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Abstract

Acharya, R. C., 2004, Upscaling of Nonlinear Reactive Transport:
from Pore to Core. PhD Thesis, Wageningen University, The Netherlands.
ISBN 90-8504-130-9, 137 pages.

The major objective of this research is to gain a better understanding of the heterogeneous
interactions between reactive solutes and the solid phase at the pore scale, to scale up to the
core scale and compare with the results of experimental observations and analytical equa-
tions. In this research we develop a new technique for discretization of continuum space into
a hydraulic pore-network (HYPON). With this model the microscopic geometric properties
are realistically taken into account. With HYPON we stutlggenesisexplore non-unique
porosity-permeability relations, and gain an insight how the flow field should be handled while
simulating gradual temporal changes in porosity. Additionally, the representative size of a 3D
pore-network is determined. The longitudinal dispersion coefficient is derived by upscaling the
Brownian motion and advective displacements at the pore scale for which a Brownian Parti-
cle Tracking Model (BPTM) is developed. With BPTM we reproduce the classical laboratory
experiments of single tubes and then extend the model for the pore-network. The dispersion
function is explored for different characteristic Peclet numbies,) regimes and for differ-
ent pore-scale heterogeneities. A new method is introduced for calculating moments of First-
arrival Times Distribution (FTD) and the method is verified by comparing with the moments
of Spatial Positions Distribution (SPD). In addition, it is found that the account of molecular
diffusion at the intersections of pores is crucial, especially for Iow regimes. In general,
we conclude that the presented network model with particle tracking is a robust tool for cal-
culating the macroscopic longitudinal dispersion coefficient. Dispersion is studied also with
a Mixing Cell Model (MCM) on HYPON for which the representative size of the network
is also determined. Then we study the dispersion relation as a function of pore-size hetero-
geneity. Further, the results of MCM and BPTM are compared for the same porous medium
with the same flow conditions. We consider a non-linearly adsorbing solute and simulate its
transport with MCM. We determine the representative size of the pore-network and simulate
transport for this size but with different pore-size heterogeneity. Our numerical experiments
based or301 x 61 x 61 sized network reveal that non-linearly adsorbing transport fronts in ho-
mogeneous media approach traveling waves, which indeed is theoretically expected. With the
growth of heterogeneity the disagreement between the predicted and numerical concentration
distributions becomes noticeable and can be better assessed with the method of moments. The
simulations also reveal that the growth rate of second central moments is a quadratic function
of the standard deviation of pore-sizes and therefore, it can systematically be estimated. The
results of modeling of non-linearly adsorbing solutes transport in physically and chemically
coupled but uncorrelated heterogeneous media reveal that with the growth of either physical or
chemical heterogeneity the analytical predictions and the numerical results sharply disagree.
The effect of chemical heterogeneity on a physically homogeneous medium is more dramatic



than that on the physically heterogeneous medium. With the increase of chemical heterogene-
ity in a physically homogeneous medium the difference compared with the traveling wave
increases. Typical of this behavior is that it is neither according to a traveling wave nor is it
perfectly Fickian. Consequently, no analytical solutions are yet available, which implies that
it is disputable to describe non-linear transport using a convection-dispersion equation with a
non-linear sorption term.

Additional index words: diagenesis; dispersion; dispersivity; network modeling; scale; up-
scaling; reactive transport; permeability; porosity; Hagen-Poiseuille flow; Freundlich isotherm;
Brownian particle tracking; mixing cell model; method of moments.
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Chapter 1

General introduction

1.1 Background

The study of flow in porous media is not restricted to a single discipline as this term applies for
the movement of fluid in a solid-phase medium, such as movement of groundwater in aquifers,
flow in lungs, wind blowing through a canopy and many others. Transport is a term that is com-
monly used for movement of a secondary parcel that is carried along by the fluid as its com-
panion, and therefore, flow and transport are dealt together. The study of flow and transport in
porous media is considered in many fields of science and technology ranging from mathematics
[Harding and Kendall 1974] through solid state physics and materials science to applications in
geology, hydrology, geophysics, environmental technology, petroleum engineering, medicine,
or separation technology [Hoffmann 2003]. The essence of these phenomena is extensively dis-
cussed in recent reviews [Sahimi 1993] and therefore, it is not repeated here. Many studies of
flow and transport in porous media were motivated by one central question, nameglgoes
microscopic geometric structure of the medium influence the effective macroscopic transport
parameters(http://www.ical.uni-stuttgart.de/Receptiblications/Papers/acp/node3.html)? With-
out a good insight into such influence, sound remediation techniques and good forecasting
models cannot be developed. To understand this influence it is necessary to understand flow
and transport processes at microscopic (pore) scale and to describe their manifestation at the
macroscopic (core) scale and field scale. Furthermore, while modeling at the field scale, it
is usually not feasible to take all small scale heterogeneities into account. Without inclusion
of the effects of such heterogeneities in field-scale descriptions, neither the techniques nor
can their predictions about their reliability gain credibility. Capturing these heterogeneities
is the intention of the central question and therefore, the question in this thesis accentuates
on three components: (i) defining or conceptualizmgroscopic geometry(ii) composing
and solving the equations of physics at the microscopic scale and (iii) defining and validat-
ing the macroscopic limits, anpscaling According to the International Workshop of Ap-
proaches for Upscaling Processes Affecting Transport, June 18, 1999, Albuquerque, NM, USA
(http://www.nwmp.sandia.gov/wlp/upscaling/summary.htapscaling is the means by which
appropriate parameter values, processes and conceptual models are assigned to the larger
scale of performance assessment or process-level mod@bks study proposed here is moti-
vated by the same central question and aims to capture effects of these heterogeneities at the
core scale. Hence, we elaborate these three components further, with emphasis on the scales
considered in this thesis.

The first and second components are easy to distinguish from each other and are essentially
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important. Geometric properties of porous media are determined exclusively by the complex
system of internal boundaries which defines the microstructure. These properties can be cal-
culated from a complete specification of the microstructure alone. Physical flow and transport
properties on the other hand require in addition exact or approximate equations of motion. Of-
ten this involves steady or unsteady state transport of physical quantities such as mass, energy,
charge or momentum. The connection of the flow physics between the pore- and the continuum-
scale can be understood bpscaling i.e. the third component of the central question. This is
equivalent to the derivation of average (or effective/equivalent) flow and transport properties on

a larger scale based on physical rules at smaller scales [Whitaker 1969; Hassanizadeh and Gray
1979a; b; Whitaker 1986]. In other words, upscaling focuses on the controlled transition from
microscopic to macroscopic length scales or determines the macroscopic limits. Unfortunately,
the macroscopic limit, i.e. the ratio of microscopic length scale to macroscopic length scale,
differs from process to process. For example, macroscopic limit for permeability may not be
the same as for dispersion. In addition, this limit depends on heterogeneity of microscopic
geometry, physics or chemistry. Hence, each phenomenon in a particular medium has its own
limit. This limit can be seen only through modeling. A very useful tool in this regard is a
pore-scale network model, an aggregate of many pores.

Since Fatt [Fatt 1956a; b; c], pore-scale network models have become an elementary tool
for combining all three components in one platform. With these models, a considerable work
was carried out for several studies such as permeability [Payatakes et al. 1973; Blunt and King
1991], dispersion [Mohanty and Salter 1982; Sorbie and Clifford 1991], wettability, drainage,
multiphase-flow dynamics [Celia et al. 1995] and many others [Van Brakel 1975]. However,
for obtaining trust-worthy macroscopic parameters, a representative size (or the macroscopic
limit) of the pore-network should be knowanpriori. We are aware of few works which were
focused on finding the macroscopic limits. For example, for finding a asymptotic value of
permeability for a 2D network, Koplik [Koplik 1982] determined the required size. However, a
representative size of a 3D pore-network has not yet been determined. A considerable research
was carried out for determining the dispersion coefficient with particle tracking [Sahimi et al.
1986; Verlaan 2001]. However, a representative size of a 3D pore-network with a mixing cell
model of non-reactive tracer has not yet been carried out. Although some works on reactive
transport were carried out through pore-network modeling [Suchomel et al. 1998a; b], the
representative size of such a network has not yet been determined. Without knowing this size
the conclusions about the macroscopic parameters or processes are poorly based.

There are also some more subtle issues. For example, althetgiogeneityas been one
of the best spoken issues in the study of flow and transport of porous media, no step has been
made to evaluate its impact on the macroscopic parameters (such as the degree of spreading
of the front of a single phase transport) on the basis of pore-to-core upscaling. Early studies
on non-reactive transport showed that heterogeneity plays a role, namely, due to heterogeneity,
the distribution of contaminant at the intersections of pores is proportional to the discharges
through the intersecting pores [De Josselin de Jong 1958]. Recent studies showed that distribu-
tion of contaminants at the intersections of pores generally depends on the diffusion-advection
regimes [Sorbie and Clifford 1991; Damion et al. 2000]. However, no upscaling step has
been made to evaluate these findings. Likewise, no step has been taken to evaluate the macro-
scopic equations of non-linearly reactive transport on the basis of pore-to-core scale upscaling.
Hence, it is not justified whether the extensions of the convection-dispersion equation with
sorption terms are valid for non-linearly reactive solute transport. As the solute sorption obeys
non-linear isotherms [Bolt 1982], the understanding of non-linearly reactive solute transport
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is crucial. It is established that both physical (geometric) and chemical heterogeneities af-
fect the concentration front-behavior [Dagan 1989]. However, it is not clear when and how
these two sources of heterogeneity prevail in determining the fate of the contaminant-plume in
porous media. The difficulty in understanding these heterogeneities can be understood from
the fact that practically employed experimental methods for observing the pore space geome-
try often involve observations of macroscopic flow and transport phenomena from which the
microscopic geometry is inferred by inversion techniques [Dias and Payatakes 1986]. Gener-
ally, such an inferred microscopic geometry is either over-simplified for numerical reasons or is
very ambitious in the way they are directly related with experimental measurements, yet almost
impossible to solve with currently available hardware, except for supercomputing facilities, in
sufficiently large domains. That means a rigorous upscaling step is difficult to undertake. In
addition, the interaction of different phases and the values of the relevant physical/chemical
parameters are in general based on laboratory experiments. However, the processes in these
experiments differ from the solute transport processes in porous media.

1.2 Research objectives

This research aims to identify and describe the physical/chemical processes that govern the
interaction of reactive solutes with the solid phase at the pore scale and augraga!¢ these

to the core scale. We define thecroscopic geometryith a pore-unit (or pore) and establish

and solve the exact flow and transport equations for each pore-unit. By aggregating these
pore-units into a representative pore network, we averagsc@lg relevant parameters such

as permeability, dispersion coefficient and the measure of plume spreading. Additionally, we
apply different approaches and assumptions of physical and chemical processes and attempt to
understand the behavior of the contamination front both qualitatively and quantitatively.

The major objective of this research is to gain a better understanding of the heterogeneous
interactions between reactive solutes and the solid phase at the pore scale, to scale up to the core
scale and compare with the results of experimental observations and analytical equations. With
this understanding we can evaluate the limitations and sufficiency of the available analytical
equations for prediction of transport behavior of reactive solutes.

1.3 Outline of the thesis

This study is aimed at describing steady state Newtonian fluid flow and contaminant trans-
port in a rigid porous medium through pore-network modeling. To meet our objective we focus
mainly on physical heterogeneity (differently sized pores) and chemical heterogeneity (variedly
distributed chemical-affinity of pores). Hence, we focus on realizing a realistic microscopic ge-
ometry, applying exact equations of microscopic physics and chemistry and perform rigorous
upscaling This thesis contains five major themes and hence, each chapter is an independently-
readable article. In Chapter 2, we develop a new approach for the construction of a compar-
atively realistic HYdraulic POre-Network model (HYPON). According to this technique, the
continuum domain is discretized into a network of pore-units with converging-diverging archi-
tecture. The morphological characteristics of such a network are compared with those of physi-
cally based pore-networks [@ren et al. 1998]. Further, efforts are made to upscale the porosity-
permeability relations of this network. Steady-state conditions are imposed on the network
and the Kirchoff problem is solved numerically by using preconditioned conjugate gradients
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[Hestenes 1980]. The solution provides an intrinsic permeability of the network. For an asymp-
totic value of intrinsic permeability a representative size of pore network is deduced by using
Monte Carlo technique and this size is verified with the effective medium theory [Woodside
and Messmer 1961; Torquato and Hyun 2001]. Additionally, the results are verified also with
the Carman-Kozeny theory. With several realizations of porebody sizes we derive permeability
for all realistic porosities reported in the literature. The non-unique porosity-permeability rela-
tions are explored assuming diagenesis either in the porebodies or in the converging-diverging
bonds. This provides insight whether it is necessary to periodically update the pressure field of
simulating reactive solute transport, which causes clogging or mineral dissolution.

Chapter 3 and 4 deal with the quantification of local displacements due to Brownian motion
caused by molecular diffusiol),,) and advection of non-reactive tracer particles and focus
on upscaling such pore-scale displacements to a macroscopic parameter known as longitudinal
dispersion coefficientlp;) for the entire network. For this purpose we develop two models: the
Brownian Particle Tracking Model (BPTM) [Chandrasekhar 1943; Sahimi et al. 1983b; Sor-
bie and Clifford 1991; Damion et al. 2000; Acharya et al. 2004b] and the Mixing Cell Model
(MCM) [Gunn and Pryce 1969; Appelo and Postma 1993; Sun 1996]. Chapter 3 describes the
procedure of BPTM development and extensively elucidates the results from this model. We
start with developing BPTM for a Taylor’s capillary tube and verify it by reproducing the Tay-
lor's laboratory experiments [Taylor 1953]. Then the model is extended to the network scale.
The results obtained from BPTM for the network are compared with the theoretical model of
Saffman [Saffman 1959; 1960] and with the experimental data compiled by earlier researchers
[Perkins and Johnston 1963; Legatski and Katz 1966; Han et al. 1985]. Different intra-pore ve-
locity profiles are considered. Different types of jump conditions at the intersections of pores
and different regimes with respect to characteristic Peclet nuniber £ v¢/D,,,, where/
denotes lattice constanfjean pore lengthandv denotes the intrinsic velocity in the mean
flow direction) [Brenner 1980] are considered. Also the impact of physical heterogeneity of
the pore sizes on longitudinal dispersion is analyzed numerically. The method of moments is
used for processing the BPTM data. The data are generated with two approaches: at designated
time intervals the positions of the particles are scanned to obtain a Spatial Positions Distribu-
tion (SPD) [Chandrasekhar 1943] or the particles are injected from the inlet of the network and
produced at the outlet to obtain a First-arrival Times Distribution (FTD) [Mohanty and Salter
1982; Sahimi et al. 1986]. Also a new method for computing dispersion coefficient from FTD
data is introduced and elucidated.

In Chapter 4 we develop a MCM and use it to obtaip for HYPON. The starting point is
the determination of the representative size of the pore-network that can produce an asymptotic
value ofdispersivity(o, ~ Dy /v). Then the functional relationship of;, and the pore-size
heterogeneity is explored. Also, the attention is paid on how these relations respond to the value
of the iteration timeAt¢. Finally, these relations are verified in large pore-networks and thus,
asymptotic values af, are ascertained. In the next-step, we verify whether MCM is applicable
for quantifying dispersivity. For that purpose five big networks with gradually varying pore-
size heterogeneity are considered and the dispersivity with BPTM was computed to compare
with MCM results.

The upscaling problem of non-linearly reactive transport is dealt with in Chapters 5 and 6.
In Chapter 5 numerical simulations are aimed at whether in physically heterogeneous porous
media (differently sized pores) traveling wave behavior develops. For this purpose, the starting
point is again the determination of a representative size of pore-network. Then several cases
with different pore-size variance are designed and the transport of solutes that obey the Fre-
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undlich isotherm is simulated. The network of equal sized pores with homogeneous chemical
properties is a special case of interest because in such a network theoretically a traveling wave
behavior should develop [Van der Zee 1990; 1991; Bosma and Van der Zee 1992]. This case is
also a reference bench mark for other cases. In addition to the direct comparison of numerical
and theoretical (analytical) fronts, the agreement of the two is judged with the method of mo-
ments (up to fourth order). Finally, the functional relations of the moment growth rates to the
pore-size statistics are derived.

Chapter 6 elucidates on non-linearly adsorbing solutes transport in porous media of com-
bined heterogeneities: physical (pore size varian@? as well as chemical (chemical property
of each pore different). We examine how the growth rates of second central spatial moments
respond to the chemical and physical heterogeneities. Efforts are aimed at understanding the
competition of chemical and physical heterogeneities. Attention is given to exploring whether
one of the heterogeneity sources prevails in determining the fate of displacement. Chapter 7
summarizes and generalizes the conclusions of these five chapters.






Chapter 2

Porosity-permeability properties
generated with a new 2-parameter 3D
hydraulic pore network model for
consolidated and unconsolidated porous
media

Abstract

A new method is presented to construct a simple and general site bond correlated 3D HYdraulic
POre Network model (HYPON) of hydraulic behavior of porous media for a wide range of per-
meability and porosity. Pore scale microstructure in this model is captured through simple
power functions of Beti's influence lines that fix both the location and the size of throat (the
narrowest section of bond) by relating the important elements of microstructure such as coor-
dination number, porebody sizes and pore wall curvature. The new element in pore-network
architecture is thus, the location of throat, which is important for smooth hydraulic transitions
during steady state flow conditions. Despite the reduced number of parameters in compari-
son with other pore-network models, the morphological characteristics of HYPON compare
well to those of the process-based predictive models in literature, and these characteristics are
sensitive to the variance of porebody sizes rather than to the used type of the porebody size
distributions. Processes such as diagenesis and dissolution are captured implicitly through the
pore wall curvature parameter. Different combinations of porosity and permeability relations
are obtained if the bond curvature and porebody sizes are varied. These relations reveal that
effects of diagenesis and dissolution on the permeability may be ignored as they are secondary
to effects on porosity.

Keywords Biconical bond; throat; pore size; pore curvature; effective medium.
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List of symbols and notations
3D coordination number [-]
Dimensionless resistance [-]
Connected porosity [-]
Intrinsic permeability [-]
Kinematic viscosity [ET]
Water density [ML?]

a, Hydraulic shape factor [-]
a, Geometric shape factor [-]
¢ Conductance [-]

g Magnitude of acceleration [LT]
h  Hydraulic head [L]

DRI O ®

AH Macroscopic head difference [L} Specific surface area [L]

Kp Darcy permeability [LT!]

Ly, ¢ Network/lattice length [L]

¢, BACON bond length [L]

N Number of units or nodes [-]

n  Curvature parameter [-]

g Microscopic flow [3T1]

Q Macroscopic flow [ET!]

(R) Ensemble average of porebod
Subscripts

BB BACON Bond

BL Left cone of BACON Bond
BR Right cone of BACON bond
D Darcy

f Fluid phase

el Elementary cube

7,7 Index of nodes

PDF Probability Density Function
Acronyms

BACON Biconical abscissa-Asymmetric CONcentric (bond)

BD random Beta Distribution

CDF Cumulative Distribution Funct
CT Computer-aided Tomography
GD random Gamma Distribution
HYPON HYdraulic POre Network
LN random Log Normal distribution
MRI Magnetic Resonance Index

due to gravity

oi Standard deviation of porebody sizes [
7 Tortuosity ¢ 1)

¢ Scaled abscissa [-]

¢ Inlet of the BACON bond [-]

& Throat position [-]

¢c Outlet of the BACON bond [-]

¢ 2D coordination number [-]

r(&) Throat size [-]

R, R Porebody size [L], []

Re Reynolds number [-]

S Surface area exposed to fluid phasé][L
v Macroscopic (pore water) velocity [LT]
V' Volumes [?] as specified in the text
Wy, W, Width and height of the network [L]
X,z Global and local mean flow direction
Y Axis | to the mean flow direction

Z Axis 1 to the mean flow direction

y sizes [-]

N Network

PB Porebody

PU Pore unit

t Throat, throat position
X Along X

Y AlongY

XY plane

Z Along Z

ND random Normal Distribution
ion PM Porous Medium
PU Pore Unit
RD random Rayleigh Distribution
REV Representative Elementary Volu
WD random Weibull Distribution
UD random Uniform Distribution

ime
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2.1 Introduction

Physical properties that are related to fluid-flow and chemical transport such as permeability,
dispersivity, and electrical conductivity of a porous medium depend on the texture and structure
of the solid phase. One approach to understand and represent these dependencies well at the
continuum model scale is to study processes for an ensemble of pores: the pore-network. This
way the pore-scale micro-geometry can be related to hydraulic and transport behavior of porous
media. Hilfer [Hilfer 2002] calls them geometric models and distinguishes several types: cap-
illary tube and slit models [Mualem 1976; Dullien 1992; Wise 1992], grain models [Stoyan et

al. 1995], percolation models [Chatzis and Dullien 1977; Sahimi 1993], fractal models [Katz
and Thompson 1986], stochastic reconstruction models [Quiblier 1984], diagenetic models and
(pore) network models [Fatt 1956a; b; c]. The growing interest in pore-scale network models
is understandable due to the wide range of phenomena that can be studied with these mod-
els, such as wettability, multiphase flow dynamics, hysteresis, single-phase or multiphase mass
transfer, and dispersion [Sahimi et al. 1986; Gielen et al. 2002; Van Dijke and Sorbie 2002].
Blunt [Blunt 2001] suggested that as the complex pore geometry can be adequately represented,
pore-scale models can develop into predictive models [Blunt et al. 2002]. Network theory has
been shown to be an accurate tool to study transport, for instance in Fontainebleau Sandstone
[David et al. 1990; Dren et al. 1998; Blunt 2001].

After Fatt [Fatt 1956a; b; c], who first provided a capillary 2D network model to study
relative permeability of porous media, other simple and complicated (pore) network models
have been developed and reviewed [Van Brakel 1975; Dullien 1992; Celia et al. 1995; Hilfer
1996; Reeves and Celia 1996; Blunt 2001; Blunt et al. 2002; Hilfer 2002]. With pore-scale
information such as porosity and pore size distribution data, it became possible to develop
more realistic network models [Payatakes et al. 1973; Dias and Payatakes 1986]. Porosimetry
was used to determine the porosity and pore size distribution of randomly packed beds [Mayer
and Stowe 1966; Katz and Thompson 1987]. Additionally, pore networks were based on direct
measurements of randomly packed beds [Finney 1970] and on mathematical models of spatial
tessellation [Okabe et al. 1992]. For example, using Delaunay tessellation (subdivision of space
by non-overlapping tetrahedra, at the vertices of which non-overlapping spheres are placed),
Mason [Mason 1971] mathematically generated a random pack of uniform spheres similar to
that constructed by Finney [Finney 1968; 1970]. Pore-networks were constructed by capturing
the complementary pore-region (i.e. Voronoi tessellation [Okabe et al. 1992]) either implicitly
or explicitly through one random distribution related to the porebody sizes, and another related
to the bond sizes [Payatakes et al. 1973; Chatzis and Dullien 1977; Koplik 1982; Lernormand
et al. 1983; Dias and Payatakes 1986; Jerauld and Salter 1990; Nowicki et al. 1992; Bryant
et al. 1993a; Bryant et al. 1993b; Steele and Nieber 1994b; a; Toledo et al. 1994; Reeves and
Celia 1996; Rajaram et al. 1997; Mogensen and Stenby 1998; Suchomel et al. 1998a; Dahle
and Celia 1999; Held and Celia 2001; Verlaan 2001]. Porebodies represent the large voids and
the bonds represent the connecting capillaries of smaller radii of the porous medium that is
being modeled. Recently, based on observations with 2D-microtomography (e.g. the magnetic
resonance index (MRI) and computer aided tomography (CT)), it became possible to derive
pore-networks [David et al. 1990; @ren et al. 1998; Liang et al. 2000; Blunt et al. 2002; Hidajat
et al. 2002].

Pore-network models can be either conceptual (e.g. [Reeves and Celia 1996]) or process-
based (e.g. [dren et al. 1998]). Porebodies and bonds of network models may have different
shapes. For example, sinusoidal unit cells (“bow-tie” type) in the model of Dias and Payatakes
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[Dias and Payatakes 1986] were constructed from randomly sized circular bonds and function-
ally correlated porebodies. The profile of these unit cells was derived using several constant
parameters. The pore-networks of Koplik [Koplik 1982], and Nieber and co-workers [Steele
and Nieber 1994b; a] are ensembles of randomly sized spherical porebodies and randomly
sized straight tubes, whereas the pore-network of loannidis and Chatzis [loannidis and Chatzis
1993] has angular porebodies and correlated angular bonds, where the sizes are determined
through three aspect ratios. Celia and co-workers [Reeves and Celia 1996; Reeves 1997; Held
and Celia 2001] represented their pore-network with a realistic system of spherical porebodies
and converging-diverging circular bonds, sizes of which were generated with two different ran-
dom distribution functions. Bryant et al. [Bryant et al. 1993a] constructed their pore-network
of converging-diverging tubes (of circular cross section) that could mimic the Finney’s random
packing of uniform spheres [Finney 1968; 1970]. They showed that through such a construction
the need for empirical parameters of microstructure could be reduced.

Many of the pore-network models were focused on a particular porosity and permeability,
such as a uniform sphere-packed bed [Bryant et al. 1993b; Thompson and Fogler 1997] or uni-
form sand [Payatakes et al. 1973; Reeves and Celia 1996; Held and Celia 2001] and sandstones
[@ren et al. 1998]. Though these beds are porous media (not necessarily natural porous media
[Mualem 1992; Scheidegger et al. 1993]) and provide insight into processes, more flexibility is
needed to cover a wider range of porous media. Hence, the purpose of this study was to develop
a conceptual porebody-bond correlated pore-network model that is rather general, flexible, and
simple and that can represent microstructures of porous-media with a wide range of porosities
and permeabilities. Main objective of this approach is to reduce the number of parameters
which are unknowra priori, to avoid the irrational hydraulic transitions of the bond, and to
eliminate the requirement of two separate distributions for porebodies and bonds. As the name
“HYdraulic POre Network model (HYPON)” indicates, the intention of this model is to capture
at least hydraulic properties for a broad range of porous media. We analyze predictions made
with HYPON to assess its ability to mimic hydraulic properties of porous media.

2.2 Development of model

We assume that the soil pore space consists of porebodies and bonds that connect these pore-
bodies [Scheidegger 1960; Payatakes et al. 1973]. The bonds have converging and diverging
shapes [Reeves and Celia 1996] with a narrowest section (called the throat) between the transi-
tions (conical cylinders). These conical cylinders are smoothly conjugated with the porebodies
that are located at the two ends of the bonds. We require that the construction is as simple as
possible, which implies that a pore bond should be constructed with a simple power function

in a local (pore) coordinate system. We furthermore require that this function reflects the rela-
tion of distances between porebodies and their sizes and thus, produces a simple converging-
diverging structure. By assembling these structures, there results a pore-network.

2.2.1 Geometric construction

We study a porous medium (PM) in which we distinguish a pore domain and a solid domain.
The pore domain is assumed to consist of a discrete pore-network. This network consists of
randomly sized porebodies (of siz§ that are equally spaced in 3D space at a distance equal
to the lattice constant). The lattice constant is assumed to be much smaller than the pore-
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network size, i.el < Ly, { < W,, andl! < W,. The symbols.y, W,, andWW,, respectively
denote the length, width and the height of the pore-network. The porebodies are connected
by converging-diverging functionally derived bonds, to be described below. Concept of such
a bond is not new but our approach will be shown to differ from previous researchers (e.qg.
Tsakiroglou and Payatakes [Tsakiroglou and Payatakes 1991], where the effect of correlation
of pores was investigated, Celia and coworkers [Reeves and Celia 1996; Reeves 1997; Held
and Celia 2001] where quasi-static regimes were investigated). We Bchje/ to obtain
dimensionless porebody sizB), given by

R= %,0<§§0.5, (2.1)

where the porebody sizR is not allowed to exceedf2. We introducer as the distance mea-
sured from a porebody center towards the adjacent pore. It is convenient ta $5addo get
¢ given by

g:%forogxg (2.2)
and hence¢ varies from zero to one. For illustration, two porebodies are shown in Figure
2.1. The figure presents the concept of the new bond used in HYPON that is derived from
the analogy of Beti’s influence lines, widely used in structural engineering [French 1995]. As
shown in Figure 2.1a, the influence lines used in this work are simple power functions that
originate from the adjacent porebodies, e.g. from porebahd porebody. These functions
represent the bond walls (as shown in Figure 2.1b) that guide the fluid from one porebody to
another in the intervadr and&s, which are respectively the inlet and the outlet of the bond.
The location ort where these functions intersect we denote ithnd call the throat location.
The subscript indicates throat. Hence, the dimensionless bond-size funetignalong the
central axis §) of the bond can be given by:

o { ma—ar g <esa 03
(&))" for& < ¢ <&

In Eq (2.3), the exponent is the curvature parameter that determines the longitudinal shape
and the size of the bond. Equation (2.3) reveals that the bond-size fun¢fipis continuous

and at the point E the throat is located. This is a new detail in the pore-network architecture.
The first derivative of-(¢) [i.e. r'(§) = dr(§)/d¢€] is discontinuous unless is zero. BothT;

and7 are the values af(¢) at the corresponding porebody centers and can be calculated by:

T, = éism (/O >0 (2.4)
[1 — R;cos (m/C)

where( is the coordination number on the 2D plane, ard is the angle BAF, i.e. the an-
gle under the bisector AF for the porebodyand the angle GBA under the bisector BG for
the porebody;. By insertingR; in Eq (2.4) we obtain the corresponding valueZof For
illustration,T; and7; are shown in the figure. We require that

(p = Eicos (m/C) (2.5)
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and
£¢ =1 — Rjcos (1/¢) (2.6)
The third locatior, is given by:

. T/™(T" 4 le/”)*l forn >0 2.7
t — - — .
R'L(Rz -+ Rj)_l forn = O,

whereg, can be as small as; and as large as (E-j), i.e.R; < & g(l-ﬁj). In the case, where

is zero, the locatiog, is fixed at a distance proportional to the porebody sﬁmdﬁj. Hence,

by using two simple power functions in the appropriate intervals a smooth Biconical abscissa
Asymmetric CONcentric (BACON) bond can be obtained which is schematically shown in
Figure 2.1b. The revolution of(¢) obtained from Eq (2.3) for the intervg)- and¢; yields a
conical cylinder. Similarly, the revolution ef¢) obtained from Eq (2.3) for the intervgl and

&c yields another conical cylinder. The union of these two conical cylinders gives a BACON
bond of length?,. The dimensionless bond length/¢) equals to the distance betwegn
and&s. The longitudinal shape of these cylinders depends on the curvature paramaser
depending om, the BACON bond represents an assemblage of two dissimilar hyperbolic,
parabolic, or straight conical cylinders, which share a common plane (the throat) at section E.
The bond is smoothly united with the porebodies. A 3D impression of a typical BACON bond
is shown in Figure 2.2a. To provide a 3D impression of the new model, an elementary lattice
with the circular BACON bonds and spherical porebodies is shown in Figure 2.2b. From the
figure it is seen that the union of elements is smooth and rational. The size of the narrowest
section of the bond(¢;) is determined by

r(&) = LTI +T") ™, n > 0. (2.8)

Equation (2.8) cannot be used for the case wi#qual to zero and unequal sized porebodies,
because values of¢;) for the left side and the right side are different. Although a porebody
may be connected to a number of adjacent ones (literature on pore-networks [Van Brakel 1975;
Yanuka et al. 1986; Jerauld and Salter 1990; Bakke and @ren 1996] suggests coordination
numbers ranging from 3 to 10), in this paper we assume the 2D-coordination nujhbebé

four and the total coordination numbef)(to be six.

The reasonable values of the curvature paramefecdn be expected to fall between,
andng,..s. The lower boundhy can be determined based on the minimum and maximum
porebody sizes, whereas,,.. may be estimated on the basis of the information on threshold
porosity [Du Plessis 1999]. It is possible to assign a spegHwalue to each bond (based on
the porebody sizes the bond connects) or to assign a spegifittie to each specific principle
direction. However, in this paper we use a singlealue for the entire network. The equation
for computingn  is derived in Appendix 2.A. For a network of equal sized porebodiesn be
as small as zero (which gives straight tubes). The higher valuepaiduce squeezed bonds.

We consider a pore unit (PU) with a coordination numBesqual to six. Hence, the pore
unit is a union of six conical cylinders and one porebody at the center. For illustration, a pore
unit is shown in Figure 2.3 with the BACON bonds emanating from a pore unit towards the
adjacent ones (Figure 2.3a). In Figure 2.3b and Figure 2.3c pore units with different cross-
section shapes of bond and porebody are shown. The lengths of cones that constitute bonds
differ because they depend on the size of the porebodies they are connected with.
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Figure 2.1: The construction of the BACON bond. a. The influence lines as a functton of
The locations of the inlet¢), throat €;), and the outlet{;) are indicated. b. The outline of
the bond connecting two pore bodies: porebodyth radiusR; and the center A & = 0, and
porebody; with radiusR; and the center B & = 1. The bond walls (e.g. FEG) are thick solid
lines and bisectors (AF and BG) are thin dashed lines.

If these pore units are assembled in a 3D space a pore-network arises. A typical pore-
network is shown in Figure 2.4a. Although porous media usually consist of a mixture of shapes,
we build our network with only one pure set of porebodies (either cubes or spheres) and bonds
(of either circular or square cross section) such that the equations of flow and transport remain
simple to handle. Of the different cross-section shapes of bonds shown in Figure 2.4b, all other
cross sections of the same bond size can be inscribed within the square one. This indicates that
with the square shape the largest porosities can be obtained [Torquato and Hyun 2001]. The
geometric calculations for the microscopic as well as the macroscopic scales are included in
Appendix 2.A.

2.2.2 Fundamental flow equations at pore-scale

In this section, the flow equations at the pore level (microscopic scale) are formulated [Bear
and Bachmat 1990]. The pore-level flow equations are the Navier-Stokes equations for satu-
rated steady state Newtonian viscous flow, which are also known as the Hagen-Poiseuille flow
equations. Bear and Bachmat [Bear and Bachmat 1990] suggested that for the validity of these
equations in a non-deformable porous medium, the Reynolds number should be less than 10,
i.e. flow is laminar. All pore units are water filled.

The (average) flow rates in each bond of the network are calculated from the nodal pres-
sures, which are induced by a (global) pressure difference between inlet and outlet faces. For
convenience we use hydraulic heads instead of pressure, where pressure equals to the product
of hydraulic head/), water density £§) and the magnitude of acceleration due to gravjly (

Assuming that flow occurs from porebodyto porebodyj, the dischargeq ;) through
the BACON bond in the local coordinate system follows from the Hagen-Poiseuille’s equation
[Shames 1992],

Qi,j = %Egcid‘(hi — hj), (29)

whereg; ; is the volumetric bond discharge of fluid{L~'] from node: to j, h; andh; are



14 Chapter 2. Porosity-permeability properties

b.

Figure 2.2: A 3D view of a typical shape of a BACON bond and an elementary lattice; a.
Differently sized porebodies produce bond of differing lengths, causing different lengths of the
left and the right side conical cylinders of the bond, b. The porebodies and the BACON bonds
of an elementary lattice are shown. The inside of the lattice is filled with solid phase (that does
not necessarily indicate to a grain).

a. b. C.

Figure 2.3: lllustration of a pore unit with 3D-coordination numieequal to six. a. A
porebody with connecting BACON bonds (full length shown), b. A cube shaped porebody
with bonds (of square shaped cross section) cutoff at throats, and c. A spherical porebody
with circular bonds cutoff at throats, i.e. only the converging parts of the BACON bond with
porebody are shownNyx and Ny are the number of nodes along the mean flow axis and in
the XY plane respectively.

the hydraulic heads at the corresponding pore centersy anthe kinematic viscosity of fluid
[L2T~']. In Eq (2.9),¢; is the dimensionless conductance of the BACON bond, derivation of
which is given in Appendix 2.B. For each pore unit we have also continuity condition, leading
to a system of algebraic equations as discussed in literature [Suchomel et al. 1998a]. Thus,

B
D qij=0,j=12..5, (2.10)
J

wherej is the index of the porebodies that are connected to poreho@guation (2.10) is
solved for the hydraulic heads at the pore-unit centers which are then used to compute the
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a. b.

Figure 2.4: Schematic representation of a cubic lattice of HYPON. a. A 3D view, whgYe
andZ are the global coordinates. b. Cross-section shapes of the BACON bond at poéition
the intervallr < ¢ < ;) and the characteristic siz€f).

discharges from (or into) the pore units.

2.2.3 Macroscopic flow equations for the pore-network

On the macroscopic scale the permeability of the network is of interest, which can be derived
numerically as well as analytically, for which many theories exist [Scheidegger 1960; Bear
1972]. We consider within three theories, i.e. Darcy’s equation, the effective medium approxi-
mation and the Carman-Kozeny equation. The outermost lateral boundaries of the network are
no-flow boundaries. The macroscopic head differedcH )} between inlet and outlet faces of

the network would drive a constant dischargh through the network. Frory and the fluid

phase volume of the network’), the macroscopic pore water velocity) {n the network can

be computed with the Dupuit-Forcheimer equation,

oo 9Ly
|73

whereLy is the distance between the inlet and outlet faces of the network (alags). The
subscriptF' indicates fluid phase() is computed numerically by summing up the discharges

from the bonds at the outlet face of the network. Because Darcy velagj)yig equal to the
product of porosity) andv, the Darcy permeabilityX ) [LT ~!] can be computed with

(2.11)

EULN
AH'’
whereAH > 0. The porosity is calculated as a ratio 6f to the total volume¥{ = Ly X

W, x W},) occupied by the network. Calculations foare shown in Appendix 2.A. Scaling
Kp by ¢? and multiplying withr /g yields the dimensionless intrinsic permeability,(i.e.

l/KD
gt*’
which is also called the effective (bond) conductance.

With other theories such as effective medium approximation [Brinkman 1947; Choy 1999]
and Carman-Kozeny equation [Scheidegger 1960; Zhuang et al. 2000], intrinsic permeability

Kp = (2.12)

(2.13)

K =
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can be calculated without solving the pressure field. For example, the general effective medium
approximation equation for calculating(by taking the ensemble average equal to zero), i.e.

<&> — 0, (2.14)
K+ wej
contains only the individual conductance term,f and the coordination number informa-
tion (w). The dimensionless permeability(also called effective conductance) is optimized
through averaging the differences betweeand the individual conductance of bonds;{
[Brinkman 1947; Koplik 1982] or computed explicitly by using rigorous bounds recommended
by Torquato and coworkers [Hashin 1983; Rubinstein and Torquato 1989; Torquato and Hyun
2001].

The third approach to calculateis the Carman-Kozeny equation. The dimensionless in-
trinsic permeability £) in this case depends on the specific surface ada ('], the porosity,
and tortuosity £ > 1):

83

T252(1 — g)24%°

The specific surface area is defined as the ratio of total interfacial area of the fluid phase to the
total volume of the solid phase [Scheidegger 1960]. Calculations iioa pore-network are
shown in Appendix 2.A. For the tortuosity, we assumed tfat 5 [Van Brakel 1975]. The
lattice constantd) is used to make the intrinsic permeability dimensionless.

(2.15)

K =

2.3 Numerical experiment and results

Numerical experiments were aimed at four aspects: 1. analysis of the morphological char-
acteristics of the architecture made with HYPON in comparison to process-based models;
2. simulation of macroscopic porosity and permeability relations for porous media through
Hagen-Poiseuille and Darcy equations; and 3. comparison (wherever applicable) of obtained
permeabilities with predictions by other approaches (e.g. Carman-Kozeny equation).

2.3.1 Geometric characteristics of HYPON model

The geometric characteristics produced by HYPON were results of a pore-network of 223109
porebodies in 401 x 47 x 47 cubic network. Networks were constructed from a single value of
curvature parameten(= 1), cube shaped porebodies and bonds of square shaped cross-section.
Seven types of random distributions of porebody sizes were considered, which are commonly
used in the literature [Reeves and Celia 1996; Keller 1997; Lindquist and Venkatarangan 1999;
Or and Tuller 1999; Sok et al. 2002]. An overview of statistics of all pore-networks is presented
in Table 2.1. For comparison, we have looked at different aspects such as porebody to throat
sizer(&;) relation, bond lengthé(/¢) to r(&;) relation, probability density functions (PDFs) of
porebodiesy(&;) and ¢,/¢) due to different types of porebody-size distributions, cumulative
density functions (CDFs) of throat size§;), microscopic heterogeneity (on the basis of dis-
charges) and distributions of microporosity. In detail the computed data are shown in Appendix
2.C.

We observe that the variation of throat sizes depends on the variance of porebody sizes. For
example, a narrow distribution of porebody sizes yields a narrow distributio(¢Qf Throat
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Table 2.1: Statistics and the type of distributions of porebody sizes for pore-networks

Type of Ensemble Standard Minimum Maximum
distributions mean(@)) deviation ¢5) size @min) size @mm)
Random uniform (UD) 0.268 0.134 0.035 0.500
Random Beta (BD) 0.240 0.120 0.010 0.500
Random Gamma (GD) 0.249 0.098 0.035 0.500
Random lognormal (LN) 0.248 0.093 0.037 0.500
Random normal (ND) 0.268 0.103 0.035 0.500
Random Rayleigh (RD) 0.232 0.111 0.108 0.500
Random Weibull (WD) 0.216 0.110 0.035 0.500

(R) andoj; are respectively the ensemble mean and standard deviation of dimensionless pore-
body sizes.

sizes were found inversely related to the bond lengt}ig)( the variation of which depends on

the variance of porebody sizes and the magnitude of the curvature paranmeténé type of
porebody size distributions has some influence on bond length PDFs and on the variance of the
PDFs of the throat sizes. From the graphs of the CDFs of throat sizes computed with HYPON,
it appears that the shape of the throat size distribution is quite insensitive to the used type of
porebody size distributions. Almost all CDFs f;) can be fitted well with a Gamma-type
distribution but in some cases, e.g. for random Rayleigh distribution (RD), random Beta distri-
bution (BD) and random uniform distribution (UD), an equally good fitting is found with the
Rayleigh distribution (not shown). Based on empirical studies, Keller [Keller 1997], Tuller et
al. [Tuller et al. 1999] and Yanuka et al. [Yanuka et al. 1986] reported a lognormal, a Gamma
or a Rayleigh distribution of throat sizes. Additionally, we analyzed the distributions of micro-
porosity, i.e. the porosity within an elementary lattice, and also we looked at the distributions
of transversal discharges in a cubic network (which may serve as a measure of microscopic
heterogeneity). In all these experiments, we found that geometrical relations are sensitive to
the variance of the porebody sizes rather than to the used type of porebody size distributions.
Hence, we can conclude that a random uniform distribution can be used in HYPON, which has
the advantage of simplicity and computational efficiency. However, for modeling a particular
porous medium, a realistic porebody size distribution as obtained from micro-tomography may
be more appropriate.

2.3.2 The scaled-up porosity-permeability relation

The first simulations were focused on finding a consistent size of the network, i.e. the rep-
resentative elementary volume (REV). The consistent size is the threshold size of the pore-
network for which the permeability (or effective conductance) is asymptotic [Koplik 1982],

i.e. macroscopic characteristics of pore-network do not change considerably due to translation
of positions [Bear 1972; Hilfer 2002]. Such a size can be found with Monte Carlo simula-
tions for a prescribed pressure field. If permeabilities are equal for two different realizations

of equal-sized networks with the same mean and variance of porebody sizes, the hypothesis of
consistency is accepted. Since the consistent size depends on the variance of the porebody sizes
as a smaller variance leads to a smaller consistent size, we considered ensembles of porebodies
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with the highest possible variance (UD of Table 2.1) to assess consistency. This approach indi-
cated that the size of a consistent networkis< 15 x 15. Alternatively, the effective medium
approximation approach with unknown pressure field requires that the upper bound of the ef-
fective site-conductance given by Woodside and Messmer [Woodside and Messmer 1961] or
the symmetric rigorous bounds given by Torquato and Hyun [Torquato and Hyun 2001] become
asymptotic. We applied the upper bound of effective site-conductance according to Woodside
and Messmer [Woodside and Messmer 1961] and obtalfed20 x 20 pore-network as the
consistent size (see Figure 2.5), which is more conservative compa2éd<td5 x 15 sized
network.

x10°

—e— 15 nodes in lateral directions of column
—— nodes as indicated in lateral directions

1.5

20 40 60 80
Number of nodes along X

Figure 2.5: The upper bound of the dimensionless effective site-conductanaecprding to
Woodside and Messmer [67] as a function of node numbgr%£ 3,...,101) in the mean direc-
tion of flow (X)in a network with UD (Table 2.1). The numbers at curves indicate maximum
lateral size of pore-network iH andZ directions in terms of node numbers.

We considered macroscopic porosity and Darcy permeability relations obtained for net-
works consisting oB3 x 23 x 23 pores, which size is sufficiently larger than the consistent
size. For calculating the macroscopic porosities and permeabilities, a random uniform distribu-
tion of porebodies, with cube shaped porebodies and square shaped bonds were used, because
that combination covers the largest range of porosity and permeability. We generated 99 cu-
bic pore-networks, with a wide range.{ < R < 0.50) of mean porebody sizes. Either the
minimum porebody size or the maximum porebody size was varied with increments of 0.01
for the random uniform distribution. Each network was solved for seven different values of
curvature parameter (i.e.= 0,1,2,3,4,5 and 6), which leads to a total of 693 networks.nFor
equal to zero, HYPON yields a classical 3D capillary network with straight tubes. Hence, for
this n-value, a single porebody size was used because otherwise the bond size fugtion
has abrupt jump at the throat locatian)( We expect that such abruptly changir(g) is not a
physically realistic transition and also would profoundly complicate the hydraulic calculations.
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The system of Hagen-Poiseuille flow equations for the entire network was solved numerically
for each of the 693 pore-networks with the pre-conditioned conjugate gradient [Hestenes 1980].
The imposed head difference between inlet and outlet fatég) (was fixed at 0.07 m. The
procedure of computing Darcy scale porosity-permeability relations is as follows. We choose
a minimum porebody size and a maximum porebody size and let the simulator produce a ran-
dom uniform distribution, from which the network is constructed. This pore-network is solved
for each of the six different values af > 0. Then, we generate a network with equal sized
porebodies with the same size as the mean size used for other valu@sdfsolve the flow

field for n equal to zero. This procedure is continued by fixig;, at 0.01 and incrementing

Rpmae (With an increment of 0.01) from 0.01 to 0.50. Then wefilx.. at 0.50 and increment

Rin (with an interval of 0.01) from 0.01 to 0.50. Thus for the entire range of porebody sizes,
porosity and permeability pairs are obtained that are plotted to produce isolines of curvatures
(n) and the isolines of mean porebody sizes. In Figure 2.6, the dimensionless intrinsic perme-
abilities (<) of all 693 pore-networks obtained with the Darcy equation (2.13) are shown as a
function of porosities€). Shown are the isolines of mean pore sizes, which are the lines that
connect the porosity and permeability combinations of all pore-networks that have the same
mean porebody size. Also, we show the isolines of curvature, which are the lines that con-
nect the porosity and permeability combinations of all networks that have the same value of
the curvature parameten), A thick solid line, labeled with “0” is the special case where the
pore-network is made of equal sized porebodies and bonds; aqdals to zero. This is the
envelope curve, which appeared in good agreement with the Carman-Kozeny relation (2.15)
and is also shown separately in Figure 2.7.

Figure 2.6 reveals a non-unique porosity-permeability relationship that is bounded at the
top and at the left by an envelope curve (which is also an isoline of curvature), and at the
right, by an isoline of mean pore sized) = 0.5). Moving along an isoline of pore sizes
to largern-values mimics consolidation or diagenesis processes in time. Consolidated media
are more interesting than unconsolidated ones because of their non-unigue relation between
porosity and permeability. A number of such relations have been reported [Happel and Brenner
1965; Dullien 1992], and the new techniques are revealing the explanations behind such ob-
served facts. Recent advances in micro-tomography (e.g. [Lindquist and Venkatarangan 1999])
show that neither are the particles spherical nor are the pore spaces of definite shape, size or
orientation [Scheidegger et al. 1993]. Over time, both the pore spaces and particles change.
For example, a loosely packed gravel may turn into completely cemented conglomerate [Press
and Siever 1986], water filters used at our homes and sand beds in water treatment plants be-
come clogged [Ives 1975]. This indicates that the porosity-permeability relation is dynamic in
time and space. To mimic this, porebody size was kept unchanged but bonds were squeezed by
changingn. The effect is that the capillary space becomes reduced due to either deposition of
fine particles [Tien and Payatakes 1979], and colloids [Van de Weerd et al. 1998], adherence of
biological substances [Keijzer et al. 1999], cementation [Panda and Lake 1994], or lining and
filling [Panda and Lake 1994; @ren et al. 1998]. On the other hand, if porebodies are gradually
filled such thatr does not change (i.e. moving along the isoline of curvature) the change in
porosity is relatively faster than in the previous case, whereas the change in permeability is
slower than in the first case.

We observe that the rate of change of the curvature parameter (moving along an isoline
of pore size) has a larger effect on the permeability than a change of the porebody size (i.e.
moving along an isoline of curvature parameter). The trend of the isolines of mean pore sizes
shows that due to the large(i.e. squeezing of pore bonds of porous media), the permeability
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will be reduced, but the porous medium may still possess high porosity. The porosity, where
such a situation occurs (i.e. no occurrence of seepage), is known as the threshold-porosity .
Looking at the isolines of curvatures, we can conclude that a gradual filling of porebodies only
slowly decreases permeability. The practical implication is that, by ignoring the changes in
permeability due to diagenesis in the porebodies, errors may not be dramatic. This assessment
simplifies the numerical effort for modeling such processes profoundly, as we need not solve
the flow field after each time interval to account for the new micro-structural conditions.

10_1 3 T T
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- — Isolines of R ]
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10_3§
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Figure 2.6: Dimensionless intrinsic permeability as a function of porosity. The isolines of mean
pore body sizes are plotted with the thin solid lines and labeled with numbers 0.1 to 0.5 and the
isolines of curvatures are plotted with the dashed lines and labeled with numbers 1 to 6. The
thick solid line with label “0” is the envelope curve as well as curvature isoline.

In Figure 2.7 the dimensionless intrinsic permeabilitiegfedicted by the Carman-Kozeny
equation (2.15) and the Darcy equation (2.13) are plotted as a function of porosity, for the case
of equal porebody sizes andequal to zero. The evident agreement of the two indicates
that the Carman-Kozeny approximation and the rigorous numerical solution of Navier-Stokes
equation agree for this combination. For very high porosities (say higher than 0.5) the Carman-
Kozeny prediction only slightly deviates as is anticipated [Scheidegger 1960; Happel and Bren-
ner 1965]. Such a good agreement is not expected if porebody sizes vanyindequal to
zero.

2.4 Discussion and conclusions

HYPON is a simple model with few parameters that idealizes porous space with two different
components: randomly distributed porebody sizes and the analytically derived BACON bonds.
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Figure 2.7: Comparison of the Carman-Kozeny predictions with the HYPON envelope curve
produced by the exact solution of Hagen-Poiseuille and Darcy equations. Plotted are the di-
mensionless intrinsic permeabilities)(@as a function of porosity=] for the case witm = 0

and equal sized porebodies.

The sizes of bond throats are dictated by the adjacent porebody Bizasd a curvature param-
eter (2). Instead of two separate distributions for porebody and throat sizes, only a distribution
of porebody sizes and a curvature parameiga(e needed.

The model is flexible in a hydraulic sense because it captures a broad and realistic range of
porosities and permeabilities. HYPON can be adjusted (if required) to match the porosity and
permeability characteristics [Mogensen and Stenby 1998] of a particular porous medium, if an
isoline of curvature and an isoline of mean pore sizes are known. The pore-to-pore spgrcing (
which serves as the characteristic length, should be kreowrori. Unfortunately, for a real
porous medium, this pore-to-pore spacing is not easy to determine. Whitaker [Whitaker 1972]
suggested the characteristic length to be six times larger than the hydraulic radius (which was
recommended for uniform spheres). However, Roychoudhary [Roychoudhury 2001] indicated
that it should exceed six hydraulic radii, whereas Bryant et al. [Bryant et al. 1993a] suggested
that it should be larger than one grain size. An approach for inferring the characteristic length
can be to combine micro-tomography, mercury-porosimetry and permeability measurements
with simulations using a model such as HYPON. Such combination would be aimed at quanti-
fying quite different effects e.g. throat size distribution, porosity and permeability, and making
them all compatible with Figure 2.6 for different choices of

HYPON clearly demonstrates the existence of non-unique porosity-permeability relations
[Scheidegger 1960] and their bounds. It extends the understanding of existing models. For
example, intrinsic permeabilities of HYPON can be estimated by the effective medium approx-
imation of Torquato and Hyun [Torquato and Hyun 2001], whereas the upper bound (envelope
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curve) of the HYPON generated permeability-porosity relation agrees with the Carman-Kozeny
prediction for the case with equal sized poresaedjual to zero. This is an indication of the va-
lidity of both the Carman-Kozeny and the Navier-Stokes equations for this simplified situation.
For other combinations such as unequal porebody sizes anddoequal to zero, solutions

of the Carman-Kozeny equation may differ from HYPON simulations because it is a simpli-
fied relation. Additionally, the relation depends on tortuosity, which is a poorly-understood
parameter [Scheidegger et al. 1993].

This paper showed that a simple model can mimic complex pore geometry, while main-
taining considerable agreement between morphological characteristics derived with HYPON
modeling and those from process-based models. The new BACON bond of HYPON eliminates
the conjugation problems [Dias and Payatakes 1986; Bryant et al. 1993a; loannidis et al. 1993;
Thompson and Fogler 1997], problems related to irrational hydraulic transitions [Nowicki et al.
1992; Toledo et al. 1994; Reeves and Celia 1996], and reduces the number of parameters [Dias
and Payatakes 1986; loannidis et al. 1993]. Furthermore, literature showed that converging-
diverging pores are helpful to account for static interface positions during quasi-static regimes
[Nowicki et al. 1992; Toledo et al. 1994; Reeves and Celia 1996; Held and Celia 2001], and
are good for smooth hydraulic transitions during steady-state conditions [Happel and Brenner
1965]. The simulations with HYPON showed that properties such as porosity and permeability
are more sensitive to the variance of porebody sizes than to the used type of porebody size
distributions, as shown by the sensitivity of shape of throat-size and bond-length distributions.
Also, the effect of changing curvature appeared to be larger than the effect of changing pore-
body size. The practical implication of this is that the volumetric changes in porebody sizes
have less effect on permeability than the change in the bond sizes. In such a case, by ignoring
the permeability dynamics during transport computations error would not be dramatic. Thus,
this simplifies the numerical efforts as the frequent updating of pressure field is computation-
ally costly. In this paper we did not vary the coordination number or considered longer-range
correlations of porebody sizes. We anticipate that changing these properties affects the magni-
tude of some effects that were illustrated, but does not influence the primary results, provided
that the requirements for ergodic conditions are met.

For an improved understanding of processes such as single-phase or multiphase transport,
and dispersion, HYPON may serve as a general scenario simulator. However, for those pur-
poses HYPON should be adjusted to account for more fluid phases and particle transport. With
the present paper, we showed that HYPON simulation results are hydraulically compatible with
the literature. This observation supports that it is appropriate to extend HYPON to address mul-
tiphase and chemical transport problems.
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Appendix: Geometric and hydraulic calculations

2.A Geometry of HYPON

In this appendix we consider the geometric relationships used in HYPON. The longitudinal
shape as well as the bond size functidf) depends on the value of the curvature parameter
(n). We introduce a minimum curvature parameterX nz) and determine it on the basis of
porebody sizes the bond is connecting. For a bond that connects porebodies with,sizes
andR,,;,, ng is calculated with Eq (2.7) by replacing with (1 — R,,.;,,), R; with R,,,;,,, and
R; With Rypay, i€

INRoin — INRpas

np=— _ o - (2.A.1)
INR,in — IN(1 — Rypin) + IN[1 — Rypiy cos(m/C)] — IN[1 — Ryypaq cos(m/C)]

whereﬁmm < ﬁmm. Equation (2.A.1) shows that there exists a particularfor each bond

that connects two porebodies, and it is deterministic. In this paper, we assumevahes

for the entire network, and should be larger or equal to;. Forn < 1 we obtain parabolic
bonds, whereas > 1 produces hyperbolic bonds. Far= 1, it produces simple biconical
bonds similar to the ones proposed by earlier researchers [Nowicki et al. 1992; Toledo et al.
1994; Reeves and Celia 1996], although the throat is not fixed at the midémubfs dictated

by the adjacent porebody sizes. Equation (2.7) reveals that the throat is located closer to the
smaller porebody and farther from the larger one. In the case of networks with equal sized
porebodiesy must be zero or larger.

A pore unit (PU), as is shown in Figure 2.3b and Figure 2.3c, consists of the porebody at the
center and the converging cones that emanate from that porebody. The volume of such a pore
unit is equal to the sum of the porebody volume and the sum of volumestbé coordination
number) number of converging parts (conical cylinders of the BACON bonds), i.e.

B
Vpy = Vpp + Z(VBL)J', (2.A.2)

j=1

where subscript®U, PB andBL indicate respectively pore unit, porebody and left part of the
BACON bond (see Figure 2.1bY}y is the volume of the pore unit/pp is the volume of the
porebody, andV}. ), is the volume of the converging part of the bond which is connected to
the porebody under consideration and the adjacent porehogy the subscripf is the index

of the adjacent porebodies. Bonds control the permeability, whereas the porebodies contribute
most to the porosity and eventually regulate the macroscopic constitutive relations between
permeabilities and porosities (and/or saturations). Only spherical and the cubic porebodies are
considered here. In an orthogonal 3D lattice, the volume of a porebody equals

Vi — %{4 — B2 — 3cos(m/¢) + cos®(w/¢)]} for spherical PB (2.A3)
8R3¢% sin®(7/() for cubic PB.
The volume of the converging (left) pait’4;) of a BACON bond is given by
&
Vpr = al° / T?(1 — &)*"dE, (2.A.4)
&r
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whereaq, is the geometric shape factor. For a bond with circular cross sectien  and for

a square cross sectiafn = 4. We introduce the volume of the BACON bonty3), i.e. the
volume of the both parts of the BACON bond: the converging (left) and the diverging (right),
as shown in Figure 2.1b. The volume of the diverging part in the right hand silésafenoted
with Vzg. Hence, the total volume of the BACON bond is given by

Ve = VBL + Var, (2.A.5)

where subscript® B and B R indicate respectively the whole BACON bond and the diverging
(right) part of it. V3, is computed with Eq (2.A.4) andz; is computed with

¢a
Vir = a0 / T2 de. (2.A.6)
&

The integrals of Egs. (2.A.4) and (2.A.6) are evaluated analytically and the result can be written
as
asl®  [Risin(m/QPP{[1 — Ry cos(m/QPmH — (1 - &)*"*)

- (2n+1) 11— R; cos(m/¢)]?" (@AT)

and

asl® _[Rsin(m/QP{[1 — R; cos(m/Q)] " — &)
(2n +1) [1— R cos(m/)]>n
whereér, £, T; andT; are replaced with their corresponding values. The pore volumg (
of an elementary cube of volunté (as is shown in Figure 2.2b) is the sum of 1/8 volume of

each porebody that is located at the vertex and 1/4 volume of each BACON bond that is aligned
along the edge of the elementary cube. Hefgeis given by

VBr = , (2.A.8)

8 12

V= éZ(va)j - i > (VeB)m (2.A.9)

j=1 m=1

wherem is the index of bonds along the edges of the elementary cube and the supsctip

index of the porebodies that belong to the elementary cube under consideration. The subscript
el indicates the elementary cube. The number 8 is the total number of porebodies connected
with the cube, whereas the number 12 is the number of edges along which the bonds are aligned.
Hence, the total fluid-phase volumg] is equal to the sum of the pore unit volumes, i.e. Eq
(2.A.2) as well as to the sum of the elementary pore volumes, i.e. Eq (24.95.given by

Npu Ne

V=Y (Veu)i= Y (Va)ws (2.A.10)

i=1 k=1

wherek is the index of the elementary cubed/r; and N, are respectively the number of
pore units and elementary cubes enclosed.ihe effective porosity of a mutually connected
porous system is obtained by dividifg with the total volumé/ (= Ly x W, x W},), i.e.

e=V;/V. (2.A.11)

The difference betweel and the fluid phase volumé’) is the volume of the solid matrix
(Vs), i.e.

Vi=V({1—e), (2.A.12)
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where subscript indicates the solid matrix. The surface area of walls of a single por&upit
is the sum of the wall surfaces of the porebody £) and the converging parts of the BACON
bonds (z;), and can be written as

B
Spu = Spp + Z(SBL)j' (2.A.13)

Jj=1

For a network with the coordination numbemlnda, = 4, the surface area of the walls of the
cube-shaped porebod-z = 0, whereas for a spherical porebody and= =, the surface
area is calculated with

Spp = 2m?R*{2 — B[1 — cos(m/¢)]}. (2.A.14)

The surface areas of the converging parts is computed with

&t
Saw =207, [ r(OVIT O, (2.A.15)

§F

wherer’(€) is the first derivative of (£) with respect tg and is continuous in the interval from
¢r 1o &. For large or fractional values of, Eq (2.A.15) is evaluated numerically. Thus, total
surface areayr) of the network exposed to the fluid phase becomes

Npy

Sk =Y _(Spv)i. (2.A.16)

=1
The specific surface area) for Carman-Kozeny relation (2.15) is given by
s = Sp/V;. (2.A.17)

2.B  Hydraulic calculation

In this appendix we compute the hydraulic conductance of a bond. To determine the conduc-
tance ¢; ;) of a bond that is shown in Figure 2.1b, we follow the Hagen-Poiseuille equation
given by

dh
g = —as M€ e,

wheredh/((d€) is the hydraulic head gradient [CL]. a, is the hydraulic shape factor of the
bond. For a circular bond, is equal tor /8. We can express the same equation for the left and
the right conical cylinders of the bond in terms of bond functif), yielding:

(2.B.1)

o 4 _ 4n p3
q{ Gis = —as(g/v)TH1 — &)*03(dh/ldg)  forép < €< & (2.8.2)

;= —as(g/v)T;E 03 (dh/0dE) for& < ¢ <éq

where subscript, t andt, j denote respectively fromto-throat, and throat-tg- For the mean-
ing of other symbols see the list of symbols and notations. Then, rearranging Eq (2.B.2) and
integrating

§ de " g
—_— = — —03dh 2.B.3
/E asTH(1 — &) /h qitV ( )

F 1 i
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and
&a d h;
/ % - —/ I pBan. (2.B.4)
e asTiE he gV
If we take the sum of the terms in the left hand sides of Egs. (2.B.3) and (2.B.4) we obtain an
expression for the total dimensionless resistangg) (of the bond. Because of the continuity

of discharge (i.eq;; = ¢;,;) the right hand side is easily simplified and integrated with respect
to the hydraulic headh, i.e.

& df 13 df q

a,TH(1 — &)in = —=—L(h; — hy). 2.B5

/£F asT;l(l —&)in * /gt asTff‘ln QirV (R i) ( )
Hence,

&t dé &a dé
P L T 2.B.6
Xiij /£F asT;L(l _ €>4n + /515 asT;‘f‘ln ( )

i.e. the resistances of the two conical cylinders are summed up. For computing site-conductance
according to Woodside and Messmer [Woodside and Messmer 1961], we consider only the first
term of Eq (2.B.6) for each conical cylinder connected with the porebody under consideration,
and the same is done for each pore unit. Withandy, ; we denote respectively the first and
second terms of Eq (2.B.6), and write the result of integration:

H—EwWﬁW"{H—RwWWW“LO—@W?, (2.8.7)

Xie = (4n — 1)(13[1;7:@' sin(mr/()]* {[1 Sy cos(m/Q)](1 — ft)}4n_l
D Bt/ ([ Ry cos(/Q) - (e)' 28.8
Xt (4n — 1)as[R,; Sin(ﬁ/g)]A‘{ B }' ( )

{11 = Rjcos(m/))()}

wheresr, &, T; andT; are replaced with their corresponding values. For other geometries than
circular, the hydraulic shape factar,j can be derived by assuming that the Reynolds number
(Re) is the same for both cases. Then, the two cases are hydraulically equivalent. Because the
characteristic size(¢) and the bond lengths in both cases are also the same, the equdity of
reduces to the equality of velocities, i.e.
h__ 2 (2.B.9)

Qgz1T Q2T
where subscripts 1 and 2 denote two cases. Hence, writing Eq (2.B.9) expliciiy, fare
obtain

¢ =22, (2.B.10)

Qg1

and inserting the Hagen-Poiseuille equation (2.B.1)foand assuming case 1 to be circular
(i.e.,a,; = manda, = 7/8)
134N

o Ar2Tg
42 = 8y [r(§)]*¢ e

Thereforeas, = a.2/8. For example, for a bond of square cross section shapecomes
0.5 (because, = 4). This assumption is valid fokRe < 10 [Bear 1972] and for similar sizes
[Turian 1973]. Now; ; is given by

1

1’7]

(2.B.11)
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2.C Geometric characteristics of HYPON model

In this appendix we analyze different geometric characteristics of HYPON, e.g. throat sizes
r(&), bond lengths4,//), flow field heterogeneity indicators and microporosity. Porebody and
throat sizes are functionally related by HYPON but are not perfectly correlated. The narrower
the range of porebody-sizes, the stronger is the correlation between throat size and porebody
size, which agrees with the evidence presented in the literature [David et al. 1990; @ren et al.
1998; Blunt et al. 2002]. In Figure 2.8, throat sizes produced by the random UD (see Table
2.1) are shown as a function of size of porebodies. The cloud of data is distributed over the
trapezoid formed by the minimum and maximum sizes of porebodies and throats, the spread of
which clearly depends on the range,(;, andR,,...) of porebodies. For a homogeneous case,

the trapezoid becomes a point and a perfect correlation results, as shown by the dashed line (for
n = 0) on that plot.

In Figure 2.8, throat sizes are plotted as a function of bond length for the same case. The
inverse relation of throat-to-bond length is in agreement with experimental and theoretical re-
sults in the literature [David et al. 1990; Blunt et al. 2002; @ren and Bakke 2002]. An en-
semble of porebodies of any random distribution can be used as input. The PDFs of pore-
body sizes include commonly used random distributions [Sahimi et al. 1986; Yanuka et al.
1986; Tsakiroglou and Payatakes 1991; Bakke and @ren 1996; @ren et al. 1998; Lindquist and
Venkatarangan 1999; Tuller et al. 1999; Sok et al. 2002] such as Beta (BD), Gamma (BD),
lognormal (LN), normal (ND), Rayleigh (RD), Weibull (WD) and uniform (UD). These PDFs
are also shown in the corresponding subplots.
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Figure 2.8: Scatter plots of throat sizes produced by HYPON with UD (see Table 2.1) ; a. throat
sizesr(¢&;) as a function of porebody sizes.; b. throat sizes as a function of bond ledigths (

Based on that ensemble which is distributed in 3D space, the throat sizes are computed with
HYPON. In Figure 2.9 the PDFs of throat siz€s;) and bond lengthg{/¢) obtained from the
seven different PDFs of porebody sizes of Table 2.1 are shown. It is seen from the figure that
irrespective of the input PDFs of porebody sizes, the shape of the PDFs of throat sizes looks
similar in almost all cases. However, in the case of UD it is more skewed than in other cases.
The cumulative distribution function (CDF) of throat sizes can quickly be compared with the
ones from the literature. Throat size data obtained from four different distributions of porebody
sizesi.e. GD, WD, ND and UD, are shown in Figure 2.10 and are fitted with the Gamma cumu-
lative distribution function. In all subplots of Figure 2.10, a good agreement between the throat
sizer(¢;) data and the Gamma cumulative distribution function can be observed. However,
the goodness of fitting differs. We observe that the fitting is best for the distribution GD and
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Figure 2.9: The PDFs of porebody sizd%) (with solid lines, throat sizes(¢;) with dashed-
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becomes less for WD, ND, and UD respectively. An impression of inherent heterogeneity of
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Figure 2.10: HYPON-generated throat siZ€;) data (open circles) fitted with Gamma cumu-
lative distribution function (solid lines). Cases GD, WD, ND, and UD are identified in Table
2.1.

a pore-network model may be developed from routing flow or transport (e.g. tracer particles),
as a simple flow field simulation may furnish considerable information about micro-structural
properties of the modeled porous medium. In Figure 2.11, absolute (dimensionless) transversal
bond-discharges{ andq; along global positivé” andZ axes respectively) at nodes are plot-

ted as a function of the discharges;| at the same nodes in the mean flow direction (positive

X axis). Two distributions, i.e. the random Rayleigh (RD) and the random uniform (UD) taken
from Table 2.1, were considered and Eq (2.10) was solved numerically for pressure and flow
fields.

In Figure 2.11, we observe that in both cases transversal bonds contribute considerably to
the node discharges. In a regular grid, the most important factor to make the lateral bonds
contribute is the variance of the porebody sizes. The higher the variance, the larger becomes
the contribution from the transversal bonds. The variation is slightly larger for UD (transversal
mean discharge is 32% qf ), but also the variation in mean porebody size is slightly larger.
Hence, no significant role of the type of random distribution can be detected.

Finally, we compare microporosity distributions that result from two different distributions
of porebody sizes. In Figure 2.12, microporosity distributions for two different distributions
(ND and UD) of porebody sizes are shown. The microporosities are computed for each ele-
mentary cube as shown in Figure 2.2b in terms of bond-microporosity (volume of the bonds
only), porebody-microporosity (volume of porebodies only) and total microporosity. Usually,
microporosities are computed [Dren et al. 1998; Valvatne 2002] for a much larger block (i.e.
a group of elementary cells). Here, the purpose is different, as we intend to show the effect
of the type of random distributions of porebody sizes on the microporosity distribution. For a
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Figure 2.11: Absolute node-discharges in transversal directions (from a pore center) plotted
as a function of the node-discharges along the mean flow directiori(n & 47 x 47 pore-
network with RD. b. Discharges in network created with UD. The solid circles and the open
circles indicate the discharges respectively along postieand.Z axes.
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Figure 2.12: Microporosity of a pore-network with two different distributions of porebodies
a. due to the random uniform distribution (UD) and b. due to the random normal distribution
(ND) of porebody sizes. These cases are identified in Table 2.1.

homogeneous network, microporosity has a single value which is equal to the global porosity.
The variation of porosity increases with the increase in variance of porebody sizes.

From Figure 2.12, it can be concluded that the shape of microporosity distribution is quite
insensitive to the type of distribution of porebody sizes but has a shape reminiscent of a nor-
mal distribution. On the other hand, Blunt, Lindquist and their co-workers [Lindquist and
Venkatarangan 1999; Blunt et al. 2002] showed a long tail in the microporosity distribution
in reservoir sandstones. The reason for this disagreement may be either the difference in the
method of computation or the larger heterogeneity in their samples, which is reflected in the
permeability tensor in the recent work by @ren [@ren et al. 1998]. The microporosity shown
in Figure 2.12 is in agreement with Lindquist [Lindquist et al. 1996] who reported a normal
distribution for uniform beads.



Chapter 3

Quantification of dispersion by upscaling
Brownian motion of tracer displacement
In a 3D pore-scale network modef

Abstract

We present a 3D network model with particle tracking to upscale 3D Brownian motion of
non-reactive tracer particles subjected to a velocity field in the network bonds, representing
both local diffusion and convection. At the intersections of the bonds (nodes) various jump
conditions are implemented. Within the bonds, two different velocity profiles are used. At the
network scale the longitudinal dispersion of the particles is quantified through the coefficient
Dy, for which we evaluate a number of methods already known in the literature. Additionally,
we introduce a new method for derivation bf, based on the First-arrival Time Distribution
(FTD). To validate our particle tracking method, we simulate Taylor’s classical experiments
in a single tube. Subsequently, we carry out network simulations for a wide range of the
characteristic Peclet numbéte, to assess the various methods for obtaining Using the

new method, additional simulations have been carried out to evaluate the choice of nodal jump
conditions and velocity profile, in combination with varying network heterogeneity. In general,
we conclude that the presented network model with particle tracking is a robust tool to obtain
the macroscopic longitudinal dispersion coefficient. The new method to detedmjrfeom

the FTD statistics works for the full range &fe,, provided that for largePe, a sufficiently

large number of particles is used. Nodal jump conditions should include molecular diffusion
and allow jumps in the upstream direction, and a parabolic velocity profile in the tubes must be
implemented. Then, good agreement with experimental evidence is found for the full range of
Pey, including increased, for increased porous medium heterogeneity.

Keywords dispersion; transport; pore network; Brownian motion; particle tracking; nodal jump
condition; moment methods.

"by R. C. Acharya,MIJ van Dijke, K Sorbie, SEATM van der Zee and A Leijnse, submittédvdNater Res,
2004
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List of symbols and notations

(. Ensemble average quantity

C, C Concentration [ML3] and dimensionless concentration

D, D;, Dy Dispersion coefficients: any effective, Longitudinal, and TaylofTL!]

D,,, D, Molecular diffusion coefficient and mechanical dispersiofilL!]

fi; Advection-diffusion fraction factor of Sorbie-Clifford formulation

f(A) Intra-pore velocity function

H Heaviside integral

7,7 The indices of nodes and bonds

k.. Taylor's coefficient for cross-section shape (d.918)

L, ¢ Length of the porenetwork and bond length [L]

Pe;, Pore network (Column) Peclet numhekt /D,

p(i,7) Transition probability density function

Pe,, Per Bond Peclet and Taylor’s Peclet numbers [-]

Pe,.; Areference (conditional) threshold Bond Peclet number [-]

Pe, Characteristic Peclet numbef/D,, [-]

¢:.;, Q@ Discharge respectively through bonds and porenetwotk {L]

R, R Radius|L] and aspect rati6R/¢) of bonds (Taylor’s tubes)

Ar Radius vector of Brownian sphere [L]

t, At Time and time step of iteration [T]

T Dimensionless time on network scate (L)

u Mean velocity in the Taylor’s tubes [LT]

v Mean intrinsic velocity along the principle flow direction in the pore network T

x,y Local reference system, < [0, /] along the axial direction of fluid flow [L]

X,Y,Z Global (network scale) reference system [L]

(£ an exponent parameter

¢(Ar) Green’s probability function for Markov’s processes

1 Ensemble average as specified with subscript (g.gnd.x)

0% Second central spatial moment(variance) of positions of particles with respeg
chosen direction (e.@:) [L?]

7 Dimensionless time on pore-scale (¢)

¢ Local axis /¢) along flow in a capillary [-]

w A factor in Sorbie-Clifford formulatioriw R?) /¢ [L]

¢ Polar angle of radius vector in Brownian spherical coordinate sygtem

1 Deviate of the Green’s function [-]

¢ tortuosity [-]

6 Azimuthal angle of radius vector in Brownian spherical coordinate sy&ie®n|

T, m, L, b Subscripts indicate Taylor, molecular, Longitudinal and bond

CDE Convection-Dispersion Equation

(COFTD (Cumulative) First-arrival Times Distribution

SPD Spatial Positions Distribution

tto a
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3.1 Introduction

Dispersion in porous media is of interest in many fields, such as chemical, petroleum, civil
and environmental engineering [Whitaker 1967]. It plays an important role in the accuracy of
predictions during reactive and non-reactive transport in groundwater systems (porous media).
In porous media, dispersion is caused by two processes: Brownian motion of solute molecules,
or molecular diffusiorand the velocity differences among solute-carrying solvent-streamlines,
which is referred to amechanicalispersion. The interplay of these two phenomena leads to
the hydrodynamidispersion [Koch and Brady 1985].

Because of its key role in the theory of mass transport, the dispersion process has been
studied for a considerable time [Taylor 1953; Aris 1956; De Josselin de Jong 1958; Brenner
1980]. In general, two methodologies (models) have been devised to describe dispersion viz the
deterministic (e.g. [Bear 1972]), and probabilistic or statistical approaches (e.g. [Sahimi et al.
1986; Dagan 1988; Sorbie and Clifford 1991; Damion et al. 2000]). The mixing cell model is
an example of the first, whereas the particle tracking approach in combination with the method
of moments serves as an example of the second approach. Dispersion is a scale dependent-
phenomenon. At the continuum scale, Bear [Bear 1972] showed that dispersion takes the form
of a second order tensor that depends not only on local variations of velocity field but also
on large-scale characteristics of the medium [Bear 1972; Dagan 1988]. This tensor is used in
the convection-dispersion equation (CDE). Alongside theoretical developments in dispersion
theory, experimental and numerical works have emerged to determine the dispersion tensor
[Freyberg 1986; Verlaan 2001]. Historical reviews of dispersion research can be found in
[Perkins and Johnston 1963; Bear 1972; Van Brakel 1975; Freeze and Cherry 1979; Sahimi et
al. 1983a; Han et al. 1985; Gelhar et al. 1992; Appelo and Postma 1993; Jiao 2001; Verlaan
2001].

As mentioned above, dispersion originates from variation of velocity at the pore scale (Tay-
lor scale), i.e. within a pore cross-section, as well as from geometrical variation of the length
scale of the distribution of pores within a porous medium. A first attempt to average these vari-
ations at the pore scale to an effective property at the continuum scale was made by Saffman
[Saffman 1960]. Following Fatt [Fatt 1956a], Saffman used a pore network model as a tool to
include the pore-scale physical phenomena. Since the work of Saffman, 2D network models,
in combination with random-walker particle tracking, have often been employed to upscale the
pore-scale dispersion coefficient to a network-scale quantity [Mohanty and Salter 1982; Sorbie
and Clifford 1991; Damion et al. 2000; Park et al. 2001; Verlaan 2001]. However, a rigor-
ous upscaling of multi-directional Brownian walker (3D motion of material points) from the
Brownian sphere to the 3D pore network has not yet been presented.

One of the main reasons that has prevented such rigorous upscaling lies in the uncertainty
of the mixing conditions and transition probabilities at the intersection of pores (nodes) in
a network model [LaBolle et al. 1998; Bruderer and Be;@001; Park et al. 2001]. The
simplest assumption is to take the transition probability at a node proportional to the flow rates
in the neighboring bonds [De Josselin de Jong 1958]. However, this method excludes the effect
of molecular diffusion at the nodes. A more sophisticated approach consists of constructing a
pattern of streamlines from inflowing to outflowing bonds at a node, such that the intra-pore
particle tracking can be continued from pore to pore [Sahimi et al. 1986; Bruderer and 8ernab
2001]. The drawback of this method is that, so far, it has only been constructed for 2D networks.
Sorbie and Clifford [Sorbie and Clifford 1991] have introduced a transition probability based on
the arrival time statistics for particles in a single pore. Although some additional assumptions
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must also be made in this method, it does include the effect of molecular diffusion and it can
be employed in three dimensions.

An additional obstacle to rigorous upscaling is the difficulty of obtaining the dispersion
coefficient from particle statistics, specially from the Spatial Position Distribution (SPD) and
the First-arrival Times Distribution (FTD) of the tracer particles. In Section 3.2 we evaluate
how these distributions are commonly used to obtain the dispersion coefficient and propose a
new method that may overcome the various drawbacks of those currently used.

The purpose of this study is to quantify the longitudinal dispersion coeffi¢iep} at the
network scale by upscaling 3D Brownian motion of non-reactive tracer particles subjected to
a velocity profile in capillary bonds of a 3D pore network. Using network model with particle
tracking, the effects of different intra-pore velocity profiles are investigated in combination
with different choices of the node transition probabilities for a wide range of flow velocities.
Furthermore, various methods to determing from the particle statistics are tested.

Flow simulations have previously been carried out in our 3D pore network model for three-
phase immiscible flow [Van Dijke and Sorbie 2002]. However, since this paper focuses on
single-phase miscible tracer transport, this model has been employed single phase mode to
calculate the global velocity field. The velocities are then used in our network model in com-
bination with the random walk model of Brownian particles. In contrast to Sorbie and Clifford
[Sorbie and Clifford 1991], who approximated the intra-tube residence times of particles from
single-tube random walk simulations, we carry out a full random walk throughout the network.

In Section 3.3.1 we describe the particle tracking algorithm for a single tube. In Section
3.3.2 the network implementation of the algorithm is described, with emphasis on the vari-
ous nodal jump conditions. In Section 3.4.1 single tube simulations are presented to validate
the particle tracking algorithm and we make a first assessment of the different methods for
obtaining the corresponding dispersion coefficient. In Section 3.4.2.1 we present network sim-
ulations for a wide range of the characteristic Peclet nuniagtto assess the various methods
for obtainingD;,.. Using a suitable method, in Section 3.4.2.2 additional simulation results are
presented, which evaluate the choice of nodal jump conditions and velocity profile, in com-
bination with varying network heterogeneity. The latter is achieved by changing the range of
pore sizes.

Finally, we acknowledge that the issue of porous medium heterogeneity is very important
and that the present study underemphasizes this aspect. However, to investigate heterogeneity
fully, a large sensitivity study should be carried out with respect to pore size distribution, co-
ordination number and pore orientation relative to the main flow direction for the velocity field
calculations [Legatski and Katz 1967; Han et al. 1985; Bruderer and Be2G(i]. Addition-
ally, more sophisticated pore geometry may affect the results, although we believe that this is
not a major problem, as long as an intra-tube profile with varying velocities is applied. How-
ever, these issues are not the main focus of this paper and we show that even with the present
simple model, we are able to draw sound conclusions which agree well with experimental ob-
servations and other theoretical results where these are available.

3.2 The upscaling problem

Models describing transport of particles on the continuum scale usually employ the convection-
dispersion equation (CDE) [Bear 1972; Hassanizadeh 1996]. Assuming an elongated homoge-
neous and isotropic porous medium at the macroscopic level, the 1D formulation of the CDE
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for the concentratiog

oC oC 0*C

can be used, which involves the longitudinal macroscopic dispersion coeffibigind the
mean flow velocityv. In dimensionless fornb;, is expressed through the macroscopic Peclet
number

P€L = - (32)

as indicated in thést of symbols and notatiorendL is the length of the system. Traditionally,
D;, has been expressed as empirical relations such as

Dy =Dy /C+ Dy, (3.3)

where( denotes tortuosity, whil®,,, and D;, denote molecular diffusion and mechanical dis-
persion, respectively [Bear 1972]. In this paper we aim to find the macroscopic dispersion
coefficientD,, directly by tracking the paths of particles in the flow field in a 3D pore network.
Note that, although the macroscopic porous medium can be assumed homogeneous and 1D,
we use a 3D network to include microscale heterogeneities by randomly distributing the pore
sizes. The resulting (longitudinal) dispersion coefficient in the mean flow direction of the net-
work is identified with the macroscopi@; and the length of the network with. D, (or Pey)

is determined as a function of the characteristic Peclet nuifiber

vl
DTIL’

P@g = (34)
where/ denotes the mean pore length.

In a particle tracking model the effective longitudinal dispersioncan be quantified by
two methods. The first method is based on the statistics of the Spatial Position Distribution
(SPD) of the Brownian patrticles, which follows from Einstein’s relation [Chandrasekhar 1943]:

0% = 2Dyt. (3.5)

In Eq (3.5)0% is the variance of the X-coordinates of the ensemble of Brownian particles.
Equation (3.5) can be used in two ways [Bruderer and B&ri2ai®1]. In the secant method,

the evolution ofs% /2t is determined, assuming that the particles have been released in space
at timet = 0. After sufficient times? /2t should approach an asymptotic value, which is then
identified with D;,. In the tangent method, the rate of change of the variahi@r3 /0t) is
evaluated as it approaches an asymptotic value that is identifiéy a3 he tangent method

is believed to be more accurate for determination of the transverse dispersion coefficient, but
both methods give similar results for determination of the longitudinal dispersion coefficient
[Bruderer and Bernabh2001]. In Section 3.4.1 we show that the latter is indeed the case, but
that the tangent method is very sensitive to local variations of the derivatiygot.

Obtaining SPD statistics is relatively easy in a very long capillary, but it is computationally
costly in a pore network. To determirig, using the SPD approach, the positions of all particles
must be scanned at regular time intervals until any of the above mentioned methods (secant or
tangent) indicate that the asymptotic valuegf is reached. That means that during the entire
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simulation even the fastest moving particle should not leave the network, which is particularly
stringent for large flow velocities, as it requires a very large network.

Since quantifyingD, through the SPD statistics is so expensive, we may alternatively use
statistics of the First-arrival Times Distribution (FTD). In this case for each particle the time
needed to travel from inlet to outlet of the network is recorded. The quantitmay be derived
from the FTD approach in various ways.

Firstly, we may fit the Cumulative First-arrival Time Distribution (CFTD) directly to an
analytical solution of the CDE (3.1) in a semi-infinite network or core [Van Genuchten and
Alves 1982] for the dimensionless concentratioat the outlet, as is often done experimentally.
The approximate analytical solution is given by

C(X,T) = %{erfc[()? ~T) \/Z } + exp (PeLX)erfc[(X + T)\/g} } (3.6)

whereX = X/L andT = vt/L are dimensionless distance and time respectively. The CFTD
is fitted agains€(1, T') to obtain the macroscopic Peclet numier, and hence),, according
to Eq (3.2). Obviously, the use of the CDE on the macroscopic level and the solution (3.6) for a
particular set of boundary conditions are not always appropriate, which means that this method
is only reliable when the assumptions for using the CDE (3.1) and its solution are met [Van
Genuchten and Alves 1982].

Secondly, we may use the first and second moments of the ;T@nsemble average))
ando? (variance) respectively. Assuming that the coefficients of variation of the SPD and FTD
are approximately the same, the spatial variarigés determined from the temporal variance
o? according to

g
ox = ui—ﬁ, (3.7)

wherep x is the first moment of the SPD. Hence, with Eq (3.5), we obtain

Dy = U5 ( )2. (3.8)
2t \(t)

Because we are using temporal statistics, an estimajeyfonust be introduced, as well as
an estimate fot. Takingt = (¢), it is often assumed [De Arcangelis et al. 1986; Sahimi et al.
1986; Sorbie and Clifford 1991; Appelo and Postma 1993] that pgth(t) = v anduy = L
Hence, Eq (3.8) is approximated as

vL fop\ 2

Dy = 7(5) . (3.9)
However, the assumptigny = v(t) is not always valid. In particular for smal| when the

macroscopic dispersion is dominated by molecular diffusion, the temporal momestst)

ando? must become independent @f Hence, according to the above assumpfignhas to

vary linearly withv, which is certainly not the case, since we assume on the other hand, more

correctly, thatux = L is constant. Based on these considerations, it is more appropriate to

approximate: asL? in Eq (3.8) and use the expression

DL:%(%)Q (3.10)
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yielding a constanD;, for smallv [Saffman 1960; Bear 1972]. In Section 3.4.2.1 we check
whether indeed the temporal moments become independermtraf we evaluate this new FTD
method of moments as opposed to the old method of Eq (3.9).

Sahimi et al. [Sahimi et al. 1983b] have also used an analytical solution of the CDE (3.1),
from which they derived a relation between the FTD statistics Bag. For small enough
(0,/11)° their expression limits to Eq (3.9) [Sorbie and Clifford 1991]. However, since this
method is essentially another way of fitting the FTD statistics to a macroscopic solution, we
will not discuss this any further.

For a single cylindrical pore Taylor and Aris [Taylor 1953; Aris 1956] derived a relation
between the resulting (Taylor) dispersion coefficiént, as a function of molecular diffusion
D,,, pore radiusk and the average tube velocity

u?R?

DT = Dm+kaxD—m7 (311)

with k., = 1/48 for a cylindrical pore. Equation (3.11) is valid for a wide range of the tube or
bond Peclet number, i.e.

ul

However, deviations may be expected for pore aspect r&i@sR/ﬁ close to 1, which often
arise in actual porous media [Sorbie and Clifford 1991]. Obviously, dispersion in the individual
pores of our model should obey Eq (3.11) in the appropriate limits.

To obtain the dispersion coefficieli?; for a single tube, Taylor [Taylor 1953] also fitted
the CFTD to an analytical solution of the CDE, for a tube of infinite length,

(€ - T)\/P_GT]
)

which is often referred to as the Taylor-Aris solution [Scheidegger 1960; Bear 1972]. In Eq
(3.13) Pey denotes the Taylor Peclet number, defined as

Cle,7) = %erfc[ (3.13)

Per = — (3.14)

and¢ = z/¢, T = ut/¢ are dimensionless distance and time for the local co-ordinates of a tube.
For later use we express Eq (3.11) in termsef-, Pe, andR as

Peb

P€T = =
1 + ko Pe}R?

(3.15)

3.3 Model

3.3.1 Motion within a single tube

In our random walk model the movement of a particle is driven by two forces: (1) within
the pore the particle experiences a series of random jumps from the origin of the spherical
coordinate-systemn = (r, p, ) (Brownian motion or molecular diffusion); (2) the particle
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moves with the fluid velocity profile of the pore (convection) in the local cylindrical coordinate
system(z, y), wherez indicates the (local) flow direction angis the distance of the particle’s
position from the axis of the cylindrical tube (bond). Additionally, at nodes (intersection of
pores) the particle jumps from one pore to the next, based on a probabilistic approach, which
should also depend on both diffusive and convective forces, as described in Section 3.3.2. To
avoid confusion with earlier Markovian models of random walkers, we prefer to call our ran-
dom walk model the “Brownian directed random-walk” model, because we describe random
leaps of particles in three dimensions and, additionally, track the center of a Brownian sphere
along the fluid streamline.

The convective motion of the particle occurs according to the fluid velocity profile, which
we assume to be either parabolic (Hagen-Poiseuille flow) or plug-like [Sahimi et al. 1986;
Bruderer and Bernab2001], and we will study the quantitative effect on the dispersion due to
either assumption. Hence, the advective velocity of the patti¢he is assigned according to

2(1 — \?) for parabolic profile

UQ) = uf(A), with f(3) = { 1 for uniform (plug-like) profile, (3.16)

where) is the relative radial position of the particle, i.2.= y/R.

Considering the Brownian motion, we assume that the particles describe hops in all direc-
tions around their mean position at the fluid streamlines (fluid-strand). Following Sorbie and
Clifford [Sorbie and Clifford 1991] and Damion et al. [Damion et al. 2000], the lengths of these
random jumps in Lagrangian space occur according to a probability function that is 