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Voorwoord 
 
Een voorwoord is altijd een geliefd stuk om te lezen, en zeker die van een 
proefschrift! Hoe is dit proefschrift tot stand gekomen? In de zomer van 2001 werd ik 
door Bert Holtslag, professor bij de leerstoelgroep Meteorologie en Luchtkwaliteit, 
op de hoogte gesteld van een AIO-baan bij de leerstoelgroep Wiskundige en 
Statistische Methoden. Ik besloot een afspraak te maken met Alfred Stein, professor 
bij de betreffende leerstoelgroep, en werd aangenomen om per 1 november aan een 
vierjarig AIO-project te beginnen. Ik kwam terecht in het Wiskundegebouw op de 
Dreijen, bij de mensen waarvan je een paar jaar daarvoor nog onderwijs kreeg. 
Daarnaast zat ik ook een groot deel van de week op het RIVM bij het laboratorium 
voor Luchtonderzoek (LLO). De mensen daar hielden zich bezig met het meten, 
berekenen, rapporten en adviseren van en over luchtkwaliteit. 
 Ik begon met het vergelijken van verschillende interpolatiemethoden voor 
luchtkwaliteitmetingen. De eerste resultaten waren dat kriging, een statistische 
interpolatiemethode, als beste naar voren kwam, behalve voor het interpoleren van 
het aantal smogdagen per jaar. Dat zou het onderwerp voor het eerste artikel 
worden. 
 Hoewel ik in het eerste half jaar flink wat literatuur over interpolatiemethoden 
tot me had genomen, was het statistisch correct interpoleren van tellingen iets wat, 
wetenschappelijk gezien, nog in de kinderschoenen stond. Het inmiddels klassieke 
artikel van Diggle, Tawn en Moyeed diende als basis, maar was moeilijk te begrijpen. 
Als afgestudeerd meteoroloog was het wel even slikken als je belandt in de wereld 
van de statistiek. Op een congres in Genua hoorde ik van het bestaan van een library 
voor het interpoleren dit soort data in R, een statistisch softwarepakket. Aangezien ik 
deze library wilde gebruiken, moest ik ook in leren programmeren in R en tot de dag 
van vandaag heb ik daar nooit spijt van gehad. 
 In Genua pikte ik ook mee dat “external drift kriging” een methode zou 
kunnen zijn om metingen en modeluitvoer te combineren. In het tweede artikel 
behandelde ik deze methode, in relatie met het aantal metingen. Dit heb ik 
gepresenteerd op een congres in het Spaanse Santiago de Compostela. Daarna was 
de vraag hoe om te gaan met onderzekerheden in zowel metingen als modeluitvoer. 
De theorie der “measurement error modellen” kwam aan de orde. Die had ik 
vervolgens met de external drift kriging verweven. Dit had ik succesvol 
gepresenteerd in München. Het vierde artikel werd een uitbreiding van het derde 
artikel en ging over het berekenen van toekomstige luchtkwaliteit op locale schaal. 
Dit resulteerde zelfs in een klus voor het Milieu- en Natuurplanbureau (MNP). 
Tenslotte werd in het vijfde artikel de ontwikkelde theorie toegepast op fijn stof 
metingen, modeluitvoer en remote sensing data boven Europa. 
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 Hoe clichématig het ook mag klinken, maar in aflopen vier jaar ik veel 
bijgeleerd. In de zomer van 2001 was ik in staat iemand alles te vertellen over het 
weer, maar nu kan ik ook nog iedereen, gevraagd of ongevraagd, enige Wiskunde of 
Statistiek bijbrengen. Van het lesgeven aan de studenten heb ik dan ook erg genoten. 
Het artikel van Diggle, Tawn en Moyeed leest nu makkelijk weg. Als persoon ben ik 
ook wijzer geworden en ik ben er van overtuigd dat deze nieuwe persoonlijk bagage 
me in de toekomst nog zeker van pas gaat komen. 
 Promoveren is niet alleen maar hard werken. Uiteraard mocht ik de afgelopen 
vier jaar ook genieten van de dubbele uitjes, sportmiddagen en borrels bij zowel 
Biometris als het RIVM/MNP. Wat verder voor wat afwisseling zorgde waren de 
verhuizingen. Ten eerste in Wageningen van het Wiskundegebouw naar het 
Wisselgebouw, waar we omgedoopt werden tot Biometris. Uiteindelijk toch in de 
AIO kamer terechtgekomen. En binnen het RIVM van het LLO naar het MNP bij het 
team Luchtkwaliteit Europese Duurzaamheid (LED). 
 Tenslotte wil ik nog een aantal mensen bedanken. Dit proefschrift werd mede 
mogelijk gemaakt door ten eerste de Heren begeleiders: Alfred Stein, Arnold 
Dekkers en Guus Velders. Alfred, je opbouwende commentaren op de artikelen 
hebben de kwaliteit ervan verder verbeterd en je efficiënte manier van werken heeft 
ertoe bijgedragen dat alles ruim op tijd klaar was. Arnold, je enthousiasme, 
betrokkenheid en behulpzaamheid heb ik als erg prettig ervaren en ik hoop dat we in 
de toekomst samen nog veel inspirerende discussies mogen hebben. Guus, jij hebt er 
voor gezorgd dat dit onderzoek niet alleen theoretisch wetenschappelijk van aard 
was, maar je hebt er ook voor gezorgd dat het praktische toepassingen wist te vinden 
in de huidige luchtkwaliteitsproblematiek.  
 Natuurlijk was er ook ondersteuning vanuit Biometris van Bas Engel 
(Bayesiaanse methoden), Jacques Withagen (statistiek algemeen), en alle mensen aan 
de koffietafel. Dan zijn er natuurlijk van het RIVM/MNP: Patrick van Hooydonk 
(meetdata), Jan de Ruiter en Jan Aben (OPS model), Robert Koelemeijer (MODIS) en 
alle mensen in de koffieplaza. Ook alle kamergenoten die indirect hun bijdrage 
hebben geleverd: binnen Biometris Johan van Ooijen, Jacques Withagen en Marjolein 
Lof, bij het RIVM/MNP Remus Hanea en alle stagiaires die zich daar in de afgelopen 
vier jaar in onze kamer hebben aangediend: Dave, Serge, Andy, Willem, Karin, 
Sandra, Carine, Femke en Maartje. Ook mijn vrienden Erik Holtslag, Arjan van ’t 
Zelfde, Harm de Coninck, Sandra Snel, Gert-Jan Steeneveld, de BWA-clan en mijn 
(ex)huisgenoten: de mensen van Dijkgraaf 13B en Hoogstraat 20a voor de gezellige 
en soms kansloze avon(d)(t)uren. Ja, en dan natuurlijk iedereen wiens naam hier ook 
had moeten staan, tot en met de vriendelijke caissière bij de EDAH aan toe. Pa, ma en 
Leo, jullie ook! Het zit erop. 
 
Jan van de Kassteele 
Wageningen, januari 2006 
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List of symbols 
 
The following list contains symbols that are frequently used in this thesis. Scalars are 
shown in italic, vectors and matrices in bold. 
 
β vector with trend or drift parameter 
εq nugget or equation error term 
εs spatial correlated error term 
εx explanatory variable error term 
εy measurement or observation error term 
η latent variable for y 
λ Box-Cox transformation parameter  
µ large scale external trend or drift 
µξ expectation of ξ 
ξ latent variable for x 
ρ correlation function 
σ uncertainty on data 

2
ξσ  variance of ξ 
2
qσ  nugget or equation error variance 
2
,q relσ  relative nugget 

2
sσ  partial sill or spatially correlated error variance 
2
xσ  variance of covariate or explanatory variable 
2
yσ  variance of measurement or observation 

φ range parameter 
g Box-Cox transformation function 
H distance matrix 
I identity matrix 
i index number, usually i = 1 … n 
j index number, usually j = 1 … m 
m number of prediction locations 
n number of observation locations 
p number of covariates or explanatory variables, or distribution function 
q quantile function 
R correlation matrix 
s spatial locations 
s1 spatial locations in WE direction 
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s2 spatial locations in SN direction 
t time steps 
V covariance matrix 
X matrix with covariates or explanatory variables 
y observations 
^ estimate 
~ prediction or sign indicating a distribution  
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1. General introduction 
 
 
 

1.1 Air quality, health and policy making 
 
It is estimated that 3400-5700 people in the Netherlands have died prematurely 
through short term exposure to air pollution in 2003, of which 1/3 is caused by ozone 
(O3) and 2/3 by particulate matter (PM) (Fischer et al., 2004). Ground level 
(tropospheric) ozone is a major air pollutant in Western Europe. It causes 
inflammatory responses and reduction in lung function caused when humans are 
exposed to periods of several days with high ozone concentration. It can also affect 
ecosystems, mainly through damage to leaves and other parts of plants (WHO, 1996; 
UNECE, 1996). Effects of long-term exposure to PM is uncertain, but is believed to 
have a much greater effect (Pope et al., 1995). Besides ozone and PM, it is well known 
that nitrogen dioxide (NO2) in high concentrations also causes respiratory problems 
for humans (EPA, 1998; WHO, 2003). 
 As a protection instrument for human health, the European Commission has 
set several targets and objectives for pollutants. For ozone this is for example the 
number of ozone exceedance days (EC, 2002), and for PM and NO2 there are 
standards for ambient yearly and daily averaged concentrations (EC, 1999). Although 
emissions have substantially decreased in the Netherlands and Europe over the past 
decade, still at many places these air quality limit values are not met. This has major 
societal consequences in, for example, the Netherlands, where the highest court of 
justice has recently rejected many projects for construction of new houses, business 
parks, and highways (Backes et al., 2005; Folkert et al., 2002; Van Velze et al., 2000). 
 For all these reasons, policy makers require accurate and spatially highly 
resolved maps showing concentrations of pollutants. These maps form a basis for 
assessing individual human exposures and serve to decide on infrastructural projects 
near residential areas. It is the task of the Netherlands Environmental Assessment 
Agency to measure and model air quality. This must be done better than ever 
because of the big social-economical impacts and small margins that are left 
concerning air quality standards. Since policy makers tend to focus more and more 
on uncertainties as well, the question is then how accurate these concentration maps 
are and how should uncertainties be handled? For example, one might question what 
the probability of exceedance of an air quality standard is and how this should be 
communicated. This thesis focuses on statistical techniques for detailed mapping of 
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major pollutants ozone, NO2 and PM and its uncertainties. From these maps, several 
statistics can be derived which can be used for policy making (Van Soest et al., 2001). 
 Ozone results from photochemical reactions with ozone precursors under the 
influence of solar radiation. Ozone typically forms on large scales. NO2 is completely 
formed by combustion. Sources are for example traffic, industry, power plants, and 
inland waterway shipping. NO2 is a typical local scale pollutant. PM originates from 
natural processes, like soil dust and sea salt, and anthropogenic processes, like 
combustion in car engines. It can also be formed from PM precursors (NOx, SO2, 
NH3). PM is therefore also a large scale pollutant, but higher concentrations may be 
found near highways and large cities. 
 In this thesis the relation to air quality standards will be handled differently 
for these three major pollutants. For ozone, we will look at the annual number of 
exceedance days above the standard in the present over the Netherlands, Belgium 
and Germany. For NO2, we will look at yearly averaged concentrations in the present 
and future at national and local scales in the Netherlands. For PM, we will look at 
yearly averaged concentrations in the present over Western Europe. 
 

1.2 Air quality mapping 
 

1.2.1 Monitoring 
 
Concentration maps can in principle be based on measurements of air quality only. 
In the Netherlands the Dutch air quality monitoring network (Landelijk Meetnet 
Luchtkwaliteit, LML) exists. Its purpose is to monitor air quality on a continual basis. 
The observations provide a general description of national, regional and local air 
quality, along with information on smog episodes. 
 Different types of stations are distinguished, depending on the surroundings. 
Background stations are found at rural and (sub)urban sites and provide information 
about concentrations on a regional scale, i.e. concentrations far from streets. Street 
stations are usually found in cities, in and near streets. They provide information 
about traffic related air quality on a local scale (Fig 1.1). The network has undergone 
some changes in the past decades. The largest took place in the mid-nineteen eighties 
(Van Elzakker, 2001). 
 Other European countries have similar networks. Information from those is 
stored in databases and is freely available to the public. One of these databases is the 
AirBase database. AirBase is the public air quality database system of the European 
Environmental Assessment Agency (EEA). It contains information submitted by the 
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participating countries throughout Europe. The air quality database consists of multi-
annual time series and statistics for a number of pollutants. Besides, it provides meta-
information on the involved monitoring networks, their stations, and measurements 
(ETC-ACC, 2005). The measurements are quality checked. Monitoring data used in 
this thesis are extracted from this database. 
 

1.2.2 Modeling 
 
As an alternative to measuring, concentration maps can also be obtained using 
atmospheric dispersion models. In such models, chemical and transport processes 
are described partly by physical laws and partly by empirical relations. Examples of 

rural background
suburban background
urban background
rural street
urban street

 
Fig. 1.1. The Dutch air quality monitoring network for ozone, NO2 and PM10 on 1 January 
2004. The different symbols indicate different types of stations and surroundings. 
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processes are emission, dispersion, transport, conversion and deposition. Input 
usually consists of emissions from sources into the atmosphere. Source properties 
like emission height determine the dispersion. Meteorological forcing and land 
surface characteristics determine the dispersion of pollutants in the atmosphere. 
Output is represented by concentration fields on an hourly, daily, monthly or yearly 
basis, usually on a domain covering regular grid. The processes are schematically 
shown in Fig. 1.2. 
 In this thesis, two major dispersion models are used. The Operational Priority 
Substances (OPS) dispersion model provides information for NO2 background 
concentrations in the Netherlands on national, regional and local scales (Van 
Jaarsveld and De Leeuw, 1993; Van Jaarsveld, 2004). It calculates average 
atmospheric concentrations and deposition from the atmosphere on the basis of 
emissions within the Netherlands and Europe, using the Gaussian plume model to 
describe transport and dispersion. The model is suitable for a series of substances of 
which the behavior can be described by first-order linear chemical reactions; it 
cannot be used, for example, for describing ozone concentrations (Van Jaarsveld, 
1995). Its output is usually in yearly averages. 
 The LOTOS-EUROS model is a 3D chemistry transport model that is used to 
simulate air pollutants over Europe. Based on emission estimates, meteorological 
data and process knowledge the concentration of, only in this thesis, PM is simulated 
on an hourly basis (Schaap et al., 2005a,b). 
 

emission 

transport 

deposition 

dispersion 

conversion 

Fig. 1.2. Schematic illustration of air pollution modeling. From the left to the right: emission, 
dispersion, transport and conversion, deposition. 
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1.2.3 Data assimilation 
 
To base concentration maps on measurements of air quality only, every km2 should 
be monitored continuously in time and internally consistent. Measurements however 
are only taken at a limited number of locations, and interpolation to a regular grid 
followed by a display as a map is necessary. Between the monitoring locations 
relevant information will be missing or can only be predicted, i.e. interpolated, 
leading to uncertainty in the map. Besides, the measurements have errors arising 
from various sources, such as instrumental noise, environmental noise, sampling, 
and the interpretation of sensor measurements. No information about the physical 
and chemical processes about the concerned component is taken into account. 
 To base concentration maps on modeling of components only, these models 
must contain a complete description of physical and chemical processes of the 
concerning component, including emissions and meteorology. All models are 
imperfect however, with errors arising from approximate physics (transport or 
chemistry) and different spatiotemporal scales. Such models need to be calibrated en 
validated by measurements and the models remain dependent on the quality of its 
input, which may lead to biased output and uncertainties. 
 This thesis combines the two approaches by means of data assimilation (Fig. 
1.3). Data assimilation is a collective term for methods where biased and/or 
uncertain measurements are being combined with biased and/or uncertain model 
output. The combination always results into a more detailed and more accurate map 
than maps based on measurements or model output alone. 

 

INPUT 
(measurements) 

INPUT 
(emissions, 

meteorology) 

MAP 
(no measurement 

information) 

INTERPOLATION 

MODEL 
(physical and chemical 

processes) 

DATA ASSIMILATION 
(combining 

measurements and 
model) 

MAP 
(measurement and 

process information) 

MAP 
(no process 
information) 

 
Fig. 1.3. Illustration of data assimilation. 
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 Data assimilation consists of three components: measurements, a physical 
process model, and a data assimilation algorithm. A central concept is the concept of 
errors, error estimation and error modeling, usually with a statistical approach. In 
this thesis focus is on static model output, like yearly averages. In that case we can 
apply geostatistics. A geostatistical model can be written as a linear mixed model 
with a correlated error structure (Ribeiro and Diggle, 1999; Pinheiro and Bates, 2000) 
and the dispersion model output can be considered as an explanatory variable. 
However, explanatory variables in this context are usually considered to be 
deterministic, so the geostatistical model must be extended. 
 

1.2.4 The geostatistical approach 
 
Geostatistical interpolation, or kriging, is being applied for since the nineteen 
seventies in many spatial applications (Cressie, 1993; Chilès and Delfiner, 1999). 
During the last ten years, we observe also a strong increase in applying kriging to air 
quality studies, often to interpolate measurements only. Emphasis usually lies on 
spatiotemporal interpolation (e.g. Wikle et al., 1998; Kyriakidis and Journel, 1999; 
Huerta et al., 2004). More recently, additional information is being used in air quality 
mapping studies, as found in Pauly and Drueke (1996), where ozone is mapped 
using a digital elevation model, in Bertino and Wackernagel (2002), where dispersion 
model output is used to map ozone concentrations around Paris, and in Genikhovich 
et al. (2002), where dispersion model output is combined with measurements to 
describe urban air quality. 
 All studies in the previous paragraph use kriging with external drift (KED) to 
combine measurements with additional information. KED merges two sources of 
information: a primary variable that is accurate and precise but only available at a 
limited number of locations, and a secondary variable that covers the full domain on 
a fine-mazed grid but is less accurate. Collocated co-kriging can be used as an 
alternative, but KED requires a less demanding variogram analysis. Furthermore, 
comparison studies (Pardo-Igúzquiza, 1998; Goovaerts, 2000) show KED 
interpolation to perform better than collocated co-kriging. KED is a form of data 
assimilation based on a regression-based interpolation method. The secondary 
information is treated as a covariate or explanatory variable and, as such, partly 
explains the variation in the spatially correlated observations. This allows the model 
to have a bias, whereas other external information may be included as well. KED has 
been applied in many environmental mapping of sparsely sampled data using dense 
external information. 
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 During the last decade, a shift has occurred towards a more model-based 
geostatistics approach, starting with Diggle et al. (1998). The word “model” in this 
context refers to statistical models for inference. A model-based approach allows us, 
besides interpolation of traditional continual data, interpolation of count data or 
fractions for example. In general, it is a link between geostatistics and generalized 
linear models (GLM) (McCullagh and Nelder, 1989; Breslow and Clayton, 1993). The 
use of secondary information by means of KED, as described in the previous 
paragraph, fits easily in this model-based approach because of the GLM setup. 
 

1.2.5 Measurement Error models 
 
KED it its current form does not account for uncertain explanatory variables. This is a 
limitation. It does however take into account dependence between spatial 
observations. On the other hand, there are the so-called measurement error models 
or error-in-variable models. These models allow regression of dependent variables 
with uncertain explanatory variables. They do however not take into account spatial 
dependence. According to the theory of measurement error models, we have two or 
more related quantities that are not observable and therefore unknown. These 
quantities are called latent variables and can only be observed with additive errors. 
The error variances are assumed to be known at each location and can differ from 
location to location. Part of the variance in the observations can be explained by the 
variance of a linear function of the explanatory variables. The residuals, or equation 
errors, are considered independent and identically distributed (Cheng and Van Ness, 
1999). 
 It would be nice to have the best of both: KED that allows for explanatory 
variables and spatial dependence between observations, and error-in-variable 
models, that allow uncertainties in both the observations and explanatory variables. 
In this thesis, we put those two together. The residuals are considered a sum of a 
spatially correlated part, as in KED, and the so-called equation error part, due to an 
imperfect relation between our variables. For this reason we call this new concept 
“error-in-variable KED”. 
 Estimation of parameters in these statistical models requires modern statistical 
techniques, because analytical solutions are not possible and the classical approach 
using the variogram, as in Chilès and Delfiner (1999), is not sufficient anymore. An 
alternative is Bayesian inference (Handcock and Stein, 1993; Diggle et al., 1998; 
Gelman et al., 2004). Its advantage is that geostatistical models can be written down 
explicitly, and can be evaluated by numerical techniques, like Markov Chain Monte 
Carlo (Lunn et al., 2000; Gilks et al., 1994). Furthermore, we can use prior information. 
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In this thesis, we shall often apply the model-based geostatistical approach for 
combining measurements and chemistry transport model output. 
 

1.3 Objectives and scope 
 
Air quality measurements are in general accurate and precise at a certain location, 
but interpolation of a limited number of observations causes imprecise maps. 
Dispersion model output on the other hand is inaccurate (biased) and imprecise 
compared to measurements, but it has a much higher spatial resolution and provides 
more detailed information. A combination of both leads to better maps. 
 The main objective of this thesis is to develop and use geostatistical methods 
to combine a limited number of air quality measurements and inaccurate and 
imprecise, but domain covering dispersion model output to acquire detailed air 
quality maps on local, national and international scales, and to show that this 
improves spatial predictions, i.e. smaller bias and smaller uncertainties. Uncertainties 
will be quantified better than ever. 
 First ideas were an extension of universal kriging with Poisson regression, the 
same extension as linear regression to generalized linear regression for interpolating 
exceedance days. Second, a combination of spatially sparse measurements with 
spatially dense model output using KED. During the study, the power of KED 
emerged and also the urging question of assessing uncertainties in the final 
predictions, based on the uncertainties in measurements and dispersion model 
output. These ideas led to the following research questions: 
 
Q1. How to interpolate spatial count data such as the number of ozone exceedance 

days? 
Q2. Can additional information from dispersion models improve interpolation of 

measurements? 
Q3. Which role does prior knowledge play in this context? 
Q4. Should parameters kept fixed or should they be re-estimated every time? 
Q5. How many measurements are actually needed for a detailed map of sufficient 

quality? 
Q6. How do different uncertainties in the measurements and dispersion models 

affect the accurateness and precision of the final predictions? 
Q7. Can these methods be applied in scenario studies for determining future air 

quality? 
Q8. How do the results relate to the European air quality standards? 
Q9. How do we communicate uncertainty in air quality maps to policy makers? 
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Q10. How do we deal with different measurement techniques between countries? 
Q11. Can we use other sources of additional information, such as satellite images, 

besides dispersion model output? 
 

1.4 Thesis outline 
 
The objectives are dealt with in five chapters of this thesis. Chapter two starts with a 
model-based geostatistical interpolation of the annual number of ozone smog days in 
the Netherlands, Belgium and Germany (Q1). Two statistical models are being 
compared to describe these count data. 
 Chapter three illustrates the use of dispersion model output on the 
interpolation of NOx measurements in the Netherlands (Q2). In this chapter we 
describe the basic techniques of universal kriging and kriging with external drift for 
such mapping procedures. We further discuss the impact of different parameter 
estimation techniques and the use of prior knowledge (Q3 and Q4). The methods are 
applied to a reduced air quality monitoring network in the Netherlands to see what 
the impact is when the number of stations decreases (Q5). 
 Chapter four, a theoretical chapter, is the core of this thesis. The KED method 
is extended and a new method is being developed were uncertain measurements and 
uncertain explanatory data can be combined in a solid geostatistical setting. We call 
this method error-in-variable KED. The impact of different measurement and model 
uncertainties is illustrated by a simulated data example and applied to NO2 
concentration mappings at an urban and rural site in the Netherlands (Q6). 
 Chapter five extends the newly developed error-in-variable KED to make 
future predictions. It is applied to a NO2 scenario for 2010. The emphasis is on the 
assessment of local air quality near Rotterdam, and an attempt is made to simply 
communicate spatial uncertainties to end users, like policy makers (Q7, Q8 and Q9). 
 Chapter six considers air quality at the European scale, focusing on particulate 
matter. Measurements from different countries and surroundings are standardized 
first by means of statistical methods and are then combined with uncertain 
additional information form a chemistry transport model and remote sensing data to 
result in maps that completely cover Western-Europe (Q10 and Q11). 
 Finally, chapter seven formulates the concluding remarks of this thesis, based 
on the questions and statistical methods described in the first six chapters. 





 

 

19

2. Interpolation of ozone exceedance days 
 
 
 
 
This chapter discusses two model-based geostatistical methods for spatial 
interpolation of the number of days that ground level ozone exceeds a threshold 
level. The first method assumes counts to approximately follow a Poisson 
distribution, while the second method assumes a log-Normal distribution. First, these 
methods were compared using an extensive data set covering the Netherlands, 
Belgium and Germany. Secondly, the focus was placed on only the Netherlands, 
where only a small data set was used. Bayesian techniques were used for parameter 
estimation and interpolation. Parameter estimates are comparable due to the log-link 
in both models. Incorporating data from adjacent countries improves parameter 
estimation. The Poisson model predicts more accurately (maximum kriging standard 
deviation of 2.16 compared to 2.69) but shows smoother surfaces than the log-
Normal model. The log-Normal approach ensures a better representation of the 
observations and gives more realistic patterns (an RMSE of 2.26 compared to 2.44). 
Model-based geostatistical procedures are useful to interpolate limited data sets of 
counts of ozone exceedance days. Spatial risk estimates using existing prior 
information can be made relating health effects to environmental thresholds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
_______________ 
This chapter is based on J. van de Kassteele, A.L.M. Dekkers, A. Stein and G.J.M. Velders (2005). 
Model-based geostatistical interpolation of the annual number of ozone exceedance days in the 
Netherlands. Stochastic Environmental Research and Risk Assessment, 19(3), 173-183. 
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2.1 Introduction 
 
Ground level (tropospheric) ozone is a major air pollutant in Western Europe. 
Tropospheric ozone results from photochemical reactions with ozone precursors, 
volatile organic compounds, nitrogen oxides, carbon monoxide and methane in the 
atmosphere. Environmental focus on ozone concentrations has increased as a result 
of the possible inflammatory responses and reduction in lung function caused when 
humans are exposed to periods of several days with high ozone concentrations. 
Ozone can also affect ecosystems, mainly through damage to leaves and other parts 
of plants (WHO, 1996; UNECE, 1996). 
 As a protection instrument for human health, the European Commission has 
set several targets and objectives for ozone levels in the atmosphere. The indicator 
applied in this study is the number of days per year in which an eight-hour moving 
average ozone concentration exceeds 120 µg/m3 (EC, 2002). 
 Currently, rural ozone concentrations in the Netherlands are measured hourly 
within the Netherlands Air Quality Monitoring Network at 23 stations, spread across 
the country (van Elzakker, 2001). Each station registers the annual number of 
exceedance days. EU regulations (EC, 2002) require the number of exceedance days 
to be reported at the measuring sites. Interpolation of the exceedance days to 
produce maps for the Netherlands are a basis for assessment studies related to public 
health and environmental effects (for example, see EEA, 1998). 
 Here we analyze the use of geostatistical interpolation of annual ozone count 
data. So far, no attention has been paid in the literature to geostatistical interpolation 
of counts for ozone exceedance days. In geostatistics, spatial data are assumed to be a 
realization of a random field, and often without the assumption of any stochastic 
model being declared. Usually, normality is implicitly assumed (Christakos, 1992). 
The data analyzed in this chapter, however, are positively valued count data, 
without constant variance and normally distributed errors. In this case, the normality 
assumption may no longer be appropriate. Count data require a different approach. 
The question addressed in this chapter is then which interpolation procedure will be 
most appropriate and practically applicable for environmental scientists. 
 The aim of this study is to investigate the applicability of either a Poisson 
procedure or a log-Normal model-based geostatistical procedure (Diggle et al., 1998 
and Ribeiro and Diggle, 1999) to interpolate the number of exceedances of the 120 
µg/m3 threshold. A complication is sparseness of the data. Therefore, data from 2000 
measured at 120 rural ozone monitoring stations in the Netherlands, Belgium and 
Germany were analyzed first. Then there is a focus on the small subset of 23 stations 
in the Netherlands.  
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2.2 Material and methods 
 

2.2.1 Data 
 
Verified hourly data for 2000 were collected from the Airbase database (ETC-ACC, 
2005) at 120 rural background ozone stations for the Netherlands, Belgium and 
Germany. These data were then aggregated, first, by calculating eight-hour moving 
averages, and, secondly, by taking the daily maxima. Finally, the days on which 
these maxima exceeded the threshold of 120 µg/m3 were summed to obtain the 
annual number of exceedance days. The data were aggregated according to the 
guidelines of the European Commission for missing data (EC, 2002). Nine stations 
had therefore to be excluded. It was assumed that small differences between 
measurement techniques in the monitoring networks had not influenced the annual 
number of exceedances, since all observations of ozone had to satisfy the same 
quality control specifications (EC, 2002). 
 Fig. 2.1 shows the 111 observations over the whole study region. The 
coordinates were obtained by transforming the geographical coordinates with an 
azimuthal equidistant projection centered on 51° north and 9° east. This projection 
preserves a correct absolute distance between the stations in the region considered. 
The number of exceedances was lower near the North Sea coast and higher in the 
south-east of the region. High ozone concentrations are caused by photochemical 
reactions during warm and sunny days, while the strong dependence on these 
meteorological conditions caused the number of exceedance days to fluctuate sharply 
from year to year (Feister and Balzer, 1991). In and near large cities, ozone 
concentrations are usually lower than in rural areas (see, for example, Gregg et al., 
2003). Since this effect introduces local non-stationarities, only stations in rural areas 
were considered in this study. 
 Next to showing the observations in the data set of 111 stations, the study 
focused on analysing data from the national air quality monitoring network of the 
Netherlands only. This network consists of 23 rural ozone stations (van Elzakker, 
2001), but one station had to be excluded due to missing data. The reason for 
analyzing this small subset only is practical: i.e. the Netherlands Environmental 
Assessment Agency needs to report the number of exceedance days to the European 
Commission as soon as the data has become available. 
 Fig. 2.1 shows the number of exceedance days to increase from the north-west 
to the south-east. The spatial variability increases along with this trend, making the 
random field a spatial non-stationary process, typical behavior of a Poisson-like 
process. To gain more insight into the distribution, the count data were analyzed and  
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Fig. 2.1. The annual number of days where the daily maximum eight-hour moving average 
ozone concentration exceeds the 120 µg/m3 threshold value in 2000. The rectangle indicates 
the location of Eibergen station. 
 
simulated at one single point. At other locations a similar process may occur. 
Observations of daily maximum eight-hour moving average ozone concentration 
from 1991 to 2000 are shown in Fig. 2.2, at one particular station, Eibergen, a village 
in the eastern part of the Netherlands. Meteorological conditions and human 
activities contribute to fluctuations in the concentration. The graph shows extreme 
concentrations during the spring/summer season. Circles indicate the days that the 
concentration exceeds the threshold of 120 µg/m3. One particular difficulty in 
assigning any statistical distribution to these data is the clustering of the exceedances. 
Such behavior is typical for extreme events. This can be described with an extreme 
value model (Smith, 1989). Shively (1991) models the sequence of exceedances as a 
non-homogeneous Poisson process. A simpler and more straightforward approach 



2.2 Material and methods 

 

23

assumes the exceedance days to follow a Poisson process in the limit, i.e. that the 
dependence between daily maxima separated by a given number of days decreases 
sufficiently fast as the separation increases. 
 As an experiment, we simulated the annual number of exceedance days. We 
modeled the occurrence of exceedance days over one ozone season at the Eibergen 
station by sampling from the Bernoulli distribution. To account for temporal 
dependence, the probabilities were conditional on the outcome of the previous day. 
These conditional probabilities were estimated from the 10 years of observations 
shown in Fig. 2.1. Summing the resulting sequences of zeros and ones yielded the 
annual numbers of exceedance days. The distribution of simulated exceedance days 
is presented as a histogram in Fig. 2.3, to which a Poisson distribution was fitted. It 
describes the average well (17.9), and is suitable for handling count data. It shows a 
smaller variance (17.9 for the Poisson distribution) than the simulated data (64.4), 
however. It overestimates the top and underestimates the tails. Also the log-Normal 
density function was fitted, which better accounts for the tails and the mean (18.2) of 
the simulations. The function however handles the data as being continuous and 
overestimates (105.6) the variance of the simulated data (64.4). 
 This exploring analysis showed that neither a Poisson distribution nor a log-
Normal distribution can describe ozone exceedance count data very well, but both 
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distributions have properties that do fit the data. On the other hand, the Bernoulli 
simulation of the occurrence of exceedance days might not have been correct, since it 
was only a very simple model for the real situation (see the discussion section). It 
should also be realized that comparison with only one observed datum could be 
performed, since only one realization was available. 
 

2.2.2 The Poisson Model 
 
Assuming counts to be spatially independent Poisson distributed, they could be 
analyzed with a generalized linear model (McCullagh and Nelder, 1989). 
Generalized linear models allow data to follow any distribution of the exponential 
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Fig. 2.3. Simulations of the annual number of exceedance days (bars) at Eibergen station with 
a fitted Poisson distribution (solid line) and log-Normal distribution (dashed line). 
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family, accommodating both continuous and discrete non-Normal distributions. 
Generalized linear-mixed models (Breslow and Clayton, 1993) allow for correlated 
data. Diggle et al., (1998) embedded kriging into the framework of generalized linear 
models, providing a way to analyze spatially correlated Poisson data. This model 
was applied in this study.  
 Considering n spatial observations yi, with i = 1 … n, as realizations of a 
random field process Yi at locations si, each observation for spatial correlated Poisson 
can written as 
 

yi | 
isε ~ Poisson(mi) (2.1)

 
The interpretation is that conditional on an underlying surface εs, y comes from an 
independent Poisson distributed variable with the conditional expectation m. m is a 
variable containing the deterministic large-scale trend µ, and the underlying surface 
εs. For Poisson data the relation between m, µ, and εs is attenuated by the log link 
function 
 

log(mi) = µi + 
isε  (2.2)

 
The trend µ is a linear function Xβ of known functions of covariates X, which, in our 
study, only depends on the location variable s, and unknown regression or trend 
parameters β. The underlying surface εs is modeled by a zero mean second-order 
stationary Gaussian process with covariance matrix V = 2

sσ R 

 
εs ~ N(0, V) (2.3)

 
Here 2

sσ  is the variance of the underlying random field. Elements of R depend upon 

the distance between two locations, si and sj, by means of a permissible correlation 
function ρ with a range parameter φ. The Poisson model predicts the intensity in 
space m. For the Poisson model, intensity and variance are equal. Hence, the 
predicted intensity field will always be smoothed because it can explain deviations 
from the intensity value by its corresponding Poisson variance. 
 

2.2.3 The log-Normal model 
 
We considered the log-Normal model (Cressie, 1993) as an alternative method. We 
now assume the logarithm of the random field followed a Normal distribution. The 
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log-Normal model can be written in an equivalent model-based formulation of a 
linear mixed model (Ribeiro and Diggle, 1999; Pinheiro and Bates, 2000). Conditional 
on the underlying surface εs the log(y) are independently normally distributed, with 
conditional expectation m and variance 2

qσ  

  
log(yi) | 

isε  ~ N(mi, 2
qσ ) (2.4)

 
Note that here log(y) is in fact a noisy version of m, with residual variance 2

qσ . The 

relationship between m µ and εs is the identity link for a Gaussian model so 
 

mi = µi + 
isε  (2.5)

 
Interpretation of µ and εs remains unchanged in comparison to the Poisson model. In 
conventional geostatistics, the variance 2

qσ  is called the nugget, 2
sσ  + 2

qσ , the sill, and 
2
sσ , the partial sill. The parameter 2

qσ  can be considered to resemble variations that 

cannot be attributed to spatial correlation and thus introduces smoothing. Finally, the 
log-Normal model makes spatial predictions of the expected number of exceedance 
days. This is a major difference with the Poisson model. 
 

2.2.4 Parameter estimation and spatial prediction 
 
Parameters were estimated using Bayesian inference (Gelman et al., 2004), in 
particular using Markov Chain Monte Carlo (MCMC) methods (Gilks et al., 1996) 
based upon the Langevin-Hastings algorithm (Besag, 1994; Papaspilliopoulus et al., 
2003). This is a Metropolis-Hastings algorithm in which the proposal distribution 
uses gradient information from the log-posterior distribution. The algorithm 
iteratively generates a chain, where in each step a proposal is generated for an 
update of the current state of the chain. The update is then accepted or rejected 
according to a certain acceptance probability. Proposal variances for 2

sσ  and φ have 

to be found manually in such a way that approximately 60 percent of the proposals is 
accepted (Christensen and Ribeiro, 2002). The predictive distribution is obtained by 
first sampling from the posterior distributions, and then taking, for each, samples 
from the multivariate Gaussian distribution of εs. This procedure automatically 
incorporates parameter uncertainty in the predictions. For the mathematical 
formulation of the above process we refer to Diggle et al., 1998 and Gelman et al., 
2004. 
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 A re-parameterization of the nugget 2
qσ  as a relative nugget 2

,q relσ  = 2
qσ / 2

sσ  

was carried out to still be able to write the covariance matrix V as a product between 
2
sσ  and the correlation matrix R. Discrete intervals for φ and 2

,q relσ  had to be taken, 

because their posteriors cannot be written as a standard statistical distribution. 
(Ribeiro and Diggle, 1999; Christensen and Waagepetersen, 2002). 
 

2.2.5 Prior specification and setup of the MCMC algorithm 
 
Bayesian inference needs a specification of prior distributions of the parameters. 
Prior knowledge was available (see Fig. 2.1). To allow modeling of the trend towards 
the south-east, we included covariates X = [1 s1 s2], where s1 and s2 are the 
coordinates in the east-west and north-south directions, respectively, and associated 
regression parameter β = [β0, β1, β2]. The variance 2

sσ  of the log-data is positive, 

approximately equal to 0.1, and the correlation distance φ a few hundred kilometers, 
which is typical for ozone concentrations found in previous years. An exponential 
variogram model ρ(h) = exp(-h) was chosen for the covariance structure. The 
resulting priors for both the Poisson and log-Normal models are: 
 
 β0 ~ N(3, 0.5) (2.6a)
 β1 ~ N(0.001, 0.001) (2.6b)
 β2 ~ N(-0.002, 0.001) (2.6c)
 2

sσ  ~ Inv-χ2 (1, 0.1) (2.6d)

 φ ~ Exp(1/100) (2.6e)
 2

,q relσ  ∝ 1 (2.6f)

 
We chose Gaussian priors for the trend parameters, an inverse-χ2 distribution with 
one degree of freedom and a scale parameter 0.1 for 2

sσ  and an exponential prior 

with an expectation of 100 km for the range parameter. The relative nugget 2
,q relσ  = 

2
qσ / 2

sσ , only used in the log-Normal model, was given a uniform prior. The 

Gaussian distributions and inverse-χ2 distribution are conjugate priors for the trend 
and sill parameters, respectively. The exponential distribution for the range 
parameter leads to more equally spaced correlations at a fixed distance (Ribeiro and 
Diggle, 1999). 
 The variances of the trend parameters seem rather strict. They are not 
however, because these variances are scaled by the partial sill parameter. In 
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combination with the fact that coordinates are given in kilometers, these priors are 
relatively flat. 
 Proposal variances for 2

sσ  and φ were found to be 0.002 and 100. To check on 

convergence and mixing, we considered trace plots of the individual samples and 
their corresponding auto-correlation functions. The samples preferably show 
stationarity with low auto-correlation. The chain’s burn-in time was set at 10000 
iterations and it was sampled every 200th iteration to reduce the auto correlation. 
 The prior specification for the subset of 22 observations for the Netherlands 
only was based on information on the full set. Only the intercept parameter was 
given a lower value, and no prior trend was specified. The resulting priors for the 
subset are: 
 
 β0 ~ N(2, 0.5) (2.7a)
 β1 ~ N(0, 0.001) (2.7b)
 β2 ~ N(0, 0.001) (2.7c)
 2

sσ  ~ Inv-χ2 (0.1, 1) (2.7d)

 φ ~ Exp(1/100) (2.7e)
 2

,q relσ  ∝ 1 (2.7f)

 
The proposal variances for 2

sσ  and φ were found to be 0.01 and 300, respectively. The 

chain’s burn-in time and thinning remained unchanged. 
 

2.2.6 Validation 
 
A cross validation by “leaving one out” was carried out to see which interpolation 
method performs better. The root-mean-squared error RMSE was chosen as the error 
measure. The two models do not predict the same quantity. Therefore, results have to 
be interpreted with care. 
 

2.3 Results 
 
The data sets were analyzed with the software packages geoR (Ribeiro and Diggle, 
2001) and its extension, geoRglm (Christensen and Ribeiro, 2002). Both packages run 
under the programming environment of R (Ihaka and Gentleman,1996). The geoR 
package contains several functions for handling (log-)Normal spatial data; geoRglm 
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can deal with spatial Poisson data. R and both packages are available free of charge 
on the Internet. 
 The results are presented under three headings: 1) parameter estimation and 
interpolation using the full data set; 2) interpolation results of 1), focusing on the 
Netherlands, and 3) parameter estimation and interpolation using the subset of the 
Netherlands only. Interpolation was done on a 15 × 15 km grid for the Netherlands, 
Belgium and Germany, while for the Netherlands a 5 × 5 km grid has been taken. 
 

2.3.1 Part 1: analysis and interpolation using the full set 
 
Posterior densities of the six model parameters are shown in Fig. 2.4. Since the 
Poisson model does not contain a nugget effect, no posterior is shown. Values of the 
modes and standard deviations are given in Table 2.1. Since we work with a number 
of days, sill and nugget have no units. 
 The posterior densities of the trend parameter vector β of both models are 
practically identical. This is not surprising since both models estimate the trend on a 
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model (dashed line) using the full data set. 
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log-scale. The modes are β = (3.01, 0.0015, -0.0024) and β = (3.00, 0.0013, -0.0025) for 
the Poisson model and log-Normal model, respectively. 
 The partial sill 2

sσ  of the Poisson model is smaller than that of the log-Normal 

model. Their modes are 0.093 and 0.12, respectively. Although they have the same 
order of magnitude due to the log-scale, we can understand the difference from 
distributional assumptions of both models. The Poisson model predicts the intensity 
field. The Poisson model can describe the variation in the original data by its 
corresponding Poisson variance. For this reason, 2

sσ  may be smaller than for the log-

 
Fig. 2.5. Predicted number of ozone exceedance days (left) and corresponding kriging 
standard deviations (right) with the Poisson model (top) and log-Normal model (bottom) for 
2000 using the full data set. 
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Normal model. If simulations of equal probable fields were made, these fields would 
be close to the original data. 
 For the posterior range distribution for the Poisson model we have a mode φ = 
102 km and for the log-Normal model φ = 68 km. The effective correlation distance is 
three times larger, because of the exponential correlation function. The Poisson 
posterior is more uncertain, shown by its smaller peak and wider tail (see also Table 
2.1). Further, we found the range to be positively correlated with the partial sill. The 
nugget effect is estimated only in the log-Normal model. Its mode is relatively small, 

2
qσ  = 0.028, but it will introduce smoothing in the interpolation. 

 Fig. 2.5 shows the predicted spatial fields (left panels) and their corresponding 
standard deviations (right panels). Minimum and maximum values are given in 
Table 2.2. From the original number of exceedance days, the Poisson model (upper 
panels) predicts the Poisson intensity of the number of exceedance days, while the 
log-Normal model (lower panels) predicts the expected number of exceedance days. 
The patterns and values of both models are rather similar. Both models smoothed the 
original data. 
 The standard deviations clearly show the difference between what both 
models predict. Related to its lower sill and higher range, the Poisson model shows 
considerable lower values. This indicates the predicted intensity to be more certain 
than the expected number of exceedance days. In both models, the log-link yields 
larger standard deviations at those locations where predictions are larger. Cross 
validation (Table 2.3) shows that the RMSE for the Poisson model was smaller (7.09) 
than that for log-Normal model (7.15). 
 
 

Table 2.1. Modes and standard deviations (calculated as ¼ of the 95% credible interval) of the 
posterior distributions (Figs 4 and 7). 
  β0 (-) β1 (km-1) β2 (km-1) 2

sσ  (-) φ (km) 2
qσ  (-) 

Full set Poisson 3.01 0.0015 -0.0024 0.093 102  
  (0.11) (0.00034) (0.00033) (0.037) (68)  
 log-Normal 3.00 0.0013 -0.0025 0.12 68 0.028 
  (0.12) (0.00040) (0.00037) (0.044) (74) (0.014) 
Subset Poisson 2.07 -0.00010 0.000076 0.029 63  
  (0.14) (0.00036) (0.00036) (0.039) (113)  
 log-Normal 2.13 -0.000041 0.00011 0.073 56 0.013 
  (0.16) (0.00047) (0.00048) (0.052) (76) (0.011) 
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Fig. 2.6. Predicted number of ozone exceedance days (left) and corresponding kriging 
standard deviations (right) with the Poisson model (top) and log-Normal model (bottom) for 
the Netherlands in 2000 using the full data set. 
 

2.3.2 Part 2: interpolation in the Netherlands using the full set 
 
In the previous section, we showed the most important properties of both models. 
Because the effective range was approximately a few hundred kilometers, we also 
incorporated data from the surrounding countries Belgium and Germany. In this 
section we zoom in on the interpolation results for the Netherlands only, while using 
the parameter estimates from the full set. 
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Table 2.2. Minimum and maximum values of the data, model predictions and model standard 
deviations. 
  Full set

NL-B-D
Full set

NL
Subset 

NL 
  min max min max min max 
 Observations 5.00 79.00 5.00 14.00 5.00 14.00 
Poisson Predictions 6.60 75.84 7.23 13.28 8.11 10.03 
 Standard deviations 1.40 23.48 1.39 2.60 1.26 2.16 
log-Normal Predictions 5.78 83.71 6.05 13.97 5.85 12.42 
 Standard deviations 1.20 34.47 1.00 3.56 0.85 2.69 
   
 Fig. 2.6 shows the predicted fields in the Netherlands (left panels) and their 
corresponding standard deviations (right panels). The presence of observations from 
Germany leads to higher values near the Netherlands-German border. The Poisson 
model (upper panels) shows more smoothing than the log-Normal model (lower 
panels), as is verified from the minimum and maximum predicted values (Table 2.2). 
 Standard deviations of the Poisson model are smaller and show less variation. 
This indicates that the predicted intensities are more certain than the expected 
number of exceedance days predicted by the log-Normal model. The RMSE of both 
models are practically equal, 2.28 and 2.27, respectively. The log-Normal model has 
shown less smoothing, but this has only a little effect on the RMSE. 
 

2.3.3 Part 3: analysis and interpolation in the Netherlands using the 
subset 
 
This section focuses on the Netherlands only. Parameter estimation and interpolation 
has been done using the subset of 22 observations. Posterior densities are shown in 
Fig. 2.7, with values of the modes and standard deviations given in Table 2.1. The 
posterior trend parameter vector of the Poisson model is again similar to that of the 
log-Normal model. Posterior modes are β = (2.07, -0.00010, 0.000076) and β = (2.13, -
0.000041, 0.00011), respectively, indicating no significant trend in the data. The 
estimates for the Poisson model are more certain (Table 2.1). 
 The partial sill 2

sσ  in both models diminished in comparison to the values 

found using the full set. Posterior modes are 0.029 and 0.073, respectively. In 
particular for the Poisson model, the sill value has become very small, indicating that 
the Poisson model will only show little variation around its mean. As for the trend 
parameters, differences in uncertainty of 2

sσ  between the two models have grown. 
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 The posterior range parameter φ has also become smaller, with modes of 63 
km and 56 km for the Poisson model and log-Normal model, respectively. The 
posterior range of the Poisson model (Fig. 2.7) has become more uncertain than the 
range in Fig. 2.4 (Table 2.1). It appeared to strongly depend on its prior. The nugget 
of the log-Normal model has also reduced ( 2

qσ  = 0.013). Compared to the estimates 

using the full set, the standard deviations of all parameters, except the nugget, have 
increased (Table 2.1). 
 Fig. 2.8 shows the predictions (left panels) and corresponding standard 
deviations (right panels) of both models. Contrary to Fig. 2.6, three aspects can be 
clearly seen. First, the influence of the observations from the surrounding countries 
has disappeared, especially near the Netherlands-German border. Second, the 
Poisson model has larger smoothing, and third, the log-Normal model has less 
smoothed. Standard deviations for both models decreased. Minimum and maximum 
values are given in Table 2.2. Cross validation shows a lower RMSE for the log-
Normal model (2.26) than for the Poisson model (2.44) (Table 2.3). 
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Fig. 2.7. Posterior distributions of the Poisson model parameters (solid line) and log-Normal 
model (dashed line) using the subset. 
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2.4 Discussion 
 
The data used in this study represent the annual number of days in which ozone 
exceeds a threshold level. Observations were used from the Netherlands, Belgium 
and Germany. One may question the possibility of pooling data, since different 
countries may use different ozone measurement techniques. According to European 
quality control specifications (EC, 2002) however, measuring was done in a 
standardized way with calibrated equipment, but an intercomparison study 

 
Fig. 2.8. Predicted number of ozone exceedance days (left) and corresponding kriging 
standard deviations (right) with the Poisson model (top) and log-Normal model (bottom) for 
the Netherlands in 2000 using the subset. 
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(Borowiak et al., 2000) showed that the Netherlands ozone concentrations were 
measured 4% lower than its surrounding countries. We performed a recalculation of 
the number of exceedance days in the Netherlands, and the number of exceedance 
days increased from 0 to 5 days, depending on the station, with an average of 2.05 
days. We could have corrected the data in advance, but on the other hand, in our 
research we analyzed data that were actually reported by the Netherlands 
Environmental Assessment Agency, without correcting them first. The correction 
should be done by the Agency before releasing the data. 
 The study showed the effective correlation distance to be approximately a few 
hundred kilometers. This satisfies analysis of the extensive data set covering the 
three countries. It further implies that when interpolating for the Netherlands only, 
data from surrounding countries have to be taken into account. One practical issue 
remains important as well: the Netherlands Environmental Assessment Agency 
needs to report the number of exceedance days as soon as the data has become 
available. Since data from other agencies can arrive late, analyzing only data from the 
Netherlands is then the ultimate possibility, but on the other hand, information from 
previous years can be used as prior information. 
 In the study we chose an explicit model-based geostatistical approach to 
interpolate the annual number of exceedance days. First, we assumed an 
approximation by a Poisson distribution, and second, a log-Normal distribution. The 
log-link in both models made model and parameter comparison easier. The 
advantage of using a Poisson model was that data could be analyzed as count data, 
with corresponding properties. This was indicated by increasing variance with 
increasing mean (Fig. 2.1) as well as by the simulation study (Fig. 2.3). Its 
disadvantage was that it did not properly fit the simulation study. The variance of 
the Poisson distribution was too small as compared to the variance of the simulation. 
Occurrences of exceedance days cluster in time, which weakens the assumption of a 
Poisson process, and it predicted the intensity of the annual number of exceedance 
days, as such complicating direct comparison with observations. The log-Normal 
model better fitted (Fig. 2.3). It also showed increasing variance with an increasing 
mean and it predicted the expected number of exceedance days. The disadvantage is 
that it handled data as continuous, which was not the case.  

Table 2.3. Root mean-squared error values of the cross validation. 
 Full set 

NL-B-D 
Full set 

NL 
Subset

NL
Poisson 7.09 2.28 2.44
log-Normal 7.15 2.27 2.26
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 The most important difference between the models was that the Poisson 
model predicts an intensity field, whereas the log-Normal model predicted expected 
values. For this reason, 2

sσ  was smaller for the Poisson model (Table 2.2). As kriging 

standard deviations were smaller, the spatial predictions by the Poisson model 
seemed more accurate. Since expectation and variance are equal for a Poisson 
distribution, the Poisson model could describe more variation in the original data. 
Therefore the Poisson model described the original data by a smoothed intensity 
field that seemed more accurate. 
 The nugget of the log-Normal model can be considered similar to the Poisson 
variance and has a comparable effect to the smoothing properties of the Poisson 
model. This became clear for the full data set. For the subset, the nugget was lower, 
resulting in a less smoothed surface. The log-Normal model described most variation 
in the data by the underlying surface. The Poisson model, on the contrary, described 
this variation with its Poisson variance and showed a smoothed surface. 
 The choice for the prior of the range parameter was important. Earlier 
estimates using non-informative priors resulted in poor convergence in the MCMC 
algorithm. The choice of an exponential prior was an appropriate choice because it 
has the property that the correlation at a fixed distance was more uniformly 
distributed (Ribeiro and Diggle, 1999). The other parameters seemed less sensitive 
and the chains always converged to reasonable values given our priors. The priors 
could be more specified if data from past years were analyzed.  
 The log-Normal model described the variation in the original data well and 
incorporates it into the estimates of the spatial correlation parameters 2

sσ  and φ. 

Consequently, the predictions passed practically through the observations at the 
monitoring stations. The Poisson model on the other hand avoided this. Apparently, 
the original data could be described by the predicted Poisson intensity parameter. 
When predicting exceedances near a critical level, e.g. the maximum allowed 
exceedance days per year, the log-Normal model approach was more appropriate. 
 As a further extension, the number of exceedance days may in fact follow a 
Negative Binomial distribution. This distribution can account for overdispersion and 
may fit the number of exceedance days better than the Poisson distribution or log-
Normal distribution. In this case, the intensity m come from a Gamma distribution 
where the parameters vary in space. 
 The question remains how to interpolate this kind of count data exactly. The 
real situation is complex. The conceptual process is as follows: during smog days, the 
concentration in one area (a range of about 100 km) increases, while in another area it 
does not. In the first area, an exceedance may occur, while in the other is does not. 
On another day, in the other area an exceedance may occur, while in the first area it 
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does not. On average, there will be more exceedances in a certain area, in this case 
the southern part of Germany. The data are in fact a summation of different spatially 
correlated data over time. This may introduce large variability in space on small 
scales. To avoid interpolation of count data directly and using the bulk of 
information in hourly observations, one could imagine spatial-temporal 
interpolation. This can by done by interpolating hourly observed ozone 
concentrations (for example, Guttorp et al., 1994) or daily maxima. In a second step, 
one can determine the number of days on every grid cell. Not only the inappropriate 
data assumptions or laborious MCMC parameter estimates can be avoided, but a 
more detailed map may also result. The primary interest is still the creation of an 
accurate national map showing the actual number of exceedance days at a certain 
location. 
 

2.5. Conclusions 
 
Two methods were discussed here for a model-based geostatistical interpolation of 
the annual number of exceedance days. The Poisson model was found to give a 
better representation of the random field process of the number of exceedance days. 
For environmental assessment applications, however, we concluded the log-Normal 
model to be the preferred method for interpolation, considering its capacity to 
predict the expected number of exceedance days instead of an intensity field. 
 When making interpolations of a component with a large spatial range, such 
as ozone exceedance days, for a small area such as the Netherlands, incorporating 
observations from surrounding countries in the analysis was beneficial since the 
effective correlation distance of the data was approximately 300 km. Predictions near 
the Dutch border still depend on observations in Germany. Furthermore, inclusion of 
more observations improved parameter estimation and resulted into more precise 
predictions. 
 Use of prior information in the Bayesian inference procedures avoids 
problems with convergence of the MCMC algorithm, which kept on fluctuating if flat 
priors were used in the subset. Also, even use of a limited data set allowed us to map 
the number of exceedance days. These maps, including their uncertainties, might be 
used in the future to study environmental relations between ozone and risks for 
public health. 
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3. External drift kriging with dispersion model output 
 
 
 
 
In the mid-eighties the Dutch NOx air quality monitoring network was reduced from 
73 to 32 rural and city background stations, leading to higher spatial uncertainties. 
This necessitated the use of another source of information to help reduce 
uncertainties. Here, we focus on the use of secondary information from a dispersion 
model for obtaining high-resolution maps to compensate for the loss of spatial 
precision caused by a reduction in the number of stations. Our objective was to map 
atmospheric NOx concentrations on rural and urban scales using kriging with 
external drift (KED) to merge the two sources of information. We also compared 
KED with universal kriging (UK). Because less reliable parameter estimates are 
obtained due to the reduced number of stations, Bayesian inference was applied and 
compared with parameter estimation by restricted maximum likelihood. The impact 
of several parameter estimation and spatial interpolation methods, the number of 
observations and configuration of the network on uncertainty were quantified by 
cross-validation. With KED, more accurate predictions and lower prediction 
standard deviations were obtained at the nodes of a fine-maze prediction grid. 
Where observations were sparse, the predictions were substantially improved by 
including dispersion model output and available prior information. 
 
 
 
 
 
 
 
 
 
 
 
 
 
_______________ 
This chapter is based on J. van de Kassteele, A. Stein, A.L.M. Dekkers, and G.J.M. Velders (2005). 
External drift kriging of NOx concentrations with dispersion model output in a reduced air quality 
monitoring network. Environmental and Ecological Statistics (under review). 
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3.1 Introduction 
 
Accurate and spatially highly resolved maps of NOx levels are essential to assessing 
individual human exposures to NOx. It is well known that NOx in high 
concentrations causes respiratory problems for humans (EPA, 1998; WHO, 2003). In 
the Netherlands, NOx maps are based on a limited number of monitoring stations. In 
the mid-eighties the Dutch NOx air quality monitoring network (Van Elzakker, 2001) 
was reduced from 73 to 32 stations for budgetary reasons. The increased distance 
between stations has caused a substantial loss of information and resulted in higher 
uncertainties in the maps. The combination of measurements with related external 
information from a dispersion model is likely to result in more accurate maps. 
 Kriging with external drift (KED) merges two sources of information: a 
primary variable that is precise but only available at a small number of locations, and 
a secondary variable that covers the full domain on a fine-mazed grid. KED has been 
applied in the past in environmental mapping of sparsely sampled data using dense 
external information. Examples include combining rainfall data with a digital 
elevation model (DEM) as a covariate (Pardo-Igúzquiza, 1998; Goovaerts, 2000; 
Drogue et al., 2002), combining rainfall data with satellite imagery (Grimes et al., 
1999) or radar data (Cassiraga et al., 1997), combining temperature with a DEM 
(Hudson and Wackernagel, 1994), and combining temperature and land use for 
application in a crop growth model (Monestiez et al., 2001). In soil science and 
hydrology KED is applied in mapping soil horizons using a DEM (Bourennane et al., 
1996; Bourennane et al., 2000), soil variables (Hengl et al., 2004), erosion mapping 
(Goovaerts, 1999), water table depths (Desbarats et al., 2002), and soil moisture 
content with precipitation (Snepvangers et al., 2003). Applications in air quality 
mapping are found in Pauly and Drueke (1996), where ozone is mapped using a 
DEM, in Bertino and Wackernagel (2002), where dispersion model output is used to 
map ozone concentrations around Paris, and in Genikhovich et al. (2002), where 
dispersion model output is combined with measurements to describe urban air 
quality. 
 This study focused on mapping yearly average atmospheric NOx 
concentrations on rural and urban scales in the Netherlands. Secondary information 
was provided by the Operational Priority Substances (OPS) dispersion model (Van 
Jaarsveld, 1995), which calculates yearly average concentrations and deposition on 
the basis of emissions, dispersion, transport, chemical conversion, and wet and dry 
deposition. OPS also accounts for transport from adjacent countries. The model 
output consists of a national map with a spatial resolution of 5 × 5 km. 
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 We explored the use of external drift kriging with the OPS model output in a 
reduced monitoring network A comparison was made with universal kriging (UK) 
by comparing UK and KED before (1983) and after network reduction (1987). 
Parameter estimation was carried out by means of restricted maximum likelihood 
and Bayesian inference. Our hypothesis was that Bayesian inference would show 
lower prediction uncertainties. By cross-validation, we quantified the relationship 
between the number of stations and occurring errors. A range of errors resulted from 
selecting several random configurations of different station densities from the 1983 
configuration, describing explicitly the effect of the number of stations, and implicitly 
the effect of the station configuration. 
 

3.2 Material and methods 
 

3.2.1 Observations 
 
The purpose of the Dutch air quality monitoring network is to monitor air quality in 
the Netherlands on a continual basis (Van Elzakker, 2001). The measurements 
obtained provide a general description of national, regional and local air quality, 
along with information on smog episodes; measurements are also tested against 
international air quality standards. The size of the area considered is about 260 × 310 
km. 
 The monitoring network has undergone several changes in the past 25 years. 
The first reorganization took place in 1985/1986, resulting in a considerable 
reduction in the number of monitoring sites for SO2 and NOx measurements. A 
second reduction took place in 1994. In this study we used observations from 1983, 
two years before the first reduction in 1985. A total of 85 yearly average NOx 
concentrations were available. Twelve street stations were omitted since they were 
not representative on the scale considered in this study. Three regional stations had 
to be omitted because of non-representative values due to missing data, leaving 64 
rural background and 6 city background stations (Fig. 3.1a). High concentrations (in 
ppb) occurred in the western part of the Netherlands, around the major cities of 
Rotterdam, The Hague, Amsterdam and Utrecht, and near roadways. High 
concentrations were also found in the south-east, under influence of the German 
industrial Ruhr area, 50 km east of the Dutch-German border. 
 After the reduction, the total number of rural, city and street stations in 1987 
came to 22, 5 and 7, respectively. A few regional stations had moved. For our 
analysis of the station configuration in 1987, we matched the existing locations of the 
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stations with those of 1983 and, where necessary, by selecting the nearest station (Fig. 
3.1b). One regional station was excluded, since there was no possible match with a 
1983 regional station. We maintained the concentrations of 1983. 
 

3.2.2 The OPS dispersion model 
 
The OPS model calculates average atmospheric concentrations and deposition from 
the atmosphere on the basis of emissions within the Netherlands and Europe. The 
model is suitable for a series of substances of which the behavior can be described by 
first-order linear chemical reactions; it cannot be used, for example, for describing 
ozone concentrations (Van Jaarsveld, 1995). 
 The processes described by the OPS model are emission, dispersion, transport, 
conversion, and wet and dry deposition. It is an analytical model using the Gaussian 
plume model for dispersion at local scales and operates as a Lagrangian trajectory 
model for long-distance transport. The OPS model is driven by actual meteorological 
observations and is statistical in the sense that dispersion is distributed over specific 
classes according to transport direction, atmospheric stability and scale of transport. 
Accompanying dispersion parameters are determined according to properties of all 
trajectories within that class. Yearly average concentration and deposition fields are 
found by weighting all classes according to the frequency of occurrence. 
Computationally speaking, this procedure is relatively rapid. 
 Input consists of emissions from sources into the atmosphere. Source 
properties like emission height are determinative for the dispersion. Since a detailed 
emission inventory for 1983 was not available for this study, emissions from 1995 

(a) Observations 1983

1015 20 25 30 35 40 45 50 55 60 65 70

(b) Observations 1987

10 15 20 25 30 35 40 45 50 55 60 6570

(c) OPS output

10 15 2025 3035 40 45 50 55 60 65 70

Fig. 3.1. Measured yearly average NOx concentrations (ppb) in 1983 (a), in 1987 (b) and 
OPS model output for 1983 (c). The black lines indicate provincial boundaries, and gray lines 
and patches major roads and cities. 
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were taken and scaled proportionally to known total emissions per source group for 
1983. Output is represented by a concentration field on a 5 × 5 km grid (Fig. 3.1c). The 
results are valid for the center of grid boxes only and do not represent averages for 
the whole grid box area. 
 The OPS model is described in Van Jaarsveld (1991), Van Jaarsveld and De 
Leeuw (1993), and Van Jaarsveld (1995). In Van Jaarsveld (1995), the model is 
compared with measurements on different levels, e.g. process descriptions such as 
mixing height and descriptions of vertical dispersion. The model has played a role in 
international comparison studies (Derwent et al., 1989). It also generates data at the 
monitoring station locations (Fig. 3.2) and does well at predicting yearly average NOx 
concentrations, although predictions are systematically higher than observations. 
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Fig. 3.2. Measured yearly average NOx concentration (ppb) vs. modeled OPS NOx 
concentration (ppb) at the 70 monitoring stations in 1983. 
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3.2.3 Universal kriging vs. external drift kriging 
 
For kriging measured NOx concentrations, we applied the model-based approach of 
Ribeiro and Diggle (1999) and Diggle and Ribeiro (2002). After a Box-Cox 
transformation, the n observations yi, with i = 1 … n, were interpreted as a realization 
of a Gaussian random variable Yi at locations si. Each observation can be 
decomposed into 
 

yi = µi + 
i is qε ε+  (3.1)

 
where µ = Xβ is the deterministic trend component, X an n × p matrix consisting of p 
known trend components at each location and β, a vector with p unknown trend 
parameters. εs is a realization of a zero-mean stationary Gaussian random process 
with a partial sill variance 2

sσ . The vector εs accounts for spatial correlation between 

observations by means of a spatial correlation function ρ(.), with range parameter φ. 
Finally, εq is an error term with variance 2

qσ  (nugget).  

 Kriging with external drift (KED) is a particular case of universal kriging (UK) 
(Bourennane et al., 2000). The difference between UK and KED lies in the trend 
component. For UK, X is a function of the coordinates s1 and s2 in two orthogonal 
directions, whereas for KED, X is a function of the OPS model output at locations s, 
i.e. X = [1 s1 s2] and X = [1 OPS(s)], for UK and KED, respectively. Note that εs is 
different for UK and KED. 
 

3.2.4 Restricted maximum likelihood vs. Bayesian inference 
 
A common method to estimate parameters is fitting the parametric correlation 
function ρ(.) to the empirical variogram, obtained by binning and averaging the 
squared differences between point pairs after de-trending. Here, we applied 
restricted maximum likelihood (RML) and Bayesian inference, methods working 
directly from the sample data. 
 Maximum likelihood estimation is widely used in statistics. It has the 
advantage of providing joint estimation of trend and covariance parameters. 
However, it introduces a bias if the number of observations, n, is small compared to 
the number of covariates p. With RML, the trend parameters are integrated out of the 
likelihood function, leaving unbiased estimators for the covariance parameters 
(Kitanidis and Shen, 1996). RML estimation requires the data to be a realization of a 
multivariate Gaussian distribution (see section 3.2.5). If the observations y and 
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covariates X are regarded as fixed, the restricted likelihood function of the above 
model will depend only on the unknown parameters 2

sσ , φ, and 2
qσ . When 

calculating the likelihood, it is useful to re-parameterize, using the relative nugget, 
2
,q relσ  = 2

qσ / 2
sσ  (Ribeiro and Diggle, 1999). This re-parameterization allows us to state 

the covariance matrix Vy as a product of 2
sσ  and matrix Ry = ρ(Hy/φ) + In

2
,q relσ , where 

Hy is the n × n distance matrix containing the distances between stations. The 
restricted log likelihood equals: 
 
RLL(y | 2

sσ , φ, 2
,q relσ ) =   

T 1 T 1 1 T 1 1 T 1
2

2T

( ( ) )1log(2 ) log
2 2 2

y y y y y y
s

s

n p πσ
σ

− − − − − −  −−  − − −
 
 

X R X R y R R X X R X X R y
X X

 
(3.2)

 
where the superscripts T and -1 denote the transpose and inverse of a matrix, 
respectively. For any fixed value of φ and 2

,q relσ , RML estimates for 2
sσ  and β are 

equal to 
 

2 T 1 1 T 1 1 T 11ˆ ( ( ) )s y y y yn p
σ − − − − −= −

−
y R R X X R X X R y  (3.3a)

T 1 1 T 1ˆ ( )y y
− − −=β X R X X R y  (3.3b)

 
Estimates for φ and 2

,q relσ  cannot be written in closed form. They are found by 

substituting 2ˆ sσ  in the restricted log likelihood function and minimizing the negative 

log likelihood over the φ and 2
,q relσ  parameter space. 

 In the case of parameter estimation with (restricted) maximum likelihood, the 
predictive distribution is multivariate Normal, with mean and variance equal to 
 

T 1
,

ˆ ˆ[ | ] ( )y y yE −= + −y y Xβ R R y Xβ  (3.4a)
2 T 1 T 1 T 1 1 T 1 T

, , , ,Var[ | ] [ ( ( ) ( ) ]s y y y y y y y y y y y y yσ − − − − −= − + − −y y R R R R X R R X X R X X R R X  (3.4b)

 
where X  is an m × p matrix containing the p covariates at m prediction locations s , Ry 
= ρ(Hy/φ) + In

2
,q relσ  the n × n correlation matrix between observation locations, ,y yR  = 

ρ( ,y yH /φ) the n × m correlation matrix between the observation and prediction 

locations, and yR  = ρ( yH /φ) + Im
2
,q relσ  the m × m correlation matrix between the 

prediction locations. The expression for the variance has three components: the first 
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is the marginal variance for y , the second is the variance reduction after observing y 
and the third component accounts for the uncertainty in the trend parameter β. 
 Bayesian inference treats the parameters as unknown stochastic variables and, 
as such, incorporates the uncertainty of all parameters (Gelman et al., 2004; Berger et 
al., 2001). Prior distributions, jointly written as p(β, 2

sσ , φ, 2
,q relσ ), are assigned to the 

parameters. This is attractive in the case of sparse data, since additional prior 
information can be used, thereby improving the estimation accuracy (see, for 
example, Cui et al., 1995). The priors are updated by observations with the use of the 
likelihood function 
 

2 2 2 / 2 1/ 2 T 1 2
,( | , , , ) (2 ) | | exp[ ( ) ( ) / 2 ]n

s q rel s y y sp y β σ φ σ πσ σ− − −= − − −R y Xβ R y Xβ  (3.5)

 
 resulting in the posterior parameter distribution 
 

p(β, 2
sσ , φ, 2

,q relσ  | y) ∝ p(β, 2
sσ , φ, 2

,q relσ ) p(y | β, 2
sσ , φ, 2

,q relσ ) (3.6)

 
The above posterior distribution can be written in analytical form if we use conjugate 
priors or flat priors for β and 2

sσ , and if φ and 2
,q relσ  are known (Ribeiro and Diggle, 

1999). However, φ and 2
,q relσ  are unknown. If we factorize the above distribution and 

rearrange it, we obtain an expression for the joint posterior for φ and 2
,q relσ  

 

p(φ, 2
,q relσ  | y) ∝

2 2 2 2 2
, , ,

2 2
,

( , | , ) ( , ) ( | , , , )
( , | , , )

s q rel q rel s q rel

s q rel

p p p
p

σ φ σ φ σ σ φ σ
σ φ σ

β y β
β y

 (3.7)

 
where the distributions conditional on φ and 2

,q relσ  can still be written in analytical 

form. If the prior p(φ, 2
,q relσ ) is specified, the posterior p(φ, 2

,q relσ  | y) can be evaluated. 

Ribeiro and Diggle (2001) do this by evaluating the above posterior on a grid of 
points that covers the parameter space of interest. Once the grid of density values is 
computed, random draws from p(φ, 2

,q relσ  | y) are taken to approximate the posterior 

densities for φ and 2
,q relσ  (Gelman et al., 2004). 

 The posterior densities for β and 2
sσ  are then easily evaluated by plugging the 

obtained draws for φ and 2
,q relσ  in the analytical expression for the posterior density 

p( 2
sσ  | y, φ, 2

,q relσ ), a scaled inverse-χ2 distribution, and the posterior density p(β | y, 
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2
sσ , φ, 2

,q relσ ), a multivariate normal distribution. After drawing from these 

distributions, the joint posterior parameter distribution is fully evaluated. 
 The predictive distribution p( y  | y, β, 2

sσ , φ, 2
,q relσ ) is a multivariate normal 

distribution, with mean and variance 
 

T 1
,[ | ] ( )y y yE −= + −y y Xβ R R y Xβ  (3.8a)

2 T 1
, ,Var[ | ] [ ]s y y y y y yσ −= −y y R R R R  (3.8b)

 
and is evaluated analogously by plugging in the obtained parameter samples in the 
distribution and, subsequently, drawing samples from this distribution. In 
conventional geostatistics, the above expression is that for simple kriging, since all 
parameters are considered known. However, parameter uncertainty is incorporated 
directly by the draws from the posterior parameter distribution. Prediction using 
RML only accounts for uncertain trend parameters, but RML and Bayesian inference 
are similar if a uniform prior for β is chosen and the other parameters are kept fixed 
(i.e. are known). 
 Bayesian geostatistics are described by Handcock and Stein (1993). Ribeiro 
and Diggle (1999) and Diggle and Ribeiro (2002) further expand on this description. 
More details on UK and KED can be found in Chilès and Delfiner (1999) and 
Wackernagel (1995). 
 

3.2.5 Set-up of the kriging models 
 
The Gaussian model-based approach requires residuals after de-trending to be 
stationary and normally distributed. We applied the Box-Cox transformation (Box 
and Cox, 1964) of the original data yorg to obtain such residuals: 
 

( 1) / ( 0)
( )

log( ) ( 0)
org

org
org

g
λ λ λ

λ
 − ≠= =  =

y
y y

y
 (3.9)

 
Here g(.) is the transformation function and λ is the Box-Cox parameter. Maximum 
likelihood estimates, without taking into account spatial effects, yielded Box-Cox 
parameters of λ = -0.63 for UK and λ = 0.34 for KED. We could have applied a 
Bayesian estimation of λ, but as in Ribeiro and Diggle (2001), we kept them known 
throughout. If not, each λ would have changed the location and scale of the 
transformed data, as well as the correlation structure (De Oliveira et al., 1997). Other 
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transformations, for example, the Normal Score transformation (Lehmann, 1975), 
could also have been applied. 
 The assumption of normality of the residuals after transformation is strong, 
but it cannot be tested in practice because there is only one realization of the random 
field. However, to get more insight into this, we employed a Shapiro-Wilk test to 
check for evidence against normality. Spatial correlation in the residuals is not taken 
into account. The test yielded a p-value = 5.038E-7 and a p-value = 1.470E-4 for UK 
and KED, respectively, before transformation, and a p-value = 0.2371 and a p-value = 
0.01461 for UK and KED, respectively, after transformation. This provided strong 
evidence (p-value < 0.01) that the residuals of both UK and KED before 
transformation were not normally distributed. It also showed that there was little or 
no real evidence (p-value > 0.1) that the UK residuals after transformation were not 
normally distributed and, finally, that there was moderate evidence (0.01 < p-value < 
0.05) that the KED residuals after transformation were not normally distributed.  
 The methods that we described in the previous section produce spatial 
predictions on a transformed scale. One cannot apply the inverse Box-Cox function 
directly to the expectations and variances because it would introduce biased 
predictions. This can be avoided by back-transforming the conditional simulations of 
the predictive distribution p( y | y). The most common predictor is the expectation of 
the back-transformed conditional simulations, but for many back-transformations of 
a Gaussian random field, the mean may not exist. Therefore, just as De Oliveira et al. 
(1997), we used the median as predictor and a fourth of the 95% credible interval as 
standard deviation: 
 

med[ |org orgy y ] = q50[g-1( y | y)] (3.10a)
1 1

97.5 2.5[ ( | )] [ ( | )]sd[ | ]
4org org

q g q g− −−
=

y y y yy y  (3.10b)

 
where q(.) produces sample quantiles corresponding to the given probabilities. A 
probability of exceeding a threshold level can be obtained analogously (Ribeiro and 
Diggle, 2001). 
 An exponential correlation function suited both UK and KED for the spatial 
covariance structure. The effective range or correlation distance equals 3φ. 
 Prior parameter distributions have to be specified for Bayesian inference and 
should be independent of the data. For UK, independent prior information was 
available in the form of the OPS model output, where the OPS model output had first 
been transformed with the UK Box-Cox parameter. After that, we started 
computations with non-informative flat priors for β, 2

sσ
− , φ-1, and 2

,q relσ . For 
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computational stability we had to limit the number of transformed OPS values to 
200, at randomly chosen locations. The posterior distributions obtained were used as 
priors for the UK analysis. We fitted a multivariate Normal distribution to (β | OPS) 
and a scaled inverse-χ2 distribution to ( 2

sσ  | OPS). No standard statistical 

distributions were fitted to (φ | OPS) and ( 2
,q relσ  | OPS), because these samples were 

used directly in the UK analysis. The priors are 
 

 β ~ N 2

1.53E 0 4.48E 0 -2.01E-3 -7.72E-3
1.80E-4 , -2.01E-3 2.21E-5 -3.43E-6
-5.18E-4 -7.72E-3 -3.43E-6 1.79E-5

sσ
 + +   
    
    
        

 (3.11a)

 2
sσ  ~ Inv-χ2 (11, 2.27E-3) (3.11b)

 φ ~ p(φ | OPS) (3.11c)
 2

,q relσ  ~ p( 2
,q relσ  | OPS) (3.11d)

 
The small (co)variances for β and 2

sσ  are due to the Box-Cox transformation. The 

values of φ and 2
,q relσ  were evaluated over a grid defined by (0, 300] km and [0, 0.3] 

respectively. 
 Since no prior information was available for the KED parameters, we started 
with non-informative priors, similar to those we used for analyzing the OPS output. 
The priors for the KED parameters are 
 
 β ~ N(0, 1000) (3.12a)
 2

sσ
−  ~ Gamma(0.001, 0.001) (3.12b)

 1φ−  ~ Uniform(0.00005, 1000) (3.12c)

 2
,q relσ  ~ Uniform(0, 0.5) (3.12d)

 
Here φ and 2

,q relσ  were evaluated over a grid defined by (0, 20000] km and [0, 0.5], 

respectively. The range parameter should be large, since the range for KED was 
expected to grow considerably (see section 3.3.1). The bounds of φ and 2

,q relσ  were 

also applied to the RML parameter estimation. The eventual posterior parameter 
densities are discussed in section 3.3.1. 
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3.2.6 Validation procedure 
 
A cross-validation by ‘leaving one out’ was carried out to study the performance of 
the models, given a number of stations ns and network configurations. As in Cui et al. 
(1995) we used three error measures for validation: mean error (ME or bias), 
unbiased root mean squared error (URMSE) and mean squared standardized error 
(MSSE): 
 

 , ,
1

1 ( )
sn

org i org i
is

ME y y
n =

= −∑  (3.13a)

 2 2
, ,

1

1 ( )
sn

org i org i
is

URMSE y y ME
n =

= − −∑  (3.13b)

 
2

, ,

1 ,

( )1
Var( )

sn
org i org i

is org i

y y
MSSE

n y=

−
= ∑  (3.13c)

 
The ME indicates the bias of the predictions orgy  to the original observations orgy  and 

should be close to zero. The URMSE indicates the bias corrected standard deviation 
of the model and should be close to zero. We used the URMSE because it can be close 
to zero even in presence of a bias. The MSSE compares the squared differences with 
the kriging model variance, and yields a value that should be close to one. 
 Unlike other studies, for example, in Cui et al., 1995 and Bourennane et al., 
2000, where only one random set of different sizes is selected from the full set, we 
studied the effect of different configurations by selecting several random 
configurations of ns stations (ns = 10, 20, …, 70) from the complete set of 70. Cross-
validation was performed for each selection. The rationale for selecting several 
configurations is that every configuration leads to a different value for the ME, 
URMSE and MSSE. Since many combinations were possible, new configurations of ns 
stations were selected until the 2.5, 50 and 97.5-quantiles of the outcomes of ME, 
URMS and MSSE reached stability. These values indicate the sensitivity of the 
models to the network configurations considered. If we had just selected one random 
configuration for every station sample density, we could have ended with accidental 
low or high values for some station sample density. Note that different 
configurations cannot be independent of each other if they share one or more stations 
within the correlation distance. 
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3.3 Results 
 

3.3.1 Parameters before and after network reduction 
 
Fig. 3.3 shows the Bayesian posterior parameter densities (curves) and the RML 
parameter estimates (arrows). The 1983 posterior trend parameters β are more 
precise for both UK and KED; i.e. they show a density curve that is steeper and 
higher than curves for 1987 because of the larger number of stations. The trend 
parameters appear to be very precise, but this is due to the Box-Cox transformation. 
The RML estimates correspond well with the posterior modes. 
 The covariance parameters show different results. The posterior for the partial 
sill 2

sσ  for UK shows larger values than the prior based on OPS output. For KED, the 

posterior 2
sσ  is totally determined by the observations because of the non-

informative prior. Posterior 2
sσ  obtained from the 1983 or the 1987 data are largely 

similar. 
 For UK, the posterior for the range parameter φ also differs from the prior. 
Based on OPS output, the mode is approximately 100 km, whereas the posterior 
mode for both 1983 and 1987 is approximately 80 km. The RML estimates differ 
considerably. For KED, both 1983 and 1987 posterior φ look similar, but have high 
values. The RML estimates for φ are the same. For UK, the posterior relative nugget 
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Fig. 3.3. Bayesian posterior parameter densities (curves) and the RML parameter estimates 
(arrows) for both UK (upper 6 panels) and KED (lower 5 panels). The bold solid lines 
represent 1983 posteriors and the fine solid lines 1987 posteriors. The dashed lines represent 
the prior distributions. The priors for UK are the posteriors based on OPS output, while 
priors for KED are non-informative. 
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2
,q relσ , is higher than its prior, which is more pronounced due to more available 

stations. For KED, the posterior 2
,q relσ  is very flat, just like its prior. The RML 

estimates are approximately equal to 0.1 for both years. 
 The φ and 2

,q relσ  parameters are related (Fig. 3.4). For UK, a maximum occurs 

at approximately φ = 100 km and 2
,q relσ  = 0.15. For KED, this maximum is very flat, 

stretching out over a whole range of possible φ and 2
,q relσ  values. For KED, it is 

therefore difficult to estimate these parameters using RML, of which the maximum is 
found at approximately φ = 5000 km and 2

,q relσ  = 0.1. For 1987, both profile likelihood 

surfaces were found to be flatter due to fewer observations. However, the figure is 
not shown. 
 Fig. 3.4 explains the shape of the posterior density curves of φ and 2

,q relσ  in Fig. 

3.3. High values for both UK and KED are shown in Fig. 3.4 in the banana-shaped 
area between low values for φ and corresponding high values for 2

,q relσ , and high 

values for φ and corresponding low values for 2
,q relσ . If φ is low, the corresponding 

values for 2
,q relσ  will be high. For UK this results in a density curve similar to the 

posterior for 2
,q relσ  in Fig. 3.3. For KED this results in a flat posterior for 2

,q relσ . The 

banana-shaped area also explains the differences between the RML estimates and the 
posterior modes. Note prior information is included for UK in Fig. 3.3. 
 For KED, φ extends to values far beyond the largest area of the Netherlands 
(approximately 400 km). Furthermore, φ has to be multiplied by three to compute the 
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effective range of the exponential model. For such large values, the exponential 
model for the variogram approaches a linear model for distances inside the 
Netherlands. The correlation between stations is no longer a function of their 
distance apart. Apparently, the information from the OPS model is so good, that it 
takes most of the spatial correlation in the residuals away. In this case, KED almost 
becomes similar to a special case of KED: linear regression. However, it does not 
change the results, because KED still applies to the data. 
 

3.3.2 Spatial predictions and standard deviations before and after 
network reduction 
 
We made predictions for 1) UK and KED, 2) based on the 1983 and 1987 data, 3) 
parameter estimates by RML and Bayesian inference, and 4), for the 1987 data, 
keeping the 1983 parameters fixed and re-estimating the parameters for the 1987 
data. We call the respective predictions: UK 83 RML, UK 83 Bayes, UK 87 RML fix, 
UK 87 Bayes fix, UK 87 RML re, UK 87 Bayes re, KED 83 RML, KED 83 Bayes, KED 
87 RML fix, KED 87 Bayes fix, KED 87 RML re and KED 87 Bayes re. 
 Fig. 3.5 illustrates the spatial predictions and corresponding standard 
deviations of NOx concentrations with UK and KED on the basis of 1983 data and 
parameter estimation with RML. For UK the predicted concentrations vary gradually 
in space, whereas for KED the predicted NOx concentrations show more spatial 
variation in terms of alternating higher and lower values. Individual cities and 
highways are clearly visible as a result of using the OPS output as external trend. For 
UK, the standard deviations look very similar to the predicted expectation and show 
more variation in space than the KED standard deviations. Because of the back-
transformation, the standard deviations are correlated with the predicted 
expectations. In fact, the predictive distribution at each location is skewed. 
 The spatial patterns of the other predictions look similar and the 
corresponding figures are therefore not shown. Instead, Fig. 3.6 shows box plots 
based on the 1405 individual locations with the minimum, 25-quantile, median, 75-
quantile and maximum values for the twelve predictions and standard deviations. 
 Based on Figs. 3.5 and 3.6, UK and KED can be said to differ considerably. We 
will therefore discuss UK and KED separately. Of interest are the differences before 
and after network reduction (1983 and 1987), the method of parameter estimation 
and, for 1987, keeping parameters fixed or not. 
 The median for UK 87 is systematically 9% lower than for UK 83. Re-
estimating the parameters gives the same result as keeping them fixed. Bayesian 
inference shows higher extremes than RML. The standard deviations for UK 87 are 
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higher than for UK 83 due to fewer observations. Re-estimating the parameters yields 
higher standard deviations, since parameter uncertainty has emerged. 
 The median for KED 87 is systematically 4% lower than the median for KED 
83. Extremes for KED predictions are similar for all approaches. Apparently, the 
external trend determines the predicted values. The standard deviations look very 
similar, except for KED 87 re. The range of the KED standard deviations is almost 
equal to the 50% box of the UK standard deviations. The OPS output explains the 
spatial variation in the observations. 
 
 
 

(a) UK prediction

101520253035404550556065

(b) KED prediction

101520253035404550556065

(c) UK standard deviation

0 2 4 6 8 10 12 14 1618 20

(d) KED standard deviation

0 2 4 6 8 10 12 14 1618 20

 
Fig. 3.5. Spatial predictions (a,c) and their standard deviations (b,d) for NOx concentrations 
with UK (a,b) and KED (c,d), based on 1983 data and parameter estimation by RML. 
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Fig. 3.6. Box plots based on the 1405 individual locations with the minimum, 25-quantile, 
median, 75-quantile and maximum values for the 12 predictions and standard deviations. 
 

3.3.3 Validation 
 
The core study results are reflected in Fig. 3.7. Validations were made for: 1) UK and 
KED, 2) parameter estimates by RML and Bayesian inference, and 3) keeping the 
1983 parameters fixed and re-estimating the parameters for each station 
configuration. We called the respective validations: UK RML fix, UK Bayes fix, UK 
RML re, UK Bayes re, KED RML fix, KED Bayes fix, KED RML re, and KED Bayes re. 
The last step was to add a validation of the OPS model and we present, in succession, 
the validation results of OPS, UK, and KED. 
 OPS is positively biased, with an average of 2 ppb (Fig. 3.7a). The median is 
independent of the number of observations, because it represents a model validation 
without using observations. The ME deviance increases with fewer observations. The 
URMSE (Fig. 3.7b) of OPS is on average 5 ppb. The deviance, as seen in Fig. 3.7a, is 
almost symmetric around the median and increases as well for fewer observations. 
The MSSE of OPS is not available since the OPS model does not provide a standard 
deviation. 
 For UK, the median ME for 70 to 40 observations shows almost no bias as we 
were working here with observations only. Note the advantage of keeping 
parameters fixed (for RML) for sparse observations (20 to 10 observations), or the 
advantage of prior information over RML. This can be seen in Fig. 3.7b as well. For 
both UK RML and UK Bayes, the MSSE deviances for fixed parameters are equal 
(Fig. 3.7c). If parameters are re-estimated, the values are closer to one. This indicates 
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that the absolute prediction error is almost equal to the predicted kriging standard 
deviation. The 97.5-quantiles that lie outside Figs. 7a and 7b are 22.9 ppb and 64.3 
ppb, respectively. 
 KED outperforms OPS and UK since observations are combined with OPS 
output. The ME deviance (Fig. 3.7a) is smaller and closer to zero for KED, even for 
sparse observations. KED RML and KED Bayes are very similar because of the non-
informative priors. Re-estimating the parameters causes a smaller deviance in the 
ME. For 40 or more observations, the URMSEs are systematically lower than the 
URMSEs of UK (Fig. 3.7b). Somewhat lower URMSE values are obtained by re-
estimating the parameters. Compared to UK, the MSSE deviances (Fig. 3.7c) remain 
closer to one. Re-estimating the parameters causes smaller deviances than keeping 
them fixed. 
 

3.4 Discussion 
 
In our comparison of several estimation and interpolation methods, we observed 
KED to be superior to both UK and OPS. With reference to UK, KED emphasizes the 
details of OPS, as shown in Fig. 3.5. KED is less sensitive to the network 
configuration, resulting in smaller intervals for ME values, URMSE values and MSSE 
values (Fig. 3.7). With reference to OPS, KED is almost unbiased due to the use of 
observations, which is not the case for OPS alone. Even if OPS is biased, the 
combination of both the observations and OPS is superior to UK or OPS alone. One 
may note, however, that the KED results are somewhat optimistic since uncertainty 
in calculations by OPS are only treated as part of the nugget effect. For UK we used a 
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Fig. 3.7. The 95% intervals of outcomes of (a) mean errors (ppb), (b) unbiased root mean-
squared errors (ppb), and (c) mean-squared standardized errors (-) for the eight spatial 
prediction methods and the OPS model output (ME and URMSE only), taken over random 
subsets of 10, 20, …, 60 points from the total test set of 70 stations. 
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linear trend. We could have chosen a more complex model, like a second order trend, 
which probably would have resulted in lower prediction variances. Our goal, 
however, was to focus on parsimonious models. Also, the trend in the observations 
could be initially approximated with a linear trend in a reasonable way. 
 The OPS output explains much of the variation in the observations, resulting 
in a flat covariance structure of the KED model. In most cases, the effective range 
becomes large and in combination with a large relative nugget, the KED covariance 
structure is nearly constant within the horizontal scales of the Netherlands. 
Nevertheless, spatial prediction using the OPS model is still beneficial, as it reduces 
the uncertainties commonly occurring in UK models when predicting data beyond 
the correlation distance. 
 Should we use RML or Bayesian inference? In the case of many observations 
(>20), it does not matter. If prior information is available, Bayesian inference leads to 
lower prediction standard deviations. In case of sparse observations (10 to 20 
observations), Bayesian inference with prior information is more robust than RML 
estimation. 
 Should we keep parameters fixed or should we re-estimate them? The lower 
the number of observations, the larger the parameter uncertainties become. Re-
estimated parameters are then to be preferred, because specific uncertainties are then 
incorporated, thereby approaching reality the best. The MSSE shows that re-
estimating parameters brings the values close to one. On the other hand, when 
parameters are kept fixed, there is no problem with sparse observations. The effect of 
parameter uncertainty on predictions is small relative to the effect of network 
configuration. The network configuration (number and location of stations) can have 
large effects on the accuracy of the kriging models and might need to be further 
optimized (Boer et al., 2002). 
 How many observations are actually needed? This will depend on what 
interpolation method is used. For UK RML re, this will mean 30 observations. For UK 
RML fix or UK Bayes, 20 observations might be needed. For KED, the results were 
mainly determined by the external trend. So for only 10 observations, KED still 
produced sensible results. 
 KED allows spatial prediction of a primary variable, accounting for the dense 
secondary variable. Collocated co-kriging could have been used as an alternative. We 
preferred the use of KED, requiring a less demanding variogram analysis. 
Furthermore, comparison studies (Pardo-Igúzquiza, 1998; Goovaerts, 2000) show 
KED interpolation to perform better than collocated co-kriging. KED is a form of data 
assimilation, but differs from Kalman filtering, for example, which results in an 
optimal estimation by combining observations and model output weighted by their 
inverse variances (Jazwinski, 1970; Meinhold and Singpurwalla, 1983). KED is a 
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regression-based interpolation method, where the model output is regarded as a 
covariate and, as such, partly explains the variation in the observations. This allows 
the model to have a systematic error (bias) and, more generally speaking, other 
external information may be included as well. It is though limited because the 
covariates are considered to be deterministic.  
 A further thing that needs to be addressed is the change-of-support problem 
(Wackernagel, 1995; Lajaunie and Wackernagel, 2000; Bertino and Wackernagel, 
2002). We applied point kriging. We also ran the OPS model as a test on a 1 × 1 km 
resolution and aggregated this to a 5 × 5 km resolution. Small differences occurred in 
the rural areas (-1% to +1%), whereas larger differences occurred in and near urban 
areas (+2% to +5%) because of the presence of many point emissions. 
 Note that the OPS dispersion model output contains uncertainties as well. 
These were not considered as first approach. If all uncertainties are incorporated in 
the analysis, uncertain observations should be accounted for, along with uncertain 
dispersion model output and uncertain kriging parameters (Van de Kassteele and 
Stein, 2005). In this study, we only considered uncertain kriging parameters by 
applying Bayesian techniques. Yearly average observations are expected to carry 
small uncertainties. Dispersion model uncertainties, however, can be large, since the 
model input is uncertain, along with uncertain model parameters and uncertainty 
introduced by model simplification. 
 

3.5 Conclusions 
 
We conclude from this study that a combination of observations and a deterministic 
dispersion model by a model-based geostatistical interpolation procedure is 
successful in reducing uncertainties. The combination led to more accurate and 
precise spatial interpolation results, in particular, outside the sampling area. If 
applied as an external drift, the dispersion model output provided more detail in 
spatial maps than universal kriging. Standard deviations for KED are smaller than 
those for UK. Furthermore, KED also allows handling of biased additional 
information. This can be beneficial if the pollution sources are missing or unknown. 
KED accounts for systematic errors by use of regression parameters. 
 Cross-validating the different interpolation procedures was done by replacing 
common ME, URMSE and MSSE values by intervals obtained by repeatedly selecting 
different subsets from a set of test data. Reliability intervals of the interpolation 
results could be compared. Where small subsets were applied (10 observations), KED 
led to a much lower spread in mean error values than UK. 
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 Bayesian interpolation methods have advantages over RML methods. In the 
case of >20 observations, this has little effect. If prior information is available 
however, Bayesian inference leads to lower prediction standard deviations. In case of 
10-20 observations, Bayesian inference with prior information is more robust than 
RML estimation. Re-estimated parameters are to be preferred, because specific 
process changes and parameter uncertainties are then incorporated, thereby 
approaching reality the best. 
 The number of observations that is needed to make an accurate map of 
sufficient quality depends on the interpolation method, but also on the spatial 
variation and the assumption that processes described by the OPS model does not 
change. For UK with re-estimated parameters using RML estimation, this will be 30 
observations. For UK with fixed parameters using RML estimation or Bayesian 
inference, 20 observations might be needed. For KED, the results were mainly 
determined by the external trend. So for only 10 observations, KED still produced 
sensible results. These numbers may apply to NOx in this chapter, but in general 
certainly not. 
 Further use of improved prior distributions chosen and more detailed 
modeling needs to be further investigated in the future, especially for KED. A further 
optimization of the location of network stations is as yet to be carried out. 
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4. Error-in-variable external drift kriging 
 
 
 
 
We present a method that combines uncertain air quality measurements with 
uncertain secondary information from an atmospheric dispersion model. The method 
combines external drift kriging and a measurement error model, and uses Bayesian 
techniques for inference. An illustration with simulated data shows what can 
theoretically be expected. The method is flexible for assigning different error 
variances to both the primary information and secondary information at each 
location. Next, we address actual NO2 data collected at an urban and a rural site in 
the Netherlands. Uncertainty assessments in terms of exceeding air quality standards 
are given. The study shows that biased uncertain secondary information can be used 
successfully in a spatial interpolation study at the national scale. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
_______________ 
This chapter is based on J. van de Kassteele and A. Stein (2005). A model for external drift kriging with 
uncertain covariates applied to air quality measurements and dispersion model output. Environmetrics 
(in press, published online DOI 10.1002/env.771). 
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4.1 Introduction 
 
Accurate and spatially highly resolved maps of NO2 levels are essential for assessing 
individual human exposures to NO2. Such maps have to be based on data from 
monitoring stations. In the Netherlands, 45 NO2 monitoring stations, to which 
secondary information is added from a high-resolution dispersion model, are used 
for this purpose. Kriging with external drift (KED) has been shown to be useful in 
merging these two sources of information (Van de Kassteele et al., 2005). The primary 
variable, given by the monitoring data, is combined with a secondary variable, the 
dispersion model output, as the external drift covering the whole domain. 
Additionally, the secondary variable should be known at locations of the primary 
variable. KED has been successfully applied in air quality mapping problems as seen, 
for example, in Pauly and Drueke (1996), Bertino and Wackernagel (2002), 
Genikhovich et al. (2002). 
 Recently, more focus has been put on uncertainty assessment of these maps 
(Van Aalst et al., 1999; RIVM, 1999; Van Asselt et al., 2001). The air-quality mapping 
studies above have only considered deterministic secondary information. One may 
question what the effect of uncertain secondary information is on the interpolation of 
the primary information. The idea of including uncertain secondary information is 
not new, having been used, for example, in disease mapping (Bernardinelli et al., 
1997, and Held et al., 2005). 
 This chapter describes a method to perform a detailed uncertainty assessment 
of mapping NO2 concentrations in the Netherlands at rural and urban scales using 
uncertain secondary information from an atmospheric dispersion model. Four 
different sources of uncertainty were investigated. The first source are the NO2 
measurements. The second is the dispersion model output. The third source is an 
imperfect relationship between the observed concentrations and those modeled by 
the dispersion model. The fourth uncertainty is the spatial prediction procedure 
itself. The method presented here assimilates these uncertainties, being based on 
KED (Wackernagel, 2003) with features of a measurement error model (Cheng and 
Van Ness, 1999).  
 We used a simulated data experiment to illustrate the method. Next, the 
method was applied to real NO2 data at two sites in the Netherlands. The final 
products consisted of maps with: 1) optimal spatial predictions of NO2 rural and 
urban background concentrations, 2) corresponding standard deviations and 3) 
probabilities of exceeding the NO2 air quality standard of 40 µg/m3 (EC, 1999). Our 
investigation here was to determine how different values of uncertainty in the 
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observations and in the dispersion model output affected the interpolation 
parameters and maps and to compare and discuss the results. 
 

4.2 Material and Methods 
 

4.2.1 Primary information: observed NO2 concentrations 
 
We illustrate the use our method by data from 2002 in which 45 annual averaged 
NO2 concentrations were available. Data consisted of 26 rural background and 6 city 
background stations, and 13 street stations (Van Elzakker, 2001). The street stations 
were omitted because these are specific for local street conditions and not 
representative of the scale considered in this study. Another 6 stations were omitted 
because they did not suit the standards for missing data, leaving us with 26 stations. 
 The observations are shown graphically in Fig. 4.1a. The size of the area is 
approximately 260 × 310 km. NO2 is formed by combustion. Sources are traffic, 
industry, power plants, and inland waterway shipping. High concentrations are 
therefore found in the large cities (Rotterdam, The Hague, Amsterdam and Utrecht) 
and near highways. For measured annual averaged NO2 concentrations, the 
uncertainty (in this case twice the standard deviation) was assumed to be known and 
being approximately equal to 10% of the annual averaged concentration (Van Aalst et 
al., 1999). We also considered different percentages in section 4.3.2. 
 

4.2.2 Secondary information: dispersion model output 
 
The Operational Priority Substances (OPS) dispersion model provided the secondary 
information. The OPS model calculates annual averaged concentrations and 
depositions, based on emissions and meteorology. It also accounts for transport from 
adjacent countries. The model is an analytical model using the Gaussian plume 
model for dispersion on local scale. A Lagrangian trajectory model is used for long-
distance transport. 
 Input consists of emissions from sources into the atmosphere. A detailed 
emission inventory for 2002 was not available, therefore emissions from 1995 were 
scaled proportional to known total emissions per source group for 2002. Output 
consists of concentration fields on a desired spatial resolution (5 × 5 km in Fig. 4.1b). 
The model generated data at the monitoring station locations as well. The OPS model 
is described in Van Jaarsveld and De Leeuw (1993) and in Van Jaarsveld (2004). 
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observed NO2 concentration (µg/m3)

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

modeled NOx concentration by OPS (ppb)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

 
Fig. 4.1. Annual averaged NO2 concentration (µg/m3) in the Netherlands, monitored at 26 
rural and urban background stations and NOx concentrations (ppb) modeled by the OPS 
model on a 5 × 5 km grid. Regional (provincial) boundaries are indicated by black lines. The 
squares indicate the locations of the two study sites. 
 
 Uncertainties of the OPS model, the sum of uncertain model input, uncertain 
model parameters, and uncertainty caused by a simplified model structure can 
become large (Janssen at al., 1994; Acharya, 1994). On the basis of results from Van 
Aalst et al. (1999) and Van Jaarsveld (2004), we assumed that twice the standard 
deviation was equal to 20% of the predicted value, but, like the observations, we 
looked at different percentages (see section 4.3.2). 
 

4.2.3 KED with error-in-variable features 
 
The method used here is based on kriging with external drift and has the features of 
a measurement error model (ME model or error-in-variable model); this is the reason 
we call it “error-in-variable KED”. According to the theory of ME models, we have 
two related quantities, η and ξ, that are not observable and therefore unknown. 
These quantities are called latent variables and can only be observed with additive 
errors: 
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ii i yy η ε= +  (4.1a)

ii i xx ξ ε= +  (4.1b)

 
where yi are observations and xi are covariates at location si, where i = 1 … n, where n 
is the number of observations. The errors are assumed to be normally distributed and 
independent: 
 

2~ N(0, )
i iy yε σ  (4.2a)

2~ N(0, )
i ix xε σ  (4.2b)

cov( , ) 0
i ky xε ε =  (4.2c)

 
The error variances 2

iyσ  and 2
ixσ  are assumed to be known at each location and can 

differ from location to location. Part of the variance in the observations can be 
explained by the variance of a linear function of the covariates. In the context of a ME 
model, this relation should be written between the latent variables (Cheng and Van 
Ness, 1999). The residuals represent a sum of a spatially correlated part, as in KED, 
and a so-called equation error part, due to an imperfect relation between η and ξ: 
 

0 1 i ii i s qη β β ξ ε ε= + + +  (4.3)

 
In this equation, β0 and β1 are unknown trend parameters. We assume that the 

isε  are 

multivariate normally distributed with variance 2
s yσ R , and that the 

iqε  are univariate 

normally distributed with common variance 2
qσ  for each i 

 
2~ MVN(0, )s s yσε R  (4.4a)
2~ N(0, )

iq qε σ  (4.4b)

 
Here Ry = exp(-Hy/φ) is an n × n correlation matrix and Hy an n × n distance matrix 
between the monitoring station locations. Elements of Ry represent a exponential 
function of minus the distance divided by an unknown range parameter, φ, 
representing the decay rate of a spatial correlation function. Contrary to 2

yσ  and 2
xσ , 

both variances 2
sσ  and 2

qσ  are unknown. 

 Spatial prediction is a simple extension of the data modeling. Variable of 

interest is y . Latent variables η  and ξ  at prediction locations s  can only be observed 
with additive errors: 
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jj j yy η ε= +  (4.5a)

jj j xx ξ ε= +  (4.5b)

 
The tildes indicate that we are dealing with a prediction at j = 1 … m prediction 
locations contained in the vector s . Again, errors are assumed to be normally 
distributed and independent: 
 

2~ N(0, )
j jy yε σ  (4.6a)

2~ N(0, )
j jx xε σ  (4.6b)

cov( , ) 0
j ky xε ε =  (4.6c)

 
The error variances 2

jyσ  and 2
jxσ  are assumed to be known at each prediction location 

and can differ from location to location. Variance 2
xσ  follows directly from the data, 

whereas for 2
yσ  it is assumed to be the average of all 2

iyσ . The relation between η  and 

ξ  is given by 
 

0 1 j jj j s qη β β ξ ε ε= + + +  (4.7)

 
In equation (4.7) the variables and parameters have the same meaning as equation 
(4.3), except for 

jsε , which are multivariate normally distributed according to 

 
T 1 2 T 1~ MVN( , ( ))s y,y y s s y y,y y y,yσ− −−ε R R ε R R R R  (4.8)

 
In equation (4.8), exp( / )y y φ= −R H  and exp( / )y,y y,y φ= −R H are m × m and n × m 

correlation matrices, and yH  and y,yH  are distance matrices between the mutual 

prediction locations, and between the observation locations and prediction locations, 
respectively. Elements of yR  and y,yR  have the same exponential function of minus 

the distance, both divided by the range parameter φ. Predictions further away from 
monitoring sites are more uncertain. 
  

4.2.4 Hierarchical structure of the model 
 
The model can be written as a Bayesian hierarchical model (Fig. 4.2). In the Bayesian 
framework, all parameters are treated as random variables. The hierarchical model 
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consists of a joint distribution over all unknown parameters and unobserved data, 
represented in the figure as solid circles. The joint posterior distribution is obtained 
by conditioning the observed data, represented in the figure as dashed circles. 
Constants, like the known variances and distance matrices are represented by dashed 
squares. 
 On the left-hand side of Fig. 4.2, the data are observations y and covariates x, 
both known at the monitoring station locations. According to equation (4.1a), both 
are realizations of a univariate normal distribution with expectation η and ξ, and 
variance 2

yσ  and 2
xσ , respectively. For convenience, we split up equation (4.3) and 

introduce an additional parameter µ, which is the expectation of η conditional on εs. 
Consequently, η is a realization of a univariate normal distribution with expectation 
µ, and common variance 2

qσ . Variable µ represents the link between η and ξ by the 

linear relation with trend parameters β0 and β1, plus spatial error εs, which is a 

realization of multivariate normal distribution (4.4a). We assume ξ and ξ  as being 

ξ 

µ µ~

η η~

2
sσ

φ

β0

β1

y 

x x~  

2
qσ

yH

εs s~ε

y~H

yy,~H

ξ~

2
yσ  

2
~xσ

2
~yσ

2
xσ  

y~  

µξ 2
~ξσ

2
ξσ ξµ ~

Fig. 4.2. Hierarchical structure of the error-in-variable KED model. Dashed circles represent 
data, dashed squares constants, solid circles parameters, gray circles parameters with a prior 
distribution, single arrows stochastic dependence, and double arrows deterministic dependence. 
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independent identically distributed random variables with expectations µξ and ξµ  

and variances 2
ξσ  and 2

ξσ  respectively, making it a structural measurement error 

model. The right-hand side of Fig. 4.2 is the prediction model, which is similar to the 
data model. As represented in Fig. 4.2, the model can be easily evaluated with 
Bayesian techniques. 
 Because β0, β1, 2

sσ , φ, 2
qσ , µξ,, ξµ , 2

ξσ  and 2
ξσ  do not have parental nodes, they 

are given prior distributions. It is also possible to set priors on ξ and ξ  directly, but 
writing it as a structural measurement error model makes the procedure more stable. 
We chose the following non-informative priors: 
 
 β0 ~ N(0, 1000) (4.9a)
 β1 ~ N(0, 1000) (4.9b)
 2

sσ
−  ~ Gamma(0.001, 0.001) (4.9c)

 1φ−  ~ Uniform(0.001, 1000) (4.9d)

 2
qσ
−  ~ Gamma(0.001, 0.001) (4.9e)

 µξ ~ N(0, 1000) (4.9f)
 2

ξσ
−  ~ Gamma(0.001, 0.001) (4.9g)

 ξµ  ~ N(0, 1000) (4.9h)

 2
ξσ  ~ Gamma(0.001, 0.001) (4.9i)

 
We then applied Markov chain Monte Carlo (MCMC) integration (Gelman et al., 
2004), using the Gibbs sampler. Typically, the chains are run for a number of 
iterations until the outputs are stable (burn-in) and then a large number of additional 
iterations are run. The stationary distributions of the chains are the posterior 
distributions of the nodes. We performed the Gibbs sampler using the Bayesian 
analysis Using Gibbs Sampler (BUGS) software (Gilks et al., 1994).  
 After sampling from the posterior predictive distribution and application of a 
possible back transformation (section 4.3.2) different quantities, such as the median 
as predictor, standard deviation as a fourth of the 95% credible interval, and a 
probability of exceeding the air quality standard of 40 µg/m3, can be estimated 
empirically (De Oliveira et al., 1997). Note the difference between the known variance 

2
yσ  and the prediction variance (standard deviation squared) of y . The first one 

results only from uncertain observations y, equations (4.2a) and (4.6a), while the 
second one includes all uncertainties. 
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4.3 Results 
 

4.3.1 Simulated data example 
 
We illustrate the model in Fig. 4.3 using four cases of a one-dimensional simulated 
data example. The circles represent 20 observations y at fixed randomly chosen 
spatial locations, while the triangles represent a covariate x at the same locations. We 
took β0 = 5, β1 = 1, 2

sσ  = 1, φ = 10, 2
qσ  = 0, and an exponential correlation function. 

The goal was to estimate these parameters, make spatial predictions of the primary 
data (resulting in the solid line through the circles), and quantify the uncertainties 
(resulting in the dashed lines and 95% interval around the interpolations) based on 
the 20 observations. We used additional information from the covariate (solid line 
though the triangles) and included uncertainties in both the observations (error bars 
on the circles in Fig. 4.3b and Fig. 4.3d) and covariate (dashed lines around the 
covariate in Fig. 4.3c and Fig. 4.3d) 
 If y and x are measured without error ( 2

iyσ  = 0, 2
ixσ  = 0, 2

jxσ  = 0), the prediction 

is similar to kriging with external drift (Fig. 4.3a). The prediction passes through each 
point, following the covariate. The prediction error is small near the points and 
increases between two points. Although it is zero at the observation locations, it 
appears to be larger than zero. This is because prediction locations do not exactly 
coincide with observation locations. 
 If only y is measured with error ( 2

iyσ  ∈ [0, 0.2], 2
ixσ  = 0, 2

jxσ  = 0), the prediction 

is smoother (i.e. towards the linear function of covariate) at locations with a larger 
measurement error (Fig. 4.3b). For example, this appears if we compare locations s = 
46, s = 83, and s = 96 with Fig. 4.3a. Overall, it is somewhat difficult to distinguish 
from Fig. 4.3a. The contribution of errors in the observations to the total prediction 
error is only small, but the prediction error has increased and the spatial correlated 
error (Fig. 4.4) has decreased in comparison to Fig. 4.3a. 
 If only x is measured with error ( 2

iyσ  = 0, 2
ixσ  ∈ [0.01, 0.30], 2

jxσ  ∈ [0.01, 0.30]), 

the prediction has smoothed everywhere, especially at locations where σ2x0 is larger, 
because uncertainty is now present over the whole domain (Fig. 4.3c). Uncertain 
covariates have the same effect as uncertain observations. For example, compare 
locations s = 46, s = 83, and s = 96 again with Fig. 4.3b. Overall, the prediction error 
has increased more, while the spatial correlated error (Fig. 4.4) has decreased more in 
comparison to Fig. 4.3b. 
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(d) y and x with error

Fig. 4.3. Illustration of error-in-variable KED. 
 
 Finally, if both y and x are measured with error ( 2

iyσ  ∈ [0, 0.20], 2
ixσ  ∈ [0.01, 

0.30], 2
jxσ  ∈ [0.01, 0.30]), the prediction is smoother and the prediction error has 

further increased (Fig. 4.3d). For the same reason as in Fig. 4.3b, it is somewhat 
difficult to distinguish it from Fig. 4.3c. 
 This simulated data example did not contain an equation error. The effect of 
such an error is similar to that of additional measurement errors. If the error 
variances of the observations and covariate further increase, both the equation error 
and the spatial correlated error decrease, eventually becoming equal to zero. 
Predicted values approximate the linear function of the covariate and the prediction 
error increases. We can assign different error variances to each location, both to the 
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monitoring stations and the OPS output. This makes the error-in-variable KED 
model flexible for application. Uncertain observations (or outliers) may have a large 
variance and thus be confronted with less weight during parameter estimation and 
spatial prediction. This also applies to uncertain covariates at observation locations. 
 

4.3.2 NO2 concentrations in the Netherlands 
 
We considered two sites of 25 km2 at a 1 × 1 km spatial resolution, each in the 
Netherlands (see Fig. 4.1). The first site was the urban area of Rotterdam, with 
buildings, petrochemical industrial plants, highways, rivers, and harbor activities. 
The second site was a rural area near the monitoring station, Valthermond, located in 
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Fig. 4.4. Posterior densities of 2

sσ  for the four cases of the simulated data experiment in Fig. 
4.3. 
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the northeast of the Netherlands. This area, located in the former Dutch peat area, is 
used for agriculture, nowadays mainly consisting of potato fields. A small city 
nearby is Emmen, 10 km south of Valthermond. We expected the urban area of 
Rotterdam to show more spatial variation and higher uncertainties than the 
agricultural area around Valthermond. These sites were chosen to investigate 
differences between these two types of land use. 
 Fig. 4.5 shows the relation at the station locations between observations of 
annual averaged NO2 (µg/m3) and OPS output of annual averaged NOx 
concentration (ppb). The errors increased with increasing concentrations. After a log-
log-transformation, the error structure became additive and variances stabilized. 
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Fig. 4.5. Observed NO2 concentrations vs. NOx concentrations modeled by OPS. Vertical 
and horizontal bars between -2σ and +2σ indicate twice the standard deviation (10% in the 
observations and 20% in OPS output, respectively). 
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Each sample is back-transformed after sampling from the posterior predictive 
distribution. 
 An earlier study using a comparable data set of NOx concentrations (Van de 
Kassteele et al., 2005) showed that a large part of the variation in the observations 
could be explained by the OPS output. This resulted in a high value for the range 
parameter (~ 1000 km), leading to an almost linear shape of the exponential 
correlation function on the Dutch scale. We kept the range parameter fixed at 1000 
km, because its posterior distribution showed a high skewness and a very long tail, 
and therefore not a clear mode. 
 Fig. 4.6 consists of maps showing the median of the posterior distribution of 
NO2 concentration, the standard deviation, and the probability of exceeding the air 
quality standard of 40 µg/m3. These maps are constructed with values of 2σy = 10% 
and 2σx = 20% of the annual averaged concentration and apply to background 
concentrations. Concentrations are shown to become higher when they are close to 
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Fig. 4.6. Median for the posterior distribution of the annual NO2 concentration, the standard 
deviation, and the probability of exceeding the 40 µg/m3 air quality standard around 
Rotterdam and Valthermond for 2σy = 10% and 2σx = 20%. The shaded areas indicate cities 
and/or industrial zones, the solid black lines highways, and the dot-dashed lines to country 
and provincial boundaries. 
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highways. The highest concentrations occur in the center of Rotterdam, close to the 
River Maas, and near the highway north of Rotterdam. The air quality standard at 
these locations was exceeded. Standard deviation increased with increasing 
concentrations because of the log-transform, resulting in a higher probability of 
exceeding 40 µg/m3. However, it did remain under 1. The highest concentrations 
around Valthermond occur in the city of Emmen. A potato flour factory was 
responsible for the single peak in the northeast. The probability of exceeding 40 
µg/m3 is zero everywhere. 
 Next, we studied different percentages, 2σ = 0%, 10%, 20%, and 30%, of the 
annual averaged concentrations. The reason for this was unknown actual 
uncertainties in observations and OPS output. We performed error-in-variable KED 
for each combination, resulting in 16 possible combinations. Fig. 4.7 shows boxplots 
of the median and standard deviation, and the probability of exceeding 40 µg/m3 at 
the 2 × 625 prediction locations. The median concentration decreases around 
Rotterdam and increases evenly over space for increasing values of 2σ around 
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Fig. 4.7. Boxplots of the median, standard deviation, and probability of exceeding 40 µg/m3, 
based on 625 individual locations for different values for 2σy and 2σx. The box represents the 
inter-quartile range, and the whiskers the minimum and maximum values. 
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Valthermond. Changes are small, however. Similar to the simulated data example, 
the concentrations are smoothed towards a linear function of the OPS output. 
 The standard deviation increases rapidly with increasing values for 2σ. The 
increase is highest at locations with a high standard deviation. The increase in the 
prediction standard deviation is also higher if 2σy increases from 0% to 30% for a 
fixed value of 2σx, than if 2σx increases from 0% to 30% for a fixed value of 2σy. 
Therefore, with respect to prediction uncertainty, having more accurate observations 
can be preferred to having more accurate OPS output. 
 If 2σ increases, the probability of exceeding 40 µg/m3 changes, as seen in 
Table 4.1. The value of the median determines what happens if 2σ becomes higher. In 
general, the probability for high 2σ approaches 0.5. This also explains the narrowing 
of the boxplots for Rotterdam for the probability of exceeding 40 µg/m3. If 2σ 
increases, the probability evens out over space to become 0.5 if it goes to infinity. 
Around Valthermond, the probability remains zero everywhere, except near the 
potato flour factory. 
 

4.4 Discussion 
 
We have presented a method to interpolate uncertain spatial air quality observations 
using uncertain secondary information from an atmospheric dispersion model. This 
method was based on KED using error-in-variable features. Error-in-variable KED 
allows performance of a detailed uncertainty assessment of air quality mapping on 
rural and urban scales. It takes into account uncertainty in the observations, 
dispersion model output, the imperfect relation between both, and uncertainty due 
to spatial prediction. In all, a more flexible method is developed as compared to 
earlier KED-based methods. 
 Inference was done using a Bayesian approach. It has as an advantage that 
there was no need to write the model in a complicated analytical formulation, which 

Table 4.1. Change in the probability of exceeding 40 µg/m3 in case 2σ increases for different 
values of the median, where P1 represents the probability for a low 2σ and P2 the probability 
for a high 2σ. 
 case 1: 2σ  low case 2: 2σ  high case 2 – case 1 
median < 40 P1 < 0.5 P1 < P2 < 0.5 P2 – P1 > 0 
median = 40 P1 = 0.5 P1 = P2 = 0.5 P2 – P1 = 0 
median > 40 P2 > 0.5 P1 > P2 > 0.5 P2 – P1 < 0 
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is the case if uncertain covariates are introduced. Furthermore, the Bayesian 
approach automatically takes into account parameter uncertainty. 
 The simulated data example showed that uncertainty in the covariates had a 
similar effect on the predictions as uncertainty in the observations. In fact, the 
prediction tended towards a linear function of the covariate, whereas prediction 
errors increased. This was also the case if the equation error differed from zero. A 
contradiction may be that if the observations are without error and the covariates are 
with error smoothing emergences. An explanation is that uncertain covariates lead to 
uncertain predictions, with subsequent smoothing. 
 For the annual averaged NO2 concentrations we assumed the uncertainty (2σy) 
to be approximately 10% of the averaged concentration. Observation uncertainty 
should be taken into account into the prediction uncertainty. If this is ignored, 
inference is being be made on η  instead of on y , then prediction uncertainty actually 

decreases as 2
yσ  increases. However, no information about 2

yσ  was available at the 

prediction locations. As a solution, the average of 2
yσ  has been used. 

 A detailed quantification of OPS output uncertainty was outside the scope of 
this chapter. We did not look at model input, parameters, and uncertainty caused by 
a simplified model structure. We assumed it to be 20% of the annual averaged 
concentration. Furthermore, we assumed the error in the OPS output to be spatially 
independent. As an extension, we could have replaced 2

xσ  by a covariance matrix 

and with its elements depending on distance. To avoid further complications, we 
restricted ourselves to independence. 
 We studied different percentages of the annual averaged NO2 concentrations, 
because actual uncertainties were unknown. As concerns prediction uncertainty, it 
appeared that accuracy of observations was more important than accuracy of OPS 
output. As uncertainty in the observations is already low (10%), however, less 
improvement occurs than might be expected. On the other hand, as OPS output may 
be much more uncertain (up to 30%), it may be preferred to improve upon this. 
 Fuentes and Raftery (2005) modeled both the observations and model output 
as a function of a hidden truth. Our interest was to assess the primary variable. 
Therefore, instead of considering OPS output as a function of a truth, we turned it 
around and considered the observations and the OPS output as being related in an 
orthogonal regression. This is an improvement over the traditional KED. The 
intention of this study has been to provide a method to combine different sources of 
uncertain information, and not so much a statistical evaluation of the performance of 
the OPS model as such. As in Fuentes and Raftery (2005), the OPS output is corrected 
for bias. Additive bias is included in the intercept parameter β0, and a multiplicative 
bias in the slope parameter β1. We considered the change of support problem as 
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neglectable on our scale. In a future study, change of support issues can be addressed 
as an extension of the current study. 
 Further extensions and applications of the model may be the inclusion of more 
covariates. Also, it could possibly be successfully used to assess uncertainties in long-
term scenario studies for spatial decision support. The OPS model also addresses 
other pollutants and can be applied to different countries and regions. 
 

4.5 Conclusions 
 
This study showed a successful creation of concentration maps based on uncertain 
measurements and uncertain dispersion model output. Error-in-variable KED 
proved sufficiently flexible for assigning different error variances to each location, 
both to the monitoring stations and the OPS output, and handling biased secondary 
information. This can be beneficial if the pollution sources are missing or unknown. 
Examples are the amount of sea salt or wind blown dust in the atmosphere, e.g. for 
PM10. Our method accounts for the systematic error by use of regression parameters. 
 The Bayesian approach for spatial modeling was extremely useful in this 
context, because it had the advantage that there was no need to write the model in a 
complicated analytical formulation. Furthermore, the Bayesian approach 
automatically took into account parameter uncertainty. 
 Different uncertainties in the measurements and dispersion models affect the 
eventual results. Use of error-in-variable KED approach showed that high accuracy 
in the measurements is to be preferred above high accuracy in the OPS dispersion 
model output. Since the measurement precision was already high (2σ = 10%), it is 
more beneficial to increase precision of the OPS output. Evaluating OPS output 
uncertainty, however, requires additional research. 
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5. Uncertainty assessment of future local NO2 
concentrations 

 
 
 
 
Local NO2 concentrations near Rotterdam (Netherlands) were assessed for the year 
2010, focusing on the uncertainties and the changes in exceedance of European air 
quality standards. In the first step of the 2-step assessment method, the background 
contribution was determined by error-in-variable external drift kriging, where 
measurements and dispersion model output in the 1987–2003 period were combined. 
The result was subsequently extrapolated using dispersion model output and an 
emission scenario for 2010. In the second step, the local traffic contribution was 
added on the basis of a local generic dispersion model with use of an emission 
scenario for 2010. This resulted in maps showing local NO2 concentrations, upper 
and lower limits, and probabilities of exceeding the 40 µg/m3 air quality standard. 
The probabilistic measures were calculated in numbers and translated into words for 
easier communication. Using this method and scenario we found that within about 
100 m from the highways near Rotterdam the mean NO2 concentrations are likely to 
exceed the standard in 2010. The chance of exceeding the standard is unlikely up to 1 
km from the highways, where the mean is expected to be below the standard in 2010. 
 
 
 
 
 
 
 
 
 
 
 
 
 
_______________ 
This chapter is based on J. van de Kassteele and G.J.M. Velders (2006). Uncertainty assessment of local 
NO2 concentrations derived from error-in-variable external drift kriging and its relationship to the 
2010 air quality standard. Atmospheric Environment (in press). 
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5.1 Introduction 
 
Policy makers require detailed local information about future air quality to be able to 
decide on infrastructural projects near residential areas. These areas may be exposed 
to too high concentrations of air pollutants or plans for new infrastructural projects 
may be obstructed if European air quality standards (EC, 1999) are exceeded at a 
certain location (Van Velze et al., 2000; Folkert et al., 2002). This is the reason we need 
maps showing concentrations of pollutants. Policy makers use results from 
deterministic or statistical models to assess if future air quality standards will be met. 
Such models inevitably have assumptions and simplifications which result in 
uncertainties in the results. Since these models are, in general, used quite precisely 
(for example, to indicate if the air quality standard is exceeded or not), the inclusion 
of a measure of uncertainty in such model outputs yields valuable additional 
information (ApSimon et al., 2002). Since policy makers tend to focus more and more 
on uncertainties as well, the question is then, how certain are future concentration 
maps and how should uncertainties be handled? For example, one might question 
what the probability of exceedance of an air quality standard is and how this should 
be communicated (Van Asselt et al., 2001). 
 Usually, local air quality is determined in two steps: 1) via a regional 
background contribution and 2) via a local contribution, which usually are line or 
point sources. On a regional scale, the background concentrations may be based on a 
combination of air quality measurements and regional dispersion model output by 
kriging with external drift (KED). This method is already successfully applied in air 
quality mapping studies, such as in Genikhovich (2002), Wackernagel (2003) and Van 
de Kassteele and Stein (2005). Measurements are only available at a limited number 
of locations, while dispersion model output over the whole region is known. We can 
use this information to improve interpolation of the measurement data. Adding 
errors to the measurements and dispersion model output makes a detailed 
uncertainty assessment possible (Van de Kassteele and Stein, 2005). On a local scale, 
measurements are usually not available, so the local contribution can be determined 
by local dispersion model output only. We have only considered traffic, i.e. line 
sources, for contributing to the local concentrations. 
 Currently, concentration maps used for assessing future air quality are based 
on information on future emissions and long-term meteorology only; see, for 
example, Jonson et al. (2001); MNP (2005). However, measurements from the past can 
be used too. In this study, we first explored the possibility of predicting future NO2 
background concentrations based on a future emission scenario and information 
from the past. The process is schematically shown in Fig. 5.1. Since dispersion model 
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Fig. 5.1. Flow chart of the 
procedure to determine 
local NO2 concentrations 
for 2010, based on a 
combination of 
measurements, dispersion 
model output and the local 
traffic contribution. 
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output is determined through emissions and meteorological aspects, these input data 
are available for both recent and past years. Future emissions can be estimated from 
current emissions, and technological and policy developments. Average 
meteorological data (climatology) can be applied to get around the lack of future 
meteorological factors. We applied error-in-variable KED to combine measured 
background concentrations and regional dispersion model output. After resampling 
the concentrations to fit a local scale, the next step was to add the traffic contribution 
by means of local dispersion model output. Uncertainties and the relationship 
between with the air quality standard for NO2 (40 µg/m3, EC, 1999) were being 
assessed. Finally, we will discuss communication of the results to policy makers. 
Since uncertainties are currently not in use in the policy process, a translation of 
scientific results into policy would be desirable. 
 

5.2 Available data 
 

5.2.1 NO2 measurements 
 
We used rural and urban background measurements from the Dutch national air 
quality monitoring network (Van Elzakker, 2001). Measurements from 1978 and 
beyond are available; however, the number of stations in the monitoring network 
diminished in the mid-1980s, so we only took data for the 1987-2003 period. After 
adjusting the standards for missing data for annual average concentrations, 45 
stations remained, of which 38 were characterized as rural stations and 7 as city 
stations. Stations in street canyons were not used here. Concentrations were 
measured by chemiluminescence, which is the same for all stations in the 
Netherlands. 
 For measured annual average NO2 concentrations, the uncertainty (in this case 
twice the standard deviation) could be found in the literature; this was 
approximately 10% of the annual average concentration (Blank, 2001; Van Aalst et al., 
1999). 
 

5.2.2 Atmospheric dispersion model output: OPS and CAR 
 
The OPS dispersion model (Operational Priority Substances) is used to provide 
information for determining NO2 background concentrations (Van Jaarsveld and De 
Leeuw, 1993; Van Jaarsveld, 2004) in the Netherlands. OPS calculates annual average 
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concentrations based on emissions, dispersion, transport, conversion and deposition, 
and takes transport from adjacent countries into account. Substances dealt with show 
behavior that can be described by first-order chemical reactions. The model uses the 
Gaussian plume model for dispersion on local scale and a Lagrangian trajectory 
model for long-distance transport. 
 Input consisted of emissions from sources into the atmosphere. Source 
properties, like emission height, are determinative for the dispersion. A detailed 
emission inventory was not available for the 1987–2003 period, so known emissions 
from 1995 were scaled proportionally to known total emissions per source group for 
each year. Output consisted of concentration fields on a 500 × 500 m spatial 
resolution. This resolution was chosen as a compromise between the usual resolution 
of OPS (> 1 km) and the required resolution for the local traffic contribution. A 
higher resolution did not add new information. The model also generated data at the 
monitoring station locations for error-in-variable KED (section 5.3.2). 
 Quantification of OPS output uncertainty was difficult, since emissions and 
their effect on the output were not well known. Many model parameters were 
empirically obtained values. The Gaussian plume model also has some 
shortcomings, being a simple conceptualization of reality. On the basis of Van Aalst 
et al. (1999) and Van Jaarsveld (2004), we assumed that twice the standard deviation 
was approximately 20% of the predicted value. Van de Kassteele and Stein (2005) 
discussed the effect of different values of uncertainty and concluded that it would be 
more beneficial to increase the accuracy of the OPS output than go for measurement 
uncertainty. However, evaluating OPS output uncertainty will require additional 
research. 
 Uncertainties such as historical emissions, future economic, social and 
technological developments, current negotiations and modeling instruments were 
also taken into account in the reference projection for 2010 (Van Dril and Elzenga, 
2005). This led to an additional 15% uncertainty for 2010 (Gijsen and Seebregts, 2005). 
 The CAR model (Calculation of Air Pollution from Road Traffic) is a generic 
model for determining air quality near roads in cities (Eerens et al., 1993). The traffic 
contribution is calculated by multiplying the traffic emissions by a dilution factor. 
The traffic emission depends on the traffic properties (composition, intensity and 
speed). The dilution factor depends on street properties (buildings, trees and 
distance to road). As in the OPS model, CAR output consists of NOx concentrations, 
but on a local scale. CAR uses an empirical relationship to convert the NOx into NO2 
through O3 background concentrations. Uncertainty of the CAR output was 
estimated through Monte Carlo simulations (section 5.3.3). 
 OPS output consists of NOx concentrations (in ppb). Since we are interested in 
NO2 concentrations (in µg/m3) and the fact that the CAR model requires O3 as input 
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variable, the NOx were first converted to NO2 and O3. Usually this requires 
complicated chemical reactions (Seinfeld and Pandis, 1998), but we used two 
empirical relationships (Fig. 5.2) based on measurements at rural and urban 
background monitoring stations for 1990-1999. Cleary, two clusters can be identified; 
however, differences between these two types of stations are captured well by the 
empirical relationships. The dashed lines in Fig. 5.2 represent 95% prediction 
intervals. The relationships for the predicted value (E) and prediction variance (Var) 
are given by: 
 
 E[NO2] = (0.061 + 0.728 NOx-0.829)-1.544 (5.1a)
 Var[NO2] = 9.34⋅10-5 E(NO2)3.135 (5.1b)
 E[O3] = (3.419 - 0.085 NOx0.508) 3.301 (5.1c)
 Var[O3] = 0.104 E(O3)1.358 (5.1d)
 
The uncertainty introduced by (5.1b) and (5.1d) are taken into account in further 
calculations. 
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5.3 Methodology 
 

5.3.1 A case study area near Rotterdam 
 
We considered an area of 5 × 5 km on the north side of Rotterdam (Netherlands). Its 
location is shown in Fig. 5.3. The area is traversed by two highways: one going from 
east to west (the A20) and the other from north to south (the A13). North of the A20, 
the urban area is scattered, while in the south, towards the city centre, it is more 
compact. Highways A13 and A20 cause severe air pollution in this area (Van Velze et 
al., 2000). We did not consider local roads because their contribution is not very high, 
mainly because of their much smaller traffic intensities compared to highways. 
 

5.3.2 Background concentration 
 
It was not appropriate to run OPS with the emission reference projection for 2010 
(Van Dril and Elzenga, 2005) and use average meteorology as a forcing to obtain NO2 
background concentrations for 2010. This is because OPS model output is biased 
(Van de Kassteele and Stein, 2005). To correct the biased modeled NO2 
concentrations for 2010, we related modeled and measured NO2 concentrations from 
1987-2003 and extended the measured NO2 time series to 2010, using the modeled 
NO2 time series as an explanatory variable. Linear regression is then a simple option, 
but requires independent residuals in time. The regression parameters may also 
change in time. 

The Netherlands

N

0 50 km

Rotterdam

0 5 km

A13

A20

0 1 km

 
Fig. 5.3. Location of the study area in the Netherlands; the dashed line shows where a cross 
section is made. 
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 We used the emissions known for the years 1987-2003 and the same average 
meteorological data. This resulted in modeled concentrations that depend only on 
changing emissions, slowly decreasing in time. If we assume meteorological factors 
over the years that are independent and fluctuations in the measured NO2 
concentrations that are driven mainly by actual meteorological factors, the measured 
concentrations (after detrending with the modeled concentrations) will be 
independent in time. For stations with at least 15 years of data, we checked the 
assumption using the test for randomness, i.e. no time dependence in the data. There 
is no time dependence if there are autocorrelations between the confidence bands 

1 / 2 /z nα−± ,where n is the sample size, z the percent point function of the standard 

normal distribution and α = 0.05 the significance level. After detrending with the 
modeled NO2 concentrations, all series showed randomness, so this assumption is 
correct. This leaves us with only a possible spatial correlation in the residuals. Similar 
results were obtained for O3. 
 To check if the regression parameters changed with time, we estimated the 
parameters for each year using all stations (ignoring any spatial correlation and 
measurement errors). This showed that the regression parameters changed linearly 
with time. For NO2, the intercept increased from -1.5 to -0.5 and the slope decreased 
from 1.4 to 1.1. In other words, OPS performed better for NO2 in recent years. For O3, 
the intercept increased from 0.0 to 1.0, and the slope decreased from 1.0 to 0.7. In 
other words, OPS performed poorer for O3 in recent years. The associated 95% 
confidence intervals of the estimated parameters for 1987 and 2003 did not overlap, 
so we concluded the change in time to be significant. Residual variance remained 
constant over the years. 
 To model spatial dependence we applied error-in-variable KED (Van de 
Kassteele and Stein, 2005), a method interpolating uncertain spatial observations 
using uncertain secondary information. Error-in-variable KED allows a detailed 
uncertainty assessment of mapping rural and urban background concentrations. It 
takes into account uncertainty in the observations, dispersion model output, the 
imperfect relationship between the two and uncertainty due to spatial prediction. 
 Error-in-variable KED consists of two steps: a parameter estimation step and a 
spatial prediction step. In the estimation step we have ns monitoring stations within 
nt years. Here, we applied a log transformation to the concentrations to stabilize the 
error variances. We denoted measurements and OPS output as y and x, respectively. 
These quantities represent observations of the underlying unknown latent variables, 
η and ξ, which can only be observed with additive errors: 
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,, , i ji j i j yy η ε= +  (5.2a)

,, , i ji j i j xx ξ ε= +  (5.2b)

 
The errors are assumed to be normally distributed and independent: 
 

, ,

2~ N(0, )
i j i jy yε σ  (5.3a)

, ,

2~ N(0, )
i j i jx xε σ  (5.3b)

 
The indices i = 1 … ns and j = 1 … nt represent locations in space and moments in 
time. The error variances 

,

2
i jyσ  and 

,

2
i jxσ  are known at each location and time, and can 

differ for each location and time. In the context of a measurement error model 
(Cheng and Van Ness, 1999), the latent variables are related. In error-in-variable 
KED, the residuals represent the sum of a spatially correlated error, as in classical 
KED, and a so-called equation error: 
 

,, 0 1 , 2 ( 1987)
i i ji j i j j s qtη β β ξ β ε ε= + + − + +  (5.4)

 
To account for the linearly changing regression coefficients in time, the original error-
in-variable KED model was extended with an extra term including year tj. In the 
above equation, β0, β1, and β2 are unknown trend parameters. The spatially 
correlated error is the same for each year but changes over space, meaning that each 
year is a realization of the same random field. Stationarity of the data was assumed 
because of the large-scale background concentrations for the relatively small domain 
of the Netherlands. We further assumed 

isε  to be multivariate and normally 

distributed, with variance 2
s yσ R  for each i, and 

,i jqε as univariate normally 

distributed, with a common variance 2
qσ  for each of i and j: 

 
2~ MVN(0, )s s yσε R  (5.5a)

,

2~ N(0, )
i jq qε σ  (5.5b)

 
Here Ry = exp(-Hy/φ) is an ns × ns correlation matrix and Hy an ns × ns distance matrix 
between the monitoring station locations. Elements of Ry represent a exponential 
function of minus the distance divided by an unknown range parameter, φ. This 
represents the decay rate of a spatial correlation function. Contrary to 2

yσ  and 2
xσ , 

both variances 2
sσ  and 2

qσ  are unknown. 
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 In the prediction step there are i = 1 … ms prediction locations and j = 1 … mt 
prediction times. In our study, mt = 1 and t is the year 2010. Spatial prediction can be 
phrased as a simple extension of the estimation step. The eventual variable of interest 

is y . Latent variables η  and ξ  at prediction locations s , can only be observed with 
additive errors. The tildes indicate that we are dealing with predictions. Again, errors 
are assumed to be normally distributed and independent. The error variances, 

,

2
i jyσ  

and 
,

2
i jxσ , are assumed to be known at each prediction location and can differ from 

location to location. Variances 
,

2
i jxσ  follow directly from the data, whereas 

,

2
i jyσ  is 

assumed to be the average of all 
,

2
i jyσ . The relationship between η  and ξ  is given by 

 

,, 0 1 , 2 ( 1987)
i i ji j i j j s qtη β β ξ β ε ε= + + − + +  (5.6)

 
In equation (5.6) the variables and parameters have the same meaning as in equation 
(5.4), except for

isε , which are multivariate normally distributed according to 

 
T 1 2 T 1~ MVN( , ( ))

is y,y y s s y y,y y y,yσ− −−ε R R ε R R R R  (5.7)

 
In equation (5.7), exp( / )y y φ= −R H  and exp( / )y,y y,y φ= −R H  are ms × ms and ns × ms 

correlation matrices, and yH  and y,yH  are distance matrices between the mutual 

prediction locations, and between the observation and prediction locations, 
respectively. Elements of yR  and y,yR  have the same exponential function of minus 

the distance, and both are divided by the range parameter φ. Predictions further 
away from monitoring sites are more uncertain. 
 The statistical model for error-in-variable KED can be written as a Bayesian 
hierarchical model (Van de Kassteele and Stein, 2005). We furthermore assumed that 

ξ and ξ  are independent, identically distributed, random variables with expectations 

µξ and ξµ  and variances 2
ξσ  and 2

ξσ . This makes the model a structural measurement 

error model, which makes the estimation procedure more stable. Parameters β0, β1, 
β2, 2

sσ , φ, 2
qσ , µξ, ξµ , 2

ξσ  and 2
ξσ  were given prior distributions. We chose the 

following non-informative priors: β0, β1, β2, µξ, ξµ  ~ N(0, 0.001), 2
sσ
− , 2

qσ
− , 2

ξσ
− , 2

ξσ  ~ 

Gamma(0.001, 0.001), 1φ−  ~ Uniform(0.001, 0.1) and then applied Markov chain 
Monte Carlo (MCMC) integration (Gelman et al., 2004), a technique making an 
analysis of hierarchical models more feasible. A common MCMC integration is 
obtained with the Gibbs sampler using WinBUGS (Lunn et al., 2000; Gilks et al., 1994). 
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Typically, the chains are run for a number of iterations until the outputs are stable 
(burn-in); after this, a large number of additional iterations are run. Having thinned 
the chain, we obtained 1000 samples of η  for each prediction location. The individual 
samples were then back-transformed and the measurement error for NO2 and O3 
included, to get the variable of interest y . 
 The background NO2 and O3 concentrations are known on a 500 × 500 m grid 
(MNP, 2005). The CAR model, however, requires a much higher resolution because 
traffic contributions can decay rapidly with distance from the road axis. We should 
therefore apply a resampling of the background concentrations to a 50 × 50 m grid, in 
our case, by bilinear interpolation. Since the individual samples between the 500 × 
500 m grid points were independent in space, a bilinear interpolation would have led 
to an underestimation of the 97.5-quantile, and an overestimation of the 2.5-quantile 
on the 50 × 50 m grid. This restriction was forced by WinBUGS (Lunn et al., 2000; 
Gilks et al., 1994). Therefore, the individual samples of both components at each 
location had to be re-ordered first, which means high concentrations with high 
neighboring concentrations on the grid. 
 Because of the chemical relationship between NO2 and O3 (Seinfeld and 
Pandis, 1998), we could not arrange both the NO2 and O3 samples in ascending 
order. From the observations from 1990-1999 used earlier in section 5.2.2, we found a 
linear relationship between both components, with a correlation coefficient of -0.86. 
This correlation should also be present in the individual samples of both components 
on the prediction grid. We therefore arranged the 1000 individual samples of NO2 
and O3 separately in ascending order and then drew 1000 pairs from a multivariate 
normal distribution with correlation -0.86. We sorted the first column and kept the 
second column coupled to the first, and finally assigned the rank numbers of the 
second column to the O3 samples. This resulted in a correlation of approximately -
0.86 between the NO2 and O3 samples at each location. 
 

5.3.3 Traffic contribution 
 
The CAR model for local traffic contributions is a relatively simple and generally 
accepted and applied model in the Netherlands (Eerens et al., 1993). The roads were 
each divided into parts, each with its own properties, e.g. traffic intensity and 
composition. Each part subsequently consisted of several smaller linear segments 
that described the location and curvature of the part. CAR calculated concentrations 
for each part symmetrically and perpendicular to the smaller segments. 
 Because the CAR model is relatively simple, a Monte Carlo uncertainty 
analysis could be performed. A random draw from a Gaussian distribution was 
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made for all parameters and input of the CAR model with 2σ = 30% of the parameter 
and input value (Eerens et al., 1993; Van Oorschot et al., 2003). For each individual 
resampled background concentration and random draw, the local traffic contribution 
was calculated in a 7-step procedure. In step 1 the dilution factor was calculated as a 
function of distance to the road and step 2 emission as a function of traffic intensity 
and composition. Step 3 produced traffic NOx concentrations as a result of steps 1 
and 2 and in step 4 the NOx contributions from each road were summed. In step 5 the 
NOx concentrations were converted to NO2 concentrations by applying an empirical 
relationship using O3 background concentrations; in step 6 a correction was made for 
traffic contributions in the background concentrations by OPS, and in step 7 we 
determined the total NO2 concentration by adding the corrected NO2 traffic 
contribution to the NO2 background concentration. We eventually got an empirical 
probability density function of the total NO2 concentration at each location.  
 

5.4 Results 
 
Table 5.1 shows parameter estimates for the error-in-variable KED in determining the 
background NO2 and O3 concentrations for 2010. Trend parameter estimates for NO2 
have smaller credible intervals than those for O3 because of: 1) a higher accuracy of 
the NOx to NO2 conversion and 2) a better relationship between the converted 
modeled OPS NOx (modeled NO2) and measured NO2. Although the trend 
parameters are not significant for O3, we followed the same approach for both 
components, based on the results of the time varying coefficients as described in 
section 5.3.2. The variance of the spatial correlated error 2

sσ  is higher than the 

equation error variance 2
qσ  for both components. This indicates that the error-in-

variable KED found a substantial spatially correlated effect in the residuals. Since we 

Table 5.1. Mean, and upper and lower boundaries (95% confidence interval) for trend 
parameters, spatial covariance parameters and equation error variance. 
Parameter NO2 O3 
β0 1.63 (1.29, 2.00) -2.29 (-10.9, 14.0) 
β1 0.54 (0.42, 0.62) 1.66 (-2.84, 4.06) 
β2 -0.015 (-0.017, -0.013) 7.1E-4 (-1.65E-3, 3.13E-3) 

2
sσ  0.058 (0.025, 0.14) 0.023 (9.5E-3, 0.071) 

φ 50.0 (15.06, 155.0) 41.8 (10.6, 171.7) 
2
qσ  6.0E-4 (1.9E-4, 1.4E-3) 2.7E-3 (5.4E-4, 5.2E-3) 

   



5.4 Results 

 

91

used average meteorological data to feed the OPS model, the spatial effects are more 
pronounced than if OPS output with actual meteorological factors had been used. 
 Fig. 5.4 shows the total NO2 concentration (background + traffic) near 
Rotterdam for 2010. The upper panels show the expectation, and 2.5 and 97.5-
quantiles (95% confidence interval of the posterior of the NO2 concentration). The 
lower panels show the standard deviation, relative error (i.e. twice the standard 
deviation divided by the mean) and the probability of exceeding the 40 µg/m3 air 
quality standard. The standard deviation can also be approximated by (q97.5 – q2.5)/4. 
The standard deviation and relative error are smaller towards the city centre 
(southeast) because a monitoring site is located there. 
 The influence of the highways decreases rapidly with increasing distance from 
the road axis, reaching approximately 500 m. Based on the expectation for this 
emission scenario, the NO2 air quality standard in 2010 is only exceeded within a 
distance of 100 m to the road axis, except near the highway junction, where both 
highways contribute to the traffic-related concentrations. Based on the 2.5-quantile, 
the concentrations in the whole area remain below the air quality standard, whereas 

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

q2.5[NO2 concentration] (µg/m3)

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

mean[NO2 concentration] (µg/m3)

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

q97.5[NO2 concentration] (µg/m3)

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

sd[NO2 concentration] (µg/m3)

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25

rel. error[NO2 concentration] (-)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

prob[NO2 > 40 µg/m3] (-)

Fig. 5.4. Total NO2 concentrations near Rotterdam for 2010: 2.5-quantile, mean, 97.5-
quantile, standard deviation (sd), relative error and probability of exceeding 40 µg/m3. 
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for the 97.5-quantile, the standard is exceeded in a large area (also due the high 
background concentrations). 
 Standard deviations near highways do not seem as large as expected on the 
basis of standard deviations of the CAR model only. This is caused by the addition of 
background concentration and the traffic contribution. Low NO2 background 
concentrations are connected with high O3 background concentrations. As a 
consequence, more NOx contributed by traffic can be converted to NO2 traffic 
contributions. Furthermore, high NO2 background concentrations are connected with 
low O3 background concentrations. Therefore less NOx can be converted to NO2 from 
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Fig. 5.5. NO2 profiles of the background and total concentration, with the cross-section of the 
area from SW to NE as shown in Fig. 5.3. The fine lines in all panels represent background 
concentrations, the heavy lines total NO2 concentrations. Additionally, the dashed lines in the 
upper left panel represent the 2.5 and 97.5 quantiles, and the dashed line in the upper right 
panel represents the standard deviation of the CAR model output. 
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traffic. This chemical mechanism dims the NO2 variability near highways. This effect 
is more pronounced in the figure of the relative error. 
 The exceedance probability of the air quality standard rapidly decreases with 
increasing distance to the road axis. The 0.50-contour is related to the mean 
concentration. Exactly the same contour would emerge for the median concentration. 
The figure indicates that on the 0.10 probability contour, for example, the standard is 
exceeded with a probability of 10%. Interesting in this example is the exposure of the 
residential area in terms of an exceedance distance (Folkert et al., 2002). From that 
distance to the road, the 40 µg/m3-contour, it is very unlikely to exceptionally 
unlikely that the standard will be exceeded. 
 To illustrate the traffic contribution in more detail, cross-sections of NO2 
background and the total NO2 concentration profiles are shown in Fig. 5.5 [from the 
lower left corner (SW) to the upper right corner (NE)]. The two peaks correspond to 
the presence of highways A20 and A13. The upper left panel shows the two 
highways to cause a sharp increase in concentration. In the upper right panel 
showing the standard deviations, we note that the standard deviation of the CAR 
model exceeds that of the background concentration near the highways; however, 
the total standard deviation for NO2 concentration at that location is lower than 
expected. Furthermore, near highways, the relative error (lower left panel) of the 
total concentration is smaller than that of the background concentration. The 
exceedance probability only rises near highways. 
 

5.5 Discussion 
 
We assessed future local NO2 concentrations by first determining background 
concentrations using error-in-variable KED, and subsequently adding a traffic 
contribution. Results were from empirical probability density functions at each 
location, from which several statistics could be derived. 
 First, one remark about the methodology we used to account for the time-
varying coefficients in the error-in-variable KED model. In equation (4) we assumed 
that the observations were a linear function of the covariate and time. This is a strong 
assumption, considering we enforce a relationship that resulted in lower standard 
errors for the trend parameter estimates. Furthermore, the relationship may be 
different for components other than NO2 and O3. A more elegant and flexible 
approach would have been to estimate the trend dynamically, as in a structural time 
series approach (Harvey, 1989). This approach, however, was outside the scope of 
this chapter. 
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 Second, there is the relationship between NO2 and O3. The error-in-variable 
KED model did not allow simultaneous estimation and interpolation of multiple 
components. This could result in a distorted image of reality. We therefore accounted 
for the negative correlation between NO2 and O3 pragmatically. The background 
concentrations could perhaps have been determined simultaneously by applying co-
kriging (Wackernagel, 2003), but this is outside the scope of this chapter. 
 The third remark concerns the CAR model. Its actual purpose is to determine 
air quality in city streets (canyon) surrounded by buildings (Eerens et al., 1993). CAR 
did not account for traffic stagnation, noise barriers, or other objects near the road, 
except for trees. Although more advanced models are available, for example, the 
ADMS-Urban model (McHugh et al., 1997), we used CAR here as an initial approach 
to test our statistical model. Application of a more advanced model may take place in 
future research. 
 A fourth remark concerns the uncertainty of the input data. Percentages used 
here were based on those found in the literature. We note here, however, that these 
percentages may themselves be uncertain, but do not expect this factor to have more 
than marginal effects. Undertaking more research on data uncertainty is one 
possibility for studying the effect of different percentages, such as that demonstrated 
in Van de Kassteele and Stein (2005). Error-in-variable KED is sufficiently flexible for 
assigning different error variances to each location. 
 Finally, it was impossible to validate our model, since no measurements were 
available on the local level. We refer to Van de Kassteele and Stein (2005) for more 
details on the error-in-variable KED and to Eerens et al. (1993) for the CAR model. 
 The method developed here is very general and could, if measurements are 
available, be applied to other components, like PM10, in other years, at other 
locations (Van Velze et al., 2000), in other countries and for other emission scenarios 
(Beck et al., 2001). More information, e.g. a climate scenario, may also be included. 
 An interesting question now arises as to how these spatial uncertainties and 
probabilities of exceedances can be communicated to policy makers and other end 
users. By applying the above methodology, an environmental assessment agency can 
assess and review uncertainties. Bear in mind though that the Council Directive (EC, 
1999) provides only targets and limit values. As a consequence, legislation cannot 
include uncertainties because uncertain information is not expressed in laws. 
However, if some sort of information on the uncertainties of results presented is 
available, it would be desirable if this could be communicated to the end users. 
Special interest groups might look at the 2.5- and 97.5-quantiles. They might make an 
appeal for these maps as offering an option, with a certain probability, depending on 
their own interests, e.g. economic or environmental. 
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Table 5.2. IPCC terminology for communicating probabilities (IPCC, 2001). 
from to IPCC terminology 
0% 1% Exceptionally unlikely
1% 10% Very unlikely 
10% 33% Unlikely 
33% 66% Medium likelihood 
66% 90% Likely 
90% 99% Very likely 
99% 100% Virtually certain 
   
 Fisher (2003) illustrates applications of fuzzy set theory for decision-making in 
air quality. Like ApSimon et al. (2002), he noticed that all models introduce 
uncertainty. The use of fuzzy numbers was avoided in our study because we have 
uncertainty expressed automatically by the Bayesian approach, resulting in an 
empirical probability density function at each location. This makes hypothesis testing 
in relation to the NO2 standard possible, for example. The standard is not 
significantly exceeded if the 97.5-quanitle is below it, but is significantly exceeded if 
the 2.5-quantile is above the standard. The cases in between (2.5-quantile below the 
standard and 97.5-quantile above it) should be considered as fuzzy, with 
implications for subsequent action plans, by allowing some exceedances of the 
standard. Especially these areas require a more detailed assessment, because here it 
is difficult to exactly diagnose if the standard is exceeded or not. 
 The exceedance probability maps presented here provide additional 
information. IPCC (2001) has developed terminology for communicating the 
uncertainties associated with climate change (Table 5.2), with the idea that instead of 
giving probabilities, terms would help to communicate uncertainties. The results as 
presented in section 5.4 could consequently also be formulated in a new map, 
showing how terms could be applied to each location (Fig. 5.6). This figure is similar 
to the lower right panels of Fig. 5.4 and Fig. 5.5, except that the probabilities have 
been replaced by words. These figures are used to provide information to a policy 
maker on the acceptability of a risk. 

5.6 Conclusions 
 
This chapter has shown how to predict future NO2 concentrations maps based on an 
emission scenario and to assess uncertainties inside and outside Rotterdam. The 
error-in-variable KED, which combines past measurements, dispersion model output 
for the past and future. With a generic dispersion model for local traffic-related 
emissions, we produced results for local traffic-related air quality that seemed to be 



5. Uncertainty assessment of future local NO2 concentrations 

 

96 

valuable in relation to the European air quality standards. Several statistics could be 
derived from the empirical probability density functions at each location and results 
were related to the 2010 NO2 air quality standard. 
 The mean NO2 concentrations were shown to exceed the air quality standard 
at a distance of up to 100 m from highways; however, the areas where the standard 
was exceeded were fuzzy. For distances of 100 m to 1 km, exceedance probabilities 
occurred in a range from 0.10 to 0.50. Further away, at 1 km from the highway, where 
the mean of 35 µg/m3 was below the standard according to regulations, the 
probability of exceedance was still 0.10. 
 Our methods resulted in probabilistic measures, allowing hypothesis testing. 
To allow simple communication with users, this study showed how these measures 
could be translated verbally into probabilistic statements with the use of IPCC 
terminology. 
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Fig. 5.6. Probability of exceeding the NO2 air quality standard according to IPCC 
terminology. The left panel shows the map as in Fig. 5.4; the right panel shows the cross-
section as in Fig. 5.5. 
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6. Statistical PM10 mapping using dispersion 
modeling and satellite observations 

 
 
 
 
This chapter illustrates the use of statistical techniques to standardize ground based 
measurements of particulate matter (PM10). Concentrations are interpolated over 
Western Europe using uncertain secondary information from a chemical transport 
model and of aerosol optical thickness from MODIS satellite observations. A 
consistent overview of PM10 concentrations over Europe based solely on ground 
based measurements is complicated by differences between countries. Different 
monitoring methods are used and calibrations are applied. There also is an inherent 
limitation to the spatial representativeness of ground based measurements. 
Validation showed that adding secondary information from either the chemical 
transport model or the satellite observations improved the PM10 mapping. The 
URMSE decreased from 5.14 to 4.26 and 4.58 respectively. A combination of both 
sources of secondary information gave the most accurate and precise predictions, 
with an URMSE of 3.62. This means that both external sources contain additional 
information on the spatial distribution of PM10 concentrations and should therefore 
be preferred. 
 
 
 
 
 
 
 
 
 
 
 
 
_______________ 
This chapter is based on J. van de Kassteele, R.B.A. Koelemeijer, A.L.M. Dekkers, M. Schaap, C.D. 
Homan and A. Stein (2006). Statistical mapping of PM10 concentrations over Western Europe using 
secondary information from dispersion modeling and MODIS satellite observations. Stochastic 
Environmental Research and Risk Assessment (submitted). 
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6.1 Introduction 
 
Exposure to particulate matter is the largest contributor to morbidity and mortality 
from air pollution in Europe and the US (e.g., Dockery et al., 1993; Brunekreef and 
Holgate, 2002; Brunekreef and Forsberg, 2005). It is estimated that in 2000, about 
350,000 people have died prematurely in Europe through long-term exposure to 
PM2.5, which by far dominates health effects of other air pollutants (EEA, 2005). 
Recent studies in Europe indicate that some fractions of PM10, especially particles 
that are emitted from combustion, are of more importance than other fractions (e.g. 
sea salt or secondary inorganic components) (Hoek et al., 2002). 
 The European Commission has set standards for ambient yearly and daily 
averaged PM10 concentrations, which are 40 µg/m3 and 50 µg/m3 respectively (EC, 
1999). The latter is not to be exceeded more than 35 days a year. Although emissions 
of primary PM, and PM precursors (NOx, SO2, NH3), have substantially decreased in 
Europe over the past decade, still most EU countries do not meet these air quality 
limit values. 
 To check compliance with the limit values, assessment of yearly and daily 
PM10 concentrations is needed for the whole of Europe. However, quantification of 
PM concentrations is complicated because of large spatial and temporal 
heterogeneity of PM sources, differences in chemical composition and the relatively 
short atmospheric lifetime of particulate matter that is typically up to several days in 
the atmosphere in combination with a large variety of sources and formation 
pathways. Several ground based measurement networks are currently in operation 
to monitor PM, but these are limited in space and hence inadequate to provide full 
European coverage of PM10 concentrations. 
 In addition, measurement techniques for PM10 other than gravimetry, i.e. the 
reference method (CEN, 1998), are prone to artifacts. These techniques systematically 
underestimate PM mass (e.g. Hitzenberger et al., 2004; Charron et al., 2004). 
Correction factors are therefore applied (Buijsman and de Leeuw, 2004), but 
differences between correction factors and the application itself hinder integration of 
PM10 data on a European scale (CAFE-WGPM, 2004).  
 In this study we attempt to statistically standardize the measurements and to 
map the annual average PM10 concentration over Western Europe. This is done by 
exploiting ground-based measurements, obtained from the AirBase database of the 
European Environment Agency (EEA), in combination with two explanatory 
variables: PM2.5 fields as modeled by the chemical transport model (CTM) LOTOS-
EUROS and measurements of aerosol optical thickness (AOT), as measured by the 
Moderate-Resolution Imaging Spectroradiometer (MODIS) instruments on board the 
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EOS-Terra and EOS-Aqua polar satellites. The benefits of a combination of ground 
based measurements and modeled fields and satellite data have been illustrated by 
Van de Kassteele and Stein (2005) and Hutchison et al. (2003, 2004, 2005) for the 
mapping of NO2 levels in the Netherlands and air quality prediction in Texas, 
respectively. 
 Atmospheric modeling provides concentrations consistent for the whole 
European region. In addition, modeling provides data for all situations; continuous 
in time. On the other hand, modeled distributions are subject to significant model 
uncertainties and have a relatively coarse resolution (in our case approximately 35 × 
25 km). The satellite observations of AOT are available at higher resolution 
(approximately 7 × 10 km). The AOT is a measure for the attenuation of light by 
aerosols, and is, among others, proportional to the number of aerosol particles in the 
atmosphere. A disadvantage is that the AOT values are only obtained under cloud 
free conditions and only provide a single snapshot around noon. Previous studies 
indicate that the spatial gradients in the yearly average AOT and modeled fields are 
correlated to those of surface PM concentrations (Koelemeijer et al., 2005; van Loon et 
al., 2004). Hence, these data may provide useful secondary information to map the 
PM10 concentrations over Europe. Therefore, a secondary objective of this study is to 
evaluate the added value of AOT satellite retrievals and modeled fields to the 
mapping of annual average PM10 concentrations. 
 As a benchmark we interpolate the standardized PM10 data with universal 
kriging. In addition, we use error-in-variable external drift kriging (Van de Kassteele 
and Stein, 2005), which allows interpolation of ground based measurements using 
domain covering secondary information from multiple uncertain sources and allows 
for quantification of uncertainties.  
 

6.2 Input data 
 
We have limited our study on the region between 42N and 55N latitude and 6W and 
16E longitude. This area covers a large part of Western Europe (e.g. England, The 
Netherlands, Germany, France, Switzerland and Northern Italy). The rationale for 
choosing this area is that it provides a relatively dense network of monitoring 
stations and captures two areas with considerable pollution: the Benelux and the Po 
Valley (Northern Italy). Furthermore, the aerosol (PM) type is similar in this region. 
We neglect areas over open sea for three reasons. Firstly, there are no PM 
observations. Secondly, satellite retrieved AOT is rather insensitive to coarse sea salt 
particles. Third, models are known to be inaccurate concerning sea salt 
concentrations over the open ocean. The PM10 measurements, model results and 
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AOT data for this area were selected. The data are shown in Fig. 6.1 and are 
presented below. 
 

6.2.1 Ground-based PM10 measurements 
 
The PM10 data for 2003 were obtained from the AirBase data base of the ETC-ACC 
(ETC-ACC, 2005). Annual averages were calculated for all stations, which have at 
least 90% data availability. Besides hourly or daily concentration data, meta-data 
such as location, station type and measurement technique were obtained from 
AirBase. We have used stations, which are representative for background conditions 
in rural, suburban and urban areas. The concentrations at these stations are typically 
representative for areas of several km2 or larger which allows comparison with 
modeled distributions and satellite data. We omitted the traffic stations, because they 
are only representative for more limited areas (scale of several meters). The number 
of stations per type and country is summarized in Table 6.1. As urban stations are 
expected to have systematically higher concentrations then rural sites due to urban 
sources (Lenshow et al., 2001), we have used station type as an explanatory variable 
in the statistical procedure to be able to differentiate between station types. 
 As mentioned above, PM10 is measured gravimetrically or with several 
techniques equivalent to the reference gravimetrical method. Most networks use a 
beta-absorption technique or the tapered element oscillating microbalance (TEOM). 
These techniques systematically underestimate PM mass because of loss of semi-
volatile particles during the measurement process (e.g. Hitzenberger et al., 2004; 
Charron et al., 2004) and have to be corrected by a correction factor which may vary 
substantially in space and even seasonally. As a consequence of the different 
techniques, procedures and correction factors used in European countries the data in 
AirBase may not be consistent between countries (Buijsman and de Leeuw, 2004), 

5 10 15 20 25 30 35 40 45 50 55

PM10 measurements (µg/m3)

2 4 6 8 10 12 14 16 18 20 22 24 26

PM2.5 LOTOS-EUROS (µg/m3)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

AOT (-)

Fig. 6.1. Yearly averages of standardized PM10 measurements, LOTOS-EUROS dispersion 
model output and AOT satellite data for 2003. 
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causing concentration jumps at borders. Hence, we have also used countries and 
measurement technique as an explanatory variable in the statistical procedure. 
 Further, an uncertainty estimate is needed in the mapping procedure. For the 
Netherlands, the measurement uncertainty or precision (2σ) for annual average 
PM10 concentrations in the Netherlands is 9% (Blank, 2001). We assume that this 
value is representative for all PM10 stations.   
 

6.2.2 LOTOS-EUROS model data 
 
In this study we used yearly average PM2.5 distribution for 2003 as modeled with 
the LOTOS-EUROS model as the first explanatory variable. LOTOS-EUROS is a 3D 
chemistry transport model that is used to simulate the fate of air pollutants over 
Europe. Based on emission estimates of PM and PM precursors, meteorological data 
and process knowledge the concentrations of polluting gases and aerosols are 
simulated on an hour by hour basis. The model has recently been developed based 
on the models LOTOS and EUROS (Schaap et al., 2005a,b). The horizontal resolution 
of the model is 0.5° × 0.25° (approximately 35 × 25 km in Europe). LOTOS-EUROS 
includes primary particles from combustion processes, fine mode sea salt and the 
formation of secondary inorganic components (SO4, NO3 and NH4). These 
components make up the largest part of PM2.5 mass concentrations in Europe and 
the modeled fields of these components were combined to assess the PM2.5 
distribution over Europe. The modeled data were interpolated to match the MODIS 
data by bilinear interpolation.  
 The results and performance in comparison with observations of the LOTOS-
EUROS model are comparable to those of other regional models over Europe (Van 

Table 6.1. Number of stations per type of surroundings per country in the selected region. 
Differentiation to measurement technique has been omitted. 
 rural suburban urban unknown
Austria  10 8 11 0
Belgium  3 12 6 0
Czech Republic  7 6 11 0
France  10 66 64 49
Germany  57 60 89 0
Great Britain 2 5 35 0
Italy  1 9 14 0
Netherlands  1 0 4 0
Switzerland  6 4 4 0
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Loon et al., 2004; Schaap et al., 2005a). Overall, the model underestimates PM2.5 levels 
systematically, which is mostly caused by the underestimation of primary particulate 
matter by about a factor 2. The reasons for this feature are discussed in detail for 
LOTOS by Schaap et al. (2004). A systematic (absolute) bias does not strongly affect 
our methods as we only used the spatial gradients of the distributions modeled by 
LOTOS-EUROS. We estimated the uncertainty (2σ) of modeled PM2.5 levels to 
approximately 20%. 
 

6.2.3 MODIS satellite data 
 
The Moderate-Resolution Imaging Spectroradiometer (MODIS) instruments, 
onboard both the EOS-Terra and EOS-Aqua polar satellites, observe Europe twice 
per day, around 10:30 and 13:30 local solar time. The retrieval algorithm over land is 
described in Kaufman and Tanré (1998) and Remer et al. (2005). In this study we used 
the aerosol optical thickness originating from fine aerosol particles. One AOT 
retrieval is made up of 20 × 20 pixels, corresponding to 10 × 10 km for each AOT 
value in an image. All individual MODIS image were remapped to a regular grid of 
0.1° × 0.1° resolution (approximately 7 × 10 km in Europe), and subsequently, a 
yearly average AOT map was produced. 
 The retrieved AOT has been validated against AOT measurements from the 
ground-based AERONET network. The standard deviation of the retrieved AOT is 
within 0.05 ± 0.20AOT over land (e.g., Kaufman et al., 1997), except in situations with 
possible cloud contamination, over surfaces with surface water such as coastal areas, 
and over surfaces with snow or ice cover (Chu et al., 2002). The main source of errors 
in the AOT is uncertainty in the surface reflectance and in the aerosol model. Since 
our focus was on mapping yearly average PM10 concentrations over land, we 
estimated the uncertainty in the annual mean by deviding twice the AOT standard 
deviation for land pixels (assumed to be random errors) by the square root of the 
number of retrievals. This value (2σ) is approximately 8% of the yearly average AOT. 
Any systematic error is automatically taken into account by the mapping procedure 
and can be ignored. 
 

6.3 Methodology 
 
To meet the objective of this study we followed a two step approach: the first step is 
the standardization of the PM10 measurements (section 6.3.1). The second step is the 
actual mapping procedure. We followed four variants to map PM10 concentrations. 
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The first variant is based on the standardized PM10 measurements only (section 
6.3.2), the second is based on combining the standardized PM10 measurements with 
the PM2.5 distributions modeled by LOTOS-EUROS, the third variant is based on 
combining standardized PM10 measurements with the MODIS observations of AOT, 
and the fourth variant is based on combining standardized PM10 measurements with 
both the modeled distributions and the MODIS observations of AOT (all three 
described in section 6.3.3). Finally, results were validated using a training and an 
independent validation set (section 6.3.4). 
 

6.3.1 Standardization of the PM10 measurements 
 
In order to account for differences in measured PM10 levels stemming from 
differences between countries, surroundings and measurement techniques, the 
measurements have to be standardized using these three factors. We call these 
factors internal explanatory variables. In addition, the procedure needs external 
information on pollution levels. Otherwise in one specific country with high 
pollution levels, these high levels would be regarded as a country effect. This in fact 
is not true, because it is external due to, for example, higher emissions. Therefore, we 
have built a linear model using the measured PM10 concentrations as response 
vector, the LOTOS-EUROS results and AOT as external explanatory variables and 
assume the spatial distribution of both external explanatory variables represent that 
of real PM distributions. 
 It is expected that the residuals of this linear model have different properties 
in different countries, because the countries in our study area (Fig. 6.1 and section 
6.4.1) all have their own measurement techniques and correction factors. 
Furthermore, it is expected that urban stations give higher residuals than rural 
stations, since the dispersion model and satellite do not capture concentration 
variations on scales of (smaller) cities. These properties are accounted for by the 
internal explanatory variables. 
 First we applied a log-transformation to the PM10 measurements and LOTOS-
EUROS data to ensure that these data follow a Gaussian distribution. This was not 
necessary for the AOT data. Then, we performed an analysis of variance (ANOVA), 
ignoring the uncertainties in measurement, model, and satellite data in this stage. 
Our response vector was measured PM10 (y), external explanatory variables were 
the LOTOS-EUROS results (x1) and AOT (x2), and three factors, or internal 
explanatory variables, were “country” (C), “surroundings” (S) and “measurement 
technique” (M). Allowing interactions between the external and internal explanatory 
variables, the complete linear model looks like: 
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0 1 1 2 2 3, 4, 5,

6, 1 7, 1 8, 1 9, 2 10, 2 11, 2

i i j j k k

i i j j k k i i j j k k

C S M
C S M C S M

β β β β β β

β β β β β β

= + + + + + +

+ + + + + +

y x x
x x x x x x ε  

(6.1)

 
where β is a vector of regression coefficients. The indices i, j and k represent the 
corresponding levels of the three factors respectively and ε is a vector of residuals. 
We had nine countries, four types of surroundings and seven types of measurement 
technique (Table 6.1). The linear model (6.1) can be analyzed using any advanced 
statistical software package. Next we standardized the PM10 measurements for 
“country”, “surroundings” and “measurement technique” and interactions with the 
two explanatory variables by subtracting the levels and interactions per factor, 
resulting in 
 

3, 4, 5, 6, 1 7, 1 8, 1

9, 2 10, 2 11, 2 0 1 1 2 2

i i j j k k i i j j k k

i i j j k k

C S M C S M
C S M
β β β β β β

β β β β β β

− − − − − − −

− − = + + +

y x x x
x x x x x ε  

(6.2)

 
A reference country, surroundings and measurement technique needs to be chosen to 
which the others were standardized (section 6.4.1). We call the left hand side of 
equation (6.2) y*, the standardized PM10. This y* is used to obtain PM10 
distributions. By multivariate simulation, using the expectation and covariance of the 
concerning regression coefficients, we determined the 95% prediction intervals for 
the standardized PM10 concentrations. These uncertainties were taken along in 
further calculations. 
 

6.3.2 Universal kriging with measurement error 
 
To map concentrations based on measurements only, the best linear unbiased 
predictor is kriging (Chiles and Delfiner, 1999). Kriging consists of two steps: a 
parameter estimation step and a spatial prediction step. We denoted the log of the 
standardized PM10 measurements with y*. This quantity however is subject to errors: 
measurement error and the error due to the standardization. The true value is an 
unknown latent variable, which we call η*, that can only be observed with an 
additive error, which are assumed to be normally distributed and independent: 
 

* *
* * 2, with ~ N(0, )

i i i
i i y y y

y η ε ε σ= +   (6.3)

 
The indices i = 1 … n represent the monitoring stations with spatial locations s = [s1, 
s2]. The error variances *

2

iy
σ  are known at each location, and can differ for each 
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location (sections 6.2.1 and 6.3.1). In case of universal kriging, at each location the 
latent variable is modeled by the sum of the large scale trend, which is, in this study, 
a linear function of the location, a spatially correlated error and a so-called equation 
error: 
 

*
0 1 1 2 2i i i ii s qs sη β β β ε ε= + + + +  

(6.4)

 
In the above equation, β0, β1, and β2 are unknown trend parameters. β0 applies to an 
offset level, β1 applies to a linear trend in the WE direction, while β2 does for the SN 
direction. We assume that the spatially correlated errors 

isε  are spatially stationary 

and multivariate normally distributed with variance 2
*s yσ R  for each i, and that 

iqε  are 

univariate normally distributed with a common variance 2
qσ  for each i: 

 
2

*~ MVN(0, )s s yσε R  
(6.5a)

2~ N(0, )
iq qε σ  

(6.5b)

 
Here * *exp( / )y y φ= −R H  is an n × n correlation matrix and *yH  an n × n distance 

matrix between the monitoring station locations. Elements of *yR  represent an 

exponential function of minus the distance divided by an unknown range parameter, 
φ, representing the decay rate of spatial correlation with increasing distance. 
Contrary to 2

*yσ , both variances 2
sσ  and 2

qσ  are unknown. In geostatistics, these 

variances are usually called the partial sill and nugget variance. 
 We estimated the unknown parameters by maximum likelihood parameter 
estimation. This procedure optimizes the likelihood function over the whole 
parameter space. For more details we refer to Van de Kassteele et al. (2005) or 
Kitanidis and Shen (1996). 
 In the prediction step there are j = 1 … m prediction locations. The MODIS 
grid (section 6.2.3) is used as prediction grid. Spatial prediction can be phrased as a 
simple extension of the estimation step. Variable of interest is *y . Latent variable *η  
at prediction locations 1 2[ , ]=s s s  can only be observed with an additive error. The 

tildes indicate that we are dealing with predictions. Again, errors are assumed to be 
normally distributed and independent. The error variance *

2

jy
σ  is assumed to be the 

average of all *
2

iy
σ . The relation for spatial prediction is given by: 

 
*

0 1 1 2 2j j j jj s qs sη β β β ε ε= + + + +
 

(6.6)
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In equation (6.6) the variables and parameters have the same meaning as equation 
(6.4), except for

jsε , which are multivariate normally distributed according to: 

 
T 1 2 T 1

* * * * * * * * *~ MVN( , ( ))s y ,y y s s y y ,y y y ,yσ− −−ε R R ε R R R R  
(6.7)

 
In equation (6.7), * *exp( / )y y φ= −R H  and * * * *exp( / )y ,y y ,y φ= −R H are m × m and n × m 

correlation matrices, and *yH  and * *y ,yH  are distance matrices between the mutual 

prediction locations, and between the observation locations and prediction locations, 
respectively. Elements of *yR  and * *y ,yR  have the same exponential function of 

minus the distance, both divided by the range parameter φ. Predictions further away 
from monitoring sites are more uncertain. 
 We simulated 1000 realizations of our *y  field, which is still on a log-scale. 
These conditional simulations allowed us to directly back-transform to the original 
scale without introducing a bias. 
 

6.3.3 Linear regression with measurement error 
 
For the combination of the standardized PM10 measurement with the secondary 
information, we can apply error-in-variable external drift kriging (KED) (Van de 
Kassteele and Stein, 2005). It takes into account uncertainty in the PM10 
measurements, the LOTOS-EUROS results, the AOT, the imperfect relationship 
between the response and external explanatory variables and uncertainty due to 
spatial prediction. 
 In the estimation step we have again n monitoring stations. Besides the latent 
variable η*, we introduce two latent variables for the LOTOS-EUROS results and 
AOT, 1ξ  and 2ξ  that can only be observed with normally distributed and 

independent additive errors: 
 

* *
* * 2, with ~ N(0, )

i i i
i i y y y

y η ε ε σ= +  (6.8a)

2
1 1 1 1 1, with ~ N(0, )

i i i i ix x xx ξ ε ε σ= +  (6.8b)
2

2 2 2 2 2, with ~ N(0, )
i i i i ix x xx ξ ε ε σ= +  (6.8c)

 
The variable error variances *

2

iy
σ , 2

1ixσ  and 2
2ixσ are known at each location (see sections 

6.2.1 - 6.2.3). In the context of a measurement error model (Cheng and Van Ness, 
1999), the latent variables are related. In error-in-variable KED the residuals 
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represent the sum of a spatially correlated error, as in classical KED, and an equation 
error. However, a preliminary analysis of our data showed that, because of the 
explanatory variables, the spatial correlated residuals became zero, meaning that the 
error-in-variable KED method reduced to a measurement error model. Therefore, to 
avoid a nonsensical model, we removed the spatial term, so eventually we have: 
 

*
0 1 1 2 2i i ii qη β β ξ β ξ ε= + + +  

(6.9)

 
In the above equation, the parameters have the same meaning as in section 6.3.2, 
except that the parameters do now apply to the two external explanatory variables. 
They are comparable with the regression parameters that we saw earlier in section 
6.3.1, except that we had to re-estimate them again, since we are now dealing with 
latent variables. 

 Spatial prediction is similar to universal kriging. Latent variables *η , 1ξ  and 

2ξ  can only be observed with additive errors. Again, errors are assumed to be 

normally distributed and independent. The error variances *
2

jy
σ , 2

1 jxσ  and 2
2 jxσ  are 

assumed to be known at each prediction location and can differ from location to 
location. Variances 2

1 jxσ  and 2
2 jxσ  follow directly from the LOTOS-EUROS results and 

AOT data. The relation between *η , 1ξ  and 2ξ  is given by 

 
*

0 1 1 2 2j j jj qη β β ξ β ξ ε= + + +
 

(6.10)

 
In equation (6.10) the variables and parameters have the same meaning as equation 
(6.9). Since we could drop the spatial correlated error term, spatial prediction became 
simpler as in the original error-in-variable KED model. 
 The statistical model linear regression with measurement error can be written 

as a Bayesian hierarchical model. Parameters β0, β1, β2, 2
qσ , 1ξ , 2ξ , 1ξ  and 2ξ  were 

given non-informative prior distributions. This, in fact, is the same as maximum 
likelihood estimation, except that estimation is now done by Markov chain Monte 
Carlo (MCMC) integration (Gelman et al., 2004). We obtained 1000 samples of *y  for 
each prediction location. As in section 6.3.2, these samples were back-transformed to 
the original scale. We refer to Van de Kassteele and Stein (2005) for further details 
about these procedures. 
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6.3.4 Validation 
 
We validated the four mappings by means of a training set and a validation set. From 
the total set of 554 monitoring stations, we randomly chose 100 stations for a training 
set, while the validation set consisted of the remaining 454 stations. As in Van de 
Kassteele et al. (2005), we calculated the following three error measures: the mean 
error (ME or bias), the unbiased root mean squared error (URMSE) and the mean 
squared standardized error (MSSE): 
 

 * *

1

1 ( )
sn

i i
is

ME y y
n =

= −∑  (6.11a)

 * * 2 2

1

1 ( )
sn

i i
is

URMSE y y ME
n =

= − −∑  (6.11b)

 
* * 2

*
1

( )1
var( )

sn
i i

is i

y yMSSE
n y=

−
= ∑  (6.11c)

 
The ME indicates the bias of the predictions *y  to the original observations y* and 
should be close to zero. The URMSE indicates the bias corrected standard deviation 
of the model and should be close to zero. We used the URMSE because it can be close 
to zero even in presence of a bias. The MSSE compares the squared differences with 
the prediction variance, and yields a value that should be close to 1. If this value is 
greater than 1, then there is an overestimation of variability of the predictions. 
 We repeated the above procedure 30 times by randomly selecting other 
training sets. This allowed us to determine the sensitivity to different training sets 
and to compare the means by significance tests. 
 

6.4 Results 
 

6.4.1 Standardized PM10 measurements 
 
We explored the relation between the measured PM10 and the selected variables by 
means of an ANOVA. The ANOVA (Table 6.2) shows that both the external 
explanatory variables LOTOS-EUROS results and AOT were significant (p-value = 
0.00 for both), with α = 0.05. Also the variables “country” and “surroundings” were 
significant (p-value = 0.00 for both). “Measurement technique” was not significant 
(p-value = 0.52), however, placing “measurement technique” over “country” made 
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this factor significant. This can be explained since countries incline to use a preferred 
technique. 
 For the interactions, the LOTOS-EUROS-country interaction was almost 
significant (p-value = 0.08), the LOTOS-EUROS-surroundings and LOTOS-EUROS-
measurement technique interactions were significant (p-values = 0.00 and 0.01 
respectively). Only the AOT-surroundings interaction was significant (p-value = 
0.04). Placing AOT before LOTOS-EUROS gave no different results, except that then 
AOT explained most of the variance and the significance of the interactions switched 
with that of LOTOS-EUROS. This can be explained by the fact that LOTOS-EUROS 
and AOT are related (correlation coefficient = 0.59).  
 A reference country, surroundings and measurement technique had to be 
chosen to which the others were standardized. We chose the German rural 
monitoring stations using gravimetry as our reference. The reason for this choice will 
be elaborated in the discussion section. Fig. 6.2 shows the standardized PM10 versus 
the original PM10, both on log-scale. In Fig. 6.3 we summarize the correction factors 
per country and surroundings, defined as the ratio between the standardized and 
measured concentrations. 
 By definition, in Fig. 6.2 the reference measurements are on the 1:1 line. In 
general, most concentrations are corrected downwards, because most stations are 
urban and suburban stations, which are not captured by the explanatory variables. It 
is expected that a country that does not apply correction factors to their 
measurements shows a ratio larger than one between the standardized PM10 and 

Table 6.2. ANOVA table. Response vector is measured PM10. The other variables are 
LOTOS-EUROS results (x1), AOT data (x2), country (C), surroundings (S) and 
measurement technique (M). Interactions are denoted by a colon. 
 Df Sum Sq Mean Sq F-value p-value
x1 1 7.670 7.6700 255.742 0.00
x2 1 2.803 2.803 93.461 0.00
C 8 7.979 0.997 33.257 0.00
S 3 3.406 1.135 37.854 0.00
M 5 0.126 0.025 0.843 0.52
x1 : C 8 0.420 0.053 1.751 0.08
x1 : S 3 0.423 0.141 4.698 0.00
x1 : M 5 0.494 0.099 3.292 0.01
x2 : C 8 0.175 0.022 0.730 0.67
x2 : S 3 0.251 0.084 2.791 0.04
x2 : M 5 0.085 0.017 0.566 0.73
residuals 503 15.085 0.030
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measured PM10 in Fig. 6.3. This is indeed observed for France. The rural stations in 
the alpine countries show large downward corrections. This may be an artificial 
phenomenon as regional models are not able to represent the pollution in the valleys. 
Similarly, AOT values also represent larger areas that also incorporate the cleaner 
high altitude areas. Besides, AOT over mountains is expected to be underestimated 
because of shading of the mountains and is uncertain due to glint for example. 
 Because of the standardization, the correlation coefficient between the PM10 
measurements and LOTOS-EUROS results increased from 0.44 to 0.77, and between 
the PM10 measurements and AOT it increased from 0.48 to 0.72. 
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Fig. 6.2. Standardized PM10 versus the original PM10 (both on log-scale) for the nine 
countries in the study area, grouped by surroundings. The diagonal line is the 1:1 line. 
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Fig. 6.3. Averaged correction factors for the nine countries. 
 

6.4.2 PM10 concentration maps 
 
Fig. 6.4 shows the expectation of the yearly average PM10 concentrations for 2003, 
obtained by universal kriging of the measurements only, by linear regression using 
the LOTOS-EUROS results, the AOT, and both the explanatory variables. High 
concentrations are found in the Netherlands/Belgium, the Ruhr Area in Western 
Germany and the Po Valley Area. Smaller areas with high concentrations are found 
around London, Paris, Lyon and several areas in the Czech Republic. The maps of 
the measurements and the LOTOS-EUROS results look similar and show smooth 
surfaces. However, the map based on measurements only clearly show the influence 
of (groups of) data points evident as circular shaped areas with similar 
concentrations, e.g. around Milan. The LOTOS-EUROS based map contains process 
knowledge and therefore appears to contain more spatially realistic information than 
the map based on the measurements only. The map based on the AOT data is 
broadly similar to that based on LOTOS-EUROS. For example, the concentrations 
around the Rhone river valley in southern France are very similar and significantly 
different from the map based on measurements alone. 
 In some areas differences can be observed. The mapping based on AOT data 
provides higher concentrations in the Po Valley. On the other hand, the maps based 
on the model and the measurements show a more pronounced maximum in the 
PM10 distribution over the Netherlands and the Ruhr area. Hence, the spatial 
information provided by the satellite data and the model differs from that of LOTOS-
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EUROS. The combination of both the explanatory variables and the PM10 
measurements shows a smoother surface than the map based on the AOT data alone 
and is clearly influenced by the LOTOS-EUROS results, e.g. Germany and the 
Netherlands/Ruhr area. 
 Fig. 6.5 shows the corresponding prediction standard deviations. Because of 
the back-transformation from log-scale, standard deviations increase with higher 
concentrations, so these maps look similar to the concentrations maps. There are 
however some differences. For the map based on the measurements only, higher 
standard deviations are found far away from monitoring sites, like in Northern 
Spain, Center of Italy and Southern France. Furthermore, standard deviations are 
slightly higher for the AOT based map, because the correlation between the 
standardized PM10 measurements and AOT observations is not as high as that with 
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Fig. 6.4. Expectation of the yearly average PM10 concentrations (µg/m3) over Western 
Europe for 2003. 
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the LOTOS-EUROS results. The lowest standard deviations are found for the 
LOTOS-EUROS based map and the combination of LOTOS-EUROS and AOT based 
maps. 
 Fig. 6.6 summarizes all values of these eight figures in box plots. Based on all 
the individual prediction locations, the minimum, 25-quantile, median, 75-quantile 
and maximum values for the four expectations and standard deviations are shown. 
The left panel confirms that the maps based on the measurements only and on based 
the LOTOS-EUROS results show smooth surfaces. The AOT based map and AOT 
and LOTOS-EUROS based map show more spatial variation, resulting in a larger 
range of concentrations. In the right panel we summarize the standard deviations. 
The AOT based map shows standard deviations that compare to those obtained by 
kriging the measurements. The LOTOS-EUROS based map yields somewhat lower 
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measurements only
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Fig. 6.5. Standard deviation of the yearly average PM10 concentrations (µg/m3) over Western 
Europe for 2003. 
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standard deviations. Using both the modeled field and AOT data results in the 
lowest standard deviations and is therefore the most precise. The median standard 
deviation is reduced by about 25 % compared to the other maps.  
 

6.4.3 Validation 
 
Table 6.3 shows the means and standard errors of the three errors measurers for the 
four mapping procedures. From these values 95% confidences intervals can be 
calculated. These are given by mean ± t29(0.025) se(mean), where t29(0.025) = 2.045 is 
the critical value at the 2.5-point of the Student's t-Distribution with 29 degrees of 
freedom. The mean errors (ME) for the four maps are very small, and all around zero 
(0.00, 0.06, -0.19, 0.00 µg/m3 respectively) and do not significantly differ from zero, 
except for the map based on AOT data (p-value = 0.97, 0.51, 0.05, 0.99 respectively). 
The four maps do not differ significantly from each other regarding the ME. 
 The unbiased root mean squared error (URMSE) is the highest for the maps 
based on the measurements only (5.14), and the lowest for the combination based on 
the LOTOS-EUROS results and AOT data (3.62). The maps based on LOTOS-EUROS 
(4.26) and the AOT data (4.58) show URMSE value in between these. The URMSEs all 
differ significantly from zero (p-value = 0.00 for all). The four maps all differ 
significantly from each other regarding the URMSE.  
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Fig. 6.6. Box plots of the expectations and standard deviations for the four mapping 
procedures, based on all the individual prediction locations. 
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Table 6.3. Mean error (ME), unbiased root mean squared error (URMSE) and mean squared 
standardized error (MSSE) for validation of the four mapping procedures. The values are 
averages over 30 samples. Standard error of the average between parentheses. 
 ME URMSE MSSE 
measurements only 0.00 (0.121) 5.14 (0.059) 1.19 (0.073) 
meas. and LOTOS-EUROS 0.06 (0.094) 4.26 (0.014) 1.18 (0.037) 
meas. and AOT -0.19 (0.091) 4.58 (0.012) 1.20 (0.041) 
meas., LOTOS-EUROS and AOT 0.00 (0.077) 3.62 (0.012) 1.31 (0.057) 
  
 Regarding the mean squared standardized error (MSSE), al maps are not 
significantly different from each other, but all are significantly different from, but 
close to, 1 (p-value = 0.01, 0.00, 0.00, 0.00 respectively). The MSSE is closest to 1 for 
the map based on the LOTOS-EUROS results (1.18), however, the maps based on the 
measurements only and the AOT data are very similar to the LOTOS-EUROS based 
map regarding the MSSE (1.19 and 1.20 respectively). The map based on the 
combination of the LOTOS-EUROS results and AOT data shows the highest MSSE 
(1.31).  
 The validation exercise shows that the most accurate predictions are based on 
a combination of the LOTOS-EUROS results and AOT data (lowest ME and URMSE), 
although prediction variances are underestimated.  
 

6.5 Discussion 
 
This chapter showed the successful application of (geo)statistical techniques to give a 
consistent PM10 field over Western Europe. First we presented a statistical method to 
standardize PM10 measurements across Europe. Next we introduced two external 
explanatory variables to increase the spatial information and to reduce uncertainties 
in the interpolated PM10 field. The advantage of statistical mapping of PM10 
concentrations using explanatory variables is that these explanatory variables do not 
need to be the same geophysical quantity as the primary variable. The only 
requirement is that an explanatory variable is linearly related to the primary variable. 
Any bias or multiplication can be taken into account. Furthermore, if any spatial 
correlated residuals were present, these effects can be modeled by applying external 
drift kriging (Van de Kassteele and Stein, 2005). Below, we discuss the issues relating 
to the standardization of the PM10 data and the explanatory variables. 
 The concentration maps derived in this study are sensitive to the choice of the 
reference in the standardization procedure. Another reference would yield 
systematically higher or lower depending on the reference chosen. The German rural 
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data were chosen because they are obtained with the prescribed method in Europe. 
Equally important is that the number of reference data points influences the quality 
of the results. If there are too little reference points to fit he data to, the influence of 
single points may become very important. Only one outlier with respect to the 
predictors, a leverage point, affects the regression model considerably. Therefore, a 
reference should be chosen with care. In case of a large number of reference points 
(as applicable for Germany), leverage points have less effect. 
 We used all PM10 monitoring stations in Western Europe that measured 
concentrations at rural and (sub)urban scales. Street stations were not used because 
these local scales can not be resolved by LOTOS-EUROS and the satellite 
measurements. However, LOTOS-EUROS and the satellite also do not show 
enhanced PM or AOT over small cities. This resulted in higher residual values for 
stations located in these cities, and hence, the corresponding PM data were all 
corrected downwards. We could have omitted all urban stations. However, this 
would have caused large data reduction (97 versus 554 stations) causing larger 
estimation errors. Due to the standardization our maps should be regarded as a 
regional background concentrations map of PM10, without showing the contribution 
of concentration variations by smaller cities. 
 We used the LOTOS-EUROS results for PM2.5 as an explanatory variable. In 
all procedures we have implicitly assumed that the ratio PM10:PM2.5 is constant 
over the whole region. A number of studies indicate that this ratio is quite stable: 
about 70 +/- 10% on average in the area under study, e.g. see compilation by Putaud 
et al. (2004). Hence, this assumption appears to be valid under most circumstances. 
We feel that the uncertainty in this assumption is part of the overall uncertainty in 
the modeled gradients, which is directly related to the ability of models to simulate 
the distribution of PM and its components. Important uncertainties are associated 
with the emissions of carbonaceous and natural particles, vertical mixing under 
stabile conditions and the possible importance of secondary organic aerosol. For a 
detailed discussion on model uncertainties we refer Schaap et al. (2004). 
 The AOT data have other characteristics than the measurements and the 
modeled fields. The retrieval of AOT data is only possible when no clouds are 
present. Hence, the AOT distribution represents a composite of cloud free situations 
at noon. Although the MODIS data were found to represent daily average aerosol 
loading (Kaufman et al., 2000), the AOT distribution may be biased to good weather 
situations. Furthermore, some areas may be influenced by systematic biases in 
observed AOT due to undetected clouds and sun glint. In general, when 
uncertainties in the explanatory variable increase the prediction variances increase as 
well. The effect of different uncertainties of explanatory variables to mapping 
procedures is described in detail in Van de Kassteele and Stein (2005). 
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 Despite the uncertainties mentioned above we show that the use of secondary 
information for mapping PM10 concentrations over Europe is advantageous. 
Although the interpolation of the measurements is not completely independent from 
the modeled and AOT data (through the standardization), adding the secondary 
information yields lower prediction errors and shows a better agreement with the 
validation data sets. Using either of the secondary variables alone gave similar 
improvements of the predicted fields. Using both variables, however, yields 
significantly better results. Hence, both the satellite retrievals as the model provide 
unique information to the procedure. The uncertainties in the interpolated PM10 
fields will decrease with an improved representation of particulate matter in models, 
improved retrieval algorithms and the development and use of artifact free and 
consistent PM10 measurement methods. This study also illustrates the benefits of 
combining different sources of information: in situ measurements, remote sensing 
and modeling. 
 

6.6 Conclusions 
 
It is impossible to get a comprehensive overview of PM10 concentrations in Europe 
based on ground based measurements only. This is because of the limited spatial 
representativeness of ground-based measurements, and systematic differences 
stemming from different measurement methods used in different countries. To 
improve mapping of PM10 concentrations over Europe, the use of secondary 
information -from the LOTOS-EUROS chemical transport model and MODIS satellite 
observations of aerosol optical thickness (AOT)- has been explored.  
 The analysis showed that, accounting for the pollution levels provided by the 
secondary information, there were significant differences between countries and 
surroundings. Measurement technique was not significant. Most measured 
concentrations were corrected downwards, because most stations were urban and 
suburban stations, which were not captured by the secondary information. The 
standardization caused the correlation coefficients between the PM10 measurements 
and LOTOS-EUROS and AOT data to increase. 
 This study showed to which degree external information improves the spatial 
prediction of PM10. Validation showed that adding external information from either 
the LOTOS-EUROS model or the AOT satellite observations improved the spatial 
prediction of PM10 levels in Europe. The URMSE decreased from 5.14 to 4.26 and 
4.58 respectively. The most precise predictions are based on a combination of the 
LOTOS-EUROS results and AOT data, with an URMSE of 3.62. The study illustrates 
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the benefits of combining different sources of information: in situ measurements, 
remote sensing and modeling. 
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7. General conclusions 
 
 
 
 
Air quality measurements are in general accurate and precise at a certain location, 
but interpolation of a limited number of observations causes imprecise maps. 
Dispersion model output on the other hand is inaccurate (biased) and imprecise 
compared to measurements, but it has a much higher spatial resolution and provides 
more detailed information. A combination of both leads to better maps. 
 This thesis showed how to use geostatistics to combine a limited number of air 
quality measurements and inaccurate and imprecise, but domain covering dispersion 
model output to acquire detailed air quality maps on local, national and international 
scales, and to show that this improves spatial predictions, i.e. smaller bias and 
smaller uncertainties. Uncertainties were quantified. The objectives were dealt with 
in five chapters, which Table 7.1 summarizes. This chapter considers the research 
questions Q1-Q11 from chapter 1. 
 To interpolate spatial count data, such as the number of ozone exceedance 
days, we chose an explicit model-based geostatistical approach. First, we assumed an 
approximation by a Poisson distribution, and second, a log-Normal distribution. The 
log-link in both models made model and parameter comparison easier. The Poisson 
model gave a better representation of the random field process of the number of 
exceedance days. For environmental assessment applications, however, we 
concluded the log-Normal model to be preferred, considering its capacity to predict 
the expected number of exceedance days instead of an intensity field (Q1). 
 When making interpolations of a component with a large spatial range, such 
as ozone exceedance days, for a small area such as the Netherlands, incorporating 
observations from surrounding countries in the analysis was beneficial. Predictions 
near the Dutch border still depend on observations in Germany. Furthermore, 
inclusion of more observations improved parameter estimation and resulted into 
more precise predictions (Q5). For a small dataset, e.g. mapping of ozone exceedance 
days in de Netherlands, use of prior information avoids problems with convergence 
of the MCMC algorithm, which kept on fluctuating if flat priors were used. Also, 
even use of a limited data set allowed us to map the number of exceedance days 
(Q3). These maps, including their uncertainties, might be used in the future to study 
environmental relations between ozone and risks for public health. 
 Additional information from dispersion models improved interpolation of 
measurements. A model-based geostatistical interpolation procedure using 
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additional information led to more accurate and precise spatial interpolation results. 
If applied as an external drift (KED), the dispersion model output provided more 
detail in the concentration maps than maps based the measurements only (Q2). 
Standard deviations for kriging with external drift were much smaller than those for 
universal kriging. Furthermore, KED also allows handling of biased additional 
information. This can be beneficial if the pollution sources are missing or unknown. 
KED accounts for systematic errors by use of regression parameters. 
 Cross-validating of the different interpolation procedures was done by 
replacing common error values, i.e. mean error, unbiased root mean squared error 
and mean squared standardized error, by intervals obtained by repeatedly selecting 
different subsets from a set of test data. Reliability intervals of the interpolation 
results could be compared, showing the inclusion of the deterministic OPS model to 
lead to a substantial improvement in the predictions. Where small subsets are 
applied (10 observations), KED leads to a much lower spread in mean error values 
than universal kriging. 
 Bayesian interpolation methods had advantages over restricted maximum 
likelihood (RML) methods. In the case of >20 observations, this has little effect. If 
prior information is available however, Bayesian inference leads to lower prediction 
standard deviations. In case of 10-20 observations, Bayesian inference with prior 
information is more robust than RML estimation (Q3). 
 Should parameters kept fixed or should they be re-estimated every time? The 
lower the number of observations, the larger uncertainties become. Re-estimated 
parameters are to be preferred, because specific process changes and parameter 
uncertainties are then incorporated, thereby approaching reality the best. On the 

Table 7.1. Summary of all chapters showing the component, quantity of interest, secondary 
information source, mapping technique, parameter estimation procedure, spatial scale and 
time. 
compo- 
nent 

variable 
secondary 
information 

mapping 
method 

parameter 
estimation 

scale time chapter 

O3 
exceedance 
days 

none UK Bayesian 
inter- 
national 

present 2 

NOx 
yearly 
averages 

OPS 
UK/ 
KED 

RML/ 
Bayesian 

national present 3 

NO2 
yearly 
averages 

OPS eiv-KED Bayesian local present 4 

NO2 
yearly 
averages 

OPS eiv-KED Bayesian local 2010 5 

PM10 
yearly 
averages 

LOTOS 
-EUROS/ 
MODIS 

UK/ 
ME 

RML/ 
Bayesian 

inter- 
national 

present 6 
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other hand, when parameters are kept fixed, there is no problem with sparse 
observations (Q4). The number of observations that is needed to make an accurate 
map of sufficient quality depends on the interpolation method, but also on the spatial 
variation and the assumption that processes described by the OPS model does not 
change. For universal kriging with re-estimated parameters using RML estimation, 
this will be 30 observations. For universal kriging with fixed parameters using RML 
estimation or Bayesian inference, 20 observations might be needed. For KED, the 
results were mainly determined by the external trend. So for only 10 observations, 
KED still produced sensible results (Q5). These numbers may apply to NOx in this 
thesis, but in general certainly not. 
 In this thesis the model-based approach of KED was extended by allowing 
uncertain secondary information. This new interpolation approach was called error-
in-variable KED. It showed a successful creation of concentration maps based on 
uncertain measurements and uncertain dispersion model output. Error-in-variable 
KED proved sufficiently flexible for assigning different error variances to each 
location, both to the measurement and the OPS dispersion model output. The 
Bayesian approach for spatial modeling was extremely useful in this context, because 
it had the advantage that there was no need to write the model in a complicated 
analytical formulation, which should be the case if uncertain covariates are 
introduced and parameters are to be estimated by RML. Furthermore, the Bayesian 
approach automatically took into account parameter uncertainty. 
 Different uncertainties in the measurements and dispersion models affect the 
eventual results. Use of error-in-variable KED approach showed that high accuracy 
in the measurements is to be preferred above high accuracy in the OPS dispersion 
model output. Since the measurement precision was already high (2σ = 10%), it is 
more beneficial to increase precision of the OPS output (Q6). Evaluating OPS output 
uncertainty, however, was outside the scope of this thesis. 
 These methods can be applied in scenario studies for determining future air 
quality. We have shown how to predict future NO2 concentrations maps based on an 
emission scenario and to assess uncertainties inside and outside Rotterdam by 
applying error-in-variable KED (Q7). With a simple extension allowing for time, it 
combined past measurements with dispersion model output for the past and future. 
With a generic dispersion model for local traffic-related emissions, we produced 
results for local traffic-related air quality that seemed to be valuable in relation to the 
European air quality standards. Several statistics could be derived from the empirical 
probability density functions at each location and results were related to the 2010 
NO2 air quality standard (Q8). It showed that the mean NO2 concentrations exceeded 
the air quality standard at a distance of up to 100 m from highways; however, the 
areas where the standard was exceeded were fuzzy. For distances of 100 m to 1 km, 



7. General conclusions 
 

 

122 

exceedance probabilities occurred in a range from 0.10 to 0.50. Further away, at 1 km 
from the highway, where the mean of 35 µg/m3 was below the standard according to 
regulations, the probability of exceedance was still 0.10. 
 Our methods resulted in probabilistic measures, allowing hypothesis testing. 
To allow simple communication with users, this thesis showed how these measures 
could be translated verbally into probabilistic statements with the use of IPCC 
terminology (Q9). 
 We showed how to deal with different measurement techniques between 
countries. It is impossible to get a comprehensive overview of PM10 concentrations 
in Europe based on ground based measurements only. This is because of the limited 
spatial representativeness of ground-based measurements, and systematic 
differences stemming from different measurement methods used in different 
countries. To improve mapping of PM10 concentrations over Europe, the use of 
secondary information -from the LOTOS-EUROS chemical transport model and 
MODIS satellite observations of aerosol optical thickness (AOT)- has been explored 
(Q10). 
 It was shown that, accounting for the pollution levels provided by the 
secondary information, there were significant differences between countries and 
surroundings. Most measured concentrations were corrected downwards, because 
most stations were urban and suburban stations, which were not captured by the 
secondary information. The standardization caused the correlation coefficients 
between the PM10 measurements and LOTOS-EUROS and AOT data to increase. 
 Validation showed that adding external information from either the LOTOS-
EUROS model or the AOT satellite observations improved the spatial prediction of 
PM10 levels in Europe. The URMSE decreased from 5.14 to 4.26 and 4.58 
respectively. The most precise predictions are based on a combination of the LOTOS-
EUROS results and AOT data, with an URMSE of 3.62. We illustrated the benefits of 
combining different sources of information: in situ measurements, remote sensing 
and modeling (Q11). 
 Concluding, KED appeared to be flexible method to combine measurements of 
air quality with secondary information. The KED method was extended (error-in-
variable KED) to allow for multiple sources of uncertain secondary information, 
which has many applications in accurate and precise air quality mapping. 
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Summary 
 
This thesis handles statistical mapping of air quality data. Policy makers require 
more and more detailed air quality information to take measures to improve air 
quality. Besides, researchers need detailed air quality information to assess health 
effects. Accurate and spatially highly resolved maps of air pollution levels form a 
basis. Since policy makers and researchers tend to focus more and more on 
uncertainties as well, the question is how precise these concentration maps are. 
 To base concentration maps on measurements of air quality only, every km2 
should be monitored. Measurements, however, are only taken at a limited number of 
locations, so between the monitoring locations relevant information will be missing 
or can only be predicted, i.e. interpolated, leading to uncertainty in the map. 
Furthermore, no information about the physical and chemical processes about the 
concerned component is taken into account. On the other hand, concentration maps 
can also be based on physical and chemical processes modeling of components only. 
This model output covers the full domain on a fine-mazed grid. All dispersion 
models are imperfect however, which may lead to biased output and uncertainties. 
 A combination of the two approaches always results into more detailed and 
more accurate maps. In this thesis this is done by means of a geostatistical approach: 
kriging with external drift (KED). KED allows mapping of a primary variable that is 
accurate and precise but only available at a limited number of locations, and a 
secondary variable that covers the full domain on a fine-mazed grid but is less 
accurate. 
 First, we focus on the use of atmospheric dispersion model output as 
secondary information source to compensate for the loss of spatial precision caused 
by a reduction in the Dutch air quality monitoring network in the mid-nineteen 
eighties. We compare KED with universal kriging. The impact of several parameter 
estimation and spatial interpolation methods, the number of observations and 
configuration of the network on uncertainty are quantified by cross-validation. With 
KED, more accurate and precise predictions are obtained where observations were 
sparse. However, the dispersion model output in this context was considered to be 
deterministic, i.e. without uncertainties, so the geostatistical model must be 
extended. 
 We present a method, error-in-variable KED, which combines uncertain air 
quality measurements with uncertain secondary information from the atmospheric 
dispersion model. The new method combines KED and a measurement error model, 
and uses Bayesian techniques for inference. The method is flexible for assigning 
different error variances to both the primary information and secondary information 



Summary 

 

134 

at each location. We address actual NO2 data collected at an urban and a rural site in 
the Netherlands. Uncertainty assessments in terms of exceeding air quality standards 
are given. 
 The error-in-variable KED procedure is further extended with a time 
component to assess future local NO2 concentrations near Rotterdam for the year 
2010, focusing on uncertainties and exceedances of European air quality standards. 
The background concentration is determined by the extended error-in-variable KED. 
A local traffic contribution is added based on a local generic dispersion model with 
use of an emission scenario for 2010. This results in maps showing local NO2 
concentrations, upper and lower limits, and probabilities of exceeding the air quality 
standard. The probabilistic measures are calculated in numbers and translated into 
words for easier communication to policy makers. 
 Finally, the use of two secondary information sources is explored to map 
particulate matter (PM10) over Western Europe. It is almost impossible to get a 
consistent overview of PM10 concentrations based solely on ground based 
measurements because of differences between countries regarding monitoring 
methods used and monitoring station surroundings. We illustrate the use of 
statistical techniques to standardize the ground based measurements of PM10 and 
interpolate these standardized concentrations by combining them uncertain 
secondary information from a chemical transport model and from MODIS satellite 
observations of aerosol optical thickness. The secondary variables contain different 
information and a combination of both gives the most accurate and precise 
predictions and should therefore be preferred.  
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Samenvatting 
 
Dit proefschrift gaat over statistische methoden om luchtkwaliteitsdata te karteren. 
Beleidsmakers hebben steeds meer gedetailleerde luchtinformatie nodig om 
maatregelen te kunnen treffen voor de verbetering van de luchtkwaliteit. Daarnaast 
hebben onderzoekers gedetailleerde luchtkwaliteitsinformatie nodig om 
gezondheidseffecten van luchtvervuiling te kunnen berekenen. Nauwkeurige 
kaarten met een hoge ruimtelijke resolutie vormen daarvoor de basis. Omdat 
beleidsmakers en onderzoekers zich ook steeds meer op onzekerheden richten, is de 
vraag hoe nauwkeurig deze concentratiekaarten zijn. 
 Als de concentratiekaarten alleen maar gebaseerd zouden worden op 
luchtkwaliteitsmetingen, dan zou er op elke vierkante kilometer gemeten moeten 
worden. Omdat de metingen maar op een beperkt aantal locaties gedaan worden, 
ontbreekt relevante informatie tussen de meetstations of kan alleen maar voorspeld 
of geïnterpoleerd worden, wat tot onzekerheden in de kaart leidt. Bovendien wordt 
er geen informatie meegenomen over de fysische en chemische processen van de 
betreffende component. Aan de andere kant kunnen concentratiekaarten gebaseerd 
worden op alleen maar fysische en chemische modellering van componenten. Deze 
modeluitvoer bedekt het hele gebied op een fijnmazig grid. Alle 
verspreidingsmodellen zijn echter imperfect, wat tot afwijkende resultaten en 
onzekerheden kan leiden. 
 Een combinatie van beide aanpakken leidt altijd tot gedetailleerdere en 
nauwkeurigere kaarten. Dit wordt in dit proefschrift gedaan door middel van een 
geostatistische aanpak: kriging met externe drift (KED). KED laat kartering toe van 
een primaire variabele die exact en nauwkeurig is, maar alleen bekend is op een 
beperkt aantal locaties en een secondaire variabele die minder nauwkeurig is, maar 
wel op een fijnmazig grid het hele gebied bedekt. 
 We kijken eerst naar uitvoer van een atmosferisch verspreidingsmodel als 
secondaire informatiebron om het verlies van ruimtelijke nauwkeurigheid te 
compenseren als gevolg van een uitdunning van het Landelijk Meetnet 
Luchtkwaliteit halverwege de jaren tachtig. We vergelijken KED met univeral 
kriging. Door middel van kruisvalidatie wordt de invloed van verschillende 
parameterschatting- en ruimtelijke interpolatiemethoden, het aantal waarnemingen 
en de configuratie van het meetnet op de onzekerheid gekwantificeerd. Door KED te 
gebruiken worden exactere en nauwkeurigere predicties verkregen wanneer er 
weinig waarnemingen zijn. Echter, de uitvoer van het verspreidingsmodel werd als 
deterministisch gezien, zonder onzekerheden, dus moet dit eerste geostatistische 
model uitgebreid worden. 
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 We presenteren een methode, error-in-variable KED, die onzekere 
luchtkwaliteitsmetingen combineert met onzekere secondaire informatie van het 
verspreidingsmodel. De nieuwe methode combineert KED met een meetfoutmodel 
en gebruikt Bayesiaanse inferentietechnieken. De methode is flexibel genoeg om 
verschillende varianties aan zowel de primaire als secondaire informatie toe te 
kennen op elke locatie. We richten ons op actuele NO2 data op een stedelijke- en 
plattelandslocatie in Nederland. Onzekerheidsanalyses in termen van overschrijding 
van luchtkwaliteitsnormen wordt gegeven. 
 De error-in-variable KED procedure wordt verder uitgebreid met een 
tijdscomponent om toekomstige locale NO2 concentraties nabij Rotterdam te bepalen 
voor het jaar 2010, kijkend naar onzekerheden and overschrijdingen van Europese 
luchtkwaliteitsstandaarden. De achtergrondconcentratie wordt bepaald aan de hand 
van de uitgebreide error-in-variable KED. Aan de hand van een lokaal generiek 
verspreidingsmodel met het gebruik van een emissiescenario voor 2010 wordt er een 
locale verkeersbijdrage bij opgeteld. Dit resulteert in kaarten van locale NO2 
concentraties, onder- en bovengrenzen en overschrijdingskansen van de 
luchtkwaliteitsnorm. De probabilistische maten worden berekend en vervolgens 
vertaald in woorden om communicatie naar beleidsmakers te versoepelen. 
 Ten slotte wordt het gebruik van twee secondaire informatiebronnen verkend 
om fijn stof (PM10) boven West Europa in kaart te brengen. Het is vrijwel onmogelijk 
om een consistent beeld te krijgen van PM10 dat alleen maar gebaseerd is op 
metingen van een meetnet, omdat meetmethoden tussen landen verschillen, evenals 
de omgeving van de meetstations. We illustreren het gebruik van statistische 
methoden om meetnetgegevens van PM10 te standaardiseren en om deze 
gestandaardiseerde concentraties te interpoleren door ze te combineren met onzekere 
secondaire informatie van een chemisch transportmodel en MODIS 
satellietobservaties van aërosol optische dikte. De secondaire variabelen bevatten 
verschillende soorten informatie en een combinatie van beide geeft de meest exacte 
en nauwkeurige voorspellingen en dient daarom geprefereerd te worden. 
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