillslopes based on
topographic information, which is a topic of ongoing research. Also the effects of
vegetation on the hillslope and catchment hydrological behavior, and the linkage
of the hillslopes to the riparian zones in this type of modeling approach need to
be investigated further. A subsequent approach in modeling catchment response
could either be to numerically solve the model equations for the individual hill-
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slopes, or to use similarity parameters for hillslope geometry such as presented
in Troch et al. [2004] and Berne et al. [2005], thereby reducing computational
demands and facilitating practical applicability.

In hillslope hydrology, macropore/pipe flow processes are often encountered
(e.g., Beven and Germann [1982]; Bronstert [1999]). A coupling of the HSB
model to a hillslope preferential flow model (e.g., Tsutsumi et al. [2005]) could be
used for quantitative investigation of the effects of preferential flow processes on
outflow rates and water table dynamics, and for model evaluation by comparison
to measurements obtained from catchments where macropore flow processes are
clearly noticeable, e.g., the Maimai catchment in New-Zealand ([Woods et al.,
1997]).

In studies of Buttle [1994] and McDonnell [1990], the predominance of pre-
event water in storm hydrographs is shown, which underlines the importance
of subsurface flow processes in generating storm hydrographs [Genereux and
Hooper , 1998]. The dilemma of how this water can be stored for a long time
and subsequently released in case of a storm, has become known as the first part
of the double paradox in hydrology [Kirchner , 2003]. In Bishop et al. [2004]
a solution to the double paradox of is presented but up to this time no quan-
titative testing of the presented hypotheses has been conducted. Therefore, a
coupled subsurface flow/macropore flow model is expected to be of great value
in an attempt to reproduce the phenomenon of rapid mobilization of “old” water
in hillslopes during storms [Kirchner , 2003], and to investigate to what extent
macropore flow plays a role in these processes.

With respect to the numerical aspects, it can be concluded that the dis-
cretization of the lateral and vertical coordinates is of crucial importance for the
models calculation speed. Since the aim is to develop models that demand little
computational power, the appropriate spatial discretization needs to be more
carefully investigated. In the presented models the node spacing is equidistant.
However, a significant increase in numerical performance of the models may be
achieved when a finer resolution is used near the outlet and the soil surface, and
a coarser resolution for the upslope areas and deeper soil sections [Downer and
Ogden, 2004].

In Chapter 2 the conclusion is drawn that the validity of applying a kinematic
wave assumption does not solely depend on the bedrock slope, but also on slope
shape. Therefore, in addition to existing criteria for applying kinematic wave
approaches for straight hillslopes, a generalized criterion needs to be derived in
which slope shape and profile curvature are also accounted for.

In Chapters 3 and 5, two HSB models are described in which the water
retention characteristics are parameterized with a van Genuchten function. In
this thesis, the parameterization was conducted measurements obtained from soil
cores, whereas the application of the model is on the hillslope scale. This discrep-
ancy between the scales at which the model parameterization is conducted, and
the scale at which the model is applied is not discussed in this thesis. However,
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the implications of using scaled parameters in this modeling framework is worth
investigating. When moving from applications on the hillslope to the catchment
scale, it is necessary to account for the heterogeneity of hydraulic properties
and therefore stochastic upscaling is required ([Bierkens et al., 2000; Desbarats,
1995]).
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Samenvatting

In dit proefschrift staat de vraag centraal of men laagdimensionale dynamische
modellen ter beschrijving van bergings- en stromingsprocessen op hellingen kan
ontwikkelen, zodanig dat het relevante fysische gedrag van het natuurlijke sys-
teem goed beschreven wordt.

In Hoofdstuk 1 geef ik een korte inleiding op het gebied van stroomgebieds- en
hellingshydrologie, waarin ik het belang van het ontwikkelen van laagdimensio-
nale modellen aangeef. De modellen die het meest relevant zijn voor dit proef-
schrift worden hier beschreven.

In Hoofdstuk 2 wordt een veralgemeniseerd HSB model gepresenteerd, waarmee
het hydrologische gedrag op hellingen met een kromming in de ondoorlatende
laag onderzocht kan worden. De modelresultaten worden vergeleken met een drie-
dimensionaal RE-model en een bergingsgebaseerd KW-model op negen karak-
teristieke hellingen en voor twee verschillende hellingshoeken (5% en 30%). Met
betrekking tot de nauwkeurigheid van het KW model kunnen we stellen dat de
toepassing van deze modellen beperkt is tot omstandigheden waarin de effecten
van hydraulische diffusie beperkt zijn, hetgeen bepaald wordt door de helling-
shoek van de ondoorlatende laag en de gradiënten in de grondwaterspiegel. De
gradiënten worden bepaald door de hellingshoek van de ondoorlatende laag, de
hellingsvorm en de kromming van het hellingsprofiel. Wanneer de gradiënt van de
grondwaterspiegel groot is en de hellingshoek klein, dan zijn de effecten van dif-
fusie het duidelijkst merkbaar. Onder deze omstandigheden is de overeenkomst
tussen de resultaten van het KW-model en het RE model het kleinst. Voor toen-
emende divergentie van hellingvorm neemt de gradiënt van de grondwaterspiegel
af. Ook voor toenemende hellingshoek worden de effecten van diffusie minder
merkbaar, doordat de drainage dusdanig snel verloopt dat de relatief trage dif-
fusieprocessen niet voldoende tijd krijgen om zich te ontwikkelen. Om deze reden
zijn de resultaten van het KW- en het RE-model het meest gelijkend voor grote
hellingshoeken en divergente hellingsvorm. Het is vermeldenswaardig te noemen
dat een convergente hellingsvorm of een concaaf hellingsprofiel kan zorgen voor
een slechte prestatie van het KW-model, zelfs wanneer de hellingshoeken groot
zijn.

Met betrekking tot de vergelijking van de resultaten van het HSB- en het RE-
model concluderen we dat de grondwaterspiegels (of de bergingsprofielen) van
beide modellen erg sterk overeenkomen voor alle hellingshoeken en hellingsvor-
men. Ook de hydrogrammen van beide modellen vertonen een grote overeenkomst,
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hoewel het hydrogram van het RE-model een lichte vertraging heeft ten opzichte
van dat van het HSB-model. Dit wordt veroorzaakt door de vertraagde nalever-
ing vanuit de onverzadigde zone, hetgeen niet gemodelleerd is in het HSB model.

In Hoofdstuk 3 worden de effecten van de onverzadigde berging op grondwa-
terberging en oppervlakkige stroming deels verrekend door de invoering van een
analytische uitdrukking voor de parameter draineerbare porositeit. Dit wordt
gedaan voor bodems op zowel horizontale als hellende ondoorlatende lagen. De
uitdrukking wordt afgeleid voor drainage-experimenten en koppelt draineerbare
porositeit direct aan de diepte van de onverzadigde zone. De uitdrukking ver-
schaft een fysische basis voor de interpretatie van de bewuste parameter. De
uitdrukking wordt gëımplementeerd in het HSB-model en de resultaten met
gebruikmaking van dit model worden vergeleken met a) meetresultaten van
een schaalmodel van een helling in een laboratoriumopstelling en b) de resul-
taten van een gecalibreerde en een ongecalibreerde versie van het originele HSB-
model. Wat betreft de hydrogrammen presteert het originele HSB-model met
twee calibratieparameters beter dan het gereviseerde HSB-model, behalve voor
de piekafvoer gedurende de eerste minuten van de simulaties. Voor de ongecal-
ibreerde hydrogrammen geldt dat het best presterende model afhangt van de
hellingshoek van de ondoorlatende laag; het originele HSB-model vertoonde de
grootste overeenkomst voor de 10% en 15% hellingen, terwijl het geriviseerde
HSB-model beter presteert voor de 5% hellingen. Voor alle hellingshoeken en
hellingvormen geldt dat de vorm van de grondwaterspiegel met het gerviseerde
HSB-model veel accurater gesimuleerd wordt.

Er wordt geconcludeerd dat de grondwaterdynamiek beter wordt gesimuleerd
wanneer de volcapillaire zone (ook wel funiculaire zone of capillary fringe) wordt
gezien als een integraal onderdeel van de Boussinesq aquifer. Aangezien de dy-
namische effecten van de onverzadigde zone de hydrogrammen gedurende de
eerste minuten van het experiment lijken te bëınvloeden, wordt de conclusie
getrokken dat een dynamische weergave van de onverzadigde zone de nauwkeurig-
heid van het model zal vergroten.

In Hoofdstuk 4 wordt een toepassing beschreven van de theorie uit Hoofd-
stuk 3. De theorie wordt toegepast op een grondwatersysteem dat onder invloed
staat van getijdenwerking en beschreven wordt in Cartwright et al. [2005]. In
Cartwright et al. [2005] worden de effecten van een oscillerende grondwaterstand
op de waarde van de draineerbare porositeit getoond. De draineerbare porositeit
in het werk van Cartwright et al. [2005] is een complex getal dat de vertrag-
ing en de demping van de grondwaterstand ten opzichte van het getijdesysteem
weergeeft. Een merkwaardig fenomeen voor de oscillaties bij hoge frequenties
wordt opgemerkt, namelijk de lineare afname op een dubbellogaritmische schaal
van de absolute waarde van de complexe draineerbare porositeit voor toenemende
frequenties. De richtingscoëfficient van de rechte blijkt bovendien bepaald te wor-
den door de waarde van de retentieparameter β. In dit hoofdstuk tonen we aan
dat voor oscillaties met lage frequentie de waarde van de draineerbare porositeit
niet noodzakelijkwijs convergeert naar (θs − θr) zoals wordt verondersteld in
Cartwright et al. [2005], maar dat het onder invloed van de capillaire werking in
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de onverzadigde zone ook naar lagere waarden kan convergeren. Verder wordt een
mogelijke verklaring voor het merkwaardige gedrag bij hoge frequenties gegeven,
waarvan de afleiding is gebaseerd op de aanname dat voor deze hoge frequenties
alleen het domein waarover grondwaterschommelingen plaatsvinden tot volledig
hydraulisch evenwicht kan geraken. Gebruikmakend van de theorie beschreven
in Hoofdstuk 3 kan worden aangetoond dat de relatie tussen de frequentie en de
absolute waarde van de complexe draineerbare porositeit de vorm heeft van een
machtsfunctie, van welke de richtingscoëfficient bepaald wordt door de parame-
ter β.

In Hoofdstuk 5 wordt een koppeling beschreven tussen een één-dimensionaal
RE-model ter bechrijving van de onverzadigde zone dynamiek en het originele
HSB-model. In dit hoofdstuk wordt de volcapillaire zone als een integraal on-
derdeel van de Boussinesq aquifer beschouwd. Het gekoppelde model wordt
beschreven middels een stelsel van twee niet-lineaire partiële differentiaalvergelijkin-
gen die simultaan opgelost worden. De resultaten van het model worden vergeleken
met een drie-dimensionaal RE-model en met het originele HSB-model.

De rol van de onverzadigde zone in het doorgeven van bodemvochtpulsen als
gevolg van neerslag wordt onderzocht en de relatie tussen neerslag, grondwater-
aanvulling, draineerbare porositeit en onverzadigde berging wordt geanalyseerd.
Behalve de verwachte vertragende werking van de onverzadigde zone op de re-
latie tussen neerslag en grondwateraanvulling, tonen de simulaties ook aan dat
de onverzadigde zone niet onder alle omstandigheden de neerslagpulsen dempt
maar ze ook kan versterken. Dit wordt veroorzaakt doordat water uit de onver-
zadigde zone wordt opgenomen in de verzadigde zone, hetgeen zorgt voor een
een versterkte grondwateraanvulling ten tijde van stijgende grondwaterspiegels.

De vergelijking van de resultaten van het gekoppelde HSB model (HSB-
coupled) met het RE-model en het originele HSB-model, toont een erg sterke
overeenkomst tussen de hydrogrammen van HSB-coupled en het RE-model, ter-
wijl het orginele HSB-model een systematische onderschatting geeft. Ook de
grondwaterdynamiek wordt veel nauwkeuriger beschreven met het HSB-coupled
model.

In Hoofdstuk 6 wordt het HSB-coupled-model toegepast op een 36x18m helling
nabij Troy (Idaho), USA. Het gekoppelde model is aangepast, zodanig dat de met
de diepte afnemende verzadigde doorlatendheden verrekend kunnen worden. Het
model is vooraf geparameteriseerd, gebruikmakend van de waterretentie karak-
teristiek en de relatie tussen doorlatendheid en diepte. Geen verdere calibratie
is uitgevoerd. Het model gedrag is geëvalueerd en vergeleken met metingen van
oppervlakkige afvoer en stijghoogtemetingen in piezometers over een periode van
130 dagen.

We concluderen dat de overeenkomst tussen de modelresultaten en de metin-
gen van oppervlakkige afvoer redelijk is, met lichte onderschattingen voor de
meeste piekafvoeren en lichte overschattingen gedurende de meeste recessies.
De timing van de hydrogrammen is goed over het algemeen. Ook de grond-
waterdynamiek wordt goed beschreven, hoewel ook de grondwaterstanden on-
derschat worden tijdens pieken. Dit fenomeen wordt mogelijk veroorzaakt door
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de beperkte vrije poriënruimte door de sterke effecten van capillariteit tijdens
bijna verzadigde omstandigheden, waardoor de grondwaterstanden erg gevoelig
reageren op kleine verschillen in oppervlakkige afvoer. Ook het gegeven dat
slechts één parameterisatie voor de onverzadigde zone karakteristiek wordt ge-
bruikt om het retentie gedrag van de verschillende horizonten (met licht ver-
schillende eigenschappen) te beschrijven, vormt een mogelijke oorzaak voor de
overschatting van oppervlakkige afvoer en grondwaterstanden tijdens recessies.
Recent experimenteel onderzoek in het gebied toont ook aan dat de porositeit
afneemt met de diepte.
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