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Chapter 1: 
General Introduction 

 

PLANT BREEDING 

Since the industrial revolution, a huge increase in food production efficiency can be seen over 
the years. The improvement in agricultural production has been achieved by several factors: a 
more efficient use of land through redistribution of farm land and the merger of farms; better 
quality and availability of inputs like fertilizer and pesticides; and the genetic improvement of 
crops or plant breeding. With a rapidly growing world population, food security becomes an 
increasingly important issue (FAO). Breeding new varieties in crops may help to fill the needs 
of our next generation. Plant breeding is an applied science and relies on genetic variation. By 
crossing existing material or wild material and selecting for favorable genotypes in the 
progeny, improved cultivated varieties (cultivars) can be produced. With the aid of modern 
biotechnology, cultivar production can be accelerated and a much broader range of genetic 
variation can be used. 

 

MOLECULAR MARKERS 

To select for a favorable genotype can be very difficult. For instance, traits like disease 
resistance can only be evaluated by exposing the genotypes to the pathogen and traits like 
yield inherit quantitatively and can be controlled by several genes. THODAY (1961) 
proposed to use single gene markers to map and characterize the genes that control these traits. 
These markers are supposed to have a high genetic linkage with these genes and can therefore 
be used to indirectly select for the favorable genotype. 

Isozyme markers were the first biochemical single gene markers that were employed for 
genetic analyses of quantitative traits (EDWARDS et al. 1987; TANKSLEY et al. 1982). 
These markers were more abundant than morphological markers, but still their number is 
limited and there are not enough informative markers to cover an entire genome. 

The discovery of restriction enzymes (SMITH and WILCOX 1970) and the polymerase chain 
reaction (PCR; MULLIS and FALOONA 1987) have created the opportunity to visualize the 
composition of organisms at the DNA level, and obtain a so-called genetic fingerprint (e.g. 
KEARSEY and POONI 1996). The visible differences in these fingerprints among the 
genotypes are called molecular markers. The number of molecular single gene markers that 
can be produced is virtually inexhaustible. These markers are DNA based and distributed over 
the entire genome. Other advantages compared to morphological markers are their phenotypic 
neutrality and lack of epistatic and pleiotropic effects. Nowadays, several different types of 
molecular markers are available for genetic studies. The AFLP (amplified fragment length 
polymorphism) technique in particular, is very fast and yields an enormous amount of data in 
a relatively short time (VOS et al. 1995). 

 

GENETIC LINKAGE MAPS 

A genetic linkage map represents the relative order of genetic markers along a chromosome. 
Recombination frequencies are used to determine the relative distance between the markers. 
Genetic linkage maps should not be confused with physical genomic maps, which can be 
obtained by determining the DNA sequence of chromosomes, as is currently being done in 
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several genome mapping projects. Linkage maps and physical maps are related, but this 
relation is usually not linear (e.g. SCHMIDT et al. 1995). Genetic linkage maps are a valuable 
tool in basic genetical studies and applied breeding programs, especially for the identification 
and selection of genotypes with specific combinations of favorable traits. Traditionally, only 
classical genetic markers like morphological traits were available, which required a large 
number of segregating populations to develop a linkage map, as only a limited number of loci 
segregated in each cross. With the advent of molecular markers, unlimited amounts of 
segregating loci became available for a single cross. The parents in these crosses are mostly 
homozygous and F2, RIL or BC generations are used to perform linkage analysis. For 
outbreeding species like potato, heterozygous parents are used to obtain segregating 
populations and mapping can be performed in the F1 offspring of a single cross. In the past, 
genetic linkage maps have been constructed for several plant species like maize 
(HELENTJARIS et al. 1987), rice (MCCOUGH et al. 1988), Brassica (SLOCUM et al. 1990), 
potato (GEBHARDT et al. 1991), tomato (TANKSLEY et al. 1992), lettuce (KESSELI et al. 
1994), sorghum (PEREIRA et al. 1994), Arabidopsis (ALONSO-BLANCO et al. 1998) and 
wheat (MESSMER et al. 1999). 

As an intermediate between conventional linkage maps and sequencing the complete genome 
of an organism, high density maps have been generated. Marker-dense maps provide ordered 
frameworks for the construction of physical maps, onto which YAC or BAC contigs can be 
anchored (KLEIN et al. 2000). In crop plant species such as rice (HARUSHIMA et al. 1998: 
2,275 AFLP markers), maize (VUYLSTEKE et al. 1999: 1,539 and 1,355 markers mapped in 
two populations), potato and tomato (TANKSLEY et al. 1992: ca. 1,000 markers; 
HAANSTRA et al. 1999: 1,175 markers), high-density genetic linkage maps have already 
been constructed. The combined maps of the tomato and potato genomes comprise 
approximately 1,000 RFLP markers assembled from several populations and together they 
represent an average spacing of c. 1.2 cM (GEBHARDT et al. 1991; TANKSLEY et al. 1992). 

 

SOFTWARE 

Locus ordering on a linkage map requires a criterion that defines the ‘best’ map and an 
algorithm to find the optimal sequence of loci. The criteria that have been proposed include 
the maximum likelihood (LANDER et al. 1987; JANSEN et al. 2001), the minimum sum of 
adjacent recombination fractions (SARF), the maximum sum of adjacent LOD scores 
(SALOD) (LIU and KNAPP 1995), the minimum number of crossovers (THOMPSON 1987) 
and the ‘least square locus order’ (STAM 1993). 

Various computer packages for linkage mapping have implemented these criteria, combined 
with a certain search algorithm. For example, GMENDEL (LIU and KNAPP 1995) minimizes 
SARF using simulated annealing. The PGRI package (LU and LIU 1995) can minimize 
SARF or maximize the likelihood using simulated annealing and/or branch-and-bound. 
JoinMap (STAM 1993) minimizes the least square locus order using a stepwise search, which 
is a combination of seriation and branch-and-bound with some additional local reshuffling. 
For practical purposes the target function should not require intensive calculations and yet be 
acceptable from a statistical viewpoint. Especially with incomplete data (missing observations 
and/or incomplete genotype information as is the case with dominance) calculation of the 
complete likelihood and the least square criterion is time consuming. As a result, the methods 
that use these criteria are becoming too computing-intensive for constructing linkage maps of 
over 400 loci, for instance, on a regular basis. The construction of ultra-dense maps in 
particular requires a time-efficient criterion and a heuristic search algorithm to deal with the 
amounts of data and error. 
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LINKAGE MAPPING IN POTATO 

Potato (Solanum tuberosum) is the world’s fourth major crop for food production after wheat, 
rice and maize. In the Netherlands almost 2.3% of the world production is grown (Table 1). 
The crop belongs to the family of Solanaceae, which also harbors food crops and ornamentals 
like tomato (Lycopersicon esculentum), eggplant (Solanum melongena), tobacco (Nicotiana 
tabacum), pepper (Capsicum spp.), Petunia, Physalis, Atropa and Datura. The genus Solanum 
comprises many species of which over 200 are tuber bearing. The cultivated potato itself is a 
highly heterozygous, autotetraploid species (2n=4x=48). Potato is an outbreeder and suffers 
from inbreeding depression when self-fertilized. Classical breeding involves evaluation and 
selection, based on several traits including yield, disease resistance and quality, on the clonal 
propagated progeny of a cross between two tetraploid clones. These clones can be existing 
cultivars or clones with introgressions from wild species. Potato breeding is a time-consuming 
process; it takes more than 10 years to produce a new cultivar. 
Table 1. Potato production in 2004 (Mt) (FAO) 

Country Production 
Netherlands 

Western Europe 
World 

7,435,000 
48,251,551 

328,865,936 

Genetic analysis and mapping of loci is also hampered by a high heterozygosity and an 
autotetraploid genome. Genetical studies of specific loci are complex, with the inheritance of 
traits often being masked by multiple alleles and even lethal alleles. Despite severe inbreeding 
depression and self-incompatibility, breeding methods have been developed to produce 
dihaploid clones (e.g. HERMSEN and VERDENIUS 1973). This has made the study of 
potato genetics more feasible, although the construction of genetic linkage maps is still more 
complex than in inbreeding species. In a cross between two heterozygous dihaploid clones, in 
theory four different alleles can segregate at a single locus <abxcd>. The progeny is the result 
of two independent meioses, which led to the approach of the two-way pseudo-testcross 
(GRATTAPAGLIA and SEDEROFF 1994). A linkage map is constructed for each parent and 
the information on loci segregating in both parents is used to align the two maps. The first 
genetic linkage map in a non-inbred species was developed for potato, using the segregation 
data from only one of the parents (BONIERBALE et al. 1988). Later, the approach with 
allelic bridges to align the parental maps was used (GEBHARDT et al. 1989). Other genetic 
linkage maps in potato were constructed by JACOBS et al. 1995; VAN ECK et al. 1995; 
MILBOURNE et al. 1998, and have enabled the localization of resistance genes, quality traits 
and QTL. 

 

OUTLINE OF THIS THESIS 

The aim of this study was to construct an ultra-dense genetic linkage map of potato and 
saturating the genome with markers for gene cloning via BAC landing. For this purpose an F1 
population of 130 individuals from a cross between two diploid potato clones was evaluated 
for up to 10,000 AFLP markers. During an early stage of data analysis, it was noticed that the 
available mapping software could not cope with these data quantities and new software had to 
be developed. The program RECORD proved to be much faster and less sensitive to errors 
than the existing software in an evaluation experiment with simulated data described in 
Chapter 3. However, the relatively small portion of erroneous data caused too many ordering 
ambiguities, especially in the ultra-dense marker clusters. Chapter 4 presents a statistical error 
detection and removal program: SMOOTH. Simulation experiments provide the evidence that 
the vast majority of errors can be detected and that a reliable placement of markers can be 
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realized. The successful application of RECORD and SMOOTH resulted in a new mapping 
concept based on a framework map consisting of bins. A detailed description of the methods 
and the bin concept is provided in Chapter 2 in a case study with chromosome I. According to 
the new concept framework maps have been constructed for all chromosomes. Chapter 5 
describes the characteristics of the ultra-dense genetic linkage map of potato and its 
applications. Finally, Chapter 6 contains a general discussion on the results obtained during 
this study. 
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ABSTRACT 

Segregation data were obtained for 1260 potato linkage group I-specific AFLP loci from a 
heterozygous diploid potato population. Analytical tools that identified potential typing errors 
and/or inconsistencies in the data and that assembled cosegregating markers into bins were 
applied. Bins contain multiple-marker data sets with an identical segregation pattern, which is 
defined as the bin signature. The bin signatures were used to construct a skeleton bin map that 
was based solely on observed recombination events. Markers that did not match any of the bin 
signatures exactly (and that were excluded from the calculation of the skeleton bin map) were 
placed on the map by maximum likelihood. The resulting maternal and paternal maps 
consisted of 95 and 101 bins, respectively. Markers derived from EcoRI/MseI, PstI/MseI, and 
SacI/MseI primer combinations showed different genetic distributions. Approximately three-
fourths of the markers placed into a bin were considered to fit well on the basis of an 
estimated residual "error rate" of 0–3%. However, twice as many PstI-based markers fit badly, 
suggesting that parental PstI-site methylation patterns had changed in the population. 
Recombination frequencies were highly variable across the map. Inert, presumably 
centromeric, regions caused extensive marker clustering while recombination hot spots (or 
regions identical by descent) resulted in empty bins, despite the level of marker saturation. 

 

INTRODUCTION 

Marker-dense meiotic linkage maps are valuable tools in fundamental and applied genetic 
research. They serve multiple purposes ranging from the dissection of simple and complex 
phenotypes to the isolation of genes by map-based cloning (TANKSLEY et al. 1995). 
Marker-dense maps provide ordered frameworks for the construction of physical maps onto 
which yeast artificial chromosome or bacterial artificial chromosome (BAC) contigs can be 
anchored (KLEIN et al. 2000). Thus, construction of a high-density genetic map was one of 
the first goals of the human (MURRAY et al. 1994; DIB et al. 1996) and mouse (DIETRICH 
et al. 1996) genome mapping projects. In crop plant species such as rice (HARUSHIMA et al. 
1998: 2275 markers), maize (VUYLSTEKE et al. 1999: 1539 and 1355 markers mapped in 
two populations), and potato and tomato [TANKSLEY et al. 1992 ( 1000 markers) and 
HAANSTRA et al. 1999 (1175 markers), respectively], high-density genetic linkage maps 
have already been constructed. The combined maps of the tomato and potato genomes are 
composed of 1000 restriction fragment length polymorphism (RFLP) markers assembled 
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from several populations and together they represent an average spacing of 1.2 cM 
(GEBHARDT et al. 1991; TANKSLEY et al. 1992). 

With the objective of constructing a 10,000-point marker-dense meiotic map of the potato 
genome as a platform for map-based gene isolation and for the construction of a genetically 
anchored whole-genome physical map, we have assembled an interim data set composed of 
>6500 independent PCR-based segregating markers from a diploid mapping population. 
Interpreting this data set in the context of linkage analysis proved problematic because, as the 
number of markers included in the experiment increased above a given threshold, 
computationally intensive mapping algorithms, based on the use of pairwise distances 
between loci to derive marker order, became slow and eventually failed. Here we present the 
results and the challenges that we encountered when analyzing data from the largest single 
linkage group in our experiment, linkage group I (LG I), which contains 1260 markers. 

Meiotic linkage mapping uses the frequency of recombination events that occur during 
meiosis as a basis for calculating genetic distances between loci. The observed recombination 
frequencies are commonly converted into map units (centimorgans) by applying a mapping 
function, which imposes certain assumptions on the data (e.g., the presence or absence of 
"interference"; KOSAMBI 1944). On the basis of several populations (e.g., BONIERBALE et 
al. 1988; GEBHARDT et al. 1991; VAN ECK et al. 1995; COLLINS et al. 1999), the 
cumulative length of the potato genetic map is 600–1100 cM, with the 12 individual 
chromosomes ranging from 40 to >100 cM. These map lengths are consistent with 
cytological observations that indicate the formation of, on average, less than one chiasma per 
bivalent during meiosis. Thus, we anticipate that during meiosis a given potato chromosome 

will generally be engaged in a single recombination event, with none or more than one 
occurring less frequently. 

By following the inheritance of genetic markers in a meiotic mapping population, 
recombination events can be linearly ordered along each chromosome. This linear order 
defines intervening segments of chromosomes, which vary in both physical and genetic size. 
These variables are largely defined by the number of descendants in the mapping population 
and by the average number of recombination events that occur during meiosis. Clearly, as the 
number of markers scored in the population exceeds the number of recombination-defined 

chromosomal segments, some segments will be identified by multiple cosegregating markers. 
When a very large number of markers have been followed, this will occur frequently, resulting 
in many chromosomal segments being multiply marked (Figure 1). We call these 
chromosomal segments cosegregation bins. A cosegregation bin has a bin signature, that is, 
the consensus segregation pattern of all markers in that bin. It is the number of recombination 

events in the population, not the number of markers, that defines the maximum number of 
bins in a chromosome in a given experiment. Adjacent bins should be separated by a single 
recombination event. However, in practice, multiple recombination events occur frequently 
between adjacent bins and as a result all theoretical bins cannot be identified directly from the 
data. This situation could arise from, for example, chromosomal segments being either 

"identical by descent" or simply physically small. Here, segregation data from the adjacent 
filled bins are sufficient to calculate the minimum number of intervening recombination 
events. Once established, empty bins can be inserted between filled ones until the 
chromosome is represented as a linear string of bins, each separated by a single recombination 
event. 

While achievable in principle, one overriding practical reality—error—complicates the 
construction of a marker-dense bin map. Erroneous data introduce conflict between the true 
and the observed number of recombination events. The significance of this can be illustrated 
by considering the creation of a meiotic linkage map of a single chromosome consisting of 
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1000 markers in a population of 100 individuals and a marker scoring accuracy of 99%. 
Because each erroneous data point can introduce two false recombination events (a single-
marker double recombinant), the potential exists for 2000 false recombination events to be 
introduced into the data set. This is an order of magnitude greater than the total number of 
recombination events expected in a population of 100 individuals, assuming one to two 
crossovers per chromosome. The consequence of analyzing such data with any mapping 
software is the generation of inflated maps with tenuous and potentially erroneous marker 
orders. 
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Figure 1. The recombination bin-mapping concept. For simplicity, only one heterozygous parental chromosome 
pair and eight potential recombinant gametes are shown. Allelic marker loci, Aa to Pp, are represented as upper- 
or lowercase letters on a white or shaded background. During meiosis, recombination breaks and rejoins the 
parental chromosomes, which segregate into gametes that are a mosaic of the parental chromosomes. The 
diagram illustrates how the position of the recombination events can be visualized as a linearly ordered set of 
bins, each separated by a single recombination event. In this example, six of the eight parental gametes have 
undergone recombination. In the marker data set, gamete 3 contains a singleton (M), which on analysis is 
hypothesized as being unlikely on the basis of the genotype of the flanking markers because it introduces two 
additional recombination events. In the final map, marker M, however, is placed on the map in bin 6 at a distance 
of one apparent recombination event from the core. In gamete 5, a missing data point (–) is hypothesized as 
being H on the basis of the flanking marker data and, as a result, fits into bin 4. In gametes 2 and 6, 
recombination has occurred between the same two marker loci (Dd and Ee), resulting in the insertion of an 
empty bin (shaded) in the map. The resulting bin map is therefore composed of seven linear bins with a side 
branch from bin 6, which contains marker M at an apparent recombination distance of 1. At high marker density 
(i.e., when the number of markers is much greater than the number of recombination events), individual bins will 
contain multiple-marker loci (as illustrated for five of the seven bins). All marker loci in a bin either have 
identical segregation patterns (i.e., the bin signature) or deviate by a defined number of apparent recombination 
events (e.g., M). 

We conclude that there are two pivotal requirements for creating marker-dense meiotic maps. 
The first is a system for rigorously and systematically identifying and correcting errors in the 

marker segregation data. While this will make improvements, identification of all errors in a 
large data set will be impossible. The second requirement, therefore, is the development of a 
mapping model that identifies and makes use of the most reliable data to calculate a 
framework map into which the remaining data can be placed. The most reliable data are likely 
to be those for which redundancy, revealed as multiple cosegregating markers from 
independent experiments, improves confidence and provides support for the hypothesis that 
the shared segregation pattern is in fact "true," assuming random, not systematic, error. We 
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explore a model that generates a robust linear map consisting of bins of cosegregating markers 
and nonredundant markers if they are incorporated without conflict. All other markers are 

subsequently placed in the bin into which they best fit by statistical procedures without 
perturbing the overall map order. 

 

MATERIALS AND METHODS 

Plant material: A diploid F1 potato population of 130 individuals was used for the 
construction of the genetic map. This mapping population was generated from a cross between 
two diploid heterozygous parents: SH83-92-488 (hereafter denoted SH) x RH89-039-16 
(hereafter denoted RH) (ROUPPE VAN DER VOORT et al. 1997A). Genomic DNA isolation 
was performed on frozen leaf tissue as described by VAN DER BEEK et al. 1992. 

Marker assays: The amplified fragment length polymorphism (AFLP) procedure of VOS et 
al. 1995 was used with minor modifications. Three restriction enzyme combinations were 
used to prepare template DNA: EcoRI/MseI, PstI/MseI, and SacI/MseI. After digestion, 
adapters corresponding to each enzyme cleavage site were ligated to the restricted DNA. Their 
sequences are as follows: EcoRI (5'-CTCGTAGACTGCGTACC-3'/3'-
CTGACGCATGGTTAA-5'), PstI (5'-CTCGTAGACTGCGTACATGCA-3'/3'-
CATCTGACGCATGT-5'), SacI (5'-CTCGTAGACTGCTACAAGCT-3'/3'-
CATCTGACGCATGT-5'), and MseI (5'-GACGATGAGTCCTGAG-3'/3'-
TACTCAGGACTCAT-5'). Preamplification of the restricted-ligated fragments was 
performed using primers strictly complementary to the adapters. For selective amplification, 
the primers had the common adapter sequence plus a 2- or 3-bp extension at their 3' end. The 
234 selective AFLP primer combinations used in this study are tabulated at 
http://www.dpw.wageningen-ur.nl/uhd/index.html. EcoRI (E), PstI (P), or SacI (C) primers 
were 5' end labeled with [ -33P]ATP as described by VOS et al. 1995 prior to selective 

amplification. Amplification products were separated on 5% polyacrylamide, 1x TBE 
sequencing gels. Buffer at the anodal side was supplemented with 0.5 M NaOAc to create an 
ionic gradient, which allowed better separation of the larger fragments. Gels were run at 110 
W (constant power) for 3 hr. After drying the gels, amplification products were visualized by 
autoradiography. Three chromosome I-specific microsatellites (STM1049, STM1029, and 
STM2020) were used to test the integrity of the population under study and to align the two 
parental maps. Simple sequence repeat (SSR) primer sequences and assay conditions were as 
described in MILBOURNE et al. 1998. Autoradiograms were scanned at a resolution of 150 
dpi and scored using the computer package Cross-Checker (available at 
http://www.spg.wageningen-ur.nl/pv/pub/CrossCheck/), and the scores were manually 
checked by comparing them with the primary autoradiographs. 

Marker nomenclature: Band nomenclature was assigned from reference autoradiograms, 
which were provided by Keygene NV, Wageningen, The Netherlands. The marker names 
indicate the enzyme used, the primer combination, and the mobility of the fragment as defined 
by a size marker (Sequamark 10-bp ladder; Research Genetics, Huntsville, AL). Decimal 
points in the mobility values (e.g., PAC/MAGA: 120.5) are due to interpolation of band sizes 
between 10-bp markers by the proprietary software used. 

Mapping algorithms: A combination of existing JoinMap V2.0 modules (JMGRP32 and 

JMQAD32), new algorithms (RECORD and SMOOTH), and recently developed software 
(ComBin) were used to analyze the segregation data. 

JMGRP32: This module within the JoinMap V2.0 software package (STAM 1993) allows 
the grouping of markers that belong to the same linkage group. The largest group of markers, 
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significantly distinct from other marker groups (at LOD 6) representing LG I, was exported 

and analyzed with JMQAD32. 

JMQAD32: This quick and dirty module within the JoinMap package calculates 

recombination frequencies between marker loci. The best map is selected from all possible 
orders on the basis of minimization of the sum of adjacent recombination frequencies. In 
general, these maps are inflated, and the extra length is best understood by assuming double 
recombination events or scoring errors (STAM 1993; STAM and VAN OOIJEN 1995). 

RECORD: RECORD finds the best possible marker order by minimization of the number of 
recombination events as counted in a data set of marker segregation data. In contrast to 
JoinMap or MapMaker, this algorithm does not make use of many pairwise distance estimates, 
but it uses the much simpler raw segregation data. Simulations showed that the performance 
of RECORD is particularly good in marker-dense regions, as well as with any level of missing 
values and scoring errors (up to 20%) where software packages based on pairwise distance 
estimates encounter severe difficulty (VAN OS et al. 2000). 

SMOOTH: SMOOTH identifies and removes singletons from genetic mapping data sets. 
Once a preliminary marker order has been proposed (e.g., by RECORD), SMOOTH calculates 
the probability that each data point of a segregating marker locus is true on the basis of the 
genotype of flanking markers. The probability calculation is based on 15 flanking data points 
on either side, with the nearest data points being given a higher weighting. SMOOTH is 

applied in conjunction with RECORD by cyclically reiterating the process of marker ordering 
and singleton removal. Initially, a strict probability threshold of P < 0.01 is used to eliminate 

the least-well-supported data points. The marker order is then recalculated (with RECORD) 
and further weakly supported data points are removed by SMOOTH by releasing the threshold 
by P = 0.01 over 30 cycles until a threshold of P = 0.3 is reached. The process of removing 
conflicting data points and recalculating the marker order is continued until no further poorly 
supported inconsistent data points (i.e., singletons) can be identified. Simulation studies have 
demonstrated that a significant increase in the accuracy of marker order is obtained with the 
combined use of RECORD and SMOOTH without the risk of introducing artifactual marker 
orders (H. VAN OS and H. VAN ECK, unpublished results). The software is relatively 
insensitive to high levels of noise, as observed in extensive marker data sets as used here. 

ComBin: ComBin differs from existing mapping software as maps are built by placing 
markers (or bins of cosegregating markers) next to each other, separated by a single 
recombination event (BUNTJER et al. 2000; available at 
http://www.dpw.wau.nl/pv/pub/combin/index.htm). This process resembles threading beads 
on a string. The marker bins within the developing string are used to identify the next marker 
(or bin) at a distance of one recombination event. The software allows the formation of side 
branches when adding the next marker to the developing string and as a result facilitates the 
visualization of singletons or other ambiguities in the data set. Here, ComBin was used to 
inspect the data for secondary structures in the linkage groups, while calculating the skeleton 

bin map. 

 

RESULTS 

Genome-wide segregation data: Using a population of 130 individuals, 234 AFLP primer 
combinations were used for selective amplifications. This generated a total of 6756 clear and 
scorable segregating bands composed of 1759 SacI/MseI, 3719 EcoRI/MseI, and 1278 
PstI/MseI AFLP markers. As the population was derived from a cross between two noninbred 

parental lines, the 6756 markers (and three multiallelic SSR markers) were first separated into 
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maternal, paternal, and biparental data sets according to the parental profiles of each band 
scored in the population. A total of 2682 (39.7%) were heterozygous in the female parent 
(coded ab x aa for analysis), 2223 (32.9%) in the male parent (coded aa x ab), and 1851 
(27.4%) were heterozygous in both parents (coded ab x ab and from here on referred to as 
bridge markers). 

The GROUP function of JoinMap V2.0 split the maternal data into the expected 12 linkage 
groups at LOD 6.0. For the paternal data, at LOD 6.0 the markers in linkage groups 
corresponding to chromosomes II–XI were separated. However, one linkage group was 
obtained, which contained markers from LGs I and XII and was split only when the LOD was 
raised to 12. At these thresholds, a group of 11 highly skewed markers remained unassigned. 
Assignment of parental linkage groups to chromosomes and chromosome orientation was 
achieved unequivocally on the basis of common AFLP markers mapped previously in the 
same population (ROUPPE VAN DER VOORT et al. 1997A, ROUPPE VAN DER VOORT 
et al. 1997B), which form part of a catalog of locus-specific AFLP markers (ROUPPE VAN 

DER VOORT et al. 1997C). Finally, the bridge markers were assigned to linkage groups at 
LOD 8.0 by analysis with the maternal and paternal data sets separately. Being less 
informative, some of the bridge markers exhibited spurious (multiple) linkages to different 
maternal and paternal linkage groups and were therefore excluded from the data set. After this 
analysis, 282 markers (4.17% of the 6756) remained unassigned. LG I was the largest linkage 
group, containing a total of 1260 markers (627 maternal, 420 paternal, and 213 bridge). The 
identity and correspondence of the maternal LG I and paternal LG I were confirmed by use of 
three genetically characterized multiallelic LG I-specific SSRs (MILBOURNE et al. 1998). 
The remaining analysis focuses on only this linkage group with the objective of deriving an 

optimal marker order. 

Map construction: In populations derived from non inbred parents, a necessary step after 
grouping the marker data into linkage groups is to determine marker phase. Phase information 
is required to convert data from non inbred parents into BC1 format for further analysis. This 
was achieved using the JoinMap V2.0 module JMQAD32 (STAM and VAN OOIJEN 1995). 
However, attempts to use the standard modules in JoinMap V2.0 to subsequently order the 
markers were unsuccessful (the program crashed). We therefore applied the following map 
construction process. 

Primary marker ordering and error checking: The raw data were analyzed initially with 
RECORD. As RECORD is input order dependent, the stepwise map construction process was 
repeated 10 times and the shortest resulting map was assumed to be the most correct. 
Generally, the shortest map will be one from a number of equally likely potential solutions 
(i.e., it is not perfect). However, simulation studies show that RECORD is computationally 
less demanding, faster, and less sensitive to missing observations and scoring errors than 
JMMAP, especially in small populations and in regions with high marker density (H. VAN 
OS and H. VAN ECK, personal communication). 

On the basis of the output order from analysis with RECORD, singletons and other potential 
errors in the marker segregation data were identified by visual inspection of graphical 
genotypes of each of the progeny and then rechecked on the original AFLP autoradiograms 
and corrected when necessary. This was performed once on the complete data set after which 
a new map order was calculated using RECORD. This whole process was considered too time 
consuming to repeat fully, so in a subsequent round, only markers containing two singletons 
or more (on the basis of graphical genotypes derived from the new map order) were checked 
manually again, corrected if necessary, and a new order was calculated. These two rounds of 
data checking allowed a significant improvement of the data quality as the singleton rate for 
each primer combination decreased from >5% to <3% on the basis of inspection of graphical 
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genotypes. As a general observation, for a given restriction enzyme digest, primer 
combinations that generated complicated fingerprints (i.e., >80 bands per lane) on analysis 
tended to reveal a higher frequency of singletons. 

Automated singleton removal: Remaining singletons were removed and replaced 
automatically with missing values through an iterative process of repeatedly calculating the 
marker order with RECORD and replacing potential errors with "missing data" using 
SMOOTH, starting with a strict probability threshold for singleton removal of P < 0.01 and 

slowly releasing it over 30 cycles to P < 0.3. A final order was then calculated with RECORD. 
Such iterative use of SMOOTH is not harmful to the map order although, occasionally, 
rejecting the hypothesis that a singleton was "true" may cause adjacent bins to merge (the 
equivalent of removing a recombination event from the population). No singletons remained 
in our data set when the threshold was relaxed to P < 0.3. 

Production of the skeleton bin map: The cleaned data set was then used to construct maternal 
and paternal maps of LG I using ComBin (BUNTJER et al. 2000). ComBin complements 
SMOOTH by identifying certain data ambiguities, such as multiple markers containing an 
identical singleton. These would not be identified by SMOOTH, as the shared singletons 

jointly support each other. Visual inspection of our data indicated that this was the case for 
many of the markers placed in side branches. These shared singletons were then replaced by 
missing values until a linear string of bins was obtained. We call the resulting linear map the 
skeleton bin map. When two adjacent bins were separated by more than one recombination 
event, a number of empty bins equal to the number of recombination events separating the 
flanking filled bins were placed in the skeleton bin map. Bin signatures were derived from the 
most complete marker (in terms of genotypic information) incorporated in the bin. 

Populating the skeleton bin map: The skeleton bin map is effectively a minimum tiling path 
of recombination events along a chromosome. It was populated retrospectively by fitting the 
original marker data (i.e., error-checked data before the removal of singletons by SMOOTH) 
on the basis of the highest LOD score between individual markers and bin signatures. 
Inspection of markers in a bin confirmed that the apparent recombination distance between 
markers and their bin signature was mainly due to singletons. Populating the skeleton bin map 
did not result in a change in the order of the bins and allowed discrimination between distance 
due to true recombination and to potential error. After populating the skeleton bin map of both 
parents, the bridge markers were mapped. All possible putative bridge bins of this linkage 
group were generated by superimposing all maternal and all paternal bin signatures in 
coupling and repulsion phase (cc, cr, rc, rr). Subsequently, the observed bridge marker data 
were analyzed against the postulated bridge bin signatures. The bridge markers were then 
placed into the putative bridge bins on the basis of the highest LOD score. 

Bin map of potato linkage group I: LG I consists of 95 maternal bins and 101 paternal bins. 
The 627 maternal markers fit into 72 bins, leaving 23 bins empty. The 420 paternal markers fit 
into 48 bins, leaving 53 bins empty. The smaller number of segregating markers from RH 
indicates that it is more homozygous. As a result, the higher proportion of empty bins was not 
unexpected. The 210 markers segregating in both parents and the three SSR loci were used to 
link the two parental maps as bin bridges, giving a final map of 1260 markers. In Figure 2 
both parental skeleton bin maps are represented, showing the number and type of markers in 
each bin. Figure 2 does not display distance between markers in map units (centimorgans) or 
recombination values that are independent of population size, but shows the actual number of 
recombination events between two markers as observed in these 130 genotypes. The bridge 
markers reveal minor discontinuities in the order of the parental bins into which they best fit 
(data not shown). We consider this to be a direct consequence of our inability to clean the 
biparentally inherited data of errors based on graphical genotypes or SMOOTH and the highly 
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Figure 2. Final bin maps of SH and RH showing marker number and composition of each bin. The SH and RH 
maps are composed of 95 and 101 bins, respectively. The histograms with asterisks representing bins SH032 and 
RH013 have been scaled to fit on the page with the total number of markers indicated. EcoRI-, PstI-, and SacI-
derived markers in these bins are proportionally scaled. 
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skewed nature of the loci on the top third of the parental map. The detailed map, including 
complete names of all the markers in each bin, is available at http://www.dpw.wageningen-
ur.nl/uhd/index.html. 

Surveying graphical genotype images from the skeleton bin map revealed that 55/130 SH and 
44/130 RH parental chromatids had not recombined, 57/130 SH and 72/130 RH parental 
chromatids had undergone a single recombination event, and 18/130 SH and 14/130 RH had 
undergone two recombination events, respectively, during meiosis. No chromosome had more 
than two recombination events and no singletons remained. There was significant segregation 

distortion from a 1:1 ratio in the paternal map from bins 1–27 up to a chi-square value of 27.7. 
No segregation distortion was observed in the maternal map. 

Marker distribution: The AFLP markers are not evenly distributed along the genetic map of 
LG I. On the paternal bin map, there are two gaps of seven recombination events (i.e., six 
empty bins) and two gaps of six recombination events. This is surprising, given the number of 
markers on this paternal chromosome, but may reflect either a high level of meiotic 
recombination in these regions (recombination hot spots) or an absence of polymorphism. 
There is also significant clustering of markers in single bins for each parental map. For 
instance, the biggest bins, no. SH032 of the maternal map and no. RH013 of the paternal map, 
contain 353 and 265 markers, respectively! 

The distribution of the three different types of AFLP markers is shown in Figure 2. The 
graphs show clustering of markers for all enzyme combinations in a short interval around the 
maternal bin SH032 and the paternal bin RH013. The biggest clusters are observed for 
EcoRI/MseI and SacI/MseI, where 61–69% of the markers are located in a single bin of the 
maternal or paternal map. PstI/MseI AFLP markers are more evenly distributed along the 
chromosome, with 36 and 23% of the markers clustered in SH032 and RH013, respectively. 

Map quality: Our original hypothesis was that a skeleton bin map would provide a high-
confidence framework for the production of a marker-dense genetic linkage map. To check 
the quality of the skeleton bin map, we first examined how well the original marker 
segregation data fit into each of the bins. After placing markers by maximum likelihood, the 
apparent recombination value between the bin signature and the segregation data of each 
marker in the bin was graphically summarized. The apparent recombination value does not 
represent genetic distance, but rather represents a distance we describe as "perpendicular" to 
the linear axis of the map, caused by potentially erroneous or inconsistent data. The data 
incorporated into the final map are displayed in Figure 3, which summarizes the apparent 
recombination value of each marker in terms of the number of observed singletons, relative to 
its bin signature. A threshold value of 0.03 was chosen to discriminate between good and 
poorly fitting markers because, after two rounds of error checking using graphical genotypes, 
a residual singleton rate of 0–3% per marker per primer combination was estimated to remain. 
Overall, 74.8% of the maternal markers and 80.4% of the paternal markers fit into bins within 

an apparent recombination distance range from 0 to 0.03, effectively equivalent to markers 
scored with 0–3% error. Bins SH032 and RH013 are shown in detail in Figure 4 because they 
provide good examples of marker behavior in a bin and because of the extremely high number 
of markers that they contain. For both, approximately half of the markers have a 
recombination value of 0, which means that their segregation pattern is identical to their bin 
signature. A total of 18.9% of the markers had an apparent recombination value >0.03 and are 
considered not to fit well in the bin into which they are placed (they are, however, retained in 
the total data set on the website listed above because they may be of some use in subsequent 
studies). 
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Figure 3. The percentage of error-checked 1:1 markers (y-axis) that fit into the skeleton bin maps of SH and RH 
either exactly or by the indicated number of singletons (x-axis) from a bin signature is shown. Deviation in the 
marker segregation pattern from the bin signature is expressed as the actual number of inconsistent data points 
(i.e., 1/130–>10/130). 
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Figure 4. Distance (represented as a recombination fraction) between the actual marker segregation pattern and 
the bin signature for the markers in the largest maternal (SH032) and paternal (RH013) bins. The markers are 
ordered from left to right according to their goodness of fit in the bin. 

Second, a subset of the marker data was analyzed separately by JoinMap V2.0 and marker 
order and map length were compared to the bin map (data not shown). Overall the order was 
remarkably consistent between maps. Significant inflation was restricted to SH032 where the 
30 markers chosen for analysis by JoinMap V2.0 were distributed over a 17-cM interval. The 
length of the maternal map was 88 cM vs. 95 bins and the paternal map 101 cM vs. 101 bins. 

DNA methylation and singleton frequency: For many years PstI has been used to isolate 
single- and low-copy genomic clones to use as probes for RFLP analysis (BURR et al. 1988) 
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and we considered that a similar approach could be transferred to AFLP analysis. PstI is 
effective for this because of its sensitivity to CpNpG methylation, which focuses its activity on 
hypomethylated regions of the genome, such as transcriptionally or biologically active 
euchromatic DNA. In contrast, EcoRI and SacI are much less sensitive to cytosine 
methylation (SacI is sensitive to GAGmCTC but not to GAGCTmC methylation). We 
therefore asked whether the origin of a proportion of the singletons in the data set was likely to 
be the result of the changing methylation status (at certain loci) of the DNA in different 
individuals in the population. Our hypothesis was that if methylation changes were responsible 
for markers not fitting well into bins, then the proportion of badly fitting PstI/MseI markers 
would be higher than that from other enzyme combinations. The relative frequencies of 
markers that deviate from the bin signature with an apparent recombination value of >0.03 
therefore were compared for the different enzyme combinations employed. We found that 
approximately double the proportion of PstI markers was observed in this category (30%) 
compared to EcoRI and SacI markers (15%), suggesting that changing patterns of methylation 
are contributing to the "error" frequencies observed in the data. This finding prompted us to 

reexamine the PstI autoradiographs because, if methylation were playing a role in error 
frequencies of segregating loci, we would also expect to see novel bands appearing in the 
population at low frequency, as previously methylated regions became susceptible to digestion 
with PstI. By definition, these bands would not appear in the parental tracks and would not 
have been included in the data set used for linkage analysis. Such markers were found in 
almost every PstI primer combination in the population. They were not found on the 
EcoRI/MseI or SacI/MseI autorads (data not shown). 

 

DISCUSSION 

In this report, we have presented the principles and approaches that we adopted to analyze 
1260 segregating loci from potato LG I, the outcomes of these analyses, and their implications 

for our ultimate objective of accurately mapping 10,000 AFLP markers across the entire 
potato genome. Our major challenge was to obtain an accurate marker order using a data set 
that contained errors, inconsistencies, and missing data (like all mapping studies). We initially 
considered that a logical strategy for map construction would be to identify cosegregating 
markers with complete data sets (i.e., no missing data) and use this data to calculate an optimal 
bin map. The bin map would have a high degree of confidence attached to it because each of 
the marker scores would be effectively verified by the multiple representations in a bin. We 
could then fit incomplete or singly represented marker data sets into this robust framework. 
However, while in theory bins of cosegregating markers are easily definable, in practice a 
mixture of data error and, we hypothesize, biological phenomena, e.g., methylation and 
demethylation, confound bin fitting. Such inconsistencies were revealed as individual marker 

data points that produce artifactual double recombinants in conflict with both the concept of 
interference and the flanking marker data (i.e., singletons). Inconsistencies can be 
incorporated into lower-density maps without great impact. However, in a saturation-mapping 
scenario the result will be additional apparent recombinants and a loss of map linearity. 
Therefore, we applied an iterative process based on calculating marker order and replacing 

singletons with missing values on the basis of the flanking marker genotypes. The output was 
an ordered set of filled and empty bins, the latter inserted when adjacent filled bins were 

separated by greater than a single recombination event. Together, the filled and empty bins 
represent what we have termed the skeleton bin map. Under the assumption that the skeleton 
bin map was correct, its "accuracy" was then evaluated by assessing how well the error-
checked raw marker data fit into the model (by maximum likelihood) and by comparing the 
map order of a subset of the data to an order obtained using JoinMap. The first assessment 
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confirmed that the identification and replacement of singletons with missing values was a 
valid and effective approach that does not create artifacts in marker order. The second 
assessment revealed overall similarity between marker orders calculated using each approach. 
However, visual inspection of LG I graphical genotypes on the basis of the JoinMap order 

revealed a high incidence of multiple recombinants, which was at odds with our biological 
expectations. In contrast, in the bin map we found that 12.3% (32/260), 49.6% (129/260), and 
38.1% (99/260) of the chromosomes had experienced 2, 1, and 0 recombination events, 
consistent with cytological observations of one or two chiasma per bivalent during meiosis 
(SHERMAN and STACK 1995). 

It is impossible to distinguish between singletons that are scoring errors and singletons that are 
rare but true observations caused by biological phenomena such as double recombination, 
local DNA inversions, or methylation polymorphism. Initially, the finding of a higher 
percentage of singletons among PstI-derived markers was surprising. PstI cleaves plant DNA 
much less frequently than EcoRI and SacI do, and as a result, AFLP profiles have fewer bands 
and greater clarity, making data collection easier and less prone to scoring error. A different 
genetic distribution of PstI- and EcoRI-derived AFLPs has been documented previously 

(YOUNG et al. 1999), but probably because of the marker density, combined with the way 
linkage maps have been constructed, there has been little direct evidence to suggest that 
methylation status has a significant impact on marker analysis in sexually derived segregating 
populations. However, such epigenetic variation would be relevant both in a high-density 
mapping scenario and when considering the link between genotype and phenotype, as shown 
in animals (DE KONING et al. 2000), humans (MORISON et al. 2001), Drosophila (LLOYD 
et al. 1999), and plants (ALLEMAN and DOCTOR 2000). The population used here has a 
wide range of morphological and developmental variation, including dormancy break and time 
to maturity. Consequently, leaf material for DNA isolation was harvested from 
physiologically and developmentally contrasting carbohydrate "sink" or "source" leaves. If 
changes in methylation occur during this switch, it is possible that analysis of the DNA with a 
methylation-sensitive enzyme will result in the appearance or disappearance of marker bands 
used in genetic linkage experiments. This is not without precedent. Epigenetic differences 
have been detected by AFLP analysis of somatically regenerated plants from a number of 
species, including Arabidopsis (POLANCO and RUIZ 2002), oilpalm (MATTHES et al. 
2001), and, of particular relevance here, somatically regenerated potato microplants exhibiting 
mature vs. juvenile leaf morphologies (JOYCE and CASSELLS 2002). Furthermore, naturally 
occurring, heritable, differentially methylated epialleles at the P1 locus have been shown to be 
responsible for conditioning altered kernel pigmentation in maize (DAS and MESSING 1994). 
It is therefore tempting to speculate that in populations such as those utilized in this study, 
epigenetic variation—revealed as changing methylation status at PstI sites across the 
genome—contributes to the observed frequency of singletons and to other potential data 
inconsistencies. 

Both gaps and severe clustering of markers were observed in the map. In Arabidopsis, 
clustering of EcoRI AFLP markers occurs around the centromeric regions of the 
chromosomes (ALONSO-BLANCO et al. 1998). Similar clustering of EcoRI markers around 
centromeres has been observed in potato (VAN ECK et al. 1995) as well as in other plant 
species such as barley (BECKER et al. 1995; POWELL et al. 1997), soybean (KEIM et al. 
1997; YOUNG et al. 1999), maize (VUYLSTEKE et al. 1999), and tomato (HAANSTRA et 
al. 1999). This clustering might reflect the low content of single-copy sequences present in 
pericentromeric regions. In Arabidopsis, these regions contain mainly repeated sequences of 
unknown function. An extra enrichment of AFLP markers in this region could be due to the 
use of EcoRI or SacI combined with MseI, which recognizes 5'-TTAA-3' and therefore will 
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cut more frequently in A + T-rich regions, such as pericentromeric heterochromatin [although 
this reason is not the case in soybean (YOUNG et al. 1999)]. More likely, centromeric 
clustering is related to suppression of recombination because the markers based on EcoRI and 
SacI differ in the CG content of their recognition site but target similar genomic regions. 

Due to the population size, the map developed here may be marker dense, but it remains low 
resolution because the number of individuals effectively defines the total number of 
recombination events upon which the map can be based. It is further limited by the finding 
that over half of the markers fall into two bins: one on the maternal and one on the paternal 
map. The remainder of the map is represented by a combination of filled and empty bins. As a 
result, the utility of the information to address our original objective of linking genetic and 
physical maps using an approach broadly similar to that described recently for sorghum by 
KLEIN et al. 2000 is somewhat compromised, but nonetheless remains an overall valid 
strategy. In parallel with the development of a marker-dense genetic map, we have constructed 
BAC libraries of both parental clones and developed a pooling strategy, which allows the 
identification of individual BACs by screening with AFLPs. This approach currently allows 

the identification of BACs and BAC contigs while it simultaneously assigns their 
chromosomal location (G. BRYAN, personal communication). However, it should be stated 
that the logistical problems of adopting this approach for a whole genome are considerable. In 
the current experiment, 33,000 lanes of AFLP products (254 combinations x 130 individuals) 
were run to collect the segregation data to construct the marker-dense linkage map and a 
similar or greater number would have to be run on BAC pools (depending on library size and 
pooling strategy) to connect the physical and genetic maps. This is equivalent to the number 
of lanes required to obtain individual clone fingerprint information of a more than sixfold 
genome coverage BAC library, assuming an average insert size of 150 kb and a potato 
genome size of 800 Mbp, which, it could be argued, would be more robust and provide an 
archive of genomic information. Thus, while the approach advocated by KLEIN et al. 2000 
for linking physical and genetic maps is feasible in principle, it will require a massive effort 

that will be compromised by the types of data errors and inconsistencies described in this 
report. Even if the inconsistencies were discounted, assuming the LG I information extends to 
other chromosomes, we would expect the majority of BACs to fall into the centromeric bins 
on each of the 24 chromosomes. As a result, we will fail in our objective of determining an 
order, which will de facto require a complementary approach such as high-throughput 
individual BAC clone fingerprinting. Adopting a combination of approaches would therefore 
appear a sensible conclusion. 

At present, potato is not considered a target species for full-genome sequencing. This marker-
dense map represents a vast amount of sequence information contained by the AFLP markers, 
which can be readily exploited in subsequent genetical studies. We have found that up to 50% 
of the markers segregating in the SH x RH population also segregate in other Solanum 
tuberosum populations (E. ISIDORE and B. PANDE, unpublished results). As comigrating 

AFLP fragments have been demonstrated to map to the same location in different crosses, a 
catalog of mapped AFLPs forms the basis of transferability. A previously developed catalog 
(ROUPPE VAN DER VOORT et al. 1997C) is currently being extended to incorporate the 
data summarized here and to allow the transfer of marker information from the marker-dense 
bin map to any other potato population. 

The volume of genotypic data generated in this experiment makes it difficult to provide the 
information in a single publication. Thus, an important facet of this study was presentation of 
the data in electronic format. The website http://www.dpw.wageningen-ur.nl/uhd/index.html 

will facilitate communication of these results. It provides the detailed parental bin maps and 
the bridges between the maps, including all the marker information for LG I. In future 
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versions, the complete marker-dense map of potato will be available on this site as well as all 
the segregation data and gel images. In the era of RFLP mapping, the dissemination of 
mapping results was obtained by distributing RFLP probes among research groups. In the 
PCR era, dissemination was achieved by sharing primers or primer sequences. For AFLP, the 
electronic availability of annotated gel images is necessary to compare results among labs. We 
have found that within the context of an internationally collaborative project well-annotated 
AFLP gel images provide an efficient way of aligning linkage maps constructed from other 

potato populations. 

In conclusion, this experiment represents the first steps toward our goal of developing a 
10,000-point genetic map that will form a framework for both genetic studies and the 
construction of an integrated physical/genetic mapping resource of potato. Our results 
highlight the issues of data errors and inconsistencies and provide potential analytical 
solutions to overcoming them. The data suggest that epigenetic variation may be a significant 

feature of potato populations, although this conclusion should be treated with caution as we 
have not definitively proved this to be the case. However, this area does warrant further 
investigation—particularly given the phenotypic parallels between progeny from methylation 

mutants in Arabidopsis (VONGS et al. 1993) and the acute inbreeding depression apparent in 
potato populations. 
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ABSTRACT 

A new method, RECORD (REcombination Counting and ORDering) is presented for the 
ordering of loci on genetic linkage maps. The method minimizes the total number of 
recombination events. The search algorithm is a heuristic procedure, combining elements of 
branch-and-bound with local reshuffling. Since the criterion we propose does not require 
intensive calculations, the algorithm rapidly produces an optimal ordering as well as a series 
of near-optimal ones. The latter provides insight into the local certainty of ordering along the 
map. A simulation study was performed to compare the performance of RECORD and 
JoinMap. RECORD is much faster and less sensitive to missing observations and scoring 
errors, since the optimization criterion is less dependent on the position of the erroneous 
markers. In particular, RECORD performs better in regions of the map with high marker 
density. The implications of high marker densities on linkage map construction are discussed. 

 

INTRODUCTION 

Genetic linkage maps have become an indispensable tool for locating genes or quantitative 
trait loci (QTL), marker assisted breeding and map based gene cloning. The first linkage maps 
were based on few loci of morphological characteristics, like the classical Drosophila linkage 
map of chromosome X (STURTEVANT 1913). Sturtevant introduced the concept that the 
frequency of crossing-over between two genes provides an index of their distance on a linear 
genetic map. He proposed that one percent of crossing-over should be taken as equal to one 
map unit. He devised a crucial test of the principles of mapping genes by constructing crosses 
in which at least two or three genes were segregating simultaneously. These two- or three-
point crosses provided the principles and methods for ordering and mapping genes. These 
principles have enabled geneticists to map genes and markers to the chromosomes of a variety 
of higher organisms, including man. From this historical perspective it is obvious that 
mapping methods embarked on pair-wise distance estimates. However, when large numbers 
of markers segregate in a single mapping population, the analysis of recombination events 
from marker segregation data is more rewarding. Distance estimates of marker pairs in dense 
regions are blurred by errors. The segregation data are a more direct reflection of the data 
ambiguities. Now, with the advent of molecular markers much larger numbers of segregating 
loci can be mapped within one single mapping population. As an intermediate between 
conventional linkage maps and sequencing the complete genome of an organism, high density 
maps are currently being generated (STEEN et al. 1999: 4736 SSLP-markers; KONG et al. 
2002: 5136 microsatellite markers; HARUSHIMA et al. 1998: 2275 EST markers; ISIDORE 
et al. 2003: 1260 AFLP markers). These maps sometimes comprise over 500 markers per 
linkage group. Since the number of possible orders asymptotically increases exponentially 
with the number of loci to be ordered, the problem of finding the optimal or near-optimal 
ordering requires a search algorithm that avoids an exhaustive search. For example, with 100 
loci in a linkage group the number of orders equals (100!)/2 = 4.7 x 10157, which clearly 
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prohibits an exhaustive search. Another factor that may set limits to the practical application 
of a search algorithm is the complexity of the target function to be minimized or maximized. 

The optimization problem: Locus ordering on a linkage map requires a criterion that defines 
the ‘best’ map and an algorithm to find the optimal sequence of loci. The criteria that have 
been proposed include the maximum likelihood (LANDER et al. 1987; JANSEN et al. 2001), 
the minimum sum of adjacent recombination fractions (SARF), the maximum sum of adjacent 
LOD scores (SALOD) (LIU and KNAPP 1995), the minimum number of crossovers 
(THOMPSON 1987) and the ‘least square locus order’ (STAM 1993). 

Various computer packages for linkage mapping have implemented these criteria, combined 
with a certain search algorithm. For example, GMENDEL (LIU and KNAPP 1995) minimizes 
SARF using simulated annealing. The PGRI package (LU and LIU 1995) can minimize 
SARF or maximize the likelihood using simulated annealing and/or branch-and-bound. 
JoinMap (STAM 1993) minimizes the least square locus order using a stepwise search which 
is a combination of seriation and branch-and-bound with some additional local reshuffling. 
For practical purposes the target function should not require intensive calculations and yet be 
acceptable from a statistical viewpoint. Especially with incomplete data (missing observations 
and/or incomplete genotype information as is the case with dominance) calculation of the 
complete likelihood and the least square criterion is time consuming. As a result, the methods 
that use these criteria are becoming too computing-intensive for constructing linkage maps of 
over 400 loci, for instance, on a regular basis. 

In this paper we propose the use of the minimum number of crossovers as the optimization 
criterion, combined with a heuristic search for the optimum. This combination of target 
function and search algorithm should enable us to order data sets with more than 500 loci 
within a reasonable time. 

 

MATERIALS AND METHODS 

The optimization criterion we use is COUNT, the number of recombination events. In a BC1 
backcross with perfect data (no missing observations) this number is easily obtained by 
counting the number of recombinants per locus pair, and, for a given sequence of loci, by 
adding over adjacent loci. Although COUNT and SARF are similar, there is an essential 
difference: COUNT cannot decrease as more gametes (individuals) are added to the 
population (cf. THOMPSON 1987). Since the likelihood, as well as COUNT and SARF are 
monotonic functions of the recombination frequencies between adjacent loci, COUNT, SARF 
and likelihood will give the same optimal ordering for perfect data (see also JANSEN et al. 
2001; HACKETT et al. 2003). When information is incomplete, due to for example missing 
observations or dominance in an F2 mapping population, this counting of observable 
crossovers is replaced by the expected number of crossovers for any incomplete observation 
of a pair of loci. This expected number in turn is based on the maximum likelihood (ML) 
estimate of recombination frequency between the corresponding loci. Table 1 illustrates this 
calculation for the observation of the genotype AAB●, being AABB or AABb in an F2,where 
alleles A and B are in coupling phase. In this situation locus A inherits codominantly and 
locus B dominantly. For other genotypes of incomplete information, the calculation runs 
along the same lines, using the ML-estimate of recombination frequency to calculate the 
conditional probabilities of the hidden genotypes. 
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Table 1. Calculation of the expected number of recombination events (crossovers) resulting in the genotype 
AAB● in an F2 derived from the cross AABB × aabb. The probabilities of the hidden genotypes (AABB and 
AABb) are expressed in terms of the recombination frequency, r. 
Observed genotype Hidden genotypes Conditional probability Number of crossovers 
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In this way a matrix, Xij, representing the number of recombination events between marker 
pairs is constructed. Calculation of the criterion COUNT for a given sequence of n loci is 
done by simple addition of those numbers of recombination events over the proper (adjacent) 
loci, i.e. 
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where seq(i) is the ith element of the sequence. 

The computational advantage of using COUNT is that for any exchange of two positions or an 
inversion of a window of certain size in a given sequence, the resulting value of COUNT 
requires the replacement of only a few terms of the summation in Eqn (1). 

In order to prevent an unnecessary computational overload, the population is tested for the 
presence of ‘duplicate markers’, that is markers with exactly the same segregation pattern, 
including missing observations. Groups of markers with identical segregation signature are 
placed in ‘bins’, and each bin is represented by one of its members in the subsequent analysis. 
The order of loci within a bin remains unresolved, unless additional information, not included 
in the ‘current’ mapping experiment, is available. 

The core of the search algorithm is as follows. First, a sequence is constructed stepwise, 
starting with a randomly chosen pair of markers, and adding one marker at a time. For each 
marker to be added the best position is determined (one out of n+1 positions if the current 
sequence has n elements). This is a branch-and-bound-like procedure. The order in which 
markers are added to the sequence is random. 

Once all markers have been added to the linkage group, thus making a ‘sequence’, an 
additional search for improvement is performed, in the following way. A window of given 
size is moved along the sequence from head to tail and for every position of this window the 
sub-sequence within the window is inverted, and the resulting COUNT-value calculated. This 
is repeated for windows of increasing size, starting with size two until the window covers all 
but one of the loci in the sequence. Every improvement encountered this way is accepted 
before a larger window of markers is considered. The whole procedure is repeated until no 
further improvements are encountered. Notice that the strictness of the branch-and-bound 
method is lifted by the additional final search for local improvements, with the obvious goal 
to avoid getting trapped in a local minimum. However, also this reshuffling by a moving 
window of increasing size does not guarantee to find the global minimum. Indeed, 
experimentation with simulated data sets containing missing observations has shown that the 
final solution produced by this stepwise assembling and additional search, slightly depends on 
the order in which markers are added to the sequence. A solution to this input order 
dependency would be to add markers by the seriation principle (BUETOW and 
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CHAKRAVARTI 1987), i.e. at each step add the marker that is closest to the one at the 
current head or tail. In the context of the traveling salesman problem this strategy is also 
known as a ‘greedy’ one: at each step, travel to the nearest city that has not been visited 
before. It is known that this seriation strategy is not a guarantee to arrive at the global 
optimum either. For that reason we chose to simply repeat the procedure a number of times 
and select the best one from these replicate assemblages. With good quality data the replicate 
solutions produced by RECORD are all identical. Upon experimentation with simulated data 
we found that for data sets with up to 20% missing observations, increasing the number of 
replicate assemblages beyond ten is hardly rewarding. So we consider ten replicate build-ups 
of the sequence as a good compromise between speed and quality of the solution obtained. 

Since the producer of a linkage map is not only interested in a single ‘best’ sequence of 
markers, but also in the certainty of that sequence, we have added the following procedure to 
the algorithm. Starting from the last and optimal solution, a search is performed for ‘almost 
equivalent’ solutions. An ‘almost equivalent’ solution is defined as one that induces a pre-set 
additional number of crossovers. So, a search is done for solutions that fall within this range 
of ‘admissible’ values of COUNT. The search itself is the same as described above: inversion 
of the sequence within a moving window, repeated for windows of increasing size. From the 
set of admissible solutions obtained this way, for each locus its distribution of positions is 
recorded. Inspection of this distribution provides a quick impression of the local certainty of 
the sequence. Figure 1 gives a sample of RECORD output, listing the positions taken by each 
marker in the set of ‘admissible’ sequences. It shows that for approximately 50% of the loci in 
this example the position is fixed, whereas for ‘islands’ of clustered markers the order within 
such a cluster is indeterminate. 

Figure 1. Sample output of RECORD, showing the rank numbers taken by markers in a series of near-optimal 
solutions. A '0' indicates that the corresponding rank number was given to this marker in one of the near-optimal 
solutions, for instance: markers w138, w433 and m291 can be found at rank numbers 8, 9 and 10; marker w137 
is found only at rank number 15. (Data taken from the Arabidopsis genome data base.) 

RECORD can deal with the following types of mapping populations: BC1, F2, F3, RILs (in 
fact any generation obtained by repeated selfing of a hybrid between homozygous parents). 
Mapping populations from non-inbreds should be split into BC1 or HAP data that represent 

                         000000000011111111112222222222 
                         012345678901234567890123456789 
0      g3715           | 00                          
1      w121            | 0000                        
2      m217            | 0000                        
3      g3837           |   00                        
4      w174            |     00                      
5      CHS             |     00                      
6      w322            |       0                     
7      g4560           |        0                    
8      w138            |         000                 
9      w433            |         000                 
10     m291            |         000                 
11     g4715-b         |            0                
12     w219            |             0               
13     w125            |              0              
14     w291b           |               0             
15     w137            |                0            
16     w323            |                 0           
17     m247            |                  0          
18     g4028           |                   0         
19     w194            |                    0        
20     w423b           |                     00      
21     w61             |                     00      
22     w271            |                       00    
23     w2              |                       00    
24     m435            |                         0 0 
25     w184            |                          00 
26     w69             |                         000 
27     g2368           |                            0 
28     m555            |                             00 
29     w335            |                             00 
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the maternal and paternal gametes, according to the two-way pseudo-testcross method 
(GRATTAPAGLIA and SEDEROFF 1994). 

The algorithm described above has been implemented in a DOS-oriented, C++ written 
computer program which is available from our web site (http://www.dpw.wageningen-
ur.nl/pv/). We have chosen for the DOS platform since it enables running large batch jobs 
which is convenient for the purpose of the remainder of this study, a comparison of the 
performance of RECORD and JoinMap using simulated data. 

A comparison of JoinMap and RECORD: In JoinMap the stepwise assembling of a locus 
sequence is essentially the same as in RECORD, i.e. a seriation-like procedure with local 
reshuffling (called ‘rippling’ in JoinMap) in a search for improvements (STAM 1993; STAM 
and VAN OOIJEN 1995). The search method of RECORD requires (1/2) n (n-1) evaluations 
of the target function for a sequence of length n. In JoinMap a similar number is required. 
However, evaluation of the JoinMap target function involves the inversion of an n by n matrix 
for each sequence of size n+1. So, asymptotically the number of operations in RECORD 
increases as n2, whereas in JoinMap this increase is approximately by n4. Moreover, 
calculation of COUNT, going from a given sequence to one with an inverted segment requires 
the replacement of only a few terms in the summation of Eqn. 1. This makes the RECORD 
algorithm extremely fast. 

Three different experiments were performed. The first experiment was done to test whether or 
not the new method of minimizing recombination events as implemented in RECORD can 
produce maps of the same quality as the approach based on pairwise marker distances as 
implemented in JoinMap. Both RECORD and JoinMap were tested under a number of 
varying conditions such as population size, missing observations and error rate. In the second 
experiment, the two programs were tested for their error-sensitivity under different marker 
densities. In the third experiment, the speed of the software was evaluated. 

Simulated data: We simulated first generation backcross populations (BC1). The simulated 
data were produced as follows. A given number of loci were randomly positioned (according 
to a Poisson process) along a single chromosome of specified length in cM. cM values are 
given as if calculated from an infinite amount of genotypes. Genotypes were generated for a 
BC1 progeny following standard Mendelian segregation and assuming no crossover 
interference. The number of crossover events solely depends on the distance as specified by 
the positions of the loci on the map. Scoring results were generated by assuming that missing 
observations and errors were independently and randomly distributed. (Note: Throughout this 
paper we imply that genotyping errors cover both human errors in the lab, scoring errors, 
typing errors, as well as reproducible although conflicting data points, resulting from 
biological phenomena as e.g. gene conversion.) 

In experiment I, 150 independent maps of 50 loci spread along 50 cM were simulated. Next to 
speed, error-sensitivity is one of the most important factors while coping with high-density 
data sets. In this study emphasis is put on both error-sensitivity and speed. From each map 
four populations were simulated consisting of 25, 50, 100 and 250 individuals. In all 
population data noise was introduced by either 5, 10, 15, 20 and 30 percent errors or missing 
observations. 

Experiment II was based on two data sets of different marker density. One data set was 
simulated from a map with 100 loci on a 10 cM map, the other data set from 100 loci on a 100 
cM map. Both data sets consisted of 100 individuals and three percent scoring errors. 

Experiment III was set up to assess the calculation speed of the two algorithms. Data sets 
were varied in the number of loci (50, 100, 150 and 200 loci) and population size (25, 50, 100, 
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250). All data sets contained 5 percent scoring errors, because perfect data do not provide a 
realistic impression of the mapping time in practice. The different settings for the simulations 
in the three experiments are summarized in Table 2. 
Table 2. Values of simulation variables used in the three different experiments 

Variables Experiment I Experiment II Experiment III 
Map length (cM) 50 10, 100 50 
Number of loci 50 100 50, 100, 150, 200 
Population size 25, 50, 100, 250 100 25, 50, 100, 250 

Percentage scoring errors 0, 5, 10, 15, 20, 30 3 5 
Percentage missing observations 0, 5, 10, 15, 20, 30 0 0 

A yardstick for performance: As a measure for the performance of both algorithms we 
examined two different correlation coefficients between marker positions of the calculated 
sequence and the true order in the map that was used to generate the data. Since we are not 
dealing with map positions in centimorgans, but rather with rank numbers, the first correlation 
coefficient is Spearman’s rank correlation (rs). The second correlation coefficient is Kendall’s 
τ coefficient. 

In order to see to what extent local rearrangements of a given sequence of rank numbers 
affects the correlation coefficients we derived the following equations for local inversion of a 
segment. Inverting a window of size k in a sequence of length n leads to 
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Taking k as a fraction of n and writing pnk =/ , one obtains, as n tends to infinity, 
321)( pprs −= , and 221)( pp −=τ  (2) 

Figure 2 presents a graph of these relations. It shows that upon inverting 50% (p = 0.5) of a 
long sequence, rs is still 0.75, whereas τ is 0.50. Clearly, Kendall’s τ is a more sensitive 
correlation coefficient than Spearman’s rs. Small inversions, of less than 5% of the total 
length, have a negligible effect on the correlation coefficients. Multiple inversions will, of 
course, have larger impact. For m non-overlapping inversions covering a proportion pi of the 
sequence, rs and τ become 
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We conclude that for rs to drop below 0.8, or for τ to drop below 0.6, for instance, a very 
serious distortion of the sequence is required. In fact, such a distortion would be unacceptable 
in a real mapping experiment. To correct for possible (almost) complete map inversions, the 
absolute value of rs and τ was taken for further calculations. 
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Figure 2. Change of two different correlation coefficients, Spearman’s rs and Kendall’s τ, by inverting a window 
of markers consisting of a proportion p of a long sequence (Eqn. 2). 

For testing purposes, rather general program settings were chosen for JoinMap. This means 
that all pairwise data were used with a LOD score higher than 1.0 and an estimated 
recombination fraction smaller than 0.45. Before actual mapping starts, JoinMap calculates 
the likelihood of the three possible orders of every triplet. When one of these exceeds the 
other two by a user-defined threshold value, this order is inferred as a so called ‘fixed order’. 
(In the subsequent step-wise build-up and search of JoinMap, every order that is in conflict 
with a ‘fixed order’ is taboo.) In these experiments, the triplet threshold (logarithm of 
likelihood ratio) was set to 7.0. Finally, both JoinMap and RECORD have the option to 
perform a ‘ripple’ after adding a marker to the map. With a ripple, local marker order changes 
are systematically considered while improvements are maintained. In these tests, neither 
program performs ripples. 

During this study, JoinMap 3.0 (VAN OOIJEN and VOORRIPS 2001) became available. 
This version of JoinMap is user-friendlier, because of the graphical user interface. However, 
for our experiments the MSDOS oriented JoinMap 2.0 was chosen because of its ability to run 
batch jobs. The results from this study can be extrapolated to JoinMap 3.0, since only minor 
changes in the algorithm have been introduced (J. W. VAN OOIJEN, personal 
communication). 

 

RESULTS 

Experiment I: In this experiment, both JoinMap and RECORD were tested with simulated 
data representing 50 marker loci on a 50 cM linkage group. Irrespective of the size of the 
mapping population (N = 25, 50, 100, 250), perfect marker orders were obtained. This result 
demonstrates that map construction using perfect data is not really a test case. In addition we 
tested two more algorithms, i.e. ComBin (BUNTJER et al. 2000) and JMQAD (the ‘Quick-
And-Dirty’ module within the JoinMap 2.0 package) to recognize again that perfect maps are 
surely obtained with perfect data (results not shown). Apparently, the real test case for the 
performance of mapping algorithms is their sensitivity for ambiguities in the data caused by 
missing observations and/or genotyping errors. In realistic data, the proportion of missing 
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observations and genotyping errors generally does not exceed five percent. However, to get a 
better view on the sensitivity of the methods for noise, both programs were tested with 
elevated levels of missing observations (5% up to 30%) and scoring errors (5% up to 30%). 
The performance of each of the programs, defined as the correlation coefficient between the 
true marker order and the order inferred by the software, was averaged over the 150 
replications for every situation and is shown in Figure 3. It is clear that the accuracy of the 
marker order produced by the programs decreases with the data quality, reflecting a decrease 
in the ability of both programs to recover the correct order when data quality gets poor. 

Figure 3. Performance in Kendall’s τ of RECORD and JoinMap on data sets differing in population size and 
noise level. The population size is indicated by: ‘◊’ for 25; ‘□’ for 50; ‘∆’ for 100 and ‘×’ for 250 individuals. 
The results are based on 150 replicate runs. Data were obtained from experiment I. 

Missing observations do not severely harm the recovered marker order. Especially in large 
mapping populations, the number of observations across descendants largely compensates the 
ambiguities caused by missing observations. Moreover, the vast majority of the missing 
observations do not induce ambiguities. Only when missing observations occur near 
recombinations, the placement of the markers with RECORD will be less accurate. Under 
these circumstances missing observations complicate the separation of markers from 
neighboring loci and make a pair of co-segregating loci of unspecified order. When more 
missing observations are present, the chance increases that these occur near recombinations. 
JoinMap however is more sensitive to missing observations than RECORD. Since in JoinMap 
not only recombination estimates between adjacent markers, but all pair-wise recombination 
estimates beyond a certain LOD threshold are used in the target function, and since a single 
missing observation slightly affects many of these pair-wise estimates, the impact of an 
increasing proportion of missing observations in JoinMap is greater than in RECORD. 
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The consequences of scoring errors are much more serious. An error may cause a separation 
of two co-segregating markers into two different loci. In this respect scoring errors have the 
same effect as recombinations. While recombinations are generally confirmed by other data 
points, errors occur on their own and seldom confirm each other. 

In figure 4, an example data set is shown containing two forms of genotyping errors. 

 1 2 3 4 5 6 7 8 9 

MARKER1 A A B B A A B B A 

MARKER2 A A B B A A B B A 

MARKER3 B A A B A B B B A 

MARKER4 A B A B B B A B A 

MARKER5 B B A A A B A B B 

MARKER6 B B A A A B A B B 

Figure 4. Two types of errors in an example data set (individuals 1 to 9 in columns; markers 1 to 6 in rows). The 
error in marker4 at individual 5 does not cause an ordering ambiguity. However, the order of marker3 and 
marker4 is based on individual 2 and 7, but is in contrast with individual 1. Individual 1 contains an error close 
to a recombination event. In this case it is not clear whether marker3 or marker4 contains the error in individual 
1. 

Marker4 contains an error in individual 5. In reality, individual 5 does not contain any 
recombination events. Therefore this particular error will not add to the cost function of 
RECORD, when marker4 is tested on different positions, namely each position of marker4 
yields two spurious recombination events to the COUNT-value. Placing marker4 at the end of 
the linkage group will not improve the order, as it causes a higher increase of the cost function 
in the other individuals. While RECORD is not sensitive to this kind of errors, JoinMap and 
other methods based on pairwise distances consider this error as a recombination and include 
it in the map distance calculation. 

A different situation occurs in individual 1, where the error is close to a recombination event. 
Initially, RECORD will invert marker3 and marker4. This change will decrease the cost 
function in individual 1. However, this will cause a higher increase in the total cost function 
due to individuals 2 and 7. This situation remains insolvable as it is not clear whether marker3 
or marker4 contains the error. The best order is determined based on the other individuals in 
the data set. In conclusion, scoring errors provide RECORD with ordering ambiguities only 
when they occur near recombination events. On the other hand, pairwise distance estimates 
are always affected by errors, independent of their position. 

In general, larger populations have a beneficial effect on the mapping result. As population 
size increases, more recombination events between a pair of markers can be observed, which 
adds to the resolution between the markers. The positioning of the markers will be more 
accurate and the relative impact of missing observations and scoring errors decreases. 

T-tests (data not shown) demonstrate that RECORD produces equally good or significantly 
better results than JoinMap. The T-tests were more significant when using Kendall’s τ rather 
than Spearman’s rs. By exception, on data sets containing 250 individuals with an exceptional 
high error rate of 15% or 20%, JoinMap has a small advantage over RECORD although 
neither algorithm produces accurate maps in this situation. The reason for this small 
advantage for JoinMap is that at larger population sizes, errors have a smaller impact on the 
distance estimates. 
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Experiment II: In the second experiment, JoinMap and RECORD were tested for their 
ability to determine the marker order at higher densities. For this purpose, two data sets were 
used. The first set was based on a 100-marker map of 100 cM length (‘normal’ density). The 
second one was generated from a ‘saturated’ map, where 100 markers were spread over a 
distance of only 10 cM. From both maps, a BC1 population was simulated and a realistic 
amount of 3% errors was introduced. Calculated orders from both programs were compared 
with the true one and the results are shown by the scatter plot of Figure 5. 

Figure 5. Performance of RECORD and JoinMap in dense maps. The calculated rank number of markers by 
both RECORD and JoinMap is compared with the true rank number by Spearman’s rs. Data were obtained from 
experiment II. 

The dense map was more challenging to both programs. Although the mean number of errors 
remains the same, the average number of true crossovers in the dense map is reduced by a 
factor 10 as compared to the sparse map. This causes the signal/noise ratio to decrease by a 
factor 10. This explains why mapping in dense regions is more error-sensitive than mapping 
in less dense regions. The results of experiment II show that, in more dense regions, 
RECORD performs better than JoinMap. 

Experiment III: In the third experiment, RECORD and JoinMap were compared for their 
speed. Calculation time was measured for a number of data sets varying in the number of loci 
and population size on a computer with a pentium II MMX processor of 350 MHz. Population 
size does not have a big effect on JoinMap. Therefore the results were averaged over tests at 
different offspring sizes with the same number of loci. Figure 6 shows the increase in 
calculation time for both programs. We fit power curves to these data and as anticipated, 
computation times for RECORD and JoinMap nicely fit curves of power 2 and 4, respectively. 
Thus, especially with data sets of over 100 loci, the speed advantage of RECORD over 
JoinMap is beyond discussion. 
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Figure 6. Computation time for RECORD and JoinMap. Power curves were fit by regression of time on number 
of loci. RECORD: 200534.0 nt = ; JoinMap: 4000011.0 nt = . Data were obtained from experiment III. 

 

DISCUSSION 

There are two major aspects to methods for efficient ordering of gene loci on a linkage map. 
First, the target function is important. In this paper we propose the total number of observable 
recombination events between adjacent markers as the target function, with an adaptation for 
situations in which genotype information is incomplete or missing. From a statistical point of 
view the full likelihood function would be an attractive alternative. The two criteria are 
equivalent in case the data are perfect (no missing observations and complete genotype 
information). In order to investigate the behavior of COUNT and likelihood with realistic data 
sets, we have compared the two methods using simulated data sets with incomplete 
information, i.e. an F2 of size 100 with dominant markers and 5% missing observations. The 
two target functions were calculated for a series of near-optimal sequences (obtained by local 
inversion of segments) as well as a series of random rearrangements in the correct sequence. 

Specifically for the first set of sequences (which corresponds to the part of the parameter 
space searched by RECORD), the squared correlation between COUNT and likelihood never 
dropped below 0.90. An example of the results of these calculations, where the correlation is 
one of the poorest we encountered, is shown in the scatter diagram of Figure 7. So, for 
practical purposes our heuristic COUNT criterion appears to be a quite acceptable 
compromise between statistical rigor and common sense. 
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Figure 7. Relation between COUNT and log-likelihood. Data source: a simulated F2 population of size 100 with 
dominant markers and 5% missing observations. Inversions (x): result for 80 sub-optimal sequences obtained by 
inversion of sequence segments. Random (+): result for sequences obtained by random exchange of pairs of loci. 
Best (O): solution produced by RECORD. Notice the much smaller likelihoods for sequences obtained by 
random changes, as explored by simulated annealing, in comparison with the likelihoods obtained by local 
inversion of segments. 

Several other easy-to-calculate target functions have been proposed in the past. Among these 
are sum of adjacent map distances (SAD), sum of adjacent recombination frequencies (SARF) 
and sum of adjacent LOD scores (SALOD). For perfect data all of these are equivalent, in the 
sense that they have the same global optimum. However, with incomplete data both SARF 
and SALOD are inferior to COUNT. This is because SARF does not account for variation in 
precision of pairwise estimates, whereas SALOD may lead to erroneous results when the 
number of informative individuals varies between pairs of loci. Contrarily, the COUNT 
function comes close to the full likelihood since it uses observable recombination events 
(which is equivalent to likelihood) for that part of the data which has complete information 
and uses maximum likelihood estimates for the data that are incomplete. 

The second aspect of map construction concerns the search algorithm for the optimum. In 
analogy to the traveling salesman problem, several approaches have been proposed. Among 
these are branch-and-bound (THOMPSON 1987), seriation (BUETOW and CHAKRAVARTI 
1987) and simulated annealing (SA; KIRKPATRICK et al. 1983), or combinations thereof. 
Although SA generally produces optimal or near-optimal solutions, we did not choose it for 
the following reason. Extensive experience with linkage mapping has shown that most 
alternative maps that are produced by different computer packages and/or different program 
settings in JoinMap differ by inverted segments in the locus sequence. This is the result of 
ambiguities in real data and is in line with what one would expect intuitively. So, rather than 
the SA-search, which starts from a random sequence and subsequently randomly exchanges 
two loci or randomly moves a single locus along the sequence, we decided to search that part 
of the parameter space which most likely represents biological reality, starting from an 
‘educated first guess’, obtained by branch-and-bound. 

100
200

300
400

500
600

700
800

900
1000

1100
1200

-500 -450 -400 -350 -300 -250 -200 -150

log likelihood

co
un

t



RECORD 
 

 43

One may, of course, think of heuristic variations to both SA and the RECORD search. For 
example, to first construct a ‘skeleton map’ of not-too-closely linked markers and, during the 
subsequent SA-search involving all loci, consider any exchange of position involving two 
skeleton markers as a taboo area of the parameter space (J. JANSEN, personal 
communication). 

An additional aspect of linkage mapping, which until recently has received little attention, 
concerns the (un)certainty of the map produced by a particular algorithm. We have added a 
feature to RECORD which provides the user with the distribution of rank numbers in a series 
of near-optimal solutions. Recently JANSEN et al. (2001) and HACKETT et al. (2003) have 
described a similar approach by recording the positions of loci in a series of sub-optimal 
solutions encountered in the SA-search. 

In our comparison of the performance of RECORD and JoinMap we did not account for the 
fact that RECORD only produces orders, whereas JoinMap produces map positions in 
centimorgans. Therefore, the comparison is not a completely ‘fair’ one. On the other hand, 
correct locus ordering is of more importance than having ‘exact’ map distances, especially 
when constructing high-density maps. In such high-density maps the resolution that can be 
attained is primarily dictated by the size of the mapping population, usually not surpassing 
1.0-0.25 centimorgans. Estimated ‘exact’ map distances in this order of magnitude do not 
make much sense, as their standard error readily exceeds the estimate itself. 

Subsequent reasons why we have put emphasis on correct locus ordering and consider 
distance as relatively insignificant, are based on the unequal distribution of both 
recombination events and AFLP markers on the physical map. Highly localized hot spots or 
cold spots for recombination may cause manifold differences in map distance estimates 
between loci, depending on the sex or genetic background of the parental genotype. As a 
result, physical to genetic distances can vary from 25 kb/cM (BÜSCHGES et al. 1997) to 40 
Mb/cM (ZHONG et al. 1999). Furthermore, successful application of mapping information in 
map based cloning or marker assisted selection with flanking markers also depends more on a 
correct marker order than accurate genetic distance estimates. 

Apart from the observed difference in error-sensitivity between the programs, the results of 
experiment II once more demonstrate the disastrous effect that typing errors will have on the 
ability to recover the correct locus order, especially for regions of high marker density. Figure 
3 indicates that the penalty for a typing error is roughly fivefold the penalty for a missing 
observation. For this reason we have developed a procedure, ‘SMOOTH’, for the detection of 
‘suspect’ data points in a mapping population (VAN OS et al., submitted). We have 
successfully applied this procedure in constructing a high-density linkage map for 
chromosome I in diploid potato (ISIDORE et al. 2003). 

At this moment the RECORD-approach is being used for ultra-dense map construction in 
potato (ISIDORE et al. 2003). In these situations, linkage groups may contain more than 500 
markers, numbers unthinkable to be analyzed simultaneously by conventional mapping 
software, as it would take more than nine days to calculate the map. Contrarily, RECORD 
analyses data sets of 500 markers within 20 minutes. 

When RECORD was being developed, there were no alternative programs available that 
could handle these amounts of data. A new algorithm that can speed up map calculation, 
based on pairwise distances by using the simulated annealing approach, has been tested, but is 
not yet available (JANSEN et al. 2001; J. W. VAN OOIJEN, personal communication). 

RECORD is capable of handling data sets of backcross populations, but to apply RECORD 
for the construction of the high density map of potato, which is based on a population derived 
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from non-inbred parents, several modifications have to be made to the raw data. First, the 
observations recorded in the offspring have to be split into the products of male and female 
meiosis. From there on, the maps from both parents have to be calculated separately. Within 
the parental data sets, the linkage phase of each marker has to be assessed. This can be done 
with the ‘Quick-And-Dirty’ mapping module, which is included in the JoinMap 2.0 software 
package. This program calculates the best marker order by minimizing the sum of adjacent 
distances. Although this module does not produce very accurate marker orders, it is accurate 
enough for linkage phase ascertainment, which can be done by hand based on the neighboring 
markers. By converting all markers that are in repulsion phase in to coupling phase, the data 
are comparable with two separate BC1 populations for each parent, also referred to as the 
two-way pseudo-testcross (GRATTAPAGLIA and SEDEROFF 1994). 

The version of RECORD used in this study only produces orders of loci, but no map positions 
in centimorgans. Currently we are preparing a version which does have this feature, as well as 
several sophistications, like a choice of target functions, an extended search algorithm for the 
more ambiguous data sets, a graphical user interface and a variety of output options. 

In summary, conventional software has been sufficient in calculating linkage maps of low 
density. For the construction of high density maps, there is a strong need for faster and error-
tolerant methods. The method described in this paper exceeds the currently available software 
both in speed and accuracy. 
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Chapter 4: 
SMOOTH: a Statistical Method for Successful Removal of 

Genotyping Errors from High-Density Genetic Linkage 
Data 

 

Hans van Os, Piet Stam, Richard G. F. Visser and Herman J. van Eck 
In press 

ABSTRACT 

High-density genetic linkage maps can be used for purposes such as fine-scale targeted gene 
cloning and anchoring of physical maps. However, their construction is significantly 
complicated by even relatively small amounts of scoring errors. Currently available software 
is not able to solve the ordering ambiguities in marker clusters, which inhibits the application 
of high-density maps. A statistical method named SMOOTH was developed to remove 
genotyping errors from genetic linkage data during the mapping process. The program 
SMOOTH calculates the difference between the observed and predicted values of data points 
based on data points of neighboring loci in a given marker order. Highly improbable data 
points are removed by the program in an iterative process with a mapping algorithm that 
recalculates the map after cleaning. SMOOTH has been tested with simulated data and 
experimental mapping data from potato. The simulations prove that this method is able to 
detect a high amount of scoring errors and demonstrates that the program enables mapping 
software to successfully construct a very accurate high-density map. In potato the application 
of the program resulted in a reliable placement of nearly 1000 markers in one linkage group. 

 

INTRODUCTION 

Linkage maps based on molecular markers are important tools in genetic analysis. They are 
useful for the localization of genes underlying quantitative traits, marker assisted breeding and 
map based gene cloning. Molecular marker systems like AFLP (VOS et al. 1995) allow that 
many markers can be generated in short time. This leads to the construction of highly 
saturated to enable fine-scale genetic mapping and the anchoring of physical maps (KLEIN et 
al. 2000). 

In principle, these highly saturated or high-density maps can be constructed with the same 
software as genetic linkage maps of normal density. Commonly used programs like Joinmap 
(STAM 1993; STAM and VAN OOIJEN 1995) and MapMaker (LANDER et al. 1987) are 
very suitable for low-density genetic linkage map construction. However, these methods have 
difficulty in solving the increasing ordering ambiguities in denser maps (LINCOLN and 
LANDER 1992; VAN OS et al. submitted). Denser maps have more loci than normal maps, 
but the offspring genotypes contain the same amount of recombinations. With these fixed 
amounts of recombinations, the increased number of markers in denser maps are separated on 
average by less recombination events. Moreover, mapping algorithms based on pairwise 
distances will try to determine the order within clusters of markers; even for co-segregating 
markers or markers that only differ in a few scoring errors, but in fact share the same genetic 
position. In high-density maps, errors do not only give problems within marker clusters, but 
also across recombination events and thus severely complicate the establishment of the true 
marker order. 
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An accurate marker order is indispensable for further application of the map like for instance 
map based cloning. We state that marker order is more important than estimated map 
distances. Map distance estimates are trivial as they may vary across mapping studies by 
several cM. For clusters of markers that cosegregate, the order is indeterminate. Therefore it is 
not correct to suggest non-existing distance between markers caused by scoring errors or 
missing values. 

The troublesome data points in the data are most likely to be caused by inaccurate scoring, but 
some data points that cause ambiguities in the marker order can also be caused by double 
recombination events, gene conversions, mutations and other biological phenomena. These 
various causes of ambiguous data are collectively called singletons. The term ‘singleton’ in 
the context of mapping data has first been used to indicate the misclassification of a marker 
phenotype (NILSSON et al. 1993). A singleton is in fact a single locus in one plant that 
appears to have recombined with both its directly neighboring loci (see figure 1). During map 
calculation, every singleton has to be treated as the unlikely event of a double recombination. 
We propose to identify and temporarily remove the singletons from the data. By eliminating 
these singletons, most ordering ambiguities are solved, including those in marker dense 
clusters. 

Figure 1. Four meiotic products after a double recombination event involving two non-sister chromatids causing 
a singleton at locus ‘G/g’. The bar indicates a chromatid, whereas the centromere is represented by a circle. 

As a consequence, mapping algorithms will not be hampered by these ordering ambiguities 
and can calculate the best possible map for the data set. This ideal framework map will be 
used to refit the raw data, supplying the verification of this map and a quality label for each 
marker that specifies the number of singletons these markers contain. 

In this paper a statistical method is presented that can identify and remove the most obvious 
singletons in genetic linkage data. The method uses the marker order calculated by mapping 
software before eliminating the singletons. It is implemented in a computer program for the 
case of a first generation backcross population. This paper illustrates the advantages and 
potential pitfalls of eliminating singletons and provides concise instruction on how this 
method should be applied. 

The method is tested on simulated data for different aspects like error percentage, population 
size and marker density. Besides the results of the simulation studies, experiments with real 
mapping data from potato are discussed as well. 

 

METHODS 

Software: The idea behind the identification of a singleton at a particular marker locus i is to 
compare the observed marker score at locus i, yi, with a local prediction of the marker 
score, iŷ . The observed marker score, yi, takes the value 1 when the allele is identified as 
coming from one of the sister chromatids, and 0 when coming from the non-sister chromatids. 
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The local prediction of the marker score iŷ  is calculated as the weighted wj average of the 
observed scores yj within a defined number of loci L flanking locus i on either side: 

∑
∑

∈

∈=

Lj
j

Lj
jj

i w

yw
ŷ , with { }0,: ≠≤= jjjL δ , 

where δ is the maximum number of flanking loci around locus i that contributes to the local 
prediction for the marker score at i. Various weighing regimes were tested in combination 
with different choices for δ, but these parameter settings were rather immaterial to the 
performance of the procedure. For that reason we only present the results for δ =15 loci and 
with weights declining in a roughly quadratic fashion (w1 = 0.998; w2 = 0.981; w3 = 0.934; w4 
= 0.857; w5 = 0.758; w6 = 0.647; w7 = 0.537; w8 = 0.433; w9 = 0.342; w10 = 0.265; w11 = 
0.202; w12 = 0.151; w13 = 0.112; w14 = 0.082; w15 = 0.059). 

The absolute difference between observed marker score and predicted marker score, 
ii yyd ˆ−= , is proportional to the probability that the marker score at i represents a singleton. 

Threshold values for d, above which singletons are identified, were adaptively chosen. 

Illustration of application: Before SMOOTH can be applied to the data, a preliminary 
marker order has to be established. This map is the starting point for singleton detection and is 
still far from ideal. Although a singleton is context dependent, the most obvious singletons are 
clearly perceptible even in less ideal maps. 

In Figure 2, the difference d for one female gamete in the ultra-dense AFLP map of one 
chromosome of potato (ISIDORE et al. 2003) is shown. This gamete was the result of two 
recombination events: one recombination event occurred between locus 76 and locus 77 and 
one recombination event occurred between locus 944 and locus 954. Around the 
recombination events, the value of d approaches 0.5. The most likely singletons ( 1=d ) can 
be observed at loci 2, 21, 105, 474, 508, 536, 615, 735, 793, 898 and 918. 

Figure 2. The difference d for all 971 loci in a particular gamete in the ultra-dense potato map. Data from 
chromosome I (ISIDORE et al. 2003). 

When the value d of each data point is calculated, a threshold for singleton removal can be set. 
The singletons are removed in an iterative process, alternately using a mapping algorithm and 
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SMOOTH. In other words, a mapping algorithm like RECORD (VAN OS et al. submitted) is 
used to calculate the marker order, subsequently SMOOTH is used to remove singletons, after 
which the marker order is recalculated with RECORD, etcetera. In principal, all mapping 
algorithms can be used, but data sets containing 500 markers demand only 20 minutes for 
analysis with RECORD on a 350 MHz processor. By comparison, JoinMap will take 9 days to 
calculate a map from a linkage group containing 500 markers on the same type of machine. In 
the first cycle of the iteration, a high threshold (0.99) is set and the most likely singletons are 
replaced by missing values. During the following cycles, the threshold is slightly decreased. 
Using more cycles in the iteration and smaller decreasing steps in the threshold, singleton 
removal is more accurate. In this experiment, the iteration is continued for 15 cycles while 
decreasing the threshold with 0.02, until the final threshold of 0.70 is reached. At this point, 
most singletons are removed from the data. Empirical evidence will be provided below, that at 
threshold 0.70, the amount of singletons that remain in the data set is in balance with the 
number of correct data points that are unjustly removed. 

After removing all singletons, an unambiguous framework map can be constructed. 
Subsequently, the original marker data can be fit into the framework map by maximum 
likelihood, providing a verification of the framework map and also a quality label for each 
marker. 

Simulations are used to demonstrate that the program detects the singletons and that 
eventually the correct marker order is obtained. The practical applicability is established by 
the analysis of an experimental data set of potato comprising 971 markers in 130 individuals. 

Simulated data: The power of SMOOTH to detect singletons was tested on simulated data. 
For this purpose several first generation backcross (BC1) populations were generated varying 
in the number of loci, population size and error percentage as shown in table 1. 
Table 1. Values for simulation variables used in the two different simulation experiments 

Variables Experiment I Experiment II 
Map length (cM) 50 (fixed) 50 (fixed) 
Number of loci 10, 25, 50, 100, 250, 500 100 (fixed) 
Population size 100 (fixed) 50, 100, 150 

Percentage scoring errors 1, 2, 3, …, 25% 1, 2, 3, …, 25% 
Percentage missing observations 0% (fixed) 0% (fixed) 

The simulated data were produced as follows: a given number of loci were randomly 
positioned (according to a Poisson process) along a single chromosome of 50 cM; genotypes 
were generated for a BC1 progeny following standard Mendelian segregation (assuming no 
crossover interference). Errors were randomly introduced in the data set and the positions of 
these errors were stored in a log-file. The range of error percentages increased from 1% to 
25% thus creating 25 data sets for each population. In experiment I emphasis is put on both 
error percentage and marker density. In experiment II the effect of error percentage and 
population size is evaluated. 

Corrected data sets were obtained from each simulated data set with introduced errors by 
calculating marker orders with RECORD (VAN OS et al. submitted) and removing singletons 
with SMOOTH. In the mean time, SMOOTH kept track of all the data points that were 
removed during the mapping and cleaning process. After completion of the process, this list 
of removed data points was compared with the list of introduced errors. From this comparison 
the number of errors were counted that were found and missed by SMOOTH. Also the 
number of correct data points that should not have been removed were counted. The marker 
order before and after cleaning with SMOOTH was compared with the original simulated map, 
using Spearman’s rank-order correlation coefficient rs, between the expected marker position 
on the simulated map and the observed marker position on the map calculated by ORD. 
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Experimental data: Besides the simulations, actual mapping data were analyzed from the 
ultra-dense genetic map of potato (ISIDORE et al. 2003). From the data set of this 
outbreeding population, the AFLP markers segregating from only one parent were considered. 
Both parental maps were analyzed separately. In the maternal map, 4187 markers were 
segregating and 3413 markers segregated in the paternal map. Grouping was done with 
JoinMap 2.0 and divided the data in 12 groups. A preliminary marker order was used to 
assign the linkage phase to all markers based on their flanking markers. After linkage phase 
assignment, the data could be treated as if it were a first generation backcross. This approach, 
also called two-way pseudo-testcross (GRATTAPAGLIA and SEDEROFF 1994), is 
commonly applied for map construction in populations descending from non-inbred parents. 

Marker ordering was done by RECORD, while SMOOTH cleaned the data from singletons 
applying the same approach as was used for the simulations. 

 

RESULTS 

Simulated data: The utility of SMOOTH in obtaining an accurate marker order was 
evaluated by simulation experiments. In experiment I, the consequences of error percentage 
and marker density were assessed. The accuracy of the marker order with and without the 
application of SMOOTH was examined using the rank correlation coefficient between the 
calculated marker order and the simulated marker order. The quality of dense genetic maps 
can be improved considerably by the application of SMOOTH. The value of SMOOTH was 
most obvious in the data set with the highest marker density in experiment I. The rank 
correlation coefficients for this data set consisting of 500 loci and 100 individuals are shown 
in Figure 3. Results are generated for error percentages ranging from 1% to 25%. Rank 
correlation coefficients are shown for both approaches, i.e. before and after cleaning with 
SMOOTH. Without SMOOTH, marker orders with intolerable inaccuracy are produced, when 
more than 5% error is present. However, SMOOTH enables mapping software to calculate 
accurate maps from data sets with error levels up to 20%. Obviously SMOOTH is able to 
recognize most of the singletons in the data and enables the mapping software to accurately 
position the markers. 
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Figure 3. The rank correlation coefficient between the calculated map and the original simulated map before 
(‘□’) and after (‘○’) using SMOOTH for different levels of scoring errors based on simulated data sets with 500 
loci on 50 cM and 100 individuals. 

To understand the process of singleton removal in detail, the detected singletons were 
compared with the introduced errors in the data sets. In this comparison we monitored the 
unjust removal of correct data points and the errors that were not detected by SMOOTH. 

Figure 4. The percentage of remaining errors from the total data set (‘×’) and the percentage of unjustly removed 
data points (‘+’) for different levels of scoring errors based on simulated data sets with 500 loci on 50 cM and 
100 individuals. 
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Figure 4 shows the percentage of errors that were not detected by SMOOTH and the 
percentage of data points that were unjustly removed from the total amount of data points in 
the same data set as mentioned in Figure 3. SMOOTH recognizes the vast majority of errors, 
e.g. at 10% error level, 95% of the errors were detected, reducing the amount of errors to 
0.5%. The number of errors that were not detected and the number of data points that were 
unjustly removed are more or less similar for lower error levels. This indicates that the choice 
to stop SMOOTH at a final threshold of d = 0.7 is justified. By decreasing this threshold even 
further the number of data points that are unjustly removed would increase and surpass the 
number of undetected errors. 

Close inspection of the position of errors that were not detected or data points that were 
unjustly removed, revealed that they occurred near recombinations and at the ends of the map. 
Close to recombination events, the flanking markers at either side of the recombination offer 
contradicting information. Therefore error detection in the vicinity of recombination events is 
more complicated. At the ends of the map, the difference between the last recombination or 
the last singleton can not be determined. Therefore the last recombination event should be 
confirmed by at least 2 markers distal to that recombination. 

Marker density is an important factor to enable error detection, as can be observed from the 
results of experiment I shown in Figure 5. The percentage of undetected errors is lower in data 
sets with a higher marker density. This is not surprising because the concept of smoothing 
genetic linkage data is based on the redundancy in genetic information. In high density data 
sets, the required amount of 30 neighboring data points at close genetic distance is available, 
but data sets with 10 markers per linkage group only contain up to 9 neighboring data points 
over a large distance to predict the marker score. 

Figure 5. The percentage of remaining errors from the total data set for different levels of scoring errors based 
on simulated data sets with 100 individuals. The number of loci is indicated by: ‘◊’ for 10; ‘■’ for 25; ‘∆’ for 50; 
‘×’ for 100; ‘+’ for 250 and ‘●’ for 500 loci. 

The effect of population size was analyzed in experiment II. Figure 6 shows that marker 
ordering is more accurate in larger populations. In fact, this is not the result of applying 
SMOOTH, but due to the increased performance of the mapping algorithm. As population 
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size increases, more recombination events between a pair of markers can be observed, which 
adds to the resolution between the markers. The ordering of the markers will be more accurate 
and the relative impact of missing observations and singletons will decrease. Furthermore, the 
marker score predictions by SMOOTH will be more precise due to the more accurate order of 
the markers. 

Figure 6. The rank correlation coefficient between the calculated map and the original simulated map after using 
SMOOTH for different levels of scoring errors based on simulated data sets with 100 loci. The population size is 
indicated by: ‘◊’ for 50; ‘■’ for 100 and ‘∆’ for 150 individuals. 

Experimental data: To compare the results from the simulations with real data, the software 
was tested on a data set from the high-density map of potato (ISIDORE et al. 2003). After 
cleaning the data with SMOOTH, the data were visually inspected for any undetected errors. 
This revealed a systematic error caused by a group of markers based on AFLP primer 
combinations from a batch of newly isolated DNA. The confusion of genotypes was solved by 
removing these individuals from the new set of markers. 

When all data ambiguities were removed, a vast amount of redundancy was observed. For 
instance in chromosome I and IV, a large cluster of cosegregating markers, presumably the 
centromeric region, contained more than half of the total amount of markers in both the 
maternal and paternal map. Finally, by deleting the redundant markers from all linkage groups, 
framework maps were obtained that only consist of unique corrected markers. These markers 
were converted into bin signatures by restoring all missing values that were not flanked by 
recombination events. A bin is a unique and most accurate representation of a marker at a 
certain genetic position. A bin contains at least 1 marker and can not be divided within the 
given population. Bins are numbered consecutively, based on the recombination events. As a 
consequence, the bin numbers can be directly translated into map units. Both parental 
framework maps were free from ambiguities and all the original markers were fit into the 
most likely bin by maximum likelihood. The map was inspected for possible inconsistencies 
with the original markers and some minor corrections were made to the bins. Redundant and 
empty bins were removed; bins that appeared to contain a recombination event were split up 
and missing values in the bin signature were restored if possible. 
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To illustrate the difference between a framework map as described above and a conventional 
map obtained with JoinMap or RECORD, two linkage groups are shown in Figure 7. These 
linkage groups were derived from the high-density map of potato and represent the paternal 
map of chromosome III and IX respectively. Linkage group III comprised 124 AFLP markers 
and linkage group IX comprised 190 AFLP markers. No clustering of markers was observed 
for linkage group III, but linkage group IX contained a centromeric cluster of 27 
cosegregating markers. The marker order from RECORD is basically the same as the order in 
the framework map. However, four markers with an exceptionally high number of scoring 
errors are positioned at the end of the linkage group; a commonly observed artifact of 
mapping software. Major ordering ambiguities can be observed around the centromeric 
cluster in linkage group IX. JoinMap produces a map which is in length roughly similar to the 
framework map. However, some map inflation can be observed at both ends of the linkage 
groups. Ordering ambiguities are more abundant in marker dense areas: markers from the 
centromeric cluster with elevated levels of singletons are pushed away from the centromeric 
region and dispersed towards the distal ends of the map. 

Paternal maps of chromosome III and chromosome IX
RECORD Framework-Bins JoinMap RECORD Framework-Bins JoinMap

 
Figure 7. Comparison between three methods of linkage map construction on two different linkage groups. The 
framework map in the middle is obtained by SMOOTH and the original markers were fit in the bins. Flanking 
maps have been constructed from the original data set by RECORD and JoinMap. The paternal map of potato 
linkage group III from the high-density map of potato (ISIDORE et al. 2003) is shown on the left, the paternal 
map of potato linkage group IX is shown on the right. Relative marker positions are displayed by aligning the 
results of the three methods of linkage map construction. RECORD produces a marker order; distances are 
proportional to the number of markers. The distances between the bins in the framework map depend on the 
number of recombination events, which are transformed into centiMorgans. The markers on the map produced 
by JoinMap are displayed at their corresponding cM position. 

In the data set of the high density genetic linkage map of potato, the number of singletons for 
each marker was calculated by comparing the original data of each marker with the signature 
of its most likely bin (see Figure 8). The average number of singletons per marker was 3.9 in 
130 individuals (3.0%). In contrast with the simulations, the distribution of singletons in the 
experimental data was not random. In the maternal map, one third of the markers did not 
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contain any singletons, which provides a verification for the framework map. However, some 
markers contained up to 38 singletons. In fact, 10% of the markers were responsible for more 
than half of the scoring errors. Despite the fact that in reality singletons are not randomly 
distributed, SMOOTH was able to detect them to enable the construction of a solid framework 
map. 

Figure 8. Data quality of the ultra dense map of potato (ISIDORE et al. 2003). The number of singletons per 
marker is calculated after determining the most likely position of the markers on the framework map. The 
markers are sorted from left to right according to their increasing amount of singletons. 

 

DISCUSSION 

Singletons, whether or not caused by biological phenomena or human error, seriously hamper 
high-density genetic linkage map construction. For calculating a reliable linkage map or 
marker order, these singletons have to be removed. We devised a statistical method to detect 
and remove singletons from high-density genetic linkage data. The approach is based on 
predicting marker scores on the basis of the available neighboring data points, which are more 
abundant in denser maps. Although in denser maps the rising amount of errors becomes 
increasingly difficult to handle with current mapping software, this new method takes 
advantage of the redundancy in high density data sets. The excess of markers within a close 
genetical range, are the basis of a reliable estimate of the marker score. By removing highly 
unlikely marker scores from the data, the true recombination events will remain in the data 
and facilitate marker ordering. 

SMOOTH has been extensively tested on simulated data. The results have provided 
convincing evidence that more than 95% of the singletons can be detected. With a large 
amount of errors present in the data, a reliable and accurate map can only be constructed when 
applying SMOOTH. Therefore we conclude that the program has great utility in high density 
mapping, which is proven by the successful application to the experimental data set of potato 
for the construction of an accurate framework map. 

It is advisable to use SMOOTH for data sets with at least 100 loci per linkage group, because 
the error detection is dependent on the amount of neighboring markers. Although the program 
is therefore not intended for globally smoothing low-density maps, it can be useful in cleaning 
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up marker dense clusters in low density maps. These marker clusters are regularly observed in 
genetic maps (STROMMER et al. 2002) and are often situated around the centromere of the 
chromosome where recombination is suppressed. 

The error detection works less on the two distal ends of the chromosome and close to 
recombination events. Here, the predicted value of the data points is based on two sets of data 
points with contradicting information. In these situations, there is a risk of removing data 
points that are correct. However, the consequences of removing too many data points are not 
severe. In fact, the removal of correct data points in the vicinity of recombinations causes a 
local decrease of the effective population size and has therefore the same effect as the removal 
of an individual offspring genotype from the mapping population. The consequences of these 
unjustified removals can be solved by correcting the framework map using the original data. 
This verification of the framework map is done by maximum likelihood comparison of the 
original markers with the framework bins. Moreover, the risk of cleaning data points that 
were not erroneous is sufficiently reduced by employing the method in an iterative process 
with the mapping algorithm. 

The verification of the framework map by refitting the original data does not provide 
indisputable evidence for the true marker order. Nevertheless, it provides a detailed overview 
of the ambiguities in the data. The accuracy of the ultra-dense marker order can only be 
assessed in simulation studies where the true marker order is known. For potato, the 
consistency of the genetic map with a physical map is expected to provide the evidence for 
the current marker order. 

The program has been applied for the construction of the ultra-dense genetic linkage map of 
potato. All linkage groups of this map contain more than 100 markers. Accurate mapping of 
these large linkage groups was not possible, despite the even small amounts of scoring errors. 
Most of these errors could be erased by manual re-evaluation of the AFLP gels, but in spite of 
these time-consuming efforts, accurate marker ordering was still severely complicated. With 
SMOOTH, the ambiguities of the data were removed to construct a framework map that 
provided accurate marker placement. 

To a certain extent, error detection is available in the current version of MapMaker 
(LINCOLN and LANDER 1992). Instead of removing possible errors, MapMaker takes the 
possibility for a data point to be erroneous into account and avoids potential map inflation. 
The errors remain in the data set and still cause ordering problems, therefore MapMaker is not 
adequate to calculate high density maps. 

Besides backcross populations, the concept of SMOOTH can also be suitable for analyzing 
other populations like F2. Dominance will nevertheless decrease the detection power of 
singletons. In this case, the marker density should be higher than in backcross populations to 
ensure a reliable singleton detection. 

In conclusion, with the advent of ultra-dense genetic linkage maps, a completely new 
approach of data analysis is required. In combination with RECORD (VAN OS et al. 
submitted), this method provides a fast and accurate way of positioning genetic markers along 
an unambiguous framework map. 
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ABSTRACT 

An ultra-dense genetic linkage map with nearly 10,000 AFLP loci was constructed from a 
heterozygous diploid potato population. It is among the densest meiotic maps ever constructed. 
A fast marker ordering algorithm was used in combination with genotyping error-detection 
software to obtain “skeleton bin maps”. A “bin” is a position on the genetic map with a 
unique segregation pattern and separated from adjacent bins by a single recombination event. 
Subsequently all marker loci were assigned to the bins on the map by maximum likelihood 
based on their original segregation pattern. From the markers that were heterozygous in either 
the maternal or paternal parent, 98% could be fit in the bins. Of the markers that were 
heterozygous in both parents (bridge markers), only 79% could be fit. In both parental maps 
the twelve chromosomes could be identified. In addition, the paternal map includes a small 
unassigned linkage group with a severe segregation distortion. Recombination frequencies or 
marker positions are non-randomly distributed across the map. Putative centromeric regions 
showed extensive marker clustering while putative recombination hot spots resulted in large 
intervals up to 15 cM without markers. The markers derived from EcoRI/MseI and SacI/MseI 
primer combinations clustered more frequently than those derived from PstI/MseI primer 
combinations. The distribution of recombination events per chromatid indicated an overall 
absence of the occurrence of 0 chiasmata and excluded absolute chiasma interference within 
arms. The ultra-high density map has been used for anchoring of BAC-contigs for a sequence 
ready potato physical map and gene cloning. 

 

INTRODUCTION 

Genetic linkage maps constitute a necessary prerequisite to study the inheritance of both 
qualitative and quantitative traits, to develop markers for marker-assisted breeding (MAB) 
and for map-based gene cloning. Multi-locus molecular marker techniques, such as AFLP 
(VOS et al. 1995), can be used to generate large numbers of markers in a relatively short time, 
facilitating the construction of dense genetic linkage maps. High-density genetic linkage maps 
have already been constructed in crop plant species such as rice (HARUSHIMA et al. 1997: 
2,275 markers), maize (VUYLSTEKE et al. 1999: 1,539 and 1,355 markers mapped in two 
populations), wheat (BOYKO et al. 2002: 732 markers), potato and tomato (TANKSLEY et 
al. 1992: ca. 1,000 markers; HAANSTRA et al. 1999: 1,175 markers), pepper (PARAN et al. 
2004: 2262 markers mapped in 6 populations), sorghum (BOWERS et al., 2003: 2512 
markers), cotton ( RONG et al., 2004: 3347 markers) and papaya (MA et al., 2004: 1501 
markers). 
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A genome-wide ultra-dense genetic map results in the global saturation of the genome with 
marker loci, which if concentrated on a single mapping population, can be useful for all other 
mapping applications. Usually, map-based cloning of genes responsible for interesting traits 
requires local marker saturation around the target gene. This targeted marker saturation is 
generally achieved with Bulked Segregant Analysis (MICHELMORE et al. 1991). Ultra-
dense genetic maps avoid this time consuming and costly step, which has to be achieved in 
separate experiments for every trait locus targeted. Moreover, expected average between-
marker distances that are smaller than the average insert length of a BAC library generally 
allow chromosome landing (TANKSLEY et al. 1995). In addition, ultra-dense genetic maps 
also facilitate the genetic anchoring of a physical map. If large-insert genomic clones and 
contigs can be directly identified with markers from an ultra-dense genetic map, they can be 
anchored to their corresponding positions in the genome. Besides these applications, the ultra-
dense map will become the reference map that facilitates marker exchange and map alignment 
within the research community working on any given organism, provided that the marker 
information contained within the map is transferable to other genotypes or populations. High 
transferability of AFLP markers between populations has been amply demonstrated by using 
the AFLP catalogue for potato (ROUPPE VAN DER VOORT et al. 1997) and barley 
(WAUGH et al. 1997; QI and LINDHOUT 1997). The transferability of other single locus 
marker types, such as RFLPs, STSs and SSRs, is more obvious and has therefore not been 
questioned. 

The construction of ultra-dense genetic linkage maps has been confronted with two major 
problems. Currently available computer programs for linkage mapping are incapable of 
handling data sets of several thousands of markers, and results in prohibitively long 
calculation times. Moreover, even small frequencies of scoring error result in high rates of 
ordering ambiguities between markers within short genetic distances. Two recently developed 
computer programs, referred to as RECORD (VAN OS et al. 2005a) and SMOOTH (VAN 
OS et al. 2005b), have tackled these problems. RECORD employs a marker-ordering 
algorithm based on minimization of the total number of recombination events in any given 
marker order (VAN OS et al. 2005a). SMOOTH is a statistical genotyping error removal 
utility that calculates the probability of a data point being a ‘singleton’, based on neighboring 
marker information. A singleton appears to be the result of an apparent double recombination 
event at either side of a single marker locus. More likely singletons represent artifacts due to 
scoring errors, technical or biological phenomena such as methylation polymorphisms and 
gene conversion. The observation of singletons depends on their context of flanking markers. 
Therefore, singletons are removed in an iterative process, singleton removal, re-ordering of 
markers, singleton removal, re-ordering etc., thereby gradually relaxing the statistical 
threshold of singleton identification (VAN OS et al. 2005b). The loss of a few percent of the 
data is obviously less damaging to the map, than having similar levels of genotyping errors. 
Using these two computer programs results in a framework of ordered ‘bins’ in which all 
recombination events in the population have been identified. A ‘bin’ is a position on the 
genetic map with a unique segregation pattern and is separated from adjacent bins by a single 
recombination event. This ordered set of ‘bins’ is considered to be a ‘skeleton bin map’ to 
which all original marker data can be fit, using a maximum likelihood method. This approach 
also provides a quality estimate for each marker that is based on the deviation between the 
observed marker segregation pattern and the expected segregation pattern as defined by the 
position of the bin in the skeleton bin map. A bin may contain a number of co-segregating 
markers and is defined by a segregation pattern. This pattern is called the ‘bin signature’, and 
it represents an accurate genetic position on the map within a given population. The unit of 
distance of the skeleton bin map is expressed in recombination events. In saturated linkage 
maps all recombination events are captured. As a consequence, application of the Kosambi 
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mapping function is not necessary to compensate for unnoticed double recombination events. 
A more comprehensive description of the method is provided in ISIDORE et al. (2003) and 
VAN OS et al. (2005a, 2005b) and is illustrated by Figure 1. 

 
Figure 1: Overview of the method used to construct the ultra dense map of potato as described by ISIDORE et 
al. (2003). The numbered gray arrows represent the computer programs used. 

In this paper, we present - to our knowledge - the densest meiotic linkage map yet produced 
for any species. The ultra-dense map of potato covers all linkage groups and contains nearly 
10,000 markers in total. The non-random pattern of marker distribution provides insight into 
the positions of putative recombination hot spots and centromeric regions. The distribution of 
recombination events per chromatid provides information on chiasmata. Given an estimated 
genome size of 840 Mb (BENNETT et al. 1997), and assuming random marker distribution, 
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this level of marker saturation will expedite all map based cloning efforts in potato, as well as 
the anchoring of BAC contigs for the construction of a sequence-ready potato physical map. 

 

MATERIALS AND METHODS 

Plant material: A cross between two diploid heterozygous potato clones, SH83-92-488 × 
RH89-039-16 (hereafter referred to as SH × RH) resulted in an F1 mapping population of 136 
individuals. The same mapping population has been used to clone the nematode resistance 
gene Gpa2 against Globodera pallida (VAN DER VOSSEN et al. 1998), and the 
Phytophthora infestans R-gene R3a (HUANG et al. 2004; HUANG et al. 2005). Genomic 
DNA was extracted from frozen leaf tissue according to VAN DER BEEK et al. (1992). 

Marker analysis: AFLP markers (VOS et al., 1995) were generated with templates of three 
different restriction enzyme combinations, EcoRI/MseI, SacI/MseI and PstI/MseI, and by 
applying three selective nucleotides to AFLP primers at the EcoRI, SacI and MseI side and 
two selective nucleotides to the primers at the PstI side. A total of 381 primer combinations, 
listed at http://potatodbase.dpw.wau.nl/UHDdata.html, were used to generate markers. 
Amplification products were separated by electrophoresis and visualized by autoradiography 
as described in ISIDORE et al. (2003). 

The autoradiograms were analyzed manually or with the aid of the computer program Cross-
Checker (BUNTJER 2000b), which is available at http://www.dpw.wur.nl/pv/. The names of 
the markers indicate the enzymes used, the selective nucleotides and the size of the fragment; 
for instance EAACMCAA_507.0 is an AFLP marker derived from a primer combination with 
enzymes EcoRI and MseI, selective nucleotides AAC and CAA, and a mobility that 
corresponds to a fragment with an estimated size of 507.0 basepairs. Fragment mobility 
estimates were inferred relative to a 10-base ladder (Sequamark, Research Genetics) using 
reference gels provided by Keygene NV, Wageningen, Netherlands. Assigning linkage groups 
to the 12 potato chromosomes was done with a set of AFLP markers with known position 
(ROUPPE VAN DER VOORT et al. 1997) and other markers, including RFLPs, SSRs, 
CAPS and SCARs. 

Map construction: The marker data were split into three sets based on their segregation type. 
Markers that were heterozygous in the maternal parent (SH) and absent in the paternal parent 
(RH) were scored as <ab×aa>; ‘paternal’ markers heterozygous in RH and absent in SH were 
scored as <aa×ab>; markers segregating in both parents were denoted <ab×ab>. The maternal 
and paternal data sets were divided into 12 linkage groups with module GROUP, included in 
JoinMap 2.0 (STAM and VAN OOIJEN 1995). 

Addition of the <ab×ab> markers resulted in the merger of initially separate parental groups 
due to spurious linkage caused by erroneous markers. Erroneous markers result from non-
allelic bands of identical mobility. Such alleles are superimposed on gel, and in this way two 
markers <ab×aa> and <aa×ab> are perceived as one single <ab×ab> marker, drawing two 
unrelated paternal groups into one artifactual group. Similarly, artifactual markers can also 
result from two markers from the same parent. In total 65 of these ‘sticky’ markers were 
removed manually to ensure a stable grouping down to a LOD threshold of 6. 

A preliminary marker order and the linkage phase was calculated with the ‘quick and dirty’ 
mapping module JMQAD32 from JoinMap 2.0 (STAM and VAN OOIJEN 1995). This 
algorithm calculates the marker order by minimizing the sum of adjacent recombination 
frequencies (SARF). It is the fastest algorithm available and sufficiently accurate to determine 
whether markers are linked in coupling phase or in repulsion. Linkage phase between linked 
markers was determined and indicated in the dataset following the format rules of JoinMap 
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2.0 for a first backcross population. Information on linkage phase is required to obtain the 
correct recombination frequency between markers linked in repulsion. 

The order of markers in the linkage groups was then re-calculated with RECORD (VAN OS 
et al. 2005a) which requires data in ‘BC1’ format. After this second ordering of the markers, 
the data were displayed in map order as a color-coded ‘graphical’ genotype in Microsoft 
Excel using a conditional cell formatting formula. Using this display, singletons could be 
marked easily. They were re-evaluated by visual inspection of the autoradiograms and 
corrected if necessary. 

The corrected data was ordered for a third time with RECORD and remaining singletons were 
removed with SMOOTH (VAN OS et al. 2005b) in iterations with RECORD. 

The program ComBin (BUNTJER et al. 2000a; available at http://www.dpw.wur.nl/pv/) was 
used for final inspection. ComBin removes the redundancy due to co-segregating markers and 
draws connections between non-redundant marker bins without the assumption that a 
chromosome is a linear structure. Side branches result from singletons, and any alternative 
connection between pairs of markers (or bins) is allowed as well. When non-linear structures 
were visualised by ComBin, further data inspection was performed. When ComBin analysis 
results in a linear figure, it can be concluded that the linkage group is free from data 
ambiguities. When all ambiguities identified with Combin have been replaced with missing 
values, the co-segregating markers are used to infer ‘bin signatures’. A bin signature 
comprises the consensus segregation pattern of marker loci, which do not recombine and are 
thus incorporated in the bin. The resulting bins form a ‘skeleton bin map’ of the potato 
linkage groups. Subsequently the bins are filled with marker loci. Please note that marker loci 
represent the real observed segregation data, including ambiguous data points, whereas the 
bin signatures represent the least ambiguous consensus segregation obtained so far. 

The mapping of the bridge markers, which are heterozygous in both parents <ab×ab>, is 
based on the information offered by the skeleton bin map. When the telomeric maternal and 
paternal bin signatures are superimposed (<ab×aa> 1:1 + <aa×ab> 1:1 = <ab×ab> 3:1), a 
putative bridge bin signature results. This method of postulation of all putative bridge bin 
signatures follows the method of the two-way pseudo-testcross proposed by 
GRATTAPAGLIA and SEDEROFF (1994) in reverse direction. Depending on linkage phase 
in coupling or repulsion of the parental markers ({0-} or {1-}, and {-0} or {-1}), the 
postulated bridge bin can take four alternative 3:1 segregation patterns as bridge bin signature 
({00}, {01}, {10} and {11}). The bridge markers were fit into the putative bridge bins by 
maximum likelihood. A LOD threshold of 15 (p < 0.001) was used to avoid false positive 
assignment of bridge markers to bridge bins. This threshold was determined by a permutation 
test. After fitting 10,000 random markers into the bins, less than 0.1% of the markers fit into 
the framework map with LOD score higher than either 4 or 15, for 1:1 and 3:1 segregating 
markers respectively. Chromosome orientation follows DONG et al. (2000) with the short 
arm north and the long arm south, except for the linkage groups homologous to chromosome 
7, 11 and 12, which are in opposite orientation. 

 

RESULTS 

Markers and progeny: The diploid mapping population SH × RH, comprising 136 
individuals, was analyzed with a total of 381 AFLP primer combinations derived from three 
different enzyme combinations. A total number of 10,305 clearly scorable markers were 
recorded. Additional SSR, CAPS, RFLP, SCAR and phenotypic marker loci were analyzed on 
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the population, which raised the number of markers to 10,365. This implies a data set of 1.4 
million data points. 

After inspection of the data, one offspring individual (SH×RH#153-D3) was abandoned, 
because it frequently displayed AFLP fragments that were not present in either of the parents. 
Another individual (SH×RH#160-D6) contained approx. 50% more bands than the other 
individuals, probably due to DNA contamination from a sibling and was also excluded from 
the analysis. Analysis of the similarity between the individuals revealed 4 duplicates 
(SH×RH#64-B8 with SH×RH#73-B11; SH×RH#166-D9 with SH×RH#167-D10; SH×RH44-
J1 with SH×RH45-J2; and SH×RH86-L12 with SH×RH88-M2), which possibly results from 
errors during the clonal propagation of the population. The data of the duplicates were merged 
and conflicting scoring data were removed. The genetic resolution of the population and thus 
the unit for map distance is therefore based on 130 informative individuals. 

Mapping: The total data set was split into maternal, paternal and biparental data sets (Table 
1). Among the total number of 10,365 markers, 4187 were segregating due to polymorphism 
in the maternal parent <ab×aa>, 3413 segregated from the paternal parent <aa×ab>, and 2765 
markers were heterozygous in both parents. The latter type of markers, being referred to as 
bridge markers <ab×ab>, were used to align the maternal and paternal maps. Summation of 
the parental-specific markers and the bridge markers resulted in 6952 maternal loci and 6178 
paternal loci. 
Table 1: Number of markers per enzyme combination per parent 

Segregation type 
(1:1 or 3:1) 

and parental zygosity 

 
 

AFLP enzyme 
combination Ab×aa 

SH-
marker 

aa×ab 
RH-

marker 

ab×ab 
bridge 
marker 

 
 

Total 
number of 
markers 

 
 

Number of primer 
combinations per 

enzyme combination
 
 

 
 

Average number of markers 
per primer combination 

EcoRI/MseI 2558 2099 1746 6403 208 31 
SacI/MseI 754 690 523 1967 79 25 
PstI/MseI 842 604 489 1935 94 21 

Other markers 33 20 7 60   

Total 4187 3413 2765 10365 381 27 

The maternal data set could be split into 12 linkage groups at a LOD threshold of 6. For the 
paternal data, linkage groups II through XI were obtained at LOD 6, but linkage groups I and 
XII remained associated up to a LOD threshold of 12. This was due to coincidental 
correlation between the segregation patterns of loci in these two groups. The 24 linkage 
groups from SH and RH were aligned with the expected potato chromosome. In addition to 
the 12 known paternal linkage groups, a small highly skewed unassigned linkage group was 
obtained which contained only 13 markers with a length of approx. 10 cM. This group was 
heterozygous in the paternal clone (RH), and unassigned (U) to any particular chromosome 
and is therefore referred to as RHU. The linkage group RHU was omitted from further 
analyses. 

The 24 data sets representing the different linkage groups from both parents were subjected to 
re-examination for putative scoring errors and to statistical identification of singletons using 
the computer programs RECORD, and SMOOTH as described in ISIDORE et al. (2003). 
During data inspection, we noticed one individual (SH×RH57-J12) where virtually all 
markers from the paternal parent in the linkage group corresponding to chromosome VIII 
were present. This phenomenon is probably due to non-disjunction of this chromosome in the 
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first meiotic division, resulting in a trisomic state. The resulting systematic errors were 
replaced with missing values. Following the mapping method described above and in 
ISIDORE et al. (2003), marker data resulted into a skeleton bin map. 

Skeleton bin map: Twelve maternal and twelve paternal skeleton maps deduced from bin 
signatures provide a representation of the recombination events captured in this mapping 
population. In total, 569 maternal and 549 paternal bin signatures were obtained. Most 
adjacent bin signatures differ by only one offspring genotype score, which represents the 
recombination event between the adjacent bins. In other cases, bin signatures differed for two 
or more offspring genotype scores, suggesting two or more recombinations between adjacent 
bins. Inclusion of empty bins, to accommodate for multiple recombination events between 
marker loci resulted in a skeleton bin map spanning 977 and 1005 recombination events in the 
maternal and paternal map, respectively (Table 2, Figure 2). All bins, including the empty 
bins, are numbered consecutively. With 130 offspring in the mapping population one bin 
represents 1/130 cM. Hence, the genetic length of the parental maps is 767 cM for the 
maternal map and 773 cM for the paternal map. 
Table 2: Overview of the number of markers, bins and recombination events per parent and per linkage group. 

SH maternal map RH paternal map Potato 
Chromosome Markers Filled 

Bins 
Rec. 

events markers Filled  
bins 

Rec. 
events 

ab×ab 
Bridge 
markers 

Total 
marker 
number 

I 971 77 94 634 56 100 270 1875 

II 311 53 96 262 54 79 145 718 

III 193 54 99 124 33 79 145 462 

IV 493 55 90 385 57 104 198 1076 

V 279 38 76 359 44 77 278 916 

VI 265 43 67 366 44 73 180 811 

VII 386 54 96 270 43 76 144 800 

VIII 209 37 69 155 51 98 106 470 

IX 314 53 83 190 44 83 168 672 

X 130 36 70 164 47 101 179 473 

XI 200 33 66 175 46 85 240 615 

XII 367 36 71 237 30 50 172 776 
Unassigned 

markers 69   92   540 701 

Total 4187 569 977 3413 549 1005 2765 10365 

Fitting of original data into the skeleton bin map: The original scoring data (after the 
manual verification of singletons) were fit into the bins of the skeleton bin map by maximum 
likelihood. Subsequently, the marker content of every bin was examined. Application of 
SMOOTH to remove singletons may have resulted in unjust removal of correct data, and thus 
causing a reduction in the effective population size. This visual inspection of the original 
scoring data, specifically near the position of the recombination events, allowed for the 
correct repositioning of markers into adjacent empty bins. In this way, the unjust removal of 
putative singletons by SMOOTH is restored. Obviously, after these final improvements to the 
skeleton bin map, the marker data had to be fit into the bins again.
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Figure 2. (pages 68-69) The distribution of AFLP markers on the ultra-dense genetic linkage 
map of potato. The number on the left of the linkage group indicates the cumulative number 
of recombination events counted from the top. The number of markers in each bin is 
represented by shades of gray according to the color legend. Putative centromere positions 
are indicated with “I” alongside the chromosome. 

Not all markers, however, were allocated to map positions. From the maternal markers, 46 
markers did not reach the threshold of LOD 4, another 22 markers were manually deleted 
from the most skewed bin SH05B044 and 1 marker fit into two linkage groups with equal 
likelihood. From the paternal markers, 45 markers did not reach the threshold of LOD 4, 46 
markers were removed from bin RH12B049 and also 1 marker could not be fit into one bin 
unambiguously. 

Of the bridge markers, 15 were linked to non-homologous maternal and paternal linkage 
groups and 525 markers did not reach the stringent threshold of LOD 15. The final numbers 
of markers within the bins of the skeleton map are listed in Table 2 and can be retrieved via 
http://potatodbase.dpw.wau.nl/UHDdata.html. Figure 2 shows the skeleton bin map. 

Data quality: All mapped markers shown in the online database have been provided with a 
quality label. This label is based on the deviation between the observed data of this marker 
and the expected segregation pattern as recorded in the bin signature. Because the dimension 
of genetic distances due to recombination events is independent of the dimension of distance 
due to singletons, this deviation can be considered as a distance perpendicular to the map. 
Hence, listing the number of singletons per marker is useful as a quality measure representing 
of goodness of fit of the marker in the bin. Singletons did not occur randomly among the 
markers. Many markers were without singletons and the 10% of the markers with the poorest 
data quality account for over half the total amount of 33489 singletons in the data set (VAN 
OS et al. 2005b). 

Segregation distortion: In the maternal map, segregation distortion was observed for all 
markers of linkage group V in the maternal map. Moderate segregation distortion (44:86) 
started at one telomeric end, increased to a highly distorted ratio of 26:104 (χ2=46.8; 
p<0.0001) at bin 45 (SH05B045) and declined to 50:80 at the other telomeric end. 

In the paternal map, linkage groups I and XII showed segregation distortion. The skewed 
interval on chromosome I ranged from bin RH01B001 to RH01B042, with bin RH01B021 
showing the highest segregation distortion 35:95 (χ2=27.7; p<0.0001). The first two bins of 
the short arm of chromosome XII did not show significant skewness (54:76), but skewness 
increased towards the other end. The telomeric bin RH12B051 showed the strongest 
segregation distortion: 21:109 (χ2=59.6; p<0.0001). 

Markers in the proximity of the highly skewed bins RH01B021 and RH12B051 showed 
correlated segregation patterns. This required an elevated LOD threshold to separate markers 
in the two linkage groups I and XII. Correlated segregation patterns between loci from 
different linkage groups are a violation of Mendel’s law of independent assortment of allele 

Number of markers 
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pairs. Possibly interacting allele pairs with strong effects on pollen or embryo viability, 
germination, or tuber formation are located on I and XII. 

Map saturation and marker distribution: Figure 2 provides a clear illustration of the length 
and saturation of the linkage groups. Shades of grey, rather than listing 10,000 marker names, 
offer an indication of over- and under saturated regions. The similarity between the maternal 
and paternal map is striking with respect to map length and the positions of strong clustering 
of markers. But also the lack of clusters at chromosome III and X is congruent between 
maternal and paternal maps. The largest cluster is observed on chromosome I, where the bins 
SH01B32 and RH01B13 contain 539 and 373 marker loci, respectively. Taking the most 
densely populated bin as the putative position of the centromere, the following putative 
centromeric bins (and number of markers in brackets): SH01B32 (539), RH01B13 (373), 
SH02B04 (72), RH02B01 (47), SH04B31 (212), RH04B35 (155), SH05B44 (113), RH05B46 
(174), SH06B05 (52), RH06B17 (97), SH07B70 (95), RH07B68 (80), SH08B13 (43), 
RH08B22 (16), SH09B21 (114), RH09B31 (27), SH12B56 (199) and RH12B49 (100). 

Despite the saturation of the map, gaps are observed. The largest gap is on chromosome VIII, 
spanning 14 recombinations in the maternal parent and 20 recombinations in the paternal 
parent. These gaps are probably due to recombination hot spots, but could also indicate 
fixation (homozygosity) of the potato genome in this region. 

Distribution of recombination events and chiasmata: The distribution of marker alleles 
observed in the offspring genotypes allows a reconstruction of the number of recombination 
events in the chromatids transmitted from the parents. Analysis of the distribution of 
recombination events per chromatid displayed that the vast majority of the 3119 (=130*24-1) 
chromatids were either without recombination (44 %), or showed a single recombination 
event (48 %). The precise numbers of chromatids are 1379 (44 %), 1505 (48%), 228 (7.3%) 
and 7 (0.22%) chromatids showing 0, 1, 2 and 3 recombination events, respectively. No 
significant differences in recombination frequencies were observed between the female and 
male meiosis. 

Knowing the genetic position of the 1982 recombination events captured in this mapping 
population, we can investigate the distribution of chiasmata. However, the distribution of 
chiasmata can not be directly obtained from the distribution of recombination events. Table 3 
shows how the ratio of the number of recombination events depends on the number of 
chiasmata. 
Table 3. Ratio of the number of recombinations per chromatid dependent on the number of chiasmata 

Number of chiasmata Number of 
recombinations 0 1 2 3 4 5 6 

0 1 1/2 1/4 1/8 1/16 1/32 1/64 
1 0 1/2 2/4 3/8 4/16 5/32 6/64 
2 0 0 1/4 3/8 6/16 10/32 15/64 
3 0 0 0 1/8 4/16 10/32 20/64 
4 0 0 0 0 1/16 5/32 15/64 
5 0 0 0 0 0 1/32 6/64 
6 0 0 0 0 0 0 1/64 

From this table we would expect a higher number of 0 recombinations, and not 50% single 
recombinants. Apparently there is a mechanism during meiosis that stimulates the formation 
of at least 1 chiasma. 

The 228 chromatids revealing two recombination events are also intriguing, because these 
may reveal information on chiasma interference relative to the position of the centromere. 
Therefore we wish to test whether or not chiasma interference is limited to chromosome arms, 
and if the centromeres play a role in the process of chiasma interference. In other words, 
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would a first chiasma more strongly inhibit the formation of a second chiasma on the same 
chromosome arm, and hardly interfere with the formation of a chiasma on the other 
chromosome arm? The 228 chromatids with two recombination events were analyzed by 
counting the number of recombination events per chromosome arm, taking the most densely 
populated bin as the putative position of the centromere. Chromosomes III, X and XI, which 
are without clear centromeres, were omitted from analysis, leaving 174 cases with two 
recombination events from the remaining chromosomes. The assumption of equal arm lengths 
would result in an expected ratio of 1:1 between cases with one recombination per arm and 
cases with both recombinations on one arm. 

The 174 double recombination events were distributed over 125 chromatids with one 
recombination event at either side of the putative centromere, and 49 cases with two 
recombination events in one arm. These 49 cases however, were mainly observed in the long 
arms of typically acrocentric or telocentric chromosomes (90 %). The short arms of 
acrocentric and the metacentric chromosome V contributed only four cases of double 
recombination events within an arm (10 %). We therefore conclude that the over-
representation of cases with one recombination per arm is more likely a reflection of the 
difference in arm length, rather than providing strong evidence for a maximum of one 
chiasma per arm. Five of the seven chromatids, which displayed three recombination events, 
were observed in chromatids belonging to chromosome III and X without a clear centromeric 
marker cluster. 

Distribution of AFLP markers derived from different restriction enzyme combinations: 
Markers have been generated from AFLP templates based on three different enzyme 
combinations: EcoRI/MseI, SacI/MseI and PstI/MseI. The genomic position of the markers is 
determined by the position of the six-cutter restriction site, whereas MseI only ‘trims’ 
fragment length to a size range optimal for polyacrylamide gel electrophoresis. Hence, for 
each enzyme combination, the marker distribution on the genetic maps reflects the 
distribution of the six-cutter restriction sites. The effect of the selective nucleotides is 
considered negligible in view of the many primer combinations tested. The consequences of 
the AFLP enzyme combination on the position of the markers can be examined by using two 
different approaches. Firstly, we test for under-representation of methylation sensitive PstI 
markers in the putative centromeric cluster. Secondly, we compare the average distance 
between marker loci as a measure for marker clustering per enzyme combination. Thirdly, we 
examine the effect of the number of C+G residues in the enzyme recognition site. 

PstI markers in particular should have a non random distribution, reflecting the methylation 
status of the genomic DNA. AFLP template from PstI digested DNA should represent only 
hypo-methylated gene rich regions of the genome. The complexity of PstI/MseI AFLP 
template is approximately fourfold lower as compared to EcoRI/MseI or SacI/MseI template, 
because equally complex AFLP fingerprints were obtained with only two selective 
nucleotides added to the core PstI primer (+2/+3 primer combinations). In contrary, EcoRI 
and SacI markers were generated with +3/+3 primer combinations. When comparing the 
fraction of PstI markers in the putative centromeric clusters relative to the fraction of PstI 
markers at other regions of the genome, the linkage groups III, X and XI, which lack a clear 
putative centromeric marker cluster, were excluded. A total 2508 markers, one third of the 
total number of mapped 1:1 segregating markers, was counted in 18 putative centromeric bins. 
These 18 bins contained only 209 (8.3 %) PstI markers, whereas among all 7439 mapped 1:1 
segregating markers 1446 (19.2 %) are PstI markers. This observation provides clear evidence 
for an under-representation of PstI markers in the putative centromeric marker clusters. 

Finally, the effect of four C+G residues in the recognition site of SacI, and two C+G residues 
in EcoRI is examined. Euchromatic regions differ from centromeric heterochromatic regions. 
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Plant genomes have a strong under-representation of C+G residues (33-36% in dicots; 
KARLIN and MRÁZEK 1997). Specifically the repetitive DNA in the centromeric 
heterochromatin is more A+T rich, and the gene rich euchromatic regions are less biased. This 
could also affect the distribution of markers of EcoRI versus SacI markers. However, the 
representation of SacI markers (569) in the putative centromeric marker clusters (569/2508 = 
22.7 %) is not significantly different from the ratio observed for EcoRI markers. Therefore we 
conclude, SacI and EcoRI markers cluster equally in the putative centromeric bins. 

An alternative way to study marker distribution is based on the distances between neighboring 
markers. To compensate for the unequal number of markers per linkage group and per 
enzyme combination, a random subset of 1024 EcoRI, PstI and SacI markers was drawn. As a 
control, a fourth subset was comprised of 1024 randomly drawn bins, including empty bins. 
All 1000 intermediate distances within a subset were counted. The results shown in Figure 3 
indicate that all markers, including PstI markers are strongly clustered, as compared to the 
control. The level of marker clustering, however, differs among the AFLP enzyme 
combinations: PstI markers showing the lowest amount of clustering. 

 
Figure 3. Frequency distribution of distances (recombination events) between neighboring marker loci to 
represent the marker clustering of EcoRI, SacI and PstI AFLP markers as compared to random genetic sites. 
Equally sized subsets of 1024 markers were randomly chosen from each different enzyme combination. Each 
distance between two neighboring markers from the subset was calculated, resulting in 1000 distances per 
enzyme combination. Within each enzyme combination the frequency of each distance was calculated. The 
degree of clustering is dependent on the amount of distances with value 0. The degree of clustering for random 
genetic positions was visualized by calculating the frequency of intermediate distances between 1024 randomly 
chosen bins. 

The frequency of distances between neighboring markers larger than 5 recombination events 
is also higher than expected based on a random distribution. This can be explained by the 
presence of stretches of empty bins caused by recombination hot spots or local fixation (lack 
of heterozygosity). 

In conclusion, we state that the occurrence of recombination is not random. This is explained 
by the occurance of local hot spots and cold spots for recombination, assuming a physically 
random distribution of EcoRI, SacI and PstI recognition sites in the nucleotide sequence of 
the potato genome. 
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DISCUSSION 

The saturation of the potato genome with marker loci: With 381 AFLP primer 
combinations and a mapping population of 130 individuals, more than 10,000 markers were 
generated of which 93% could be accurately assigned to a genetic position. Previous maps of 
potato were already available (BONIERBALE et al. 1988, GEBHARDT et al. 1989, 
TANKSLEY et al. 1992, JACOBS et al. 1995), but varied from 100 to no more than 500 
markers. Even when comparing this map with recently published high-density maps of papaya 
(MA et al. 2004: 1501 loci), cotton (RONG et al. 2004: 3347 loci) and sorghum (BOWERS et 
al. 2003: 2512 loci), this potato map is the densest meiotic map in any plant species yet 
obtained. Obviously, the level of DNA polymorphism makes a large difference between such 
efforts in potato or papaya in terms of data collection. However, with respect to data analysis 
it was noticed that the available mapping software could not cope with such large data 
quantities. Linkage groups with over 1000 markers cannot be handled with current software 
such as JoinMap, and even small amounts of errors caused severe marker ordering problems. 
Therefore, new approaches were devised, resulting in software (RECORD; VAN OS et al. 
2005a) that could produce accurate marker orders in a relatively short time. The necessity to 
remove scoring errors was recognised and performed with SMOOTH (VAN OS et al. 2005b). 
The combination of these two programs made it possible to construct a reliable and robust 
framework map. The framework map consists of bins, which are positions on the genetic map 
with a unique segregation pattern and separated by recombination events. Thanks to the high 
density of the markers, it was possible to determine the position of most of the recombination 
events on the map. Since a direct translation from bin to centiMorgans can be made, a 
consecutive numbering of the bins is sufficient for indicating the positions of the genetic 
markers. 

Exploitation of the ultra dense map: The primary goal of this research was to construct an 
ultra-dense genetic linkage map of potato with the purpose of saturating the genome with 
markers for gene cloning via BAC landing. In view of the average insert size of a BAC library 
and the estimated genome size of 840 Mb (BENNETT et al. 1997) the current number of 
marker loci should suffice. Proof of concept was recently obtained by the cloning of the late 
blight resistance gene R3a (HUANG et al. 2004; HUANG et al. 2005) and the construction of 
a BAC contig comprising the wart disease resistance gene Sen1-4 (BRUGMANS et al. 2005). 
Both studies demonstrated that marker spacing was in accordance with the expected physical 
distance. Nevertheless, the genetic structure of the R3a and Sen1-4 locus also showed 
remarkable differences. The R3a gene was mapped relative to two bins (1.5 cM), collectively 
containing 27 AFLP markers (marker-dense). A 1748 offspring high resolution map resulted 
in 35 sub-bins of 0.06 cM. However, the recombination events were unevenly distributed 
leaving ten AFLP and two CAPS markers co-segregating with resistance and stretches of sub-
bins without markers. In contrast, the Sen1-4 locus was roughly mapped relative to six bins 
(3.5 cM) with only nine AFLP markers (marker-poor). However, these nine AFLPs landed on 
overlapping BAC-clones, resulting in a single ~1Mb contig. These two examples suggest that 
marker-poor and empty bins indicate a favourably low Mb/cM ratio, whereas marker-rich bins 
indicate a high Mb/cM ratio. Therefore, under-saturated regions on the map do not necessarily 
present a problem for map-based cloning efforts. 

Empty bins and oversaturated bins may indicate alternating recombination hot spots and cold 
spots on the genome. Consecutive empty bins could also indicate a local absence of marker 
polymorphism due to fixation of one allele. On both parental maps of chromosome VIII a 
long stretch of up to 19 empty bins could represent an example of either. At this moment, 
almost half of the bins in the framework map remain empty (44 %). Eventually the 
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construction of a genetically anchored physical map should provide more insight in the cause 
of empty bins. 

Marker distribution: Three different enzyme combinations have been chosen to generate 
markers. In a pilot study, a maternal genetic map was produced with 19 EcoRI/MseI primer 
combinations. In this study, it was recognised that with this single enzyme combination, a 
considerable portion of the genome remained unpopulated with markers. Therefore, it was 
decided to generate AFLP markers from DNA template prepared with three different 
restriction enzymes viz. EcoRI, SacI and PstI. The AT rich recognition site directing the 
distribution of EcoRI markers and the CG rich SacI markers nevertheless both resulted in 
strong clustering, absorbing approximately one third of all the markers. For mapping purposes 
a more dispersed genetic distribution is preferred, but for applications such as the genetic 
anchoring of a physical map this is probably not a drawback. For linkage mapping of trait loci 
PstI markers are recommended, because these are biased to non-methylated regions. There is, 
however, a drawback with PstI markers: in almost every fingerprint, several bands were 
observed in the progeny that were absent in both parents. These putative methylation 
polymorphisms will increase the number of singletons. Furthermore, PstI markers should be 
used with caution for BAC landing. Extra bands will appear, because of the absence of 
methylation in bacteria. 

The highly similar distribution of EcoRI and SacI markers demonstrates that the effect of 
clustering due to unequal levels of recombination outweighed the effect of differences in A/T 
composition in euchromatic versus heterochromatic regions. Why are these clusters so sharply 
confined to a single bin position? This seems to be contradicting multiple publications on 
AFLP maps, where clustering is obvious but extending over a wider region. In our view, the 
interaction between (1) the mapping algorithm and (2) the quality of the data set, explains the 
presence of these sharp marker clusters. First, it was demonstrated that singletons have little 
effect on the performance of the mapping algorithm of RECORD, but methods that use the 
distance between marker pairs cannot avoid inflation of map length (VAN OS et al. 2005a). 
Second, the rigorous removal of singletons will reduce the distance between closely linked 
markers. Usually, distances between markers are the sum of the distances caused by 
recombination events and the distances caused by singletons. Modest numbers of singletons 
(1-2 %) overshadow the effect of suppressed recombination, and will flatten the marker 
cluster. 

Centromeric suppression of recombination is the obvious explanation for marker clustering. 
First, the clear congruence of the maternal and paternal homologous linkage groups excludes 
other adventitious heterochromatic regions as the cause of marker clustering. Second, the 
relative position of the clusters coincides with expectations based on cytological observations 
(TANKSLEY et al. 1992; DONG et al., 2000). For example, linkage groups homologous to 
chromosome 2 are telocentric; the short arm being reduced to the nucleolar organiser. 
Chromosome VI is known for its very small short arm, and chromosome V is metacentric. In 
view of the sharp demarcation of the marker dense clusters, we conclude that mapping the 
centromeric position has an accuracy of the size of one bin: 0.8 cM. The centromeric positions 
of the paternal linkage groups have been confirmed using half-tetrad analysis in a 4x × 2x 
mapping population (MENDIBURU and PELOQUIN 1979; PARK et al. manuscript in 
preparation). 

Analysis of meiotic recombination and chiasmata: Recently, HILLERS and 
VILLENEUVE (2003) investigated the control mechanisms of meiotic crossing over in 
Caenorhabditis elegans, which averages only one crossover per chromosome pair per meiosis. 
A tendency was revealed to restrict the number of crossovers, irrespective of the physical 
length. Pairs of fusion chromosomes composed of two or even three whole chromosomes 
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enjoyed only a single crossover in the majority of meioses. This observation parallels the 
work of GERATS et al. (1985), who describe a relationship between the length of the deletion 
in the short arm of Petunia chromosome VI and the recombination frequency between 
markers in the long arm. The recombination frequency increased in the long arm with an 
increasing the length of the deletion in the short arm. Both cases in C. elegans and Petunia 
demonstrate that the occurrence of a pre-set amount of recombination events is highly 
regulated and even two recombination events are considered ‘a crowd’ (VAN VEEN and 
HAWLEY 2003). In this study, marker saturation allowed the detection of every 
recombination event. The fraction of chromatid arms with more than one recombination event 
was only 1.6%. This small fraction still represents a substantial number of 49 cases. Therefore, 
in our view there is no reason to assume absolute chiasma interference. 

In this study singletons have not been interpreted as indicative for double recombination 
events. Most likely they are caused by inaccurate scoring, but some data points can also be 
caused by gene conversions, mutations and other biological phenomena (VAN OS et al. 
2005b). RONG et al. (2004) have chosen for an alternative interpretation in a similar situation. 
They have concluded that negative chiasma interference could explain the unexpectedly 
abundant double recombinants. 

Towards a sequence ready physical map: Currently, a physical map of the potato genome is 
being constructed from the paternal clone RH using EcoRI+0/MseI+0 fingerprints of 
individual BAC clones (DE BOER et al. 2004). The anchoring of several thousand BAC-
contigs to this genetic map will be achieved by application of AFLP on 0.4 genome 
equivalent pools of BACs. AFLP loci that have been mapped are easily recognised in 
fingerprints of 0.4 genome equivalent BAC pools. Deconvolution of the pooling design 
allows the identification of the BAC clones and the contig, which carries the mapped AFLP 
locus. A genetically anchored physical map will culminate in a sequence ready minimal tiling 
path of BAC contigs of specific chromosomal regions. Within the International Solanaceae 
Genome Project (SOL) for comparative genome studies (http://sgn.cornell.edu/solanaceae-
project/), as well as within the potato genome sequencing consortium, this ultra dense linkage 
map and the anticipated genetically anchored physical map will have a valuable role. 
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Chapter 6: 
General Discussion 

 

An ultra dense genetic linkage map of potato based on AFLP markers is a useful tool for a 
wide range of breeding applications as well as for basic science. The aim of this research 
project was to develop such an ultra dense map for potato with a main purpose for BAC 
landing and research in structural genomics. As the genome of potato is not yet sequenced, the 
ultra dense map serves as a compromise in sequence information by AFLP, which can be 
exploited in subsequent genetical studies. 

This thesis describes the development and testing of methods for data analysis in ultra dense 
genetic mapping projects. Problems and pitfalls concerning data analysis are discussed and 
practical application of the methods is demonstrated. 

 

LINKAGE MAPPING IN POTATO 

The first genetic linkage map of potato (BONIERBALE et al. 1988) made use of RFLP 
markers, which originated from the molecular genetic map of tomato. It was found that there 
was a high colinearity between the potato and tomato genome. This colinearity and the 
absence of an adequate numbering of the potato chromosomes, led to the numbering of the 
potato linkage groups in accordance with the numbering for the tomato chromosomes. This 
numbering, based on homoeology with tomato, is now commonly used in potato genetics (e.g. 
TANKSLEY et al. 1992). 

Whereas the first genetic map of potato was based on one parent only, the second genetic map 
of potato (GEBHARDT et al. 1989) was constructed on the basis of three linkage groups per 
chromosome. The first linkage group consisted of alleles from the female parent, segregating 
in a 1:1 ratio. The second linkage group comprised 1:1 segregating alleles from the male 
parent. Since the mapping population was a backcross, both parents had at least one allele in 
common. When this common allele is polymorphic, the third linkage group can be based on 
both parents and includes alleles segregating 3:1. These common alleles are also called allelic 
bridges (RITTER et al. 1990). Finally, these three linkage groups have been merged 
according to the positions of these allelic bridges. This approach has led to a common 
mapping procedure in outbreeding species, called: the two-way pseudo-testcross 
(GRATTAPAGLIA and SEDEROFF 1994). This procedure is based on the fact that the 
segregating F1 generation of two heterozygous individuals can be seen as the superposition of 
two BC1 generations. A major difference with the BC1 generation is the phase difference. In 
outbreeding populations, markers can segregate in coupling or in repulsion phase. Phase 
determination is essential for an accurate marker placement. Other genetic linkage maps in 
potato were constructed by BONIERBALE et al. 1988; GEBHARDT et al. 1989, 2001; 
JACOBS et al. 1995; VAN ECK et al. 1995; MILBOURNE et al. 1998. 

Cultivated potato in the western world is an autopolyploid species with 4 chromosome sets 
that are all capable of pairing and recombining with each other. If a genetic linkage map was 
constructed from crosses between tetraploids, 6 allelic combinations are possible per locus in 
the gametes. Therefore, it is obvious that the determination of crossing-over frequency in such 
crosses is a complicated task. To circumvent this, the ultra dense map has been constructed 
from a cross between two dihaploid clones. Computer software is available that allows 
mapping in tetraploid species if no dihaploid clones are available (HACKETT et al. 2003). 
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The optimal cross for map construction should be a balance between maximum 
polymorphism, and a high level of homology for chromosome pairing and recombination to 
take place. In general, a high polymorphism can be obtained by using distantly related parents 
for BC or F2 populations. However, the genetic distance between the parents used, can affect 
the recombination frequencies in the cross. The more closely related the parents in the cross, 
both for parents within the same species as well as for parents from different species, the 
greater the homology. This results in increased chromosome pairing, and higher 
recombination frequencies based on crossing-over. Therefore, longer genetic maps are 
expected. However, a high level of homology between the parents is countered by a decrease 
in polymorphism, and the recombination events might go unnoticed. An advantage of using a 
non-inbred species for map construction is the high level of polymorphism, even within 
species. This often allows the use of an intraspecific F1 population for map construction, 
thereby avoiding the chance of reduced recombinations, due to a lack of homology, 
encountered in interspecific crosses. A clear disadvantage of working with a cross-fertilizing, 
highly heterozygous crop like potato is the general phenomenon of inbreeding depression. 
Consequently, many uncharacterized (sub)lethal loci are expected to be present in the potato 
genome. These become visible as distorted segregation of alleles in one of the parents, due to 
gametic selection, or as (partial) absence of genotypic classes in the progeny due to zygotic 
selection. As a consequence, clusters of markers with distorted segregation are expected to 
arise. They may vary for each cross and will mainly depend on the parents used. Distorted 
segregation was found on chromosome V in the female parent and chromosomes I and XII in 
the male parent in the ultra dense mapping population. 

 

DEVELOPMENT OF GENERIC TOOLS FOR ULTRA DENSE MAPPING 

The construction of ultra dense maps requires adequate tools and techniques. One requirement 
is a molecular marker technique that can produce many reliable markers in short time with not 
too much labor. AFLP (VOS et al. 1995) is such a molecular marker technique and makes the 
production of 10,000 unique molecular markers feasible. 

The first problem to encounter when analyzing ultra dense mapping data sets is the quantity of 
the data in terms of the calculation time. A data set of 10,000 markers cannot be analyzed 
with the average available mapping software. Therefore, the development of new programs 
was indispensable. New programs need to be extensively tested first with simulated data, to 
make sure that the software produces the desired results. 

A linkage-mapping program consists of two elements, the target function or minimization 
criterion and the (heuristic) search algorithm. To increase the calculation speed, one has two 
options. The first option is to develop a minimization criterion that is less calculation 
intensive. JoinMap minimizes the least squared differences between the observed 
recombination frequencies and the calculated recombination frequencies in the map. This 
requires the calculation of all pairwise recombination frequencies between all markers. As the 
map grows, the calculation of the minimization criterion becomes more complex and thus 
slower. The evaluation of markers on different map positions, which is a prerequisite for 
accurate mapping, becomes therefore too time consuming. The program RECORD (VAN OS 
et al. 2005a) uses the total amount of recombination events in the map. As compared to the 
least squared differences, this evaluation criterion is much less time consuming. In fact, it is a 
good compromise between statistical rigor and common sense. The second option for 
decreasing the calculation time is choosing a smart search algorithm. The most accurate 
search is an exhaustive search in the complete solution space. For a map of 100 markers, this 
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requires an evaluation of 
2

!100 = 4.7 x 10157 possible marker orders. When the evaluation of 

one order takes one second, an exhaustive search would take 1.5 x 10150 years. This illustrates 
the need of heuristic search algorithms. RECORD uses a search algorithm that adds one 
random marker from the data set to the existing marker order. This marker is placed on its 
most likely position, i.e. the position on which it has the lowest increase on the target function. 
As this approach is input order dependent, the final result may lead to a local minimum in the 
solution space. Therefore the whole procedure is repeated for ten times and the best possible 
order is chosen from these ten solutions. 

The second problem that arises when analyzing ultra dense mapping data sets is the amount of 
singletons. A singleton is a data point that has recombined with both its directly neighboring 
data points. Singletons do not have a large impact on the order of markers when the marker 
density is low. However, in ultra dense mapping data sets, even relatively small amounts of 
singletons (1%-5%) cause substantial ordering ambiguities and map inflation (LINCOLN and 
LANDER 1992). Therefore we state that, whether or not singletons are due to biological 
phenomena, they have to be removed. SMOOTH (VAN OS et al. 2005b) is a statistical 
singleton removal program. It calculates the probability of each data point for being a 
singleton by using 15 neighboring data points on either side within a given marker order. The 
closest markers in the order are given the highest weight in calculating the expected score. 
The difference between the expected score and the observed score is a measure for the 
probability of the data point for being a singleton. This probability is more accurate, when the 
density of markers in the map is higher. SMOOTH has been applied to the data set in an 
iterative process with RECORD. Each time RECORD has calculated the marker order, 
SMOOTH removes all singletons higher than the threshold for the probability. After every 
step, the threshold for removal is slightly released. This process is continued for 15 cycles 
down to a probability threshold of p = 0.7. At this stage almost all singletons have been 
removed from the data. Although it is advisable to use SMOOTH only in high-density data 
sets, it might also be applicable to locally dense marker clusters in maps of otherwise low or 
normal density. 

During an early stage of the project, the program ComBin (BUNTJER et al. 2000) has been 
developed. The ComBin mapping procedure consists of three stages: the binning step, in 
which cosegregating markers are gathered in bins; the threading step, in which bins are 
ordered and connected with each other like threading beads on a string; and the grouping step, 
in which strings that belong to the same linkage group are connected. The binning step is used 
to remove redundant data from the data set. In fact, the bin signature should be an exact 
duplicate of the marker segregation pattern. However, two otherwise identical markers from 
which one contains a missing data point for a single offspring individual also lack any 
observable recombination, and will thus be classified in a single bin. The bin signature can be 
derived from the ’best’ marker, i.e. the marker with the least amount of missing values or 
from the complementation of the data from all the markers in the bin. Whereas data 
complementation may lead to a maximum of information, non-existent segregation patterns 
can be composed from markers with a lot of missing data. 

The bins are connected with each other in the threading step. Although the conventional use 
of recombination distances falsely suggest a continuous scale, a linkage map is basically built 
upon discrete events. The true discrete nature of a linkage map becomes more apparent in 
saturated data sets. The threading process comes down to an iterated scanning of direct 
neighbors of a bin. Although a bin theoretically has two neighbors, the data may provide 
multiple neighbors for a bin. These neighboring bins are connected with the first bin up to 
programmable limitations. The scanning of neighbors is continued in every bin that is 
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connected to the string until no further neighbors can be found at a distance of one 
recombination event. From that point the scanning is continued up to a given amount of 
recombination events between the bins, by postulating empty bins between bins that differ for 
more than one recombination event. The theoretical empty bin has a signature that is derived 
from the two existing bins, except for the allele data of the individuals that have recombined. 
These will be replaced by missing data. Finally, the strings can be connected by the grouping 
step at a distance larger than allowed during the threading process. The grouping method will 
determine the distance between strings, which is defined as the lowest number of 
recombinations between a pair of bins from both strings. 

While analyzing the ultra dense data set with ComBin, it became clear that the amount of 
singletons was too large to cope with. In fact, the strings that were produced more resembled 
‘Christmas trees’ rather than linear chromosomes. Although the bin concept behind ultra 
dense mapping was a reasonable approach, from that moment we were forced to adopt a 
different strategy by the present data quality. It was after the development of SMOOTH that 
we decided to use the cleaned data set as input for ComBin. The results that were produced by 
ComBin with the cleaned data set were completely different from what we had seen before. 
The number of unique bins was much lower, because the removal of singletons caused many 
markers to become redundant. Even the strings that were produced were almost linear. Some 
side branches still remained, due to the presence of some systematic errors like unintentional 
mix up of individuals before isolating a fresh batch of DNA. With ComBin, these remaining 
errors could be detected and successfully removed. At this point, the framework map was 
available consisting of unique and corrected bins. We derived the following definition for a 
bin. A bin is a unique and most accurate representation of a marker at a certain genetic 
position. A bin contains at least 1 marker and cannot be divided within the given population. 
Bins are numbered consecutively, based on the recombination events. As a consequence, the 
bin numbers can be directly translated into map units. Bins are not a statistical average of 
recombination frequencies as is the case with the positions of markers in conventional genetic 
maps based on centiMorgans. Based on this definition, it is allowed to update the bin 
signatures by filling in all missing values that are not flanked by recombination events. 

In the final stage of the ultra dense mapping process, the bin signatures were verified by 
fitting the original marker data into the bins. This verification of the framework map is done 
by maximum likelihood comparison of the original markers with the framework bins. Every 
marker is placed in its most likely bin and the number of singletons is a measure for the 
accuracy of each marker. The average amount of singletons in the markers segregating in one 
parent only was 4.1%. 

The dominant allelic bridges in the data, derived from the AFLP markers segregating in both 
parents, can be mapped with a much lower accuracy than the markers segregating in one 
parent only (see also: MALIEPAARD et al. 1997). The allelic bridges provide a rough 
estimate for the linkage between the two parental maps. Thanks to the large number of 
available allelic bridges, we were able to observe a reasonable alignment of the two separate 
maps. 

 

GENETICAL STUDIES WITH THE ULTRA DENSE MAP 

Besides AFLP markers, other types of markers were applied on the ultra dense mapping 
population, like RFLPs, SSRs, CAPs, SCARs, etc. These markers, of which the chromosomal 
location was known, provided the chromosome numbers to the linkage groups in the ultra 
dense linkage map. 
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Significant segregation distortion was observed on chromosome V in the maternal map and 
chromosome I and XII in the paternal map. Segregation distortion is due to selection on the 
gametes and/or progeny between the moment of crossing the parents and the moment of 
harvesting leaf material from the progeny for DNA extraction. Selection might have occurred 
on traits like pollen viability, germination, stress tolerance, earliness and disease resistance, or 
(sub)lethal loci. Also the unassigned linkage group RHU in the paternal map containing 13 
markers, showed severe segregation distortion. The true identity of this linkage group might 
be revealed by the physical map. 

An inspection of the amount of recombinations per chromatid showed that the occurrence of 0 
chiasmata is underrepresented. A number of 49 chromatid arms in the population contained a 
double recombination. Obviously the amount of chiasmata in one chromatid arm is not 
limited to only one. Previous studies had not provided clear evidence for double 
recombinations in potato, but after the accurate removal of artifacts in the map with 
SMOOTH, the occurrence of more than one chiasma per chromosome arm is evident. 

The distribution of recombinations and AFLP markers is not similar in potato as demonstrated 
by the presence of both gaps and clusters in the map. The biggest clusters of markers are 
observed around the centromeres, where recombination is suppressed. The few gaps present 
in the map do not show a regular pattern as the clusters. These gaps are probably due to 
recombination hot spots, but could also indicate fixation of the potato genome in this region. 

Among the AFLP markers, differences in distribution can be found between restriction 
enzyme combinations. The main observation is the lower amount of Pst markers in the 
centromeric clusters due to methylation, which gives Pst primer combinations an advantage in 
obtaining a more even distribution of markers. However, due to methylation polymorphisms, 
the amount of singletons in Pst primer combinations is higher. 

After fitting the entire original scoring data into the bins, an accurate estimate of the amount 
of singletons can be made. Considering the 7,600 markers segregating in one parent only, the 
amount of missing values is 12.8% and the amount of singletons is 4.1%. This percentage is 
compared with the amount of data points that are different between the four duplicate 
individuals, which equals 3.9%. However, if the singletons have occurred at random, 2.0% 
singletons should have caused 3.9% different data points between duplicates. Clearly this 
percentage is too low in comparison with the amount of singletons found in the map. 
Obviously, the singletons do not occur at random, but more than halve of them are present in 
both duplicate clones. Thus, singletons are not only caused by scoring errors, but also by 
laboratory errors and/or biological phenomena. 

 

APPLICABILITY OF ULTRA DENSE MAPS 

The map has been successfully used as a resource for markers linked to resistance genes. The 
AFLP markers are transferable to other populations (ROUPPE VAN DER VOORT et al. 
1997) and recombinants can be produced to fine map the specified region (BAKKER et al. 
2004). With these markers, the genes can be cloned, but the applicability of the ultra-dense 
map ranges further than specific target regions. It is an important database for the genome 
wide anchoring of BACs into a physical map of potato. Especially in regions on the genome 
rich in recombination events, molecular markers provide the blueprint for contig construction. 
However, ordering BACs within the centromeric clusters is still difficult. 

To enable research on potato, a detailed database is being constructed that can be accessed 
through Internet. It will be completed with a reference catalogue of AFLP annotated gels, to 
transfer the AFLP markers from the ultra-dense map to other populations. 
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The methods described in this thesis have been applied in a progeny from two highly 
heterozygous clones of potato. But in principal, without any modification, these methods 
work in backcross populations, as well as in haploid or doubled haploid populations. Dense 
and accurate mapping is virtually impossible in recombinant inbred line populations due to 
the high number of double recombination events, but with some modifications in SMOOTH, 
F2 populations can be analyzed as well. It may be advisable in F2 populations to split the two 
parental maps, especially in the case of dominant scoring of the markers. 

Finally, this robust, easy and fast approach is a model for other ultra-dense maps. Being the 
densest map ever obtained through meiotic recombination in any species, it will prove the 
utility in basic genetical studies as well as applied potato-breeding research. 
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Summary 
 

The research in this thesis deals with the construction and specifics connected to the 
construction of an ultra-dense genetic linkage map of potato. An F1 population of 130 
individuals from a cross between two heterozygous diploid potato clones was analyzed with 
381 AFLP primer combinations which yielded nearly 10,000 markers. During an early stage 
of data analysis, it was noticed that the available mapping software could not cope with these 
data quantities. Linkage groups with over 1000 markers cannot be handled with current 
software such as JoinMap, and even small amounts of errors caused severe marker ordering 
problems. Therefore, new approaches were developed, resulting in the program RECORD 
(Chapter 3) that could produce accurate marker orders in a relatively short time. The necessity 
to remove scoring errors was recognised and performed with the computer program 
SMOOTH (Chapter 4). The combination of these two programs made it possible to construct 
a reliable and robust framework map. The framework map consists of bins, which are 
positions on the genetic map harbouring different amounts of AFLP markers with a unique 
segregation pattern and separated by recombination events. Thanks to the high level of 
saturation offered by 10,000 markers, it was possible to determine most of the recombination 
events in the population. Finally, all marker data were fit into the bins of the skeleton bin map 
by maximum likelihood. 

Chapter 2 describes the pilot study of the new mapping procedure with linkage group I, the 
largest linkage group in terms of the number of markers. LG I consists of 95 maternal bins 
and 101 paternal bins. The 1260 AFLP markers are not evenly distributed along the genetic 
map. Clustering was observed in one bin in each of the parental maps and despite the marker 
saturation, gaps of up to seven bins were found. Markers derived from EcoRI/MseI, 
SacI/MseI and PstI/MseI enzyme combinations showed different genetic clustering. 
Approximately three-quarters of the markers placed into a bin were considered to fit well, 
based on an estimated residual ‘error-rate’ of 0-3%. However, twice as many PstI-based 
markers fit badly, suggesting that parental PstI-site methylation patterns had changed in the 
population. 

The new software RECORD (REcombination Counting and ORDering) is presented in 
Chapter 3 and can be used for the ordering of loci on linkage groups. The cost function of this 
method is based on the minimization of the total number of recombination events per linkage 
group. The search algorithm is a heuristic procedure, combining elements of branch-and-
bound with local reshuffling. Since the criterion proposed does not require intensive 
calculations, the algorithm rapidly produces an optimal ordering. A simulation study was 
performed to compare the performance of RECORD and JoinMap. RECORD is much faster 
and less sensitive to missing observations and scoring errors, since the optimization criterion 
is less sensitive to the effect of the scoring errors. In particular, RECORD performs better in 
regions of the map with high marker density. 

The statistical method that was developed to remove genotyping errors from genetic linkage 
data during the mapping process is described in Chapter 4. The program SMOOTH calculates 
the difference between the observed and predicted values of data points based on data points 
of neighboring loci in a given marker order. Highly improbable data points are removed by 
the program in an iterative process with a mapping algorithm that recalculates the map after 
cleaning. SMOOTH has been tested with simulated data and experimental mapping data from 
the ultra-dense map of potato. Simulations demonstrate that this method is able to detect a 
high amount of scoring errors and enables mapping software to successfully construct a very 
accurate high-density map. 
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Finally, the complete ultra-dense map of potato is presented in Chapter 5. A skeleton bin map 
was derived, spanning 977 and 1005 recombination events in the maternal and paternal map, 
respectively. From the markers that were heterozygous in only one of the parents, 98% could 
be fit in the bins with a LOD threshold of 4. Of the markers that were heterozygous in both 
parents (bridge markers), only 79% could be fit with a LOD threshold of 15. These thresholds 
were determined by a permutation test. After fitting 10,000 random markers into the bins, less 
than 0.1% of the markers fit into the framework map with LOD scores higher than either 4 or 
15, for 1:1 and 3:1 segregating markers respectively. In both parental maps the twelve 
chromosomes could be identified. In addition, the paternal map includes a small unassigned 
linkage group with a severe segregation distortion. Singletons did not occur randomly among 
the markers. Many markers were without singletons and the 10% of the markers with the 
poorest data quality accounted for more than half of the total amount of 33489 singletons in 
the data set. Segregation distortion was observed in the maternal map on linkage group V and 
in the paternal map on linkage groups I and XII. Markers are non-randomly distributed across 
the map. Putative centromeric positions showed extensive marker clustering while putative 
recombination hot spots resulted in large intervals up to 15 cM without markers. The markers 
derived from EcoRI/MseI and SacI/MseI enzyme combinations clustered more frequently 
than those derived from PstI/MseI enzyme combinations. The distribution of recombination 
events per chromatid suggested an absence of the occurrence of 0 chiasmata and a presence of 
more than one chiasma per chromosome arm. 

The marker saturation of the ultra-dense map can be used for gene cloning and BAC landing. 
Proof of concept was recently obtained by the cloning of the late blight resistance gene R3a 
and the construction of a BAC contig comprising the wart disease resistance gene Sen1-4 (see 
Chapter 5 for references). The ultra-dense map will thus not only be very helpful with the 
anchoring of BAC-contigs for a sequence ready potato physical map, but will also prove its 
value for further gene cloning projects. 
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Samenvatting 
 

Het onderzoek dat wordt beschreven in dit proefschrift, behandelt de problemen die optreden 
en de oplossingen die verkregen zijn bij het maken van een ultradichte genetische 
koppelingskaart van aardappel. Een F1 populatie van 130 individuen van een kruising tussen 
twee heterozygote diploïde aardappelklonen werd geanalyseerd met behulp van 381 AFLP 
primercombinaties en dit resulteerde in ongeveer 10.000 merkers. Tijdens de eerste stadia van 
het analyseproces werd al snel duidelijk dat de beschikbare software niet kon omgaan met 
zulke grote hoeveelheden aan gegevens. Koppelingsgroepen met meer dan 1000 merkers 
kunnen niet door JoinMap worden behandeld, en zelfs een klein percentage aan singletons (i.e. 
dubbele recombinaties of foutscores) leidt tot grote onnauwkeurigheid in het vaststellen van 
de merkervolgorde. Als gevolg hiervan werden nieuwe concepten ontwikkeld waaronder het 
software programma RECORD (Hoofdstuk 3), dat in een relatief korte tijd nauwkeurige 
merkervolgordes kan produceren. De noodzaak om singletons te verwijderen werd beschreven 
in Hoofdstuk 4 waar ook een statistisch computerprogramma (SMOOTH) gepresenteerd 
wordt dat de singletons verwijderd. De combinatie van deze twee programma's maakte het 
mogelijk om via een dataset waarin tegenstrijdigheden verwijderd waren, een betrouwbaar en 
robuust geraamte van de kaart te maken. Het geraamte van de kaart bestaat uit 
compartimenten, die elk een positie op de genetische kaart voorstellen, begrensd door 
recombinatiegebeurtenissen. Elk compartiment ontleent zijn identiteit en positie aan een uniek 
uitsplitsingspatroon en bevat variabele aantallen AFLP merkers. Dankzij het hoge 
verzadigingsniveau als gevolg van de 10.000 merkers, was het mogelijk om de meeste 
recombinatiegebeurtenissen in de populatie vast te stellen. Tenslotte werden alle ongekuiste 
merkergegevens aan de compartimenten van het geraamte van de kaart toegekend op basis 
van de methode van de grootste aannemelijkheid. 

Hoofdstuk 2 beschrijft het eerste resultaat van de nieuwe karteringsprocedure met 
koppelingsgroep I, de grootste groep qua merkeraantallen. Koppelingsgroep I bestaat uit 95 
maternale compartimenten en 101 paternale compartimenten. De 1260 AFLP merkers zijn 
niet gelijkmatig verdeeld over de genetische kaart. In de kaarten van beide ouders kwamen de 
meeste merkers voor als cluster in één compartiment en werden gaten van tot wel zeven lege 
compartimenten gevonden ondanks de verzadiging van het chromosoom met merkers. 
Merkers afkomstig van de verschillende enzymcombinaties EcoRI/MseI, SacI/MseI en 
PstI/MseI lieten een verschillende mate van clustering zien. Ongeveer driekwart van de 
merkers paste zeer goed in de compartimenten, uitgaande van een geschat 'singletongehalte' 
van 0-3%. De PstI merkers daarentegen bereikten bijna twee keer zo vaak een 
singletongehalte van meer dan 3%, hetgeen suggereert dat de ouderlijke methylatiepatronen 
waren veranderd in de nakomelingen. 

De nieuwe software RECORD (RECombinaties tellen en ORDenen) wordt beschreven in 
Hoofdstuk 3 en kan worden gebruikt voor het ordenen van loci in koppelingsgroepen. Het 
beoordelingscriterium van deze methode is gebaseerd op het minimaliseren van het totale 
aantal recombinatiegebeurtenissen per koppelingsgroep. Het zoekalgoritme is een heuristische 
procedure, die elementen van 'branch-and-bound' met 'local reshuffling' combineert. 
Aangezien het voorgestelde criterium geen intensieve berekeningen nodig heeft, produceert 
het algoritme snel een optimale volgorde. Een simulatiestudie werd uitgevoerd om de 
prestaties van RECORD en bestaande software (JoinMap) te vergelijken. RECORD is veel 
sneller en minder gevoelig voor singletons, aangezien het optimalisatiecriterium minder 
gevoelig is voor het effect van singletons. In het bijzonder excelleert RECORD in regionen 
van de kaart met hogere merkerdichtheid. 
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De statistische methode die ontwikkeld is voor het identificeren en verwijderen van singletons 
uit de genetische merkergegevens tijdens het karteringsproces, is beschreven in Hoofdstuk 4. 
Het programma SMOOTH berekent het verschil tussen de waargenomen en voorspelde 
waarden van een specifiek datapunt, gebaseerd op datapunten van flankerende loci in een 
gegeven merkervolgorde. Hoogst onwaarschijnlijke datapunten worden verwijderd door het 
programma in een iteratief (i.e. zichzelf herhalend) proces met een karteringsalgoritme, dat de 
kaart opnieuw berekent na het verwijderen. SMOOTH is getest met behulp van simulaties en 
experimentele karteringsgegevens van de ultradichte kaart van aardappel. De simulaties tonen 
aan dat deze methode goed blijft presteren zelfs als het percentage singletons onrealistisch 
hoog is (tot 20%). Het stelt karteringssoftware in staat tot het succesvol vervaardigen van een 
zeer nauwkeurige hogedichtheidskaart. 

Tenslotte is de complete ultradichte kaart van aardappel gepresenteerd in Hoofdstuk 5. Een 
geraamte van de kaart was verkregen met een lengte van respectievelijk 977 en 1005 
recombinaties in de maternale en paternale kaart. Van alle merkers die heterozygoot waren in 
één van beide ouders, kon 98% in dit geraamte ingepast worden met een LOD van tenminste 
4. Van de merkers die heterozygoot waren in beide ouders konden hoogstens 79% worden 
ingepast met een LOD van tenminste 15. Deze drempelwaarden zijn vastgesteld door middel 
van een permutatietest. Na het passen van 10.000 willekeurige merkers in de compartimenten, 
pasten slechts 0,1% van de merkers in het geraamte van de kaart met LOD-waarden hoger dan 
4 of 15 respectievelijk voor de 1:1 en 3:1 uitsplitsende merkers. De twaalf chromosomen 
konden in de kaarten van beide ouders worden geïdentificeerd. Daarnaast bevatte de paternale 
kaart een kleine onbekende koppelingsgroep met een ernstig afwijkende 
uitsplitsingsverhouding. Singletons waren niet gelijkmatig verdeeld over de merkers. Veel 
merkers bevatten helemaal geen singletons en de 10% merkers met de laagste kwaliteit waren 
goed voor meer dan de helft van de in totaal 33489 aanwezige singletons in de gegevens. 
Scheve uitsplitsingsverhoudingen werden gevonden in koppelingsgroep V van de maternale 
kaart en koppelingsgroepen I en XII van de paternale kaart. Merkers zijn niet gelijkmatig 
verdeeld over de kaart. Mogelijke centromeerposities lieten enorme merkerclustering zien, 
terwijl mogelijke recombinatie hotspots resulteerden in grote gaten tot wel 15 cM. Merkers 
afkomstig van EcoRI/MseI en SacI/MseI enzymcombinaties clusterden meer dan die 
afkomstig van PstI/MseI enzymcombinaties. De verdeling van recombinatiegebeurtenissen 
per chromatide suggereerde een afwezigheid van 0 chiasmata en de aanwezigheid van meer 
dan één chiasma per chromosoomarm. 

De verzadiging van merkers van de ultradichte kaart kan worden gebruikt voor het cloneren 
van genen en BAC-landing. Bewijzen voor de waarde van de ultradichte kaart hiervoor zijn 
recent verkregen door middel van het cloneren van het aardappelziekte resistentiegen R3a en 
de vervaardiging van een BAC-contig dat het wrattenziekte resistentiegen Sen1-4 omvat (zie 
Hoofdstuk 5 voor literatuurverwijzingen). Daarnaast zal de ultradichte kaart erg nuttig zijn bij 
het genetisch verankeren van BAC-contigs van een fysische kaart van aardappel, zodat 
chromosoomspecifieke en minimaal overlappende BACs geleverd kunnen worden voor DNA-
sequentieanalyse. Ook voor toekomstige en nog lopende projecten voor gen-clonering zal de 
ultradichte kaart waarschijnlijk zijn blijvende waarde bewijzen.. 
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Het is zover: het proefschrift is nu bijna klaar om gedrukt te worden. Graag wil ik op deze 
plaats iedereen van harte bedanken die direct of indirect een bijdrage aan dit proefschrift heeft 
geleverd. 

Beste Herman, als mijn directe begeleider en copromotor heb jij verreweg de belangrijkste rol 
vervuld in mijn promotiewerk. Ik was nog bezig met een afstudeervak, toen je mij al aannam 
om computer-AIO te worden bij de aardappelgroep. We hebben vele interessante en soms ook 
lange gesprekken gevoerd over wetenschap, maar ook over maatschappelijke en persoonlijke 
zaken. Ik had vaak wel moeite met de hoge eisen die je aan mij en mijn werk stelde, maar ik 
denk dat dat achteraf ook wel nodig is geweest. 

Richard, jij bent in de loop van mijn AIO-tijd mijn belangrijkste promotor geworden door het 
stokje van Evert Jacobsen over te nemen. In die tijd heb je je langzamerhand ook steeds meer 
bemoeid met mijn werk. Dankjewel dat je uiteindelijk de vaart erin gezet hebt om ervoor te 
zorgen dat ik dit werk kan verdedigen. 

Mijn twee paranimfen, Jaap en Manga, ik ben blij dat jullie me willen bijstaan tijdens de 
laatste loodjes van mijn promotie. Jaap, hoe vaak hebben we niet samen gepingpongd, choco 
de luxe of cola gedronken en ons hart uitgestort over hardlopen en fietsen (jouw interesse) en 
muziek en theater (mijn interesse)? Wat mij betreft zeker niet te vaak! Manga, ik ben er erg 
trots op dat ik de ceremoniemeester van jouw bruiloft met Saskia mocht zijn. De band die we 
met elkaar hebben komt ongetwijfeld ook doordat ik jouw geboorteland Kameroen heb 
bezocht. Ik hoop dat we alledrie snel weer volledig aan de slag kunnen en ik wens jullie veel 
succes met jullie eigen laatste loodjes van de promotie. 

Verder wil ik hier mijn kamergenoten bedanken. Marieke, ik kijk terug op een gezellige tijd 
die we voornamelijk achter onze computer tegenover elkaar hebben doorgebracht. Nelleke, 
we zijn al een tijdje geen collega's meer, maar ik stel het contact dat we hebben enorm op 
prijs. Bedankt voor je steun, je gezelligheid en alle keren dat ik bij je mag blijven eten. Ook 
de rest van mijn kamergenoten: Guusje, Yuling, Wole, Asun, Niek, Luisa, dankjewel. 

Beste Piet, als ik er even niet meer helemaal uitkwam, was jij er om de orde in chaos te 
scheppen. Informeel ben je voor mij ook altijd een beetje een promotor geweest. 

Annie, het hart van plantenveredeling, dankjewel voor de zorg over de financiële en 
secretariële zaken. Ik weet nog goed hoe ik als jong studentje schoorvoetend over de drempel 
van het secretariaat kwam om mijn cijfers op te halen en Annie me aankeek en zei: "Zo 
meneer Van Os, u heeft het gehaald hoor." 

Hoewel we niet zo vaak een bijeenkomst hebben gehad die pas na 10 uur 's ochtends werd 
gehouden, wil ik ook de leden van de aardappelgroep bedanken voor het meedenken en 
bediscussiëren van mijn werk waaronder Carolina Celis, Ronald Hutten en Jaap Buntjer. 
Hierbij wil ik ook graag de partners van het UHD-project bij nematologie en in het buitenland 
meenemen: Sandra Andrzejewski, Erin Bakker, Imanol Barrena, Glenn Bryan, Bernard 
Caromel, Bilal Ghareeb, Edwige Isidore, Walter de Jong, Paul van Koert, Véronique Lefebvre, 
Dan Milbourne, Enrique Ritter, Jeroen Rouppe van der Voort, Françoise Rousselle-Bourgeois, 
Joke van Vliet, Robbie Waugh en Jaap Bakker.  

Verder heel de vakgroep (ik bedoel natuurlijk laboratorium voor plantenveredeling) 
dankjulliewel voor de informele zaken rond en tijdens het werk en dan bedoel ik niet alleen 
het klaverjassen. Van al mijn collega's wil ik Arnold toch nog even speciaal bedanken voor 
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sessies die we samen gehad hebben om mijn gedachten te kunnen ordenen en weer structureel 
aan de slag te gaan met schrijven. Arnold, jij was mijn eerste afstudeervakbegeleider, ik ben 
blij dat je me een week eerder voorgaat met je promotie. 

Ongeveer gelijktijdig met mijn werk als AIO, ben ik in de musicalwereld gestapt. Eerst bij de 
musicalvereniging Sempre Sereno, maar al gauw waren de nevenactiviteiten van de 
vereniging onder de bezielende leiding van Willem van Roekel uitgegroeid tot een serieuze 
aparte stichting. Roekeloos was al die jaren een geweldige uitlaatklep, maar ook een goede 
leerschool. Willem en alle andere 'Roekelozen', dankjewel voor de jarenlange intensieve 
samenwerking. Ik wens jou en je stichting veel succes in alle nog komende producties. 

Het meest dierbaar is me mijn familie. Lieve Mirjam, Irene, Paul, Eline, Mi Sun en Se Woong, 
bedankt dat jullie er zijn. Paul, we hebben veel opgetrokken in de tijd dat we samen op het 
huis pasten. Het was een fijne tijd! Lieve Sam, Anna en Floris, wat is het toch geweldig om 
jullie oom te kunnen zijn. 

Tot slot wil ik mijn ouders bedanken. Lieve papa en mama, ik ben jullie enorm dankbaar voor 
de geweldige steun en het vertrouwen in mijn keuzes. Ik hoop dat jullie nog jaren kunnen 
genieten van het pensioen en de kleinkinderen en van elkaar. 

 

Hans 
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Hans van Os werd op 15 augustus 1976 geboren in Langbroek. In juni 1994 behaalde hij aan 
het Revius Lyceum te Doorn het VWO diploma. In datzelfde jaar begon hij zijn studie 
plantenveredeling en gewasbescherming aan de Wageningen Universiteit. Bij het 
laboratorium voor plantenveredeling heeft hij als student onderzoek verricht naar de rol van 
artificiële intelligentie bij de voorspelling van F1 hybriden en merkergestuurde selectie 
vergeleken met fenotypische selectie bij Arabidopsis. Zijn stage heeft hij doorgebracht in 
Nieuw Zeeland waar hij werkte aan een detectiemethode van aspergevirus II en het mappen 
van apomixie in Hieracium. In juni 1999 behaalde hij zijn doctoraal diploma. In april van 
datzelfde jaar trad hij als AIO in dienst bij het laboratorium voor plantenveredeling aan de 
Wageningen Universiteit in het project over de constructie en toepassing van een 
multifunctionele ultra-dichte genetische kaart van aardappel. De resultaten van dit door de EU 
gefinancierde project staan beschreven in dit proefschrift. 
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