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Abstract 

The development of molecular techniques has offered possibilities to identify quantitative trait 
loci (QTL). Studies in dairy cattle have mainly focused on milk production traits. This thesis first 
gives an overview of the main identified QTL for milk production traits. Subsequently, a study to 
detect QTL affecting 27 conformation traits and functional traits was performed. A granddaughter 
design consisting of 20 Holstein-Friesian grandsires and 833 sons was analyzed by multi-marker 
regression. This across-family analysis suggested the presence of 61 QTL. Ten of these QTL 
exceeded the genomewise significance threshold. These were mainly QTL affecting body size traits 
and udder conformation traits. 

When QTL-information is used to select for a certain trait, genetic progress in other traits may 
be influenced as well, due to pleiotropic effects of QTL, or due to closely linked QTL. A method 
was developed to identify regions affecting multiple traits. The method is based on the covariance 
between marker contrasts from single-trait regression analysis for different traits. Application of 
this method to data on fifteen traits (milk production, udder conformation, udder health and fertility 
traits) in our granddaughter design resulted in 59 multiple trait quantitative trait regions (MQR). 
Most MQR were found on BTA 6, 13, 14, 19, 22, 23 and 25. 

QTL-information can be used in breeding schemes (marker-assisted selection, MAS) to 
increase the rate of genetic improvement. A number of multi-stage dairy cattle breeding schemes 
was evaluated, studying the impact of increased preselection using QTL-information. Response in 
multi-stage MAS-schemes was 4.5% to 31.3% higher than response in corresponding schemes 
without QTL-information. In some of the MAS-schemes with a reduced number of progeny tested 
bulls, genetic progress was identical to or higher than genetic progress in the original schemes. The 
results indicate opportunities to improve current breeding schemes. The gains depend on the amount 
of genomic variation explained by QTL. 

Currently available pedigrees and methods offer excellent opportunities to identify more QTL, 
thus increasing the fraction of the genomic variation explained by QTL. New initiatives, like 
sequencing the bovine genome, will further facilitate the identification of genomic variation, and its 
use. 
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General Introduction 
 

Background 

The aim of breeding programs is to improve the genetic level for traits of economic interest. 

The breeding goal defines which traits need to be improved, and describes the relative weights of 

each of the traits. In dairy cattle, genetic progress is achieved by selecting animals that rank highest 

on the selection criterion or selection index as parents for the next generation. The selection index 

usually consists of pedigree information and phenotypes measured on selection candidates as well 

as relatives. Phenotypic information on breeding goal traits as well as correlated traits may be 

included. 

A number of factors determine the annual genetic progress: 

• selection intensity, which is related to the fraction of animals selected as parents 

• accuracy of the selection criterion, i.e. the correlation between the selection criterion and the 

breeding goal 

• variance of the breeding goal 

• generation interval, or the average age of parents when their offspring are born 

Breeding programs are continuously trying to achieve maximum response, given certain 

restrictions with regard to budget, increase of inbreeding etc. Over the years, new techniques have 

been developed, like reproduction techniques and molecular techniques. These techniques have 

offered opportunities to increase the intensity and accuracy of selection, and decrease the generation 

interval, resulting in increased genetic progress. 

 

Technological Developments 

Reproduction techniques. The introduction of artificial insemination (AI), approximately 50 

years ago, was the first major improvement to dairy cattle breeding programs. Through AI, males 

can produce large numbers of offspring, so fewer males need to be selected to produce the next 

generation. This has resulted in a considerable increase of the selection intensity. Because males do 

not have phenotypes for most of the important traits in dairy cattle, information on large numbers of 

offspring could now be used to obtain highly accurate estimates of the genetic level of males. 

Therefore, dairy cattle breeding programs were set up around progeny test programs and annual 

genetic progress increased considerably. Nowadays, progeny testing is still the key element of dairy 

cattle breeding programs. 

Approximately 30 years ago, techniques that increased female reproduction capacity were 

introduced. The use of multiple ovulation and embryo transfer (MOET) (Rowson, 1971) and ovum 

pick up (OPU) in combination with in-vitro fertilisation (IVF) (Kruip et al., 1991) provided 
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opportunities to increase selection intensity in females and to reduce the generation interval 

(Meuwissen, 1991).  

Molecular techniques. Variation between animals with regard to their genetic level for a 

certain trait is caused by differences in DNA-composition of these animals. Selection of animals 

with the best DNA-composition results in genetic progress. Until recently, selection was based only 

on phenotypic information of animals. Due to the influence of environmental factors on the 

expression of traits, phenotypes can only provide part of the information on the genetic level of 

animals. The use of molecular techniques that have been developed in the past decades can increase 

the amount of information on the genetic level of animals. Genetic markers like microsatellites 

provide opportunities to follow the inheritance of DNA-segments from parents to offspring. This 

can be used, for example, to categorise sons of a sire into two groups, based on which variant 

(allele) of the marker they received. Differences between these groups with regard to relevant traits 

suggest that this particular DNA-segment (or quantitative trait locus, QTL) is involved in the 

expression of these traits. Weller et al. (1990) showed that this strategy has considerable power in 

pedigree structures already available in dairy cattle. Because genetic markers are available early in 

life, the accuracy of selection at young age can be increased and the generation interval can be 

reduced. Soller and Beckman (1982) were the first to address the potential benefit of selection for 

genetic markers (marker assisted selection, MAS) for genetic response in dairy cattle breeding 

programs. 

 

QTL-Detection and Marker-Assisted Selection 

The availability of molecular techniques and their potential benefit for genetic progress has led 

to numerous experiments to detect QTL. In dairy cattle, these studies have mainly focused on milk 

production traits. Georges et al. (1995) were the first to report QTL affecting these traits, followed 

by numerous other studies (e.g. Spelman et al., 1996). However, milk production traits constitute 

only part of the breeding goal. In recent years, traits like fertility and health have become 

increasingly important. Compared to QTL for production traits, QTL for fertility and health may be 

relatively more important, for example due to low heritability of these traits, resulting in low 

accuracy of the current selection criterion, or due to difficulties to obtain phenotypes. Therefore, 

information on QTL for these traits is essential for efficient selection. 

Once a QTL that affects a particular trait has been detected, it can be used in selection. 

However, selection for this QTL may also influence other traits, due to pleiotropy (i.e. the QTL 

affects multiple traits), or because the QTL is linked to QTL affecting other traits. To avoid 

 4 



General Introduction 
 

negative side effects of selection for certain chromosomal regions or to exploit positive effects of 

MAS on other traits of interest, insight into the pleiotropic effects of a QTL, or the effect of a 

chromosomal region on multiple traits, is needed. Until now, little attention has been paid to this 

topic. 

To increase accuracy of selection, males are currently progeny tested and females are tested for 

performance, after preselection on pedigree information. Accuracy of preselection can be increased 

by including molecular information, provided markers or genes explain a substantial fraction of the 

genetic variance. Selection intensity in the pre-selection stage can be increased, by combining 

reproduction technology (increased embryo production) with molecular technology (MAS of 

embryos). The opportunities to change the design of the breeding program for the various 

applications of pre-selection MAS, need to be explored. 

 

Aim 

The aim of this thesis is to identify quantitative trait loci (QTL) in dairy cattle, and to study the 

benefits from selection on QTL-information. Emphasis is on 1) QTL affecting conformation and 

functional traits, 2) QTL or chromosomal regions affecting multiple traits, and 3) potential 

consequences of selection on QTL-information for genetic response and design of the breeding 

program. 

 

Outline 

Initially, QTL-detection studies in dairy cattle focused on detection of QTL for milk production 

traits. Chapter 2 of this thesis gives an overview of QTL affecting milk production traits. Due to the 

growing importance of non-production traits in dairy cattle breeding, there is also a need for QTL 

for these traits. Chapter 3 reports on a whole genome scan to detect QTL affecting functional and 

conformation traits. 

When information on a QTL is used in selection, other traits may be influenced as well, due to 

pleiotropy or close linkage between QTL affecting different traits. Chapter 4 describes a method 

that was developed to detect pleiotropic QTL or closely linked QTL in an outbred population. A 

simulation study was used to verify the method. Chapter 5 describes the application of this method 

to scan the genome for chromosomal regions affecting multiple traits. This study involves milk 

production traits, udder conformation traits, udder health traits and fertility traits. 

Genetic markers provide information that can be used early in life. Chapter 6 addresses general 

aspects of multi-stage selection and also looks at the possibilities to reduce the number of progeny 
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tested young bulls in a MAS-scheme. Besides, genetic progress in MAS-breeding schemes with 

increased embryo production and genotyping of embryos is studied. 

Chapter 7, the general discussion, reports on current MAS-applications in dairy cattle breeding 

programs and addresses the possibilities to detect a sufficiently large fraction of the genetic 

variance, necessary to start MAS. The precision of the QTL-location largely determines how MAS 

can be applied. Advantages and disadvantages of alternative MAS-types, and the need for fine-

mapping and/or gene-detection, are discussed. The final part of this chapter deals with the impact of 

new developments, in particular sequencing the bovine genome, on QTL detection and the use of 

molecular information in dairy cattle breeding.  
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QTL for milk production traits 
 

ABSTRACT 
Most of the QTL mapping studies that are presently being carried out use the granddaughter 

design. Even the largest designs that are being carried out at this moment are expected to detect 

only a small fraction of the QTL underlying milk production traits. Therefore, methods to increase 

the power of QTL mapping designs need to be explored. A survey of the results from QTL mapping 

studies reveals that especially for protein content significant QTL have been reported. Linkage has 

been confirmed for QTL located on chromosomes 3, 6, 14 and 20. The gene located on 

chromosome 14 has a major effect on fat content and has been cloned. Chromosomes 3, 6 and 20 

have effects on protein content where chromosome 6 is likely to contain more than one QTL. 

Chromosomal regions showing effects on milk production traits also seem to have effects on other 

traits. Multiple trait analyses should be used to determine whether pleiotropic gene effects play a 

role. 

 

INTRODUCTION 
Since the first complete genome scan in dairy cattle by Georges et al. (1995) many QTL 

mapping studies have been initiated. It is expected that information from these experiments will 

increase our knowledge on the genetic and biological backgrounds of milk production traits. 

Furthermore, information on the location and effect of these genes can be used in breeding. The aim 

of this paper is to summarise the main results of the QTL mapping studies that have been carried 

out in dairy cattle. 

 

EXPERIMENTAL DESIGNS 
Most of the QTL mapping experiments that have been carried out in dairy cattle have used a 

granddaughter design (Boichard, 1998). The largest granddaughter design consists of 14 grandsires 

and approximately 1800 sons, i.e. the first large scale QTL mapping experiment in dairy cattle, 

which was initiated by Georges et al. (1995) and extended in later years (Zhang et al., 1998). 

Experiments that have been carried out in France, Germany and The Netherlands/New Zealand 

consist of 1000–1500 sons, whereas the designs in Scandinavian countries have around 400 

progeny tested sons (Boichard, 1998). Lipkin et al. (1998) and Mosig et al. (2001) used selective 

DNA pooling. The power of this design is considerably higher than the power of the granddaughter 

designs that are currently being carried out. However, the full power of detecting QTL only applies 

to one trait, i.e. protein%. Most of the studies focussed on the Holstein breed. The world-wide 
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exchange of semen in this breed implies that most of these studies are likely to have common 

ancestors. In some situations the same grandsires might be included in different studies. This 

overlap makes it reasonable to assume that a large fraction of the segregating QTL are in fact 

identical.  

QTL detection in a granddaughter design is limited to routinely collected traits. In all designs 

these comprise the milk production traits and conformation traits. Furthermore, in several countries 

information regarding reproduction (e.g. calving ease and non-return rate), health (somatic cell 

score) and workability (milking speed and temperament) is routinely collected, which enables 

detection of QTL for these traits. In addition, in Scandinavian countries veterinary records of 

individual cows are available.  

Based on results from QTL mapping experiments in dairy cattle, Hayes and Goddard (2001) 

predicted the distribution of QTL effects for an “average” quantitative trait. Combining these results 

with power calculations makes it possible to construct the distribution of significantly detected 

QTL. Figure 1 shows that in a medium sized granddaughter design (15 grandsires with 70 sons per 

grandsire) around 5.4% of the QTL will be detected. For a large granddaughter design (20 

grandsires with 75 sons per grandsire) this figure is approximately 7%. Hayes and Goddard (2001) 

concluded that, in order to explain 90% of the genetic variance, QTL as small as 0.1σp have to be 

detected. At present, even the largest granddaughter designs do not meet this requirement. Using 

selective DNA pooling, Mosig et al. (2001) report that as much as 90% of the QTL affecting 

protein% have been detected.  
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Figure 1. Distribution of QTL effects for milk production traits in dairy cattle according to Hayes and Goddard 
(2001) combined with the power of a medium sized and a large granddaughter design (A) and the expected 
distribution of detected QTL for both designs (B). 
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More recently, projects using crosses between cattle breeds have been started up. At Roslin 

Institute (Edinburgh) a cross between the Holstein and Charolais breeds has been produced 

(Williams and Wooliams, 1998) while in New Zealand a cross between Jerseys and Holsteins was 

established (Spelman, 1998). Specifically setting up these crosses has the advantage that traits not 

collected routinely can be included in the experiment. On the other hand, the large generation 

interval and the costs of housing animals make these experiments very costly. Crosses between 

breeds enable the detection of QTL which explain the difference between breeds and it is therefore 

uncertain if QTL detected in these experiments are also segregating in purebred populations. 

 

RESULTS OF QTL MAPPING EXPERIMENTS 
Table 1 shows an overview of significant and suggestive QTL affecting milk production traits. 

Summarising results causes some difficulties as studies use different criteria to conclude 

significance.  In order to make results comparable, false discovery rates used by Mosig et al. (2001) 

and Thomsen et al. (2001) were converted. 

Table 1 shows that for protein% more significant and suggestive QTL were reported than for 

other production traits, even when the study by Mosig et al. (2001), reporting many QTL for 

protein%, is not considered. This seems surprising considering the higher heritability for protein 

percentage which is expected to have a negative effect on the statistical power of detecting QTL in 

a granddaughter design: for a medium sized granddaughter design the power of detecting a QTL 

with an effect of 0.4σP is 67% when the heritability is 0.3 and 31% when the heritability is 0.6. 

Therefore, this suggests that for protein% more QTL with large effects are segregating than for 

other milk production traits. Also for milk yield a considerable number of significant QTL are 

reported (Table 1). However, this can be attributed to the large number of QTL reported by De 

Koning et al. (2001). The use of significant QTL as cofactors by De Koning et al. (2001) is 

expected to increase the power. However, the size of this design (~500 young bulls) suggests that 

the large number of QTL reported in this study might also be related to the population under study, 

i.e. the Finnish Ayrshire population. 

Table 1 shows that especially for BTA14, 6, 20 and 3 significant QTL effects have been 

reported. The significant results in Table 1 do not necessarily represent the same QTL and therefore 

results for those 4 chromosomes will be presented in more detail (Figure 2). Distances between 

genetic markers in Figure 2 were based on the MARC map. Not all of the results presented in 

Figure 2 reached genomewide or suggestive significance levels. 
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Table 1. Main results from QTL mapping studies in dairy cattle1. 

BTA Milk Yield Fat Yield Protein Yield Fat % Protein % 
1 **J)    *I)

2     ***I)

3   *E) **E) ***D), *E)

**H)

5 **J)     

6 
***D)

**J)   ***D)
***A), ***D), 

*F), **G) ,**H), 
***I)

7   **G)  ***I)

8     ***I)

9  *D)    
10     ***I)

11     *I)

12 **J)     
13     ***I)

14 
***C), **G)

***K)
*E), **G), 

**H), ***K) ***K) **E), **G), 
**H), ***C)

***C), **G) , 
**H), ***I)

16 *K) **K) **K)   
17 *D)     

20 **J)   ***D) ***B), ***D), 
**G) ,**H), *I)

21 **J)    ***I)

22     *I)

23 **J)  *K)  ***I)

26  **G) **G) *D)  
27     *I)

28    *D) *D), **H)

29 **J)    *I)

1) ***=Experimentwise, **=Genomewide, *=suggestive linkage 
 A)Spelman et al. (1996); B)Arranz et al. (1998); C)Coppieters et al. (1998); D)Zhang et al. (1998); E)Heyen et 

al. (1999); F)Velmala et al. (1999); G)Boichard et al. (2000) H)Ashwell et al. (2001); I)Mosig et al. (2001); J)De 

Koning et al. (2001); K)Thomsen et al. (2001). 

 

BTA14. Coppieters et al. (1998) report experimentwise evidence for the presence of a QTL 

affecting fat%, protein% and milk yield on the centromeric end of BTA14, i.e. at marker CSSM66. 

At the same location Boichard et al. (2000) found significant evidence for effects on milk yield, fat 

yield, fat% and protein %. Heyen et al. (1999) found effects on fat% and fat yield in the same 
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chromosomal region but closer to marker ILSTS039. In the region bracketed by ILST039 and 

CSSM66, Looft et al. (2001) detected significant effects on milk, fat and protein yield and found 

substantial linkage disequilibrium between marker KIEL_E8 and milk production traits. Ashwell et 

al. (2001) report a significant effect for fat% and fat yield at marker BMS1678. At the other end of 

BTA14, close to marker BM6425, Mosig et al. (2001) report a QTL affecting protein%. This is 

likely to be a different QTL from the ones reported in other studies. 

In a follow-up of the study by Coppieters et al. (1998), Riquet et al. (1999) describe the fine 

mapping of a QTL on BTA14 by developing a high density marker map and searching for identity-

by-descent regions. Recently, Grisart et al. (2002) reported the positional cloning of this QTL. This 

is the first QTL in dairy cattle that has been successfully identified. The proposed candidate gene is 

DGAT1 and is located close to ILSTS039. The gene catalyses the final step in triglyceride synthesis 

and as 98% of the milk fat consists of triglycerides this is a likely candidate. Grisart et al. (2002) 

hypothesise that the functionality of the enzyme has changed due to the identified mutation which 

would explain the effect on fat%. In the Dutch population 51% of the variation in fat% could be 

explained by the mutation indicating that this is a gene with a major effect. For the New Zealand 

population 31% of the variation in fat% could be explained by the mutation. Allele frequencies 

were 0.63 in the Dutch population and 0.30 in the New Zealand population. The reason a QTL with 

such large effects is still segregating in both populations is probably that the gene has a negligible 

effect on the net-merit index used in both countries. 

In addition to the QTL affecting milk production traits a number of studies reported QTL with 

effects on non-production traits. The effects on somatic cell score by Zhang et al. (1998) and front 

teat placement and fore udder attachment by Ashwell et al. (2001) might be the result of pleiotropic 

effects of one gene.  
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Figure 2. The most likely location of QTL on BTA3, BTA6, BTA14 and BTA20 affecting milk production traits and non-production traits in 
dairy cattle. 
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BTA6. The QTL detected by Georges et al. (1995) on BTA6 in combination with the presence 

of the casein gene cluster encouraged many researchers to study this chromosome. Figure 2 shows 

the location of reported QTL. There is a remarkable consistency between different studies on the 

location of a QTL affecting protein %. Most of the studies locate the QTL at or close to marker 

BM143 and Ron et al. (2001) report a 95% confidence interval of 4 cM around this marker. In 

addition to the effect on protein%, Zhang et al. (1998) and Ron et al. (2001) also report a QTL 

affecting fat% in the same region. The estimated locations suggest that this is the same gene. Note 

that Klungland et al. (2001) found significant evidence for a QTL affecting clinical mastitis close to 

marker BM143. Boichard et al. (2000) and Mosig et al. (2001) report a QTL affecting protein% that 

is located closer to the casein gene cluster. In the same region several studies reported a QTL with 

an effect on milk yield.  

Spelman et al. (1996), Zhang et al. (1998) and Velmala et al. (1999) fitted a 2-QTL model to 

BTA6. Velmala et al. (1999) found evidence for the presence of 2 QTL affecting protein%, milk 

yield and fat yield. Their analyses suggest the presence of one QTL close to BM143 and another 

QTL located around the casein cluster. Zhang et al. (1998) found significant evidence for 2 QTL 

affecting fat%. These two loci were only 12 cM apart: one locus was located close to BM1329 and 

the other at TGLA37. Zhang et al. (1998) indicated that in all the cases where there was evidence in 

favour of a 2 QTL model, the two linked loci were in repulsion phase in those families where both 

of them were segregating. Selection might have induced negative covariances between loci. Closely 

linked QTL in repulsion phase are expected to remain undetected in single QTL analyses, as was 

illustrated by Velmala et al. (1999) for the QTL affecting fat yield on BTA6. 

BTA20. On BTA20 effects on protein% were reported by Arranz et al. (1998), Zhang et al. 

(1998), Boichard et al. (2000), Ashwell et al. (2001), and Mosig et al. (2001). All these effects were 

located in a chromosomal region of approximately 40 cM and therefore might be due to a single 

QTL. In the same chromosomal region, Zhang et al. (1998), also showed significant evidence for a 

QTL affecting fat%. Boichard et al. (2000) and Ashwell et al. (2001) reported effects on udder 

characteristics at the same chromosomal region as where effects on protein% were found. 

BTA3. On BTA3 QTL for protein% were reported by Zhang et al. (1998), Heyen et al. (1999), 

Boichard et al. (2000) and Ashwell et al. (2001). These effects were located in an area of about 40 

cM. In addition, in the same region significant effects were found for protein yield and fat% (Heyen 

et al., 1999). At the other end of the chromosome Schrooten et al. (2000) detected effects on 

milking speed and somatic cell count. 
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DISCUSSION 
It was concluded that even the largest QTL mapping studies carried out to date are expected to 

detect only a limited fraction of the QTL underlying milk production traits. More QTL can be 

detected by increasing the size of the design or by using alternative designs, e.g. selective DNA 

pooling. However, in most studies the information present has not been fully exploited. Most of the 

studies used regression methods for QTL detection. Regression methods have been proven to be 

robust, relatively simple to apply and computationally not very demanding which allows the use of 

permutation tests for calculation of significance thresholds. However, regression methods assume 

unrelated families and can handle only two generations of genotyped individuals. In dairy cattle 

pedigrees, usually additional relations exist, e.g. due to relationships between grandsires or due to 

dams with multiple genotyped sons. Bink and Van Arendonk (1999) and Bolard and Boichard 

(2001) showed that including additional relationships increases the power of the experiment. These 

methods have not been fully exploited in most experiments. An alternative strategy for increasing 

the power of existing designs was demonstrated by De Koning et al. (2001). By fitting cofactors De 

Koning et al. (2001) significantly detected 8 QTL affecting milk yield. Without the use of cofactors 

5 suggestive QTL were detected.  

Genes influencing more than one trait are believed to be the main source for genetic 

correlations between traits. Little attention has been paid to potential pleiotropic effects of 

chromosomal regions. However, before MAS for certain chromosomal regions can be implemented, 

effects of chromosomal regions on multiple traits need to be studied. Figure 2 demonstrates that 

chromosomal regions affecting milk production also have effects on other traits. So far attention has 

focussed on single trait analyses. Multiple trait analyses could be used to determine whether 

pleiotropic gene effects play a role. 

While results from QTL mapping experiments accumulate, focus will turn towards fine 

mapping, cloning genes and utilising this information in breeding. So far, the first gene affecting 

milk production has been identified on BTA14 (Grisart et al., 2002). Linkage has been confirmed 

on three other chromosomes; BTA3, BTA6 and BTA20 where BTA6 is likely to contain more than 

one QTL. It is expected that in the coming years more chromosomal regions affecting milk 

production traits will be detected. However, these QTL are likely to have smaller effects, which will 

complicate positional cloning.  
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ABSTRACT 
A granddaughter design was used to locate quantitative trait loci determining conformation and 

functional traits in dairy cattle. In this granddaughter design, consisting of 20 Holstein Friesian 

grandsires and 833 sons, genotypes were determined for 277 microsatellite markers covering the 

whole genome. Breeding values for 27 traits regarding conformation (18), fertility (2), birth (4), 

workability (2) and udder health (1), were evaluated in an across-family analysis using multimarker 

regression. Significance thresholds were determined using a permutation test. 

The across-family analysis suggested the presence of 61 quantitative trait loci, when 27 (i.e. 

one for each trait) were expected by chance. The test statistic exceeded the genomewise 

significance threshold for the following traits and chromosomes: chest width on chromosome 2; 

gestation length on chromosome 4; stature, body capacity and size on chromosome 5; dairy 

character on chromosome 6; angularity on chromosome 12; fore udder attachment on chromosome 

13; and fore udder attachment and front teat placement on chromosome 19. The quantitative trait 

loci for size traits on chromosomes 2, 5 and 6 may also have an effect on calving ease. The 

quantitative trait loci for udder traits on chromosomes 13 and 19 may also affect somatic cell score 

and mastitis resistance. If there are no negative effects on other economically important traits, 

marker assisted selection using markers associated with these quantitative trait loci can be applied. 

(Key words: whole genome scan, quantitative trait loci, conformation, functional traits) 

 

Abbreviation key: MAS = marker assisted selection, QTL = quantitative trait locus 

 

INTRODUCTION 
Most economically important traits in dairy cattle production are influenced by many genes as 

well as environmental factors. Breeding programs aim at selecting animals with the most favorable 

set of genes, to produce animals for the next generation. Selection in most of these breeding 

programs is for a combination of production, conformation and functional traits. Evaluation 

procedures like BLUP (Henderson, 1984) have been developed to estimate breeding values of 

animals. The nature of the underlying genes (quantitative trait loci, QTL) affecting traits, however, 

is still largely unknown. 

Recently, efforts have been undertaken to locate genes affecting economically important traits 

in dairy cattle. Genetic markers associated with these genes can be used in marker assisted selection 
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(MAS), to increase genetic progress (Kashi et al., 1990). For dairy cattle, the focus was initially on 

milk production traits. The granddaughter design (Weller et al., 1990) was used to locate genes 

involved in milk, fat and protein production (Georges et al., 1995; Spelman et al., 1996; Arranz et 

al., 1998; Coppieters et al., 1998; Ron et al., 1998). Implementation of MAS in breeding strategies 

for production traits has been started (Spelman, 1998). 

However, MAS is expected to be especially beneficial for traits that cannot be improved very 

efficiently by current breeding programs, for example, due to low heritability (Lande and 

Thompson, 1990). Important traits in dairy cattle breeding with low heritability include functional 

traits like fertility and health traits. Although some markers associated with functional traits were 

reported (Ashwell et al., 1996; Ashwell et al., 1997; Ashwell et al., 1998b; Zhang et al., 1998), 

these studies were limited to only a few traits or used a marker map that was not very dense. 

In this study, a whole genome scan using a dense marker map was applied to a granddaughter 

design in the Dutch Holstein-Friesian population to locate QTL for conformation and functional 

traits. 

 

MATERIALS AND METHODS 
 

Family Structure and DNA Analysis 

Semen samples from 949 young bulls, progeny-tested in the Netherlands from July 1987 to 

September 1993 and belonging to 22 half-sib families, were collected, and DNA was extracted from 

these samples. To avoid effects of selection within families (MacKinnon and Georges, 1992) young 

bulls in a sampling-region × period subclass were excluded from the analyses if only part of the 

young bulls in this subclass had DNA material available. After these edits, the data set consisted of 

20 half-sib families with 833 sons. This granddaughter design was an extension of the design 

described previously by Spelman et al. (1996) and used to detect QTL for production traits. The 

number of families was identical, but some grandsires had additional sons in the analyses. These 

sons did not have information on breeding values for production traits when Spelman et al. (1996) 

performed their analyses. The number of young bulls per grandsire ranged from 12 to 147 with an 

average family size of 42. For each young bull and grandsire, genotypes for 277 microsatellite 

markers covering the 29 autosomes were determined as described by Georges et al. (1995) or by 

using the “four dye-one lane” technology on an ABI373 or ABI377 sequencer. A linkage map for 

the 29 autosomes was constructed using CRIMAP (Lander and Green, 1987) and ANIMAP 

(Georges et al., 1995). The Haldane mapping function was used to calculate length of the 
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chromosomes and the distance between markers on each chromosome (Table 1). Total length of the 

genome was almost 3200 cM. 

Average marker interval per chromosome ranged from 4 to 29 cM. A graphical representation 

of marker distribution and marker density can be found in Figure 1. 

Average heterozygosity for each chromosome was calculated as number of heterozygous 

marker loci across grandsires divided by number of marker loci across grandsires. Average 

heterozygosity per chromosome ranged from 45 to 73%. Average heterozygosity across 

chromosomes was 60% (Table 1). 

 
Trait Data 

Data on many traits of dairy cows are routinely collected in the Netherlands. Systematic 

environmental factors, such as herd, year, and season of calving, influence these traits. BLUP 

procedures (Henderson, 1984) are used to estimate breeding values of sires. These procedures 

adjust for systematic environmental factors and utilize all available data. The data used in this study 

were estimated breeding values for 27 of these traits (Table 2). These estimated breeding values 

were obtained in the national genetic evaluation by using a sire model or an animal model. 

Data on calving ease and other birth traits are collected on offspring of young bulls. About 

1000 inseminations per young bull are carried out, mainly on first lactation heifers. Calving survey 

cards to record birth traits on these heifers are supplied to farmers that have cows in calf to a young 

bull. Farmers score calving ease and birth weight and report to the national herdbook. Gestation 

length is derived from insemination date and birth date, which are in the national database.  

Eighteen conformation traits are scored in the national herd classification system. All lactating 

heifers in herds participating in herd classification, i.e. 50% of all milk-recorded heifers (CR Delta, 

1999), are classified once. Each herd is visited approximately twice a year by a professional 

classifier. The conformation traits can be subdivided into four general characteristics and 14 linearly 

scored traits. At the time of classification, farmers report a linear score for milking speed and 

temperament of the heifer during milking. For each of the traits, the scale for scoring is divided into 

9 classes. 

Two fertility traits, interval between calving and first insemination, and nonreturn at 56 d 

postinsemination are derived from calving and insemination data. The trait “nonreturn at 56 d 

postinsemination” is a measure for pregnancy rate. All cows not offered for AI within 56 d after 

insemination are considered pregnant.  
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Table 1. Number of markers per chromosome, chromosome length, average marker interval, heterozygosity, 

and information content 

 
Chromosome 

Markers 
(no.) 

Length 
(cM) 

Average marker 
interval (cM) 

Average 
heterozygosity1

Average 
information content2

1 10 189 21.0 0.61 0.60 
2 10 139 15.4 0.62 0.69 
3 8 171 24.4 0.52 0.66 
4 10 104 11.6 0.69 0.68 
5 8 181 25.9 0.68 0.72 
6 29 113 4.0 0.50 0.62 
7 8 138 19.7 0.59 0.65 
8 8 197 28.1 0.61 0.67 
9 6 113 22.6 0.54 0.59 

10 12 142 12.9 0.67 0.60 
11 9 112 14.0 0.60 0.68 
12 7 103 17.2 0.62 0.71 
13 5 117 29.3 0.57 0.70 
14 11 108 10.8 0.64 0.70 
15 8 103 14.7 0.62 0.67 
16 6 114 22.8 0.71 0.70 
17 6 93 18.6 0.67 0.67 
18 7 124 20.7 0.59 0.68 
19 26 133 5.3 0.54 0.65 
20 25 94 3.9 0.51 0.67 
21 6 86 17.2 0.68 0.69 
22 6 85 17.0 0.65 0.65 
23 8 65 9.3 0.73 0.74 
24 7 55 9.2 0.60 0.65 
25 7 80 13.3 0.54 0.60 
26 6 59 11.8 0.59 0.65 
27 6 44 8.8 0.53 0.58 
28 7 57 9.5 0.45 0.59 
29 5 60 15.0 0.57 0.60 
      

Total 277 3179 12.8 0.59 0.66 
1Fraction of marker loci that are heterozygous, averaged across grandsires and all marker loci on each 

chromosome 
2Calculated from variance of quantitative trait locus conditional probabilities at each centimorgan as a 

proportion of the variance when true descent is known and then averaged (Spelman et al., 1996) 
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Figure 1. Graphical representation of marker distribution and marker density. Chromosome number is 

printed on the horizontal axis; location on the chromosomes is printed on the vertical axis and given in 

centimorgans. Markers on a given chromosome are indicated by small horizontal bars on the vertical line 

depicting this chromosome. 

 

Data on cell count are collected in the official milk-recording scheme. The interval between 

two consecutive milk recordings is 3, 4, 5 or 6 wk. The frequency of collection of cell count data 

varies from once every milk recording to once every 5 milk recordings. Approximately 90% of the 

cows in the national milk-recording scheme are recorded for cell count (G. de Jong, 1999, personal 

communication). 

A more detailed description of the traits used in the analysis is given in Table 2. Average 

number of sons with breeding values and number of granddaughters per son for each category of 

traits is also listed in Table 2. 
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Table 2. Analyzed traits.1

progeny/son (no.) Trait category Trait Units2 Herita-
bility3

S/A4 # Sons 

Range Median 

Birth traits Gestation length Days 0.46 S 829 28-397 177 
 Birth weight Kg 0.18 S    
 Calving ease  0.13 S    
 Calving ease daughters  0.07 S    
        
Fertility Interval calving to first 

insemination 
Days 0.06 S 831 40 – 42,150 107 

 Non-return daughters  0.02 S    
        
Somatic cell Somatic cell score (2-log)  0.15 A 838 1 - 56,889 115 
        
Conformation – 
linear traits2

Stature  0.60 A 833 17 – 30,560 57 

 Chest width  0.30 A    
 Body capacity  0.35 A    
 Rump angle  0.35 A    
 Rump width  0.30 A    
 Angularity  0.35 A    
 Rear leg set  0.35 A    
 Foot diagonal  0.20 A    
 Fore udder attachment  0.35 A    
 Front teat placement  0.45 A    
 Teat length  0.45 A    
 Udder depth  0.45 A    
 Rear udder height  0.35 A    
 Suspensory ligament  0.25 A    
        
Conformation – 
general 
characteristics2

Size  0.60 A 833 17 – 30,560 57 

 Dairy character  0.30 A    
 Udder  0.35 A    
 Feet & legs  0.20 A    
        
Workability2 Milking speed  0.30 S 801 1 – 23,319 44 
 Temperament  0.15 S 656 4 – 23,319 49 
1Listed for each trait are units of expression, heritability, model for estimating breeding values, number of 

sons with data, and number of progeny included in breeding value of a bull 
2Breeding values for conformation and workability traits are standardized to a scale with mean = 100 and 

standard deviation = 4. 
3Heritabilities as used in national evaluation procedure. 
4Breeding values from sire model (S) or animal model (A). 
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Statistical Analysis 

Multimarker regression (Knott et al., 1994) of trait data was used to detect QTL by applying a 

weighted across-family analysis to each trait separately with the following model: 

 

Yij= µ + gsi + bikXijk + eijk    (1) 

 

where Yij = deregressed estimated breeding value of son j of grandsire i, µ = overall mean, gsi = 

fixed effect of grandsire i, bik = regression coefficient for grandsire i at position k on the 

chromosome, Xijk = probability that son j receives a chromosomal segment from grandsire i at 

position k, and eijk = random residual. 

With this model, the probability of a son inheriting a certain chromosomal segment of his sire 

was calculated. Trait data were regressed on this probability. Contribution of each sire in the 

regression analysis was weighted based on heritability of the trait and number of daughters 

(Spelman et al., 1996); the weighting factors were 

2
4

1
ij

ij
ij h1)(n1

n
w

−+
=  

where wij = weighting factor for son j of grandsire i, nij = number of daughters of son j of grandsire 

i, and h2 = heritability. 

Estimated breeding values were deregressed, to prevent double weighting, before using them in 

the weighted regression analysis. Deregression factors were based on number of daughters and the 

heritability of the trait, assuming that daughters were the only information source contributing to the 

estimated breeding value.  

To test for the presence of a QTL, test statistics similar to an F-ratio were calculated for every 

position on all chromosomes. This test statistic is the ratio of the difference in residual sums of 

squares under the null hypothesis (no QTL) and residual sums of squares under the QTL model over 

the residual sums of squares under the QTL model. 

Based on results from the across family analysis, a within-family analysis was carried out for 

areas with significant QTL to identify families segregating for the QTL and to estimate QTL 

effects. 

 

Significance Thresholds 

Chromosomewise significance thresholds were calculated by applying a permutation test as 

described by Churchill and Doerge (1994). Trait values together with weighting factors were 
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reassigned randomly to the sons within a family. The new data set was analyzed and a new test 

statistic was calculated. This procedure was repeated 15,000 times to derive reliable thresholds. For 

computational reasons, however, permutation was done only for one chromosome. A chromosome 

was chosen that had average marker spacing and chromosome length, i.e. chromosome 11. 

Permutation was done for each trait separately, because distribution of the test-statistic was 

dependent on the trait analyzed. This finding was also observed by Spelman et al. (1996). 

Genomewise thresholds, accounting for multiple testing across the genome, were calculated from 

chromosomewise thresholds by using the Bonferroni correction for testing across multiple 

chromosomes. 

Thresholds used in this study were the 10% genomewise threshold and the threshold indicating 

suggestive linkage. Suggestive linkage was defined by Lander and Kruglyak (1995) as “statistical 

evidence that would be expected to occur one time at random in a genome scan”, i.e., finding one 

false positive in a genome scan. Considering n = 29 autosomes, the chromosomewise type I error 

rate αc to obtain genomewise suggestive linkage for a single trait can be approximated by nαc = 1, 

which results in αc = 0.0345. 

 

RESULTS 
 

Regression Analysis 

Linkage between markers and traits was tested on 29 chromosomes for 27 traits. The 61 trait × 

chromosome combinations exceeding the threshold for suggestive linkage are presented in Table 3. 

It should be noted that, according to the definition of suggestive linkage, one false-positive result 

per trait is expected when there is no QTL. As can be seen from Table 3, a few chromosomes are 

likely to contain genes for a number of traits. For example, QTL for the traits stature, chest width, 

body capacity, rump width, udder depth, rear udder height, size, dairy character, birth weight and 

calving ease all map to chromosome 5. 

Figure 2 shows the test statistic profiles of the trait × chromosome combinations that exceeded 

the 10% genomewise threshold. These results will be discussed in more detail, together with other 

traits exceeding the threshold for suggestive linkage for that chromosome in the same region. 

Results from the within-family analysis for trait × chromosome combinations exceeding the 10% 

genomewise threshold are in Table 4. Tabulated values for the F-distribution were used to 

determine significance of effects (P < 0.01) from the within-family analysis. 
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Table 3. Results exceeding the threshold for suggestive linkage in the across-family analysis.1  

     Significance3)

Cr2 Trait Marker or marker 
bracket 

Position 

(cM) 
Test 

statistic
Chromo-
somewise 
P-value 

Genomewise 
P-value4)

2 Chest width BM2113 139 2.64 0.0006 0.0145 
2 Body capacity BM2113 139 2.05 0.0202  
2 Rump width TGLA110-BM6444 117 2.05 0.0193  
2 Calving ease daughters BM2113 139 2.07 0.0250  
2 Non return daughters 56 d 

post insemination 
BM2113 139 1.91 0.0339  

2 Milking speed ETH121-BM4440 57 2.98 0.0268  
3 Cell count (log) BMC5227 171 1.97 0.0317  
3 Milking speed TGLA127-BMC5227 144 3.10 0.0204  
3 Calving ease daughters RM19-TGLA263 35 2.01 0.0334  
4 Gestation length TGLA159-TGLA420 17 2.61 0.0010 0.0279 
5 Stature IGF1-BM315 122 2.40 0.0031 0.0876 
5 Chest width BM315-ETH152 156 2.20 0.0110  
5 Body capacity BM315-ETH152 154 2.56 0.0008 0.0203 
5 Rump width AGLA22 181 2.09 0.0159  
5 Udder depth IGF1-BM315 109 2.06 0.0196  
5 Rear udder height AGLA254-IGF1 88 2.13 0.0116  
5 Size IGF1-BM315 123 2.54 0.0015 0.0414 
5 Dairy character BP1-AGLA293 27 2.25 0.0075  
5 Birth weight IGF1-BM315 132 2.28 0.0135  
5 Calving ease ETH152 166 2.20 0.0210  
6 Stature MCM53 11 2.15 0.0126  
6 Angularity BM4311 84 1.94 0.0273  
6 Rear leg set BP7 85 2.01 0.0220  
6 Size MCM53 11 2.36 0.0042  
6 Dairy character ILSTS090 0 2.45 0.0024 0.0684 
6 Calving ease BMS690 44 2.13 0.0296  
6 Interval calving to first 

insemination 
BP7-BM2320 107 2.22 0.0062  

8 Stature TGLA13 127 2.23 0.0084  
8 Size TGLA13 127 2.30 0.0066  
9 Non return daughters 56 

days post insemination 
TGLA73 79 2.12 0.0115  

10 Angularity CSSM38-BM1237 12 2.10 0.0120  
10 Fore udder attachment TGLA378 51 1.93 0.0334  
10 Front teat placement BRRIBOold-BMS861 44 2.03 0.0122  
11 Angularity BM716 0 2.25 0.0050  

 31



Chapter 3 
 

     Significance3)

Cr2 Trait Marker or marker 
bracket 

Position 

(cM) 
Test 

statistic
Chromo-
somewise 
P-value 

Genomewise 
P-value4)

12 Angularity TGLA9-AGLA226 31 2.43 0.0015 0.0414 
13 Fore udder attachment TGLA23 0 3.20 < 0.0001 < 0.0001 
13 Udder depth BMC1222-AGLA285 23 2.27 0.0070  
15 Gestation length BM848 103 2.06 0.0276  
17 Interval calving to first 

insemination 
OARVH98 0 1.97 0.0224  

18 Cell count (log) BM7109-ILSTS002 70 2.17 0.0103  
19 Fore udder attachment BMS2503-BMS650 68 2.57 0.0009 0.0241 
19 Front teat placement BMS2503 67 2.25 0.0032 0.0914 
19 Udder depth TGLA94-URB044 34 2.14 0.0119  
19 Rear leg set BM17132 76 1.98 0.0253  
21 Calving ease ETH131-TGLA337 33 2.26 0.0149  
23 Fore udder attachment RM033 11 2.18 0.0070  
23 Milking speed BM1258-GBCYP21 30 3.20 0.0160  
24 Angularity CSSM31-AGLA269 16 2.07 0.0135  
24 Rear leg set AGLA269 17 2.27 0.0061  
24 Foot diagonal AGLA269 17 2.44 0.0042  
24 Feet & legs CSSM31-AGLA269 15 2.17 0.0154  
25 Dairy character BMS1353-AF5 74 2.12 0.0166  
25 Fore udder attachment BP28-BMS1353 62 1.94 0.0316  
25 Udder AF5 80 1.99 0.0296  
26 Fore udder attachment TGLA22-HEL11 3 2.20 0.0067  
26 Udder TGLA22 0 2.12 0.0152  
27 Udder depth HUJI13 44 2.04 0.0222  
29 Body capacity BMC1206 60 2.07 0.0179  
29 Rump angle BMC3224-BMC1206 53 2.13 0.0082  
29 Rump width BMC8012 20 2.06 0.0180  
29 Birth weight BMC8012-BMC3224 29 2.19 0.0222  
1Location of highest test statistic for a trait × chromosome combination is given by marker or marker bracket 

as well as the position expressed in centimorgans 
2Cr = Chromosome. 
3determined by permutation test 
4only presented when below a P-value of 0.10 
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Fig. 2a
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Fig. 2b
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Fig. 2c
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Fig. 2d
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Fig. 2e
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Fig. 2f
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Fig. 2g
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Figure 2. Profile of test statistic for chromosome × trait combinations exceeding the 10% genomewise 

significance threshold. The value of the test statistic (vertical axis) is given for each location on the 

chromosome (horizontal axis; location in centimorgans). Position of the markers is indicated by triangles on 

the horizontal axis. The threshold for suggestive linkage and the 10% genomewise threshold are indicated by 

horizontal solid lines. Scale of the horizontal axis is equal for all figures. a) Test statistic profile of chest 

width on chromosome 2. b) Test statistic profile of gestation length on chromosome 4. c) Test statistic profile 

of stature, body capacity and size on chromosome 5. Indicated threshold levels for stature. Threshold levels 

for body capacity and size not shown, because they were close to the threshold levels for stature. d) Test 

statistic profile of size and dairy character on chromosome 6. Indicated threshold levels for dairy character. 

Threshold levels for size not shown, because they were close to the threshold levels for dairy character. e) 

Test statistic profile of angularity on chromosome 12. f) Test statistic profile of fore udder attachment on 

chromosome 13. g) Test statistic profile of fore udder attachment and front teat placement on chromosome 

19. Indicated threshold levels are for front teat placement. Threshold levels for fore udder attachment were 

approximately the same and, therefore, are not shown. 

 

Chromosome 2. The peak test statistic for chest width (Figure 2a) on chromosome 2 was at 

marker BM2113. The peak test statistic for body capacity was greater than the threshold for 

suggestive linkage, and this peak was also at marker BM2113. Calving ease of the daughters and 

nonreturn of daughters 56 d postinsemination also showed suggestive linkage for this marker. The 

highest test statistic for rump width was between markers TGLA110 and BM6444, which is about 

24 cM from marker BM2113. 
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In the within-family analysis, Families 6 and 9 were segregating for a QTL for chest width 

(Table 4). The allele substitution effect was 1.94 units for Family 6 and 2.71 units for Family 9, 

which is 0.43 and 0.61 genetic standard deviation units, respectively. 

Chromosome 4. The largest test statistic for gestation length on chromosome 4 was between 

markers TGLA159 and TGLA420 (Figure 2b). No indications were found for the presence of other 

QTL on this chromosome. One family was highly significant for the within-family analysis. The 

allele substitution effect was 0.97 d, which is 0.57 genetic standard deviation units (Table 4).  

Chromosome 5. The highest test statistics for stature and size were at location 122, which is 

between markers IGF1 and BM315 (Figure 2c). The peak test statistics for other traits related to 

body size, such as chest width, body capacity, and birth weight, were also in the region containing 

marker BM315. Other indications for QTL in this region were detected for udder depth and rear 

udder height close to marker IGF1, rump width at the end of the chromosome (marker AGLA22), 

and calving ease in the same region as chest width and body capacity. 

The allele substitution effects estimated in families segregating for a QTL were in the range 

0.36 to 0.78 genetic standard deviation units (Table 4). 

Chromosome 6. The peak test statistic for dairy character was found at the beginning of the 

chromosome at marker ILSTS090. Peak test statistics for size and stature were found close to this 

marker in the interval between ILSTS090 and MCM53 (Figure 2d). The allele substitution effect for 

dairy character in the three families significant for this trait ranged from 0.39 to 1.02 genetic 

standard deviation units (Table 4). 

Chromosome 12. Chromosome 12 seems to contain a QTL that influences angularity. The 

highest test statistic was found between markers TGLA9 and AGLA226 (Figure 2e). Four families 

were significant in the within-family analysis; the effect ranged from 0.29 to 0.50 genetic standard 

deviation units (Table 4). 

Chromosome 13. A QTL influencing fore udder attachment was located at the beginning of 

this chromosome near marker TGLA23 (Figure 2f). Families 6, 9, and 11 were significant at this 

location. The most significant family at this location was Family 11. The effect estimated in this 

family was 7.22 units, which is 1.61 genetic standard deviation units (Table 4). 
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Table 4. Significant families (nominal significance, P < 0.01) and effect sizes from within-family analysis for 

most significant quantitative trait loci in across-family analysis.1

Chromosome Trait Family Effect size2,3 Effect 
size4

Significance 

2 Chest width 6 1.94 (0.55) 0.43 ** 
  9 2.71 (0.77) 0.61 * 
      

4 Gestation length 10 0.97 (0.23) 0.57 *** 
      

5 Stature 17 1.86 (0.62) 0.42 * 
  20 1.76 (0.61) 0.39 * 
      

5 Body capacity 9 3.48 (0.91) 0.78 ** 
  10 1.60 (0.49) 0.36 * 
      

5 Size 12 2.09 (0.78) 0.47 * 
  20 1.85 (0.56) 0.41 * 
      

6 Dairy character 2 4.54 (1.43) 1.02 * 
  17 1.75 (0.54) 0.39 * 
  19 4.05 (1.09) 0.91 * 
      

12 Angularity 14 2.25 (0.79) 0.50 * 
  15 2.06 (0.63) 0.46 * 
  17 1.29 (0.48) 0.29 * 
      

13 Fore udder attachment 6 2.83 (0.94) 0.63 * 
  9 4.01 (1.05) 0.90 ** 
  11 7.22 (1.84) 1.61 ** 
      

19 Fore udder attachment 3 3.91 (0.93) 0.87 ** 
      

19 Front teat placement 11 2.86 (0.89) 0.64 * 
  17 1.11 (0.42) 0.25 * 

1Effect size given for position of highest test statistic in across-family analysis. 
2Absolute value of allele substitution effect. 
3Standard error between brackets. 
4Expressed in genetic standard deviation units. 

*P < 0.01. **P < 0.001. ***P < 0.0001 
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Chromosome 19. Two udder traits, fore udder attachment and front teat placement, are 

influenced by QTL located on this chromosome close to marker BMS2503 (Figure 2g). Family 3 

had a significant effect of 0.87 genetic standard deviation units on fore udder attachment. Front teat 

placement was significant in Families 11 and 17, the allele substitution effect being 0.64 and 0.25 

genetic standard deviation units, respectively. 

 

DISCUSSION 
 

Regression analysis 

The marker map used in the regression analysis had a relatively high marker density. The 

average marker interval across the genome was 12.8 cM. However, marker density varied between 

chromosomes because extra genotypes were available for chromosomes on which QTL for 

production traits were found in previous studies (Spelman et al., 1996; Arranz et al., 1998; 

Coppieters et al., 1998). 

Results were considered significant when a genomewise significance threshold of 10% was 

exceeded. Some other studies (e.g. Spelman et al., 1996; Zhang et al., 1998) have used 

experimentwise significance thresholds that account for multiple testing. These studies have 

considered not only 29 chromosomes but also a number of independent traits. The number of 

independent traits, however, varies between studies, which makes comparison of results very 

difficult. To avoid this problem, genomewise thresholds were used, i.e., the thresholds were not 

adjusted for the number of traits.  

The most significant results, with test statistics exceeding the 10% genomewise level, can be 

grouped into 4 categories. The QTL for traits related to body size were located on chromosomes 2, 

5 and 6; QTL for udder traits were located on chromosomes 13 and 19; a QTL for gestation length 

was located on chromosome 4; and a QTL for angularity was located on chromosome 12.  

On chromosome 2, the most significant QTL was for chest width (Table 3). In the same region, 

QTL for body capacity, rump width, calving ease, and nonreturn of daughters were located. Chest 

width, body capacity and rump width are related to size of the animal. Body size could have an 

influence on calving ease. A QTL for chest width, body capacity, and rump width thus might have a 

pleiotropic effect on calving ease. It should be noted that most data on chest width were derived 

from other traits, because chest width was not measured before 1996. Traits used to calculate chest 

width were stature, body capacity, and rump width. 
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Table 5. Results from studies on detection of quantitative trait loci (QTL) for conformation and functional 

traits.  

Chromosome Trait Study1 Marker or 
marker bracket 

Position2 Position3 Significance4

1 Somatic cell score G MAF46  158  
4 Somatic cell score F RM188-TGLA116 43 78-104 *** 
5 Somatic cell score C  156  * 
6 Somatic cell score C  84  *** 
8 Somatic cell score G BM3419  48  
9 Foot angle D BM4204  59  
9 feet & legs D BM4204  59  

11 Somatic cell score C  46  * 
13 Somatic cell score F TGLA381-

AGLA232 
91 71-117 *** 

13 Somatic cell score C  104  *** 
14 Somatic cell score F ILSTS11-BM302 21 24-53 *** 
15 Somatic cell score C  36  * 
16 Somatic cell score C  30  * 
16 Herdlife E BM719  111  
18 Somatic cell score B BM2078  105 ** 
19 Somatic cell score C  64  * 
21 Somatic cell score C  78   
23 Somatic cell score A 513   * 
23 Udder depth D 513    
23 Somatic cell score D 513    
23 Herdlife B BM1258  21 * 
23 Udder depth D BM1258  21  
23 Somatic cell score D BM1258  21  
23 Somatic cell score G RM033  11  
26 Somatic cell score F TGLA429-BM804 72 52-59 *** 
26 Somatic cell score C  78  * 
27 Dairy form D BM203  51  

1A = Ashwell et al. (1996); single marker regression, across families, 17 markers; B = Ashwell et al. (1997); 

single marker regression, across families, 16 markers; C = Boichard and Bishop (1997); multimarker 

regression, across families, 220 markers; D = Ashwell et al. (1998a); single marker regression, within 

families, 16 markers; E = Ashwell et al. (1998b); single marker regression, within families, 20 markers; F = 

Zhang et al. (1998); multimarker regression, across families, 206 markers; and G = Reinsch et al. (1998); 

single marker regression, across families, 45 markers.  
2Position on the marker map used in the study in which the QTL was detected. 
3Position on the marker map used in the current study. Indicated only when possible to derive. 

*P <= 0.05. **P <= 0.01. ***Above threshold for suggestive linkage (experimentwise, correcting for 

number of chromosomes and number of traits analyzed). 
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On chromosome 5, QTL for stature, chest width, body capacity, rump width, and size were 

found between 122 and 181 cM (Table 3). All traits are related to size of the animal. The QTL for 

calving ease (at 166 cM) and birth weight (at 132 cM) were located in the same region (Table 3), so 

a QTL for size- related traits might also affect calving ease and birth weight. 

The QTL for stature, size, and dairy character were located in the same region (0 to 11 cM) on 

chromosome 6. Although the trait dairy character is not a size trait itself, it is strongly correlated 

with size and stature. Based on estimated breeding values of young bulls sampled from 1987 to 

1993 and the repeatabilities of these estimated breeding values, the genetic correlation between 

stature and dairy character was around 0.80. As on chromosomes 2 and 5, a QTL for calving ease at 

44 cM was relatively close to QTL for traits related to size (Table 3). 

The most significant QTL on chromosome 13 at 0 cM affected fore udder attachment (Table 3). 

A QTL for udder depth was located in the same region (23 cM). On chromosome 19, QTL for udder 

depth, fore udder attachment, and front teat placement were located between markers at 34 and 68 

cM. Udder depth and fore udder attachment have a relatively high genetic correlation. Based on 

estimated breeding values of young bulls sampled from 1987 to 1993 and the repeatabilities of these 

estimated breeding values, the genetic correlation between fore udder attachment and udder depth 

was around 0.70. 

 

Literature 

Only a few studies on QTL affecting conformation and functional traits in dairy cattle have 

been published. Results related to the present study are presented in Table 5 and will be discussed 

here. Exact location of QTL in the present study and in the studies summarized in Table 5 is not 

known, which makes comparison difficult. It is possible, however, to indicate corresponding results. 

It should be noted that the studies presented in Table 5 are not completely independent. In the 

studies by Ashwell et al. (1996, 1997, 1998a, and 1998b), a granddaughter design consisting of 

seven large US Holstein families was used to detect QTL for milk production and composition, 

health, and conformation traits. The studies were different with respect to the microsatellite markers 

or the traits. A single-marker approach was used to detect QTL. In the first two studies (Ashwell et 

al., 1996; Ashwell et al., 1997), analysis was across families, whereas in the latter two studies 

(Ashwell et al., 1998a; Ashwell et al., 1998b), only an analysis within families was carried out. In 

two other studies (Boichard and Bishop, 1997; Zhang et al., 1998), results are presented from a 

granddaughter design consisting of 14 grandsires with 1794 sons. The main differences between 
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these studies were an additional trait, productive herd life, in the analysis by Zhang et al. (1998) and 

the statistical method used to analyze the data. Zhang et al. (1998) used variance components and 

least-squares methods, whereas Boichard and Bishop (1997) used only least-squares methods. 

Somatic cell score and udder traits. Many QTL for somatic cell score were detected (Table 5), 

partly because somatic cell score was analyzed in six of the seven studies presented in Table 5, 

whereas conformation traits were analyzed in only two studies. In our study, suggestive QTL for 

somatic cell count were located on chromosome 3, near marker BMC5227, and at location 70 on 

chromosome 18, between markers BM7109 and ILSTS002 (Table 3). This location is about 35 cM 

away from marker BM2078, where a QTL for somatic cell score was detected by Ashwell et al. 

(1997). 

Other reported QTL for somatic cell score (Table 5) were not confirmed in our study. There 

were, however, indications for QTL near marker BM1258 on chromosome 23, affecting milking 

speed and fore udder attachment (Table 3). Both traits are genetically correlated with somatic cell 

score and mastitis resistance (de Jong and Lansbergen, 1996). In two studies (Ashwell et al., 1996; 

Ashwell et al., 1998a), a QTL for somatic cell score was located on chromosome 23, near markers 

513 and BM1258. Reinsch et al. (1998) also reported a QTL for somatic cell count on chromosome 

23, near marker RM033. This marker is about 10 cM from marker BM1258. 

On chromosome 19, a QTL for somatic cell score was detected at 64 cM by Boichard and 

Bishop (1997). In our study, a QTL for udder depth was located at 34 cM, near markers TGLA94 

and URB044. The QTL for front teat placement and fore udder attachment were also located on 

chromosome 19, near markers BMS2503 and BMS650, at 67 to 68 cM (Table 3). These udder traits 

are genetically correlated with mastitis resistance and somatic cell score (de Jong and Lansbergen, 

1996), and the position of QTL for these traits might be similar to the position for a QTL for 

somatic cell score reported by Boichard and Bishop (1997). 

Other conformation traits. In two studies (Ashwell et al., 1998a; Ashwell et al., 1998b), a 

within-family analysis was carried out to detect QTL for conformation traits. Most significant QTL 

were detected for foot angle and for feet and legs on chromosome 9, udder depth on chromosome 

23, and dairy form on chromosome 27 (Table 5). Spelman et al. (1999) identified a QTL for stature 

on chromosome 14. These results were not confirmed in our study. 

 

Experimental Power 

The size of the effects found in this study was generally about 0.5 to 1 genetic standard 

deviation units. The QTL effect can be overestimated when the test statistic exceeds a certain 

 41



Chapter 3 
 

significance threshold, especially when power to detect QTL is low (Wang, 1995). Power of an 

experiment to detect QTL increases with increasing heritability of the trait. Heritability of analyzed 

traits ranged from 0.02 (nonreturn of daughters) to 0.60 (stature and size). Power was calculated for 

a similar design as used in this study and is given in Table 6 for various sizes of QTL effect, 

heritability, and frequency of the favorable QTL allele. Power is close to 1 for a QTL of size 1.0 σG  

(where σG  = genetic standard deviation) and an allele frequency of 0.5, when heritability is 0.35 or 

0.60. Although this situation is not very realistic, it gives an indication of the power of the design in 

extreme cases. It is hard to detect QTL in this experiment with an effect less than 0.5 σG, unless the 

heritability of the trait and the frequency of the QTL allele are moderate to high (Table 6). 

 

Table 6. Power of a granddaughter design consisting of 20 grandsires with, on average, 42 sons, each having 

100 daughters with information.1

Heritability Frequency QTL allele Size of QTL-effect (σg) Power 
0.02 0.20 0.1 0.04 

  0.4 0.10 
  1.0 0.68 
 0.50 0.1 0.04 
  0.4 0.16 
  1.0 0.90 

0.35 0.20 0.1 0.04 
  0.4 0.35 
  1.0 0.99 
 0.50 0.1 0.05 
  0.4 0.58 
  1.0 1.00 

0.60 0.20 0.1 0.05 
  0.4 0.38 
  1.0 0.99 
 0.50 0.1 0.05 
  0.4 0.61 
  1.0 1.00 

1The type I error rate was assumed to be 0.0345, recombination rate between a marker and the quantitative 

trait locus (QTL) was 0.05. 

 

Marker-Assisted Selection 

This study suggested the existence of many QTL for conformation and functional traits. The 

markers associated with the most significant QTL can be used in MAS for these traits. Whether or 
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not results need to be confirmed before starting MAS, depends on how MAS is applied. 

Overestimation of the QTL effect would reduce long-term response, but this reduction is less when 

the QTL effect is reestimated after four generations of MAS (Spelman and van Arendonk, 1998), 

using BLUP-methods, and confirmation would not be necessary.  

When MAS is applied to conformation and functional traits, problems may arise if there are 

negative effects on other economically important traits, such as production. Some of the QTL 

reported in this study were located on chromosomes that were reported to contain QTL for 

production (Georges et al., 1995; Spelman et al., 1996). Before starting MAS for the reported QTL, 

the effects on other traits should be investigated. 

 

CONCLUSIONS 
Chromosomes 2, 5, and 6 may contain QTL for traits related to body size. These QTL may also 

have an effect on calving ease. Chromosomes 13 and 19 possibly contain QTL for udder traits that 

may also affect somatic cell score and mastitis resistance. Other indications for QTL were for 

gestation length on chromosome 4 and angularity on chromosome 12. If there are no negative 

effects on other economically important traits, MAS with markers associated with these QTL can be 

applied. 
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ABSTRACT 
In this paper a method is presented to determine pleiotropic quantitative trait loci (QTL) or 

closely linked QTL in an outbred population. The method is based on results from single-trait 

analyses for different traits and is derived for a granddaughter design. The covariance between 

estimated contrasts of grandsires obtained in single-trait regression analysis is computed. When 

there is no pleiotropic QTL, the covariance between contrasts depends on the heritabilities of the 

traits involved, the polygenic and environmental correlation between the traits, the phenotypic 

standard deviations, the number of sires per grandsire, and the number of daughters per sire. A 

pleiotropic QTL results in a covariance that deviates from this expected covariance. The deviation 

depends on the size of the effects on both traits and on the fraction of grandsires heterozygous for 

the QTL. When analyzing experimental data, the expected covariance and the confidence interval 

for the expected covariance can be determined by permutation of the data. A covariance outside the 

confidence interval suggests the presence of a pleiotropic QTL or a closely linked QTL. The 

method is verified by simulation and illustrated by analyzing an experimental data set on 

chromosome six in dairy cattle.  

(Key words: pleiotropy, outbred population, regression analysis, quantitative trait loci) 

 

Abbreviation key: MAS = marker assisted selection, QTL = quantitative trait locus 

 

INTRODUCTION 
Genetic improvement of economically important traits in plant and animal species is 

accomplished by selection based on phenotypic information. Even though the nature of genes 

influencing these traits is in general not known, selection in this way has been very successful (e.g., 

Philipsson et al., 1994; Rishell, 1997; Webb, 1998). In the past decade, molecular techniques have 

become available that allow large-scale genotyping of genetic markers (Gyapay et al., 1996). These 

markers can be used to map genes affecting quantitative traits (quantitative trait loci, QTL) and 

many QTL detection studies have been carried out in plant and animal species (e.g., Jansen and 

Stam, 1994; Georges et al., 1995). This is a first step toward identification and characterization of 

genes and toward the development of novel selection methods utilizing both phenotypic and 

genomic information.  

Selection for a certain trait can lead to correlated responses for other traits. The main cause for 

the existence of a genetic correlation between traits in outbred populations is pleiotropy (Falconer 
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and Mackay, 1996), i.e., genes affect more than one trait. Marker-assisted selection (MAS) for a 

chromosomal region containing genes with pleiotropic effects will thus have consequences for other 

traits. To avoid negative side effects of  selection for certain chromosomal regions or to exploit 

positive effects of MAS on other traits of interest, the presence of pleiotropic effects should be 

studied. 

The ultimate goal of QTL detection studies is to locate the mutation responsible for the 

observed effect. This would not only give insight into the biological background of traits but would 

also allow direct selection for the favorable alleles. However, resolution of QTL detection studies is 

such that confidence intervals extend over large chromosomal regions. It is expected that regions of 

this size contain hundreds of genes, as in the human genome (Lander et al., 2001). Further 

experiments may reduce the length of the confidence intervals, but it is likely that these regions 

contain many potential candidate genes. Characterization of the QTL based upon their pleiotropic 

effects will provide additional clues in the identification of candidate genes. Based on the proteins 

or other metabolites involved in the expression of each of those traits, selection of the most likely 

candidates from a list of candidate genes in that region is possible. Thus, knowledge about 

pleiotropic effects could speed up the identification of the responsible gene. 

Most QTL-detection methods are based on single-trait analysis, either using regression or 

variance component methods (Fernando and Grossman, 1989; Knott et al., 1994; Grignola et al., 

1997). However, methods for multiple-trait analysis have been developed (e.g., Jiang and Zeng, 

1995; Weller et al., 1996; Knott and Haley, 2000; Hackett et al., 2001; Korol et al., 2001). Jiang and 

Zeng (1995) mentioned three advantages of multiple-trait methods over single-trait methods: 

multiple-trait methods have higher power, higher precision of parameter estimation, and give 

potentially more insight into the nature of genetic correlations between different traits. They 

presented a multiple-trait method based on a maximum-likelihood approach. Weller et al. (1996) 

used canonical transformation and subsequently single-trait analysis to look at multiple traits. Knott 

and Haley (2000) developed a multitrait least-squares method for a three-generation pedigree with 

fixation of the QTL in the grand-parental generation. This method can be extended to other 

population structures. Korol et al. (2001) use a transformation of the trait space followed by single-

trait analysis and subsequently back transformation. The specific feature of their method is that the 

multivariate transformations are interval specific. Hackett et al. (2001) extended the regression 

approach for crosses between lines by Haley and Knott (1992) to a multitrait analysis via 

multivariate regression and applied this to a doubled haploid population of barley. The application 

of these methods, however, is not yet common practice. They can present computational 
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difficulties, especially when they would be applied to an outbred population or if the number of 

traits is large. 

In the present study, a simple and fast method for detecting pleiotropic QTL or closely linked 

QTL in an outbred population is presented. The method is based on the covariance between marker 

contrasts from single-trait regression analysis for different traits. First, the theoretical expectation of 

this covariance is derived. Second, simulation is used to verify the theoretically expected 

covariances and to determine the power of detecting pleiotropic effects. Third, the method is 

applied to data on chromosome 6 in dairy cattle. 

 

MATERIALS AND METHODS 
 

Covariance Between Marker Contrasts  

Consider a granddaughter design (Weller et al., 1990) and the following statistical model to 

analyze the data: 

 

 yijkl = gsi + mij + sijk + eijkl       (1) 

 

where yijkl is the phenotype of animal l, daughter of sire k that inherited marker allele j of grandsire 

i; gsi is the effect of grandsire i; mij is the effect of marker allele j nested within grandsire i; sijk is 

the effect of sire k that received marker allele j from grandsire i, and eijkl is the random residual. For 

each grandsire, two groups of animals can be considered: group 1 consisting of sires that inherited 

marker allele 1 of the grandsire and group 2 consisting of sires that inherited marker allele 2. The 

number of sires per grandsire is ns, and it is assumed that these sires are equally distributed over 

marker groups 1 and 2. Each sire has ng daughters. The contrast between marker allele 1 and marker 

allele 2 within grandsire i can be written as ..1iy  - ..2iy . The variance of the contrast can be written 

as 
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where  is the heritability and σ is the phenotypic variance of the trait (Weller et al., 1990; van 

der Beek et al., 1995). Analogously, if we consider two traits, say trait v and trait w, the covariance 

between the marker contrasts for trait v and trait w, for a polygenic situation, is equal to 

2h 2
p

 

wv pp
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where rA is the genetic correlation between trait v and trait w, rE is the environmental correlation 

between trait v and trait w,  and  are heritabilities of trait v and trait w, respectively, and σ  

and σ are the phenotypic standard deviations of trait v and trait w, respectively. When trait v and 

trait w are the same traits, i.e., substituting r

2
vh 2

wh
vp

wp

A=rE=1, hw=hv and 
wv pp σ=σ , equation 3 is equal to 

equation 2. The derivation of equation 3 can be found in the appendix. 

As mentioned, the derived covariance of contrasts applies to a polygenic situation. Now 

consider a bi-allelic QTL, with a fraction phet of the grandsires heterozygous for the QTL. A fraction 

1-phet is homozygous for the QTL, and in that case the expected contrast between the first and the 

second grandsire-allele is zero. For the heterozygous grandsires, the contrast between the first and 

the second grandsire-allele is either positive or negative. In both cases, the absolute size of the 

contrast is ½a, where “a” is half the difference between the two homozygous genotypes (Falconer 

and Mackay, 1996). The variance of contrasts within each of the three groups is given by equation 

2. In the absence of dominance effects, the overall variance of the contrast at the QTL can be 

written as 

 

2
het4

12
p

s

2
y4

33

1k gs

2
y2

kk

3

1k

2
p

i2..i1.. apσ*
n
h

n*n
h4

µ)(µp
3

σ
)yyvar(

k

+
⎪⎭

⎪
⎬
⎫

+
⎪⎩

⎪
⎨
⎧ −

=−+=− ∑
∑

=

= ,  (4) 

 

where k refers to the group (either homozygous, in coupling phase or in repulsion phase),  pk is the 

fraction of animals belonging to group k, σ  is the variance of contrasts within group k, µ2
pk k is the 

mean of group k, and µ is the overall mean. It should be noted that in equation 4, the heritability and 

the phenotypic variance are the heritability and the phenotypic variance exclusive of the QTL 

effect. The variance caused by the QTL effect is covered by the term ¼pheta2. 
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Analogously, the covariance between contrasts for two traits, trait v and w, can be written as 
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    (5) 

where av and aw are equal to half the difference between the two homozygous genotypes, for trait v 

and trait w, respectively. Heritabilities, variances and correlations in equation 5 do not include the 

effect of the QTL. Equation 5 is similar to equation 3, with the addition of the term ¼phetavaw. This 

term represents the contribution of the QTL to the covariance. If either av or aw is equal to zero, the 

QTL will not contribute to the covariance of the marker contrasts. Only if both av and aw differ from 

zero, the covariance is affected. The change in covariance due to the QTL depends on the size and 

the sign of the QTL effect on each trait and on the fraction of grandsires heterozygous for the QTL. 

The covariance of marker contrasts can be calculated at each location along the chromosome and 

will deviate for chromosomal regions containing a pleiotropic QTL or closely linked QTL. 

Hypothesis testing. The null hypothesis (H0) is that the QTL affects only one or none of the 

two traits under consideration. The alternative hypothesis of a pleiotropic QTL is accepted if the 

covariance of the contrasts deviates significantly from the covariance under H0. The distribution of 

the covariance under H0 is determined by permutation of the data, as first suggested by Churchill 

and Doerge (1994) for analysis of a single trait. In the current study, pairs of observations on 

different traits are permuted within families; each pair of trait values is randomly assigned to 

another member of the same family. In this way, covariances due to unlinked QTL are not affected. 

After each permutation, the minimum and maximum covariance between marker contrasts on the 

chromosome are retained. All minimum and maximum values per chromosome are ranked, and the 

chromosomewise thresholds are determined. In this way, confidence intervals are obtained for the 

covariance between the contrasts when there is no association between phenotypes and genotypes 

(i.e., no QTL, equivalent to equation 3). 

Simulated data. Stochastic simulation was used: 1) to verify the theoretically derived 

covariances for various situations; 2) to calculate the power of QTL detection by single-trait 

analysis; and 3) to calculate the power to detect pleiotropic QTL by evaluating the covariance 

between marker contrasts for two different traits. 
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Table 1. Probability (Prob.) to detect QTL and pleiotropic QTL, covariances before and after permutation 

and confidence intervals in each alternative (Altern.). 

 
 
 
 
 

Altern.1

 
 
 
 
 

rA, rP

 
 
 
 
 

av

 
 
 
 
 

aw

 
 
 

Prob.2

QTL, 
trait v 

 
 
 

Prob.3

QTL, 
trait w 

 
 

Prob.3 

pleio-
tropic 
QTL4

 
Expec-

ted 
covar. 

At 
QTL5

 
 
 
 

Covar. at 
QTL6

7Expec-
ted 

covar. 
after 

permu-
tation 

 
 

Covar.8 
after 

permu-
tation 

 
 
 
 

Lower8 
threshold 

 
 
 
 

Upper8 
threshold 

1 -0.6 0 0 0.06 0.06 0.05 -0.45 -0.46 -0.45 -0.48 -1.25 0.01 
2 -0.6 0.5 0 0.87 0.06 0.20 -0.45 -0.47 -0.45 -0.48 -1.28 0.04 
3 -0.6 0.5 0.3 0.86 0.32 0.91 0.40 0.44 -0.40 -0.42 -1.20 0.10 
4 -0.6 0.5 -0.3 0.87 0.32 0.61 -1.31 -1.35 -0.51 -0.54 -1.38 -0.01 
5 0 0 0 0.04 0.05 0.05 0.00 -0.00 0.00 0.00 -0.56 0.56 
6 0 0.5 0 0.88 0.05 0.23 0.00 0.00 0.00 0.00 -0.59 0.59 
7 0 0.5 0.3 0.86 0.31 0.81 0.86 0.89 0.05 0.06 -0.53 0.68 
8 0 0.5 -0.3 0.88 0.34 0.80 -0.86 -0.91 -0.05 -0.06 -0.68 0.53 
9 0.6 0 0 0.04 0.05 0.05 0.45 0.46 0.45 0.48 -0.01 1.25 

10 0.6 0.5 0 0.84 0.05 0.21 0.45 0.46 0.45 0.48 -0.04 1.28 
11 0.6 0.5 0.3 0.87 0.35 0.61 1.31 1.34 0.51 0.54 0.01 1.38 
12 0.6 0.5 -0.3 0.89 0.29 0.90 -0.40 -0.43 0.40 0.43 -0.10 1.21 

1Alternatives are characterized by size of the simulated effects for trait v and trait w (av and aw, respectively), 

expressed in genetic standard deviation units, and by the phenotypic (rP) and genetic correlation (rA). 
2Type 1 error in alternatives 1, 5 and 9, power in other alternatives. 
3Type 1 error in alternatives 1, 2, 5, 6, 9 and 10, power in other alternatives. 
4Determined as the sum of the fraction above the upper threshold and the fraction below the lower threshold. 
5Calculated using Equation 5. 
6Average of 1,000 simulated datasets. 
7Calculated using Equation 3, with parameters adjusted to account for additional variance and covariance 

caused by the quantitative trait locus (QTL). Adjusted parameters are in Table 2. 
8Average of 1,000 simulated datasets and 2,000 permutations for each dataset. Presented thresholds are for 

95% confidence interval. 

 

Twelve different alternatives were simulated. Each alternative consisted of a granddaughter 

design with 20 grandsires, 50 sires per grandsire, and 100 daughters per sire. For each grandsire, a 

chromosome of length 100 cM with 21 equally spaced markers was constructed. Markers were fully 

informative. Polygenic components for grandsires were generated from normal distributions for trait 

v as well as for trait w. Heritability for trait v was 0.6 and for trait w the heritability was 0.35. The 

phenotypic standard deviation for trait v as well as trait w was equal to 10. These heritabilities and 
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variances do not include a QTL effect. Polygenic components for sires and their daughters were 

generated based on half the polygenic component of their sire and a randomly generated term 

accounting for the contribution of the dam and the Mendelian sampling term. Polygenic 

components for the second trait were generated conditional on the polygenic components for the 

first trait, i.e., accounting for the genetic correlation between both traits. A QTL was positioned at 

30 cM. The probability that a grandsire was heterozygous for the QTL was 0.5. Marker genotypes 

for the sires were derived, based on genotypes of their sire and distance between the markers, 

accounting for recombination. Recombinations were generated using Haldane’s mapping function. 

Phenotypic records of the daughters for trait v and trait w were generated based on the polygenic 

component, a random environmental component, and the QTL contribution. Environmental 

components were generated accounting for the environmental correlation between the two traits. 

The QTL alleles of the daughters were simulated based on the transmitted QTL alleles from the 

grandsires and the assumption that both alleles of the biallelic QTL were present in the population 

at equal frequencies. Genetic correlations were either –0.6 (alternatives 1 to 4, Table 1), zero 

(alternatives 5 to 8), or +0.6 (alternatives 9 to 12). Phenotypic correlations were assumed equal to 

the genetic correlations. In the alternatives where a QTL was present, the effect on trait v was 0.5 

σa, where σa is the genetic standard deviation for the polygenic effects. This QTL explained 7% of 

the overall phenotypic variance for trait v. The effect on trait w was either 0 or 0.3 σa, explaining 

1.6% of the phenotypic variance. When both traits were affected by the QTL, the effect on both 

traits was either antagonistic (alternatives 3, 7, and 11) or synergistic (alternatives 4, 8, and 12). In 

alternatives 1, 5, and 9, no QTL was simulated. 

For each alternative, 1000 independent data sets were generated. To allow for analysis of 

phenotypes of sires based on phenotypes of their daughters and analysis at every cM along the 

chromosome, model (1) was replaced by the multi-marker regression method described by Knott et 

al. (1994),  

 

Yij = µ + gsi + bikXijk + eijk,       (6) 

 

where Yij = daughter yield deviations (VanRaden and Wiggans, 1991) of sire j, son of grandsire i, 

based on 100 daughters, µ = overall mean, gsi = fixed effect of grandsire i, bik = regression 

coefficient for grandsire i at position k on the chromosome, Xijk = probability that sire j receives a 

chromosomal segment from grandsire i at position k, and eijk = random residual. 
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In each family, estimates of the contrast between allelic effects, the b-values in equation 6, 

were obtained at every centimorgan along the chromosome, for both traits. Covariances based on 

the contrasts of the 20 grandsire families in the analysis were computed at every centimorgan. To 

determine whether results from simulation were in agreement with the derived equations, the 

average covariance at the simulated location of the QTL, based on 1000 data sets, was compared to 

the covariance according to equation 5. Besides, the average covariance after permutation was 

compared to the covariance according to equation 3, with parameters adjusted to account for 

additional variance caused by the QTL. Adjusted parameters are in Table 2. 

 

Table 2. Adjusted parameters to be used in Equation 3 when computing the covariance between contrasts 

after permutation when a QTL is present; parameters need to be adjusted for additional variance and 

covariance caused by the QTL. 

Alternative1 rA, rP
2 av aw rA

3 rP
3 2

vh  3 2
wh  3

1 -0.6 0 0 -0.60 -0.60 0.60 0.35 
2 -0.6 0.5 0 -0.57 -0.58 0.63 0.35 
3 -0.6 0.5 0.3 -0.48 -0.54 0.63 0.36 
4 -0.6 0.5 -0.3 -0.62 -0.61 0.63 0.36 
5 0 0 0 0 0 0.60 0.35 
6 0 0.5 0 0 0 0.63 0.35 
7 0 0.5 0.3 0.07 0.03 0.63 0.36 
8 0 0.5 -0.3 -0.07 -0.03 0.63 0.36 
9 0.6 0 0 0.60 0.60 0.60 0.35 

10 0.6 0.5 0 0.57 0.58 0.63 0.35 
11 0.6 0.5 0.3 0.62 0.61 0.63 0.36 
12 0.6 0.5 -0.3 0.48 0.54 0.63 0.36 

1Alternatives are characterized by size of the simulated effects for trait v and trait w (av and aw, respectively), 

expressed in genetic standard deviation units, and by the phenotypic (rP) and genetic correlation (rA). 
2Genetic and phenotypic correlation based on polygenic components, assuming no quantitative trait locus 

(QTL). 
3Genetic and phenotypic correlation and heritabilities for trait v and trait w corrected for additional variance 

and covariance caused by the QTL. 

 

To determine the sensitivity of the method for the number of heterozygous grandsires, 

alternatives 2 and 3 were also studied with 10 and 5 families instead of 20. For the same reason, 

alternatives 2 and 3 were also studied with 20 families and 25% heterozygous grandsires instead of 

50%. 
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Power. To test the hypothesis that there is no QTL affecting a certain trait, 2000 permutations 

were applied to each data set. A QTL was considered significant when the test statistic exceeded the 

5% chromosomewise threshold. The probability of detecting a QTL for individual traits was 

obtained by determining the fraction of simulated datasets where the null hypothesis was rejected. 

When a QTL is simulated, this probability is the power of QTL detection. When no QTL is 

simulated, this probability is the type I error. To test the hypothesis that the QTL had no pleiotropic 

effect, the 95% confidence interval for the covariance under the null hypothesis was determined, 

based on 2000 permutations of each data set. The probability of detecting a QTL with an effect on 

both traits was computed as the fraction of datasets resulting in a covariance outside the 95% 

confidence interval under the null hypothesis. When a QTL with effect on both traits is simulated, 

this probability is the power to detect a pleiotropic QTL. In case the simulated QTL affects only one 

of the traits, or if there is no QTL, this probability is the type I error. 

Experimental data. The method was illustrated using data from a granddaughter design in 

dairy cattle, consisting of 20 grandsires and 833 sires. The number of sires per grandsire varied 

from 11 to 147. Genotypes for 29 microsatellite markers on chromosome 6 were available. 

Pleiotropic QTL effects were studied considering two traits: milk yield and protein percentage. In 

this data, a QTL affecting protein percentage was identified previously (Spelman et al., 1996). 

Further, there was a suggestive QTL for milk yield located in the same chromosomal region as the 

QTL affecting protein percentage, and a second suggestive QTL for milk yield more than 40 cM 

away from the first QTL. 

Estimated breeding values for protein percentage and milk quantity were converted to daughter 

yield deviations by deregression, and subsequently analyzed using equation 6 (Spelman et al., 

1996). The 95 % confidence interval for the covariance under the null hypothesis was based on 

15,000 permutations. Variation in number of daughters per sire was accounted for by applying a 

weighted regression when using equation 6, as described by Spelman et al. (1996). Variation in the 

number of sires per family was accounted for by weighing the contrasts using the inverse of the 

standard error, i.e., contrasts with large standard error had less weight in computation of the 

covariance.  

 

RESULTS 
Simulation. In the simulated alternatives, the covariance between contrasts at the QTL was in 

agreement with the expected covariance. The difference between expected and realized covariances 

was never larger than 0.05 (Table 1). In Figure 1, the pattern of the covariance in alternative 3, 
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averaging over 1000 independent replicates, is presented. The average covariance after permutation 

and the 95% confidence interval, derived from 2000 permutations of each of 1000 datasets, are 

indicated as well. The largest difference between realized and expected covariance was found at the 

location of the QTL. The difference between the covariance and the expected covariance decreased 

with increasing distance to the QTL. 
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Figure 1. Average covariance and significance thresholds for the 95% confidence interval under the H0-

hypothesis, based on 1,000 replicates of alternative 3, with genetic and phenotypic correlation equal to –0.6. 

A quantitative trait locus (QTL) with effect 0.5 σa on trait v and 0.3 σa on trait w was located at 30 cM. 

Confidence interval (95%, chromosomewise) and expected covariance are based on 2,000 permutations of 

each dataset and averaged. Position of the markers indicated on the horizontal axis (♦). 

 

Power of QTL detection. Table 1 shows the power of QTL detection, for each simulated 

alternative and each trait. Power to detect the QTL for trait v, with an effect of 0.5 σa, ranged from 

0.84 to 0.89, with an average over relevant alternatives of 0.87. In 90% of the cases with a 

significant QTL affecting trait v, the location of the highest test-statistic was in the interval between 

20 and 40 cM, containing the simulated QTL at 30 cM. The power to detect the QTL for trait w, 

with an effect of 0.3 σa, ranged from 0.29 to 0.35, with an average of 0.32. The QTL was positioned 

in the interval of the simulated QTL, i.e., between 20 and 40 cM, in 66% of the cases in which there 

was significant evidence for the presence of a QTL. Probability of detecting a QTL when no QTL 

was simulated (i.e., the type I error), ranged from 0.04 to 0.06, with an average of 0.05 for trait v as 

well as for trait w, across all relevant alternatives.  
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Power to detect pleiotropic QTL. In the alternatives where a pleiotropic QTL was simulated, 

the power to detect a QTL with a pleiotropic effect ranged from 0.61 to 0.91 (Table 1). The power 

was higher if the covariance due to the QTL and the polygenic and environmental covariance had 

opposite sign, as in alternatives 3 and 12. If no QTL was simulated, there was a probability of 0.05 

to detect a QTL with a pleiotropic effect, which is equal to the expected probability. If a QTL with 

only an effect on trait v was simulated, the probability of detecting a pleiotropic QTL was 0.20 

(alternative 2) to 0.23 (alternative 6), which is higher than the expected probability of 0.05 based on 

permutation. Threshold levels to determine the power were based on permutations. The average 

covariance after permutation was in agreement with the expected covariance according to equation 

3, with parameters adjusted for additional variance caused by the QTL (Table 2). Size of the 

confidence intervals ranged from 1.12 in alternative 5 to 1.37 in alternatives 4 and 11. Confidence 

intervals were larger in alternatives where a QTL-effect was simulated. Results in alternatives 1, 2, 

3, and 4 were similar to the results in the corresponding alternatives 9, 10, 12 and 11, respectively. 

Number of heterozygous grandsires. Alternatives 2 and 3 were simulated with 10 and 5 

families instead of 20, and with 20 families and 25% heterozygous grandsires instead of 50%. 

These simulations showed, that the method can also be applied if the number of grandsires is less 

than 20, although the power is reduced (results not shown). 

Experimental data. Single-trait analyses revealed a QTL affecting protein percentage and 

possibly kilograms of milk in the interval between zero and 50 cM. In addition, a suggestive QTL 

affecting kilograms of milk was found between 75 and 113 cM. The pattern of the covariance 

between contrasts for kilograms of milk and protein percentage along chromosome 6 is given in 

Figure 2. At the beginning and the end of the chromosome, the covariance significantly deviates 

from the expected covariance under the H0-hypothesis. Figure 2 shows two confidence intervals: 

one interval is determined by retaining the maximum and minimum value of the covariance on the 

chromosome in each permutation (chromosomewise thresholds); the other interval is determined by 

retaining the maximum and minimum value of the covariance at each location separately (nominal 

thresholds). In the latter case, confidence intervals are not constant along the chromosome. 
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Figure 2. Covariance between contrasts for milk yield and protein percentage on chromosome 6. Confidence 

interval (95%) and expected covariance under the H0 –hypothesis (no pleiotropic quantitative trait locus 

[QTL]), are based on 15,000 permutations of the dataset. Confidence intervals based on chromosomewise 

and nominal values are indicated in the figure. Expected covariance based on chromosomewise values is 

indicated by a solid line, expected covariance based on nominal values (based on permutation at each 

location), is indicated by (+++). Position of the markers indicated on the horizontal axis (♦). 

 

DISCUSSION 
The presented method offers an easy way to determine pleiotropic effects of a QTL, as the 

method makes use of results from single-trait regression analysis. In this paper, the method is 

derived and is illustrated for a granddaughter design, but the method can also be derived for a two-

generation design like a daughter design. Estimated contrasts for grandsires from the regression 

analysis are used to compute the covariance between these contrasts for different traits at each 

chromosomal location. Permutation is carried out to determine confidence intervals for the 

covariance, in order to detect significant deviations from the expected covariance under the null 

hypothesis of no QTL or a QTL affecting only one trait. The expected covariance in this situation is 

not necessarily 0, but a function of the genetic and environmental correlation, the heritabilities, the 

phenotypic variances, and the number of sires and granddaughters involved (equation 3). 

Power and Type I Error. In single-trait analysis, power to detect a QTL with an effect of 0.5 σa 

ranged from 0.84 to 0.89. When applying power calculations as presented by Weller et al. (1990), 

power was 0.93. In alternatives with a QTL effect on trait w of 0.3 σa, power ranged from 0.29 to 
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0.35. Calculation of the power using Weller et al. (1990) gave a power of 0.43. Considering the 

assumptions underlying the power calculations by Weller et al. (1990), it can be concluded that 

power based on simulations was in agreement with expectations. 

The power to detect a pleiotropic QTL effect was high for the simulated alternatives. If the 

QTL effect on trait v was 0.5 σa and the effect on trait w was 0.3 σa, the power to detect the 

pleiotropic effect ranged from 0.61 (alternatives 4 and 11) to 0.91 (alternative 3). For the 

alternatives where the QTL had opposite effects on both traits, power ranged from 0.61 (alternative 

4) to 0.90 (alternative 12). The highest power was obtained in the alternatives where the covariance 

due to the QTL and the covariance based on residual genetic and environmental effects had 

different signs. This indicates that QTL that “break” the overall genetic correlation can be detected 

more easily. This was also noted by Korol et al. (1995). 

It should be noted, however, that the type I error was higher than expected: Type I errors 

ranged from 0.20 to 0.23. In alternative 2, for example, a type I error of 20% was obtained, where 

5% was expected, based on permutation. When no QTL effect was simulated, i.e., in alternatives 1, 

5 and 9, type I errors derived from permutation agreed with expected values. The discrepancy 

between the expected and observed type I error in other alternatives is caused by the fact that 

permutation does not result in the correct distribution under the null hypothesis in case there is a 

QTL affecting only one of the traits. This is illustrated in Figure 3 for alternative 2. Figure 3 shows 

the actual distribution of the covariance (average of 1000 independent datasets) and the distribution 

of the covariance based on permutation (average of 2000 permutations of these 1000 datasets). 

Covariances are shown at the QTL. Although expectations of both distributions are equal, the 

variance of the distribution based on permutations is lower. Consequently, the confidence interval 

for the covariance based on permutations will be underestimated, resulting in more-than-expected 

false positives.  

Obviously, when analyzing experimental data, this will also result in more false positives than 

expected based on type I errors set by permutation. Simulation showed that the number of false-

positive pleiotropic QTL increases with increasing effect of the QTL. When the QTL-effect was 0.2 

σa, the observed type I error was 0.10. For QTL effects of size 0.35 σa and 0.5 σa, the observed type 

I error was 0.12 and 0.20, respectively. To obtain 5% false positives for a QTL effect of 0.5 σa, the 

type I error based on permutation should be set to 0.2%. Thus, using lower type I errors in 

constructing confidence intervals can reduce the number of false positives to an acceptable level. 

This will, however, also reduce the power. To indentify false-positive results, the results from the 

underlying single-trait analyses could also be considered. 
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Figure 3. Distribution of covariance at the location of quantitative trait loci (QTL) in simulated (•) and 

permuted (×) datasets, in alternative 2, with genetic and phenotypic correlation equal to –0.6 and QTL with 

effect 0.5 σa on trait v. 

 

Experimental Data. Based on the pattern of the covariance and the confidence interval in 

Figure 2, it can be concluded that chromosome 6 contains two pleiotropic QTL, affecting both 

kilograms of milk and protein percentage. Selection for alleles that increase milk quantity results in 

a decrease of protein content. This information should be taken into account when deciding whether 

or not to apply MAS for these QTL. 

When confidence intervals for the experimental data were based on nominal values, it appeared 

that they were not constant along the chromosome. Deviations were observed especially at the 

beginning and the end of the chromosome. Simulation showed that this effect can be reproduced by 

simulating data with a low marker density at the beginning and the end of the chromosome. 

Simulated data containing markers with low information content at the beginning and the end of the 

chromosome gave similar results. When chromosomewise thresholds are determined for these 

situations, thresholds will predominantly be influenced by values at the beginning and the end of the 

chromosome. Therefore, thresholds can be too strict for other regions of the chromosome, resulting 

in lower power to detect pleiotropic QTL in those regions. This problem can be overcome by 

adjusting thresholds based on nominal values for repeated testing along the chromosome, i.e., using 

stringent nominal values. 
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Biallelic vs. multi-allelic QTL. Both equation 4 and the simulations were based on the 

assumption that there is an additive biallelic QTL. The contribution of grandsires heterozygous for 

the QTL to the covariance at the QTL is ¼ * av * aw. Each of the two possible heterozygous 

grandsires, in coupling or in repulsion phase, contributes equally to the covariance. In reality, QTL 

can be multi-allelic, or actually consist of two closely linked biallelic QTL, which together act as a 

multi-allelic QTL. For this situation the contribution of a heterozygous grandsire to the covariance 

can have a range of values. Depending on the alleles present and their effects, the contribution can 

be positive, negative, or zero. Summing over all grandsires, the overall effect on the covariance 

could be close to the expected covariance under the null hypothesis. As a consequence, the 

pleiotropic QTL might not be detected in all multi-allelic situations. 

Pleiotropic vs. linked QTL. Instead of considering a QTL with a pleiotropic effect, one could 

also consider two linked QTL that are involved in the expression of two traits. This can also cause a 

significant covariance between the estimated contrast. The probability of detecting a significant 

covariance between contrasts decreases with increasing distance between the linked QTL. The 

effect of distance between linked QTL on the covariance was not studied here. Notably, however, 

even fairly well-spaced QTL could cause a significant covariance, provided the QTL effect on each 

trait is large enough. The method presented here does not distinguish between pleiotropy and 

linkage, but if the goal is to look at the possible consequences of MAS for other traits, it is less 

relevant if the QTL is a pleiotropic QTL or if there are two closely linked QTL. 

Covariance vs. correlation. In this study, the covariance between contrasts was used to study 

QTL with an effect on two traits. It is also possible to look at the correlation between contrasts. 

Combining equations 3 and 4, it follows that if there is a QTL affecting one trait, the covariance is 

equal to the covariance when there is no QTL, but the variance of the contrasts increases. As a 

result, the absolute value of the correlation between contrasts will be lower than in a situation 

without a QTL (Figure 4). Thus, permutation will not give insight if the deviation of the correlation 

is due to a QTL affecting two traits, or due to a QTL affecting only one trait. When looking at the 

covariance, a significantly deviating covariance can be detected by permutation, provided that the 

right type I errors are used. 
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Figure 4. Correlation between contrasts in alternative 2 (ra and rp equal to –0.6), alternative 6 (ra and rp equal 

to 0.0), and alternative 10 (ra and rp equal to +0.6), based on 1,000 replicates of each alternative. The effect 

of the quantitative trait locus (QTL) on trait v was 0.5 σa in all three alternatives. Position of the markers 

indicated on the horizontal axis (♦). 

 

 

CONCLUSIONS 
This study has shown that the covariance between contrasts from separate single-trait 

regression analyses can be used to identify pleiotropic or closely linked QTL, i.e., QTL or linked 

QTL that act on more than one trait. The presented method gives insight in potential benefits or 

drawbacks from MAS due to the effect of MAS on nontarget traits. Results from simulations 

showed that stringent Type I errors should be applied to reduce the number of false-positive results. 

Application of the method to chromosome 6 indicated two QTL affecting protein percentage as well 

as milk yield. When MAS is used to increase the level of one of these traits, the level of the other 

trait will decrease. 
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APPENDIX 

 

Covariance between contrasts for two traits from regression analysis of a granddaughter 

design, in the absence of a QTL. 

 

Consider a granddaughter design with the following analysis model 

 ijklijkijiijkl esmgsy +++=        (1) 

where yijkl is the phenotype of animal l, daughter of sire k that inherited marker allele j of grandsire 

i; gsi is the effect of grandsire i; mij is the effect of marker allele j nested within grandsire i; sijk is 

the effect of sire k that received marker allele j from grandsire i, and eijkl is the random residual. 

Suppose that the number of sires per grandsire is ns and that each grandsire has ng granddaughters 

per sire. With equal distribution of sires over marker alleles, the number of sires per grandsire per 

marker allele is ½ ns

When considering two traits, v and w, the covariance of the contrast of marker group means can be 

written as: 

=−− )ww,vvcov( ..2i..1i..2i..1i  

)w,vcov()w,vcov()w,vcov()w,vcov( ..2i..2i..1i..2i..2i..1i..1i..1i +−−     (2) 

Group i1 (same grandsire and same marker) consists of three different categories when considering 

variances and covariances: animals themselves, half sibs (same sire, different dam) and animals 

only related through their paternal grandsire. 
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)w,vcov()w,vcov( ..1i..1i..2i..2i =        (9) 

 

Substituting (3) to (9) into (2) gives: 
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ABSTRACT 
Chromosomal regions affecting multiple traits (multiple trait quantitative trait regions, MQR) 

in dairy cattle were detected, using a method based on results from single trait analyses to detect 

quantitative trait loci (QTL). The covariance between contrasts for different traits in single trait 

regression analysis was computed. A chromosomal region was considered an MQR when the 

observed covariance between contrasts deviated from the expected covariance under the null 

hypothesis of no pleiotropy or close linkage. The expected covariance and the confidence interval 

for the expected covariance were determined by permutation of the data. Four categories of traits 

were analyzed: production (five traits), udder conformation (six), udder health (two) and fertility 

(two). The analysis of a granddaughter design involving 833 sons of 20 grandsires resulted in 59 

MQR (α = 0.01, chromosomewise). Fifteen MQR were found on BTA 14. Four or more MQR were 

found on BTA 6, 13, 19, 22, 23 and 25. Eight MQR involving udder conformation and udder health 

and four MQR involving production traits and udder health were found. Five MQR were identified 

for combinations of fertility and udder conformation traits, and another five MQR were identified 

for combinations of fertility and production traits. For 22 MQR, the difference between the 

correlation due to the MQR and the overall genetic correlation was larger than 0.60. The results 

from this study can be useful in the decision whether or not to apply marker-assisted selection 

(MAS) for specific QTL.  

(Key words: genome scan, multiple trait, quantitative trait locus, dairy cattle) 

 

Abbreviation key: MAS = marker-assisted selection, QTL = quantitative trait locus, MQR = 

multiple trait quantitative trait region, BTA = Bos taurus Autosome 

 

INTRODUCTION 
Breeding programs for livestock aim at improving the genetic level of several breeding goal 

traits by selection. These programs rely on phenotypic information on individuals and relationships 

between individuals. In the past decade, however, molecular techniques have become available that 

enable the genotypic analysis of animals. Analysis of phenotypic information on a trait and the 

genotype for genetic markers can lead to the identification of loci involved in the expression of the 

trait. In dairy cattle, many of these loci (quantitative trait loci, QTL) have been reported, for 

production traits (e.g. Georges et al., 1995; Spelman et al., 1996), as well as for conformation and 

functional traits (e.g. Ashwell et al., 1998; Schrooten et al., 2000). Efforts are now undertaken to 
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identify the mutations responsible for the effects of QTL. Recently, a functional mutation in the 

DGAT1 gene on BTA 14, responsible for large effects on production traits, has been identified 

(Grisart et al., 2002). A mutation in the growth hormone receptor gene on BTA 20 is associated 

with a strong effect on milk yield and composition (Blott et al., 2003). Genotypic information of the 

functional mutation or information on the genotype of closely linked markers can be incorporated in 

selection (marker-assisted selection, MAS), which is expected to increase genetic progress (e.g. 

Kashi et al., 1990; Meuwissen and van Arendonk, 1992). 

Selection for a certain trait can lead to genetic changes in other traits, due to the genetic 

correlations between the traits. One of the possible causes for genetic correlation is pleiotropy. 

Pleiotropic genes are genes influencing two or more traits. A single QTL may increase, decrease, or 

not affect the overall genetic correlation. Also, closely linked QTL can contribute to genetic 

correlation, due to linkage disequilibrium. Pleiotropic effects of QTL, or closely linked QTL, each 

affecting a different trait, can affect the value of individual QTL for MAS. 

The contribution of identified QTL to the overall genetic correlation can be determined by 

multiple trait QTL analysis. One method to address the effect of QTL on multiple traits is by 

canonical trait analysis, as first presented by Weller et al. (1996). Later, multiple trait methods have 

been developed (e.q. Knott and Haley, 2000; Korol et al., 2001), but application to outbred 

structures is not common practice. These methods can present computational difficulties, especially 

when applied to outbred populations or to a large number of traits. Schrooten and Bovenhuis (2002) 

showed that analysis of the covariance between contrasts from single trait analyses for different 

traits can reveal chromosomal regions affecting multiple traits (multiple trait quantitative trait 

regions, MQR). They developed a method that utilizes results from single trait QTL analyses to 

identify MQR in a granddaughter design. The method, however, cannot distinguish between 

pleiotropic QTL or closely linked QTL. 

In this project, the method described by Schrooten and Bovenhuis (2002) is applied to data 

from a granddaughter design. The goal is to identify chromosomal regions affecting multiple traits 

(MQR) in dairy cattle. 

 

MATERIALS AND METHODS 
Data from a granddaughter design (Weller et al., 1990), consisting of 20 Holstein-Friesian 

grandsires with 833 sons (Schrooten et al., 2000), were used in the analysis. The number of sons per 

grandsire ranged from 11 to 147. For each animal, the genotype of 277 microsatellite markers on 

the 29 autosomes was determined. Per chromosome, the average interval between consecutive 
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markers ranged from 4 to 29 cM (Schrooten et al., 2000). Estimated breeding values based on 

progeny information were available for 37 routinely evaluated traits in the Netherlands, and 

deregressed before analysis. A subset of 15 important breeding goal traits was chosen for the 

analysis, and they were divided into four categories: production (kg. milk, fat %, protein %, kg. fat 

and kg. protein), udder conformation (fore udder attachment, front teat placement, teat length, udder 

depth, rear udder height and central ligament), udder health (somatic cell score and milking speed) 

and fertility (interval calving – 1st insemination and non return at 56 days after insemination). The 

number of sons with breeding values was 833, except for milking speed (801), interval calving – 1st 

insemination (831) and non return at 56 days after insemination (831). For each trait, contrasts 

between allelic effects were estimated by multi-marker regression (Knott et al., 1994) with the 

model  

 

yij = µ + gsi + bikXijk + eijk    (1) 

 

where yij = deregressed breeding value of son j of grandsire i, µ = overall mean, gsi = fixed effect of 

grandsire i, bik = regression coefficient for grandsire i at location k on the chromosome, Xijk = 

probability that son j receives a chromosomal segment from grandsire i at position k, and eijk 

=random residual. 

Significant QTL in the single trait analysis were determined by comparing the test statistic at 

each location with the 10% genomewise threshold, as described by Churchill and Doerge (1994). In 

this procedure, phenotypes were shuffled within families and reassigned to the sons, thus breaking 

the association between phenotypes and genotypes. Significance thresholds were obtained from 

analysis of 10000 permuted data sets. A QTL was considered suggestive when the threshold would 

yield one false positive result in a genome scan (Churchill and Doerge, 1994). This threshold 

corresponds to a chromosomewise type I error (α) of 0.0345. 

To detect chromosomal regions affecting multiple traits, the covariance between estimated 

contrasts for pairs of traits, i.e. the regression coefficient in equation (1), was determined at each 

location separately. As shown by Schrooten and Bovenhuis (2002), the expected covariance can be 

written as  
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where ..2i..1i vv − and ..2i..1i ww − are the contrasts for trait v and w for grandsire i, rA is the genetic 

correlation between trait v and trait w, rE is the environmental correlation between trait v and trait 

w,  and  are heritabilities of trait v and trait w, respectively, n2
vh 2

wh s is the number of sires per 

grandsire, ng is the number of daughters per sire, σ  and σ are the phenotypic standard 

deviations of trait v and trait w, respectively, p

vp wp

het is the fraction that is heterozygous for the QTL, 

and av and aw are equal to half the difference between the two homozygous genotypes (Falconer and 

Mackay, 1996), i.e. the allele substitution effect when there is no dominance. Note that parameter 

bik in equation (1) is an estimate of “a.” in equation (2). Variances, heritabilities and correlations do 

not include the effect of the QTL. A more detailed description of the method and discussion of its 

properties can be found in Schrooten and Bovenhuis (2002). 

When there is no QTL, or the QTL affects only one trait, equation 2 shows that the covariance 

does not depend on the values of av and aw, but solely on the polygenic and environmental 

parameters. Deviations from this expected covariance indicate the presence of an MQR, i.e. a 

pleiotropic QTL, or closely linked QTL, each affecting one of the traits. It is not possible to 

distinguish between QTL with a pleiotropic effect and closely linked QTL in a statistical analysis. 

In this paper we will therefore consider chromosomal regions affecting multiple traits (MQR), 

because pleiotropic QTL or closely linked QTL may be involved. 

In the analysis, the expected covariance under the null hypothesis, i.e. a situation without a 

pleiotropic QTL or closely linked QTL, can be determined by calculating the average covariance in 

10000 permuted data sets. Permuted data sets were obtained as described for the single trait 

analysis. Here, permutation was also used to construct a 99%-confidence interval for the average or 

expected covariance. Covariances outside the confidence interval indicate that this chromosomal 

region is affecting both traits. Effects can have the same direction of change, i.e. the value of both 

traits is either increased or decreased, or have opposite direction of change. This can in some cases 

result in a large difference between the correlation due to the MQR and the overall genetic 

correlation. To detect chromosomal regions where this is the case, trait combinations with large 

differences between the MQR correlation and the overall genetic correlation were identified. 

Overall genetic correlations were not based on the data set used in the current project, but on data 

used for national evaluations (Harbers, 2003, personal communication). 
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RESULTS 
 

Example 

The method to detect MQR is based on the covariance between contrasts from single trait 

analyses. To illustrate the method, Figure 1 shows the results for fat % and protein % on BTA 6. 

The covariance between contrasts is shown at 1 cM intervals. The expected covariance, determined 

from analyzing 10000 permuted data sets, was 0.037, with a 99% confidence interval ranging from 

0.006 to 0.117. The covariance in the region between 0 and 9 cM exceeded the confidence interval. 

The largest deviation from the expected covariance was found at 0 cM. An increase in fat % due to 

the QTL was accompanied by an increase in protein %, resulting in a positive covariance. Results 

from single trait analysis revealed a significant QTL for protein %. Test statistics were high 

between 0 and 43 cM, with the highest test statistic at 13 cM. A suggestive QTL for fat % was 

found in the same region, with the highest test statistic at 14 cM. 
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Figure 1. Covariance between contrasts for fat % and protein % on BTA 6. Location of markers indicated by 

(♦). Expected covariance (solid line) and 99% confidence interval (broken lines) based on chromosomewise 

values. 

 

Identified MQR 

In the same way as described for fat % and protein % on BTA 6, 105 combinations of traits on 

29 chromosomes were tested for the presence of multiple trait quantitative trait regions (MQR). 
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Based on chromosomewise thresholds, 59 covariances between contrasts were outside the 99% 

confidence interval under the null hypothesis. As an overview of the results, the number of MQR 

per combination of trait categories is presented in Table 1. The number of MQR and QTL in Table 

1 depends on trait characteristics and the number of traits in a trait category. Therefore, to put 

results in perspective, the number of traits in each trait category and the number of QTL from single 

trait analysis are presented in Table 1 as well. The identified MQR and associated results of relevant 

single trait analyses are in Table 2, characterized by location and correlation due to the MQR, and 

by the type I error (α) that was used to construct the confidence interval for the covariance. 

 

Table 1. Number of traits per trait category, number of QTL1 from single trait analysis for each trait category 

and number of multiple trait quantitative trait regions (MQR)2 for combinations of trait categories. In 

parentheses, the number of traits in each combination of trait categories is listed. Diagonals show the number 

of MQR involving two traits that belong to the same trait category. 

# MQR for combinations of trait categories3 

 

Trait category 

 

# traits in 

category 

 

# single trait 

QTL1  

Production 

Udder 

conformation 

 

Udder health 

 

Fertility 

Production 5 23 9 (10) 19 (30) 4 (10) 5 (10) 

Udder 

conformation 

6 17  8 (15) 8 (12) 5 (12) 

Udder health 2 8   0 (1) 0 (4) 

Fertility 2 4    1 (1) 
1Genomewise significant or suggestive QTL 
2MQR were reported when the covariance between contrasts was outside the 99% confidence interval 
3Number of evaluated combinations of traits is in brackets 

 

For combinations between production and udder conformation traits, 19 MQR were found 

(Table 1). Most of these MQR were located on BTA 13 (four, Table 2) and BTA 14 (five). Nine 

MQR involving two production traits were found, mainly on BTA 14 (six MQR) and BTA 6 (two 

MQR). For combinations among udder conformation traits, eight MQR were found. BTA 19 (three 

MQR) and BTA 23 (two) mainly contributed to this number. BTA 14, BTA 19 and BTA 26 each 

contained two MQR affecting an udder conformation trait and an udder health trait. 
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Table 2.  Chromosomes and trait combinations where MQR were found, with location1 of extreme covariance between contrasts. Correlation due to the MQR 

(rMQR) and the overall genetic correlation (rg) are indicated. QTL from single trait analysis are indicated by their location1. 

       Single trait analysis2

BTA Location (cM) Trait 1 trait 2 rMQR
3 rg

3 α4 trait 1 Trait 2 
1 54 Teat length Non return daughters 56 days -0.67a 0.12a 0.008   NS NS
4 67 Milking speed Kg. protein 0.66b -0.07b 0.002   

   
   
   

   
   

   
   
   
   

   

NS NS
5 57 Rear udder height Protein % -0.69 -0.20 0.004 88 123 
5 39 Kg. fat Non return daughters 56 days -0.77 -0.19 0.002 166 NS 
6 0 Fat % Protein % 0.89 0.78 0.004 14 13 
6 34 For udder attachment Front teat placement -0.45a 0.44a 0.002 NS NS
6 101 Rear udder height Non return daughters 56 days 0.76a -0.18a 0.002 NS NS
6 113 Protein % Kg. protein -0.76b 0.04b 0.004 87 NS
7 83 Milking speed Kg. milk 0.50 -0.02 0.010 NS NS 
9 113 Central ligament Non return daughters 56 days -0.77 -0.25 0.002 NS 79 

10 30 Fore udder attachment Kg. fat -0.71b -0.09b 0.004 NS 36
10 26 Teat length Kg. protein -0.55a 0.11a 0.006 NS NS
13 0 Fore udder attachment Kg. milk -0.63 -0.05 0.010 0 NS 
13 0 Udder depth Protein % 0.75b 0.03b 0.010 22 NS
13 0 Fore udder attachment Protein % 0.57b -0.03b 0.004 0 NS
13 0 Udder depth Fat % 0.71b -0.01b 0.010 22 NS
14 7 Kg. milk Kg. fat -0.24a 0.37a 0.008 0 0
14 7 Fore udder attachment Fat % 0.55 -0.04 0.002 NS 0 
14 10 Fore udder attachment Kg. milk -0.63 -0.05 0.006 NS 0 
14 11 Protein % Kg. protein -0.62b 0.04b 0.002 10 0
14 11 Kg. milk Protein % -0.86 -0.59 0.002 0 10 

 



 

       Single trait analysis2

BTA Location (cM) Trait 1 trait 2 rMQR
3 rg

3 α4 trait 1 Trait 2 
14 11 Kg. milk Fat % -0.91 -0.65 0.002 0 0 
14 11 Front teat placement Kg. milk -0.61a 0.13a 0.006   

   
   

   

   
   
   
   
   

NS 0
14 11 Fat % Protein % 0.93 0.78 0.002 0 10 
14 11 Udder depth Fat % 0.61b -0.01b 0.002 NS 0
14 11 Front teat placement Fat % 0.46a -0.19a 0.008 NS 0
14 12 Fat % Kg. protein -0.77 -0.22 0.002 0 0 
14 13 Milking speed Kg. milk -0.46 -0.02 0.006 17 5 
14 13 Milking speed Fat % 0.44 -0.09 0.004 17 0 
14 13 Udder depth Milking speed 0.56 0.00 0.006 NS 17 
14 13 Fore udder attachment Milking speed 0.50 0.00 0.004 NS 17 
18 68 Fat % Interval calving – 1st insem. 0.49 -0.05 0.006 NS NS 
18 67 Protein % Interval calving – 1st insem. 0.58a -0.14a 0.004 105 NS
19 0 Fore udder attachment Somatic cell score -0.62 -0.30 0.004 66 NS 
19 0 Rear udder height Somatic cell score -0.61 -0.14 0.004 NS NS 
19 0 Udder depth Fore udder attachment 0.91 0.74 0.008 35 66 
19 0 Rear udder height Fore udder attachment 0.66 0.21 0.002 NS 66 
19 0 Rear udder height Front teat placement 0.82b 0.10b 0.006 NS 66
19 39 Interval calving – 1st insemination Non return daughters 56 days -0.51a 0.36a 0.004 NS NS
20 60 Udder depth Fore udder attachment -0.19a 0.74a 0.004 NS NS
22 0 Kg protein Non return daughters 56 days 0.64a -0.28a 0.008 NS NS
22 0 Kg fat Non return daughters 56 days 0.58a -0.19a 0.006 NS NS
22 18 Front teat placement Protein % -0.59 -0.13 0.010 3 NS 
22 85 Fore udder attachment Non return daughters 56 days -0.69 -0.20 0.008 NS NS 

 



 

       Single trait analysis2

BTA Location (cM) Trait 1 trait 2 rMQR
3 rg

3 α4 trait 1 Trait 2 
23 8 Fore udder attachment Kg. protein -0.58 -0.08 0.004 14 18 
23 8 Fore udder attachment Kg. milk -0.55 -0.05 0.008 14 NS 
23 12 Udder depth Front teat placement 0.67 0.35 0.010 NS NS 
23 14 Fore udder attachment Front teat placement 0.77 0.44 0.008 14 NS 
24 29 Udder depth Interval calving – 1st insem. -0.74 -0.28 0.008 NS NS 
25 80 Fat % Kg. protein -0.76 -0.22 0.008 NS NS 
25 80 Central ligament Kg. milk 0.63 0.12 0.006 24 NS 
25 80 Central ligament Somatic cell score 0.50 -0.04 0.006 24 NS 
25 80 Rear udder height Central ligament 0.80 0.36 0.004 11 24 
25 80 Central ligament Kg. protein 0.70b 0.05b 0.004   24 NS
26 0 Fore udder attachment Milking speed 0.43 0.00 0.010 3 NS 
26 0 Udder depth Milking speed 0.57 0.00 0.004 NS NS 
27 44 Udder depth Somatic cell score -0.74 -0.35 0.006 44 NS 
27 29 Udder depth Protein % -0.40 0.03 0.010 44 NS 
28 24 Fore udder attachment Protein % -0.56 -0.03 0.010 NS NS 

1Only locations with most extreme covariance (MQR analysis) or highest test statistic (for single trait analysis) are shown. Table A1 of the Appendix contains 

markers or flanking markers at these locations. 
2NS = no significant or suggestive QTL detected. 
3Differences between rMQR and rg larger than 0.60 are indicated by superscript “b”. When, besides, |rg| > 0.10 and rg and rMQR have opposite sign, these are 

indicated by superscript “a”. 
4For each test: smallest type I error (α) that yielded a significant result (smallest tested was 0.002). 
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Chromosomes with four or more MQR are presented graphically in Figure 2 and listed in Table 2. 

Results for these chromosomes will be discussed in more detail. Results for other chromosomes are 

only presented in Table 2. 

BTA 6. On BTA 6, four MQR were detected. These were located at 0 cM (fat % and protein 

%), 34 cM (fore udder attachment and front teat placement), 101 cM (rear udder height and non 

return at 56 days of daughters) and at 113 cM (protein % and kg protein). In the single trait analysis, 

significant QTL for fat % and protein % were found around 13 cM. The correlation between the 

contrasts of fore udder attachment and front teat placement (-0.45) and the overall genetic 

correlation between these traits (0.44) differ considerably and have opposite sign. The same applies 

to the MQR affecting rear udder height and non return of daughters at 56 days (rMQR = 0.76, rg = -

0.18). The correlation due to the MQR affecting protein % and kg. protein was far more negative (-

0.76) than the overall genetic correlation, which was close to zero. 

BTA 13. On BTA 13, four MQR involving production (kg milk, protein % and fat%) and udder 

conformation traits (fore udder attachment and udder depth) were located at 0 cM. In the single trait 

analysis, significant QTL for fore udder attachment and udder depth were found in this region. 

Overall genetic correlations were close to zero for all four trait combinations. MQR correlations 

were positive for combinations of udder conformation traits and percentage traits (0.57 to 0.75). 

The correlation due to the MQR affecting fore udder attachment and kg. milk was negative (-0.63). 

BTA 14. BTA 14 contained 15 MQR. Covariances exceeded the confidence interval in the 

chromosomal region between 0 and 17 cM, with most extreme covariances between 7 and 13 cM 

(Table 2, Figure 2). In Figure 2, only this region of BTA 14 is shown.  
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Figure 2. BTA 6, 13, 14, 19, 22, 23 and 25, with regions affecting multiple traits (MQR) as well as 
significant and suggestive QTL from single trait analysis for traits affected by MQR. Traits are indicated by 
abbreviations: kgm = kg. milk; fa% = fat%; pr% = protein %; kgf = kg. fat; kgp = kg. protein; fua = fore 
udder attachment; ftp = front teat placement; tle = teat length; ude = udder depth; ruh = rear udder height; cli 
= central ligament; scs = somatic cell score; msp = milking speed; icf = interval calving – 1st insemination; 
N56 = non return of daughters at 56 days after insemination 
The vertical bar represents the chromosome, with locations indicated in cM. Trait combinations with 
identified MQR are in boxes. MQR contributing positively to the overall genetic covariance are positioned to 
the right of the chromosome bar, whereas MQR contributing negatively to the overall genetic covariance are 
positioned to the left. Trait combinations with superscript “a” indicate MQR where the sign of the covariance 
due to the MQR was opposite to the sign of the overall genetic covariance. The location of QTL from the 
single trait analysis is given by the abbreviation of the trait to the left of the chromosome bar. Trait 
abbreviations with superscript “b” indicate significant QTL, trait abbreviations without subscript indicate 
suggestive QTL. 
Note the different scale for BTA 14, only the beginning of this chromosome is shown. 
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Thirteen of the 15 MQR involved one or two production traits, and six of these involved two 

production traits. Traits other than production that were affected by these MQR were fore udder 

attachment, front teat placement, udder depth and milking speed. Most overall genetic correlations 

between the traits involved were close to zero, except for the correlation between kg. milk and kg. 

fat (0.37), among percentage traits (0.78) and between milk yield and percentage traits (-0.59 and –

0.65). Correlations due to the MQR were positive between udder conformation and percentage traits 

(0.46 to 0.55), and negative between udder conformation traits and kg. milk (-0.61 to –0.63). MQR 

correlations among yield traits were comparable to overall genetic correlations, with the exception 

of the MQR correlation between kg. milk and kg. fat (-0.24), and kg. protein with protein % and fat 

% (-0.62 to –0.77). MQR correlations with milking speed were positive for udder conformation 

traits and fat % (0.44 to 0.56) and negative for milk yield (-0.46). In the single trait analysis, 

significant QTL were found for fat %, kg milk and kg protein, whereas suggestive QTL were 

identified for protein %, kg fat and milking speed, in the same region as the MQR. 

BTA 19. Five of the six MQR on this chromosome are located at 0 cM and affect one of the 

udder conformation traits and somatic cell score, or two udder conformation traits. The sixth MQR 

was at 39 cM. The correlation due to this MQR affecting the two fertility traits, interval calving to 

first insemination and non return of daughters at 56 days after insemination, was moderately 

negative (-0.51), whereas the overall genetic correlation was moderately positive (0.36). The MQR 

correlation between rear udder height and front teat placement was strongly positive (0.82), whereas 

the overall genetic correlation between these traits was close to zero. For udder depth, fore udder 

attachment and front teat placement the most probable location for QTL, from the single trait 

analysis, was at 35, 66 and 66 cM, respectively. 

BTA 22. On BTA 22, MQR were found at locations 0 cM (non return of daughters at 56 days 

after insemination, with both kg fat and kg protein), 18 cM (front teat placement and protein %) and 

85 cM (fore udder attachment and non return at 56 days after insemination). The single trait 

analysis only revealed a suggestive QTL at 0 cM for front teat placement. For the two MQR at 0 

cM, there was a large difference between the correlation due to the MQR (0.58 to 0.64), and the 

overall genetic correlation (-0.19 to –0.28). 

BTA 23. MQR on BTA 23 affected production and udder conformation traits. These MQR 

were found in the region between 8 and 14 cM. In the single trait analysis, suggestive QTL for fore 

udder attachment and kg protein were found in the same region. 
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BTA 25. On BTA 25, five MQR were located at 80 cM. Four of these MQR involved central 

ligament. Positive effects on central ligament, due to the MQR, were associated with positive 

effects for yield traits, somatic cell score and rear udder height. The overall genetic correlations for 

the relevant combinations ranged from around zero to moderately positive. There was no significant 

or suggestive QTL for central ligament at this location, nor for the other trait involved in these four 

MQR. The highest test statistic for central ligament was found at 24 cM. Also for the fifth MQR on 

this chromosome, involving fat % and kg protein, there was no significant or suggestive QTL in the 

single trait analysis. 

 

MQR with Correlations Deviating from the Overall Genetic Correlation 

For a number of MQR, the correlation due to the MQR differed largely from the overall genetic 

correlation. In Table 2, correlations are indicated where the difference between MQR correlation 

and the overall genetic correlation was 0.60 or higher. Also indicated are MQR where, in addition, 

the MQR correlation and the overall genetic correlation had opposite sign, and the overall genetic 

correlation had an absolute value of 0.10 or higher. This was the case for 12 MQR (Table 2). 

Most of the MQR with a correlation deviating from the overall genetic correlation have been 

indicated in the previous sections already. In addition, positive MQR correlations were observed 

between milking speed and kg. protein (BTA 4), and protein % and interval calving – 1st 

insemination (BTA 18). Negative MQR correlations were observed between teat length and non 

return of daughters 56 days after insemination (BTA 1), fore udder attachment and kg. fat (BTA 

10), teat length and kg. protein (BTA 10) and udder depth and fore udder attachment (BTA 20). The 

correlation due to the MQR on BTA 20 affecting udder depth and fore udder attachment was –0.19. 

On BTA 19, another MQR affecting udder depth and fore udder attachment was observed. The 

correlation due to this MQR was +0.91, which differs largely from the correlation due to the MQR 

on BTA 20. 

 

DISCUSSION 
 

Method 

Pleiotropic QTL and Closely Linked QTL. The method that was used in this paper can identify 

MQR. The method, however, cannot distinguish between pleiotropic and closely linked QTL. 

Therefore, the regions where the covariance between contrasts is outside the confidence interval for 

the expected covariance under the null hypothesis, might contain pleiotropic QTL or it might 
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involve regions where two different QTL are located, each affecting a different trait. For example, 

consider the results found on BTA 14, where the single trait analysis for kg milk gave a peak test 

statistic at 0 cM, and the single trait analysis for milking speed gave a peak test statistic at 17 cM 

(Figure 2). The covariance between contrasts for kg milk and milking speed deviated most from the 

expected covariance at 13 cM, i.e. in between the most likely locations from the single trait 

analyses. Given that the confidence interval for the location of a QTL in this type of analysis 

extends over a wide region, it can not be excluded that actually this QTL is not a pleiotropic QTL, 

but two linked QTL in a 20 cM region. Methods to distinguish between pleiotropic and closely 

linked QTL have been developed, for example by Lebreton et al. (1998). They concluded, however, 

that in common QTL mapping designs it is unlikely to be able to distinguish between pleiotropic 

QTL and linked QTL at locations 10 to 30 cM apart. Recently, Lund et al. (2003) presented a 

method, based on combined linkage and linkage disequilibrium analysis, that can distinguish two 

closely linked QTL that are 5 cM apart, from a pleiotropic QTL. This method, however, requires a 

dense linkage map, which is not available in the genome scans applied in dairy cattle so far. With 

even denser marker maps (marker intervals of e.g. 0.25 cM), they expect that more closely linked 

QTL (e.g. 1 cM apart) can be distinguished from pleiotropic QTL. When the goal is to use the QTL 

for MAS, the issue of pleiotropy or close linkage is less important than in the case where efforts are 

undertaken to find the gene or genes. Due to recombination, correlated effects resulting from 

linkage will disappear over time. In the short term, however, the implications for MAS will not be 

very different, whether there is pleiotropy or close linkage. It might take many generations before 

correlated effects due to linkage will have disappeared, although that does depend on the distance 

between the QTL, the magnitude of the QTL effects and the selection pressure on the QTL. 

Permutation test. In the method used in this paper, a permutation test is used to identify MQR. 

Covariances between contrasts are determined in the original data set, as well as in a number of 

permuted data sets. The applied method consists of computation of the covariance between 

contrasts and comparison of this covariance with the covariance in permuted data sets. Permutation 

takes into account the characteristics of the data set, e.g. pedigree structure, marker density, trait 

distribution etc. It is, however, not possible to obtain permuted data sets with a QTL affecting only 

one trait, which would probably be the ideal situation. As indicated by Schrooten and Bovenhuis 

(2002), the standard deviation of the covariance may be higher in a data set containing a QTL 

affecting only one trait, as compared to the permuted data sets having no QTL. Depending on the 

characteristics of the QTL, this phenomenon can lead to higher type I errors than expected. Elevated 

covariances between contrasts normally indicate the presence of MQR, but in some cases may also 
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be due to one QTL affecting one trait. Figure 3 shows the relationship between QTL effect and type 

I error for a trait with heritability of 0.60, and for QTL effects up to 0.5 σa. These results were 

obtained by simulating a granddaughter design of 20 grandsires with 50 sons per grandsire. Each 

son had 100 daughters with records on two traits. Heritability of the traits was 0.6 and 0.35, 

respectively, and the effect of the QTL on trait 1 ranged from 0.1 to 0.5 σa. The second trait was not 

affected by the QTL. Half of the grandsires were heterozygous for the bi-allelic QTL. Grandsires 

were informative for markers at 5 cM interval on a chromosome of 100 cM. The QTL was located 

at 30 cM. 1000 data sets were generated and each data set was permuted 1000 times, and analyzed 

to obtain 95% and 99% confidence intervals for the covariance between contrasts. The number of 

data sets where the covariance between contrasts was outside the confidence interval was counted to 

obtain the real type I error. The figure shows that type I error increases with increasing effects of 

the QTL. The impact on type I error rates is small for QTL effects up to 0.2 σa. 
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Figure 3. Probability (= observed type I error) to detect an MQR in a typical granddaughter design (20 

grandsires, 50 sons per grandsire, 100 daughters per son). A QTL-effect was simulated only for trait 1, the 

effect ranged from 0 to 0.5 σa.Type I error is set to 0.01 or 0.05. 

 

Literature 

Lipkin et al. (2002) examined pleiotropic effects of QTL on milk yield, protein percentage and 

protein yield using selective DNA-pooling, in regions of the genome previously found to be 

affecting protein percentage. Because of the algebraic dependence of the analyzed traits, it is likely 
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that a relatively high number of QTL would be declared to be pleiotropic. Combining results, 

Lipkin et al. (2002) concluded that there might be about 40 suggestive QTL on the genome 

affecting all three traits. Chromosomes and markers involved were not specified and therefore, it is 

not possible to compare the results found by Lipkin et al. (2002) on pleiotropic QTL with results 

from the current study. 

For a large number of MQR presented in Table 2, QTL for one of the traits involved have been 

reported in literature. Most studies only reported on a limited number of traits, therefore only a 

limited number of MQR found in the current research could be confirmed from literature, especially 

those on BTA 6 and BTA 14 affecting production traits. These will be mentioned here, and the QTL 

from literature affecting one of the traits involved in the MQR from Table 2 will not be discussed. 

BTA 6. Numerous authors have studied QTL on BTA 6, indicating the presence of multiple 

QTL on this chromosome (reviewed by Mosig et al., 2001). Spelman et al. (1996) found a QTL 

affecting both protein % and milk yield in two grandsire families. Using interval mapping and 

multiple regression analysis in a daughter design, Ron et al. (2001) found results supporting the 

hypothesis that one QTL is segregating in two different families and that this QTL affects 5 

production traits: kg. milk, fat %, protein %, kg. fat and kg. protein. This QTL was located close to 

55 cM, which corresponds to 40 cM on the map used in our study. Freyer et al. (2002) reported a 

QTL on BTA 6 affecting both protein yield and fat yield. This QTL was located at 70 cM, which 

corresponds to 52 cM on the map used in the current study. Freyer et al. (2002) also found QTL at 

the casein cluster affecting several production traits. The casein cluster corresponds to a location of 

95 cM on the map used in the current study. Compared to the MQR involving production traits in 

our study, QTL presented by Freyer et al. (2002) were located more towards the center of the 

chromosome. 

BTA 14. Recently, a mutation in the DGAT1 gene on BTA 14 was reported, with an effect on 

production traits (Grisart et al., 2002). This gene has an effect on several milk production traits and 

is located in the region between the first two markers used in this study, close to 0 cM. The 

substitution effects for milk production traits were: kg milk –158; fat% 0.17; protein % 0.04; kg fat 

+5.23; kg protein –2.82 (Grisart et al., 2002). Effects were expressed in terms of daughter yield 

deviations. Based on these effects, an increase of kg milk, for example, is expected to result in a 

decrease of fat % and a decrease of kg fat. In the current study, which consists of partly the same 

data as used by Grisart et al. (2002), a region on BTA 14 affecting multiple milk production traits 

was reported (Figure 2). For all combinations of production traits presented in Figure 2, the effects 

on the traits involved were in agreement with the effects of the gene as presented by Grisart et al. 
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(2002), which supports the results presented in this study. The MQR for production traits on BTA 

14 in the current study showed most extreme covariances at 7 cM, 11 cM and 12 cM which agrees 

with the location of the DGAT1 gene close to 0 cM. 

 

MQR with Correlations Deviating from the Overall Genetic Correlation 

In Table 2, a number of MQR are shown, for which the covariance due to the MQR and the 

overall genetic covariance differ largely. The overall genetic covariance is the result of the 

summation of all covariances due to individual QTL, either pleiotropic or closely linked. The 

contribution of each MQR to the overall genetic covariance depends on the size and the sign of the 

effects on the traits involved. If the genetic correlation is strongly positive, it is expected that the 

covariance at most of the individual MQR is positive. There might, however, be a few MQR with a 

negative contribution to the overall genetic covariance, i.e. MQR with correlations that strongly 

deviate from the overall genetic correlation. As was shown by Schrooten and Bovenhuis (2002), the 

statistical power to detect these MQR is increased compared to MQR that do not deviate from 

overall genetic correlations. For pairs of traits with high genetic correlations, it is expected that 

there are relatively few MQR that strongly deviate from the overall genetic correlation, but the 

power to find these MQR is higher (Korol et al, 1995; Schrooten and Bovenhuis, 2002). For cases 

in which the overall genetic correlation between traits is unfavorable, MAS for MQR that strongly 

deviate from the overall genetic correlation offers excellent opportunities to achieve progress for 

both traits. This was demonstrated by de Koning and Weller (1994). 

 

Comparison with Results from Single Trait Analysis 

The analysis described in this paper resulted in regions affecting multiple traits, in some cases 

affecting traits for which no QTL were detected in the single trait analysis. As was discussed by 

Korol et al. (1995), methods that use information from multiple traits have higher power, which can 

account for a number of QTL not previously identified. However, in the present study we did not 

account for multiple testing when identifying MQR. In total 3045 tests were performed, and MQR 

were reported when the covariance was outside the 99% chromosomewise confidence interval. The 

type I error of 0.01 was divided over both sides of the interval when constructing the confidence 

interval. In the single trait analysis, 435 tests were performed, and QTL were considered suggestive 

when the chromosomewise type I error was smaller than 0.0345. Combining the number of detected 

QTL and MQR (Table 1) with the respective number of tests, yields a false discovery rate 

(Benjamini and Hochberg, 1995) of (0.0345*435)/52 = 0.29 for the single QTL analysis and 
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(0.01*3045)/59 = 0.52 for the MQR analysis. The latter is relatively high. Therefore, MQR reported 

here should be considered suggestive, rather than significant. However, it was considered important 

to present these results, in order to assess potential consequences of using the given MQR in MAS. 

To compare results from single trait analysis and the analysis described in this paper, consider 

for example the results for BTA 25. Four MQR involving central ligament were detected at 80 cM, 

whereas in the single trait analysis for this trait, a suggestive QTL was located at 24 cM. At first 

glance, these results do not seem to be in agreement. A within-family analysis on this chromosome 

for central ligament, however, indicated two families with suggestive QTL at 80 cM, besides other 

families with suggestive QTL for central ligament at or around 24 cM (results not shown). Within 

family contrasts for other traits, like rear udder height, were significant in these families. As a 

result, the covariance between contrasts for these traits was outside the confidence interval for the 

expected covariance under the null hypothesis. Although these QTL were not detected in the across 

family analysis, they can be detected in a within-family analysis and also by the method used in this 

paper. 

The MQR identified in the current study include a number of potentially interesting regions 

from the point of view of selection. For example, the MQR on BTA 25 should be explored further: 

favorable effects on kg milk and kg protein are associated with favorable effects on udder traits, 

especially central ligament. Udder traits like rear udder height, front teat placement, fore udder 

attachment and udder depth are affected by MQR on BTA 19, which could be exploited in MAS. 

Favorable effects of MQR on BTA 13, on udder traits like udder depth and fore udder attachment, 

are associated with favorable effects on fat % and protein %. 

 

CONCLUSIONS 
In this research, a number of chromosomal regions affecting multiple traits in dairy cattle have 

been identified. These regions might contain a QTL with a pleiotropic effect on both traits or they 

might contain two different QTL, each affecting one of the traits. Chromosomal regions influencing 

multiple traits were found on almost all chromosomes, but especially on BTA 6, 13, 14, 19, 22, 23 

and 25. Eight MQR involving udder conformation and udder health and four MQR involving 

production traits and udder health were found. Five MQR were identified for combinations of 

fertility and udder conformation traits, and another five MQR were identified for combinations of 

fertility and production traits. These results are of great value for determining the importance of 

chromosomal regions for MAS.  
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APPENDIX 

 

Table A1. Markers on a number of chromosomes, at or close to locations relevant for the current study. 

These locations are listed in Table 2. 

BTA location 
(cM) 

marker or flanking markers  BTA location 
(cM) 

marker or flanking markers 

1 54 BMS711, TGLA57  14 12 BULGE034, BULGE017 
4 67 BM6458, TGLA116  14 13 BULGE017 
5 39 BP1, AGLA293  14 17 CSSM66 
5 57 AGLA293, AGLA254  18 67, 68 BM7109, ILSTS002 
5 88 AGLA254, IGF1  18 105 IDVGA55, TGLA227 
5 123 IGF1, BM315  19 0 BM9202 
5 166 ETH152  19 35, 39 TGLA94, URB044 
6 0 ILSTS090  19 66 BMS2503 
6 13, 14 MCM53, URB016  20 60 BMS703, BM5004 
6 34 BMS2508, BM143  22 0 CSSM26 
6 101 BP7, BM2320  22 3, 18 CSSM26, CSSM6 
6 113 BM2320  22 85 HMH1R 
7 83 TGLA164, AGLA260  23 8 BM47, RM033 
9 79 TGLA73  23 12,14,18 RM033, BM1258 
9 113 CSSM56  24 29 AGLA269, BMS66 

10 26, 30 BM1237, BRRIBOold  25 11 RM074 
10 36 BRRIBOold  25 24 TGLA40 
13 0 TGLA23  25 80 AF5 
13 22 BMC1222  26 0 TGLA22 
14 0 BULGE011  26 3 TGLA22, HEL11 
14 5 BULGE030  27 29 CSSM43 
14 7 BULGE030, BULGE036  27 44 HUJI13 
14 10 BULGE036, BULGE034  28 24 BMS362 
14 11 BULGE034     
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Evaluation of multi-stage MAS-schemes 

ABSTRACT 
In this paper, closed nucleus breeding schemes in dairy cattle that use information on 

quantitative trait loci (QTL), have been evaluated by deterministic simulation. In the base scheme, 

the selection index for dams consisted of pedigree information and own performance. The selection 

index for sires consisted of pedigree information and performance of 100 daughters. In alternative 

breeding schemes, information on a QTL was accounted for by simulating an additional index trait. 

The fraction of the variance explained by the QTL determined the correlation between the 

additional index trait and the breeding goal trait. Information on the QTL became available either at 

birth or at the embryo level. Response in progeny test schemes relative to a base breeding scheme 

without QTL information ranged from +4.5% (QTL explaining 5% of the additive genetic variance) 

to +21.2% (QTL explaining 50% of the additive genetic variance). A QTL explaining 5% of the 

additive genetic variance would allow to progeny test 130 young bulls and maintain genetic 

response at the level of the base scheme, consisting of 200 progeny tested young bulls. For schemes 

with increased embryo production and selection on QTL information at embryo level, genetic 

progress was up to 31.3% higher. This provides opportunities to change the design of the breeding 

program. 

 

INTRODUCTION 
In the past 10 years, many efforts have been undertaken to detect genes underlying 

economically important traits in dairy cattle. Quantitative trait loci (QTL) have been identified, i.e. 

chromosomal regions acting on a certain trait have been localized without knowing the exact 

position or the mutation responsible for the effect. First results were obtained for milk production 

traits (e.g. Georges et al., 1995), followed by results for conformation and functional traits (e.g. 

Ashwell et al., 1996). In some cases the QTL has been fine-mapped, up to the point where the 

mutation responsible for the effect has been identified. This has been accomplished for monogenic 

traits like BLAD (Shuster et al., 1992), and, more recently, also for quantitative traits like milk 

production (Grisart et al., 2002; Blott et al., 2003). 

QTL have been mapped with the aid of genetic markers. Markers for which linkage to specific 

QTL has been established, can be used for marker assisted selection (MAS). They give information 

on the inheritance of the QTL alleles and thus give information about the genetic potential of an 

animal. This can be used to increase genetic progress, either by increasing the reliability of 

estimated breeding values, by reduction of the generation interval or by increasing the selection 
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intensity. Soller and Beckman (1982) suggested screening of sires to be progeny tested, based on 

genetic polymorphisms. After that, various studies have evaluated a range of breeding schemes with 

MAS. Some of these studies looked at two-stage selection schemes where candidate young bulls 

were selected based on pedigree and marker information and subsequently the most promising 

animals entered the progeny test (e.g. Kashi et al., 1990; MacKinnon and Georges, 1998; Spelman 

and Garrick, 1998). Another group of studies looked at selection in a single stage, combining all 

available information, including marker information (e.g. Meuwissen and van Arendonk, 1992; 

Meuwissen and Goddard, 1996), and allowing selection of parents across all age classes. Estimates 

for additional gain ranged from –6% (Spelman and Garrick, 1997) to +105% (Spelman et al., 1999). 

Profitability of MAS breeding schemes depends on several factors, e.g. fraction of the genetic 

variation explained by the QTL, frequencies of QTL alleles, design of the breeding scheme and 

time horizon of evaluation. 

Current dairy cattle breeding schemes rely on progeny testing to assess the genetic value of 

bulls. Progeny testing increases the generation interval, but this is compensated by an increase in 

accuracy. Progeny testing would not be necessary if markers would explain a substantial fraction of 

the genetic variance. This will not be realized in the near future, however, because breeding goals in 

dairy cattle consist of many traits. MAS of sires will therefore most likely be applied as an initial 

selection step in a multi-stage setting. Marker information will increase the accuracy of selection, 

especially in the first stage. This can lead to an increased rate of gain when the breeding scheme is 

changed to enable preselection based on marker information. Alternatively, it offers the possibility 

to progeny test less young bulls while maintaining the rate of gain. 

Genotyping techniques can be applied to newborn animals, but they can also be applied to 

embryos (Bredbacka, 2001). Selection at the embryo stage offers additional opportunities, because 

the number of implanted embryos can be reduced, compared to a scheme based on selection of 

calves. To date, these opportunities have not been explored in detail. 

The current study will first look at general aspects of multi-stage selection and then address 

• the possibilities to reduce the number of progeny tested young bulls in a MAS-scheme, while 

maintaining the rate of gain 

• the additional genetic progress from MAS in breeding schemes with increased embryo 

production and genotyping of embryos 
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MATERIAL AND METHODS 
 

General Characteristics of Multi-Stage Selection 

Marker Assisted Selection can be part of multi-stage selection: markers are typed early in life 

and used in the first stage of selection, for example in combination with pedigree information. In the 

second stage, the remaining selection candidates are selected on a combination of first stage 

information, and phenotypic information that has come available in the meantime. 

Several selection schemes are evaluated to illustrate the general characteristics of multi-stage 

selection compared to selection in a single step, i.e. after all information is available. In these 

schemes, selection is for one trait and in one sex only. The number of selection candidates and the 

total number of animals selected after the final selection step are fixed, i.e. the overall selected 

fraction (pm for males, pf for females) is constant. The response of multi-stage selection relative to 

the response of single-stage selection depends on the fractions selected in stage 1 (p1) and in stage 2 

(p2), and on the ratio between the accuracies of the selection index in stage 1 and in stage 2 (Saxton, 

1983). Fractions selected in the first and the second stage are varied, from all selection after stage 2 

(p1=1, p2=p) to all selection after stage 1 (p1=p, p2=1). In all schemes, accuracy in the second stage 

was set to 0.93, representing an index consisting primarily of information on a large group of 

progeny. In the first set of alternatives, the ratio of accuracies in stage 1 and in stage 2 is set to 0.22, 

reflecting a situation with relatively low accuracy of the stage 1 index. In a second set of 

alternatives this ratio is set to 0.69, reflecting a situation with relatively high accuracy of the stage 1 

index. Overall selected fraction in both sets of schemes is either 0.01, 0.02, 0.05, 0.10 or 0.20. The 

first and second set of alternatives reflect schemes with a fixed number of selection candidates at 

the start of stage 1, and a fixed number of selected animals after stage 2. In a third set of 

alternatives, selected fractions in the first stage are varied while keeping the number of selection 

candidates and the selected fraction in stage 2 at a fixed level. Accuracies are equal to accuracies in 

the second set of alternatives. The third set of alternatives represents situations where the number of 

candidates available before selection in stage 1 are increased with the degree of first-stage selection. 

Selected fraction in stage 2 is either 0.01, 0.02, 0.05, 0.10 or 0.20. 

Responses are computed using an exact method developed by Ducrocq and Colleau (1986). 

This method is based on principles described by Tallis (1961) and Dutt (1973). 
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Breeding Schemes 

The response in a number of schemes applying MAS-preselection is compared to the response 

in a breeding scheme with preselection on pedigree information only. The comparison is carried out 

by deterministic simulation of multi-stage selection schemes, using the program SelAction (Rutten 

et al., 2002). This program predicts the rate of genetic gain based on selection index theory. The 

program accounts for reduction in variance due to selection (Bulmer, 1971), and corrects selection 

intensities for finite population size and for the correlation between index values of family members 

(Meuwissen, 1991). Full pedigree information as with BLUP selection is accounted for (Villanueva 

et al., 1993), and the program is therefore an accurate approximation of stochastic simulation with 

BLUP. Deviations from normality after the first stage of selection are dealt with, and selection 

response is predicted for the equilibrium situation (Rutten et al., 2002). 

Base breeding program. The breeding program is a closed nucleus scheme, with discrete 

generations. The breeding goal consists of one trait, with heritability 0.35 and phenotypic variance 

of 100. Selection of males and females in stage 1 is for an index based on pedigree information 

only. In stage 2, selection in females is for an index based on pedigree information and phenotypic 

information of the candidate and its half sibs and full sibs. In males, selection in stage 2 is for an 

index based on pedigree information, progeny information and sib information. This situation is 

comparable to selection for a milk production trait in dairy cattle. Each generation, 20 sires and 200 

dams are selected to produce 4000 embryos. Half of these embryos result in live calves, with a sex 

ratio of 0.50. In stage 1, 200 males are selected out of 1000 to enter the progeny test. In stage 2, 20 

males are selected out of 200 to produce the next generation. Selection in females reduces numbers 

from 1000 to 700 in stage 1 and from 700 to 200 in stage 2. Involuntary culling and death are 

ignored. The base breeding scheme is summarized in Figure 1. 

Breeding schemes with MAS. In the breeding schemes with MAS, additional information, 

consisting of information on Quantitative Trait Loci (QTL), is available in the first stage. The QTL 

explains either 5, 10, 20, or 50% of the genetic variance, referred to as Q05, Q10, Q20 and Q50, 

respectively. The remaining genetic variation results from polygenes (i.e. not marked). The QTL 

information is modeled as a trait that is correlated with the breeding goal trait and has a heritability 

of 1. The correlation between the QTL and the breeding goal trait depends on the amount of 

variation that is explained by the QTL. The correlation between the QTL and the polygenic 

component is 0 in the base generation (i.e. prior to selection). Genetic correlations of the breeding 

goal trait with the QTL and polygenic component are q  and q1− , respectively, where q is the 
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fraction of the genetic variance explained by the QTL. Correlations of the breeding goal trait with 

the QTL and polygenic component are 2
oh*q  and 2

oh*q1− , respectively, where  is the 

heritability of the overall trait. The heritability of the polygenic component is 

2
oh

q
q1

2
oh

1 −
− . 
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0.02), generation intervals are reduced, because there is no need to wait for progeny test results. In 

comparing results for this scheme with other schemes, genetic progress is corrected for the 

difference in generation intervals. Schemes will be referred to as MQ05, MQ10, MQ20 and MQ50, where 

M refers to varying selection in males, and Qxx refers to the amount of variation explained by the 

QTL. 

Preselection in females. The advantage of additional information is expected to be different for 

dams and sires. To quantify this difference, schemes are simulated where the level of preselection in 

females is varied from p1,f = 0.70 (equal to preselection in the base scheme) down to p1,f = 0.20 (all 

selection in the first stage), with steps of 0.05. The selected fractions for the males in stage 1 and 

stage 2 are equal to the selected fractions in the base scheme. These schemes will be referred to as 

FQ05, FQ10, FQ20 and FQ50, where F refers to varying selection in females, and Qxx refers to the 

amount of variation explained by the QTL. 

Varying numbers of candidates. So far the number of embryos (i.e. number of candidates 

before selection) has been kept constant. However, application of genotyping techniques on 

embryos offers additional opportunities for preselection without increasing the number of 

transferred embryos. This is modeled by simulating breeding schemes with increased reproductive 

rates, i.e. 8000 in stead of 4000 embryos are produced by 20 sires and 200 dams. The number of 

progeny tested bulls is kept constant. Therefore, selection in the first stage can be more intense, i.e. 

p1,m = 0.10 for males, and p1,f = 0.35 for females. These schemes will be referred to as EQ05, EQ10, 

EQ20 and EQ50, where E refers to extra embryos produced. 

Overview. The general characteristics of the schemes are summarized in Table 1.  

 

Table 1. Characteristics of simulated breeding schemes. 

Scheme1 # breeding 
goal traits 

Selected fractions males Selected fractions females 

  p1,m pm p1,f pf

MQxx 1 0.20 – 0.02 0.02 0.70 0.20 
FQxx 1 0.20 0.02 0.70 – 0.20 0.20 
EQxx 1 0.10 – 0.01 0.01 0.35 0.10 

1) Qxx refers to the amount of genetic variance explained by the QTL. This is 0%, 5%, 10%, 20% or 50% 

 

Results of these schemes are compared to a corresponding base scheme with the same 

characteristics, but without a QTL. Schemes are compared for genetic progress and contribution of 

males and females to genetic progress. 

 100



Evaluation of multi-stage MAS-schemes 

 

RESULTS 
 

General Characteristics of Multi-Stage Selection 

Figure 2 shows the response in multi-stage selection schemes with a high ratio between 

accuracies in stage 1 and stage 2 (i.e. a relatively high accuracy in stage 1). The response is 

expressed as a fraction of the response obtained when all selection is in stage 2 (R0), which is the 

maximum response. Note that the horizontal axis contains values for 1-p1, i.e. larger values indicate 

more selection in stage 1. 
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Figure 2. Response of schemes with different selected fractions in stage 1 (p1), expressed as fraction of 

response in a scheme with all selection in stage 2. Responses are given for 5 different levels of overall 

selection (p), for high ratio (0.69) of accuracies of the index in stage 1 and in stage 2. Note that the horizontal 

axis contains values for 1-p1, i.e. larger values indicate stronger selection in stage 1. The horizontal line 

(R/R0 = 0.95) indicates responses equal to 95% of the response in the scheme with all selection in stage 2. 
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Figure 3. Response of schemes with different selected fractions in stage 1 (p1), expressed as fraction of 

response in a scheme with all selection in stage 2. Responses are given for 5 different levels of overall 

selection (p), for low ratio (0.22) of accuracies of the index in stage 1 and in stage 2. Note that the horizontal 

axis contains values for 1-p1, i.e. larger values indicate more selection in stage 1. The horizontal line (R/R0 = 

0.95) indicates responses equal to 95% of the response in the scheme with all selection in stage 2. 

 

Response is highest when there is no preselection. There is only a slight reduction in response 

when limited preselection is applied. The reduction in response is due to culling of valuable animals 

that would have been selected when all information would have been available. The reduction in 

response is small and approximately linear with increasing selection in stage 1 until a certain level 

of preselection, where response drops at increasing rate. For higher levels of overall selection, more 

preselection can be applied before overall response drops below 95% of the maximum response. 

For example, in Figure 2, when the overall selected fraction is 0.01, response drops below 95% 

when the selected fraction in stage 1 equals 0.05 (1-p1 = 0.95). This means that 95% of the 

candidates does not have to be retained until the second selection step, with only 5% loss in 

response. When the overall selected fraction is 0.20, response drops below 95% when the selected 

fraction in stage 1 equals 0.42 (1-p1 = 0.58, Figure 2). 

The reduction in response depends on the ratio between accuracies of the selection index in 

stage 1 and stage 2. This can be seen by comparing results in Figure 2 with results in Figure 3. The 

ratio of accuracies of the selection index in stage 1 and stage 2 is 0.69 in Figure 2 and 0.22 in Figure 
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3, respectively. In Figure 3, a reduction of 5% of the response for overall selected fractions of 0.01 

and 0.20 is obtained for selected fractions in stage 1 of 0.44 (1-p1=0.56) and 0.78 (1-p1=0.22), 

respectively. The difference between Figures 2 and 3 depends on the ratio of accuracies, and not on 

the absolute level of accuracies (Tallis,1961). 

In Figures 2 and 3, the selected fractions in stage 1 and stage 2 were varied, keeping the overall 

selected fraction constant. In Figure 4, selection in stage 2 is kept at the original level, and the 

number of selection candidates at the beginning of the selection process is varied. This results in 

increased overall selection intensity. When the selected fraction is currently 0.01 (selection in one 

stage), the increase in response is 8.5% when an additional preselection step is introduced with a 

selected fraction of 0.50 (Figure 4). For example, initially, 10 out of 1000 animals are selected in 

one stage. With preselection, 1000 out of 2000 animals are selected in stage 1, and 10 out of 1000 in 

stage 2. The increase in response is 24.1% when preselection with a selected fraction of 0.50 is 

introduced in a scheme with a selected fraction of 0.20 (Figure 4). So, when the selected fraction is 

already small, increase in response is relatively small when a preselection step is introduced. In the 

latter case, the increase in overall selection intensity is relatively higher than in the first case.  
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Figure 4. Response of schemes with different selected fractions in stage 1 (p1), expressed as fraction of 

response in a scheme with all selection in stage 2. Responses are given for 5 different levels of selection in 

stage 2 (p2), for high ratio (0.69) of accuracies of the index in stage 1 and in stage 2. Compared to previous 

schemes, there are more selection candidates at the beginning. Note that the horizontal axis contains values 

for 1-p1, i.e. larger values indicate more selection in stage 1. 
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MAS Breeding Schemes with Varying Preselection in Males 

Figure 5 shows genetic response per generation relative to response in the base scheme, for 

varying levels of preselection in bulls and various sizes of the QTL effect. Information on the QTL 

is available in both males and females, but preselection is only applied in the males. When the QTL 

explains 5% of the genetic variance (MQ05), genetic progress is 4.5% higher, for selected fractions 

equal to selected fractions in the base scheme (p1,m = 0.20). For MQ10, MQ20 and MQ50, genetic 

response per generation is 7.7%, 12.5% and 21.2% higher, respectively (Figure 5).  
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Figure 5. Genetic response per generation relative to response in the base scheme, when information on a 

QTL explaining 5, 10, 20 or 50% of the genetic variance is used. Selection in males in stage 1 is varied from 

0.20 (equal to the base scheme; 1-p1,m = 0.80) down to 0.02. The different generation interval for p1,m = 0.02 

(no progeny testing) has been accounted for. Number of selection candidates and overall selected fraction are 

constant and equal to the base scheme. 

 

As can be seen in Figure 5, increasing the selection intensity in stage 1 while decreasing 

selection intensity in stage 2 leads to decreased genetic progress. However, the decrease is small 

when changing the selected fraction in stage 1 from 0.20 to 0.10, especially for large QTL. Genetic 

progress compared to the base scheme is -3.9%, +0.3%, +6.7% and +19.0%, for MQ05, MQ10, MQ20 

and MQ50, respectively (Table 2, Figure 5), when the selected fraction in stage 1 is 0.10. Generation 

interval in males and females was assumed to be 5 for all values of p1,m, except for p1,m = 0.02, 

where the generation interval was assumed to be 3. Due to the different generation interval when 
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p1,m = 0.02 (all selection in males in stage 1, i.e. no progeny testing of young bulls is needed), these 

results deviate from the curve. Responses for the schemes without progeny testing ranged from –

1.7% for MQ05 to +68.3% for MQ50, relative to the base scheme. 

The patterns of response for MQ50 and MQ05 were comparable to the patterns shown in Figure 2 

and 3, respectively, for an overall selected fraction of 0.02. For the schemes in Figure 2 and Figure 

3, the ratios between accuracies in stage 1 and stage 2 were 0.69 and 0.22, respectively. The ratio 

between accuracies in stage 1 and stage 2 was 0.72 for MQ50 and 0.31 for MQ05 (Table 2). Table 2 

shows genetic progress at two levels of preselection in males (p1,m = 0.20 and p1,m = 0.10). Also, the 

level of preselection resulting in responses equal to response in the base scheme is listed, and the 

contribution of females to genetic progress is shown. 

  

Table 2. Genetic progress in MAS breeding schemes relative to base breeding scheme, for selected fraction 

in bulls in stage 1 (p1,m) of 0.20 and 0.10, selected fraction in stage 1 resulting in equal genetic progress as in 

the base scheme, and contribution of females to genetic progress. 

 
 

MAS-
scheme1

 
 

Ratio of 
accuracies2

Genetic 
progress3, p1,m = 

0.20 
(%) 

Genetic 
progress3, p1,m = 

0.104

(%) 

p1,m with equal 
genetic 

progress as in 
base scheme 

 
Contribution of females 

to genetic progress5

(%) 
MQ00 0.22 0 -9.7 0.20 28.0 
MQ05 0.31 +4.5 -3.9 0.13 28.2 
MQ10 0.37 +7.7 +0.3 0.10 28.5 
MQ20 0.48 +12.5 +6.7 0.06 29.1 
MQ50 0.72 +21.2 +19.0 0.02 31.6 

1MAS-scheme: M refers to marker assisted preselection in males, Qxx indicates percentage of additive genetic 

variance explained by the QTL 
2Ratio of accuracies in stage 1 and stage 2 
3Relative to base breeding scheme 
4This corresponds to a scheme where the number of progeny tested bulls is only 50% of the number of 

progeny tested bulls in the base scheme  
5When selected fraction in stage 1 is equal to stage 1 selected fraction in base scheme; in the base scheme, 

selection is on pedigree info only 

 

For MQ05, genetic response is equal to response in the base scheme, when the selected fraction 

in stage 1 is 0.13 (Table 2). This means that progeny testing 130 bulls in a MAS-scheme with a 

QTL explaining 5% of the genetic variance would yield equal genetic response as a scheme where 

200 bulls are progeny tested and no QTL is used. For MQ10 and MQ20, response is equal to response 
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in the base scheme when selected fractions in stage 1 are approximately 0.10 and 0.06, respectively, 

corresponding to 100 and 60 progeny tested bulls. Genetic response for MQ50 is always higher than 

genetic response in the base scheme. 

In the base scheme, 28.0% of genetic progress is contributed by selection in females. When 

information on a QTL is used, the contribution of selection in females increases slightly. For MQ05, 

MQ10, MQ20 and MQ50, the contribution of selection in females was 28.2%, 28.5%, 29.1% and 31.6% 

respectively, when selected fractions were equal to selected fractions in the base scheme. The 

contribution of QTL information leads to increased accuracy of selection in stage 1 and stage 2. The 

increase in accuracy in stage 1 is equal for males and females, while the increase in accuracy in 

stage 2 is relatively higher for females than for males. This results in a relatively higher contribution 

of females to the genetic progress for schemes with a QTL explaining a higher percentage of the 

additive genetic variance.  

 

MAS Breeding Schemes with Varying Preselection in Females 

Figure 6 shows genetic response relative to the base scheme when preselection in females is 

varied while keeping the selected fraction in stage 1 of males at 0.20. Information on the QTL is 

available in both males and females, but preselection is only applied in the females. This represents 

breeding schemes where preselection leads to less females that need to be performance tested, in 

order to reduce the size of the nucleus and reduce the costs of recording. Curves are relatively flat, 

which indicates that genetic response is only slightly decreasing with increased preselection. The 

ratio between accuracies in stage 1 and stage 2 is relatively high, ranging from 0.50 for alternative 

FQ05 to 0.91 for alternative FQ50. Consequently, a relative flat curve is expected, based on general 

characteristics of multi-stage selection. With a selected fraction in stage 1 of 0.35 instead of 0.70 

(i.e. halving the size of the nucleus), the genetic progress compared to the base scheme is -0.1%, 

+4.2%, +10.3% and +21.0%, for FQ05, FQ10, FQ20 and FQ50, respectively. When the selected fraction 

in stage 1 of males is 0.10 instead of 0.20, curves look similar, but genetic progress is at a lower 

level. When p1,f in females is 0.35, the genetic progress compared to the base scheme is -8.5%, -

3.3%, +4.5% and +18.8%, for FQ05, FQ10, FQ20 and FQ50, respectively. 
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Figure 6. Genetic response per generation relative to response in the base scheme (no QTL), when 

information on a QTL explaining 5, 10, 20 or 50% of the genetic variance is used. Selection in females in 

stage 1 is varied from 0.70 (equal to the base scheme; 1-p1,f = 0.30) down to 0.20. Overall selection and 

selection in males is constant and equal to selection in the base scheme. 

 

Increased Embryo Production 

We have evaluated the consequences of doubling the number of embryos produced by the same 

number of parents, from 4000 to 8000. In these schemes, selection in stage 1 is more intense, with 

p1,m and p1,f equal to 0.10 and 0.35, respectively. Genetic progress is 12.1%, 17.1%, 24.5% and 

37.6% higher than in the base scheme with 4000 embryos, for EQ05, EQ10, EQ20 and EQ50, 

respectively (Table 3). 

Part of the additional genetic progress in these breeding schemes is caused by increased 

production of embryos. Therefore, these schemes were also compared to a base scheme with 

increased embryo production and increased preselection. Doubling the number of embryos 

increased genetic progress by 4.8%. This means, for example, that the increased genetic gain of 

12.1% of EQ05 is caused by 4.8% increase due to doubling the number of embryos and 7.0% due to 

MAS (Table 3). To obtain responses equal to the alternative breeding scheme, the number of 

progeny tested young bulls could be reduced from 200 in the base scheme to 120, 80 or 40 in 

schemes EQ05, EQ10 and EQ20, respectively. 
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Table 3. Genetic progress in MAS breeding schemes relative to base breeding scheme and alternative base 

breeding scheme with increased embryo production, for selected fraction in bulls in stage 1 (p1,m) of 0.10 and 

0.05, selected fraction in stage 1 resulting in equal genetic progress as in the alternative base scheme, and 

contribution of females to genetic progress. 

 
 
 

MAS-
scheme1

 
Genetic 

progress2, 
p1,m = 0.10 

(%) 

 
Genetic 

progress3, 
p1,m = 0.10 

(%) 

 
Genetic 

progress3, p1,m = 
0.054

(%) 

p1,m with equal 
genetic 

progress as in 
alternative base 

scheme 

Contribution of 
females to 

genetic 
progress5

(%) 
EQ00 0 0 -9.7 0.10 29.8 
EQ05 +12.1 +7.0 -1.6 0.06 30.6 
EQ10 +17.1 +11.8 +4.1 0.04 31.1 
EQ20 +24.5 +18.9 +12.6 0.02 32.0 
EQ50 +37.6 +31.3 +28.7 - 34.6 

1MAS-scheme: E refers to marker assisted preselection in embryos, Qxx indicates percentage of additive 

genetic variance explained by the QTL 
2Relative to base breeding scheme 
3Relative to alternative base breeding scheme with increased embryo production 
4This corresponds to a scheme where the number of progeny tested bulls is only 50% of the number of 

progeny tested bulls in the base scheme  
5When selected fraction in stage 1 is equal to stage 1 selected fraction in base scheme; in the base scheme, 

selection is on pedigree info only 

 

DISCUSSION 
 

Simulation Model 

In this study, breeding schemes for dairy cattle were compared by deterministic simulation of 

multi-stage selection schemes, using the program SelAction (Rutten et al., 2002). Information 

sources for the index in phase 1 are included in the index for phase 2 as well, resulting in a 

correlation between index 1 and 2. This correlation is equal to the ratio of the accuracies of index 1 

and index 2 (Saxton, 1983). Xie and Xu (1998) compared the efficiency of multistage MAS to 

efficiency of conventional phenotypic selection. They applied a similar procedure, but to avoid 

numerical multiple integration, they imposed a constraint on the solutions for multistage MAS by 

forcing the covariance between the index in phase 1 and phase 2 to be 0. This has an effect similar 

to that of a restricted index, resulting in less than optimal gain. They did not account for the effect 

of finite population size on selection intensities and for reduction in variance due to selection. The 
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program SelAction used in the current study accounts for these effects, and constructs an optimum 

index using full pedigree info with an animal model (Villanueva et al., 1993).  

MAS-schemes tend to have high responses initially, due to strong emphasis on marked genetic 

variance (e.g., Spelman and Garrick, 1997). The variation due to the QTL decreases in the first 

generations of MAS but reaches a constant value after a few generations. This reduction in variance 

leads to a reduction of the response. In our study we calculated equilibrium rates of response. The 

response shortly after the implementation of MAS is not predicted, but this response will be higher 

than the equilibrium response.  

In this study, the QTL is modeled as a trait correlated to the breeding goal trait. We have 

assumed that the QTL behaves as a polygenic trait which remains normally distributed over time. 

For the QTL, this will probably only be valid if the QTL is in fact not one QTL, but several 

unlinked QTL, where each QTL has multiple alleles. The detection of new QTL over time will 

make the assumption more realistic.  

The simulation model ignores inbreeding (Rutten et al., 2002). Ideally, schemes with equal 

rates of inbreeding should be compared. The rate of inbreeding is proportional to the square of the 

long-term genetic contributions of selected animals. This is likely to differ between the schemes 

evaluated in this study, resulting in different rates of inbreeding. It is a considerable challenge, 

however, to determine the expected rate of inbreeding for multi-stage selection schemes that are 

simulated deterministically.  

 

Genetic Response in MAS-schemes 

Several authors have studied MAS-schemes for dairy cattle. Responses from MAS obtained in 

these studies varied largely, depending on size of the QTL, type of breeding scheme, and the way of 

calculating response, e.g. equilibrium rates of response or response from one round of selection, 

response in young bulls or response in population females. In the following section, results from a 

number of MAS-studies that looked at preselection will be discussed. 

The use of markers to select young bulls has first been suggested by Soller and Beckman 

(1982). Extra gain in their scheme was estimated (by Smith and Simpson, 1986) at 46% for direct 

selection on 20 QTL explaining 50% of the genetic variance. Kashi et al. (1990) found up to 26% 

increase in genetic merit of bulls entering the progeny test, resulting from one round of marker 

assisted selection of candidate bulls before entering the progeny test. In this case, selection was 

based on haplotypes of polyallelic markers associated with 20 segregating QTL explaining all the 

genetic variance. They did not account for the loss in genetic variation as a result of MAS. 
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Mackinnon and Georges (1998) re-evaluated the approach by Kashi et al. (1990). They found 8% 

increase in response in young bulls from one round of selection in a bottom up scheme, when the 

QTL explained 10% of the genetic variance. For a QTL explaining 50% of the genetic variance, 

increase in response was 23%. In the current study, equilibrium response was increased with 7.7% 

and 21.2% for QTL explaining 10% and 50% of the genetic variance, respectively, which is in the 

same range as response obtained by MacKinnon and Georges (1998). Spelman and Garrick (1998) 

found 9% increase in rate of gain from one round of MAS-selection in a combination of a top down 

and a bottom up scheme (MacKinnon and Georges, 1998). The QTL explained 16.7% of the genetic 

variance, and bull dams produced 40 progeny. Only one bull per full sib group was selected. QTL 

information was used on both the dam and the sire selection paths, in a population that had been 

selected for 1 to 2 generations. In the current study, 5 male progeny were produced per bull dam 

and selection was across families, not distinguishing between full sibs and unrelated animals. When 

the QTL explained 10% or 20% of the genetic variance, equilibrium response was increased with 

7.7% and 12.5%, respectively, which is comparable to response obtained by Spelman and Garrick 

(1998).  

 

Implications for the Breeding Program 

Results in Figure 5 and Figure 6 indicate, that increased accuracy of selection in stage 1 

facilitates a reduction of the number of animals entering into progeny testing or performance 

testing. For example, a QTL explaining 5% of the genetic variance would allow a reduction from 

200 to 130 progeny tested young bulls without affecting the genetic response. Doubling the number 

of embryos produced in combination with preselection for a QTL explaining 5% of the genetic 

variance would require the progeny testing of only 80 young bulls to obtain the genetic response of 

the base breeding scheme. This demonstrates that QTL information can be used in various ways, 

but the cost structures differ. 

QTL information can be measured accurately, on newborn animals or even on embryos 

(Bredbacka, 2001), which offers good opportunities for preselection and reduction of the number of 

progeny tested or performance tested animals by MAS. Schemes with increased selection intensity 

for males in stage 1 seem most promising, because reducing the number of progeny tested young 

bulls can reduce the cost of the breeding program considerably. Comparing Figure 6 with Figure 5, 

a relatively higher reduction in the number of performance tested females would be possible, but 

this is likely to have less impact on cost reduction. Whether implementation of MAS in a breeding 

scheme is economically beneficial, depends on the additional cost of the breeding program and the 
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benefits from increased genetic progress. Monetary cost and benefits from changes to the breeding 

program need to be tailored towards the particular breeding program. Economic evaluation of the 

MAS-schemes has therefore not been carried out in the current study. 

Breeding goals in dairy cattle consist of a variety of traits. Although QTL have been mapped 

for quite a few of these traits, in some cases explaining approximately 50% of the genetic variation 

of a particular trait (e.g. Grisart et al., 2002), the fraction of the variation of the overall breeding 

goal explained by QTL is likely to be moderate. For breeding schemes in the current study, the 

fraction of the genetic variance explained by the QTL has been assumed to be 5% or higher. Even 

for the QTL explaining 5% of the genetic variance, there is a considerable impact on the genetic 

response.  
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General discussion 

Already in the sixties, it was shown that breeding programs could benefit from knowledge on 

genetic factors associated with economically important traits (Neimann-Sorenson and Robertson, 

1961; Smith, 1967). Renewed interest in knowledge on genetic factors was generated by the 

discovery of restriction fragment length polymorphisms (RFLPs, Soller and Beckman, 1982), 

followed by minisatellites and microsatellites. This has triggered numerous studies to detect loci 

underlying quantitative traits (quantitative trait loci, QTL), in dairy cattle as well as in other 

domesticated animals. Because these studies were successful for production traits as well as non-

production traits, breeding organisations have started to implement marker-assisted selection 

(MAS) into their breeding program. In the first part of this chapter, these applications of MAS will 

be discussed. 

Although substantial benefits can be realised with MAS, it has not been implemented on a large 

scale yet, and implementation is not a straightforward process. Issues related to implementation are 

discussed in this chapter.  

The fraction of the variance in the breeding goal explained by markers plays an important role 

in the anticipated benefits of MAS. Part 2 of this chapter will deal with the variance that needs to be 

explained by markers to start MAS, the variance that is explained to date and the possibilities of 

current designs and methods to detect additional QTL variance. 

Most QTL have been detected by linkage analyses, resulting in relatively unprecise location 

estimates of the QTL. Part 3 of this chapter will deal with the required accuracy of the location of 

the QTL, the need for fine-mapping and/or gene-detection, and the strategy to follow, once 

potentially interesting QTL have been detected. 

New developments like sequencing the bovine genome might change the way of QTL and gene 

detection. Part 4 of this chapter will discuss this development and the opportunities this will 

generate. 

  

MAS – current status of implementation 

MAS-applications. Most benefit can be expected from MAS on traits with low to moderate 

heritability (e.g. fertility), traits that are difficult or costly to measure (e.g. disease traits), traits that 

are not available on all selection candidates before selection (e.g. carcass traits), or traits that can 

only be recorded in one sex (e.g. milk production, mastitis) (Soller, 1994; Meuwissen and Goddard, 

1996). Initial genome scans in dairy cattle to map QTL (e.g. Georges et al., 1995) primarily dealt 

with milk production traits, and consequently most commercial applications of MAS up until now 

are for these traits. Because of the increased importance of non-production traits for the breeding 
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goal, these traits have also been investigated in QTL detection studies, and results for these traits 

can be implemented in breeding programs. 

Production traits still constitute a large part of the breeding goal, but the importance of 

production traits in the breeding goal has decreased over the past decade. In the Netherlands, for 

example, the fraction of the variance in the breeding goal that is explained by production traits has 

decreased from 0.66 to 0.58 (H. Geertsema, 2003, personal communication; A. Harbers, 2003, 

personal communication). Nevertheless, MAS for milk production traits can be beneficial, because 

milk production can only be recorded in one sex. Pre-selection of bulls before progeny testing can 

be augmented by information on markers. 

MAS can be applied in different ways. In the top down approach (Kashi et al., 1990), sires 

segregating for a QTL are identified based on genotypes and phenotypes of their sons. 

Subsequently, grandsons receiving the favourable QTL variants or not receiving the unfavourable 

QTL variants from their grandsire, can be selected. In the bottom up approach (MacKinnon and 

Georges, 1998), daughters of progeny tested sires are genotyped for a limited number of regions, 

based on previous findings. This information is used to identify segregating sires. Sons that 

received favourable QTL alleles from their sire can be selected. A third approach is to integrate all 

available information (pedigree, phenotypes, and genotypes) into one procedure to estimate 

breeding values (whole pedigree approach). This has first been proposed by Fernando and 

Grossman (1989). Modifications to this method have been proposed (e.g., Goddard, 1992; Bink, 

1998), for example to account for multiple markers and missing genotypes. 

At present, the following information is available on the practical implementation of MAS in 

dairy cattle breeding programs. 

New Zealand. Spelman (2002) reported on MAS in the breeding program operated by 

Livestock Improvement Corporation in New Zealand, in 1998 and 1999. A bottom up approach 

(MacKinnon and Georges, 1998) was applied. Young bulls were selected before progeny testing, 

based on 25 markers linked to six QTL affecting milk production traits. Spelman (2002) indicated 

that implementation has been less successful than expected due to problems associated with the 

introduction of new reproductive techniques like multiple ovulation and embryo transfer (MOET). 

These techniques were needed because selection was practised within families, which makes large 

full sib ships necessary. By now, for two of the utilised QTL the mutation has been identified, and 

information on a single SNP test can be used in evaluating the selection candidates, instead of 

having to rely on information on linked markers. Efforts are undertaken to identify the 

polymorphisms underlying other important QTL, thus facilitating MAS across families. 
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France. In France, the MAS-program is carried out by a combination of eight AI-companies 

and 3 research organisations. The goal is to apply MAS to all breeding goal traits (Boichard et al., 

2002). MAS in France consists of genotyping selection candidates and their relatives for at least 33 

markers associated with 12 different QTL. Selection candidates are males and females between 1 to 

12 months of age. The number of markers was a compromise between efficiency of MAS and 

genotyping cost. The accuracy of the location estimate does not allow the use of population-wide 

linkage disequilibrium. The MAS-strategy applied in France can be regarded as a mixture of a top-

down and a bottom-up approach (Boichard et al., 2002). The utilised QTL had an effect on one or 

more of the following traits: milk, fat and protein yield, fat and protein content, somatic cell score, 

and female fertility. Each QTL explained 8-20% of the genetic variance of a particular trait, with 

the exception of a QTL on chromosome 14 affecting fat %, that explained approximately 50% of 

the genetic variance. Female and male selection candidates as well as historical animals (i.e., 

ancestors of selection candidates) are genotyped, with approximately 10,000 animals genotyped 

each year, consisting of approximately 5,000 candidates and 5,000 historical animals (Boichard et 

al., 2002). 

Germany. In Germany, a top-down MAS-scheme is expected to start in 2003. It will be carried 

out as a joint effort by most of the 10 different breeding organisations for dairy cattle (Bennewitz et 

al., 2003b). MAS is applied on candidate bulls for progeny testing and on candidate bull dams. 

Three QTL-regions with 13 markers in total are involved, affecting milk production traits and 

somatic cell score. In addition, selection is for the DGAT1 gene, which also has an effect on milk 

production traits (Grisart et al., 2002; Winter et al., 2002). Approximately 5,000 animals have been 

genotyped so far. A model is under construction for evaluation of animals (genotyped animals as 

well as animals that are related to genotyped animals), following a marker-assisted best linear 

unbiased prediction (MA-BLUP) procedure (Fernando and Grossman, 1989). 

The Netherlands. The MAS-program in the Netherlands started in 1999. The program is based 

on a whole pedigree approach. New-born calves born in the nucleus breeding program of Holland 

Genetics, are genotyped for 12 microsatellite markers associated with 2 QTL, and for 2 identified 

functional mutations (single nucleotide polymorphisms, SNP’s). This information is used for 

preselection of candidate bulls for progeny testing. Dams and sires of selection candidates are also 

genotyped. The number of animals with genotypes ranges from 2,600 (SNP’s) to 5,000 

(microsatellites). The QTL and genes involved have an effect on production traits. Genetic 

evaluation is carried out by using a modification of the MA-BLUP procedure described by Bink and 
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van Arendonk (1999), which uses an MCMC-algorithm. This procedure samples missing genotypes 

and utilises all relationships in the pedigree. 

USA. Several dairy cattle breeding organisations in the USA (ABS, Accelerated Genetics) also 

apply MAS for preselection of young bulls before progeny testing, for genes known to have an 

effect on production traits. These include the prolactin gene (Cowan et al., 1990), and beta-

lactoglobulin and kappa-casein (Bovenhuis et al., 1992). 

 

Implementation issues 

Calculations on the potential benefits from MAS (e.g. Soller and Beckman, 1982) showed that 

additional genetic progress in MAS breeding schemes can be substantial. These calculations were 

based on optimal situations, with all animals having known genotypes, high marker density, or high 

proportion of variance explained by the QTL. However, organisations that have implemented MAS, 

have experienced a number of problems during implementation, resulting in benefits that are lower 

than expected. The problems are related to the following factors: 

1. the available QTL do not explain enough genetic variation. Additional genetic progress in the 

breeding goal that can be obtained by MAS is not large enough to offset the additional costs. 

2. a number of QTL are available that affect individual traits included in the breeding goal, but the 

number of QTL with a significant effect on the total breeding goal is smaller. For example, the 

effect of the DGAT1 polymorphism on BTA 14 is largest for fat percentage, explaining almost 

50% of the genetic variance. Other milk production traits are influenced by this gene as well 

(Grisart et al., 2002). In the Netherlands, however, the effect of DGAT1 on the overall index for 

milk production traits (INET, including milk yield, fat yield and protein yield) is negligible. 

This makes utilisation of this polymorphism less attractive for selection in the Netherlands. 

3. costs of genotyping have remained relatively high. As a consequence, the number of genotyped 

markers is less than in the ideal situation, resulting in sub-optimal benefits from MAS. 

4. difficulties in infrastructure. For example, different protocols are used by research labs and 

routine labs. This complicates transfer of protocols from research to every-day routine, and 

complicates the analysis of markers determined in different laboratories. A sophisticated 

database is needed for processing, checking, and storing genotypes, and to handle genotypes 

from different origin.  

5. introduction of associated techniques. Implementation in New Zealand, for example, has been 

faced by problems related to the introduction of ovum pick up and in vitro fertilisation 
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(Spelman, 2002). This technique was needed to increase full sib family size for MAS within-

family. 

6. implementation of information on linked markers in genetic evaluation is difficult on a large 

scale. Software is not available that can be applied to optimally handle this situation and to deal 

with missing marker information.  

7. reluctance to accept new technologies. 

 

Item 1 and 2 deal with the variance explained by currently detected or detectable QTL. Item 6 

deals with how MAS is used. These topics will be discussed further on in this chapter. 

 

QTL-DETECTION 
Based on the topics identified in the previous section, the following questions arise that are 

related to the variance explained by QTL: 

1. which fraction of the genetic variation can be explained by current strategies or designs? 

2. which fraction of the genetic variation explained by QTL should we aim for, to make MAS 

worthwhile? 

 

Strategies 

Currently, there are two main strategies for QTL-detection: genome scans and the candidate 

gene approach (Andersson, 2001). Genome scans will identify QTL with a major effect, but are less 

likely to detect QTL with a small effect (Andersson, 2001). In dairy cattle, this approach is 

attractive, because pedigree structures that facilitate this approach are already available, like the 

daughter and granddaughter designs (Weller et al., 1990). However, genome scans are also applied 

in designs specifically set up for QTL detection. For example, crossbred designs common to pig and 

poultry breeding (Andersson et al., 1994) have been applied to dairy cattle as well (Larroque et al., 

2002; Spelman, 2002). 

Utilisation of the granddaughter design for genome scans has resulted in a large number of 

QTL, initially only for production traits (e.g. Georges et al., 1995), followed by QTL for other traits 

(e.g. Ashwell et al., 1996; Schrooten et al., 2000). To reduce the cost for genotyping, selective 

genotyping (Lander and Botstein, 1989) and selective DNA-pooling (Lipkin et al., 1998) have been 

applied. Animals with extreme values for the phenotype (e.g. top and bottom 10%) are genotyped 

individually (selective genotyping) or DNA-pools are made and genotyped (pooling). A strong 
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reduction in the number of genotypes leads to a relatively small reduction in power, compared to a 

situation where all individuals are typed (Lander and Botstein, 1989). 

Selective DNA-pooling has successfully been applied in analyzing milk protein % in Israeli 

Holsteins (Mosig et al., 2001), resulting in numerous QTL. Mosig et al. (2001) claim that these 

QTL together explain 100% of the genetic variance for this trait. This is unexpectedly high, which 

might be due to overestimation of allelic effects, or due to assigning average heterozygosity to 

every QTL when calculating the explained genetic variance. In selective genotyping, different sets 

of animals have to be selected and analysed for different traits. However, strategies have been 

developed to analyse correlated traits in a set of animals with extreme values for one of the traits 

(Bovenhuis and Spelman, 2000). The application of selective genotyping or selective DNA-pooling 

to the tails of the distribution for the total breeding goal could be considered as an alternative. 

However, the effect of individual QTL on the total breeding goal may be small, resulting in low 

power to detect these QTL, unless these QTL have favourable pleiotropic effects on traits in the 

breeding goal. 

In the candidate gene approach, associations between known genes and relevant traits are 

explored. Candidate genes are selected based on the function of these genes. This is a powerful 

approach, which can even detect genes with small effects. However, due to linkage disequilibrium 

with the causative gene, the candidate gene may erroneously be considered the causative gene. If 

the candidate gene is not the causative gene, efficiency of MAS will reduce over generations. This 

is, however, conditional on the amount of linkage disequilibrium between the causative gene and 

the candidate gene. The presence of the effect in the population undergoing MAS should be tested 

before MAS is applied, and verified in subsequent generations. 

There are, however, many candidate genes, and it is time-consuming and costly to test all of 

these genes for associations with relevant traits. It would result in a genome scan with candidate 

genes. Appropriate correction for multiple testing is necessary, to restrict the number of false 

positive results (Andersson, 2001). As time proceeds, prior knowledge about functions of genes 

increases, and candidate genes can be chosen more accurately. However, there is still a chance to 

overlook some of the interesting genes, due to lack of knowledge about the function of these genes. 

This may especially be the case for, e.g., regulatory regions like promotors and enhancers, that also 

are involved in the expression of traits. Knowledge about regulatory regions is limited (Stein, 

2001). 

It is hard to predict which genes have the largest influence on a particular trait. Due to limited 

financial resources, or due to lack of available tests, only a fraction of all candidate genes can be 
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tested, and we may not be testing the candidate genes that explain the highest fraction of the 

additive genetic variance in the breeding goal. 

Studies on the associations between milk protein polymorphisms and milk production traits 

(e.g. Bovenhuis et al., 1992) are examples of applying the candidate gene approach to dairy cattle. 

More recently, Liefers et al. (2002) studied associations between the leptin gene and dairy cattle 

traits, and found an effect of RFLP-polymorphisms, located at the leptin gene locus, on milk yield. 

In a genome scan based on a daughter or granddaughter design, QTL cannot be mapped very 

precisely, with confidence intervals for the QTL in typical designs as large as 30 cM or more 

(Darvasi and Soller, 1997). There may be a need to identify the location of the QTL with higher 

precision, before results can be applied in marker-assisted selection. In that case, further efforts are 

necessary, for example identity-by-descent mapping (Riquet et al., 1999) and combined linkage and 

linkage disequilibrium mapping (Farnir et al., 2002; Meuwissen et al., 2002), which has been 

applied to a QTL affecting milk production traits on chromosome 14. This reduced the confidence 

interval for the QTL considerably, to approximately 3 cM. The positional candidate gene approach 

was applied to this region, eventually resulting in detection of functional mutations (Grisart et al., 

2002; Blott et al., 2003). This is an example of combining the genome scan and the candidate gene 

approach, with candidate genes restricted to a relatively small region of the genome. 

Large fractions of the genetic variance for particular traits have been attributed to one gene 

(e.g. Grisart et al., 2002; fat percentage, 64 percent of genetic variance explained), or multiple QTL 

(Mosig et al., 2001; protein %, all genetic variance explained). However, this may not be the case in 

all populations or for all individual traits, or for the total breeding goal. This indicates that it might 

be necessary to increase the fraction of the genetic variance that can be explained by QTL. 

 

Power 

The granddaughter design is only one of the possible designs in one of the possible strategies, 

but probably it will continue to serve as a starting strategy to detect QTL in dairy cattle. Power of 

only this design will therefore be evaluated in this section. Granddaughter designs have been 

applied to dairy cattle data, with medium sized granddaughter designs consisting of about 15 

grandsires with 70 sons each, and large granddaughter designs consisting of about 20 grandsires and 

75 sons per grandsire (Bovenhuis and Schrooten, 2002). These designs cover designs as analyzed, 

e.g., in France, Germany, and the Netherlands / New Zealand, and will be referred to as M_15_70 

and L_20_75, respectively. Because of the potential increase in power, it is attractive to combine 

granddaughter designs in different countries, but this may be realised only for a very limited 
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number of designs, due to competition between countries and organisations running these designs. 

Nevertheless, the French and German granddaughter designs (Boichard et al., 2002; Thomsen et al., 

2000) have been combined, although only data of five grandsire families present in both designs 

were analysed jointly, for markers on nine chromosomes (Bennewitz et al., 2003a). In the combined 

data set, 13 QTL identified in one or both of the separate designs were confirmed in the combined 

design, with higher significance at genomewise thresholds. Four new QTL were identified and four 

QTL identified in the German design could not be confirmed in the joint design (Bennewitz et al., 

2003a). 

In each dairy cattle breeding program, information for a granddaughter design is continuously 

building up, with new grandsire families with progeny tested sons coming available all the time. 

These are, however, not continuously exploited to detect new QTL, but could offer possibilities to 

increase power substantially (van der Beek, 2003, personal communication), especially when all 

existing relationships in the design are utilised. To show what size of design and what power would 

be feasible in the Netherlands, family sizes of Black and White Holstein-Friesian young bulls tested 

in the Netherlands over the past 10 years were analysed. When families of 30 sons or more were 

selected, a design of 38 grandsire families could be set up. Family size ranged from 30 to 154, with 

average family size of 60. This design will be referred to as NL_38_60. Calculations of power were 

based on Weller et al. (1990), and assuming allele frequencies of 0.5, equal family sizes, type I error 

of 0.05, and markers every 15 cM. When requiring a power of at least 0.80, QTL explaining 6% or 

more of the genetic variance could be detected, for a trait with heritability 0.35 (Table 1). In that 

case, effect size is about 0.2 σp. For traits with heritability 0.05 and 0.10, QTL explaining 10% and 

8% of the genetic variance can be detected with power ranging from 0.65 to 0.80. Power to detect 

QTL increased dramatically when utilising design NL_38_60, especially when compared to design 

M_15_70. Design NL_38_60 would require generating approximately 531,000 genotypes. The cost 

for this are estimated to be approximately 1 million Euro.  

It should be noted that the assumptions underlying the power calculations influence the results 

presented in Table 1. For example, the assumption that allele frequencies are 0.5 may not hold for 

part of the QTL, resulting in lower power than presented in Table 1. On the other hand, results in 

Table 1 were obtained by using a chi-square approximation (Weller et al., 1990) and taking only the 

paternal relationships into account. New analysis models have been developed, that result in higher 

power than the “standard” analyses of a granddaughter design by single-trait regression analysis. 

For example, the use of co-factors in regression analysis (de Koning et al., 2001) and including 

information on multiple traits (Knott and Haley, 2000) have been described. Bink and van 
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Arendonk (1999) showed that power could be increased considerably, especially for QTL with 

small effect, when maternal relationships were taken into account as well. Power was increased 

from 0.3 to 0.7 in a granddaughter design of 800 sons, originating from 20 grandsires and 400 

dams, with a QTL explaining 10% of the genetic variance. This could also considerably increase the 

power in design NL_38_60 (Table 1). 

  

Table 1. Power to detect QTL, with variance due to the QTL ( ) expressed as fraction of the genetic 

variance. This fraction is 0.04, 0.06, or 0.10. Results are for three granddaughter designs of different sizes

2
qσ

1, 

for different sizes of heritability (h2). 

   h2=0.05 h2=0.10 h2=0.35 
2
qσ  2

qσ  2
qσ  Design2 GS3

(no.) 

sons 

(no.) 
0.04 0.06 0.10 0.04 0.06 0.10 0.04 0.06 0.10 

M_15_70 15 70 0.22 0.33 0.56 0.30 0.46 0.71 0.40 0.60 0.84 

L_20_75 20 75 0.27 0.42 0.69 0.38 0.58 0.83 0.51 0.73 0.93 

NL_38_60 38 60 0.31 0.49 0.78 0.44 0.67 0.91 0.59 0.82 0.98 
1Each sire had 100 daughters with phenotypic information. A bi-allelic QTL was assumed, with allele 

frequency 0.50. Type I error was assumed to be 0.05 and recombination fraction between marker and QTL 

was 0.075. 
2Names of designs refer to number of grandsires and number of sons in the design. Design M_15_70 and 

L_20_75 refer to medium and large designs as mentioned by Bovenhuis and Schrooten (2002), and cover 

designs as analyzed, e.g., in France, Germany, and the Netherlands / New Zealand. Design NL_38_60 refers 

to a design that could be set up in the Netherlands, utilizing grandsire families with at least 30 sons that were 

progeny tested in the last 10 years. 
3Number of grandsires. 

 

Variance explained by QTL 

Most QTL that have been detected to date, have an effect of 0.5 genetic standard deviation or 

higher. The QTL detected in the French granddaughter design, for example, have an effect of 0.5 to 

1.0 genetic standard deviation (Boichard et al., 2003), and most QTL explains 8-20% of the genetic 

variance for that trait, except the QTL for fat percentage on chromosome 14, which explains up to 

50% (Boichard et al., 2002). Although effects in QTL detection experiments may be overestimated 

(e.g., Georges et al., 1995), these are probably the largest QTL, and the number of QTL with small 

effect is expected to be much larger (Hayes and Goddard, 2001). 
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How much variance explained by QTL do we need? Application of QTL-information in the 

breeding scheme can increase genetic progress, and can also be combined with changes to the 

design of the breeding program. Possible changes are, for example, reduction of the number of 

progeny tested bulls, or replacing the progeny test scheme by a scheme without progeny testing. 

Schrooten et al. (2003b) showed that a QTL or a number of QTL explaining 50% of the genetic 

variance could increase genetic progress in a typical nucleus breeding scheme with 21% when 

applied in the existing breeding structure, or 31% when combined with increased embryo 

production. QTL explaining that much genetic variance offer opportunities to stop progeny testing, 

or to progeny test a limited number of bulls for marketing reasons only. In this case, genetic 

progress per year increases with up to 68% (Schrooten et al., 2003b), partly due to selection at 

younger age, resulting in reduction of the generation interval. 

If the goal is to increase genetic progress by 5-10%, one or a few QTL explaining 5-10% of the 

genetic variance are sufficient. If the goal is to stop progeny testing completely, while maintaining 

accuracies of breeding values at an acceptable level in order to guarantee acceptance by customers, 

the total genetic variance explained by the QTL has to be probably 80%. According to Hayes and 

Goddard (2001), explaining 80% of the genetic variance would mean the detection of QTL with 

size of at least 0.2 σp. For a typical milk production trait with heritability 0.35, this corresponds to 

QTL of size 0.34 σg or larger. Individual QTL explain 6% or more of the genetic variance in this 

case. Power to detect these QTL is approximately 0.82 or higher, in design NL_38_60 (Table 1). 

This indicates that a large fraction of the QTL that are necessary to abandon progeny testing, could 

be detected with this design. 

The breeding goal usually consists of a large number of traits. QTL for part of these traits may 

be hard to detect. Therefore, although QTL may explain large fractions of the genetic variance for 

individual traits, these QTL may explain a smaller fraction of the genetic variance in the breeding 

goal. Besides, individual genes or chromosomal regions harbouring a number of genes can affect 

multiple traits. This has been shown in literature (e.g. Grisart et al., 2002; Schrooten et al., 2003b). 

If we suppose that the QTL affects two traits in the breeding goal, then various situations can be 

distinguished, with regard to nature of the QTL and direction of effects. The QTL or chromosomal 

region can be a pleiotropic QTL, or consist of two linked QTL, with degree of linkage varying from 

close linkage to almost completely unlinked. The QTL may favour both traits, which is very 

advantageous, or the effect on the traits can be opposite. If the effects of the QTL are opposite, and 

for example 10% of the genetic variance in each trait is explained, this QTL will explain a smaller 

fraction of the genetic variance in the breeding goal. It is therefore less likely that a sufficiently 
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large fraction of the variance of the breeding goal has been explained already, to quit progeny 

testing completely.  

 

QTL-detection – concluding remarks 

The currently available pedigrees in dairy cattle offer excellent opportunities to detect QTL, 

also for traits with relatively low heritability, and especially if the available methodologies to 

increase power are utilized. QTL-detection is limited, however, to routinely collected traits, in 

pedigree structures already available. With “new” traits or traits that are not routinely collected (e.g. 

disease traits) becoming more important, additional phenotyping may be required. 

Is there a need for completely new models for QTL detection? The ultimate situation would be 

to have dense marker maps, with markers every cM for example. These markers can be used in a 

candidate marker approach, covering the whole genome. The feasibility of this approach is 

conditional on low cost for genotyping, because approximately 3,000 markers need to be genotyped 

per animal. Another way to utilize dense marker maps is to skip the detection of QTL-effects, and 

to account for every location on the genome in the evaluation procedure. This idea has been put 

forward by Meuwissen et al. (2001) and is referred to as genomic selection. Accuracies of breeding 

values obtained in this way could be as high as 0.85, which is equivalent to the accuracy of breeding 

values of bulls for production traits, based on approximately 27 daughters. 

 

MAS USING POPULATION-WIDE LINKAGE DISEQUILIBRIUM 

The application of MAS may be faced with difficulties to use information on linked markers 

for genetic evaluation, due to, e.g., missing genotypes. This section deals with the use of markers in 

disequilibrium with the functional mutation, that allow direct selection on marker genotypes across 

the population. 

A genome scan, for example through a granddaughter design, will yield QTL with relatively low 

precision of location, i.e. confidence intervals extend over regions of 20-30 cM or more. As 

reported by Darvasi and Soller (1997), 95% confidence intervals for QTL mapped in a 

granddaughter design can be computed as 

295 *N*k
3000CI

α
=     (1) 

where α = allele substitution effect expressed in phenotypic standard deviation units, k = design 

parameter (k = 1 for granddaughter design), and N = number of animals in segregating families. 
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For a large granddaughter design (L_20_75, Table 1), with 50% heterozygote grandsires, the 

confidence interval for a trait with h2 = 0.35 and a QTL explaining 10% of the genetic variance 

would be approximately 57 cM (Equation 1). Increasing the size of the design can reduce the 

confidence interval. However, to obtain a confidence interval of 20 cM, a granddaughter design 

consisting of approximately 4,300 sons would have to be analysed. For traits with heritability 0.05 

or 0.10, confidence intervals for QTL explaining up to 10% of the genetic variance encompass the 

whole chromosome, even in the larger designs explored (Table 1). The initial linkage analysis, with 

low marker density, could be followed by increasing the marker density in selected chromosomal 

areas. The new data should then be analysed by a combined linkage analysis – linkage 

disequilibrium approach, that can substantially reduce the size of the confidence interval 

(Meuwissen et al., 2002). 

Although precision of location for detected QTL in a linkage analysis is limited, these QTL can 

be utilised in selection. Markers are in population-wide linkage equilibrium with the gene affecting 

the trait, and linkage phase needs to be established. This results in sub-optimal selection efficiency. 

Spelman and Bovenhuis (1998) studied MAS-schemes with size of the marker bracket varying from 

2 to 15 cM, using information from markers in a region of 22 to 35 cM, respectively. The QTL 

explained approximately 14.3% of genetic variance (5% of phenotypic variance, and h2 = 0.35). 

Cumulative genetic superiority after 7 generations of selection with a 15 cM marker bracket was 

only 49% of response obtained for a 2 cM marker bracket. Loss in response was lower for larger 

QTL, but for a QTL explaining 10% of the phenotypic variance, response was still approximately 

25% lower for the 15 cM marker bracket, when compared with response to selection in a 2 cM 

marker bracket. 

Uncertainty about the exact location of a QTL can also lead to selection for an incorrectly 

positioned QTL. Spelman and van Arendonk (1997) showed that, for a QTL explaining 10% of the 

phenotypic variance, response after 7 generations of selection was reduced by 19% for a 5 cM 

location error, and by 42 % and 44% for location errors of 10 and 15 cM, respectively. Response 

with MAS for incorrectly positioned QTL (Spelman and van Arendonk, 1997) or with large marker 

brackets surrounding the QTL (Spelman and Bovenhuis, 1998) is higher than in a scheme without 

MAS. However, efficiency of MAS-selection can be increased considerably when the location of 

the QTL is known with higher accuracy. For QTL explaining 4%, 6%, 10% or 20% of the genetic 

variance of a trait with heritability 0.35, the cost associated with obtaining a given confidence 

interval are depicted in Figure 1. A large granddaughter design (L_20_75, Table 1) would allow 

obtaining a confidence interval of around 30 cM for a QTL explaining 20% of the genetic variance. 
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A larger granddaughter design (NL_38_60, Table 1) would be able to reduce the confidence 

interval to 20 cM for this particular QTL. QTL explaining 10% of the genetic variance would be 

mapped to an interval of around 40 cM.  

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

20 30 40 50 60

confidence interval (cM)

co
st

 (#
 a

ni
m

al
s 

ge
no

ty
pe

d)

4%
6%
10%
20%

 
Figure 1. Cost (# animals genotyped) as a function of desired 95% confidence interval for the QTL, for four 

different sizes of the QTL (i.e. 4, 6, 10 or 20% explained genetic variance). 

 

If markers that are in population-wide linkage disequilibrium with the gene can be detected, 

selection for marker genotypes or haplotypes across the population is possible. This requires 

additional efforts to narrow down the QTL-region, e.g. through high-resolution mapping. Even 

more accurate selection is possible when the functional mutation is known, requiring identification 

of positional candidate genes, mutation screening and functional analysis (Andersson, 2001). 

Dekkers (2003) referred to the various categories of markers as LE-markers (LE-MAS, markers in 

population-wide linkage equilibrium with the functional mutation), LD-markers (LD-MAS, markers 

in population-wide linkage disequilibrium with the functional mutation) and the functional mutation 

itself (GAS, gene assisted selection. Dekkers (2003) pointed out that the ease and ability to utilise 

markers in selection is opposite to their ease of detection. LE-markers are easiest to detect, and 

functional mutations are easiest to select for, and potentially give highest response to selection. 

Which type of MAS can or should be used, depends on a number of factors, e.g. type of trait, 

variance explained by linked markers and cost of fine-mapping. 
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Type of trait. With markers in population-wide linkage equilibrium with the functional 

mutation (LE-markers), phenotypes are essential. If traits are not routinely measured, application of 

MAS requires a precision of location that allows for at least LD-MAS and ideally GAS. 

Variance explained by linked markers. To get an idea of the efficiency of LD-MAS relative to 

gene-assisted selection, consider the variance explained by linked markers, as a fraction of the 

variance explained by the gene. Suppose a QTL has alleles Q1 and Q2, and the alleles of a linked 

marker are M1 and M2. Frequencies of haplotypes M1Q1, M2Q2, M1Q2 and M2Q1 are r, u, s and t, 

respectively. The amount of linkage disequilibrium in the population is then defined as: 

D = ru – st    (1) 

and the variance associated with the linked marker is (Bovenhuis and Meuwissen, 1996): 

  
u)+s)(t+(r

aD2  =σ
22

2
Marker ⎥

⎦

⎤
⎢
⎣

⎡
     (2) 

If there is complete linkage disequilibrium, only haplotypes M1Q1 and M2Q2 are present. This 

results in s = t = 0, and D = ru. The variance explained by the marker is equal to 2*r*u*a2, which is 

equal to the variance explained by the QTL.  

The amount of linkage disequilibrium decreases with time and distance between loci. 

Nsengimana (2003) expressed the level of linkage disequilibrium as a function of the distance as 

( )
⎟
⎠
⎞

⎜
⎝
⎛ −

−+= R
x3

eS1S'D       (3) 

with 

D’ = linkage disequilibrium as a fraction of complete linkage disequilibrium 

S = residual D’ (for unlinked loci). 

R = distance at which D’ reaches value of S. 

x = genetic distance 

  

This equation describes an equilibrium situation, resulting from various LD-influencing factors 

like mutation, recombination, drift, selection and admixture (Ardlie et al., 2002). Farnir et al. (2000) 

gave values for the Dutch dairy cattle population of 0.16 for S and 50 cM for R. These values can 

be substituted in Equation (3). 

Linkage disequilibrium depends on frequencies of alleles. It can be expressed as a fraction of 

the maximum linkage disequilibrium for a given set of allelic frequencies: 
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max

ij'
ij D

D
D =        (4) 

where Dmax is the maximum linkage disequilibrium, and Dij the linkage disequilibrium for alleles i 

and j at different loci. These formula make it possible to relate the variance explained by a genetic 

marker (due to a linked QTL) to the distance between the marker and the QTL. Combining 

equations (1) to (4), the variance explained by the linked marker as a fraction of the variance 

explained by the QTL is equal to (D’)2. The QTL variance explained by a genetic marker can be 

related to genetic progress. It should be noted, however, that this equation is only valid when allele 

frequencies for M1 and Q1 (or Q2) are equal. For example, when the frequency of M1 is ¾ and the 

frequency of Q1 is ½, the equation is 1/3 (D’)2.  

Table 2 gives the variance explained by a linked marker as a function of the distance in Morgan 

for a bi-allelic QTL linked to a bi-allelic marker, with similar allele frequencies for the QTL and the 

marker. The variance explained by the linked marker is expressed as the fraction of the variance 

explained by the QTL. When the distance between the marker and the QTL is approximately 7 cM, 

the marker explains 50% of the QTL variance. When taking the recently identified DGAT1 gene as 

an example, initial fine-mapping efforts localised the QTL in a region of 4 cM (Riquet et al., 1999). 

This means that a marker in that region explains at least 67% of the QTL variance. 

 

Table 2. Variance explained by linked markers relative to variance explained by the gene, as a function of 

the distance between linked marker and the gene 

Distance D’ % QTL Var. 
explained 

0.00 1.00 100 
0.01 0.95 90 
0.02 0.91 82 
0.03 0.86 74 
0.04 0.82 67 
0.05 0.78 61 
0.06 0.75 56 
0.07 0.71 51 
0.08 0.68 46 
0.09 0.65 42 
0.10 0.62 39 

 

To illustrate the variance explained by linked markers, a data set of 1,500 sires with breeding 
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values for milk fat% and genotypes for the DGAT1 gene (Grisart et al., 2002) and for linked 

markers was analysed. The fixed effect in the statistical model was either DGAT1 genotype, or 

genotype of the linked marker. Sums of squares explained by the different models were compared. 

Figure 2 shows the variance explained by the linked marker as a fraction of the variance explained 

by the DGAT1 genotype. 
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Figure 2. Variance explained by linked marker genotype as a fraction of the variance explained by the 

DGAT1 genotype. The line indicates the expectation. 

 

The variance explained by linked markers is approximately equal to the explained variance that 

is theoretically expected. For markers within 3 cM of the DGAT1 gene, however, observed values 

are slightly lower than the expectation. This could be caused by higher recombination rates in the 

current data set, compared to the data set used for map construction, or by differences between 

frequencies of the DGAT1 alleles and frequencies of the alleles at the marker, resulting in less 

variance explained by the marker. 

 

MAS using population-wide LD – concluding remarks 

There are a number of reasons that stimulate the detection of markers in population-wide 

linkage disequilibrium with the functional mutations, e.g., difficulties to set up an evaluation system 

with linked markers, or restricted availability of phenotypes for continuous evaluation. However, 
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LD-markers should be in a region that is restricted to approximately 2 cM, because the variance that 

is explained by LD-markers quickly decreases with increasing distance between the marker and the 

functional mutation. Cost to identify the functional mutation may not offset the additional benefits 

compared to using LD-markers. The availability of many markers in identified candidate regions 

will facilitate the detection of markers in linkage disequilibrium with the functional mutation. These 

may become available from the bovine genome sequencing project, which will be discussed in the 

next section. 

 

BOVINE GENOME SEQUENCING 
A project to sequence the bovine genome is about to start 

(http://hgsc.bcm.tmc.edu/projects/bovine, last accessed 18-11-03). After human, mouse and rat, 

bovine will be the fourth mammal with the genomic sequence available, and, after chicken, the 

second domestic animal. It is expected that a working draft sequence of the bovine genome will be 

available in two years, which is relatively fast. The availability of BAC (bacterial artificial 

chromosome) fingerprints and BAC end sequences before the start of the project speeds up the 

sequencing process 

(http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/BovineSEQ.pdf, last accessed 

18-11-03). A working draft sequence means a sequence that is not yet complete, because of gaps 

and regions with inaccurate sequence. However, the incomplete sequence is already extremely 

valuable for preliminary analyses (Green, 2001). 

The bovine genome sequence is of interest for animal genetics as well as for human genetics. 

Knowledge about the bovine genome sequence will assist in comparative mapping and can help in 

determining the function of human genes. This is especially helpful, because there is better 

conservation between the human genome and the bovine genome, than between the human genome 

and the mouse genome. Bovine genetics can benefit from additional markers and positional 

candidate genes through comparative mapping, linking the bovine genome to other genomes, like 

the human and mouse genomes. 

Once the genome has been sequenced, the location of genes will be determined, either by gene 

prediction techniques (i.e. sequences known to be elements of genes will be located), or by 

comparing the sequence with the sequence of known genes, partly of other species (Stein, 2001). 

Also, known elements like genetic markers will be located. This will result in a large number of 

genes, without exactly knowing the function of these genes. A next step will be to identify the 
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proteins these genes are coding for, and the processes in which these genes are involved (Stein, 

2001).  

The QTL and gene detection process will benefit from the results of the bovine sequencing 

project. Microarrays with tens of thousands expressed DNA-sequences can be prepared (Schena et 

al., 1995).  Labelled DNA from specific tissues (e.g. udder gland of a cow with high protein yield 

and of a cow with low protein yield) is hybridised to the array. In this way, genes that are 

differentially expressed in for example cows with high and low protein yield, can be detected. 

Another benefit will be that abundant polymorphisms will become available, facilitating the fine-

mapping of QTL. Once a QTL has been identified in a region of approximately 5 cM, it will be very 

easy to increase marker density in that area and apply fine-mapping techniques exploiting linkage 

disequilibrium to further narrow down the region. In the next step, increased knowledge about 

candidate genes in this small region will facilitate positional candidate cloning, to identify the 

functional mutation. 

In human genetics, new techniques for high-throughput genotyping have been developed and 

applied (e.g. Oliphant et al., 2002). These techniques can reduce genotyping cost, down to 

approximately 10 cents per SNP-genotype, provided that at least 1000 SNP genotypes on hundreds 

of individuals are determined. 

The availability of numerous genes, and of numerous SNP’s in combination with new 

developments that allow cheap SNP genotyping, will lead towards new types of genome scans. 

Besides, it paves the way towards implementation of methodology for genetic evaluation using 

genomic information without actually identifying QTL or genes (Meuwissen et al., 2001). Provided 

large-scale genotyping can be conducted at similar, low cost as in the human field, this will change 

evaluation of animals completely. Assuming a dense marker map with 1 cM marker spacing, 

genotyping cost per animal would be approximately $ 300, to obtain breeding values with accuracy 

0.85. This is considerably lower than the cost to obtain accurate breeding values for bulls, which are 

roughly estimated to be US$ 30,000 per bull (Spelman, 2002). Emphasis in evaluation will then 

change (again) to collection of phenotypic data, especially for “new” traits, i.e. traits that are not yet 

routinely collected. 

 

Bovine genome sequencing – concluding remarks 

Information generated by the bovine genome project will facilitate the identification of markers 

in linkage disequilibrium with functional mutations, or the functional mutations themselves. In 

conjunction with cost-effective genotyping, this will facilitate large-scale implementation of MAS. 
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As a result, breeding programs will undergo tremendous changes in the next 5 to 10 years and will 

rely heavily on genomic information. 
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The availability of molecular techniques and their potential benefit for genetic progress have 

led to numerous experiments to detect QTL. In dairy cattle, these studies have mainly focused on 

milk production traits. Chapter 2 discusses the design of experiments to detect QTL for milk 

production traits, and the power of these designs. Most of the QTL mapping studies that are 

presently being carried out use the granddaughter design. Even the largest designs that are being 

carried out at this moment are expected to detect a limited fraction of the QTL underlying milk 

production traits. Therefore, power needs to be increased, either by increasing the size of designs, or 

by using sophisticated methods, e.g., using all relationships in the pedigree. A survey of the results 

from QTL mapping studies aiming at milk production traits reveals that especially for protein 

content significant QTL have been reported. Linkage has been confirmed for QTL located on 

chromosomes 3, 6, 14 and 20. The gene located on chromosome 14 has a major effect on fat content 

and has been cloned. Chromosomes 3, 6 and 20 have effects on protein content where chromosome 

6 is likely to contain more than one QTL. Chromosomal regions showing effects on milk 

production traits also seem to have effects on other traits. Multiple trait analyses should be used to 

determine whether pleiotropic gene effects play a role. 

Although milk production traits constitute a substantial part of the breeding goal, traits like 

fertility and health have become increasingly important. Compared to QTL for production traits, 

QTL for fertility and health may be relatively more important, for example due to low heritability of 

these traits, resulting in low accuracy of the current selection criterion, or due to difficulties to 

obtain phenotypes. Therefore, information on QTL for these traits is essential for efficient selection. 

Chapter 3 describes results from a granddaughter design that was used to locate quantitative trait 

loci determining conformation and functional traits. In this granddaughter design, consisting of 20 

Holstein Friesian grandsires and 833 sons, genotypes for 277 microsatellite markers covering the 

whole genome were determined. Breeding values for 27 traits regarding conformation (18), fertility 

(2), birth (4), workability (2) and udder health (1), were evaluated in an across-family analysis using 

multimarker regression. Significance thresholds were determined using a permutation test. 

The across-family analysis suggested the presence of 61 quantitative trait loci, where 27 (i.e. 

one for each trait) were expected by chance. The test statistic exceeded the genomewise 

significance threshold for the following traits and chromosomes: chest width on chromosome 2, 

gestation length on chromosome 4, stature, body capacity and size on chromosome 5, dairy 

character on chromosome 6, angularity on chromosome 12, fore udder attachment on chromosome 

13, and fore udder attachment and front teat placement on chromosome 19. The quantitative trait 

loci for size traits on chromosomes 2, 5 and 6 may also have an effect on calving ease. The 
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quantitative trait loci for udder traits on chromosomes 13 and 19 may also affect somatic cell score 

and mastitis resistance.  

The QTL that have been detected for milk production traits, conformation traits, fertility and 

health, can be used in marker assisted selection (MAS). However, selection for a specific QTL may 

also influence other traits, due to pleiotropy (i.e. the QTL affects multiple traits), or because the 

QTL is linked to QTL affecting other traits. To avoid negative side effects of selection for certain 

chromosomal regions or to exploit positive effects of MAS on other traits of interest, insight into 

the pleiotropic effects of a QTL, or the effect of a chromosomal region on multiple traits, is needed. 

Chapter 4 describes a method to determine pleiotropic QTL or closely linked QTL in an outbred 

population. The method is based on results from single trait analyses for different traits and is 

derived for a granddaughter design. The covariance between estimated contrasts of grandsires 

obtained in single trait regression analysis is computed. When there is no pleiotropic QTL, the 

covariance between contrasts depends on the heritabilities of the traits involved, the polygenic and 

environmental correlation between the traits, the phenotypic standard deviations, the number of 

sires per grandsire and the number of daughters per sire. A pleiotropic QTL results in a covariance 

that deviates from this expected covariance. The deviation depends on the size of the effects on both 

traits and on the fraction of grandsires heterozygous for the QTL. When analyzing experimental 

data, the expected covariance and the confidence interval for the expected covariance can be 

determined by permutation of the data. A covariance outside the confidence interval suggests the 

presence of a pleiotropic QTL or a closely linked QTL. The method is verified by simulation and 

illustrated by analyzing an experimental data set on chromosome six in dairy cattle. In chapter 5, 

the method is applied to a genome scan in a granddaughter design involving 833 sons of 20 

grandsires. Four categories of traits were analyzed: production (five traits), udder conformation 

(six), udder health (two) and fertility (two). In total, 59 chromosomewise significant multiple trait 

quantitative trait regions (MQR) (α = 0.01) were identified. Fifteen MQR were found on 

chromosome 14. Four or more MQR were found on chromosome 6, 13, 19, 22, 23 and 25. Eight 

MQR involving udder conformation and udder health and four MQR involving production traits 

and udder health were found. For fertility, the number of MQR was 5 for both the combinations 

with udder conformation and production traits. For 22 MQR, the difference between the correlation 

due to the MQR and the overall genetic correlation was larger than 0.60. The results from this study 

can be useful in the decision whether or not to apply marker-assisted selection (MAS) for specific 

QTL. 
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Most benefit can be expected from MAS on traits with low to moderate heritability (e.g. 

fertility), traits that are difficult or costly to measure (e.g. disease traits), traits that are not available 

on all selection candidates before selection (e.g. carcass traits), or traits that can only be recorded in 

one sex (e.g. milk production, mastitis). MAS of sires will most likely be applied as an initial 

selection step in a multi-stage setting, before entering a progeny test. Marker information will 

increase the accuracy of selection, especially in the first stage. In chapter 6, closed multi-stage 

nucleus breeding schemes in dairy cattle that use information on quantitative trait loci (QTL), have 

been evaluated by deterministic simulation. In the base scheme, the selection index for dams 

consisted of pedigree information and own performance. The selection index for sires consisted of 

pedigree information and performance of 100 daughters. In alternative breeding schemes, 

information on a QTL was accounted for by simulating an additional index trait. The fraction of the 

variance explained by the QTL determined the correlation between the additional index trait and the 

breeding goal trait. Information on the QTL became available either at birth or at the embryo level. 

Response in progeny test schemes relative to a base breeding scheme without QTL information 

ranged from +4.5% (QTL explaining 5% of the additive genetic variance) to +21.2% (QTL 

explaining 50% of the additive genetic variance). A QTL explaining 5% of the additive genetic 

variance would allow to progeny test 130 young bulls and maintain genetic response at the level of 

the base scheme, consisting of 200 progeny tested young bulls. For schemes with increased embryo 

production and selection on QTL information at embryo level, genetic progress was up to 31.3% 

higher. This provides opportunities to change the design of the breeding program. 

The general discussion (Chapter 7) lists a number of MAS-applications. Implementation is 

faced with a number of issues, related to, e.g., the amount of variance explained and the precision of 

the location estimate. The currently available pedigrees in dairy cattle offer excellent opportunities 

to detect QTL, also for traits with relatively low heritability, and especially if the available 

methodologies to increase power are utilized. In this way, the amount of variation explained by 

QTL can be increased, and so will benefits from MAS. Besides, this offers possibilities to reduce 

the number of progeny tested bulls, to make the breeding program more cost-effective. 

A more precise location of the QTL would allow the use of markers in population-wide linkage 

disequilibrium with the functional mutations However, LD-markers should be in a region that is 

restricted to approximately 2 cM, because the variance that is explained by LD-markers quickly 

decreases with increasing distance between the marker and the functional mutation. Cost to identify 

the functional mutation may not offset the additional benefits compared to using LD-markers. The 

availability of many markers in identified candidate regions will facilitate the detection of markers 
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in linkage disequilibrium with the functional mutation. These may become available from the 

bovine genome sequencing project, which is about to start and which is expected to change 

identification of genomic variation and, as a result, dairy cattle breeding programs, considerably in 

the next 5-10 years. 
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In de fokkerij gaat het om het verbeteren van de erfelijke aanleg voor belangrijke kenmerken. 

De erfelijke aanleg wordt bepaald door het DNA, wat verdeeld is over een aantal chromosomen. 

Alle chromosomen tezamen worden aangeduid als het genoom. De beschikbaarheid van technieken 

om het DNA te analyseren en de mogelijkheden daarvan voor toepassing in fokprogramma’s, 

hebben geleid tot vele studies om de plaatsen op het DNA te localiseren die verantwoordelijk zijn 

voor de erfelijke aanleg van belangrijke kenmerken. Deze plaatsen worden ook wel aangeduid als 

QTL (quantitative trait loci). Indien de locatie exact bekend is, wordt gesproken over genen. Dit 

proefschrift gaat over het opsporen van QTL en de mogelijkheden om die te gebruiken in de 

fokkerij, en richt zich uitsluitend op melkvee. 

De studies bij melkvee waren in eerste instantie vooral gericht op melkproductie kenmerken. In 

hoofdstuk 2 wordt de opzet van deze studies besproken en wordt tevens ingegaan op de kansen 

(power), die deze studies bieden om QTL te vinden. De meeste QTL detectie studies in melkvee 

maken gebruik van de typische structuur van melkvee fokprogramma’s. Hierin is veelal een aantal 

stiervaders aanwezig met een redelijk tot groot aantal zonen. De verschillende varianten van 

makkelijk te bepalen delen van het DNA (merkers) van stiervaders en zonen worden hierbij bepaald 

in het laboratorium. De zonen hebben fokwaardes (schatting van de erfelijke aanleg) voor een groot 

aantal kenmerken, gebaseerd op een groot aantal (gemiddeld meer dan 100) dochters. De informatie 

van merkers en fokwaardes wordt vervolgens gekoppeld, om te bepalen welke merkers (welke 

delen van het DNA) van invloed zijn op de fokwaardes. Een dergelijke opzet, waarbij informatie 

van 3 generaties wordt meegenomen, wordt veelal aangeduid met granddaughter design (GDD). 

Zelfs de grootste studies die uitgevoerd zijn, zullen slechts een beperkte fractie kunnen 

detecteren van de QTL die verantwoordelijk zijn voor melkproductie kenmerken. De kans van 

dergelijke studies op het vinden van QTL dient daarom vergroot te worden, ofwel door grotere 

studies op te zetten, ofwel door het gebruik van verfijnde methoden, bijv. door de beschikbare 

gegevens efficiënter te analyseren middels het meenemen van alle relaties tussen dieren in de 

afstamming. Een overzicht van de resultaten van QTL-studies gericht op melkproductie kenmerken 

laat zien, dat er vooral voor eiwit percentage QTL zijn gevonden. De QTL op chromosomen 3, 6, 

14 en 20 zijn met een vrij grote zekerheid aangetoond. Op chromosoom 14 is de exacte locatie 

bekend van een gen met een grote invloed op vet percentage. De QTL op chromosomen 3, 6, en 20 

beïnvloeden het eiwit %. Op chromosoom 6 liggen waarschijnlijk meerdere QTL. Een aantal van de 

chromosomale gebieden die van invloed zijn op melkproductie kenmerken, lijken tevens effect te 

hebben op andere kenmerken. Indien een QTL effect heeft op meerdere kenmerken, wordt 
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gesproken over pleiotropie. Door meerdere kenmerken in de analyse op te nemen, kan vastgesteld 

worden of hier sprake is van pleiotrope effecten. 

Hoewel het fokdoel voor een (groot) deel gericht is op melkproductie kenmerken, neemt het 

belang van kenmerken als vruchtbaarheid en gezondheid steeds meer toe. Vergeleken met QTL 

voor melkproductie kenmerken, zijn QTL voor vruchtbaarheid en gezondheid mogelijk relatief 

belangrijker. Dit heeft bijv. te maken met de lage erfelijkheidsgraad voor deze kenmerken, 

waardoor een schatting van de erfelijke aanleg van dieren op basis van waarnemingen voor deze 

kenmerken relatief onnauwkeurig is. Ook kan het lastig zijn om dergelijke kenmerken te meten. Dit 

geldt bijvoorbeeld voor de gezondheidskenmerken. Efficiënte selectie op deze kenmerken is dan 

ook sterk gebaat bij informatie omtrent QTL voor deze kenmerken. In hoofdstuk 3 worden de 

resultaten beschreven van een studie gericht op het vinden van QTL voor exterieurkenmerken en 

functionele kenmerken. In deze studie, die gebaseerd was op 20 Holstein Friesian stiervaders en 833 

zonen van deze vaders, is het genotype (= verschijningsvorm) van 277 zgn. microsatelliet merkers 

bepaald. Deze merkers lagen verspreid over alle chromosomen, m.u.v. de geslachtschromosomen. 

Tevens was de fokwaarde van de zonen beschikbaar voor 18 exterieur kenmerken, 2 

vruchtbaarheidskenmerken, 4 geboortekenmerken, 2 gebruikskenmerken en één 

uiergezondheidskenmerk. De informatie over de vererving van merkers werd vervolgens vergeleken 

met deze fokwaardes. Hierbij werd informatie van meerdere merkers en van alle families 

gecombineerd.  

Uit de analyse over families heen kwamen 61 mogelijke QTL naar voren, waarbij er 27 vals-

positieven verwacht werden (i.e., één vals-positief resultaat per kenmerk). De sterkste aanwijzingen 

voor QTL werden gevonden voor: borstomvang op chromosoom 2, draagtijd op chromosoom 4, 

kruishoogte, inhoud en ontwikkeling op chromosoom 5, type op chromosoom 6, bespiering op 

chromosoom 12, vooruieraanhechting op chromosoom 13, en vooruieraanhechting en 

voorspeenplaatsing op chromosoom 19. De QTL voor lichaamsmaten op de chromosomen 2, 5, en 

6 hebben mogelijk ook een effect op geboortegemak. De QTL voor uierkenmerken op de 

chromosomen 13 en 19 hebben mogelijk ook invloed op celgetal en weerstand tegen uierontsteking. 

De QTL die zijn gevonden voor melk productie kenmerken, exterieur kenmerken, 

vruchtbaarheid en (uier)gezondheid, kunnen gebruikt worden bij merker-ondersteunde selectie (ook 

wel aangeduid met MAS, marker-assisted selection). Informatie over de aanwezigheid en vererving 

van merkers die gekoppeld zijn aan QTL, wordt hierbij gebruikt om een betere schatting te krijgen 

van de erfelijke aanleg. Selectie op een bepaald QTL kan echter ook een effect hebben op andere 

kenmerken, door bijv. pleiotropie (i.e., het QTL beïnvloedt meerdere kenmerken), of doordat het 
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QTL op het chromosoom nauw gekoppeld is aan QTL met een effect op andere kenmerken. 

Aangezien deze QTL veelal gezamenlijk overerven, leidt selectie op het ene QTL tevens tot een 

effect op een ander kenmerk. De negatieve effecten op andere kenmerken van selectie op een 

bepaald QTL moeten zoveel mogelijk voorkomen worden, en positieve effecten op andere 

kenmerken moeten zoveel mogelijk benut worden. Hiervoor is het noodzakelijk inzicht te hebben in 

de pleiotrope effecten van QTL, dan wel het effect van een chromosomaal gebied op meerdere 

kenmerken. Hoofdstuk 4 beschrijft een methode om pleiotrope QTL of gebieden met een effect op 

meerdere kenmerken te bepalen. De methode is gebaseerd op de resultaten van QTL-studies gericht 

op individuele kenmerken, en is afgeleid voor een granddaughter design. De QTL-studies voor 

individuele kenmerken resulteren in een schatting van de QTL-effecten voor iedere stiervader en 

elk kenmerk. Voor elke combinatie van kenmerken wordt vervolgens de covariantie tussen deze 

schattingen berekend. Indien er geen sprake is van pleiotropie, dan wordt de covariantie tussen de 

schattingen bepaald door de erfelijkheidsgraden van de betrokken kenmerken, de polygene 

correlatie (wordt bepaald door alle genen gezamenlijk) en de milieu correlatie tussen de kenmerken, 

de variatie in de kenmerken, het aantal zonen per stiervader, en het aantal dochters per stier. Indien 

er wel sprake is van pleiotropie, dan zal de covariantie tussen de schattingen van de QTL-effecten 

afwijken van de verwachte covariantie. Deze afwijking hangt af van de grootte van de effecten van 

het pleiotrope QTL, en van de fractie stiervaders die heterozygoot zijn voor dit QTL (= twee 

verschillende varianten hebben van dat QTL). Bij analyse van werkelijk data, kunnen de verwachte 

covariantie indien er geen QTL is, en een betrouwbaarheidsinterval voor deze verwachte 

covariantie, bepaald worden. Wanneer de covariantie in de werkelijke data buiten het 

betrouwbaarheidsinterval ligt, is er sprake van een pleiotroop QTL of enkele nauw gekoppelde QTL 

met een effect op verschillende kenmerken. De methode is getoetst met een simulatie studie en 

geïllustreerd aan de hand van data van chromosoom 6 bij rundvee. 

In hoofdstuk 5 is de ontwikkelde methode toegepast op een dataset waarin informatie van alle 

chromosomen was opgenomen. Het betrof hier een granddaughter design met 20 stiervaders en 833 

zonen. Vier kenmerk-categorieën werden geanalyseerd: melk productie (vijf kenmerken), 

uierkenmerken (exterieur, zes), uiergezondheid (twee) en vruchtbaarheid (twee). Er werden in totaal 

59 chromosomale gebieden geïdentificeerd met een effect op meerdere kenmerken (met een kans 

van 0.01 op een vals-positief resultaat, niet gecorrigeerd voor het analyseren van 29 chromosomen). 

Deze gebieden worden vanaf nu aangeduid met MQR (multiple trait quantitative trait region = 

gebied met een effect op meerdere kenmerken). Vijftien MQR werden gevonden op chromosoom 

14. Ook op de chromosomen 6, 13, 19, 22, 23, en 25 werden vier of meer MQR gevonden. Acht 
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MQR hadden zowel invloed op uier conformatie als uiergezondheid, en vier MQR beïnvloedden 

zowel melkproductie kenmerken als uier gezondheid. Het aantal MQR met een effect op zowel 

vruchtbaarheid als uier conformatie was vijf. Ook werden vijf MQR gevonden met een effect op 

zowel vruchtbaarheid als melk productie kenmerken. Voor 22 MQR week de correlatie veroorzaakt 

door de MQR sterk (meer dan 0.60) af van de genetische correlatie. De resultaten van dit onderzoek 

kunnen gebruikt worden bij het besluit om al dan niet MAS gericht op bepaalde QTL toe te passen. 

 Het meeste voordeel van MAS wordt verwacht voor kenmerken met een lage tot redelijke 

erfelijkheidsgraad (bijv. een kenmerk als vruchtbaarheid), kenmerken die moeilijk of alleen tegen 

hoge kosten te meten zijn (bijv. ziektes), kenmerken die niet beschikbaar zijn voor alle kandidaten 

voor selectie (bijv. karkaskenmerken), of kenmerken die uitsluitend meetbaar zijn bij één van beide 

geslachten (bijv. melkproductie, uierontsteking). Wanneer MAS bij stieren wordt toegepast, dan zal 

dit in de meeste gevallen worden toegepast als een eerste selectie stap bij meer-fase selectie, 

voordat stieren worden ingezet als proefstier. Merker-informatie verhoogt de nauwkeurigheid van 

selectie, vooral in de eerste stap, als nog weinig andere informatie beschikbaar is. In hoofdstuk 6 

zijn met een simulatie programma een aantal fokprogramma’s bestudeerd die QTL-informatie 

gebruiken. In het basis schema werd in de vrouwelijke dieren geselecteerd op een combinatie van 

afstammings informatie en metingen aan het dier zelf. In de selectie index voor de mannelijke 

dieren zaten afstammings informatie en metingen aan 100 dochters. In de eerste fase bestond de 

index in beide gevallen uitsluitend uit afstammings informatie. In de alternatieve fokprogramma’s 

werd de QTL-informatie meegenomen als een extra kenmerk in de index. De correlatie van dit extra 

kenmerk met het fokdoel kenmerk werd bepaald door het aandeel van het QTL in de erfelijke 

variatie van kenmerken. QTL-informatie was  beschikbaar bij geboorte van een dier, of op embryo-

niveau. De erfelijke vooruitgang in de diverse fokprogramma’s, ten opzichte van de erfelijke 

vooruitgang in een fokprogramma zonder QTL-informatie, varieerde van +4.5% (wanneer het QTL 

een aandeel van 5% had in de totale erfelijke variatie) tot +21.2% (bij een QTL met een aandeel van 

50% in de erfelijke variatie). Een QTL met een aandeel van 5% biedt de mogelijkheid om minder 

proefstieren te testen (130 in plaats van 200, in het onderzochte programma), en daarbij dezelfde 

erfelijke vooruitgang te behalen. Indien het aantal geproduceerde embryo’s in het fokprogramma 

vergroot werd, en selectie op basis van QTL-informatie op embryo-niveau werd toegepast, kon de 

erfelijke vooruitgang met 31.3% verhoogd worden. Dit biedt mogelijkheden om de opzet van het 

fokprogramma drastisch te wijzigen. Een afweging van de kosten is hiervoor echter ook van groot 

belang. 
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In hoofdstuk 7 wordt een aantal toepassingen van MAS in hedendaagse fokprogramma’s voor 

melkvee gegeven. Bij toepassing van MAS komen een aantal zaken naar voren die te maken hebben 

met bijv. het aandeel van de gevonden QTL in de totale erfelijke variatie, en de nauwkeurigheid 

waarmee de plaats van het QTL bekend is. Deze bemoeilijken een efficiënte toepassing, en 

illustreren de noodzaak om meer QTL te vinden, en de plaats van deze QTL nauwkeuriger te 

bepalen. De datasets die nu beschikbaar zijn, bieden uitstekende mogelijkheden om QTL op te 

sporen, ook voor kenmerken met een relatief lage erfelijkheidsgraad, en zeker indien alle 

mogelijkheden qua analyse methoden worden benut. Hiermee kan de kans dat aanwezige QTL 

daadwerkelijk worden gevonden, worden vergroot. De gevonden QTL verklaren dan een groter deel 

van de erfelijke variatie, en MAS kan efficiënter worden toegepast. Bovendien kan het 

fokprogramma anders worden opgezet, bijv. door minder proefstieren te testen, en kan het 

fokprogramma tegen lagere kosten worden uitgevoerd. 

Wanneer een QTL met grote waarschijnlijkheid in een beperkt gebied ligt, dan kan geselecteerd 

worden op informatie van één enkele merker of een combinatie van merkers in dat gebied, zonder 

eerst het belang van die merkers in verschillende families vast te hoeven stellen. De waarde van 

dergelijke merkers, ten opzichte van de waarde van het QTL zelf, neemt echter snel af met 

toenemende afstand tussen de merker en het QTL. Deze merkers zullen dus zeer dicht bij het QTL 

moeten liggen om ze op deze manier te kunnen gebruiken. In het ideale geval is het gen zelf 

bekend, maar de kosten om het gen te vinden wegen mogelijk niet op tegen de extra voordelen, 

wanneer deze kosten en voordelen vergeleken worden met het gebruik van nauw gekoppelde 

merkers. 

De beschikbaarheid van grote aantallen merkers in gebieden waar mogelijk genen liggen, 

vergemakkelijkt het vinden van de meest geschikte merkers voor selectie. Door nieuwe initiatieven, 

zoals het in kaart brengen van de samenstelling van het genoom bij het rund, zal het aantal 

beschikbare merkers enorm toenemen, en daarmee het in kaart brengen van de genen veranderen en 

vergemakkelijken. Deze ontwikkelingen zullen ervoor zorgen dat selectie in 

rundveefokprogramma’s aanzienlijk gaat veranderen in de komende 5-10 jaar. 
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Nawoord 
 

Na afloop van 5 jaar werken en een half jaar zwoegen, wil ik graag de mensen bedanken die 

mij daarin hebben gesteund. 

Johan van Arendonk en Henk Bovenhuis waren het meest betrokken bij de begeleiding van het 

onderzoek. Johan, jouw positieve benadering in voorspoed en bij tegenslag in het onderzoek heeft 

mij enorm gemotiveerd. Henk, jouw kennis en ideeën over het onderwerp hebben in belangrijke 

mate bijgedragen aan de invulling van mijn onderzoek. Beiden, hartelijk dank daarvoor. 

Naast Johan en Henk als directe begeleiders hebben Sijne van der Beek en Marco Bink, als 

vaste leden van de begeleidingscommissie, hun bijdrage geleverd. Piter Bijma was met name 

betrokken bij het in hoofdstuk 6 beschreven onderzoek. Sijne, Marco en Piter, bedankt voor jullie 

kritische blik op mijn onderzoek. 

Het onderzoek is uitgevoerd bij de leerstoelgroep Fokkerij en Genetica. De sfeer was altijd 

prima, en ik vind het jammer dat ik niet altijd aanwezig kon zijn bij de inhoudelijke en sociale 

activiteiten van de leerstoelgroep. Iedereen bedankt. Liesbeth, gedurende bijna de volledige periode 

in Wageningen waren we kamergenoten. De gesprekken over werk en andere zaken vormden een 

welkome afwisseling met reken- en schrijfwerk. En we hebben als kamergenoten toch maar mooi 

de Intermediair gehaald. 

Ongeveer zes jaar geleden kreeg ik van Holland Genetics de kans om dit onderzoek uit te 

voeren, als onderdeel van de werkzaamheden bij de afdelingen foktechniek en R&D. Ate 

Lindeboom en Nanke den Daas, jullie hebben mij toen die kans geboden, en ook van Janneke van 

Wagtendonk, Lucia Kaal en Wiepk Voskamp heb ik daarna de ruimte en tijd gekregen om dit 

onderzoek uit te voeren. De MKZ-crisis en daaropvolgende reorganisatie hebben de beschikbare 

tijd voor “Wageningen” wel wat teruggebracht, maar ook daarna kon ik doorgaan met het 

onderzoek. Erik, Annelies, Karen, Adrie, Erwin en Joke, als collega’s bij de afdeling R&D hebben 

jullie rekening gehouden met mijn Wageningen-dagen en mij qua werkzaamheden van tijd tot tijd 

ontzien, vooral in het laatste half jaar. Hierbij alle waardering en dank voor de steun vanuit 

Arnhem. 

Pa en ma, ik ben toch nog een beetje “in de koeien” gebleven, ook al is het niet helemaal zoals 

ik zelf (en misschien jullie ook) ruim 20 jaar geleden in gedachten had. Maar het is wel duidelijk 

waar mijn belangstelling voor het vakgebied vandaan komt. Bedankt. 
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Anita, toen we bijna 6 jaar geleden verhuisden naar Elst en de zolder gingen inrichten, sprak ik 

de historische woorden: “en hier ga ik dus promoveren”. Ik had toen namelijk juist besloten de kans 

te grijpen die mij werd geboden. Je hebt me de afgelopen jaren wel eens naar de zolder moeten 

sturen, omdat je bang was dat het anders wel een erg langdurige geschiedenis zou worden, dat 

onderzoek van mij. Ik dank je voor deze steun en voor al het andere, het is af!  

Overigens is de zolder de zolder niet meer, door de komst van onze beide dochters is het huis 

inmiddels behoorlijk anders ingericht. Stefanie en Marit, bedankt voor jullie vrolijkheid en afleiding 

en voor het ontzien van jullie promoverende vader. Huilen in de nacht is gelukkig niet jullie 

grootste hobby. En papa heeft vanaf nu weer wat meer tijd…. 
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