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Abstract 
 
 
Schut, A.G.T., 2003. Imaging spectroscopy for characterisation of grass swards. 
PhD thesis. Wageningen University, The Netherlands, English and Dutch 
summaries. 
 
The potential of imaging spectroscopy as a tool for characterisation of grass 
swards was explored with respect to growth monitoring, detection of nitrogen 
and drought stress, and assessment of dry matter yield, clover content, nutrient 
content, feeding value, sward heterogeneity and production capacity. To this 
end, an experimental imaging spectroscopy system was developed. The system 
detects reflection in image lines in the wavelength range from 405-1659 nm 
with three different sensors at 1.3 m above the soil surface. Spectral resolution 
varies between 5-13 nm, and spatial resolution between 0.28-1.45 mm2 per 
pixel at the soil. As a result of system design, reflection intensity is a function 
of leaf height and leaf angle. The system was tested on mini swards grown in 
containers. For each mini sward, 42 image lines were recorded in a regular 
sampling pattern per recording event. 
Five experiments were conducted with Lolium perenne L. and/or Trifolium 
repens L. mini swards. In these experiments degree of sward damage, level of 
nitrogen (N) application (two experiments), water supply and white clover 
content were varied. In the sward damage experiment and in one N experiment 
light interception was recorded regularly; at harvest, also crop height and 
canopy reflectance (with a Cropscan) was measured. Mini swards were 
harvested at a fixed level and in one of the N experiments in three strata. 
During the experiments, hyperspectral reflectance was recorded 2-4 times per 
week. 
Image lines were classified to separate pixels containing soil, dead material and 
green leaves. These classes were subdivided into reflection intensity classes. 
Ground cover (GC), reflection intensity, image line texture, spatial 
heterogeneity and patterns, and spectral characteristics of green leaves were 
quantified. An index of reflection intensity (IRI) measured the distribution of 
green pixels over intensity classes and quantified vertical canopy geometry. 
Horizontal sward heterogeneity was quantified with the spatial standard 
deviation of GC (GC-SSD) and logarithmically transformed GC (TGC-SSD), 
and image line texture and spatial patterns with wavelet entropy (WE). Spectral 
characteristics were quantified with shifts of various spectral edges. Partial least 
squares (PLS) models combining spectral and spatial information were 
calibrated and validated on two separate data-sets from the sward damage and 
one N experiment, in order to predict dry matter (DM) yield, feeding quality 



  

and nutrient content. Effects of replicate observations on reduction of 
prediction error were studied for different fractions of model bias. 
GC was differently related to light interception under a cloudy sky and under a 
clear sky (R2

adj = 0.87-0.94) and also for dense and open swards. Growth was 
accurately monitored with evolution of GC and IRI, and GC and IRI at harvest 
were strongly related to DM yield (R2

adj = 0.75-0.82). Seasonal means of GC 
and IRI were strongly (R2

adj = 0.77-0.93) related to annual DM matter yield and 
light interception capacity. There was a clear (R2

adj = 0.69) relation between 
seasonal mean GC-SSD and tiller density. Seasonal means of GC-SSD 
differentiated dense from damaged swards. The WE of image line texture 
robustly differentiated clover from grass swards, while mixtures had 
intermediate values. Position of spectral edges was strongly related to reflection 
intensity. This relation differed for grass and clover swards, varied with N 
supply level and changed after harvesting canopy strata. Leaf angle was 
identified as the most important factor affecting this relationship. Drought 
stress was detected in an early stage, when DM content of leaves was still 
below 20%, from shifts of edges near water absorption features. A combination 
of shifts of the green and red edge was strongly related (R2=0.95) to DM yield 
reduction due to N shortage. The prediction errors relative to the mean (of 
validation sets) of the PLS models were 6.2-11.7 % for N content, 5.5-9.1 % for 
DM content, 13.6-18.7 % for sugar content, 6.0-7.5 % for ash content, and 3.5-
4.8 % for crude fibre content. Predictions of P, K, S, Mg, Na and Fe were 
robust in both experiments. Combining GC and IRI with mean sward spectra 
resulted in a prediction error of 235-268 kg DM ha-1 for yields of less than 1000 
up to 4000 kg DM ha-1. Multiple observations may reduce the mean prediction 
error for DM yield with 27 to 54%, depending on model bias and number of 
observations. The accuracy of DM yield assessment with imaging spectroscopy 
was better than with the disk plate meter or Cropscan. It is concluded that 
imaging spectroscopy is a powerful tool in grassland research and may provide 
valuable information for fine-tuning of grassland management. In this study it 
provided fast, automatic and non-destructive means for monitoring and 
quantification of growth, and estimating dry matter yield, spatial heterogeneity 
and sward damage, nitrogen and water deficiency, clover content, feeding 
quality and nutrient content of swards. Finally, system requirements for 
application of imaging spectroscopy in the field are discussed. 
 
Keywords: Imaging spectroscopy, imaging spectrometry, remote sensing, 
reflection, reflectance, grass sward, white clover, recognition, characterisation, 
ground cover, growth monitoring, stress detection, heterogeneity quantification 



 

Voorwoord 
 
 
Dit proefschrift is het resultaat van samenwerking met velen; ik wil een ieder 
bedanken voor zijn of haar bijdrage. Een speciaal dankwoord is voor Jan 
Ketelaars; als bedenker van het onderzoeksvoorstel is hij vanaf het begin 
intensief betrokken geweest bij het project. Jan, bedankt voor al je kritische en 
enthousiaste denkwerk, maar vooral voor de inbreng van het nodige gezond 
verstand. In 1998 is een intensieve samenwerking gestart met Kees Lokhorst, 
Jan Meuleman en Jan Kornet van het IMAG. Dankzij ideeën van met name Jan 
Meuleman is beeldvormende spectroscopie als onderzoeksmethodiek in beeld 
gekomen. Jan Kornet heeft veel kennis ingebracht over optiek. De kennis en 
kunde van Jan en Jan hebben de bouw van een innovatieve experimentele 
opstelling mogelijk gemaakt. Kees, je hebt je door al mijn verhalen geworsteld 
en ze van constructief commentaar voorzien, waarvoor hulde. De 
samenwerking heeft in 2002 een vervolg gekregen bij het ontwerpen en bouwen 
van een nieuw, mobiel systeem voor het opnemen van spectroscopische beelden 
in het veld. 
Ook wil ik graag Jan Goudriaan bedanken voor zijn bijdrage aan het 
proefschrift. Jan, ik heb je snelle reactie op de hoofdstukken en je heldere kijk 
op het werk altijd zeer gewaardeerd. Daarnaast wil ik graag Hans van den Berg, 
Hans Helsper, Magriet Hendriks en Gerrit Kasper bedanken voor hun bijdrage 
aan enkele hoofdstukken. Tevens hebben velen, o.a. Riet de Kock, Willem de 
Visser, Arie Hoogerbrugge en medewerkers van de proeftechnische dienst 
gewild en ongewild een bijdrage geleverd bij het tellen van spruiten, schatten 
van de bedekking, verzorgen van de minizoden etc. Ook wil ik Gon van Laar 
danken voor haar adviezen. Rina Kleinjan-Meijerink en Tina de Kleijn hebben 
gezorgd voor een mooie opmaak van het proefschrift, waarvoor dank. Graag 
wil ik de BU AGRO danken voor de bijdrage aan de drukkosten en voor het in 
mij gestelde vertrouwen. Tenslotte wil ik allen die mij af en toe geprikkeld 
hebben of een schouderklop hebben gegeven bedanken, met name mijn oud 
kamergenoten Jules Bos en Ries de Visser. De collegae waarmee ik bijna elke 
woensdagmiddag heb mogen voetballen hebben geen noemenswaardige 
bijdrage geleverd aan dit proefschrift, maar leuk was het wel! De bijdrage van 
mijn familie kan moeilijk onderschat worden. Kasper en Matteo hebben 
gezorgd voor de nodige afleiding, ontspanning en relativering. Esther, ik 
waardeer je begrip en geduld voor de lange werkdagen, het werken in de 
weekenden en de weinige vakanties zeer. 



  

 



 

Table of contents 
 
 
Chapter 1.  General introduction 1 
 
Chapter 2.  Novel imaging spectroscopy for grass sward  

characterisation 9 
 
Chapter 3.  Monitoring growth of grass swards using imaging  

spectroscopy 31 
 
Chapter 4.  Imaging spectroscopy for early detection of nitrogen  

deficiency in grass swards 57 
 
Chapter 5.  Effects of angle, height, and pigment content of leaves on 

reflection characteristics of grass swards  81 
 
Chapter 6.  Early detection of drought stress in grass swards with 
 imaging spectroscopy 107 
 
Chapter 7.  Detection of clover cover in grass swards with  

imaging spectroscopy 127 
 
Chapter 8.  Assessment of seasonal dry matter yield and grass sward  

quality with imaging spectroscopy 153 
 
Chapter 9.  Potential of imaging spectroscopy as tool for pasture  

management 179 
 
Chapter 10.  General discussion 205 
 
 References 225 
 
 Summary 249 
 
 Samenvatting 257 
 
Appendix 1.  Accuracy of imaging spectroscopy and effects of  

spatial resolution 14 pp. 
 
Appendix 2.  Comparison of imaging spectroscopy with disk plate  

meter and Cropscan for dry matter yield assessment 14 pp. 



  

 

Abbreviations 
 
 
ADS   Artificially Damaged Swards 
APAR   Apparent Photosynthetically Active Radiation 
BE   Blue edge (nm) 
C / Co / CS  Control Swards 
CAW   Chlorophyll absorption width (nm) 
CCD   Charge Coupled Device 
Chl   Chlorophyll 
CV   Coefficient of Variation (-/-) 
DM   Dry Matter yield (kg ha-1) 
FM   Fresh Matter yield (ton ha-1) 
GE   Green Edge (nm) 
GC / GCi  Ground Cover (%) 
GC-SSD  Spatial Standard Deviation of GC (%) 
GCv   Visually scored ground cover (%) 
GCD   Ground Cover of Dead material (%) 
GCS   Ground Cover of leaves with Specular reflection (%) 
IC   Intensity Class 
IRI   Index of Reflection Intensity (%) 
LI   Light Interception (%) 
LAI   Leaf Area Index (-/-) 
MSS   Mean Sward Spectra 
MICS   Mean Intensity Class Spectra 
NDS   Naturally Damaged Swards 
NIR   Near Infrared wavelength range 
PLS   Partial Least Squares 
RE   Red Edge (nm) 
SDM   Seasonal Dry Matter yield (kg ha-1 yr-1) 
SE   Standard Error 
SM   Seasonal Mean 
TGC   Logistically Transformed Ground Cover (-/-) 
TGC-SSD  Spatial standard deviation of TGC (-/-) 
TCV   Tiller Coefficient of Variation (-/-) 
VIS   Visible wavelength range 
WE   Wavelet Entropy 



 

 

1 
 
 

 

General introduction 
  
 

 

 

 

 

 



Chapter 1  

2 

 
1.  General introduction 
In this thesis, the potential of imaging spectroscopy for characterisation of grass 
swards is studied. This chapter reviews the concept of imaging spectroscopy, 
information requirements for grass sward management and applications of 
imaging spectroscopy in agriculture. Finally, the potential of close range or 
proximate imaging spectroscopy is discussed and the objectives and the 
structure of this thesis are listed. 
 
 

1.1 Imaging spectroscopy 

Images can reflect various parts, called ‘bands’, of the electromagnetic 
spectrum e.g. grey value (black and white) images represent one (broad) band 
and colour images can combine up to three bands. Imaging spectrometry is 
defined as the acquisition of image data in many contiguous spectral bands 
(Goetz, 1992). The images are called multispectral when 10-15 bands are 
included and hyperspectral when (far) beyond this number. Imaging 
spectroscopy encompasses the complete process of data acquisition and image 
processing and interpretation. Imaging spectroscopy is used on a wide range of 
scales and has various applications, from earth observation in remote sensing to 
magnetic resonance imaging in medicine.  
Just before the project started, new technology was developed combining 
dispersing elements with charge coupled devices (CCD) (Herrala & Okkonen, 
1996). Light from a line entering the dispersing element is split up and 
projected on the CCD of a digital camera. With this new technology, 
hyperspectral images can be recorded instantaneously, providing means to 
combine high spatial resolution (small field of view per picture element) with a 
large number of spectral bands. A number of agricultural research groups have 
incorporated this technique into their research with focus on nitrogen in wheat 
and crop-weed differentiation (Borregaard et al., 2000; Feyaerts & Van Gool, 
2001; Jørgensen, 2002).  
 
 

1.2 Grass sward characterisation 

The term ‘grass sward’ normally refers to all material within the upper soil 
layer and above the soil in grasslands or lawns (Van Dale). In this thesis, only 
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above-ground parts of the sward are considered. Dairy husbandry systems under 
temperate climatic conditions mostly use grass as a major feed source. 
Grassland management and grassland productivity have a large impact on dairy 
farm profits (Rougoor et al., 1999; Van Dijk, 1999). Vellinga & Van Loo 
(1994) calculated that (genetic) improvement of nitrogen (N) efficiency with 
10% for Lolium perenne L. could increase annual farm profits with 54 – 179 € 
ha-1, and an improvement of digestibility (5%) was expected to raise farm 
profits with 100-111 € ha-1. Grass sward management also affects digestibility 
and N efficiency: digestibility is affected by N application and growth stage 
(Groot, 1999; Lazenby, 1988); N efficiency is strongly related to N application 
level and grass sward quality (Deenen, 1994; Mooij & Vellinga, 1993; Ten 
Berge et al., 2000). N efficiency, nutritive value and dry matter (DM) yield of 
grass swards also strongly affect the farm nutrient balance and, thereby, 
emissions from farming systems to the environment (Smit et al., 2003). 
Currently, grass sward management on farms largely depends on qualitative 
expert knowledge. Information for management decisions (grass sward renewal 
or renovation, optimal harvest time, fertiliser application and irrigation) is 
derived from guidelines and rules of thumb.  
 

Fertiliser application 

The fertiliser application guidelines recommend fertiliser supply based on an 
expected nutrient demand within the next growing period, corrected for the 
amount of nutrients available from the soil pool, e.g. residual nutrients from 
previous growth periods or mineralisation (Vellinga, 1998). These guidelines are 
based on relations found in field experiments. These relations are only valid for 
swards with characteristics similar to swards in these field experiments, and 
different relations may be required for other swards. Deenen (1994, p38) found 
that ‘sward quality strongly affects the absolute and marginal response of 
herbage and implicitly animal production to fertiliser N applied’. Therefore, N 
supply requires fine-tuning for differences in sward quality for a maximum N 
efficiency (Mooij & Vellinga, 1993). The correction for residual nutrients of 
previous growth periods requires an accurate estimate of the amount of nutrient 
removed with the harvested material. Currently, no fast and accurate methods are 
available to quantify DM- or nutrient yield. Another approach would be to 
monitor the degree of depletion of N in the soil pool available for plant uptake. 
Plants respond quickly to depletion of the soil N pool by adjusting leaf chloro-
phyll content, the fraction of assimilates allocated to the shoot, tillering 
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dynamics, leaf morphology and, consequently, growth rate (Van Loo, 1993). 
Therefore, growing plants themselves might be used as indicator of soil nutrient 
availability. 
 

Grassland renovation and reseeding 

Annually about 7-15 % of permanent grassland is reseeded in order to improve 
sward quality, mainly on sandy soils (Keuning & Vellinga, 1986; Anonymous, 
2001; Aarts et al., 2002). Sward quality is defined as the production capacity of a 
sward as determined by botanical composition and sward density (Lantinga, 
1986), i.e. spatial distribution of plants and tillers. Sward quality deteriorates in 
case of local tiller or plant death as a result of e.g. frost or drought damage, urine 
scorch, treading, poaching or heavy cuts (e.g. Deenen, 1990; Keuning & 
Vellinga, 1986). Local tiller or plant death creates gaps, which may be filled with 
weeds (Keuning & Vellinga, 1986; Marriott et al., 1997). 
Grassland renewal or renovation is expensive, and may only be economically 
justified when swards are heavily deteriorated (Elsässer, 1991; Keuning & 
Vellinga, 1986; MacCarthy, 1982; Smith & Allcock, 1985; Spatz et al., 1981). 
Sward renewal is economically attractive when the production increase 
compensates the cost of reseeding or renovation. Aarts et al. (2002) found that 
reseeding is economically justified at a yield increase of 18-23% at 5 year 
reseeding intervals and 10-15% at 10 year reseeding intervals. They concluded 
that there were no good judgement criteria for economically justified grassland 
renovation or reseeding. 
 

Dry matter yield assessment 

Accurate assessment of DM yield could provide valuable information for 
evaluation of management practices, fine-tuning of nutrient supply, harvest 
planning and comparison of fields and farms. The required accuracy of DM 
yield predictions for fertilization and planning practices on the farm is at least 
10% (Harmoney et al., 1997; Sanderson et al., 2001; Virkajärvi, 1999). Several 
methods have been developed to measure herbage mass (Hutchings et al., 1990; 
Stockdale, 1984a; b; Vickery et al., 1980). These methods depend directly or 
indirectly on a regression of sward height or sward density and herbage mass. 
Trampling or sward structure differences are major sources of error in this 
relation (Gabriels & Van den Berg, 1993; Gonzalez et al., 1990; Hutchings, 
1991; 1992; King et al., 1986; Stockdale & Kelly, 1984). Accuracy of DM yield 
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estimates based on crop reflectance is comparable to plate meter estimates 
(King et al., 1986; Lokhorst & Kasper, 1998). Gabriels & Van den Berg, (1993) 
& Lokhorst & Kasper (2001) concluded that the disk plate meter and crop 
reflection are not accurate enough for practical use. 
 
 

1.3 Imaging spectroscopy in agriculture 

Imaging spectroscopy may be used to study the spectral, spatial and textural 
characteristics from the object under study.  
 

Identification of plant stress from leaf reflectance 

The interaction of electromagnetic radiation with plant leaves is determined by 
their chemical and physical properties. In the visible region (VIS) from 400 to 
700 nm, various pigments such as chlorophyll, xanthofyll, and carotene 
dominate leaf reflectance. In the absence of pigments in the near-infrared (NIR) 
from 700 to 1300 nm, leaf reflectance is mainly dominated by water absorption, 
cellular arrangement and leaf constituents (Büker & Clevers, 1992). Species, 
growth stage and environmental conditions determine the composition and 
concentration of plant pigments. Nitrogen deficiency can be identified through 
its effects on chlorophyll content (Bausch et al., 1998; Blackburn, 1998; 
Blackmer et al., 1994; Schepers et al., 1996). Dehydration of leaves decreases 
light absorption by water, affects pigment light-absorption and changes internal 
leaf structure (Carter, 1991). Therefore, reflectance of dehydrated leaves 
increases in both visible and infrared wavelengths. These changes can be used 
to quantify water loss from leaf reflectance (Bowman, 1989; Danson et al., 
1992; Inoue et al., 1993; Penuelas & Inoue, 1999; Ripple, 1986). 
Concentrations of Mg, Zn, Fe and Mn are also closely related to chlorophyll 
content and leaf reflectance (Adams et al., 2000a; b; Mariotti et al., 1996; 
Milton et al., 1991; Gáborcík et al., 2000). Gausman et al. (1973) and Graeff et 
al. (2001) concluded that with specific wavelength ranges deficiencies of N, 
Mg, Fe, P and S could be identified from leaf reflectance.  
Plant constituents (e.g. starch, lignin, cellulose and sugar) also affect leaf 
reflectance (Curran, 1989; Curran et al., 1992; Jacquemoud et al., 1996; 
Jacquemoud et al., 1995). However, practical applications are severely limited 
by the strong confounding with water content (Fourty & Baret, 1998). 
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Discrimination of plant species 

Various information sources from images were used to recognise plant species, 
such as recognition of leaf shape (Franz et al., 1991a; Gerhards et al., 1993; 
Guyer et al., 1986; Manh et al., 2001; Petry & Kuhbauch, 1989; Woebbecke et 
al., 1995). Differences in spectral properties of leaves have also been used to 
discriminate between species (Franz et al., 1991b; Shearer & Holmes, 1990). 
Crop reflectance may also be used to separate species (Borregaard et al., 2000; 
Feyaerts & Van Gool, 2001). Critten (1997) used procedures to quantify image 
texture for species identification.  
 

Remote sensing and imaging spectroscopy for agricultural applications 

Until recently, crop reflectance was measured at spatial resolutions far beyond 
the size of individual leaves. Therefore, remotely sensed reflectance is a 
mixture of reflectance of leaves and background. Under low vegetation cover, 
litter and dead stubble material alter the measured reflectance signal (Asner, 
1998; McCloy et al., 1993). This mixed nature allows that intensity of canopy 
reflectance strongly responds to fraction of ground cover and leaf stacking 
(Birnie et al., 1987; Bouman et al., 1992; Gausman et al., 1976). Relations 
between canopy reflectance and canopy characteristics typically have an 
asymptotic nature (Ripple, 1985). This asymptotic nature may explain the 
limited predictability of dry matter yield in grasslands from crop reflectance, as 
observed by Lokhorst & Kasper (1998). 
Spectra of moist soils with normal organic matter and water contents lack 
strong absorption features, and reflectance of soils steadily increases with 
wavelength up to 1300 nm (Stoner & Baumgardner, 1981). Horler et al. (1983) 
found that derivative spectra are insensitive to soil properties, but sensitive to 
leaf area index (LAI). The red edge, defined as the position of maximum slope 
on the transition from red to infrared wavelengths, strongly correlates with 
chlorophyll content in various species, but is also sensitive to LAI and standing 
litter (Blackburn, 1998; Boochs et al., 1990; Horler et al., 1983). Therefore, the 
red edge informs on chlorophyll amount rather than concentration (Pinar & 
Curran, 1996). Interpretation of canopy reflectance is further complicated by 
the effects of leaf angle distribution on reflectance and red edge position 
(Asner, 1998; Guyot et al., 1992; Büker & Clevers, 1992). Identification of 
environmental stress (e.g. drought stress) is complicated by simultaneous 
changes in LAI and ground cover, canopy geometry, fraction of dead leaf 
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material and background soil reflectance (Fernandéz et al., 1994; Hunt et al., 
1987; Jackson & Ezra, 1985; Penuelas et al., 1993; Ripple, 1986).  
 
 

1.4 Potential of proximate imaging spectroscopy 

Proximate imaging spectroscopy may combine the potential of leaf reflectance 
measurements, imaging and remote sensing. Grass canopies are characterised 
by a relatively long period of incomplete foliage cover, due to frequent 
defoliation (Alberda, 1968; Van Loo, 1993). Therefore, the background effects 
of dead material in the stubble and soil are expected to be considerable, 
especially shortly after cutting and in deteriorated swards with an open or 
heterogeneous canopy.  
With proximate sensing, spatial resolution can be increased to sub-leaf level. 
With classification procedures, leaf pixels can be differentiated from pixels 
containing dead material and soil, prior to spectral analysis. This may strongly 
reduce the effects of background on measured spectra of leaves. The relative 
fractions of pixels in the different classes may inform about ground cover 
fraction. Recently, the fraction of ground cover was successfully estimated from 
(digital) images with high spatial resolutions (Lukina et al., 1999; Tomasel et 
al., 2001; White et al., 2000; Zhou & Robson, 2001). In regular remote sensing, 
the use of spectral regions with strong water absorption features is limited due 
to water absorption in the atmosphere. Proximate sensing in combination with 
an artificial light source does not have this limitation.  
 
 

1.5 Problem definition and objectives 

Ground cover, the spatial distribution of leaf pixels and reflectance of leaves 
can be measured with proximate imaging spectrometry. Ground cover and the 
spatial distribution of leaf pixels may inform about growth and status of the 
grass-sward and accumulated dry matter above the ground. Leaf reflectance 
may inform about the occurrence of nitrogen- and water stress and leaf 
constituents.  
It is yet unclear whether leaf reflectance can be measured in standing grass 
swards or can accurately quantify and diagnose stress. It is also unclear how 
and to what extent reflection of individual leaves is affected by the canopy. 
Shadow, overlapping leaves, leaf angle, canopy density and spatial variability 
may be factors influencing the measured reflectance of leaves. It is also unclear 
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whether sward biomass and heterogeneity can be quantified accurately from 
images. The sensitivity and temporal aspects of leaf reflectance for stress 
detection in systems with a short defoliation interval is unknown.  
There were three major objectives in the study reported by this thesis. The first 
objective was to develop and build an experimental imaging spectrometry 
system, capable of recording reflection of leaves within a standing grass sward 
in the visible and near infrared wavelength range. The second objective was to 
derive and select parameters from the images that characterise growth and 
heterogeneity and identify nutrient- and drought stress. The third objective was 
to study and quantify the relation of image parameters with growth, DM yield, 
sward heterogeneity and growth capacity, degree of N and drought stress and 
nutritive value of grass swards. During the study, the requirements of a field 
application of imaging spectroscopy were always kept in mind. 
 
 

1.6 Structure of this thesis 

In Chapter 2, the experimental imaging spectroscopy system is described. 
During the project, five experiments were conducted (four in 2000 and one in 
2001), with mini swards in containers. The degree of sward damage, clover 
content, N (2000 and 2001) and water supply varied. The sward damage 
experiment was used to study the relation between ground cover and reflection 
intensity and light interception, leaf area index and DM yield (Chapter 3). The 
relation between changes in sward characteristics in relation to N supply and 
image parameters are discussed in Chapter 4. Chapter 5 gives more detail about 
the underlying factors affecting the relations found and presented in Chapter 4. 
In Chapter 6, the response of image parameters was studied in relation to 
swards under (severe) drought stress. Chapter 7 describes the relation between 
image texture from one image dimension and presence of clover within a 
sward. Data from the sward damage experiment were also used to study the 
relation between image parameters with sward density, spatial heterogeneity of 
swards and seasonal DM yield (Chapter 8). In Chapter 9, data from the 2000 N- 
and sward damage experiments were used to study the accuracy and robustness 
of predictions of yield, nutritional value and mineral content, combining 
information from spectra, ground cover and reflection intensity. Chapter 10 
presents an overview and a general discussion in relation to the objectives of 
this thesis and to practical implications from a technical and agronomic point of 
view. 
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2. Abstract 
Attempts to improve grassland management may benefit from the use of new 
sensing techniques, such as imaging spectroscopy. In order to explore the 
potential of hyperspectral imaging spectroscopy for rapid and objective 
characterisation of grass swards an experimental prototype has been developed. 
From a height of 1.3 meter, the system detects reflections at high spatial (0.28-
1.45 mm2) and high spectral resolutions (5-13 nm) at wavelengths between 405 
and 1659 nm. Detailed information is provided on design, characteristics and 
test results. Results show that reflection intensity is related to height position in 
the sward and leaf angle. Grass leaves were recognised accurately. Images of a 
sports-field and a production sward with similar ground cover fractions could 
be easily distinguished. With the described system, canopy structure can be 
characterised by ground cover, the distribution of reflection intensity, image 
texture. Spectral characteristics can be obtained at leaf level. 
 
 

2.1 Introduction 

Grass swards are known for their high spatial and temporal variability, due to 
disturbing events such as cutting and grazing, urine scorching, trampling, frost 
and drought damage. As a result, ground cover pattern becomes irregular and 
gaps in the canopy occur. In the past several (laborious) methods have been 
developed to describe this irregular cover pattern, such as expert estimates, 
absence frequencies in rings (Neuteboom et al., 1992) and light sensitive cells 
using red/infrared ratio (Silvertown et al., 1988). Digital imaging techniques 
provide objective and automatic means for canopy characterisation, and have 
been used to estimate coverage in wheat (Ewing & Horton, 1999; Lukina et al., 
1999). Hyperspectral reflection measurements on leaves correlate e.g. with 
chlorophyll, nitrogen (Blackburn, 1998; Blackmer et al., 1994; Schepers et al., 
1996) and water content (Bowman, 1989; Curran et al., 1992; Danson et al., 
1992) and can, therefore, be used as water and nitrogen stress indicators. 
Imaging spectroscopy combines the potential of digital images and 
hyperspectral measurements. In remote sensing, imaging spectroscopy has been 
used to estimate nitrogen and lignin content of forest canopies (Martin & Aber, 
1997; Zagolski et al., 1996) and recognition of weed species (Vrindts & de 
Baerdemaeker, 1997; Vrindts et al., 1999). Reflection patterns (Asner, 1998) 
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and red edge position (Blackburn, 1998) are strongly influenced by standing 
litter. To explore the full potential of imaging spectroscopy in heterogeneous 
canopies, pure and unmixed spectra of leaves are required. In this paper, a 
novel hyperspectral imaging spectroscopy assembly for grass sward 
characterisation is described, with detailed information about requirements, 
construction, the equipment used and tests results.  
 
 

2.2  Design of the experimental system 

2.2.1  Design criteria 

The assembly is developed to produce images of mini grass swards, grown in 
containers of 0.7 m wide, 0.9 long and 0.4 m high. Hence a number of criteria 
are formulated. The assembly has to make images from the zenith, since the 
range in which ground cover changes during growth is largest at this angle. To 
obtain a high fraction of pure leaf area pixels, pixel diameter has to be smaller 
than 0.2 mm (one tenth of minimum leaf width of Lolium perenne L., about 
2 mm). The spectral range should include regions where soil, dead material and 
grass can be discriminated, and where minor changes in chlorophyll and water 
content can be detected. For detecting changes in chlorophyll content, mostly 
the red and green edge (Blackburn, 1998; Blackmer et al., 1994; Schepers et 
al., 1996) are used. Water is mostly detected in the regions around 970, 1200 
and 1450 nm. Water absorption features overlap with those of starch, lignin, 
cellulose and sugar (Curran, 1989). At least four spectral bands are required, to 
detect the inflection point of an edge (Guyot & Baret, 1988). Detection of small 
changes in the edge regions requires resolutions smaller than 10 nm. For an 
accurate estimate of ground cover and a representative spectral curve for one 
sward, it is not needed to make a two-dimensional (2D) image covering the 
complete container. With a good sampling routine, recording time is limited 
and amount of data is reduced. The system should be able to sample in a regular 
pattern.  
The combination of high spatial and high spectral resolution requires high 
irradiances throughout the sward profile. Direct light, contrary to diffuse light, 
can be focused on a small area minimising energy inputs. When light is 
projected on a surface under an angle, shadows will be produced. To minimise 
this effect, the angle between light beam and measured reflection is minimised. 
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Table 2.1 Sensor characteristics and charge coupled device (CCD) camera type. 

Sensor Spectral range, nm Spectral Spectral bands, CCD 

 from up to resolution, nm # type rows columns 

V7 405 710 5 565 Silicium 768 565 

N10 675 970 5 565 Silicium 768 565 

N17 906 1659 13 128 InGaAs 128 128 

 
 

2.2.2  Choice of sensors 

The imaging spectrometer technology combines high spatial and high spectral 
resolution. The reflectance spectrum of points on a narrow line is measured 
(Herrala & Okkonen, 1996). An image of one line will be referred to as image 
line. With a 768 by 565 pixel charge coupled device (CCD) camera, 768 
spectral curves are made per image line, where each spectral curve is built up 
by 565 elements, or ‘spectral bands’. Three imaging spectrometers, the V7 
(405-710 nm), N10 (675-970 nm), and N17 (906-1659 nm) with an 80 µm slit 
are used. Each sensor consists of four parts, an objective lens, spectrometer, 
camera (see Table 2.1) and light source, and will be referred to as the V7, N10, 
and N17. The V7 sensor uses a 768 by 565 pixel CCD camera, with a high 
sensitivity in the blue region of the spectrum. This camera is modified to control 
exposure time. A xenon (flash) light source is used, in combination with 
fibreglass, for a high and constant light yield in the blue region of the spectrum. 
As a result of the relatively strong emission of xenon around 530 and 542 nm, 
the number of flashes per image is limited by the surface with the highest 
reflection value (the reflection standard). The N10 sensor uses a 768 by 565 
pixel CCD camera with a high-pass filter, transmitting only wavelengths above 
590 nm. The camera has a high sensitivity above 900 nm. A normal 300 W 
halogen light source is used, with a reflector at the back of the light bar. The 
N17 sensor uses an InGaAs camera, equipped with a high-pass filter, through 
which wavelengths above 960 nm can pass. For all sensors lenses with 75 mm 
focal length are used, which are focused on the soil surface, yielding an 
instantaneous field of view (FOV) of 60.66o. This corresponds with a FOV per 
image line point of 7.9 × 10-2 degree for the V7 and N10 and 47.4 × 10-2 degree 
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for the N17 sensor. The sensors are calibrated according to the manufacturer's 
manual. 
The distance to the container is the same for each camera, ranging from 
approximately 1.05 m (sward top) to 1.3 m (for the soil surface). Due to the 
combination of CCD and lens characteristics, pixel area increases with distance 
to the sensor, as shown in Table 2.2. Reflection is measured relative to a 
reflection standard. Reflection of this standard increases from 49.5 to 54.7% 
from 400 up to 1660 nm, as shown in Table 2.3.  
 
 

Table 2.2 Pixel resolution as a function of distance from the sensor. 

Sensor Pixels per  

image line 

Distance from 

sensor, m 

Length of  

 image line, mm

Width of 

 image line, mm 

Pixel area, 

mm2 

N17 128 1.0 102.4 1.07 0.856 

  1.1 112.6 1.17 1.029 

  1.2 122.9 1.28 1.229 

  1.3 133.1 1.39 1.445 

V7, N10 768 1.0 117.3 1.07 0.163 

  1.1 129.1 1.17 0.197 

  1.2 140.8 1.28 0.235 

  1.3 152.5 1.39 0.276 

 
 

Table 2.3 Reflection of standard reflection surface as a function of wavelength. 

Sensor Wavelength, nm Reflection, % 

V7 400 49.5 

 700 50.8 

N10 670 50.7 

 970 52.3 

N17 900 52.2 

 1660 54.7 
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2.2.3  General construction  

In Figure 2.1, the schematic configuration of the assembly is given. With a 
horizontal sensor orientation in combination with mirrors, instrument height 
can be limited. The lower sensors are shifted horizontally preserving an equal 
distance to the soil for each sensor. A bar lens is placed in front of the light 
sources to concentrate light on a narrow line. Light sources are located near the 
sward, to maximise light intensity. Extra cooling elements are placed above the 
halogen lamp to prevent the cameras from heating. The light beams are 
redirected by mirrors (aluminium coated, first-surface), which are moved by air 
pressure to select the right light source and camera combination. With these 
mirrors, each sensor can record identical objects. The angle between incoming 
light and measured reflection is 2 degrees. The sensors and mirrors are 
connected to a XY step-table. This assembly (sensors, mirrors and XY table) is 
placed on a portal cart, which can ride over the grass containers. The reflection 
standard is placed in a small box to prevent contamination, 18.5 cm above soil 
surface. The portal is completely covered eliminating sunlight influences. At 
 
 

 

Figure 2.1 Schematic configuration (1) spectrograph; (2) camera; (3) objective lens; (4) light source; 

(5) bar lens; (6) translation table; (7) displaceable mirror; (8) fixed mirror; (9) light 

blocking curtain; (10) personal computer controller; (11) reflection standard; and (12) 

grass sward container. 
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the sides of the table, two black curtains are placed which can be moved for 
transport. The positioning of XY translation table, the mirrors and the sensors 
are controlled by a personal computer (PC). A frame-grabber is used to load the 
images in the PC, equipped with a compact-disk writer, for easy data storage 
and transport. A software program is written to operate the cameras, light 
sources, step-table, and mirrors. Images are stored as bitmap files and have 
standard names. These names are supplied with experimental code, container 
number, treatment, sensor, date and x- and y- position in the container, available 
from an input file. The names of the recorded images are stored in a log file. 
The step-table operation scheme is stored and operated in a separate driver, and 
the image taking process in the PC software is tuned with this driver scheme.  
 
 

2.3  Operation of equipment 

2.3.1  Procedure for taking images 

The portal can be placed above a container, with a horizontal accuracy of 
2.5 cm. When the portal is fixed on its position, curtains are lowered and the 
sampling procedure starts. First, the step-table is moved to the position of the 
reflection standard. Background images (images recorded with light sources 
off) and five image lines at distance of 1 mm are taken at the reflection standard 
to eliminate minor texture effects. At every stop of the step-table the sensors 
take their images one by one, after moving mirrors and switching on the 
accompanying light source. Image lines are taken in a regular scheme within a 
net area of 50 cm by 70 cm (Figure 2.2). After taking the images of the 
standard, the XY table moves along the three tracks, in the direction as 
indicated in Figure 2.2. In total, 126 image lines per container are made (42 
images per sensor). The images are stored on the PC hard disc. After a day of 
scanning, images are written to a CD in a zipped format. Sampling one 
container takes 5 minutes. Including the time needed for moving the portal, a 
total of 8-10 containers per hour can be sampled. The software can also be 
instructed to scan adjacent image lines, for construction of a 2D image. The XY 
step-table is then moved one mm (perpendicular to the image line) for each 
image line and 10 minutes for 100 adjacent image lines are required (a surface 
of 10 long and 15 cm wide).  
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Figure 2.2 Position of image lines in container mini sward. 

 
 

2.3.2  Processing of images 

To handle the large amount of data, a software program is written. The 
procedures in this program are optimised for images in imaging spectrometry 
format. When an image is opened, from the image names, container and sensors 
are recognised and the appropriate reference and background image(s) are 
opened. The spectral range divided by the number of bands is larger than the 
spectral resolution. Thus, individual bands overlap and adjacent bands are 
highly correlated. To minimise calculation time, values are integrated over 
4 pixels in the spectral direction. Then, the relative reflection R is calculated for 
each pixel on the image line and for each spectral band according to: 
 

ijij

ijij
sij BS

BI
RR

−
−

=   (1) 

 
Where: Rs is the reflection percentage of standard surface; I is the input image 
line; B is the image line of background (dark); S is the average image line of the 
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reflection standard; i is the spectral band; and j is the pixel number on the 
image line. 
The image of the reflection standard S is an average of five images, to minimise 
texture effects. The standard reflection Rs is a function of wavelength and is 
linear interpolated between the minimum and maximum wavelength for each 
sensor (see Table 2.3). After this, images were filtered with a 5 by 5 median 
filter. 
The software is developed to handle image lines and can construct 2D images 
based on image lines. For classification of the images, the software uses the log 
file produced by the image taking process. Classification procedures are 
developed to classify images of one sensor at the time. With one command, all 
images taken on the same day can be classified. Output of the classification 
procedures consists of three text files. In the first file an average classification 
result of coverage per image, grouped per container is given.  
In the second file, for every classifier defined, an average reflection curve per 
container is given, based on pixels assigned to that class. When classifying a 
grass sward in different grass classes, one might be interested in an average 
reflection curve for the complete sward. For this, a third output file is generated 
with, for each container, an overall average spectral curve for a group of 
classifiers (e.g. all grass pixels). Reflection intensity was found to be a function 
of canopy height (see Section 4). Before averaging over classes, spectral curves 
are corrected for this effect according to the following function: 
 

jkr

ijk
ijkn R

R
R

,
, =  (2) 

 
where: Rn is the normalised reflection; R is the reflection value; Rr is the 
reference reflection; and k is the sensor. 
The reference reflection Rr is the average reflection over a range of bands that 
are (1) always above zero, and (2) relatively insensitive for changes in water 
and pigment content. The chosen ranges are 550-555 nm, 800-850 nm and 
1070-1100 nm for the sensors V7, N10, N17, respectively. The range 550-555 
nm does show some absorption features. Under the assumption that both the 
collection of objects from which reflectance is measured and sensor sensitivity 
in the overlapping spectral range (from 675 nm up to 709 nm) from the V7 and 
N10 sensor is comparable, the V7 spectral curve can be normalised to 800 - 850 
nm. These assumptions can be made for the V7 and N10 sensors if the spectral 
curve is an average of a large number of pixels, which is the case for the 
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average spectral curve per container for a group of classes. The normalised 
reflection of the V7 sensor can be transformed to reflection normalised at  
800-850 nm (Rn, V7-N10), according to:  
 

7,107, VnNVn RAR ×=−  (3) 
 

The value of A can be calculated from reflection in the overlapping spectral 
region.  
In this region the average reflection value should be equal for both the V7 and 
N10 sensor. Accordingly, the ratio between the V7 and N10 sensor response 
can be attributed to the ratio between 550-555 nm and 800-850 nm:  
 

7,

10,

avVn

avNn

R
R

A =  (4) 

where Rn,av is the average Rn over the overlapping spectral region (675 to 
709 nm). 
 

For supervised classification, there are two methods: applying a predefined 
description of the spectral curve using thresholds for reflection values and 
ratios; applying a set of spectra on which a classifier can be trained (e.g. with 
maximum likelihood or nearest neighbours). The first procedure is simple and 
relative insensitive for changes in chlorophyll and water content but uses only a 
limited number of spectral bands. The second method is mostly used in remote 
sensing, since a large number of bands can be used for classification. The 
quality of the trained classifier depends strongly on the quality of the training 
set.  
For using the first procedure, spectral curves of various sward elements were 
measured individually with the equipment. These spectral curves were 
characterised, for each sensor, by simple thresholds and ratios, where 
boundaries of classes cannot overlap. Boundaries between grass, soil and dead 
material were optimised by calibration with visual ground cover scores. With 
these sharply defined class boundaries, spectra can be selected from a collection 
of images. These selected spectra can be used to construct a spectral library, on 
which classifiers can be trained. With a normal PC with a Pentium III 
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processor, the full sequential process of opening images and classification takes 
20 s per container for the V7 and N10 images, and 10 s for the N17 images. 
 
 

2.4  Influence of leaf position in the sward and leaf angle 

2.4.1  Experimental testing 

Although a bar lens is placed in front of the light source, light beams still 
diverge a little. The effects of this phenomenon on light intensity per pixel and 
relative reflection of a standard surface as function of position in the sward 
were tested. The light intensity was measured on different heights in the grass 
sward. For the halogen light source, the voltage of the electric signal of a 1 cm2 
light sensitive cell is measured. For the xenon flashlight the maximum 
amplitude of the electric signal produced by that cell is measured. Also image 
lines were made of a 10 cm by 15 cm standard reflecting (50%) surface at 
different positions in the canopy. For each image line, reflection was averaged 
over all spectral bands and over all pixels on the image line. Also the effect of 
leaf angle on leaf reflection was measured. For this, three leaves were fixed on 
a plate covered with a black cloth with the upper cuticle up, and connected on a 
plate that could rotate around its axis. This axis was perpendicular to the image 
line, with its centre exactly under the image line. The leaves were at a similar 
height position as the reflection standard, and oriented perpendicular to the 
image line. While images were taken, the plate was rotated around its axis. The 
maximum reflection value was recorded for each leaf, and averages were taken 
from the three leaves. 
 

2.4.2  Reflection measurements 

Figure 2.3 shows that irradiance decreases with distance by a third order 
polygon for xenon, and linearly for Halogen. This difference can partly be 
attributed to the positioning of the bar lenses. For xenon the distance between 
fibreglass and bar lens is fixed, and there is only one focal point. The reflector 
behind the halogen lamp produces multiple focal points, and the light beam is 
built up by several overlays, causing the linear decline in light intensity. In 
Figure 2.4 the reflection of a 50% reflecting surface is given as function of the 
position in the sward. Positions higher in the canopy yield higher reflection 
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Figure 2.3 Light intensity relative to the reflection standard (at 18.5 cm) of the xenon (�) and 

halogen ( ) light source as function of vertical position (in cm above soil surface) in the 

sward; for halogen a linear function and for xenon a third order polygon was fitted. 

 
 
values. The character of this increase is quadratic. Above 20 cm sward height 
the V7 camera is saturated. Although the N10 and the N17 use the same light 
source, the N10 shows a stronger effect of sward height, as a result of camera 
characteristics. The decline in reflection with positions deeper in the sward is 
caused by a combination of two effects, (1) changes in irradiance level and (2) 
the fraction of the reflecting sphere intercepted by one pixel. This is shown in 
Figure 2.5 for the N10 and N17 sensor, where the effects are expressed as 
fraction compared to the position of the 50% reflecting standard. The fraction 
of the reflecting sphere intercepted by one pixel is calculated as a 1/r2, where r 
is equal to the distance from the sensor. The combined effect of irradiance and 
fraction of the reflecting sphere intercepted yields a similar curve as in 
Figure 2.4. Thus with this configuration of lenses and light source close to the 
reflecting surface, the amount of reflection can be used as measure of distance 
to the sensor and thus the position of the reflecting surface in the sward. 
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Figure 2.4 Reflection of a 50% reflecting surface as function of vertical position in the sward for the 

three sensors V7 ( ), N10 (�) and N17 ( ). 
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Figure 2.5 The decreasing reflection decomposed into the effects of distance (   ), irradiance ( ) and 

combined effect (  ) for the N10 and N17 sensor. 
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Leaf angles also play an important role. Reflection values increase when leaf 
angle with the horizontal plane decreases, as shown in Figure 2.6. In horizontal 
position, reflection is extra strong due to specular reflections. These specular 
reflections are additive to the normal body reflection, at all wavelengths. The 
effects of leaf angle on reflection of individual leaves, is comparable to the 
effects of leaf angle distribution on reflection at the canopy scale (Asner, 1998; 
Clevers & Verhoef, 1993). In grass swards, leaves are oriented more horizontal 
at higher canopy positions. As a result, the effect of increasing reflection at 
higher canopy positions, as described above, will be even more pronounced. 
In Table 2.4, class boundaries are defined for soil, a class with both pixels of 
dead material and soil (DSoil), a class with both pixels of green material and 
soil (GrSoil), and classes of dead and green material and grass leaves with 
specular reflections. These latter classes are subdivided into a number of 
intensity classes (IC). The number of IC’s and the boundaries are arbitrarily 
chosen. For the separation of these IC’s, the 550, 746 and 1100 nm wavelengths 
are used. These wavelengths are selected since they have a relatively neutral 
response to changes in pigment and water concentration. The boundaries 
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Figure 2.6 Reflection of a grass leaf (at a sward height of 18.5 cm), as function of leaf angle (defined 

relative to the horizontal plane) for 550 nm ( ), for 600 nm ( ) and for 800 nm ( ). 
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Table 2.4 Classification boundaries for library spectra. 

Main class Intensity 

class 

Discriminating wavelengths (wvl), and minimum (min) and maximum (max)  

reflection thresholds per class for each sensor 

  V7 N10 N17 

  wvl* min,% max,% wvl* min,% max,% wvl* min,% max,% 

Soil  680 0.00 3.00 683 0.00 4.99 985 0.00 6.99 

  680/550 1.00 100.00 746 0.00 4.99 1100 0.00 7.99 

GrSoil     683 0.00 4.99 985 0.00 6.99 

     746 5.00 7.99 1100 8.00 100.00 

     683/746 0.00 0.49    

DSoil  680 3.01 4.00 746 5.00 7.99    

  680/550 1.00 100.00 683/746 0.50 100.00    

Grass All** 680/550 0.00 0.99 683 0.00 6.50 985 7.00 100.00 

 All** 450/550 0.00 0.50 683/746 0.00 0.49 1450/1100 0.00 0.70 

 0 550 1.00 2.00 746 8.00 9.99 1100 8.00 14.99 

 1 550 2.01 3.00 746 10.00 12.99 1100 15.00 17.99 

 2 550 3.01 5.00 746 13.00 18.99 1100 18.00 21.99 

 3 550 5.01 7.00 746 19.00 24.99 1100 22.00 26.99 

 4 550 7.01 9.00 746 25.00 30.99 1100 27.00 29.99 

 5 550 9.01 12.00 746 31.00 36.99 1100 30.00 33.99 

 6 550 12.01 100.00 746 37.00 100.00 1100 34.00 39.99 

 7    746 43.00 49.99 1100 40.00 45.99 

 8    746 49.00 54.99 1100 46.00 51.99 

 9    746 55.00 60.99 1100 52.00 60.99 

 10    746 61.00 100.00 1100 61.00 100.00 

Dead  All** 680/550 1.00 100.00 683/746 0.50 100.00 1450/1100 0.7001 100.0 

Material 0 680 4.01 6.00 746 8.00 17.99 1100 8.00 12.99 

 1 680 6.01 9.00 746 18.00 28.99 1100 13.00 23.99 

 2 680 9.01 12.00 746 29.00 60.00    

 3 680 12.01 20.00       

Grass with All** 450/550 0.501 1.00 683 6.51 100.00    

Specular All** 680/550 0.00 0.99 683/746 0.00 0.49    

Reflection 0 550 2.01 6.00       

 1 550 6.01 12.00       

 2 550 12.01 100.00       

*  Absolute values or ratios (e.g 680/550, reflectance at 680 nm divided by reflectance at 550 nm) 

** These boundaries and discriminating wavelengths apply to all intensity classes within a main class 
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consist of threshold values or ratios of specific wavelengths. Soils containing 
normal levels of iron and organic matter typically have reflection values below 
30% throughout the spectral region of 400-1650 nm, with a maximum around 
1300 nm (Stoner & Baumgardner, 1981). Soil reflection is further reduced by 
its low position in the sward. As a result, reflection of soil is only a fraction of 
leaf reflection. Consequently, only a few wavelengths are needed with a high 
contrast between soil and green material for classification. For the V7 sensor 
the following wavelengths are needed: the ratio between reflection in the green 
(550 nm) and red (680 nm) for recognition of green material. When reflection 
at 550 nm is higher than the reflection at 680 nm, the pixel is classified as green 
material. The ratio between blue (450 nm) and green (550 nm) is needed for 
recognition of leaves with clear specular reflection. For the N10 sensor, the 
occurrence of a red edge, defined as a maximum reflectance ratio of 0.5 
between red (683 nm) and infrared (746 nm), is sufficient for recognition of 
green leaves. For the N17 sensor, green material can be recognised by the 1450 
nm and 1100 nm reflectance ratio. Boundaries were optimised for detecting 
grass leaves, based on visual judgement of example images and comparison 
with visual cover estimates. With an average leaf angle of 45o, the boundaries 
of the IC’s, combined with the reflection characteristics from Figure 2.3, can be 
used to derive a distance estimate. Horizontal grass leaves, positioned at a 
similar height as the reflection standard, have typical reflections of 15, 43, and 
41% at 550, 746 and 1100 nm. Combining these reflection values with the 
equations in Figure 2.4 and Figure 2.6, the boundaries of the IC’s can be used 
to calculate a sward height estimate. For a large number of pixels, IC’s can be 
related to an average sward height (for the V7 sensor: grass IC 1 < 3.5 cm, 
grass IC 2 < 9.5 cm, grass IC 3 < 14.5 cm, grass IC 4 < 18 cm, grass IC 5  
< 21.5 cm, grass IC 6 > 21.5 cm). These distance estimates have to be used with 
caution. The assumption of an average leaf angle of 45o is only valid when 
large numbers of pixels are measured, including all leaf angles. The fraction of 
mixed pixels and overlapping leaves also influence the sward height estimate. 
 
 

2.5  Images of grass swards 

In Figure 2.7 clockwise a normal photo, a false colour image of the V7 sensor, 
a classified V7 sensor image and a N10 sensor image of a small grass sward (15 
cm by 10 cm) are depicted. Due to the non-square pixels (0.2 mm by 1.4 mm), 
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Figure 2.7 Photo of a 18 cm high grass sward (left top), false colour image (red=680 nm, green=550 

nm, blue=450 nm) from the V7 sensor (right top), false colour image (red=680 nm, 

green=800 nm, blue is not used) from the N10 sensor (left bottom), and the V7 sensor 

image classified (right bottom); for explanation of the letters A, B, C, D and E see 

Figure 2.8. 

 
 
leaves perpendicular to the image line appear sharper than parallel oriented 
leaves. In the images a clear distinction between soil and grass can be made. 
Due to the effect of canopy height on reflection, intensity can be used as depth 
estimate. In general, brightness increases from the origin of the grass plant to 
the leaf top. This can be seen in Figure 2.8, where spectra of points indicated by 
marks B, C, and D in Figure 2.7 are given. With this characteristic, an image of 
a sports field (Figure 2.9) looks very different from a production sward image 
(Figure 2.7). Leaf angles have a major impact on reflection intensity 
(Figure 2.5). On horizontal leaves, specular reflections are visible. In the V7 
image they appear stronger than in the N10 image, since reflection values show 
a relatively large increase at low reflection values. The occurrence of these 
specular reflections can be used as indicator of leaf angle distribution.  
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2.5.1  Discrimination and classification 

The spectral curves of points indicated in Figure 2.7 are shown in Figure 2.8. 
Soil (A) has low reflections at all wavelengths, as result of its reflection 
characteristic and low canopy position. Reflection values of grass leaves close 
to the plant base (B) show lower reflection values than pixels at intermediate 
positions (C) and at higher canopy positions (D). Horizontal leaves with 
specular reflection (E) have normal grass spectra, where the reflection values 
are increased by an additive term, equal for all wavelengths. The sensors react 
differently on the effect of sward height, and therefore the additive term 
appears slightly different for each sensor. The V7 sensor images are classified 
according to the boundaries in Table 2.4 and depicted in Figure 2.7 and 
Figure 2.9 in the right bottom image. The colour green is assigned to grass 
classes, red to dead material, blue to specular and yellow to soil. A brighter 
colour corresponds to a higher intensity class. All unrecognised pixels appear 
white. With this simple classification, grass, leaves with specular reflections, 
soil and dead material in different intensity classes are recognised. Even better 
results could be obtained with sharper definitions of the classes, but then 
classification becomes sensitive for temporal changes in leaf water and pigment 
content. As can be seen in the classified images, mixed pixels (mixels) of soil 
and grass occur at the leaf edges. These mixed pixels are assigned to a lower 
IC, when compared to the centre of the leaf. Due to the very low reflection 
values for soil, mixels containing soil and grass will have the grass reflection 
characteristic, but reflection values will be diluted by the fraction of soil in the 
pixel. The resulting spectral curve will be similar to pure grass pixels lower in 
the canopy. The classification of the V7 image in Figure 2.7, with the 
boundaries in Table 2.4, yielded the following ground cover estimates: 30.2% 
soil, 0.4% dead material, 36.8% grass IC 0, 9% grass IC 1, 11% grass IC 2, 7% 
grass IC 3, 3.5% grass IC 4, 1.0% grass IC 5, 0.1% grass IC 6 and 1% specular. 
The V7 image in Figure 2.9 yielded: 27% soil, 7% dead material, 31% grass IC 
0, 22% grass IC 1, 12% grass IC 2 and 1% grass IC 3. Although total ground 
cover, calculated as sum of all grass classes and the specular class, was similar 
for the sports field (66%) and the production sward (69%), the production 
sward can be easily distinguished by the occurrence of the higher intensity 
classes grass IC 4, grass IC 5, grass IC 6 and the specular classes.  
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Figure 2.8 Spectral curves of soil (A), grass leaves (B, C and D ) and a grass leaf with specular 

reflection (E) as indicated in Figure 2.7. 

 
 

   

  

Figure 2.9 Photograph of 3 cm high sports-field grass sward (left top), a false colour image (red=680 

nm, green=550 nm, blue=450 nm) from the V7 sensor (right top), a false colour image 

(red=680 nm, green=800 nm, blue is not used) from the N10 sensor (left bottom), and the 

V7 sensor image classified (right bottom). 
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2.5.2  Prospective applications 

As shown in the previous section, ground cover can be easily estimated with the 
described imaging spectroscopy system. In most periods of the growing season, 
ground cover of grass swards is incomplete (Alberda, 1968). Therefore, pixels 
in most remote sensing applications are a mixture of soil, grass leaves and dead 
material. In the described assembly, spatial resolution is much higher than leaf 
dimension, yielding mostly unmixed pixels. As result, leaf reflectance is 
independent of soil and dead material in the background, and evolution of 
ground cover and spectral composition of leaf reflectance can be studied 
separately. In future papers, the temporal dynamics of ground cover, reflection 
intensity distribution, spectral composition of leaf reflectance and image 
texture, in relation to sward quality and nutrient and water supply, will be 
studied in container experiments. Also the relation between these parameters 
and other sward descriptors (e.g. visual ground cover estimates, biomass, leaf 
area index etc.) will be studied.  
Although the described assembly is designed for container experiments, it can 
be used in field applications. In the field, a number of factors will vary stronger 
than in the mini sward containers. An important difference between the 
containers and the field are lighting conditions, as it is difficult to eliminate 
sunlight influence. It is not necessary to exclude sunlight completely, as long as 
it is only a minor fraction of the total irradiation. Another approach would be to 
accept some sunlight influence and eliminate it later when processing the 
signal. A different challenge is spatial variation in soil spectral characteristics. 
Discrimination between soil and green material is, however, not expected to 
give extra problems. Firstly, most soil spectra are quite similar in the 400-1650 
nm domain, as iron oxide and organic matter absorption features dominated 
them. Secondly, reflection intensity from the soil surface is low, since soil is in 
a low canopy position. Small-scale soil level variations in the field might 
influence the recorded reflection intensity. This effect can be limited by 
adjusting the position of the light source to the soil level under measurement. 
An alternative is the correction of the reflection intensity according to the 
reflection intensity of soil pixels.  
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2.6  Conclusion 

In most periods of the growing season, ground cover of grass swards is 
incomplete. Therefore, pixels in most remote sensing applications are a mixture 
of soil, grass leaves and dead material. In the described assembly, pixel width is 
much smaller than leaf width, yielding mostly unmixed pixels. The assembly 
was designed to obtain a spectral curve from 400-1650 nm for each pixel. 
Although image lines of the sensors overlap, they could not be positioned 
accurately enough to match on pixel level. Bar lenses were used for light 
focusing to reduce required energy inputs. Despite these lenses, irradiance 
levels and even more leaf reflectance decreased with positions deeper in the 
grass sward. This characteristic can be used to study the geometry of swards. 
To fully exploit this phenomenon, a balanced sensor design is required, in order 
to obtain reflection values above noise level at low canopy position, and still 
within the dynamic range of the camera at high canopy position.  
Soils containing normal levels of iron and organic matter typically have 
reflection values below 30% throughout the spectral region of 400-1650 nm. 
Soil reflection is further reduced by its low position in the sward. As result, 
reflection of soil is only a fraction of leaf reflection, and grass-soil mixels are 
similar to pure grass pixels lower in the sward.  
In this study a strong effect of leaf angle was found, comparable to the effects 
of leaf angle distribution on reflection at the canopy scale. Body reflection for 
nearly vertical leaves is a factor 4 lower when compared to horizontal leaves. 
For leaves with right angles to incident light a strong additive effect on 
reflection of nearly 10% was found for various wavelengths.  
Images of a production sward and sports-field swards could be easily 
distinguished by differences in reflection intensity. Based on the spectral 
characteristic, grass could be easily distinguished from soil and dead material 
by simple thresholds and ratios. Pixels assigned to grass classes are further 
subdivided into intensity classes. These intensity classes were related to sward 
height and leaf angle, and could be used as indicators of canopy height and 
vertical sward structure. With the described assembly, canopy structure can be 
characterised by ground cover, the distribution of pixels over intensity classes 
and image texture. Spectral characteristics can be obtained at leaf level. 
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3.  Abstract 
The potential of an experimental imaging spectroscopy system, with high 
spatial (0.16-1.45 mm2) and spectral resolution (5-13 nm), was explored for 
monitoring growth of grass swards. An experiment was conducted with 36 
Lolium perenne L. mini swards, differing in sward quality. In total 11 consecu-
tive growth periods were studied between September 1999 and October 2000. 
Hyperspectral images and light interception (LI) was recorded twice a week. 
On two dates ground cover was scored visually (GCv). At harvest, leaf area 
index (LAI), fresh matter (FM) yield and dry matter (DM) yield were deter-
mined. Classification of images using maximum likelihood procedures yielded 
(several) estimates of image ground cover (GCi) and index of reflection inten-
sity (IRI). The GCi was highly correlated with GCv (R2

adj =0.94), LAI (R2
adj 

=0.88), and LI (R2
adj =0.94, for dense swards under a cloudy sky). However, 

relations between GCi and LI depended on sky conditions (clear vs. cloudy sky) 
and sward quality (open vs. dense). Under a cloudy sky, LI was linearly related 
to GCi, whereas under a clear sky, this relation had a more logistic character. 
From the relation between LAI vs. LI, a light extinction coefficient of 0.7 was 
derived. Initial LAI after cutting was estimated at 0.3. Open swards had on 
average a lower GCi and a lower IRI when compared to dense swards at similar 
growth stages. Regression analysis of GCi and yields showed correlations with 
R2

adj ranging between 0.75-0.82. The mean error of DM yield estimates was 
340 kg DM ha-1. Estimates of GCi can be used to predict DM yields, even for 
high yield levels (up to 3500 kg). It is concluded that imaging spectrometry 
allows accurate, non-destructive monitoring of grass sward growth from 
increases in estimated GCi and IRI. 
 
 

3.1 Introduction 

The currently available techniques for non-destructive herbage mass measure-
ments have a limited accuracy (Gabriels & Van den Berg, 1993; Harmoney et 
al., 1997; Lokhorst & Kasper, 1998; Murphy et al., 1995; Sanderson et al., 
2001; Stockdale & Kelly, 1984; Virkajärvi, 1999). In the absence of fast and 
automatic means to monitor grass growth, the quality of grassland management 
strongly depends on visual judgements of the farmer. With the recently deve-
loped imaging spectroscopy system, novel methods for rapid, non-destructive 
grass sward characterisation can be explored (Schut et al., Chapter 2). 
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This experimental system produces images with high spatial resolution  
(0.16-1.45 mm2) and high spectral resolution (5-13 nm). With these high-
resolution images soil, dead material and green material are classified 
accurately. In addition, reflection intensity of leaves in this system was found to 
be dependent on vertical position in the canopy and leaf angle. With these 
features, ground cover can be differentiated into reflection intensity classes, 
which are related to height positions of leaves in the canopy. Monitoring of 
grass sward growth can thus be carried out by following the increase in cover of 
individual leaf classes (Schut et al., Chapter 2). Due to the non-destructive 
nature of imaging spectrometry, growth curves of grass swards might be 
constructed based on the temporal and spatial development of image ground 
cover (GCi). This opens up new means for visualising differences in grass 
growth dynamics between fields or between treatments in experiments.  
The objective of this paper is to explore the potential of the imaging 
spectroscopy system for monitoring growth of grass swards accurately. To this 
end, images of mini swards were compared with visual scores of ground cover 
and measurements of light interception (LI), leaf area index (LAI), fresh matter 
(FM) yield and dry matter (DM) yield. Grass swards were created that differed 
in sward quality due to drought damage or artificial removal of tillers.  
 
 

3.2  Materials and methods 

3.2.1  Swards 

In total 36 mini swards were available from experiments in which effects of 
drought damage on sward productivity was investigated in 1999 and 2000. 
Swards were established from seed in April 1999 using a mixture of Lolium 
perenne L. cultivars (BG3, Barenburg). Swards were grown in containers of 0.9 
m long, 0.7 m wide and 0.4 m high, filled with a sandy soil containing 3% 
organic matter. Throughout the growing season, containers were kept under a 
rain shelter, covered with foil (1999: 70% transparent, new foil in 2000: 80% 
transparent) and wind breaking fences at the sides. Water was supplied through 
perforated drains at 10 cm depth. Soil moisture content was monitored by 
weighing containers twice a week. During winter, containers were placed 
outside the greenhouse. 
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Mini swards, 1999 

In 1999 mini swards from a drought experiment were available (Grashoff et al., 
2001). In April, mini swards received 8.1 g m-2 N, 13.8 g m-2 P2O5 and 24 g m-2 
K2O. The mini swards were hand cut to a stubble height of 4 cm. After every 
harvest 9.4 g m-2 N (dissolved in water) was supplied. After 15 September this 
dose was reduced to 5.1 g m-2 N. 
Drought stress was created at two periods, in June-July (T1) and August-
September (T2), and differed in length (control, 10, 20, 30 and 40 days without 
extra water). Each treatment had 8 replicates, from which 4 were used to study 
tiller growth after the drought period. From this drought experiment, control  
(4 from T1 and 4 from T2) and 40 days drought mini swards (8 from T1 and 8 
from T2) were used. For 12 of the T1 mini swards (the mini swards that were 
used to study tiller growth after the drought period from the treatments 10, 20 
and 30 days without extra water), artificial sward damage was created. These 
swards were damaged in order to create a wide range of sward quality. This 
range in sward quality was required for the study of the potential of imaging 
spectroscopy for quantification of heterogeneity and sward deterioration (Schut 
& Ketelaars, Chapter 8). 
First, any sward damage already present due to sampling for tiller analysis in 
the drought experiment was restored. Then an area of approximately 25%, 50% 
and 70% of the sward was removed in the first week of September with circular 
patches of 12.5 cm (S) and 22.5 cm (L) in diameter. The locations of patches in 
the sward were selected by picking random cross-points on a grid, restricted to 
non-overlapping patches. 
The experimental period started on 15 September and ended on 9 November. 
The last harvest prior to the experiment was on 23 August (T1) and 
14 September (T2). Within the experimental period, harvests were made on 
29 September (T1 only) and on 9 November (T1 and T2).  
 

Mini swards, 2000 

In 2000 another drought experiment was conducted. From the 1999 experiment, 
mini swards without sward damage were selected and assigned randomly to 
5 drought treatments. These treatments were control, 10, 20, 30 and 40 days 
without water in the period from 1 June to 10 July. From this experiment, the 
control and 20, 30 and 40 days without water were used, see Table 3.1.  
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Table 3.1 Treatments in the 2000 experiment, and seasonal mean values + standard error of the 

mean for image ground cover of green (SM-GCi) and dead material (SM-GCDi) and 

index of reflection intensity (SM-IRI). 

Treatment description Code Mini 

swards (#)

Sward 

quality 

SM-GCi SM-GCDi SM-IRI 

Control C 4 Dense 54.0 + 0.9 8.4 + 1.1 5.7 + 0.6 

40 days drought from  

1 June – 10 July 2000 

T1-40 4 Dense 47.4 + 1.4 14.6 + 1.6 6.1 + 0.0 

30 days drought from  

11 June – 10 July 2000 

T1-30 4 Dense 49.8 + 1.5 11.9 + 1.8 6.1 + 0.4 

20 days drought from  

21 June – 10 July 2000 

T1-20 4 Dense 51.6 + 0.5 10.6 + 0.7 5.3 + 0.4 

Drought damaged swards 

from 1999 

NDS 8 Open 51.2 + 0.8 12.2 + 0.7 4.3 + 0.6 

Small circular patches,  

25% of sward removed 

S25 2 Open 43.3 21.6 2.5 

Small circular patches,  

47% of sward removed 

S50 2 Open 49.9 11.9 3.7 

Small circular patches,  

68% of sward removed 

S75 2 Open 47.2 13.4 2.4 

Large circular patches,  

25% of sward removed 

L25 2 Open 40.9 18.8 2.9 

Large circular patches,  

55% of sward removed 

L50 2 Open 44.2 12.1 2.2 

Large circular patches,  

75% of sward removed 

L75 2 Open 48.6 8.7 2.7 

 
 
On 17 March 2000, above ground fertiliser was supplied at 8.1 g m-2 N,  
6.6 g m-2 P2O5 and 12 g m-2 K2O. On the 11th of July 3 g m-2 P2O5, 20 g m-2 
K2O and 6 g m-2 S was supplied. On 30 August an additional 6.3 g m-2 K2O  
was supplied. After every harvest 9.4 g m-2 N (dissolved in water) was 
supplied. The mini swards were harvested on 25 April, 12 May, 30 May, 20 
June, 11 July, 8 and 29 August, 27 September and 31 October. The intermediate 
harvests just before the drought period of the T1-30 (on 9 June) and just after 
the drought period (T1-30 and T1-40) were excluded from the data set. 
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Dense and open mini swards 

Mini swards in Table 3.1 were divided into either dense or open swards. Mini 
swards of control and the drought treatments T2 (1999) and T1 (2000) were 
considered as dense swards as the 1999 T2 and the 2000 T1 drought period did 
not affect sward quality (Grashoff, personal communication). Mini swards of 
all other treatments were assigned to open swards. The C and T1-20 mini 
swards had a mean tiller density with standard errors of 5330 + 250 tillers m-2, 
artificially damaged swards (S25, S50, S75, L25, L50 and L75) 2610 + 270 
tillers m-2 and drought damaged swards (NDS) 3600 + 340 tillers m-2 in the 
autumn of 1999. In spring 2000, mean tiller densities increased to 6250  
+ 360 tillers m-2 for C and T1-20, 3860 + 240 tillers m-2 for the artificially 
damaged swards and to 3660 + 390 tillers m-2 for drought damaged swards. The 
spatial heterogeneity of tiller density also differed considerably. In 1999, the 
mean coefficients of variation with standard errors were 0.23 + 0.02 (C and  
T1-20), 0.66 + 0.05 (artificially damaged swards) and 0.83 + 0.08 (drought 
damaged swards), and in 2000 0.19 + 0.02 (C and T1-20), 0.52 + 0.03 
(artificially damaged swards) and 0.74 + 0.08 (drought damaged swards)  
(Schut & Ketelaars, Chapter 8). Surprisingly, increasing the degree of artificial 
damage was not reflected in a proportional decrease in GCi and DM yield. 
 

3.2.2  Light interception measurements 

Light interception (LI) was measured twice a week by hand, simultaneously 
with image line recording, with a DECAGON LI-meter. This LI-meter has 80 
light sensitive cells of 1 cm2 on a 1 m long, 1 cm wide and 1 cm high stick. The  
LI-stick was longer than the containers were wide. For below canopy 
measurements, the LI-stick was placed on the container sides, 0-2 cm above 
soil surface. Per mini swards 7-14 alternating measurements above and below 
canopy were made. Afterwards, absorbed photosynthetic active radiation 
(APAR) was calculated per cell by 100 – 100% × below / above canopy 
readings. Only cells that fell within the three bands in the 50 cm wide and 70 
cm long area, where also image lines were recorded were included (Figure 3.1). 
Results were then averaged per mini sward. Fast changes in cloud cover 
strongly disturbed measurements of LI. Therefore, only LI measurements on 
days with constant sky conditions (i.e. clear sky or uniform cloud cover) were 
used in the analysis.  
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Figure 3.1 Position of image lines in the mini swards, numbers indicate image line number. 

 
 
On two days (1 and 20 October 1999), visual scores of ground cover (GCv) 
were made to check image estimates of ground cover (GCi). For this, a fine 
wire raster with 2 × 3 cm cells were laid over the mini swards. On each 
crossing point of wires, presence of green grass leaves or soil was scored 
visually, by looking down vertically (Korva, 1996). For each container  
300 points were scored. Results were averaged per mini sward. 
At each harvest, FM yield was determined and samples were taken for DM 
content determination. From this yield, samples were taken for leaf area 
measurement (LICOR leaf area meter) and leaf area ratio (LAR, m2 g-1 DM) 
and LAI (m2 m-2) were calculated. Standing LAI is underestimated, since only 
material above cutting height is included. The underestimation is equal to the 
initial LAI at the beginning of a following growth period.  
 
 
3.2.3  Image line recording 

The experimental system used for imaging spectrometry is described in detail 
elsewhere (Schut et al., Chapter 2). In short, this system records image lines, 
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from a distance of about 1.3 m from the soil using three different sensors. The 
sensors are placed in a darkened box, eliminating solar light. This paper 
presents only results of the V7 sensor. The V7 sensor detects reflection in the 
404-709 nm wavelength range with a spectral resolution of 5 nm. At soil level, 
an image line recorded by the V7 is 1.39 mm wide and 152.5 mm long. Each 
image line has 768 pixels for the spatial dimension, resulting in a spatial 
resolution of 0.28 mm2 per pixel at the soil surface. Per pixel, radiance is 
measured in 565 spectral bands. The system uses a xenon light source with 
lenses, illuminating only the area where an image line is recorded. Light was 
projected vertically to the soil, and reflection was measured under an angle of 
2o from nadir, minimising shadow effects. As part of the sampling routine, the 
imaging spectroscopy system records image lines with the light sources 
switched off and 5 image lines from a 50% reflection standard. With these 
standard image lines, reflection was calculated from the radiance data. The 
reflection intensity of grass leaves measured with this imaging spectroscopy 
system depends on the height in the canopy and on leaf angle. Leaves high in 
the canopy and horizontally oriented leaves have a higher reflection than leaves 
low in the canopy and more vertically oriented leaves (Schut et al., Chapter 2). 
The image lines are recorded in a regular pattern with 3 bands next to one 
another per mini sward. In each band 14 image lines were recorded, each 5 cm 
apart, resulting in 42 image lines per mini sward (Figure 3.1). Mini swards were 
scanned twice a week during the growing season from 15 September up to  
8 November in 1999 and from 5 April up to 30 October in 2000. The harvests 
were always planned one day after image line recording. The recordings of one 
day before harvest were used to study the relation between image parameters 
and FM and DM yield. 
 

3.2.4  Image line classification 

Set-up of a library for training classifiers 

Schut et al. (Chapter 2) defined threshold values for soil, grass leaves (G), 
leaves with specular reflection (S), and dead material (D) classes and an 
intermediate class between soil and dead material (MDSO). Separation between 
classes was based on ratios of reflectance (R) at 450, 550 and 680 nm. A pixel 
was classified as green when R680 / R550 < 1, and dead when R680 / R550 > 1 
and R at 680 nm > 3%. These classes are subdivided into reflection intensity 
classes (IC), ranging from grass IC 0 (low reflection intensity, mostly vertical 
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leaves or leaves at the soil surface) to grass IC 6 (high reflection intensity, 
mostly horizontal leaves located in the top of the canopy). For leaves with 
specular reflection, IC ranged from 0 up to and including 2, and for dead 
material from IC 0 up to and including 3. Per class 40 - 2500 spectra which 
fulfil the boundary conditions were collected in a library. These spectra were 
selected from images of the 1999 experiment, taken on various dates and 
covering all stages within the growth period of grass. 
 

Feature selection 

Fast classification of hyperspectral images requires a selection of features from 
the total feature space. A set of spectral bands is selected according to the 
following function (Moshou et al., 1999):  
 

 V  V  /  YX   F iy,ix,iii +=  (1) 
 
where X and Y are the mean reflection values for class X and Y, and where i is 
the spectral band. Vx and Vy are the variances for classes X and Y. For each 
class to class combination, at all spectral bands, the F value is calculated. Then, 
for each class to class combination, the wavelengths (10-17) with maximum  
Fi value are selected, where the selected bands must be at least some (5-10) nm 
apart, to prevent selection of highly correlating wavelengths. With these 
selected wavelengths a correlation matrix was made and pixels where classified 
using maximum likelihood procedures (Stein et al., 1999).  
For classification a 99.99% confidence interval is used to eliminate effects of 
extreme or noisy pixels on the average spectral curve. Pixels beyond this 
confidence interval are assigned to a class ‘not classified’. For every date, 
images were classified and cover fractions of all classes were estimated. Images 
with a high fraction (>10%) of ‘not classified’ pixels were removed from the 
data set, as they resulted from errors in the recording process. 
 
Total image line ground cover (GCil, %) was calculated as the sum of grass 
(GCG) and specular classes (GCS): 
 

==

+=
2
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ic
icil GCSGCGGC  (2) 

 
where ic is the index number of the intensity class.  
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Sward GCi was calculated as mean over the 42 GCil estimates. The index of 
reflection intensity (IRI) is then calculated as: 
 

i

ic il
icil

GC

GCG
IRI = =×=

6

3

42

1
,42

1

100  (3) 

 
This IRI measures the presence of highly reflecting green pixels as a percentage 
of ground cover. The classes GCG3 through GCG6 are chosen since the fraction 
of pixels in these classes is limited just after cutting (typical <5%), and do not 
appear on short-cut sports-field images (Schut et al., Chapter 2). The fraction of 
dead material (GCD) was calculated as sum of the classes dead material D0-3 
and MDSO. Seasonal means (SM) of GCi, IRI and GCD were calculated as 
mean over all measurements in 2000. 
Bootstrap analysis was used to test the quality of the library. With this analysis, 
one spectral curve is selected from the data set, the classifier is trained on the 
complete data set minus one, and the selected curve is classified. This is 
repeated for the first 100 lines in the data set for each classifier. 
 

Statistics 

The relationship between LI and GCi was examined to determine whether it 
was affected by sward structure under clear and cloudy skies. For this, linear 
models were fitted: 
 

IRI  GC  d  IRI  c  GC b a  LI ii ××+×+×+=  (4) 
 
As IRI gives information on canopy geometry, limited here to the angular and 
vertical distribution of above ground plant parts, IRI and the interaction 
between GCi and IRI are included in the models.  
The model of equation 4 was fitted for both dense and for open swards. The 
null hypothesis, estimates of parameters are equal for dense and open swards, 
was tested by comparing the parameter estimates + z-value × standard error.  
For the relations LI vs. LAI, GCi vs. LAI and GCi vs. DM yield the following 
formula was fitted: 
 

)e -  (1  b a  y x -k  ××+=  (5) 
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Where a is the intercept with the y-axis, a + b equals the maximum y value and 
k is the extinction coefficient. 
This formula is widely used for the LI vs. LAI relation (Goudriaan & Van Laar, 
1994), where the value of k ranges between 0.5-0.8 depending on canopy 
geometry (Van Keulen & Wolf, 1986). When leaves are randomly distributed, 
overlapping decreases the visible fraction of each extra leaf exponentially. 
When using formula 5 to describe the GCi vs. DM yield relation, LAR and 
canopy geometry determine the extinction coefficient k, which has than the 
dimension ha unit-1 DM.  
Linear models were fitted for the relation between GCi and FM and DM yields. 
The response for the first harvest of 2000 was different from the other harvests. 
The equations were fitted on all harvests without this first harvest. Estimates of 
GCi include all green material, even below cutting height. Separating GCi into 
contributions of individual leaf classes provides a new range of GC estimates; 
for instance GCi, GCi without GCG0 (GCi-GCG0) and GCi with only classes 
‘above’ GCG1 (GCi-GCG0-GCG1). For leaves under a 45o angle with the 
horizontal plane, GCi-GCG0-GCG1 is equivalent to all leaves above 3.5 cm 
(Schut et al., Chapter 2). The relation between GCi and DM yield had a 
curvilinear character but this relation became linear when excluding GCG0 and 
GCG1 from the GCi estimate. Therefore, DM and FM yield values were 
converted with a natural logarithm before regression analysis when GCG0 and 
GCG1 were included. It is likely that canopy geometry has effect on the relation 
between GCi and DM yield and between GCi and FM yield. For this, the IRI 
was included as extra regression variable. 
The standard error (SE) of observations was calculated as root of the residual 
mean square.  
 
 

3.3 Results 

3.3.1  Classification success rates of classes in the library 

The overall results of bootstrap classification success rates are given in Table 
3.2. Grass is classified correctly for 99.2%. Grass leaves with specular 
reflections are classified correctly for 92.1%, and are confused with the higher 
reflecting classes of grass in 5.3% of the cases. Soil is classified correctly as 
soil for 91.0%, and for 5.5% as an intermediate class (MDSO).  
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3.3.2  Ground cover 

In Table 3.1, the seasonal mean GC of green (SM-GCi), dead material  
(SM-GCD) and IRI (SM-IRI) in 2000 is given. Control swards had a SM-GCi 
of 54%, a SM-GCD of 8.4% and a SM-IRI of 5.7%. %. The GCi values at 
harvest varied within the season where relatively high GCi values usually 
coincide with high DM yield values (Table 3.3). On average, open swards had a 
lower SM-GCi, a higher SM-GCD and a lower SM-IRI than dense swards 
(Table 3.1). The SM-IRI of dense swards ranged from 5.3-5.7%, whereas SM-
IRI for open swards ranged from 2.2-4.3%. The seasonal mean GCD ranged 
from 8.4-21.6%. Drought periods increased the fraction of dead material, 
although the SM-GCD of T1-40 and T1-30 also increased as result of the low 
GCi values during the drought period. The S25 and L25 treatments had the 
lowest SM-GCi and highest SM-GCD estimates.  
In Figure 3.2, the image GC (GCi) versus visually scored GC (GCv) is given for 
20 September and 1 October. GCi underestimates GCv, as indicated by the 
intercept (8.63) of the regression curve (Table 3.4). At harvest, some cut leaves 
fell on the soil. The colour of these leaves turned from green into red within a 
few days. With the high spatial resolution of the experimental system, pixels on 
these dying leaf parts were assigned to GCD classes (defined as: more 
reflection in red than in the green part of the spectrum). This is reflected in the 
value of the class GCD1, which ranged from 0.9-8.7 for mini swards with GCv 
scores <40%. Including this class into the GCi estimate would then especially 
affect the lower regions of the GCi. The intercept in the relation (between visual 
GC estimates and GCi estimates) was no longer significant when class GCD1 
was included in the GCi estimate (Table 3.4). 
 
 

Table 3.2 Bootstrap classification results for main classes of the V7 sensor. 

Class soil Dead Grass MDSO Specular 

Soil 91.0 0.0 3.5 5.5 0.0 

Dead 0.0 94.0 1.4 3.3 1.3 

Grass 0.3 0.3 99.2 0.0 0.2 

MDSO 1.0 2.0 0.0 96.0 1.0 

Specular 0.0 1.1 5.3 0.5 92.1 
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Figure 3.2 Visual GC estimates (GCv) vs. image GC estimates (GCi) for 20 September 2000 (–)  

and 1 October 2000 ( ). Thick line indicates fit (GCv = 8.63 + 1.08 × GCi) thin lines 

indicate 95% confidence intervals of regression line. 

 
 

Table 3.3 Average DM yield, LAR and GCi at harvest for control treatments. 

 DM yield 

(kg DM ha-1) 

LAR 

(m2 g-1 DM) 

GCI 

(%) 

 -------------------------------------------1999------------------------------------------- 

29 September  1234 0.011 66.2 

9 November 993 0.010 56.5 

 -------------------------------------------2000------------------------------------------- 

25 April 3308 - 67.0 

12 May 1953 - 78.6 

30 May 912 - 59.8 

20 June 1643 0.016 60.9 

11 July 1156 0.011 40.9 

8 August 2941 0.019 86.8 

29 August 2348 0.013 85.5 

27 September 2358 0.014 86.6 

31 October 1115 - 73.7 
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Table 3.4 Parameter values and standard errors of regression of GCi and GCv, GCi = a+ b× GCv. 

Model  n a b Standard error of 

observations 

R2
adj 

GCv = a + b×GCi 72 8.63 + 1.45 1.076 + 0.031 6.73 0.94 

GCv = a + b×(GCi + GCD1) 72 0* 1.208 + 0.016 6.49 0.95 

* Not significant (p>0.05), set to zero 

 
 

3.3.4  Light interception (LI) 

As GCi increases, also LI will increase. On cloudy days (Figure 3.3) there was a 
strong linear relation between LI and GCi (dense swards: R2

adj =0.94). 
Including IRI improved predictions slightly (Table 3.5). The negative intercept 
(-20.58) means that sward material near the soil surface had no effect on LI 
measurements, and can be interpreted as bias in LI meter readings. The 
confidence intervals (CI) for the intercept (-24.66 up  
to -16.50) and GCi slope (1.23 up to 1.43) were different for dense swards 
when compared to intercept (-5.52 up to –0.04) and GCi slope (0.97 up to 1.13) 
of open swards.  
  

Table 3.5 Parameter estimates and standard errors for linear regression of light interception,  

LI = a+ b× GCi + c× IRI + d× GCi× IRI. 

Sward  

quality 

N, # A B C D Standard error 

of observations 

R2
adj 

 ----------------------------------------------Cloudy sky----------------------------------------------- 

All 326 -14.65 + 1.62 1.22 + 0.04 4.00 + 0.72 -0.039 + 0.009 7.08 0.93 

Dense 167 -20.58 + 2.08 1.33 + 0.05 4.03 + 1.01 -0.039 + 0.014 6.82 0.95 

Open 158 -2.78 + 1.40 1.05 + 0.04 0.82 + 0.30 0* 6.42 0.92 

 -----------------------------------------------Clear sky------------------------------------------------ 

All 345 -9.03 + 2.05 1.21 + 0.04 1.52 + 0.62 -0.016 + 0.008 10.70 0.85 

Dense 155 0* 1.18 + 0.01 0* 0* 9.68 0.87 

Open 190 -10.19 + 1.74 1.14 + 0.04 0.55 + 0.14 0* 8.52 0.90 

* not significant (p>0.05), set to zero 
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Figure 3.3 Influence of sward density on light interception (LI) as function of GCi on days with a  

cloudy sky. Lines indicate linear fits, green line (LI = -19.34 + 1.42 × GCI, R2
adj=0.94) 

for dense swards (–), red line (LI = -3.98 + 1.14 × GCi, R2
adj=0.92) for open swards ( ). 
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Figure 3.4 Influence of sward density on light interception as function of GCi on days with a clear sky. 

Lines indicate logistic fits, green for dense swards (–), red for open swards ( ). 
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At similar GCi levels for the dense swards, LI was 8-10% higher in the lower 
GCi regions under a clear sky than under a cloudy sky (compare Figure 3.3 with 
Figure 3.4). There was a significant effect of sward openness, as the intercepts 
were different for dense and open swards (Table 3.5). Estimates for GCi slope 
were not different (CI dense swards: 1.16 up to 1.20, CI open swards: 1.06 up 
to 1.22). When including only GCi, residuals deviated from normality, and a 
logistic fit was more appropriate (Figure 3.4 and Table 3.6).  
 

3.3.5  Leaf area index (LAI) 

At a LAI of 0, LI was equal to 20% (Figure 3.5). As stated above (see materials 

and methods) LAI was underestimated due to remaining leaf material in the 

stubble after harvest. This residual LAI can be recalculated with the formula in 

Figure 3.5 under the assumption that when LAI equals 0, LI also equals 0. This 

value of LAI in the stubble was 0.31. The light extinction coefficient k was 0.70. 
The LAI was also strongly related to the GCi estimates (R2

adj =0.88, Figure 3.6). 
In this curvilinear relation, the extinction coefficient (k) was 0.83. At high GC 

values, GCi underestimated the ground cover of green material (Figure 3.2). 
Therefore, the maximum GCi value in the LAI vs. GCi relation was only 86%. 
 

3.3.6  Monitoring ground cover 

The GCi changed during growth periods. In Figure 3.7 the GCi development is 
given for three treatments: control (C), L25 (25% of the sward removed) and 
L75 (75% of the sward removed). Each point represents the mean of all mini 
swards in the treatment. Fluctuations in GCi between consecutive 
measurements were limited, and thus GCi was insensitive to disturbing factors  
 
 

Table 3.6 Parameter values and standard errors of light interception under a clear sky with a logistic 

regression, ( )MGCB ie
CALI −−+

+=
1

. 

Sward  

quality 

N A B C M Standard error  

of observations 

R2
adj 

All 345 6.92 + 3.64 0.064 + 0.009 99.93 + 9.06 53.96 + 1.76 10.40 0.86 

Dense 155 4.06 + 8.18 0.057 + 0.012 102.6 + 14.3 47.26 + 2.57 9.47 0.87 

Open 190 2.02 + 4.28 0.060 + 0.010 106.4 + 14.0 56.13 + 2.88 8.10 0.91  
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like e.g. heavy winds. Within the first days after harvest sometimes a small 
decline in GCi was visible, representing deteriorating litter leaves. The C 
treatment had higher GCi estimates than the L25 and L75 treatments throughout 
the season, with exception of the first growth period. The GCi shortly after 
harvest varied throughout the season. 
The cumulative GCi illustrates how the importance of reflection intensity 
classes varied with changes in canopy geometry during growth (Figure 3.8). In 
this figure, the cumulative GCi of class GCG2 was equal to the GCi of GCG2 
and total cover of all classes with lower reflection intensities. Just after a 
harvest, the classes GCG0, GCG1 and GCG2 were already present. In time, the 
cover of these classes increased, until leaves in more intense reflecting classes 
came up. Then, the ground cover fraction of these less intense reflecting classes 
decreased. The reflection intensity classes appeared in consecutive order, from 
low reflection intensity to high reflection intensity. 
Except for the 24th of April harvest, IRI of heavy harvests was much higher 
than for lighter harvests (compare yields in Table 3.3 with IRI values for C in 
Figure 3.9). For example, in 2000 the September harvest (2.3 ton DM yield) 
and the October harvest (1.1 ton DM yield), clearly differed in IRI (22.1% in 
September and 5.5% in October) whereas GCi was only 13% higher in the 
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Figure 3.5 Fraction of APAR intercepted as function of LAI. Fitted line: 

)e-(1  81.9  20.12  y LAI -k ××+= , k=0.7 (SE=0.1), R2
adj =0.85 (SE observations=6.61). 
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Figure 3.6 GCi as function of LAI of harvested material. Fitted line: 

)e-(1  71.22  14.97  y LAI -k ××+= , k=0.83 (SE=0.07), R2
adj =0.88 (SE observations=4.96). 

 
 
September harvest (86.6% in September and 73.3% in October). Hence, yield 
differences between these two harvests could be attributed to canopy geometry. 
There was a clear difference in IRI at harvests with a high DM yield (May, 
July, August and September), for the treatments C, L25 and L75 (Figure 3.9). 
The open swards (L25 and L75) had lower values for IRI than the dense sward 
(C). Open swards, when compared to dense swards, were thus characterised by 
a lower GCi and IRI at similar growth stages.  
 

3.3.7  Estimating yields 

There was a strong relation between dry matter (DM) yield and GCi (Figure 
3.10), except for the first harvest from 2000. For the fitted curve  
(R2

adj =0.82) the data of the first harvest in 2000 were excluded. This was a 
heavy harvest (Table 3.3), with tall material that might have had very different 
LAR values than the other harvests. The analysis below is based on all harvests 
without this first harvest of 2000. With higher leaf densities, leaves will only be 
partly visible in the GCi estimate. At lower leaf densities, the probability of 
overlapping leaves approaches zero. 
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Figure 3.7 GCi development in 2000 for dense (–) and open swards (25% ( ) and 75% ( ) of the 

sward removed). 
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Figure 3.8 Development of cumulative ground cover, including subsequently GCG0 ( ),  

GCG1 ( ), GCG2 (  ), GCG3 (  ), GCG4 ( ), GCG5 ( ), GCG6 ( ) and 

GCS0,2 ( ), data refer to dense swards in the 2000 growing season 
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Figure 3.9 IRI development in 2000 for dense ( ) and open swards (25% ( ) and 75% ( ) of the 

sward removed). 
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Figure 3.10 GCi as function of DM yield (all harvests (–) except first harvest of 2000 ( ) ),  

blue lines indicate 95% confidence interval for one new observation. Fitted line: 

)e-(1  91.5  7.9-  y DM -k ××+= , k=1.44 (SE=0.1), R2
adj =0.82 (SE observations=5.86). 
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This was the case when only ground cover of higher IC’s were included (higher 
in the canopy and a more horizontal leaf angle). When GCi rose above 60%,  
IRI increased (Figure 3.11). This relation showed a higher variability for open 
swards than for dense swards. This relation came from the growth 
characteristics of grass, as an increase in biomass rose ground cover, the height 
of the canopy as well as the fraction of horizontally oriented leaves. The IRI 
was linearly related to DM yield (IRI = - 3.2 + 8.07 × DM yield (t ha-1), R2

adj = 
0.56). With IRI included, DM yield could be described with an exponential 
equation (R2

adj =0.82, Table 3.7). A linear relation was found when only higher 
intensity classes were included in the GCi estimate. Now, also higher DM 
yields could be estimated with good accuracy (Figure 3.12). With GCi estimates 
below 60% (in the more linear phase), the confidence interval was smaller for 
the GCi DM estimate (standard deviation <195 kg DM, estimated from Figure 
10 at 60% GCi) than for the linear estimates (SE of observation=340 kg DM ha-

1, Table 3.7). With GCi estimates above 60%, confidence intervals of the 
curvilinear fit increased strongly. 
Fresh matter yield showed a slightly stronger relation with GCi than DM yields 
(compare Tables 3.7 and 3.8). The factor GCi × IRI was only significant for the 
FM yield fit. FM included both water content and DM, and the GCi × IRI 
interaction term might be linked with changes in canopy geometry with 
changing water content and LAR.  
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Figure 3.11 Index of reflection intensity (IRI) versus image ground cover (GCi) for open ( ) and 

dense swards (–). 
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Figure 3.12 Estimated DM yield as function of ground cover of higher intensity classes  

(GCi exclusive GCG0 and GCG1) and the index of reflection intensity (IRI)  

(y = 63.41 × (GCi-GCG0 - GCG1) - 46.46 × IRI) versus measured DM yield for all 

harvests except first harvest of 2000. Solid line: y=x, grey lines indicate 95% confidence 

intervals for 1 new observation. 

 
 
 
 

Table 3.7 Parameter values and standard errors for linear regression of kg dry matter (DM) yield 

per harvest, DM yield = a+ b× GC + c× IRI + d× GC× IRI (all harvests except first 

harvest in 2000, 333 observations), for different GC estimates. 

GC estimate A B C D Standard error  

of observations 

R2
adj 

*GC=GCi 5.19 + 0.07 0.028 + 0.001 0.010 + 0.002 0** 0.21 0.82 

GC=GCi-GCG0 -603.1 + 94.8 51.81 + 3.10 -15.70 + 5.64 0** 337 0.76 

GC=GCi-GCG0-GCG1 0** 63.41 + 1.84 -46.46 + 5.31 0** 340 0.75 

* DM yield values converted with natural logarithm 

** not significant (p>0.05), set to zero 
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Table 3.8 Parameter values and standard errors for linear regression of tons fresh matter (FM) yield 

per harvest, FM yield = a+ b× GC + c× IRI + d× GC× IRI (all harvests except first 

harvest in 2000, 333 observations), for different GC estimates. 

 

 

A B C D Standard error 

of observations 

R2
adj 

*GC=GCi -0.52 + 0.06 0.035 + 0.001 0.014 + 0.002 0** 0.180 0.90 

GC=GCi-GCG0 -3.81 + 0.63 0.299 + 0.012 -0.212 + 0.089 0.003 + 0.001 2.01 0.80 

GC=GCi-GCG0-GCG1 -1.19 + 0.44 0.406 + 0.024 -0.424 + 0.080 0.003 + 0.001 1.96 0.81 

* FM yield values converted with natural logarithm 

** not significant (p>0.05), set to zero 

 
 

3.4 Discussion and conclusion 

With the imaging spectroscopy system, green and dead material can be 
separated by their chlorophyll and water absorption bands at a 0.28-1.45 mm2 
level, depending on sensor type (Schut et al., Chapter 2). A library was 
constructed with 4 main groups of cover classes: soil, dead material, green 
material and green material with specular reflections. Within these groups, 
subdivisions were made in leaf height and leaf angle related intensity classes. 
Although large variations in spectral characteristics of leaves within a growth 
period existed, it was concluded that the between class variation in the spectral 
library is large enough for successful classification. The image ground cover 
(GCi) estimates of green leaves were found comparable with visually scored 
ground cover (R2

adj =0.96), where GCi underestimates the coverage of grass 
leaves slightly. In the lower range of GCi, this could be explained by the 
fraction of dying material near the soil surface. 
The GCi could be used as accurate indicator of the amount of light intercepted 
(LI) under cloudy sky conditions (dense swards: R2

adj =0.95), and under clear 
sky conditions (dense swards: R2

adj =0.87). The LI vs. GCi relation was a 
function of sky conditions (linear under a cloudy sky and more logistic under a 
clear sky), and sward openness. In the GCi vs. LI relation, the index of 
reflection intensity (IRI) was a significant variable except for dense swards 
under clear sky conditions. The importance of IRI was larger under cloudy sky 
conditions than under clear sky conditions. 
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The canopy structure is defined as the distribution and arrangement of the 
above ground plant parts within a plant community (Davies et al., 1993). The 
horizontal distribution of plant parts was described with GC. The relation 
between reflection intensity and leaf height in the canopy and leaf angle, 
specific for the measurement system used, allowed classification in intensity 
classes. The distribution of pixels over these intensity classes, as described with 
IRI, quantified changes in the vertical arrangement of plant parts. 
The LI vs. LAI showed a curvilinear relation (R2

adj =0.85). The average LAI 
remaining in the stubble after harvest was found to be 0.31. The estimated light 
extinction coefficient (k=0.7) is similar to values found in literature (Goudriaan 
and Van Laar, 1994). 
For site-specific models of grass growth, automatic detection of the actual 
value of LAI is of great importance, as LAI is used to calculate the amount of 
intercepted radiation (Goudriaan and Van Laar, 1994). GCi showed a strong 
relation with LAI (curvilinear, R2

adj =0.88, extinction coefficient k=0.83). For 
initialisation of site-specific growth models and monitoring growth, GCi is a 
better parameter than LAI as GCi and IRI at harvest were slightly stronger 
correlated to LI (R2

adj=0.85-0.93) than LAI (R2
adj=0.85), and GCi detection is 

non-destructive and easy to automate. 
Just after a harvest, only classes with lower reflection intensities contributed to 
the GCi estimate. In time, importance of classes with higher reflection intensity 
values increased. The intensity classes appeared in consecutive order after 
harvest. Ground cover provided information about the presence of leaves, 
whereas IRI provided information about the vertical distribution of leaves in 
combination with leaf angle distribution within a canopy. 
Image ground cover was a sensitive parameter to identify differences between 
mini swards in initial condition, growth and growth rate. This opens up new 
means for in-situ comparison of grass swards, and other canopies. Open swards 
(L25, L75) had on average a lower GCi and a lower IRI compared to dense 
swards at a similar growth stage. The lower values for IRI for open swards 
when compared to dense swards mean that leaf angle and leaf height 
distribution differed. These differences in canopy geometry were linked with 
the differences in light intercepting capacity for open and dense swards, at 
comparable GCi levels. 
The dry matter (DM) yield vs. GCi relation had a curvilinear nature (R2

adj 
=0.82) and vertical canopy geometry (in terms of IRI) had a significant effect 
on this relation. With this factor included, logarithmically transformed DM 
yield could be predicted with a linear equation (R2

adj =0.82). Schut et al. 
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(Chapter 2) found that leaf pixels from leaves with an angle of 45o, assigned to 
the two lower reflection intensity classes (GCG0 and GCG1), were located 
below 3.5 cm in the sward. When including only IC with high reflection 
intensity, the intercept with the y-axis, in the DM yield vs. GCi relation, was 
equal to zero. Thus, it is concluded that, indeed, the GCi fraction of the two 
lowest IC’s were not related to harvested material. When including only higher 
IC’s, DM yield could be estimated with a linear equation (R2

adj =0.75). This 
resulted in good accuracy for higher DM yields. Linear estimates of FM yield 
were slightly better than for DM yield (R2

adj =0.81), indicating that individual 
harvests differed in leaf area ratio and canopy geometry. 
In literature on remote sensing, various vegetation indices are defined that 
predict the amount of vegetation from mixed spectra of canopies (including 
green leaves, dead material and soil) (e.g. Baret et al., 1995; King et al., 1986). 
These vegetation indices are more or less linearly related to the fraction of 
ground cover (Baret et al., 1995; Bouman et al., 1992). Ground cover is 
asymptotically related to herbage mass and leaf area index. Therefore, 
vegetation indices are also asymptotically related to herbage mass and leaf area 
index (Bouman et al., 1992; Ripple, 1985). This limits the applicability of 
vegetation indices from remote sensing for estimation of herbage mass in the 
higher yield range. 
The accuracy found for DM yield estimates (<340 kg DM yield ha-1) is already 
promising for development of an imaging system for on-farm application. 
Gabriels and Van den Berg (1993) reported a residual standard error of about 
450 kg DM yield ha-1 at 1600 kg DM yield for the capacitance probe and rising 
plate meter in Lolium perenne L. swards. Standard errors further increased at 
higher DM yields. Even higher inaccuracies were found for various methods by 
Harmoney et al. (1997), Sanderson et al. (2001) and Virkajärvi (1999). 
The spectra obtained with the imaging spectroscopy system are mainly 
unmixed, due to the detailed spatial resolution. This allows straightforward 
pixel classification into soil, green leaves, leaves with specular reflection and 
dead material. The specific illumination of the imaging spectroscopy 
measurement system minimises shadow, and reflection intensity of leaf pixels 
depends solely on leaf angle and leaf height in the canopy (Schut et al., Chapter 
2). The index of reflection intensity responded strongly at large amounts of 
biomass. Therefore, this index is extremely helpful to monitor biomass 
accumulation in the higher DM yield and LAI range. 
The results in this study were based on ground cover and reflection intensity 
data. The reflection curve contains additional spectral information, for instance 
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related to water content. These spectral features may further improve 
predictions of DM yield. The relation between sward spectra and feeding value, 
nutrient contents and DM yield will be presented in a future paper. 
For the experiments reported here imaging spectroscopy allowed accurate and 
non-destructive monitoring of grass sward growth from increases in estimated 
GCi and IRI. With these parameters, the actual sward status in terms of LI, LAI 
and accumulated DM could be described. The data needed for this purpose 
were collected using a complicated and expensive system with three different 
sensors, two independent light sources and advanced software. To make the 
technique ready for more general use in the field it should be made mobile, the 
number of sensors should be preferably reduced and the software made user-
friendlier. A mobile version of the imaging spectroscopy system is currently 
being built. This mobile equipment will allow quantification of differences in 
growth and sward quality between fields and farms. Experience with this new 
equipment will also allow a more careful selection of minimum requirements in 
terms of sensor type, spectral and spatial resolution, and sampling routines. 
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4. Abstract 
The potential of an experimental imaging spectroscopy system, with high 
spatial (0.28-1.45 mm2) and spectral resolution (5-13 nm) is explored for early 
detection of nitrogen (N) stress. A greenhouse study was conducted with 15 
Lolium perenne L. mini swards and 5 N treatments from June through October 
2000. Images were recorded two times a week. With the experimental system, 
spectra of grass leaves in the canopy can be obtained. Treatment effects on 
ground cover (GC) and changes in leaf spectral characteristics were studied 
separately. Leaf pixels with similar reflection intensity were grouped in 
intensity classes (IC). An index of reflection intensity (IRI) indicates the 
percentage of strongly reflecting grass pixels. Blue edge, green edge and red 
edge positions were calculated for each IC. Both GC and IRI increased until 
harvest, with largest increases for liberal N treatments. The width of the 
chlorophyll dominated absorption band around 680 nm (CAW) increased up to 
a maximum of 133 nm for both liberal and limited N in the first two weeks after 
harvesting. The CAW decreased for limited N in the second half of the growth 
period in contrast to liberal N. At harvest, CAW explained 95% of the variation 
in relative DM yield between treatments. Principal component analyses showed 
an intertwined response of the principal components to both DM yield and N 
concentration. Edge positions changed strongly with IC. Possible effects of 
sensor characteristics, canopy geometry, leaf angle and changes in leaf 
characteristics with canopy position on the observed relation between IC and 
edge position are discussed. 
 
 

4.1 Introduction 

In the absence of fast, reliable and accurate methods for yield and nitrogen (N) 
stress indicators, accuracy of grassland fertilisation planning strongly depends 
on farmer’s judgement. In literature, many authors describe the effects of N 
stress on reflection characteristics of leaves and canopies. In dried material, N 
concentration can be detected directly from reflection at the 2.1 µm absorption 
feature (Kokaly et al., 2001). For fresh material, N stress can be remotely 
sensed by its effect on chlorophyll (Chl) concentration. The concentration of 
Chl a and Chl b relates to reflection at various wavelengths and to various 
reflection indices (Everitt et al., 1985; Chappelle et al., 1992; Blackmer et al., 
1994; Blackburn, 1998a; b). Chl concentration is highly correlated with leaf N 
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concentration, especially when N is deficient (Schepers et al., 1996; Bausch et 
al., 1998). However, variations in background reflectance, LAI and leaf angle 
distribution confound the detection of subtle differences in canopy reflection 
due to changes in Chl concentration (Clevers & Büker, 1991; Daughtry et al., 
2000). Increasing amounts of biomass normally leads to higher Chl amount per 
unit surface. Therefore, relations between remotely sensed parameters and Chl 
are better for Chl amount per unit surface than for Chl amount per unit biomass 
(Pinar & Curran, 1996). Problems of background reflection and LAI (or 
biomass) can be reduced when using spatial resolutions smaller than single 
leaves.  
With the recently developed imaging spectroscopy system, new and automatic 
means for grass sward characterisation become available (Schut et al., Chapter 
2). Reflection intensity measured with this system is related to leaf height in the 

canopy and leaf angle. With this feature, image ground cover (GC) can be 

differentiated into reflection intensity classes. For each intensity class, spectral 
parameters can be determined which allows construction of spectral profiles. The 

non-destructive nature of reflection measurements allows the study of the 

evolution of GC and leaf pixel spectra. With GC estimates light interception, leaf 

area index (LAI) and biomass can be determined (Schut & Ketelaars, Chapter 3). 
Spatial GC variability can be used to study sward deterioration (Schut & 
Ketelaars, Chapter 8). 
In this paper, the potential of the experimental imaging spectroscopy system is 
explored for early detection of N stress. For this, two experiments were 
conducted with 5 N treatments (0, 30, 60, 90, 120 kg N ha-1 per harvest). 
Evolution of GC, spatial variability of GC, index of reflection intensity (IRI) 
and spectral characteristics (blue edge (BE), green edge (GE), red edge (RE) 
and Chl absorption width (CAW)) in response to N supply were studied.  
 
 

4.2 Materials and methods 

4.2.1  Experiments 

In 2000, two N experiments were conducted with grass mini swards in 
containers of 0.9 m long, 0.7 m wide and 0.4 m high, filled with a sandy soil 
(3% organic matter). There were 5 N treatments (0, 30, 60, 90 and 120 kg N ha-

1 per harvest) and 3 replicates per treatment. These treatments will be referred 
to as 0N, 30N, 60N, 90N and 120N. The mini swards were placed under a rain 
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shelter, covered with 80% light-transparent foil, with wind breaking fencing at 
the sides. After each harvest, N was applied by hand. Potassium, phosphorus 
and sulphur were kept at sufficient levels. Soil moisture content was maintained 
at field capacity (22 volume %) by weighing the containers twice a week. At 
harvest, mini swards were hand cut to a stubble height of 4 cm. 
Mini-swards in the first experiment were measured from 1 through 19 June. Per 
mini sward, 8.1 g m-2 N, 13.8 g m-2 P2O5 and 24 g m-2 K2O was applied in 
April. Then, grass was sown with a commercially available mixture of four 
Lolium perenne L cultivars. Once a good sward was established, grass was cut  
(30 May) and N was supplied according to the treatments. After the first growth 
period, grass was harvested on a hot day (20 June) creating severe sward 
damage, and this ended the first experiment.  
For the second experiment, 5-10 cm thick, autumn 1999 sown swards were 
transplanted into the containers on July 6. After an initial start-up period (with 
an intermediate harvest on 25th of July), swards were harvested on August 8 and 
then N was supplied according to the treatments. Swards were harvested on 29 
August, 27 September, and 31 October. Because of the time in the season, N 
levels were reduced after the September harvest, to 0, 20, 40, 60 and 90 kg N 
per ha-1. Soil samples for mineral N analysis were taken after the September 
harvest. Application of N was further reduced with 1 N level (e.g. 60 instead of 
90 kg N per ha-1) when N-min content was higher than 22.5 kg ha–1. 
 

4.2.2  Measurements 

On 42 positions in each container, from a height of 1.3 m above the soil, hyper-
spectral image lines were recorded with the V7 and N10 sensor, for details see 
Schut et al. (Chapter 2). The V7 sensor measures reflection in wavelengths from  
404-709 nm and the N10 sensor from 680-970 nm. At soil level, an image line 
was 1.39 mm wide with a length of 152.5 mm, resulting in a spatial resolution of 
0.28 mm2

 at soil level. The spectral resolution was 5 nm. Light was focussed with 
a bar lens, and only a 2-4 cm wide strip was illuminated. Light was projected 
vertically onto the soil, and reflection was measured under an angle of 2 degree 
from nadir. 
In general, containers were scanned twice a week. During the June growing 
period (6, 8, 10, 13, 15 and 17 June), 100 adjacent image lines were recorded 
from one container of each treatment, scanning an area of 100 mm long and 
152.5 mm wide. These image lines were recorded on similar locations in the 
container, and were used to construct 2D images.  
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4.2.3  Chemical analysis 

At harvesting, fresh matter yield was weighed and samples were taken for 
analyses of dry matter (DM), total N, nitrate and sugar concentration. Total N 
was determined with the Dumas method on a Vario EL (Elementar analyse 
systemen, GmbH Hanau), and nitrate on a Bran and Luebbe Traacs 800 
continuous flow system (Maarsen, the Netherlands). Sugars were determined 
from dried material. The sugars were extracted by adding demineralised water 
to a ground sample. On a Bran and Luebbe AutoAnalyzerII (Maarssen, the 
Netherlands, Method NL213-89FT), the amount of reducing sugars (glucose 
and fructose) was measured by reaction with ferricyanide which is reduced to 
colourless ferrocyanide. The reduction in light absorbance at 420 nm was used 
to calculate the amount of sugars as glucose equivalents. Total sugars after 
hydrolysis were determined in the same extract but the autoanalyser was now 
equipped with a hydrolysis-step to convert di- and oligosaccharides to glucose 
and fructose. 
 

4.2.4  Calculation of image parameters 

Classification 

Schut et al. (Chapter 2) defined threshold values for soil, grass leaves (G), 
leaves with specular reflection (S), and dead material (D) classes and an 
intermediate class between soil and dead material. Separation between classes 
was based on ratios of reflectance (R) at 450, 550 and 680 nm. These classes 
are subdivided into reflection intensity classes (IC), based on the reflection 
intensity at predefined wavelengths (550 nm for the V7 and 746 nm for the 
N10). The intensity classes ranged for grass from IC 0 up to and including IC 6 
for the V7 sensor and from IC 0 up to and including IC 10 for the N10 sensor. 
For leaves with specular reflection, IC ranged from 0 up to and including 2, and 
for dead material from IC 0 up to and including 3. A large number of pixel 
reflection spectra in these intensity classes are stored in a spectral library. With 
this library, pixel spectra of the recorded image lines were classified with 
maximum likelihood procedures (Schut & Ketelaars, Chapter 3). The 
classification procedure was based on a limited number of wavelengths, 
selected according to a statistical function (Feyaerts & Van Gool, 2001) 
maximising class to class separation. 
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After classification, spectra of pixels were normalised, according to equations 
in Schut et al. (Chapter 2). Normalisation means that reflection was divided by 
the mean reflection in the 550-555 nm range for the V7 sensor, and the 800-850 
nm range for the N10 sensor. Mean sward reflection spectra (MSS) were 
calculated from normalised spectra of all pixels in grass IC 1 trough 10. In 
addition, mean reflection spectra were calculated from normalised spectra for 
each IC (MICS). It is stressed that for this procedure only grass pixels were 
selected, eliminating pixels containing soil and dead material. Under the 
assumption that the data of the V7 sensor and the N10 sensor were from 
identical objects and that the sensitivity of the sensors in overlapping regions 
was comparable, the data of the V7 sensor were normalised to the 800-850 nm 
range (Schut et al., Chapter 2). These assumptions seem valid for MSS.  
 

Ground cover, index of reflection intensity and spatial heterogeneity of GC 

Ground cover was calculated per mini sward for each IC. Total image line (IL) 
ground cover (GCIL, %) was calculated as sum of ground cover of all grass IC 
(GCG) and IC of all specular classes (GCS) from the V7 sensor:  
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where ic is the index number of the intensity class. The mini sward GC was 
calculated as the average of the GCIL over the 42 image lines. This mini sward 
GC estimate underestimates visually scored GC, visually scored GC equals 8.63 
+ 1.076 × GC (Schut & Ketelaars, Chapter 3). The index of reflection intensity 
(IRI, %) was then calculated as: 
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This IRI measures the presence of highly reflecting green pixels as a percentage 
of GC. A high value represents a dense canopy with horizontally oriented 
leaves (Schut & Ketelaars, Chapter 3). 
The spatial heterogeneity was quantified with the spatial standard deviation of 
GC (GC-SSD) and logistically transformed values of GC (TGC-SSD). These 
were calculated according to equations in Schut & Ketelaars (Chapter 8). The 
spatial standard deviation was calculated per mini sward as the standard 
deviation of the 42 GCIL estimates. 
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Calculation of edges 

Reflectance spectra of green material typically have a sharp transition from 
minimum reflection around 680 and maximum reflection around 750 nm, 
known as the red edge (RE) (Horler et al., 1983). Green material reflects more 
radiation in the green part than in blue or red parts of the spectrum, and a blue 
edge (BE) and a green edge (GE) can be found around 520 and 600 nm 
respectively. In this study we used a simple method for determination of edge 
position. From the normalised spectra, minimum ( minR ) and maximum ( maxR ) 
reflection values were determined for BE, GE and RE within the spectral range 
of 472-800 nm. Then, a threshold value (T) was calculated according to:  
 

( ) CVRRRT ×−+= minmaxmin  (3) 
 
where CV is the critical value. At the RE, the transition between the V7 and 
N10 sensor typically occurs between a normalised reflection value of 0.35 and 
0.5. To minimise effects of this transition, the CV was set at 0.55. The 
reflection value of band i was calculated as the average of band i, band i-1 and 
band i+1. Then, the wavelength position with a reflection value equal to T was 
calculated. For this, two neighbouring bands were determined where reflection 
in one band was smaller, and in the other band was greater than T. The exact 
wavelength position of T was calculated by linear interpolation of reflection 
values and wavelength positions. Edges were calculated for MSS and for each 
MICS.  
The chlorophyll dominated absorption width (CAW) around 680 nm was 
calculated as the difference between RE and GE. 
 

Canopy reflection profiles 

Reflection intensity, measured with the system, is affected by both leaf angle 
and leaf height (Schut et al., Chapter 2). Each MICS was calculated as mean 
over a large number of pixels. Therefore, effects of angles of individual leaves 
and mixed pixels (for IC 0) on MICS were considered small. Therefore, the 
change in reflection characteristics of MICS may contain additional 
information about the canopy, or canopy strata. Plotting the edges on the x-axis 
and IC number on the y-axis created a canopy profile. For illustration purposes, 
only profiles of 30 October are shown. 
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Edges in 2D Images 

First, the composed 2D images were classified. For each grass pixel BE and GE 
position was calculated. To this end, position of minR  and maxR  was fixed at 472 
and 555 nm for the BE and 670 and 555 nm for the GE. Then, edge position 
was averaged over 4 neighbouring grass pixels, minimising noise effects. For 
illustration purposes, the image of the 120N treatment from 13 June is used.  
 

Principal component analysis 

Principal component analysis on the sums of squares and products was 
performed. For this, spectral data recorded just before harvest were used. For 
regression on relative DM yield, MSS of replicates were averaged per spectral 
band. This resulted in 10 principal components (PC) per treatment per harvest. 
These PCs were related to relative DM yields, DM concentration, total N 
concentration, organic N concentration and sugar concentration. Organic N was 
calculated as the difference between the concentrations of total N and nitrate. 
Only significant (p<0.05) terms were included in the linear regression models. 
 

4.2.5  Relative DM yield 

The relative DM (RDM, %) yield is calculated as  
 

DMRyield
DMyieldRDMyield ×= 100 , (4) 

 
where DMR indicates the 120N treatment mean DM yield. Standard errors 
were calculated for treatment means of DM yield and RDM yield, exclusive the 
error in DMR yield. 
 
 
4.3 Results 

Effects of N treatments on DM yield and N, nitrate and sugar concentrations are 
shown in Table 4.1. Liberal N supply (90N and 120N) resulted in higher DM 
yields and nitrate concentrations and lower DM and total sugar concentrations 
than 30N. The 0N of the August, September and October harvests was lower in 
total sugars than 30N. The newly sown sward of the 20 June harvest had high 
sugar and low nitrate concentrations, suggesting N deficiency even at high 
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yields and high N application rates. The differences in the concentration of 
reducing sugars between treatments were small, while concentration decreased 
for harvests later in the season. The 30N treatment had highest concentration of 
total sugars in the August, September and October harvests. 
 
 

Table 4.1 Treatment means and standard errors of dry matter (DM) yield, and foliar concentrations 

of DM, total nitrogen (N), nitrate, reducing sugars and total sugars. 

Treatment DM  

(kg ha-1) 

DM  

(%) 

Total N  

(%) 

Nitrate  

(%) 

Reducing  

sugars (%) 

Total sugars 

(%) 

------------------------------------------20 June-------------------------------------------------- 

0N  2430 + 124  18.90 + 0.15  1.73 + 0.03  0.00 + 0.00  5.08 + 0.61  31.98 + 0.48 

30N  3161 + 23  18.07 + 0.95  1.88 + 0.12  0.00 + 0.00  4.59 + 0.43  27.17 + 1.57 

60N  3198 + 49  17.37 + 0.26  1.99 + 0.03  0.01 + 0.00  4.45 + 0.05  25.01 + 0.60 

90N  3612 + 165  16.43 + 0.38  2.24 + 0.07  0.02 + 0.00  4.38 + 0.22  22.00 + 1.70 

120N  3786 + 146  16.63 + 0.30  2.39 + 0.03  0.03 + 0.01  4.59 + 0.13  21.26 + 0.55 

------------------------------------------29 August----------------------------------------------- 

0N  591 + 68  23.33+ 0.38  2.05+ 0.09  0.01+ 0.00  3.40+ 0.32  14.76+ 0.43 

30N  1381 + 87  19.73+ 0.72  1.91+ 0.06  0.01+ 0.00  3.28+ 0.15  23.61+ 1.73 

60N  1514 + 232  19.07+ 1.28  3.05+ 0.07  0.17+ 0.01  3.01+ 0.19  12.35+ 0.70 

90N  2066 + 15  16.00+ 0.32  2.96+ 0.10  0.13+ 0.04  3.51+ 0.09  12.06+ 0.83 

120N  2001 + 281  18.47+ 0.78  3.07+ 0.43  0.21+ 0.10  3.12+ 0.07  13.66+ 2.76 

----------------------------------------27 September------------------------------------------- 

0N  356 + 62  19.50+ 0.61  2.25+ 0.11  0.01+ 0.01  2.00+ 0.18  11.47+ 1.88 

30N  1304 + 144  19.27+ 1.63  1.94+ 0.08  0.02+ 0.01  2.19+ 0.05  20.27+ 1.38 

60N  1913 + 179  16.33+ 0.76  2.33+ 0.43  0.12+ 0.03  2.66+ 0.20  14.36+ 0.47 

90N  2587 + 116  14.57+ 0.20  2.83+ 0.23  0.30+ 0.01  2.77+ 0.10  11.41+ 0.68 

120N  2696 + 151  14.30+ 0.5  3.54+ 0.10  0.49+ 0.05  2.37+ 0.07  10.12+ 0.45 

------------------------------------------31 October---------------------------------------------- 

0N  253 + 32  17.33+ 0.64  2.67+ 0.18  0.02+ 0.01  1.79+ 0.09  6.28+ 1.01 

30N  836 + 19  15.50+ 0.26  2.88+ 0.07  0.04+ 0.02  2.38+ 0.18  10.71+ 0.60 

60N  1109 +115  15.33+ 0.86  3.34+ 0.08  0.14+ 0.01  2.39+ 0.10  10.25+ 0.69 

90N  1298 + 45  13.63+ 0.69  3.87+ 0.27  0.42+ 0.11  2.28+ 0.19  8.07+ 1.11 

120N  1403 + 72  12.97+ 0.92  4.54+ 0.09  0.72+ 0.06  1.89+ 0.10  6.39+ 0.20 
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4.3.1 Ground cover, canopy structure and spatial GC standard deviation  

The June growth period differed from the other three growing periods in initial 
GC (Figure 4.1). This is presumably caused by a different sward history. The 
preceding harvest for the June growing period was the first harvest of the newly 
sown sward, without dead material in the stubble and with a high tiller density. 
This resulted in a high GC just after harvest. The second experiment (August 
through October) had a second year sward with a lower tiller density and with 
dead material in the stubble. In this experiment, there was a long period without 
N supply before the experiment started, creating poor starting conditions. This 
was not the case in the first experiment where starting conditions were relative 
rich. 
Limiting N supply (0N and 30N) retarded GC development compared to liberal 
N supply in the last two growth periods (Figure 4.1). In this figure, the 60N 
curve is only a little lower when compared to 90N and 120N. GC showed a 
typical development within a growth period, with steep increases at low GC and 
smaller changes at high GC levels (Figure 4.1). In the September harvest 
maximum GC level was reached for the liberal N supply but not for the limited 
N supply, decreasing treatment differences in GC towards harvesting. 
Treatments of the June harvest were much better discriminated with IRI than GC 

(Figure 4.2), indicating that N affects both GC and canopy geometry. 
Differences in IRI were larger in the June and September growth periods than 
in the August and October growth periods. The low IRI values in the October 
growth period probably resulted from low DM yields (Table 4.1) and limited 
height development. 
The values of GC-SSD were smaller than 10% at all intervals for all treatments 
(Table 4.2). The GC-SSD values of the 0N treatment increased up to 
harvesting, whereas GC-SSD values of the other treatments first increased and 
later decreased towards harvesting. At 5-8 days after- and just before 
harvesting, 0N significantly differed from the 90N and 120N. The TGC-SSD 
values were smaller than 0.65 at all intervals for all treatments (Table 4.2). The 
TGC-SSD values of the 0N and 30N were significantly smaller than 120N at 
14-21 days after harvesting and just before harvesting. The maximum value of 
GC-SSD is reached at 50% GC and TGC-SSD peaks at low values of GC 
(Schut & Ketelaars, Chapter 8). GC values for 0N exceeded 50% in the interval 
14-21 days after harvesting, whereas GC for all other treatments exceeded this 
value already in the 9-13 days interval. In the 1-4 and 5-8 days after harvesting 
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intervals, treatments were not different in TGC-SSD value (Table 4.2). 
Therefore, treatment differences arose from differences in GC dynamics. 
 

4.3.2  Position of BE, GE and RE 

As with GC, the June growing period differed from the other harvests in edge 
positions, especially just after harvesting (Figure 4.3, 4.4 and 4.5). The harvest 
prior to this growth period was the first harvest of the new sward and leaves 
just continued their growth after harvesting. After harvesting in the second 
experiment (existing sward) new leaves had to emerge from the tillers, and here 
the position of the BE, GE and RE changed considerably within one growth 
period (Figure 4.3, 4.4 and 4.5). The 0N differed markedly in BE, GE, and RE 
from the other N treatments. Differences between 30N and 120N were small 
one week after harvesting. Then, GE increased and RE decreased for 30N 
whereas 120N changed less (GE) or increased slightly (RE).  
Therefore, the largest treatment differences were found just before harvesting. 
For the 120N, the BE maximum and GE minimum was reached within 10 days 
after harvesting for the August and September growth period, and within 19 
days for the October growth period. The RE reached its maximum a few days 
later (Figure 4.5). The CAW parameter showed a similar behaviour, but with a 
larger range and larger treatment differences (Figure 4.6).  
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Figure 4.1 Development of image ground cover (GC) for 0N ( ), 30N ( ), 60N ( ), 90N ( ) and 

120N ( ).  
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Table 4.2 Mean values of spatial standard deviation of ground cover (GC-SSD) and logistically 

transformed ground cover (TGC-SSD) and standard error of treatment mean for intervals 

of days after harvesting (DAH). Different uppercase letters within rows indicate 

significant (p<0.05) differences between treatment means. 

DAH 0N 30N 60N 90N 120N 

-----------------------------------------------GC-SSD-------------------------------------------- 

1-4  7.45 + 0.52a  8.09 + 0.49a  7.97 + 0.54a  7.69 + 0.32a  8.38 + 0.24a 

5-8  7.63 + 0.35a  8.61 + 0.07b  8.50 + 0.18ab  8.95 + 0.44b  9.06 + 0.18b 

9-13  8.68 + 0.35a  8.95 + 0.23a  9.05 + 0.45a  9.60 + 0.26a  9.47 + 0.16a 

14-21  8.74 + 0.24a  8.05 + 0.18a  8.36 + 0.51a  8.35 + 0.45a  8.66 + 0.15a 

Day before harvest  9.61 + 0.10a  8.08 + 0.15b  8.16 + 0.53b  8.12 + 0.37b  8.62 + 0.20b 

----------------------------------------------TGC-SSD-------------------------------------------- 

1-4  0.55 + 0.02a  0.58 + 0.02a  0.58 + 0.05a  0.58 + 0.04a  0.59 + 0.03a 

5-8  0.47 + 0.02a  0.44 + 0.00a  0.43 + 0.01a  0.47 + 0.03a  0.45 + 0.02a 

9-13  0.48 + 0.02a  0.44 + 0.01a  0.45 + 0.03a  0.47 + 0.02a  0.46 + 0.01a 

14-21  0.47 + 0.01a  0.49 + 0.02a  0.54 + 0.05ab  0.57 + 0.04ab  0.62 + 0.02b 

Day before harvest  0.48 + 0.02a  0.51 + 0.01ab  0.58 + 0.05bc  0.59 + 0.04bc  0.64 + 0.02c 
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Figure 4.2 Development of index of reflection intensity (IRI) for 0N ( ), 30N ( ), 60N ( ), 90N 

( ) and 120N ( ).  
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Figure 4.3 Development of blue edge (BE) position for averaged sward curves for 0N ( ), 30N ( ), 

60N ( ), 90N ( ) and 120N ( ).  
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Figure 4.4 Development of green edge (GE) position for averaged sward curves for 0N ( ), 30N 

( ), 60N ( ), 90N ( ) and 120N ( ).  
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Figure 4.5 Development of red edge (RE) position for averaged sward curves 0N ( ), 30N ( ),  

60N ( ), 90N ( ) and 120N ( ).  
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Figure 4.6 Development of chlorophyll absorption width (CAW) for averaged sward curves for 0N 

( ), 30N ( ), 60N ( ), 90N ( ) and 120N ( ).  
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Figure 4.7 Dry matter yield relative to 120N dry matter yield as function of chlorophyll absorption 

width (CAW) for harvests on 20 June ( ), 29 August ( ), 27 September (♦) and  

31 October ( ). Line: xey 081.0002.0= , R2=0.95. Error bars indicate standard error of 

treatment means.  

 
 
 
 
Table 4.3 Linear regression of principal components (PC) with DM yields, and DM, N and organic 

N concentrations, N yields and relative DM yields. 

 Number of 

observations 

PC in the regression model R2 SE 

observations 

DM yield (kg ha-1) 60 PC1, PC3, PC5, PC6, PC7, PC8 0.87 377 

DM (%) 60 PC2,PC3,PC4,PC9 0.61 1.66 

N (%) 60 PC1, PC2, PC3, PC4, PC5, PC6, 

PC7 

0.77 0.42 

N org. (%) 60 PC1, PC2, PC3, PC5, PC6, PC7 0.75 0.35 

Sugar (%) 60 PC1,PC2,PC7 0.78 3.89 

N yield (kg ha-1) 60 PC1, PC2, PC3, PC4, PC5 0.77 13.3 

RDM yield (%)* 20 PC1, PC2, PC3, PC4 0.93 7.5 

* PC analysis performed on spectra averaged over N treatment replicates 
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4.3.3  Yield depression 

The CAW parameter relates strongly to relative DM yield (R2=0.95, 
Figure 4.7). Differences in CAW at high relative DM yields were smaller than 
at low relative DM yields. The CAW parameter outperformed RE (R2=0.78) 
and GE (R2=0.78) alone in the correlation with RDM yield. 
 

4.3.4  Principal component analysis 

The principal components were highly correlated with DM yield, N 
concentration and sugar concentration (Table 4.3). Total N was slightly 
stronger related to PC than organic N. Most PC were selected for more than one 
variable. RDM yield was strongly related to PC1 through PC5, with an R2 value 
of 0.93. 
 

4.3.5  Profiles of BE, GE and RE  

As an example, profiles of BE, GE and RE were calculated from image lines 
recorded on 30 October. The profiles for BE (Figure 4.8) and GE (Figure 4.9) 
showed greater differences between low and high IC’s than RE (Figure 4.10).  
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Figure 4.8 Blue edge (BE) position of leaf pixels per reflection intensity class for 0N ( ), 30N ( ), 

60N ( ), 90N ( ) and 120N ( ).  
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Figure 4.9 Green edge (GE) position of leaf pixels per reflection intensity class for 0N ( ),  

30N ( ), 60N ( ), 90N ( ) and 120N ( ).  
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Figure 4.10 Red edge (RE) position of leaf pixels per reflection intensity class for 0N ( ), 30N ( ), 

60N ( ), 90N ( ) and 120N ( ).  



Chapter 4  

74 

The BE and GE showed a larger shift with IC than RE throughout growth 
periods. Changes of BE (4.5 - 4.8 nm) and GE (8 – 30 nm) with IC for the 
August, September and October harvests were larger than temporal changes of 
BE (1.3 - 3.5 nm) and GE (7 - 27 nm) of the MSS (compare Figure 4.3 with 
Figure 4.8 and Figure 4.4 with Figure 4.9). Differences between N treatments 
were more or less constant within the profile for the BE and RE. For the GE, 
the N0 treatment deviated more from all other treatments with increasing IC.  
In the 2D classified image of Figure 4.11A it is shown that pixels with bright 
colours, and thus high reflection intensity, were from horizontally oriented 
leaves positioned in the top of the canopy. In general, pixels in lower IC’s were 
nearer to the soil or stronger vertically orientated. Within the collection of 
pixels with identical IC, various edge positions occurred (Figure 4.11B and C). 
Nevertheless, changes in BE and GE position were, on average, correlated with 
IC (Figure 4.12).  
In this figure, the MICS and the BE and GE position are shown from the 
Figure 4.11 image lines. The MICS differed in shape, affecting various curve-
characteristics such as BE and GE position and position of maximum 
derivatives. The BE and GE position of MICS shifted 4.3 (BE) and 7 nm (GE) 
from Grass IC0 to Grass IC6 (Figure 4.12).  
 
 

0

0.2

0.4

0.6

0.8

1

460 510 560 610 660

Wavelength(nm)

N
or

m
al

is
ed

 re
fle

ct
io

n 
(-

/-)
  .

 

Figure 4.12 Normalised reflection curve, for the Figure 4.11 images, for GCG0 ( 
__ ),GCG1 ( 

__ ), 

GCG2 ( __ ),GCG3 ( __ ),GCG4 ( __ ),GCG5 ( __ ) and GCG6 ( __ ). The 

calculated BE and GE positions are indicated by markers on the curves. 
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Class Refl. at 550 nm (%)
IC 0 >1,  <=2
IC 1 >2,  <=3
IC 2 >3,  <=5
IC 3 >5,  <=7
IC 4 >7,  <=9
IC 5 >9,  <=12
IC 6 >12, <=100
Specular reflection
soil

GE (nm)

<563

<570

<576

<582

>588

BE (nm)

>528

<525

<522

<519

<516

A

B

C

 

Figure 4.11 Image of 100 adjacent image lines with classified image (A), images with relative 

position of BE (B) and GE (C).  
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4.4  Discussion and conclusion 

Nitrogen treatments differed in evolution of ground cover (GC), index of 
reflection intensity (IRI) and spectral characteristics. It was found earlier that 
GC and IRI are related to biomass and canopy geometry (Schut & Ketelaars, 
Chapter 3). Therefore, an indication of nitrogen (N) stress can only be given 
when actual values of GC and IRI can be compared with GC and IRI under 
optimal N supply.  
Nitrogen treatments differed occasionally in spatial standard deviation of GC 
and logistically transformed values of GC. These differences arose from 
differences in GC dynamics. For all N treatments, GC-SSD and TGC-SSD 
values remained below 10 and 0.65 respectively. Schut & Ketelaars (Chapter 8) 
found that dense swards had GC-SSD values below 10.5 and TGC-SSD values 
below 0.6. Absolute differences between control and deteriorated swards were 
largest at 50% GC for GC-SSD and shortly after harvesting for TGC-SSD. 
Nitrogen treatments were not different in GC-SSD and TGC-SSD, neither at 
50% GC nor shortly after harvesting, and it is concluded that nitrogen supply 
did not affect sward heterogeneity. 
Leaf reflectance can indicate N stress in maize (Blackmer et al., 1994; Schepers 
et al., 1996; Masoni et al., 1997). The dynamics of blue edge (BE), green edge 
(GE) and red edge (RE) at limited N supply differed from those at liberal N 
supply. The CAW (chlorophyll absorption width, calculated as the difference 
between RE and GE position) at limited N supply decreased in the second half 
of the growth period, in contrast to liberal N supply. 
The CAW appeared to be strongly correlated with relative dry matter yield 
(R2=0.95). This harvest-independent relation was stronger for the CAW 
parameter than for the GE or RE alone, and may therefore be the preferable 
parameter for N fine-tuning. The shape of the relation was exponential with 
smaller differences in CAW under near optimal N supply. Higher N treatments 
(60, 90 and 120 kg N ha-1) could, therefore, not be separated from each other in 
all growth periods. The relation between N supply and chlorophyll (Chl) 
concentration has a curvilinear character (Wood et al., 1992; Kantety et al., 
1996) and reflection decreases asymptotically with increasing Chl (Everitt et 
al., 1985; Boochs et al., 1990; Ercoli et al., 1993; Schepers et al., 1996). 
Therefore, identification of near-optimal N-fertilised swards with leaf 
reflectance alone is difficult. The same conclusion can be drawn from 
absorption measurements (with e.g. SPAD). In Festuca arundinacea Schreb., 
Kantety et al. (1996) found a maximum response for SPAD at 254 kg N supply, 
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while DM yield was highest at 290 kg N. Apparently, small changes in SPAD 
measurements were accompanied by relative large changes in DM yield. These 
findings, however, are in contrast with the results of Canova & Gaborcik 
(2000), who found a response in SPAD values up to the highest N supply. 
Likewise, Gaborcik et al. (1998) found linear relations between leaf colour, Chl 
concentration and N concentration in leaves of various grass species. 
The linear regression between relative DM yield and principal components was 
strong (R2=0.93). The principal components were also strongly related to DM 
yield and N concentration. The intertwined response of PC to DM yield, N 
concentration and leaf colour made interpretation difficult. Therefore, detection 
of N stressed swards under a range of harvesting frequencies requires extensive 
calibration and validation in order to correct for differences in DM yield related 
to the length of the growth period and not to N deficiency. 
In literature, various methods are described for characterising reflection curves, 
such as fitting functions to edge regions and calculation of derivatives or 
indices. Fitting a Gaussian function to the edge region (Bonham-Carter, 1988) 
is limited to edges with a more or less Gaussian shape. Obviously, this 
approach is suitable for the BE and RE, but not for the GE. Polynomials (e.g. 
cubic splines) do not have this limitation (Railyan & Korobov, 1993). 
Derivatives are sensitive for the degree of smoothing (Rollin & Milton, 1998) 
and data noise and, therefore, require continuous curves. Indices use only a 
small part of the reflection curve. The method we used is hyperspectral, simple, 
fast and not limited to a specific edge shape.  
Some remarks must be made with regard to the strong effect of reflection 
intensity on edge position. The observed profiles are presumably the result of a 
combination of sensor characteristics, canopy geometry and changes in leaf 
characteristics within the canopy.  
Firstly, irradiance in our experimental system decreases with decreasing height 
positions in the canopy, despite the bar-lens in front of the light source (Schut 
et al., Chapter 2). The imaging spectrograph requires high light input as it 
subdivides the incoming light over a large number of spectral bands and 
diffraction efficiency is smaller than 50% (Herrala & Okkonen, 1996). 
Therefore, lower boundaries of camera sensitivity in strong absorbing regions 
of the spectrum are reached earlier at low than at high canopy height positions. 
As this phenomenon will be less pronounced for strongly reflecting regions of 
the spectrum, the result may be changes in the shape of the reflection curve 
with reflection intensity.  
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Secondly, shadowed leaves will have reduced reflection intensity and will, 
therefore, be assigned to ‘lower’ IC’s. Shadowed leaves receive greener light 
than leaves in full light, as leaves preferably absorb blue and red light. In the 
system used, however, only a narrow line is illuminated and reflection is 
measured under a narrow angle, minimising shadow effects. Light composition 
can only be altered by light scattered from neighbouring leaves within a few 
centimetres. In the recorded images only minor shadow effects were visible. 
Therefore, we expect that shadow had only a minor effect on spectral 
composition. In accordance with this, canopy edge profiles were also strong for 
treatments with low biomass and presumably a minimum of shadowed areas.  
Thirdly, canopy geometry apparently affects the profiles. Profiles of clover 
swards differed from grass swards and diurnal changes in clover leaf-
orientation affected profile slope (Chapter 7). Leaves with a vertical orientation 
will be assigned to ‘lower’ IC’s (Schut et al., Chapter 2). The amount of 
chlorophyll, expressed per pixel, will automatically increase when leaves 
become more vertically oriented. As a consequence, shifts of the red edge, at 
canopy level, have been observed in relation to leaf inclination angle (Asner, 
1998; Guyot et al., 1992). Yet an increase in the amount of pigment per pixel 
only affects the reflection curve when light absorption is below its maximum. 
Therefore, leaf angle will probably have a greater influence with leaves and 
canopies low in pigment concentration than with leaves and canopies high in 
pigment content.  
Finally, leaf pigment composition within the canopy might change with leaf 
age, position on the leaf and growth conditions. During growth, leaves near the 
soil gradually become shaded and are exposed to greener light as a result of 
absorption of light by newly developing leaves. Both yellow light, when 
compared to red light (Liu et al., 1993), and low light intensity induce lower 
Chl a/b ratios and higher Chl a and b contents (Evans, 1988; Watanabe et al., 
1993). Thus, the Chl a profile within a canopy is stronger than the Chl b profile, 
leading to a profile in Chl a/b ratios (Yamasaki et al., 1996). Pigment 
composition also varies within a leaf, with lower pigment content near the leaf 
base and leaf tip than in the middle (Biswal et al., 1994). Obviously, leaf tips 
are mostly found at the top of the canopy and leaf bases low in the canopy. 
Changing pigment content with position on the leaf may, therefore, lead to 
profiles of pigment content within the canopy. 
In acetone, strong absorption peaks are found with an absorption maximum at 
661.6 and 429.6 nm for Chl a, at 644.8 and 455.8 nm for Chl b and at 454 nm 
for -carotene (Lichtenthaler, 1987). In vivo, peak positions are slightly 
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different with 680 nm and 440 nm for Chl a and 660 and 460 nm for Chl b 
(Maier et al., 1999). Thus, changes in Chl b would have a stronger effect on 
GE, whereas changes in Chl a would primarily affect RE and changes in both 
Chl a and -carotene would affect BE. We found that BE, GE and RE 
responded simultaneously during re-growth and were sensitive for the amount 
of N supplied. This can be understood when considering that Chl a and Chl b 
respond to similar environmental factors, e.g. nitrogen stress, and are, therefore, 
strongly correlated.  
Imaging spectroscopy provides accurate means to monitor growth and growth 
retardation due to nitrogen deficiency. Treatments with different N-supply 
showed a strong correlation between relative DM yield and CAW, although 
discriminating ability of CAW was limited at higher levels of relative yield. 
The effects of sensor characteristics, canopy geometry, and pigment 
composition within the canopy on edge profiles require further study. For this, 
an experiment where images were recorded after removal of individual leaf-
strata will be analysed and presented in future work.  
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5. Abstract 
In this paper, effects of leaf angle, leaf height and pigment content of leaves on 
reflectance spectra of grass swards. were studied. Reflectance was measured 
with an experimental imaging spectroscopy system with high spatial (0.28-1.45 
mm2) and spectral resolution (5-13 nm). An experiment was conducted with 
mini swards of Lolium perenne L. at 4 nitrogen (N) supply levels. Images were 
recorded twice a week, during two growth periods. Treatment effects on ground 
cover and changes in leaf spectral characteristics were studied separately. Leaf 
pixels with similar reflection intensity were grouped in intensity classes (IC). 
Blue edge, green edge (GE) and red edge (RE) positions were calculated for 
each IC. The width of the chlorophyll absorption band (CAW) was calculated 
as difference between RE and GE. At harvest, swards were harvested in three 
strata (>16 cm, 9-16 cm, and 4-9 cm) and strata were subjected to chemical 
analysis.  Effects of leaf angle and height on spectral properties were studied 
independently with the help of detached leaves. 
Contents of N and pigments, on average, increased with increasing N level and 
decreased downward into the sward. Edges showed strong, N treatment 
dependent, changes with IC. At harvest, CAW of intact swards increased with 
N level, with absolute values being similar to values measured at harvested 
material of the upper stratum. When upper strata were subsequently removed, 
CAW of the remaining sward decreased much less than expected from 
measurements at harvested material. Varying leaf angle from horizontal to 
nearly vertical increased CAW about 6 nm. Decreasing leaf height up to 20 cm 
decreased CAW with 2.6 nm. The ratio between red and blue reflectance was 
also strongly affected by leaf angle. The summed effects of leaf height and leaf 
angle could only partly explain changes of edge positions with IC, and may 
have been augmented by sensor characteristics. It is concluded that 
combinations of the red/blue ratio, shifts of GE with IC and CAW may be 
useful to separate effects of leaf angle on sward reflectance from effects of leaf 
pigment concentration per se.  
 
 

5.1 Introduction 

The interpretation of reflectance measured from leaves within a standing 
canopy requires a full understanding of the factors affecting the composition 
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and intensity of the reflected signal. The factors known to influence leaf 
reflectance are leaf pigment content, constituent composition, cellular 
arrangement and leaf angle. With close range sensing, the position of leaves in 
the canopy is of particular importance as reflectance intensity and 
characteristics depend on shadows and angle with incident light (Sandmeier et 
al., 1998). The currently available imaging spectrometers combine a high 
spatial and spectral resolution (Herrala & Okkonen, 1996). This allows 
reflection measurements of individual leaves within a canopy (Borregaard et 
al., 2000; Feyaerts & Van Gool, 2001; Schut et al., Chapter 2). Schut & 
Ketelaars (Chapter 4) found that edge positions of reflection signals were 
related to reflection intensity. They discussed that shadow, pigment content 
gradient in the canopy, leaf angle and limitations in dynamic range of the sensor 
may affect this relation. Furthermore, this relation differed for clover and grass 
swards, and shifted with circadian changes in cloverleaf angle (Schut & Van 
den Berg, Chapter 7). It is yet unclear to what extent these factors affect the 
reflectance recorded.  
The objective of this paper was to study factors affecting the relation between 
reflection characteristics and reflection intensity of grass canopies at harvest, 
and to quantify the effect of leaf angle, height position in the canopy and 
pigment content on reflectance of leaves within a canopy. To this end, 
spectroscopic images were recorded from intact grass swards with 4 different 
nitrogen (N) application levels. In addition, images were recorded before and 
after harvesting sward strata, and from detached harvested material per stratum. 
Finally, the influence of leaf angle and height in the canopy on reflection 
characteristics was quantified for detached leaves. 
 
 

5.2 Materials and Methods 

5.2.1  Experiment 

In 2001, an experiment was conducted with 4 N supply levels of 0, 30, 60 and 
90 kg N ha-1 per growth period (referred to as N0, N1, N2 and N3 respectively) 
in 4 replicates. In late April 2001, a 1999 sown sward with a mixture of 4 
Lolium perenne L. cultivars was transplanted into containers (0.4 m high, 0.9 m 
long and 0.4 m wide) filled with sandy topsoil material, which were placed 
outside, and weighed twice a week. These swards were fertilised with 100 kg N 
ha-1 in March 2001. Water, potassium, phosphate and sulphur were kept at 
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sufficient levels. There were two intermediate harvests, without additional N 
fertilisation, on 28 May and 25 June. On 21-23 July and 21-23 August mini 
swards were hand cut at a height of 16 cm, 9 cm and 4 cm above soil surface, 
so that three strata were obtained. For each mini sward, fresh material was 
collected and weighed per stratum. Per treatment, fresh material of treatment 
replicates was combined per stratum and samples were taken for chemical 
analysis, including pigment analysis, and for determination of leaf area ratio 
(LAR). Six soil samples per container were mixed and sampled for analysis of 
soil mineral N content. Additional N supplies were given after the 25 June and 
23 July harvest. The mineral N content in the soil was low after the July 
harvest. Therefore, extra N was supplied on 7 August, equivalent to 0 (N0), 10 
(N1), 20 (N2), and 30 kg N ha-1 (N3).  
 

5.2.2  Measurements 

On 42 positions in each container, from a height of 1.3 m above the soil, 
hyperspectral image lines were recorded with the V7 and N10 sensor (for 
details see Schut et al., Chapter 2). The V7 sensor measures reflection between 
404 and 709 nm and the N10 sensor between 680 and 970 nm. At soil level, an 
image line was 1.39 mm wide and 152.5 mm long, resulting in a spatial 
resolution of 0.28 mm2 at. The spectral resolution was 5 nm. Light was 
focussed with a bar lens, and only a 2-4 cm wide strip was illuminated. Light 
was projected vertically onto the soil, and reflection was measured at an angle 
of 2 degree from nadir. Image lines were recorded twice a week during the 
growth periods. At harvest, image lines were recorded from intact canopies. 
Then strata were harvested. Before harvesting a stratum, image lines were 
recorded. In addition, for the August harvest some material from each stratum 
was placed on a black cloth, when sufficient material was available. The leaves 
were positioned horizontally under the imaging spectroscopy system, at a height 
equivalent to 18 cm above soil surface. Then, 50 images (each 1 mm apart) 
were recorded twice, and image analysis results were averaged. On 20 August, 
images were recorded from detached leaves under various angles. For this, 
three leaves of the N1 and N3 treatment were positioned under the imaging 
system at a height equivalent to 18 cm above soil surface. The leaves were 
fixed on a black cloth, which was connected to a rotating plate, with the adaxial 
side of the leaf on top. First, images of the reflection standard were recorded. 
Then, leaves were rotated around their shortest axis. Images were recorded 
twice, and image analysis results were averaged. The effects of leaf height were 
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evaluated by measuring reflectance of leaves at various distances from the 
sensor. From three sets of three leaves, reflectance was also measured between 
a height equivalent to 2-19 cm above the soil. Again, these leaves were placed 
on a black cloth on a horizontal plateau with their adaxial leaf side on top. 
Then, the height of the plateau was varied. 
 

Image analysis 

Schut et al. (Chapter 2) defined threshold values for soil, grass leaves (G), 
leaves with specular reflection (S), and dead material (D) classes and an 
intermediate class between soil and dead material. Separation between classes 
was based on ratios of reflectance (R) at 450, 550 and 680 nm. These classes 
are subdivided into reflection intensity classes (IC), based on the reflection 
intensity at predefined wavelengths of 550 nm for the V7 sensor and 746 nm 
for the N10 sensor. High-reflecting classes represent upper, more horizontally 
oriented leaves, while low reflecting classes represent lower, more vertically 
oriented leaves. The intensity classes for grass ranged from IC 0 up to and 
including IC 6 for the V7 sensor and from IC 0 up to and including IC 10 for 
the N10 sensor. For leaves with specular reflection, IC ranged from 0 up to and 
including 2, and for dead material from IC 0 up to and including 3. A large 
number of pixel reflection spectra in these intensity classes are stored in a 
spectral library. With this library, pixel spectra of the recorded image lines were 
classified with maximum likelihood procedures (Schut & Ketelaars, Chapter 3). 
The classification procedure was based on a limited number of wavelengths, 
selected according to a statistical function (Feyaerts & Van Gool, 2001) 
maximising class to class separation. After classification, spectra of pixels were 
normalised, according to equations in Schut et al. (Chapter 2). Normalisation 
means that reflection was divided by the mean reflection in the 550-555 nm 
range for the V7 sensor, and in the 800-850 nm range for the N10 sensor. Mean 
sward reflection spectra (MSS) were calculated from normalised spectra of all 
grass pixels, excluding grass IC 0. In addition, mean reflection spectra were 
calculated from normalised spectra for each IC (MICS). It is stressed that for 
this procedure only pixels containing grass were selected, thus eliminating 
pixels containing soil and dead material. Under the assumption that the data of 
the V7 and N10 sensors were from identical objects and that the sensitivity of 
the sensors in overlapping regions was comparable, the data of the V7 sensor 
were normalised to the 800-850 nm range (Schut et al., Chapter 2). This 
resulted in continuous MSS for the spectral range from 405 to 970 nm. For the 
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recordings of individual leaves similar procedures were followed. The mean 
spectral curve was now calculated from all pixels in GCG and GCS classes, 
excluding GCG0. 
 

Ground cover, index of reflection intensity and spatial heterogeneity of GC 

Ground cover was calculated per mini sward for each IC. Total image line (IL) 
ground cover (GCIL, %) was calculated as the sum of ground cover of all grass 
IC (GCG) and IC of all specular classes (GCS) from the V7 sensor:   
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where ic is the index number of the intensity class. The mini sward GC was 
calculated as mean GCIL over the 42 image lines. The index of reflection 
intensity (IRI, %) was then calculated as: 
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This IRI measures the presence of highly reflecting green pixels as a percentage 
of GC. A high value represents a relatively high canopy with horizontally 
oriented leaves (Schut & Ketelaars, Chapter 3). The spatial heterogeneity was 
quantified with the spatial standard deviation of GC (GC-SSD) and logistically 
transformed values of GC (TGC-SSD). These were calculated according to the 
equations in Schut & Ketelaars (Chapter 8), where the spatial standard 
deviation was calculated per mini sward as the standard deviation of the 42 
GCIL estimates. The GC-SSD can be best evaluated when GC is around 50%. 
 

Calculation of edges 

Reflectance spectra of green material typically have a sharp transition from 
minimum reflection around 680 and maximum reflection around 750 nm, 
known as the red edge (RE) (Horler et al., 1983). Green material reflects more 
radiation in the green part than in blue or red parts of the spectrum, and a blue 
edge (BE) and a green-edge (GE) can be found around 520 and 600 nm 
respectively. In this study we used a simple method for determination of edge 
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position. From the normalised spectra, minimum ( minR ) and maximum ( maxR ) 
reflection values were determined for BE, GE and RE regions within the 
spectral range of 472-800 nm. Then, a threshold value (T) was calculated 
according to:  
 

( ) CRRRT ×−+= minmaxmin  (3) 
 
where C is the critical value. At the RE, the transition between the V7 and N10 
sensor typically occurs between a normalised reflection value of 0.35 and 0.5. 
To minimise effects of this transition, the C was set at 0.55. The reflection 
value of band i was calculated as the average of band i, band i-1 and band i+1. 
Then, the wavelength position with a reflection value equal to T was calculated. 
For this, two neighbouring bands were determined where reflection in one band 
was smaller, and in the other band was larger than T. The exact wavelength 
position of T was calculated by linear interpolation of reflection values and 
wavelength positions. Edges were calculated for MSS and for each MICS. For 
MSS, the chlorophyll dominated absorption width (CAW) around 680 nm was 
calculated as the difference between RE and GE. 
 

Relation between IC number and edge position 

Reflection intensity of leaves, measured with the system, is affected by leaf 
angle and leaf height (Schut et al., Chapter 2). Each MICS was calculated as 
the mean over a large number of pixels and effects of angles of individual 
leaves and mixed pixels (for IC 0) on MICS were considered small. Therefore, 
differences between reflection characteristics of MICS may contain additional 
information about the canopy. IC number was plotted versus edge value. These 
relations were characterized by a regression of the function ( XbaY ×+= ) 
through the GE parameters of GCG0 up to and including GCG5. The number of 
pixels in GCG6 was low early in the growth period. Therefore, GCG6 was not 
included in the regression as a few leaves can influence the reflection 
characteristics of GCG6 strongly. The slope parameter b (IC nm-1) was used to 
compare the relations between IC number and GE. 
 
Chemical analysis 

At harvest, fresh matter yield was weighed and samples were taken for analyses 
of dry matter (DM), total N, nitrate-N and sugar concentration. Total N was 
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determined with the Dumas method on a Vario EL (Elementar Analyse 
Systemen, GmbH Hanau), and nitrate-N on a Bran and Luebbe Traacs 800 
continuous flow system (Maarsen, the Netherlands). Sugars were determined 
from dried material. Sugars were extracted by adding demineralised water to a 
ground sample. On a Bran and Luebbe AutoAnalyzerII (Maarssen, the 
Netherlands, Method NL213-89FT), the amount of reducing sugars (glucose 
and fructose) was measured as reduction in light absorbance at 420 nm and 
expressed as glucose equivalents. Total sugars was determined in the same 
extract after a hydrolysis-step of di- and oligosaccharides to glucose and 
fructose. 
 

Pigment analysis 

Chlorophylls a and b, carotenoids and total xanthophylls (neoxanthin, 
violaxanthin, antheraxanthin, zeaxanthin plus lutein and -cryptoxanthin) were 
quantitatively determined using reversed phase high-performance liquid 
chromatography (RP-HPLC) according to Helsper et al. (2003). 
 
 

5.3.  Results 

5.3.1  Experiment 

Yields and chemical analysis 

An increase in the amount of N supplied resulted in considerably higher FM 
yields. Yields were higher in the August than in the July harvest (Table 5.1). 
Differences between replicates were small. The mineral N content of the soil 
after harvest was low, even after the high N supply in the August growth 
period, with values of 1.9-3.3 mg kg-1 dry soil in July and 1.6-3.0 mg kg-1 dry 
soil in August. The harvested material also had low nitrate-N (0-0.01% in July 
and 0-0.04% in August) and low N concentrations (1.78-2.32% in July and 
2.12-2.85% in August) in both harvests.  
The low values of mineral N content in the soil, nitrate-N and total N indicate 
that even the highest N application was insufficient for maximum growth, 
especially for the July growth period. N deficiency resulted in high total sugar 
concentrations with mean values between 21.9-26.8% in the July harvest and 
13.4-17.2% in the August harvest. In general, FM and DM yields and N and 
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nitrate-N content increased, whereas DM content and LAR decreased with N 
supply. Contents of total sugars were lowest for N3 in the August harvest, in 
contrast to the July harvest where N0 had lowest sugar contents. Differences in 
reducing sugar contents between treatments and harvest dates were small. In the 
August growth period, only swards of the N3 lodged from 16 August onwards. 
This did not occur in the July harvest. 
 
 
Table 5.1 Fresh matter yield (FM) and mineral N content (N-min) of the soil after harvest + 

standard error of the treatment mean, total dry matter yield (DM), DM content and 

contents in DM of nitrate-N (NO3-N), nitrogen (N), reducing sugars and total sugars, and 

leaf area ratio (LAR) per treatment. 

 N0 N1 N2 N3 

 ---------------------------------------------July 2001--------------------------------------------

FM (t ha-1)  2.38 + 0.16  4.81 + 0.27  9.30 + 0.13  14.03 + 0.10 

N-min  

(mg kg-1 dry soil) 

 3.3 + 1.2  2.7 + 0.6  1.9 + 0.1  2.3 + 0.1 

DM (kg ha-1) 644 1212 2171 2944 

DM (%) 27.5 25.2 23.4 21.0 

NO3-N (%) 0.0 0.0 0.0 0.003 

N (%) 1.78 1.90 1.99 2.32 

Reducing sugars (%) 2.97 2.83 3.35 3.11 

Total sugars (%) 21.91 26.82 26.36 22.59 

LAR (m2 g-1 DM) 0.023 0.011 0.012 0.008 

August 2001 -----------------------------------------August 2001---------------------------------------------

FM (t ha-1)  2.74 + 0.13  8.45 + 0.26  14.27 + 0.38  16.94 + 0.98 

N-min  

(mg kg-1 dry soil) 

 1.6 + 0.1  2.0 + 0.2  2.2 + 0.3  3.0 + 0.6 

DM (kg ha-1) 688 1887 2791 3442 

DM (%) 25.1 22.3 19.6 20.4 

NO3-N (%) 0.002 0.003 0.008 0.043 

N (%) 2.12 2.17 2.44 2.85 

Reducing sugars (%) 3.30 3.09 2.70 3.10 

Total sugars (%) 17.15 16.81 14.30 13.43 

LAR (m2 g-1 DM) 0.017 0.013 0.009 0.011 
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Ground cover, canopy structure and spatial GC standard deviation 
The GC values were slightly higher in the August than in the July growth 
period (Figure 5.1). The GC ordering at harvest was in accordance with N 
supply. The IRI of the higher N supply levels strongly increased in the second 
half of the growth periods, with the N3 having the highest IRI values (Figure 
5.2). The 50% GC was reached in the 5-8 day interval after harvest for N1, N2 
and N3, whereas N0 reached 50% GC in the 9-13 day interval after harvest 
(Figure 5.1). There were minor differences between treatments in GC-SSD 
(Table 5.2), except just before harvest.  
 

Characteristics of canopy strata 

As expected, the lowest canopy strata had the highest DM yield (Table 5.3). 
Although total DM yield was higher in the August than in the July harvest, DM 
yields in the highest stratum were comparable for the N3, with 215 kg DM ha-1  
 
 

Table 5.2 Spatial standard deviation of ground cover (GC-SSD) and logistically transformed 

ground cover (TGC-SSD) + standard error of mean for intervals of days after harvest 

(DAH). Different uppercase letters within rows indicate significant ( =0.05) differences 

between treatment means. 

DAH N0 N1 N2 N3 

 ---------------------------------------------GC-SSD------------------------------------------- 

1-4  7.14 + 0.17a  9.62 + 0.47b  8.12 + 0.25a  8.08 + 0.32a 

5-8  9.18 + 0.18a  10.24 + 0.21a  10.25 + 0.53a  10.12 + 0.48a 

9-13  10.55 + 0.46a  8.32 + 0.08b  8.05 + 0.40b  7.77 + 0.08b 

14-21  10.37 + 0.43a  7.80 + 0.18b  6.99 + 0.18c  6.94 + 0.10c 

Day before harvest  10.32 + 0.29a  6.63 + 0.14b  6.63 + 0.28c  5.57 + 0.30c 

 --------------------------------------------TGC-SSD-------------------------------------------

1-4  0.49 + 0.01ab  0.54 + 0.03a  0.50 + 0.02ab  0.48 + 0.02b 

5-8  0.48 + 0.01a  0.43 + 0.01a  0.44 + 0.02a  0.44 + 0.03a 

9-13  0.47 + 0.02ab  0.41 + 0.01a  0.45 + 0.02a  0.53 + 0.02b 

14-21  0.43 + 0.02a  0.41 + 0.01a  0.43 + 0.01a  0.48 + 0.02b 

Day before harvest  0.44 + 0.02a  0.37 + 0.01b  0.52 + 0.03c  0.57 + 0.02c 
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Table 5.3 Dry matter yield (DM), contents of DM, nitrate-N (NO3-N), N, reducing sugars, total 

sugars and leaf area ratio (LAR) of sward strata. 

 Stratum N0 N1 N2 N3 N0 N1 N2 N3 

  ------------------July 2001----------------- --------------August 2001-------------------

DM (kg ha-1) >16 cm  22 87 215  95 289 201 

 9-16 cm 48 179 532 928 37 390 802 1212 

 4-9 cm 596 1012 1553 1800 651 1402 1699 2030 

DM (%) >16 cm  22.1 24.6 23.2  24.1 21.5 23.5 

 9-16 cm 27.5 26.3 23.0 20.7 28.1 21.0 18.1 19.6 

 4-9 cm 27.5 25.1 23.4 20.9 25.0 22.6 20.0 20.5 

NO3-N (%) >16 cm  0.002 0.000 0.000  0.003 0.001 0.008 

 9-16 cm 0.000 0.000 0.000 0.000 0.014 0.000 0.006 0.018 

 4-9 cm 0.000 0.000 0.000 0.005 0.001 0.004 0.010 0.061 

N (%) >16 cm  2.02 2.77 3.17  3.13 3.43 3.69 

 9-16 cm 2.00 2.37 2.41 2.69 2.55 2.68 3.00 3.22 

 4-9 cm 1.76 1.81 1.80 2.02 2.10 1.96 2.00 2.55 

Red. sugars  >16 cm  3.5 3.7 3.9  3.2 3.2 3.5 

(%) 9-16 cm 3.2 3.0 3.1 3.0 3.5 2.8 2.7 3.2 

 4-9 cm 3.0 2.8 3.4 3.1 3.3 3.2 2.6 3.0 

Total sugars  >16 cm  14.1 19.8 17.9  17.5 16.1 11.6 

(%) 9-16 cm 17.1 22.1 24.5 21.5 16.0 15.8 11.4 13.9 

 4-9 cm 22.3 27.9 27.4 23.7 17.2 17.0 15.4 13.4 

LAR  >16 cm  0.015 0.011 0.009  0.011 0.008 0.011 

(m2 g-1 DM) 9-16 cm 0.024 0.014 0.011 0.008 0.017 0.011 0.009 0.011 

 4-9 cm 0.023 0.009 0.015 0.008 0.018 0.015 0.009 0.013 

 
 
in July and 201 kg DM ha-1 in August. This was due to lodging of the N3 sward 
in the August harvest. Leaves in the highest stratum tended to have a higher 
DM content, a higher concentration of N and reducing sugars and a lower 
concentration of nitrate-N and total sugars than leaves in the lowest stratum 
(Table 5.3). In August, LAR was larger for N0, N1, N2 and N3 in the 4-9 cm 
stratum than in the >16 cm stratum, whereas in July, this was only true for N2. 
The highest stratum of N1 in July contained mainly generative plant material, 
accompanied by lower DM and N content and larger LAR values.  
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Figure 5.1  Development of image ground cover (GC) for N0 N0 (•), N1 ( ), N2 ( ) and N3 ( ). 
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Figure 5.2  Development of index of reflection intensity (IRI) for N0 N0 (•), N1 ( ), N2 ( ) and N3 

( ). 

 
As expected, chl-a, chl-b, total xanthophylls and -carotene concentrations 
increased with N supply and, on average, decreased with stratum height (Table 
5.4). The pigment contents were higher in the August than in the July harvest. 
All pigment contents decreased more strongly with stratum height in the July 
than in the August harvest. In both harvests, chl-a concentration decreased 
more strongly with stratum depth than chl-b. As a result, the ratio between chl-a 
and chl-b was lower for the lowest stratum than for the upper stratum. The total 
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xanthophylls concentrations were higher in the >16 cm stratum than in the 9-16 
cm and 4-9 cm stratum. Relative differences between the two lower strata were 
small. The relative decrease with stratum of -carotene was comparable to the 
relative decrease of chl-a.  
 
GC and IRI after harvest of strata material 

The GC decreased slightly but progressively after removal of material in higher 
strata (Table 5.5). The response of GC to harvesting strata was slightly stronger 
in the August than in the July harvest. The IRI also decreased progressively 
after harvesting above 9 cm compared to 16 cm for the N2 and N3 (Table 5.6). 
 
 

Table 5.4 Contents of chlorophyll a and b, total xanthofylls and ß-carotene in harvested material of 

grass swards in strata above 16 cm, between 9-16 cm and between 4-9 cm. 

Canopy stratum July 2001 August 2001 

 N0 N1 N2 N3 N0 N1 N2 N3 

 Chlorophyll-a (mg g-1 DM) 

 >16 cm  2.14 3.55 4.54  4.69 4.68 5.59 
 9-16 cm 1.99 2.45 2.71 3.52 3.25 3.04 4.08 4.71 
 4-9 cm 2.07 1.86 2.15 2.03 2.36 2.97 3.37  

 Chlorophyll-b (mg g-1 DM) 

 >16 cm  0.63 1.06 1.36  1.44 1.45 1.77 
 9-16 cm 0.58 0.73 0.87 1.14 0.96 0.98 1.35 1.65 
 4-9 cm 0.62 0.60 0.73 0.69 0.72 1.00 1.18  

 Chlorophyll-a / Chlorophyll-b 

 >16 cm  3.42 3.35 3.35  3.27 3.22 3.15 
 9-16 cm 3.44 3.36 3.13 3.09 3.40 3.10 3.02 2.86 
 4-9 cm 3.32 3.11 2.93 2.93 3.28 2.97 2.86  

 Total xanthofylls (mg g-1 DM) 

 >16 cm  0.33 0.47 0.69  0.73 0.74 0.81 
 9-16 cm 0.29 0.37 0.32 0.44 0.49 0.40 0.51 0.76 
 4-9 cm 0.31 0.27 0.43 0.31 0.38 0.50 0.54  

 -Carotene (mg g-1 DM) 

 >16 cm  0.17 0.24 0.36  0.32 0.37 0.34 
 9-16 cm 0.17 0.20 0.19 0.27 0.21 0.24 0.28 0.36 
 4-9 cm 0.17 0.14 0.21 0.16 0.17 0.23 0.27  
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Table 5.5 Ground cover (GC, %) + standard error of the mean before and after harvesting sward 

strata. 

Canopy stratum N0 N1 N2 N3 

 ----------------------------------------------July 2001--------------------------------------------

Complete canopy  55.3 + 2.1  74.7 + 0.7  80.8 + 0.4  84.4 + 0.8 

<16 cm  55.2 + 1.9  75.0 + 0.6  79.3 + 1.1  81.4 + 1.5 

<9 cm  52.1 + 1.8  72.0 + 1.2  72.5 + 1.6  70.9 + 1.8 

<4 cm  27.7 + 1.8  37.9 + 2.9  29.8 + 1.8  26.9 + 1.5 

 -------------------------------------------August 2001-------------------------------------------

Complete canopy   77.8 + 0.7  86.0 + 1.0  91.0 + 0.8 

<16 cm  58.3 + 1.2  76.6 + 0.5  81.9 + 0.8  88.9 + 0.4 

<9 cm  59.3 + 1.8  72.4 + 1.6  66.8 + 1.1  63.6 + 4.1 

 
 

Table 5.6 Index of reflection intensity (IRI, %) + SE of the mean before and after harvesting sward 

strata. 

Canopy stratum N0 N1 N2 N3 

 ----------------------------------------------July 2001--------------------------------------------

Complete canopy  2.1 + 0.6  6.0 + 0.7  9.0 + 1.1  14.7 + 2.4 

<16 cm  2.0 + 0.7  5.2 + 0.9  8.0 + 0.8  14.4 + 2.3 

<9 cm  2.1 + 0.6  5.7 + 0.8  4.5 + 1.3  3.2 + 0.3 

<4 cm  3.3 + 0.8  3.3 + 1.1  2.5 + 0.1  2.1 + 0.4 

 -------------------------------------------August 2001-------------------------------------------

Complete canopy   7.1 + 0.5  19.7 + 2.3  35.1 + 1.3 

<16 cm  1.2 + 0.4  6.1 + 0.4  13.7 + 1.2  27.0 + 0.4 

<9 cm  1.4 + 0.4  2.3 + 0.2  3.0 + 0.2  5.3 + 0.1 

 
 
5.3.2  Reflection characteristics of intact swards 

The CAW increased up to 133.1 nm in the July growth period and 133.7 nm in 
the August growth period for the N3 and N2 (Figure 5.3). The N0 and N1 did 
not reach this maximum. In the second half of the growth period, the CAW 
decreased. 
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Figure 5.3  Development of chlorophyll absorption width (CAW) for averaged sward curves for  

N0 (•), N1 ( ), N2 ( ) and N3 ( ). 

 
 
The decrease was strongest for the N1 and N2, although the N3 also decreased. 
In the July growth period the CAW of N3 decreased to 128.6 nm at harvest, 
whereas in the August growth period the CAW was 131.8 nm at harvest. This is 
in accordance with the higher N application in the August growth period and 
the low nitrate-N, N and soil mineral N contents of the July harvest. The CAW 
of N3 did not respond strongly to lodging. 
The CAW for N1 in the August harvest was higher than for N2 in the July 
harvest and the CAW for the August N2 was higher than for the July N3 
treatment, although the N application was equal. This is, however, in 
accordance with the slightly higher N and nitrate-N contents in the August than 
in the July harvest. The CAW just before harvest of the N0 treatment was 
considerably higher for the August (116.3 nm) than for the July harvest  
(100.1 nm). Again, this coincided with the higher N contents and the higher 
pigment contents of the August than of the July harvest (Tables 5.1 and 5.4). As 
an example, the relations between IC number and BE, GE and RE of 20 August 
are presented in Figures 5.4A, 5.4B and 5.4C, respectively. The differences in 
BE, GE and RE between N treatments were present in all intensity classes, yet 
the largest differences were found in the highest intensity classes. The edge 
positions tend to shift to shorter (GE) and longer wavelengths (BE, RE) for 
classes with a lower reflection intensity. Differences between intensity classes 
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ranged between 2.8-3.4 nm, 11.6-30.5 nm and 5.3-7.9 nm for BE, GE and RE, 
respectively. This range remained present after harvesting above 9 cm, with 
2.3-4.6 nm, 23.7-31.5 nm and 3.2-5.3 nm for the BE, GE, and RE respectively. 
The value of the b parameter in the linear relation between GE position and 
reflection intensity class increased with N treatment (Figure 5.5), where N3 had 
the ‘steepest’ curve (Figure 5.4). Values for b increased for the N3 treatment 
from 0.1-0.2 shortly after cutting to 0.47-0.55 IC nm-1 GE shift at harvest. The 
values for the parameter b (slope) for the N0 remained constant at 0.1-0.2 IC 
nm-1 GE shift and did not respond to lodging of the N3 sward from 16 August 
onwards. 
 

5.3.3  Reflection characteristics of canopy strata 

After harvesting above 16 cm, the CAW increased slightly for the N1, N2 and 
N3 treatments in both harvests (Table 5.7). The CAW decreased after the 
intermediate stratum was harvested. The CAW decrease was smaller for the N0 
and N1, than for the N2 and N3 treatments. The CAW is a combination of GE 
and RE position. The GE position of N2 and N3 shifted slightly to longer 
wavelengths after harvesting above 16 cm (0.4 nm (only N2) in July and 0-0.6 
nm in August). The GE shifted further to longer wavelengths (3.4-4.7 nm in 
July and 3.9-6.4 nm in August) after harvesting above 9 cm, while shifts 
progressively increased with N supply. The RE of N2 and N3 shifted, 
remarkably, also to longer wavelengths, with 0.8-1.2 nm in July and 1.7-1.8 nm 
in August after harvesting above 16 cm and with 0.4-0.9 nm in July and 0.4 nm 
in August after harvesting above 9 cm. The RE shifted 2 nm to longer 
wavelengths after harvesting above 9 cm in August. Harvesting above 16 cm 
hardly changed the value of b in the July harvest (Table 5.8). In August, the 
value of b only changed for N1. This b value decreased to 0.21 (N1) 0.23 (N2) 
and 0.20 (N3) in the July cut and to 0.20 (N1), 0.19 (N2) and 0.20 (N3) after 
harvesting above 9 cm.  
 

5.3.4  Reflection characteristics of harvested material 

The CAW of harvested material progressively decreased with lower strata 
(Table 5.9). This is in accordance with the progressive decrease in pigment 
content for lower strata (Table 5.4). CAW values for the upper stratum of the 
August harvest were similar to the values measured at the intact canopy. 
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Figure 5.4  Edge position of leaf pixels per reflection intensity class for N0 (•), N1 ( ), N2 ( ) and 

N3 ( ) for BE (A), GE (B) and RE (C) on 20 August. 
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Figure 5.5 Evolution of parameter b (IC nm-1) in the linear relation GE = a + b× IC for N0 (•),  

N1 ( ), N2 ( ) and N3 ( ). 

 
 
 
 
 
 
 

Table 5.7 Chlorophyll absorption width (CAW) + standard error of the mean of MSS before 

harvesting sward strata. Different uppercase letters within a column indicate significant 

differences between strata means (p < 0.05). 

Canopy stratum N0 N1 N2 N3 

 ----------------------------------------------July 2001--------------------------------------------

Complete canopy  100.1 + 2.4a  118.1 + 0.9a  125.8 + 0.2ab  128.6 + 0.3a 

<16 cm  107.2 + 1.9b  119.6 + 0.4a  126.9 + 0.2b  129.4 + 0.4a 

<9 cm  104.7 + 1.9ab  118.5 + 0.8a  124.3 + 0.8a  125.1 + 0.7b 

<4 cm  96.7 + 2.6  107.3 + 1.4  105.0 + 0.9  99.9 + 1.1 

 -------------------------------------------August 2001-------------------------------------------

Complete canopy   127.7 + 0.4a  130.0 + 0.5a  131.8 + 0.2a 

<16 cm  116.4 + 2.8a  128.8 + 0.5a  131.2 + 0.2a  133.4 + 0.2a 

<9 cm  117.8 + 2.2a  128.6 + 0.8a  127.8 + 0.6b  125.1 + 1.8b 
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Table 5.8 Mean values and standard error of the mean for parameter b (IC nm-1) in the linear 

relation IC = a + b * GE. 

Canopy stratum N0 N1 N2 N3 

 ----------------------------------------------July 2001--------------------------------------------

Complete canopy  0.17 + 0.03  0.21 + 0.01  0.37 + 0.01  0.46 + 0.01 

<16 cm  0.16 + 0.03  0.20 + 0.01  0.36 + 0.02  0.45 + 0.01 

<9 cm  0.20 + 0.03  0.21 + 0.02  0.23 + 0.01  0.20 + 0.01 

<4 cm  0.20 + 0.03  0.19 + 0.01  0.15 + 0.01  0.17 + 0.03 

 -------------------------------------------August 2001-------------------------------------------

Complete canopy   0.42 + 0.01  0.50 + 0.03  0.54 + 0.01 

<16 cm  0.18 + 0.01  0.36 + 0.01  0.49 + 0.01  0.54 + 0.03 

<9 cm  0.19 + 0.01  0.21 + 0.01  0.19 + 0.02  0.20 + 0.02 

 
 

Table 5.9 Chlorophyll absorption width (CAW) + standard error of the mean of harvested material 

of the August harvest. Different uppercase letters within a column indicate significant 

differences between strata means (p < 0.05). 

Canopy stratum N0 N1 N2 N3 

>16 cm   128.3 + 1.4a  129.3 + 0.3a  132.8 + 0.6a 

9-16 cm   126.1 + 1.7a  126.5 + 1.2a  129.0 + 1.1a 

4-9 cm  120.0 + 0.1  114.5 + 1.5b  111.7 + 1.1b  114.0 + 2.8b 

 
 

5.3.5  Reflection characteristics of detached leaves in relation to system 
properties 

The CAW showed a strong response when leaves were rotated around their 
shortest axis (Figure 5.6). Edges shifted towards longer (BE and RE) or shorter 
(GE) wavelengths for upwards oriented leaves when compared to horizontally 
oriented leaves. The GE shifted to longer and BE and RE to shorter 
wavelengths for downwards oriented leaves when compared to horizontally 
oriented leaves. There is a clear effect of specular reflectance visible for  
 



Chapter 5  

100 

horizontal leaves, approximately decreasing BE with 0.5 nm and RE with  
0.5-1.0 nm and increasing GE with 3-4 nm. This resulted in a net decrease in 
CAW of approximately 3.5-4.5 nm. Changing leaf angle from 0 to 60 degree 
with the horizontal plane shifted edges with a maximum of 2, 6 and 2 nm for 
the blue, green and red edge, respectively, resulting in a net CAW increase of 
5.9-7.3 nm. Leaves of Lolium perenne L. under an angle reflect relatively more 
light in the blue than in the red wavelength range (Figure 5.7). Nutrient supply 
also affected this ratio (Figure 5.8). The ratio remained above 0.8 throughout 
the growth period. The red/blue reflectance ratio generally increased to values 
above 1 after harvesting strata, although leaves were clearly more vertically 
oriented in the lower strata, but probably due to lower pigment contents (Table 
5.4).  
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Figure 5.6  Width of the chlorophyll absorption band (CAW) as function of leaf angle with the 

horizontal plane for leaves from the N1 ( ) and N3 ( ). The leaf tip is oriented upwards 

at 80 degree. 
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Figure 5.7 Ratio between the mean reflection from 657-664 nm (Red) and 411-463 nm (Blue) for 

leaves of the N1 ( ) and N3 ( ) treatment. 
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Figure 5.8 Ratio between the mean reflection from 657-664 nm (Red) and 411-463 nm (Blue) for  

N0 (•), N1 ( ), N2 ( ) and N3 ( ). 
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CAW in leaves showed a tendency to decrease with height above the soil 
surface (Figure 5.9). The BE position hardly changed with leaf height position. 
GE shifted to slightly shorter wavelengths when leaves were closer to the soil 
surface, with a net shift of 2.3 nm for a 20 cm decrease in height. There was a 
clear linear effect of height on RE, with RE shifting 4.9 nm to shorter 
wavelengths with a decrease in height of 20 cm. This resulted in a net CAW 
decrease of 2.6 nm with a decrease in height of 20 cm. The red/blue ratio 
linearly decreased for leaves with a higher position in the canopy (Red / Blue = 
1.19 – 0.009 × leaf height (cm)). This indicates that the relation between leaf 
angle and red/blue ratio and the CAW must change with leaf height, i.e. 
distance to the sensor.  
 
 

5.4.  Discussion and conclusion 

5.4.1  Experiment 

It was intended to create grass swards with a wide range of N statuses, from 
strongly N deficient to N saturated. In the July harvest, the highest N supply 
treatment was certainly not fully N saturated, as indicated by the low mineral N 
content in the soil after harvest, low nitrate-N and N concentration and high 
sugar content in harvested material.  
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Figure 5.9 Width of chlorophyll absorption band (CAW, B) as function of leaf height above soil 

surface for leaves from 3 sets of 3 leaves ( , , ). 
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The CAW also indicated that N supply for the July harvest was insufficient for 
a saturated N status. More N was supplied for the August growth period. In the 
August harvest, the highest N supply was probably nearly N saturated, as 
indicated by higher values for nitrate-N and N and lower sugar contents in 
harvested material and higher CAW values.  
The values for LAR were relatively low as compared to the 2000 experiment 
(Schut and Ketelaars, Chapter 4), where LAR values under a high N supply 
ranged from 0.010-0.019 m2 g-1 DM for various harvests. The GC-SSD is 
closely related to the spatial heterogeneity of tiller density. Schut & Ketelaars 
(Chapter 8) found that seasonal mean GC-SSD ranged between 9.2-10.8% and 
TGC-SSD below 0.6 within the first to weeks after harvest for dense swards. 
Deteriorated swards had a GC-SSD between 10.3-15.0% and a TGC-SSD 
above 0.7 within the first two weeks after harvest. In the experiment presented 
here, values of GC-SSD remained below 11% and values of TGC-SSD 
remained below 0.6 at all intervals. There were no significant differences in 
GC-SSD and TGC-SSD between treatments at 50% GC. Therefore, it is 
concluded that all treatments were spatially homogeneous and that N 
application did not affect spatial heterogeneity of grass swards. This is in 
accordance with findings of an N experiment in 2000 (Schut & Ketelaars, 
Chapter 4). 
 

5.4.2 Characteristics of canopy strata 

The lowest canopy strata had the highest DM yield. In general, leaves in higher 
strata had a higher DM content, a higher concentration of N and a lower 
concentration of nitrate-N than leaves in the lower strata. Pigment 
concentrations were higher for the >16 cm stratum than for 9-16 cm and 4-9 cm 
strata. The differences between strata were larger in the July than in the August 
harvest. The GC progressively decreased after harvest of higher strata, except 
for N1 in July. The leaves in the higher two strata were more horizontally 
orientated, whereas leaves in the lowest strata were more vertically orientated. 
This effect was even stronger for the N3 treatment in the August harvest, as 
swards had lodged from 16 August onwards. The IRI decreased to values below 
6% after harvesting material above 9 cm. The response of IRI was much 
stronger after harvesting above 9 cm than above 16 cm. This indicates that IRI 
is very sensitive for changes in leaf angle. It was found that pigment contents 
progressively decreased for strata lower in the canopy. The decrease in chl-a 
content with stratum was stronger than the decrease in chl-b content. Therefore 
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chl-a / chl-b ratios slightly decreased with height, in accordance with findings 
of Yamasaki et al. (1996). 
 

5.4.3  Reflection characteristics of intact canopies 

The CAW increased up to 133.1 nm in the July growth period and 133.7 nm in 
the August growth period for the N3 and N2 treatments. In the second half of 
the growth period CAW decreased, while the decrease was stronger in the July 
harvest than in the August harvest. This is in accordance with the higher N 
application and N status in the August than the July harvest. The CAW hardly 
responded to lodging. Treatment differences were clearly present in the slope of 
the relation between GE and reflection intensity. The range in GE values  
(12-30 nm) was smaller for high N than for low N application levels.  
 

5.4.4  Reflection characteristics of canopies after harvesting strata 

The CAW of grass swards increased slightly in both harvests for the N1, N2 
and N3 treatments after harvesting above 16 cm with 0.8-1.5 nm in July and 
1.1-1.6 nm in August. The CAW decreased after harvesting above 9 cm, 
slightly for the N0 and N1 and more significantly for the N2 and N3. This 
changing CAW was, remarkably, the net result of shifts to longer wavelengths 
of both GE and RE. The RE shift was larger than GE shift after harvesting 
above 16 cm, resulting in a net CAW increase. After harvesting above 9 cm the 
GE responded stronger than RE, resulting in a net CAW decrease. In swards 
harvested at 16 cm, the range in GE values within reflection intensity classes 
did not change much as compared to those for the intact canopy. In swards 
harvested above 9 cm, the GE ranges converged and treatment differences 
disappeared.  
 

5.4.5  Reflection characteristics of harvested material 

The CAW of harvested material above 16 cm was similar to the CAW 
measured at intact grass swards, with differences of 0.6-1.0 nm for various N 
application levels. The differences between CAW of harvested material and 
grass swards became progressively larger when strata were removed. 
Considering the limited height difference, and the minor effect of height on 
CAW, it is concluded that a change of leaf angle distribution was the 
determining factor for this trend.  
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5.4.6 Reflection characteristics of detached leaves in relation to system 

properties 

Normally, leaf angle distribution of perennial ryegrass swards changes from 
erectophyle to plagiophyle during growth. Therefore, mean leaf angle with the 
horizontal plane in the sward varies roughly between 70o shortly after harvest 
and 30o at high DM yields (De Wit, 1965). Changing leaf angle from 0 to 
60 degree with the horizontal plane increased CAW with maximally 7.3 nm. 
This was probably caused by an increase in pigment content in the pixel field of 
view.  
The CAW increased 2.6 nm when leaf position decreased 20 cm in height. It is 
yet unclear what caused this shift. Probably, it can be attributed to wavelength 
dependent limitations in dynamic range of the sensor i.e. relative changes for 
weak signals in regions of the spectrum with a low reflection are lower than in 
regions with a high reflection. 
 

5.4.7  Towards understanding of the reflected signal of canopies 

Decreasing reflection intensity could, as combined result of more vertically 
oriented leaves and lower leaf height position within the canopy increase CAW 
with maximally 9.9 nm. In more vertically oriented leaves low in the canopy 
this range may still further increase, as the dynamic range of the sensor may 
become a severely limiting factor, augmenting the effect of leaf angle. The 
observed ranges in GE position with intensity classes were much larger than 
can be explained by leaf angle and height position. This indicates that the 
interaction between leaf angle and height position was important for leaves low 
in the canopy. This interaction will also affect BE and RE position, although 
the observed BE and RE ranges were similar to the ranges found for leaf angle 
and leaf height. From the pigment profile, it can be expected that CAW 
progressively decreased with strata lower in the canopy. For harvested material, 
the CAW indeed progressively decreased with stratum, in contrast to the CAW 
of grass swards. For the lowest stratum, CAW differences between harvested 
material and (remaining) grass swards were 11 and 16 nm. A CAW difference 
of approximately 10 nm can be explained when considering the horizontal leaf 
orientation of harvested material and the more vertical leaf orientation for the 
lower canopy strata, in combination with differences in height position. The 
remaining difference might then result from the interaction between leaf height 
position and leaf angle. The slope of the relation between reflection intensity 
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and GE position did not change strongly after harvesting above 16 cm, 
indicating that this slope was not sensitive for small changes in canopy height, 
biomass or pigment content. The slope changed strongly after harvesting above 
9 cm. This can be understood when considering that leaf angles of treatments 
were comparable for the lowest stratum (more vertically oriented leaves), and 
that for this stratum the interaction between leaf angle and low height position 
was most important. Schut and Van den Berg (Chapter 7) found that clover 
swards, with horizontally oriented leaves, had a smaller GE range than grass 
swards. The GE range of clover swards strongly increased when leaf angle with 
the horizontal plane increased, due to the circadian rhythm of leaf opening and 
closure. For grass swards they found values for the GE range and for the slope 
of IC number over GE comparable with values found in our experiment. 
Therefore, it is concluded that a large range in GE values over intensity classes 
(and hence, a lower value for the slope parameter) coincides with an 
erectophyle leaf angle distribution and that a relatively small range coincide 
with a plagiophyle leaf angle distribution.  
It was found that the ratio between reflection in the red and blue parts of the 
spectrum decreased from 1.1 for horizontally oriented leaves to 0.4 for more 
vertically oriented leaves. Unfortunately, N supply and sensor limitations 
(observed when decreasing leaf height) also affected this ratio. The ratio 
between red and blue reflectance remained above 0.8 throughout the growth 
period. Ratios were lower in the August harvest (where swards were lodged) 
than in the July harvest. 
Schut & Ketelaars (Chapter 4) found that the discriminating ability of leaf 
reflectance between treatments with high N supply was limited. The 
discriminating ability may be improved when effects of leaf angle and pigment 
content on reflectance signals can be separated. This study indicates that for the 
experimental system leaf angle is one of the most important factors in the 
relation between reflection intensity and edge position, and that also the ratio 
between red and blue reflectance is affected by leaf angle. Therefore, effects of 
leaf angle and pigment content on sward reflectance may be further separated 
when considering together the red/blue ratio, the range in GE values and CAW. 
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6. Abstract 
The potential of an experimental imaging spectroscopy system, with high 
spatial (0.28-1.45 mm2) and spectral resolution (5-13 nm) is explored for early 
detection of drought stress in grass. A climate chamber experiment was 
conducted with 9 Lolium perenne L. mini swards with drought stress treatments 
in two N levels. Images were recorded twice a week. Growth was monitored by 
changes in ground cover (GC) and index of reflection intensity (IRI) and 
wavelength position of and gradient at inflection points, as estimated from 
images. Drought stress increased leaf dry matter content and sugar 
concentration. Drought stress decelerated and ultimately reversed GC 
evolution, and kept IRI at low values. In contrast to unstressed growth, all 
absorption features narrowed and became shallower under drought stress. The 
inflection points near 1390 and 1500 nm were most sensitive to drought stress. 
Differences between drought stress and control swards were detected just 
before leaf water content dropped below 80%. The evolution of inflection point 
wavelength positions reversed under drought stress, except for the inflection 
point at the red edge where the shift to longer wavelengths during growth 
accelerated. The relation between inflection points at 705 and 1390 nm 
differentiated unstressed swards in an early growth stage from drought-stressed 
swards in a later growth stage. 
 
 

6.1 Introduction 

Water resources for agriculture are limited, urging optimisation of irrigation 
water use. Irrigation optimisation strategies include temporal- and spatial 
differentiation. In grassland, duration and intensity of drought stress influences 
tiller survival (Grashoff et al., 2001). Therefore, an accurate timing of irrigation 
may prevent sward deterioration. In grass swards under drought stress, first 
growth rate decreases and in more advanced stages of drought stress, 
morphological changes and eventually leaf senescence and leaf death take place 
(Jones & Lazenby, 1988). With accurate drought stress detecting sensors, new 
irrigation management tools can be developed, limiting irrigation water use and 
preventing long term production loss. 
Dehydration of leaves decreases light absorption by water and severe 
dehydration affects pigment light-absorption. Dehydration also changes internal 
leaf structure. However, changes in internal leaf structure are less important 
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than effects of pigment and water absorption (Carter, 1991). Therefore, 
reflectance of leaves increases when water is lost, in both visible and infrared 
wavelengths (Ripple, 1986; Bowman, 1989; Inoue et al., 1993; Penuelas & 
Inoue, 1999). For passive sensors, only wavelengths with abundant natural light 
can be used for stress detection, eliminating the use of strong water absorption 
bands. Remote sensing of drought stress in crops is further complicated by 
changes in LAI and ground cover, canopy geometry, fraction of dead leaf 
material and background soil reflectance (Jackson & Ezra, 1985; Ripple, 1986; 
Hunt et al., 1987; Penuelas et al., 1993; Fernandéz et al., 1994).  
With a recently developed imaging spectroscopy system, new and automatic 
means for grass sward characterisation become available (Schut et al., Chapter 
2). Reflection intensity measured with this system is related to leaf height and 
leaf angle. With this character, image ground cover (GC) can be differentiated 
into reflection intensity classes, where the pixel distribution over intensity 
classes relates to canopy geometry (Schut et al., Chapter 2). The non-destruc-
tive nature of reflection measurements allows the study of the evolution of GC, 
canopy geometry and leaf pixel spectra in intact swards. From GC data light 
interception, leaf area index (LAI) and biomass can be estimated (Schut & 
Ketelaars, Chapter 3). Sward heterogeneity can be quantified with spatial GC 
variability and is related to production capacity (Schut & Ketelaars, Chapter 8). 
In this paper, the potential of this experimental system is explored for early 
detection of drought stress in grass swards. For this, a climate chamber 
experiment was conducted with 9 Lolium perenne L. mini swards from 1 
through 27 November 2000. Evolution of ground cover (GC), spatial GC 
variability and spectral characteristics in response to drought stress were 
studied. To this end images of drought-stressed swards with low and high N 
supply were recorded throughout one growth period, and shifts of and gradients 
near inflection points were studied with derivative spectra. 
 
 

6.2 Materials and methods 

6.2.1  Experiment 

From 1 - 27 November 2000, 9 mini swards of Lolium perenne L. were grown 
under abundant light (16 hours under HPI 400 light source (120 W m-2) and 
8 hours dark). Temperatures were kept at 20o C during the day and 15o C during 
the night, with 65% relative humidity during the day and 80% during the night. 
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Swards were grown in containers (0.9 m long, 0.7 m wide, 0.4 m high). The 
mini sward containers were taken from a nitrogen experiment (Schut & 
Ketelaars, Chapter 4). Only containers with mini swards were used which 
previously had received adequate N nutrition (3 mini swards with 60, 3 with 90 
and 3 with 120 kg N ha-1 per harvest). These containers were evenly divided 
over the treatments: control with high N supply (Co), drought-stressed with 
high N supply (DS-HN) and drought-stressed with low N supply (DS-LN), with 
three replicates per treatment. There were not enough mini swards available to 
include also a control with low N supply. At the start of the experiment, the 
high N treatments were fertilised with 120 kg N ha-1 and the low N with 30 kg 
N ha-1. 
Mini swards started with 20% (volume) soil moisture. After the start of the 
experiment, no extra water was supplied to the DS-LN and DS-HN mini 
swards. The Co mini swards were kept at 20% soil moisture, water being 
supplied through perforated drains. These drains were placed on top of the soil 
and under the canopy, minimising changes in canopy geometry. Once every two 
days containers were weighed. Leaf dry matter (DM) content was measured for 
monitoring the degree of drought stress. For this, ten top canopy leaves per mini 
sward were sampled and dried (105o) overnight for DM content determination.  
 

6.2.2  Chemical analysis 

At harvest (27 November), fresh matter was weighed and samples were taken 
for analyses of dry matter, total N, nitrate and (soluble) sugar content. Total N 
was determined with the Dumas method on a Vario EL (Elementar analyse 
systemen GmbH Hanau), nitrate on a Bran and Luebbe Traacs 800 continuous 
flow system (Maarsen, the Netherlands). Sugars were extracted from dried 
material by adding demineralised water to a ground sample. On a Bran and 
Luebbe AutoAnalyzerII (Maarssen, the Netherlands, Method NL213-89FT), 
reducing sugars were measured by reaction with ferricyanide which is reduced 
to colourless ferrocyanide. The reduction in absorbance at 420 nm was used to 
calculate the amount of sugars as glucose equivalents. Total sugars after 
hydrolysis were determined in the same extract but the autoanalyser was now 
equipped with a hydrolysis-step to convert di- and oligosaccharides to glucose 
and fructose. 
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6.2.3  Images 

Image recording 

On 42 positions in each mini sward, image lines were recorded once every two 
days. On each position, reflection was measured with three sensors (V7, N10 
and N17), in the wavelength range from 405-710 nm (V7), 675-970 nm (N10) 
and 960-1659 nm (N17), for details see Schut et al. (Chapter 2). At soil level, 
an image line recorded by the V7 and N10 was 1.39 mm wide and 152.5 mm 
long. For the N17 sensor, an image line was 1.39 mm wide and 133.1 mm long. 
There were 768 (V7 and N10) and 128 (N17) pixels per image line for the 
spatial dimension, resulting in a spatial resolution of 0.28 mm2 (V7 and N10) 
and 1.45 mm2 (N17) per pixel at the soil. Per pixel, radiance was measured in 
565 (V7 and N10) and 128 (N17) spectral bands. The spectral resolution was 5 
nm for the V7 and N10 sensor and 13 nm for the N17 sensor. The system used 
xenon and halogen light sources with lenses illuminating only the area (2-4 cm 
wide strip) where an image line was recorded. Light was projected vertically to 
the soil, and reflection was measured under an angle of 2 degree from nadir, 
minimising shadow effects. The imaging spectroscopy system recorded per 
sensor a single image line with the light sources switched off and 5 image lines 
from a 50% reflection standard as part of the sampling routine. With these 
standard image lines, reflection was calculated from the radiance data. 
 

Classification 

Schut et al. (Chapter 2) defined threshold values for soil, grass leaves (G), 
leaves with specular reflection (S), and dead material (D) classes and an 
intermediate class between soil and dead material. Separation between classes 
was based on ratios of reflectance (R) at 450, 550 and 680 nm. These classes 
were subdivided into reflection intensity classes (IC), based on the reflection 
intensity at predefined wavelengths (550 nm for the V7, 746 nm for the N10 
and 1100 nm for the N17 sensor). The intensity classes ranged for grass from 
IC 0 up to and including IC 6 for the V7 sensor and from IC 0 up to and 
including IC 10 for the N10 and N17 sensor. For leaves with specular 
reflection, IC ranged from 0 up to and including 2, and for dead material from 
IC 0 up to and including 3. A large number of pixel reflection spectra per 
intensity class are stored in a spectral library. With this library, pixel spectra of 
the recorded image lines were classified with maximum likelihood procedures 
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(Schut & Ketelaars, Chapter 3). The classification procedure was based on a 
limited number of wavelengths, selected according to a statistical function 
maximising class to class separation (Feyaerts & Van Gool, 2001). 
After classification, spectra of pixels were normalised, according to equations 
in Schut et al. (Chapter 2). Normalisation means that reflection was divided by 
the mean reflection in the 550-555 nm range for the V7 sensor, 800-850 nm 
range for the N10 sensor and 1070-1130 nm for the N17 sensor. Mean sward 
reflection spectra (MSS) were calculated from normalised spectra of all pixels 
in grass IC 1 trough 10. In addition, mean reflection spectra were calculated 
from normalised spectra for each IC. It is stressed that for this procedure only 
grass pixels were selected, eliminating pixels containing soil and dead material. 
Under the assumption that the data of the V7 sensor and the N10 sensor were 
from identical objects and that the sensitivity of the sensors in overlapping 
regions was comparable, the data of the V7 sensor were normalised to the  
800-850 nm range (Schut et al., Chapter 2). These assumptions seem valid for 
MSS.  
 

Ground cover, index of reflection intensity and spatial variability of GC 

Ground cover was calculated per mini sward for each IC. Total image line (IL) 
ground cover (GCIL, %) was calculated as sum of ground cover of all grass IC 
(GCG) and IC of all specular classes (GCS) from the V7 sensor: 
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where ic is the index number of the intensity class. The mini sward GC was 
calculated as the average of the GCIL over the 42 image lines. This mini sward 
GC estimate underestimates visually scored GC, visually scored GC equals 8.63 
+ 1.076 × GC (Schut et al., Chapter 2). The index of reflection intensity (IRI, 
%) was then calculated as: 
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This IRI measures the presence of highly reflecting green pixels as a percentage 
of GC. A high value represents a dense canopy with horizontally oriented 
leaves (Schut & Ketelaars, Chapter 3). 
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The spatial heterogeneity was quantified with the spatial standard deviation of 
GC (GC-SSD) and logistically transformed values of GC (TGC-SSD). These 
were calculated according to the equations in Schut & Ketelaars (Chapter 8), 
and the spatial standard deviation was calculated per mini sward as the standard 
deviation of the 42 GCIL estimates. 
 

Calculation of chlorophyll absorption width (CAW) 

Reflectance spectra of green material typically have a sharp transition from 
minimum reflection around 680 nm and maximum reflection around 750 nm, 
known as the red edge (RE) (Horler et al., 1983). Green material reflects more 
radiation in the green part than in blue or red parts of the spectrum, and a blue 
edge (BE) and a green-edge (GE) can be found around 520 and 600 nm. In 
earlier work, Schut & Ketelaars (Chapter 4) used a CAW distance measure 
between the half height of the green and red edge. This CAW was strongly 
related to relative growth deficit due to nitrogen shortage. 
 

Calculation of derivative spectra 

The MSS spectra were smoothed with cubic splines. Splines are non-parametric 
regressions functions, mostly third order polynomials, where a regression curve 
is calculated for each interval between knots. The regression curve is 
continuous between intervals at the first and second derivative (Silverman, 
1985). The number of knots was arbitrarily set to one third of the number of 
spectral bands. Decreasing the number of knots smoothes the spectral curve 
more strongly, and small features will be removed. The effects of the choice of 
the number of knots on the selected features were evaluated by setting the 
number of knots to one ninth of the number of spectral bands. From the 
resulting regression curves, first and second derivatives were determined. The 
minimum or maximum derivative wavelength was defined as the point of 
intersection of the second derivative with the abscissa (Railyan & Korobov, 
1993). These points of intersection will be referred to as inflection points  
(IP, nm). The gradient values, calculated as ∆ reflection per ∆ nm over the two 
nearest bands at the IPs, were also determined. The gradients and IP only 
slightly changed with the choice of number of knots. Therefore, the values of 
the IP and gradients presented were calculated with the number of knots set to 
one third of the number of spectral bands. 
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6.2.4  Statistics 

The statistical differences were evaluated with analysis of variance. The null 
hypothesis was that treatment means did not differ on the same date. This 
hypothesis was tested with a two-sided t-test (p<0.05).  
 
 

6.3 Results 

6.3.1  DM yield and chemical analysis 

The DM yield of drought-stressed treatments was significantly lower than 
control (Table 6.1). Drought stress affected all variables, only nitrate of DS-HN 
and control were not significantly different. Drought stress increased DM 
content and concentration of reducing and total sugars. The concentration of 
long chained sugars increased from 14.7% for Co to 23.8% for DS-HN and 
25.5% for DS-LN. The DS-LN had lower N- and nitrate concentrations than 
DS-HN and Co. The N concentration of DS-HN was slightly lower than Co, but 
there was no difference in nitrate concentration (Table 6.1). During growth, leaf 
DM content of Co increased, but did not exceed 21% (Figure 6.1). From 13 
November onwards, DM contents of DS-HN and DS-LN were higher than Co.  
 
 
 
 
Table 6.1 Means and standard deviations of DM yield and concentrations of DM, N, nitrate and 

reducing sugars and total sugars for control (Co), and drought-stressed swards with high 

(DS-HN) and low (DS-LN) N supply. Different uppercase letters within rows indicate 

significant (p<0.05) differences between treatment means. 

 Co DS-HN DS-LN 

Yield (kg DM ha-1)  2000 + 108a  761 + 276b  649 + 122b 

DM (%)  16.93 + 0.8a  39.13 + 7.3b  34.37 + 2.9b 

Reducing sugars (%)  3.22 + 0.26a  4.39 + 0.55b  4.50 + 0.26b 

Total sugars (%)  14.7 + 1.8a  23.8 + 3.5b  25.5 + 1.3b 

N (%)  3.81 + 0.09a  3.40 + 0.20b  2.26 + 0.17c 

Nitrate (%)  0.51 + 0.05a  0.51 + 0.04a  0.04 + 0.01b 
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The DM content of DS-HN significantly differed from Co for the first time on 
13 November and DS-LN significantly differed from Co for the first time on 17 
November. The soil moisture content of DS-HN dropped two days earlier 
below 11% than DS-LN. Therefore, DM content of DS-HN also responded 
slightly earlier than DS-LN. 
 

6.3.2  Image analysis 

GC, IRI and spatial GC standard deviation 

The GC of Co increased steadily up to 27 November (Figure 6.2). The DS-LN 
had a slightly higher initial GC. The growth rates of GC of DS-HN and DS-LN 
decreased after 9 November and became negative after 17 November, resulting 
in a decrease in GC due to folding and eventually dying of leaves. From 15 
November onwards, error bars of drought stressed treatments are longer. This 
indicates that differences between replicates of drought stressed swards in-
creased. The IRI of Co increased strongly after 17 November, whereas the IRI 
of DS-HN and DS-LN remained constant (Figure 6.3). Drought stress visibly 
changed leaf angle to a more horizontal orientation, but also decreased mean 
leaf height. Due to these two opposite effects IRI values increased only slightly. 
The GC-SSD of Co remained below 11% in all intervals, where the GC-SSD 
first increased and then decreased (Table 6.2). The GC-SSD values of DS-LN 
and DS-HN remained fairly constant after 8 days from the start of the 
experiment. Therefore, the significant differences in GC-SSD between DS-LN 
and DS-HN and Co just before harvest (27 days of growth) mainly resulted 
from differences in GC evolution. The TGC-SSD remained below 0.6 for all 
intervals and treatments, except for DS-HN at 27 growth days with a value of 
0.66. Only one of the three DS-HN replicates showed a strong TGC-SSD 
increase towards harvest. This indicates that the GC decrease was not evenly 
distributed over this container. The differences in TGC-SSD between the 
drought-stressed swards and Co were not significant. 
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Figure 6.1 Development of leaf dry matter content for control swards ( ), drought-stressed swards 

with high N supply ( ) and drought-stressed swards with low N supply ( ). Error bars 

indicate standard error of means. 
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Figure 6.2 Development of image ground cover (GC) for control swards ( ), drought-stressed 

swards with high N supply ( ) and drought-stressed swards with low N supply ( ). Error 

bars indicate standard error of means. 
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Figure 6.3 Development of index of reflection intensity (IRI) for control swards ( ), drought-

stressed swards with high N supply ( ) and drought-stressed swards with low N supply 

( ). Error bars indicate standard error of means. 

 

Derivative spectra 

The drought-stressed swards had higher normalised reflection than Co in the 
visible wavelength range and in the range above 1100 nm than control, whereas 
reflection was lower in the 730-830 nm range (Figure 6.4A). The amplitude of 
the derivatives of DS-HN and DS-LN were lower than Co throughout the 

spectral range measured. The dots in Figure 6.4B indicate that there were 17 IPs 
identified (at 463, 480, 485, 519, 570, 595, 608, 624, 640, 705, 768, 960, 990, 
1140, 1220, 1390 and 1510 nm). The IPs at 519, 570, 705, 990, 1140, 1390 and 
1510 nm corresponded to clearly visible slopes (Figure 6.4) that were also 
selected with the number of knots set to one ninth of the number of spectral 
bands. The IPs at 463, 480, 485, 595, 608, 624 and 640 nm corresponded to 
absorption features that were not as strong, although these features were present 
in spectra of all data.  
During unstressed growth, absorption features became deeper and wider, 
resulting in IP shifts. Under drought stress, water absorption features became 
narrower, resulting in reversed IP shifts. In Table 6.3, the pigments and 
chemical bonds with light absorbing or emitting features near the IP and the 
evolution of IPs with significant effects of drought stress are presented. On 
17 November, all IPs detected with the N17 sensor, and the IP near 960 nm of 
the N10 sensor responded to drought. The IPs near the strongest water  
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Figure 6.4 Normalised reflection (R) curve (A) and first derivative (B) for control (–), DS-HN  

(–) and DS-LN (–) swards on 23 November. Dots indicate wavelengths of selected 

minima and maxima of the first derivative. 
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Table 6.2 Spatial standard deviation of ground cover (GC-SSD, %) and logistically transformed 

ground cover (TGC-SSD, -/-) and standard error of replicate mean for intervals of growth 

days (GD) for control (Co), and drought-stressed swards with high (DS-HN) and low 

(DS-LN) N supply. Different uppercase letters within rows indicate significant (p<0.05) 

differences between treatment means.  

GD Co DS-LN DS-HN 

 ---------------------------------------GC-SSD--------------------------------------- 

1-4  8.1 + 0.9a  8.6 + 0.8a  8.1 + 0.1a 

5-8  9.3 + 0.6a  10.0 + 0.5a  10.7 + 0.4a 

9-13  11.0 + 0.6ab  10.3 + 0.3a  12.3 + 0.4b 

14-21  9.1 + 0.7a  10.8 + 1.1a  11.8 + 1.1a 

27  6.5 + 0.8a  11.0 + 1.8b  12.8 + 0.8b 

 --------------------------------------TGC-SSD--------------------------------------- 

1-4  0.57 + 0.04a  0.51 + 0.03a  0.53 + 0.02a 

5-8  0.51 + 0.05a  0.47 + 0.03a  0.56 + 0.01a 

9-13  0.47 + 0.03ab  0.43 + 0.01a  0.53 + 0.02b 

14-21  0.46 + 0.03a  0.47 + 0.04a  0.51 + 0.06a 

27  0.47 + 0.06a  0.47 + 0.09a  0.66 + 0.09a 

 
 
absorption feature, around 1390 and 1500 nm responded earliest to drought 
stress. The evolution of IPs of DS-HN and DS-LN at 1140, 1390 and 1500 
reversed after 11 November under drought stress, whereas the IP positions near 
960 and 990 nm remained stable.  
Drought stress accelerated shifts of IPs around 485, 707 and 768 nm, whereas 
the IPs around 624 and 570 nm shifted in opposite direction after 17 November 
(Table 6.3). The IPs around 480, 640 and 519 nm did not change significantly 
under drought stress. 
There were no differences between DS-LN and DS-HN in IP position in the 
near infrared (NIR) region. The IPs around 485 for DS-LN shifted less to 
shorter wavelengths than DS-HN, and the IPs around 624 and 705 shifted less 
to longer wavelengths. 
The slopes of nearly all IPs became steeper during unstressed growth 
(Table 6.4). Under drought stress, slopes became less steep for all IPs around 
water absorption features. In contrast to IP position, the gradient around 518 nm 
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of DS-HN was significantly different from Co just before harvest. Under 
moderate drought stress, slopes became less steep for most IPs. The accelerated 
shift of the IP position near 707 nm towards longer wavelengths under drought 
stress coincided with a decreased slope gradient. The gradient near 767 nm 
became negative under unstressed growth, whereas under drought stress 
gradients remained positive. This can be understood when considering the 
differences in general gradients between 740 and 800 nm of drought-stressed 
and unstressed leaves (Figure 6.4). In this range, unstressed leaves had a nearly 
flat reflection curve whereas drought-stressed leaves showed a slight increase 
in reflection with wavelength. The chlorophyll fluorescence feature in 
unstressed leaves has a distinct right shoulder, whereas this shoulder is flat for 
drought-stressed leaves and the IP is then located to the first maximum 
derivative thereafter. 
The N supply affected gradients at the IPs around 485, 517, 570, 624 and 640 nm, 
whereas the gradients at NIR IPs for DS-LN were not different from DS-HN. 
The evolution of the IP position near 1390 nm during growth requires a 
reference to separate unstressed swards in an early growth stage (shortly after 
harvest) from stressed swards later in the growth period. The relation between 
the IP position near 705 and 1390 nm provided such a reference (Figure 6.5). 
The measurements at the beginning of a growth period are located at the left 
top, and points from measurements later in the growth period are located more 
to the right of the relation. The slope of the relation between the 705 nm and 
1390 nm IP position for low (λ1390 =1495 - 0.15 × λ705, R2=0.78) and high N 
supply during unstressed growth differed significantly, with the slope for low N 
supply (-0.15) being less negative than for high N supply (-0.20). The 
combination of IPs larger than 706 and 1390.2 nm identified drought-stressed 
swards.  
 

Chlorophyll absorption width 

Under severe drought stress, DS-LN and DS-HN had a lower CAW than Co 
(Figure 6.6). CAW decreased when leaves started to shrink and GC decreased 
(Figure 6.2). Under drought stress, the RE shift to longer wavelengths became 
more pronounced and the normal GE shift to shorter wavelengths reversed. 
This increase in RE is caused by a shift of the position of the first derivative 
maximum. The DM yield of DS-HN was 38.1% of Co, and of DS-LN 32.5% of 
Co with a CAW of 120.2 (DS-HN) and 126.8 (DS-LN) at harvest.  
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Table 6.3 Mean inflection points (IP, nm) for control (Co), and drought-stressed swards with high 

(DS-HN) and low (DS-LN) N supply. Different uppercase letters indicate significant 
(p<0.05) differences between means. Significant differences with control are printed in 
boldface. The indicated pigments ( -carotene (Car), chlorophyll a (Chla) and b (Chlb) 
and chemical bonds have an absorption or emission maximum near IPs (Curran, 1989; 
Lichtenthaler, 1987; Zarco Tejada et al., 2000).  

 Pigment or bond 3/11 9/11 11/11 13/11 17/11 23/11 27/11 

Co Chlb+Car 481.2a 479.3a 479.2a 479.0a 478.3a 480.2a 479.7a 
DS-LN Chlb+Car 480.0a 478.9a 478.1a 479.2a 479.7b 479.4ab 478.1a 
DS-HN Chlb+Car 480.2a 478.6a 478.1a 478.6a 479.3ab 478.7b 478.6a 
Co Car 484.2a 485.6a 486.4ab 486.7a 486.5a 486.4a 485.5a 
DS-LN Car 484.9a 486.6a 486.6a 487.4a 487.2a 486.7a 487.7ab 
DS-HN Car 485.5a 485.9a 485.6b 487.3a 488.2a 488.3b 489.2b 
Co Car+Chlb 516.4a 518.4a 519.1a 519.1a 519.6a 519.6a 519.6a 
DS-LN Car+Chlb 516.7a 518.8b 519.2a 519.2a 519.2b 519.4a 519.7a 
DS-HN Car+Chlb 516.5a 518.6c 519a 519.2a 519.5a 519.5a 519.4a 
Co Chlb 571.9a 569.5a 569.5a 569.3a 569.1a 569.1a 569.2a 
DS-LN Chlb 571.2a 569.8a 569.5a 569.5a 569.8a 570.1b 570.4b 
DS-HN Chlb 572.0a 570.0a 569.6a 569.5a 569.8a 570.2b 571.1b 
Co Chla 622.8a 625.0a 625.2a 624.5a 625.4a 625.1a 624.4a 
DS-LN Chla 622.6a 624.9a 624.9a 625.2a 624.7ab 623.7ab 623.9ab 
DS-HN Chla 622.5a 624.6a 624.1a 624.9a 623.4b 623.4b 622.0b 
Co Chlb 639.3a 640.8a 640.9a 639.4a 639.5a 639.6a 638.9a 
DS-LN Chlb 640.7a 640.9a 639.4a 640.7a 640.3a 638.4a 640.2a 
DS-HN Chlb 641.5a 638.6a 638.1a 638.9a 637.7b 639.2a 638.9a 
Co Chla 696.2a 703.3a 706.5a 706.3a 706.9a 708.1ab 709.6ab 
DS-LN Chla 695.0a 705.9b 705.8a 707.8b 707.8a 707.0a 708.7a 
DS-HN Chla 694.9a 704.6ab 707.8a 708.5b 709.5a 710.6b 711.7b 
Co Fluorescence 763.5a 765.8a 766.1a 767.0a 771.6a 770.5a 770.6a 
DS-LN Fluorescence 763.5a 766.2a 766.9a 767.7a 770.9a 775.1a 776.3ab 
DS-HN Fluorescence 762.4a 767.6a 765.8a 767.6a 771.1a 774.9a 781.6b 
Co O-H 962.6a 961.6a 961.1a 960.2a 959.6a 959.1a 957.6a 
DS-LN O-H 962.6a 962.0b 961.9a 961.4b 961.6b 962.0b 961.6b 
DS-HN O-H 962.6a 961.9ab 961.4a 961.2ab 961.4b 962.0b 961.4b 
Co O-H 996.6a 992.6a 992.0a 989.8a 987.6a 986.8a 981.9a 
DS-LN O-H 996.6a 994.1b 993.6a 992.3a 992.8b 993.5b 992.9b 
DS-HN O-H 996.6a 993.2a 992.6a 991.8a 992.4 b 993.7b 992.8b 
Co O-H 1142.9a 1139.2a 1139.3a 1139.4a 1138.6a 1137.9a 1138.4a 
DS-LN O-H 1139.7a 1139.6a 1140.1a 1139.4a 1140.5b 1141.1b 1144.1b 
DS-HN O-H 1142.4a 1139.2a 1138.7a 1139.5a 1141.1b 1142.4b 1143.3b 
Co O-H, C-H 1391.8a 1390.2a 1389.7a 1389.7a 1389.6a 1389.0a 1389.4a 
DS-LN O-H, C-H 1391.8a 1390.7a 1390.0a 1390.4b 1390.4b 1390.9b 1392.9b 
DS-HN O-H, C-H 1391.8a 1390.3a 1390.1a 1390.2b 1391.0c 1391.8b 1393.2b 
Co O-H, N-H 1499.8a 1500.3a 1504.7a 1504.5a 1506.4a 1508.0a 1506.6a 
DS-LN O-H, N-H 1499.0a 1499.1a 1501.0b 1502.9ab 1503.6b 1500.9b 1496.4b 
DS-HN O-H, N-H 1498.5a 1501.4a 1502.8ab 1502.0b 1502.6b 1499.7b 1497.0b 
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Table 6.4 Mean derivatives (×10-3, in ∆ reflection per ∆ nm) near the inflection points for control 

(Co), and drought-stressed swards with high (DS-HN) and low (DS-LN) N supply. 

Different uppercase letters indicate significant (p<0.05) differences between means. 

Significant differences with control are printed in boldface. 

 Typical pos. (nm) 3/11 9/11 11/11 13/11 17/11 23/11 27/11 

Co 480 1.53a 0.88a 0.74a 0.77a 0.62a 0.56a 0.51a 
DS-LN 480 1.50a 0.91a 0.81a 0.79a 0.84b 0.83b 1.00b 
DS-HN 480 1.48a 0.84a 0.71a 0.77a 0.82ab 0.84b 1.01b 
Co 485 1.41a 0.61a 0.38a 0.36a 0.21a 0.33a 0.31a 
DS-LN 485 1.28a 0.47b 0.32a 0.30a 0.42b 0.50b 0.41a 
DS-HN 485 1.12a 0.46b 0.40a 0.26a 0.25ab 0.28a 0.33a 
Co 517 8.5a 8.81a 8.15a 8.19a 8.02a 7.69a 7.59a 
DS-LN 517 8.26a 7.84b 8.03a 7.62b 7.70a 7.50a 6.97a 
DS-HN 517 8.67a 8.48ab 7.57a 7.45b 6.80b 5.81b 5.08b 
Co 570 -3.59a -5.15a -4.87a -5.03a -5.03a -4.81a -4.69a 
DS-LN 570 -3.62a -4.59b -4.86a -4.64b -4.57a -4.14ab -3.61b 
DS-HN 570 -3.80a -5.07ab -4.45a -4.50b -4.02b -3.14b -2.51c 
Co 623 -1.05a -1.37a -1.30a -1.31a -1.29a -1.23a -1.18a 
DS-LN 623 -1.08a -1.14a -1.22a -1.19a -1.20a -1.07ab -0.98a 
DS-HN 623 -1.02a -1.24a -1.30a -1.23a -1.02a -0.73b -0.60b 
Co 640 -2.36a -2.52a -2.24a -2.21a -2.11a -1.99a -1.98a 
DS-LN 640 -2.28a -2.23a -2.16a -2.13a -2.01a -1.93ab -1.70a 
DS-HN 640 -2.46a -2.41a -1.96a -2.03a -1.93a -1.56b -1.26b 
Co 707 16.41a 20.30a 20.70a 20.63a 20.56a 20.40a 20.18a 
DS-LN 707 16.51a 19.41b 20.32a 19.93a 19.26a 18.46b 17.43b 
DS-HN 707 16.74a 20.12a 20.18a 19.99a 18.96a 18.04b 17.09b 
Co 767 1.07a 0.14a -0.19a -0.09a -0.22a -0.27a -0.27a 
DS-LN 767 1.06a 0.30a 0.16b 0.06a 0.04a 0.19b 0.34b 
DS-HN 767 0.98a 0.05a -0.01ab 0.04a -0.02a 0.28b 0.44b 
Co 963 -23.29a -13.11a -10.13a -7.13a -4.71a -3.37a -1.51a 
DS-LN 963 -23.17a -14.59a -13.43a -10.80b -11.32b -12.56b -11.26b 
DS-HN 963 -22.65a -14.06a -11.63a -10.35ab -10.32b -11.89b -9.07b 
Co 997 2.60a 2.58a 2.36a 2.35a 2.27a 1.96a 0.75a 
DS-LN 997 2.59a 2.49a 2.38a 2.26a 2.25a 2.31b 2.14a 
DS-HN 997 2.53a 2.58a 2.36a 2.37a 2.20a 2.1ab 1.84a 
Co 1140 -0.26a -0.93a -0.98a -1.08a -1.26a -1.43a -1.47a 
DS-LN 1140 -0.17a -0.65b -0.81a -0.91b -0.98b -0.81b -0.66b 
DS-HN 1140 -0.23a -0.79c -0.93a -0.92b -0.88b -0.78b -0.63b 
Co 1392 -7.69a -10.39a -10.64a -10.62a -10.74a -10.92a -10.22a 
DS-LN 1392 -7.69a -8.90b -9.29b -9.32b -9.78ab -9.25b -7.56b 
DS-HN 1392 -7.10a -9.79ab -9.77ab -9.49b -9.20b -8.36b -6.89b 
Co 1500 1.30a 1.93a 1.89a 1.91a 1.97a 2.10a 2.13a 
DS-LN 1500 1.55b 1.64b 1.60a 1.74b 1.69b 1.54b 1.32b 
DS-HN 1500 1.23c 1.78ab 1.70a 1.68b 1.64b 1.34b 1.19b 
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Figure 6.5 Relation between evolution of edges near 705 and 1390 nm. Open symbols indicate 

measurements of control ( ) and drought-stressed with high N ( ) and low N supply ( ) 

before 12 November (no drought stress), closed symbols in red indicate measurements 

after 12 November (drought stressed). The bold line (λ1390 =1531 - 0.2 × λ705, R2=0.92) is 

fitted through all points of the control. The thin lines indicate the 99% confidence interval 

for 1 new observation. 
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Figure 6.6 Development of chlorophyll absorption width (CAW) for control swards ( ), drought-

stressed swards with high N supply ( ) and drought-stressed swards with low N supply 

( ). Error bars indicate standard error of means. 
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6.4 Discussion and conclusion 

Drought stress increased leaf dry matter content and sugar concentration, 
decelerated and ultimately reversed ground cover (GC) evolution and kept 
index of reflection intensity (IRI) at low values. This GC development can be 
understood when considering that drought stress first decreases leaf 
photosynthesis and, in a more advanced stage of drought stress, specific leaf 
area (Jones et al., 1980a; b). Thomas (1991) and Van Loo (1992) found earlier 
that sugar content under drought stress strongly increased in Lolium perenne L. 
Drought stress became first visible in slower GC development. The GC 
estimates are linearly related to the light intercepting capacity of the sward. The 
IRI is a measure of canopy geometry and with the combination of GC and IRI, 
dry matter (DM) yield can be determined (Schut & Ketelaars, Chapter 3). 
Spatial GC standard deviation slightly increased under drought stress, whereas 
spatial GC standard deviation of control swards decreased towards harvest. The 
spatial standard deviation of logistically transformed GC values just before 
harvest was not significantly different from control. Schut & Ketelaars (Chapter 
8) found that at GC values between 30-50%, spatial GC standard deviation of 
deteriorated swards ranged from 12.6 to 15.0% and spatial GC standard 
deviation of logistically transformed GC values ranged from 0.72 to 0.85. 
Drought-stressed swards with similar GC values remained well below these 
values, and it is concluded that drought stress did not significantly increase 
sward heterogeneity.  
Within a growth period, all absorption features visible in reflectance spectra 
between 400-1650 nm deepened and widened. The positions of the detected 
inflection points (IP) corresponded with locations of specific absorption 
features of carotenoids, chlorophylls and stretching and bending of O-H, C-H 
and N-H bonds as reported by Lichtenthaler (1987) and Curran (1989). The 
minor IPs detected in the visible part of the spectrum corresponds with 
intersections with the abscissa of the second derivative found by Buschmann & 
Nagel (1993). The reflection curves had a small peak around 740 nm, 
corresponding with the location of the chlorophyll fluorescence peak (Zarco 
Tejada et al., 2000). This resulted in a detected IP around 770 nm.  
Under drought stress, all absorption features became shallower and narrower 
again, which is in agreement with Ripple (1986), Bowman (1989), Inoue et al. 
(1993) and Penuelas & Inoue (1999). Water absorption features (with 
maximum absorption around 970, 1200 and 1450 nm) responded earlier to 
drought stress than absorption features in the visible wavelength range, 
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agreeing with Carter (1991, 1993). In the VIS wavelength range, the position of 
IPs near 570 nm and 623 nm responded strongest to drought stress, agreeing 
with Carter (1993) who found that sensitivity is largest near 584 nm. The IPs 
near 960, 990, 1140, 1390 and 1500 nm of drought-stressed swards 
significantly deviated from control swards, from the moment that leaf DM 
content of drought-stressed swards increased.  
Moderate drought stress did not change the position of IPs in the green and red 
area’s of the spectrum, but clearly changed the slope near the IPs, agreeing with 
data of Penuelas et al. (1994). The absorption features in visible wavelengths 
responded at more advanced stages of drought when GC already decreased. 
This is probably due to chlorophyll breakdown and decreased light absorption 
of chlorophyll (Carter, 1991). 
Zarco Tejada et al. (2000) showed that chlorophyll fluorescence emission 
contributes to apparent reflectance spectra of leaves with distinct peaks at 690 
and 740 nm. In later growth stages of our experiment, leaves clearly showed an 
additional feature on the reflection curve, with a maximum around 740 nm. In 
drought-stressed swards, this feature was also present but detection was 
difficult, due to changes in the character of the underlying reflection curve. The 
curve in the 740-800 nm range is nearly flat for control swards, but increasing 
for drought-stressed swards. Carter (1991) also found flat reflection curves in 
this range for fresh leaves, but increasing reflection with wavelength for 
dehydrated and rehydrated leaves.  
The position of the IPs around 485, 624 and 705 nm also responded to N supply 
level. The shift of IPs positions in the visible wavelength range during growth 
and under drought stress was not as strong for low N supply than for high N 
supply. The gradients at the IPs around 485, 517, 570, 624, 640 nm were lower 
for low N supply than for high N supply. In the NIR region, there were no 
differences found in positions and gradients of IPs between low and high N 
supply.  
The CAW parameter reached a maximum value of 133 nm for control swards, 
corresponding with Schut & Ketelaars (Chapter 4). In grass swards under 
moderate N stress, both GE as RE showed a reversed development in the 
second half of a growing period, whereas GE and RE at high N showed a stable 
maximum. Severe drought stress also decreased CAW, with the decrease being 
stronger for high N supply. The relative yield of DS-HN fits well within the 
relation between CAW and relative yield as found earlier for N stress, whereas 
relative yield of DS-LN does not (Schut & Ketelaars, Chapter 4). 
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Under drought stress, the IP position near 570 nm reversed in the second half of 
the growth period for both low and high N, in parallel with GC decrease, leaf 
death and chlorophyll breakdown. Drought stress accelerated the increase of IP 
position near 705 nm up to harvest. Horler et al. (1983) also reported a shift of 
the IP at the red edge to longer wavelengths with leaf drying. This shift to 
longer wavelengths can also be found in spectra of dehydrated leaves (Penuelas 
et al., 1993). Horler et al. (1983) discussed that this shift might result from 
changes in internal leaf structure. 
In remote sensing with natural light, atmospheric absorption limits the detection 
of changes in canopy water content. Therefore, applicability of most remote 
sensed indices is limited to relative water concentrations below 80-85% 
(Penuelas et al., 1993). In our research, the combination of an active sensor and 
a limited distance between detector and object allowed accurate reflection 
measurements in strong water absorbing spectral regions. At these regions, 
early drought stress could be detected just before leaf water content dropped 
below 80%. 
In the presence of a control, drought stress can be identified by means of 
comparison of GC and IP position. With repeated measurements in time, the 
reversed shift of IP position can identify drought-stressed swards. The position 
of IP showed a clear evolution during unstressed growth. Therefore, growth 
stage should be taken into consideration when interpreting IP positions without 
a control. 
The relation between the IP position near 705 and 1390 nm provided such a 
growth stage reference, and with this relation, unstressed swards shortly after 
harvest can be differentiated from drought-stressed swards in a later growth 
stage. 
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7. Abstract 
The potential of an experimental imaging spectroscopy system, with high 
spatial (0.28-1.45 mm2) and spectral resolution (5-13 nm), is explored for 
robust discrimination between grass, clover and mixed mini swards at various 
growth stages. For this, spectra of grass and clover swards were compared and 
image line texture was analyzed using spatial correlation, a special filter and 
wavelet entropy. In 2000, an experiment with mini swards was conducted 
including two white clover (Trifolium repens, cv. Blanca) swards, three 
perennial ryegrass (Lolium perenne L.) swards and four swards with a grass and 
white clover mixture. The average spectral curves of pixels of grass and clover 
swards differed throughout the spectral range of 405 up to 1650 nm, but 
differences were smaller than one standard deviation of grass spectra. No 
specific discriminating spectral feature was found. Differences in edge 
positions between grass and clover swards were not consistent within growth 
periods. With image line texture, pure grass and clover swards could be 
separated with the filter, spatial correlation and wavelet entropy. Only wavelet 
entropy resulted in robust discrimination on all recording dates. In all three 
discriminating methods, results of mixed swards were intermediate between 
pure swards. It is concluded that imaging spectroscopy provides new means for 
quantification of clover cover in mixed swards.  
 
 

7.1  Introduction 

The reduction of fertiliser nitrogen (N) inputs in agricultural systems accrues 
the importance of symbiotically N2 fixing white clover (Trifolium repens L.) as 
N source. White clover is most commonly grown with a companion grass, in 
cultivated pastures mostly perennial ryegrass (Lolium perenne L.). Swards with 
a mixture of grass and clover will be referred to as mixed swards. A stable 
mixture is required in order to minimize bloat hazards for grazing ruminants, 
and to maximize N2 fixation. The optimal value for the fraction of clover 
ranges from 20 up to 40% (Baars & Van Dongen, 1989). The fraction of 
legume content in mixed swards is, however, highly variable in time (Elgersma 
& Schlepers, 1997; Elgersma et al., 2000; Loiseau et al., 2001; Schils, 1997) 
and space (Locher et al., 2001; Schils et al., 2000). Up till now, fast and ade-
quate techniques to record this temporal and spatial heterogeneity and to study 
their responses to environmental factors are not available (Schulte, 2001, p.4).  
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A rapid assessment of N2 fixation by clover is required to calculate farm N 
balances correctly (Velthof et al., 2000). The annual N2 fixation per unit clover 
dry matter (DM) is rather stable with reported values between 40 to 55 kg ton-1 
DM (Velthof et al., 2000), irrespective of N application (Van der Meer & Baan 
Hofman, 2000). For pure clover swards, ground cover (GC) is linearly related 
to DM yield (Schils et al., 1999). Parameters derived from imaging 
spectroscopy were successfully related to grass biomass, explaining 75 up to 82 
% of the variation in DM yield. The estimates were significantly improved by 
including the index of reflection intensity (IRI, a parameter related to canopy 
geometry) (Schut & Ketelaars, Chapter 3). Including reflection intensity 
information might also improve the relation between GC and clover DM yield. 
For mixed swards, clover and grass DM yield can only be estimated with GC 
when clover GC is differentiated from grass GC. In this paper, the potential of 
an experimental imaging spectroscopy system (Schut et al., Chapter 2) is 
explored for its applicability to discriminate between grass, clover and mixed 
mini swards at various growth stages. For this, a small container experiment 
was conducted with grass, clover and mixed swards. Spectral discrimination at 
leaf and canopy scale and three textural classification methods will be 
examined. A successful classification method should be robust, which means 
that it should be applicable throughout growth periods.  
 
 

7.2 Materials and Methods 

7.2.1 Experiment 

In the summer of 2000, a container experiment was conducted from 28 August 
up to 30 October with 2 clover swards, 3 grass swards and 4 mixed swards. 
Containers were 90 cm long, 70 cm wide and 40 cm deep, and were filled with 
a sandy soil with 3% organic matter. For the pure clover swards, large-leafed 
white clover (Trifolium repens L., cv. Blanca) was sown on 10 June. The 
perennial ryegrass swards (Lolium perenne L.) were transplanted on 10 June 
from a 2nd year grass sward. The mixed swards were constructed with 
transplanting best parts of existing mixed swards, sown in March (50 kg ha-1 
grass (Lolium perenne L.) and 5 kg ha-1 clover seed (Trifolium repens L., cv. 
Blanca)). Two swards contained more grass than clover (mixture 1) and two 
swards contained more clover than grass (mixture 2), but within both mixtures 
grass was intermingled with clover. These mixed swards were harvested on 
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July 25. Grass swards received 120 kg N per growth period, clover swards 
received no additional N. For the mixtures N application was limited to control 
grass growth (for maintaining a mixture). Mixture 1 swards received 30 kg N 
per growth period, and mixture 2 swards received 60 kg N per growth period. 
All swards received additional P, K and S after each harvest. Soil water content 
was maintained at field capacity. On August 29 and October 30, swards were 
hand-cut, fresh material was weighed and analyzed for dry matter content. On 
September 22 and October 13 cover fractions of the mixtures were visually 
scored at 300 raster intersects per sward, using the method of Korva (1996). 
 

7.2.2  Images 

Twice a week image lines were recorded with the experimental imaging 
spectroscopy system. The image lines were 15.3 cm long and 1.39 mm wide, 
and were recorded in a regular pattern with 3 bands next to one other per mini 
sward. In each band 14 image lines were recorded each 5 cm apart, see (Schut 
et al., Chapter 2) for details. The system combines high spatial (0.28-1.45 mm2 
per pixel) and high spectral resolution (5-13 nm). Three imaging spectrographs 
(V7, N10 and N17) are used, measuring reflectance ( )R in the spectral range 
from 400 up to 1650 nm. Additionally, 200 adjacent image lines were recorded 
in 2001 of grass and mixed swards, fertilized with 90 and 60 kg N ha-1 and 
sufficient P, K and S, to be able to construct and display two-dimensional (2D) 
images.  
 

7.2.3  Image analysis 

The image lines were classified with maximum likelihood procedures (Schut & 
Ketelaars, Chapter 3). The spectral library contained classes for soil, grass, 
leaves with specular reflection, dead material and an intermediate class between 
soil and dead material. Reflection intensity recorded with the system is a 
function of leaf angle and leaf height in the canopy (Schut et al., Chapter 2). 
Therefore, the grass and specular classes in the spectral library were further 
subdivided into reflection intensity classes (IC), ranging from 0 up to and 
including 6 for grass and from 0 up to and including 2 for leaves with specular 
reflection. Image ground cover was calculated per intensity class. Total image 
line (IL) ground cover (GCIL, %) was calculated as the sum of grass (GCG) and 
specular classes (GCS): 
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where ic is the index number of the intensity class. The mini sward GC was 
calculated as the average of the GCIL over the 42 image lines. The index of 
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This IRI measures the presence of highly reflecting green pixels as a percentage 
of the ground cover. A higher value represents a higher canopy with more 
horizontally oriented leaves (Schut & Ketelaars, Chapter 3). After 
classification, reflection spectra of pixels were normalised ( )R~ , according to 
equations in (Schut et al., Chapter 2) Average sward spectra were calculated 
from all classified grass pixels, where 60 ≤< IC . In addition, a reflection curve 
was calculated for each IC separately. Reflectance spectra of green material 
typically have a sharp transition from minimal reflection at 680 nm and 
maximal reflection at 750 nm, known as the red edge (RE) (Horler et al., 1983). 
Green material reflects more radiation in the green part than in blue or red parts 
of the spectrum, and a blue edge (BE) and a green edge (GE) can be found 
around 520 and 600 nm respectively (Figure 7.3). In this study a simple 
hyperspectral method for determination of edge parameters was used. From the 
normalised spectra, the minimum ( min

~R ) and maximum ( max
~R ) reflection value 

was determined within the spectral range of 472-800 nm for the BE, GE and 
RE. Then, a threshold value (T) was calculated according to:  
 

( ) CVRRRT ×−+= minmaxmin
~~~  (3) 

 
where CV is the critical value. At the RE, the transition between the V7 and 
N10 sensor typically occurs between a normalised reflection value of 0.35 and 
0.5. To minimise effects of this transition, the CV was set at 0.55. The 
reflection value of band i was calculated as the average of band i, band i-1 and 
band i+1. Then, the wavelength position with a reflection value equal to T was 
calculated. For this, two neighbouring bands were determined where reflection 
in one band is smaller, and in the other band is greater than T. The exact 
wavelength position of T was calculated by linear interpolation of reflection 
values and wavelength positions. Edges were calculated for each IC reflection 
curve, and for the field average reflection curve.  
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7.2.4  Discrimination of clover and grass 

Species discrimination with imaging systems can be based on numerous 
characteristics, e.g. growth characteristics, canopy geometry, spectral 
characteristics of leaves or canopies, leaf size or leaf shape. With 1D image 
lines, information on GC and IRI development, leaf and canopy spectra and 
image line texture was available. Image line texture is defined as the sequence 
of pixel reflection values. 
 

Spectral discrimination 

Species can be recognised, based on their spectral characteristics, if inter-
species variability is larger than intra-species variability (Skidmore et al., 
1988). Spectral variability depends on scale. On canopy scale, geometric 
properties (e.g. plant-physiology, leaf angle and plant-density), background 
together with colour and leaf properties of plants determine reflectance 
measurements. On this scale, hyperspectral data can be used to discriminate 
several species (Hahn & Muir, 1993; Daughtry & Walthall, 1998; Moshou et 
al., 2001; Schmidt & Skidmore, 2001). Reflectance measured with imaging 
spectrographs permit measurement at sub-leaf scale (Borregaard et al., 2000; 
Feyaerts & Van Gool, 2001). At this scale, canopy geometry becomes less 
important, but within species variability increases since variation between 
leaves and shadow effects (when measured under sunlight conditions) are also 
included. In this experiment, spectral measurements at sub-leaf and canopy 
scale are compared for clover and grass. To do so, pixel spectra were collected 
per sensor and per intensity class from image lines of grass and clover swards, 
recorded on 30 October. From these spectra, averages and standard deviations 
were calculated per spectral band. Additionally, edge positions in three images 
of mixed grass/clover swards and grass swards were analysed (Figure 7.5). The 
edge positions in these images were calculated as explained above, where 
wavelength position of the minimum and maximum reflection value were fixed 
at 550 and 680 nm for the green edge (GE). At the canopy scale, sward average 
spectra (calculated as described above) of clover and grass were compared. The 
spectral curve shows a remarkable shift over intensity classes, resulting in 
profiles of edge positions that may result from canopy geometry (Schut & 
Ketelaars, Chapter 4). To minimise geometry effects, results are shown for an 
intermediate intensity class (IC 3). Edge positions are related to reflection 
intensity (see e.g. Figure 7.7), which might result from the combination of 
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sensor characteristics, changes in pigment composition within a canopy, leaf 
angle and lighting conditions (Schut & Ketelaars, Chapter 4). Therefore, the 
resulting edge profiles might be characteristic for an individual crop. Linear 
regression was performed between edge position and intensity class for IC 0 
through IC 5, where the slope was used as profile descriptor. 
 

Textural discrimination 

Trifolium repens leaves are composed of 3 leaf blades, and have an oval shape 
with a typical diameter between 1 cm and 5 cm. Clover leaves are mostly 
horizontally orientated, but orientation changes towards a more vertical 
direction during the night. Leaf angle distribution is of a planophile type (De 
Wit, 1965). Lolium perenne L. leaves are narrow and long, typically less than 1 
cm wide and up to 40 cm long. Leaf angles of individual leaf sheets change 
from almost vertically oriented at the leaf base to more horizontally oriented at 
the leaf top. Leaf angle distribution within a grass canopy is of a spherical type, 
changing towards plagiophile leaf angle distribution at higher amounts of 
biomass (De Wit, 1965). Reflection intensity recorded with the experimental 
imaging spectroscopy system is a function of both leaf angle and leaf height 
position in the canopy (Schut et al., Chapter 2). Both leaf height and leaf angle 
vary less for a single leaf in clover than in grass. Therefore, the reflection 
intensity pattern in “clover” image lines may be different from “grass” image 
lines. Three methods were used to extract textural information from the image 
lines: a filter, spatial correlation and wavelet transformation.  
 
Filter 
Based on the difference in leaf width of grass and clover, a filter was 
constructed to distinguish both leaf types. First, to find green pixels, image 
lines are classified using simple thresholds and ratios, as defined in Schut et al. 
(Chapter 2). Then classification results were used to connect leaf pixels on a 
single image line. For clover and grass, two types of filters were defined, to 
assign a pixel to a connected area. The first filter considers a pixel as part of a 
connected area if all pixels in a 10 and 25 mm range are classified as green 
material and have a classification between IC 2 and IC 6, while classification 
may deviate only 1 unit from the starting pixel. The connected areas in the 
second filter must at least be 5 mm long, and IC may deviate 2 classes from the 
starting pixel. The filters are consecutively applied to each pixel.  
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For the 2D images, pixels classified as green material, with an IC between 2 
and 6 are represented by a green color. However, when the pixel passes a filter 
and is, therefore, considered as part of a connected region, it is colored red. In 
all other cases pixels are uncolored. The percentage of leaves within the 
threshold sizes (L) were calculated as:  
 
L (%) = 100 * (red pixels) / (red + green pixels) (4) 
 
Spatial correlation 
Spatial relations can be studied with correlation, semivariograms or covariance 
functions (Stein et al., 1999). Here, the spatial correlation between pixels at a 
specific distance is calculated. First, image lines are classified. If a pixel is 
classified as green material, the average reflection value ( )R in the 550-555 nm 
region is calculated. Then, correlation is calculated according to: 
 

( )
hxx

hxx
h

RRCov

+

+=
σσ

σ , , (5) 

 
where h (h = 1, 2 …number of pixels per image line) represents the lag or 
distance between the pixels x and x+h on a image line, andσ is the standard 
deviation. The covariance between pixel reflection values at 550-555 nm at 
distance h is calculated as: 
 

( ) ( )( )( )
=

+++ −−=
n

j
hxjhxxjxhxx RRRR

n
RRCov

1
,,

ˆˆ1, , (6) 

 
where R̂ is the mean reflection value and n the number of pixel pairs.  
 
Wavelet transformation 
Let us consider the reflection response R  on an image line with x positions. 
This response (of any type) may be oscillating on a large or small scale, with 
high or low amplitudes. The wavelet is a smooth and quickly vanishing 
oscillating function with good localization in both frequency and location (e.g. 
in time or space). A wavelet family ba ,ψ  is the set of elementary functions 
generated by dilations and translations of a unique mother wavelet )(xψ : 
 

−= −

a
bxaxba ψψ 2/1

, )(  (7) 
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where a, b ∈R, (a  0) are the scale parameter and the translation parameter 
respectively, and x the position on the image line. As a decreases, the wavelet 
becomes narrower, and as b changes the center of the wavelet ba ,ψ shifts along 
the x-axis. The continuous wavelet transform (CWT) of R is defined as the 
inner product of the function )(xR with the wavelet )(, xbaψ for each a and b:  
 

( ) baRdx
a

bxxRabaRW ,
*2/1 ,)()(, ψψψ =−=

∞

∞−

−  (8) 

 
The Wavelab802 CWT command (Buckheit et al., 1995) was used with the 
Morlet function as mother wavelet: 
 

)(1)( 2/2/
4

2
00

2 ξξ

π
ψ −−− −= eeex xix  (9) 
 
where 0ξ indicates the modulation frequency, usually taken to be 5.33 
(Daubechies, 1992, p76). The CWT transformation yields the signal in the 
wavelet domain in 96 frequency scales (12 voices per octave with 8 octaves), 
for each transect x-position. The question is whether the distribution of 
transformation values over the scales is different for clover and grass image 
lines. There may even be unique scales with a specific response for clover or 
grass. To identify these, the relative wavelet energy might be a good measure. 
Rosso et al. (2001) calculated the relative wavelet energy ap  in scale a for each 
scale as: 
 

tot

a
a E

Ep = , (10) 

 
where aE is the energy per scale, 
 

=
b

a bayWE
2

),(ψ , (11) 
 
and totE the total energy in the image line, 
 

=
a

atot EE . (12) 
 
The parameters a and b in these summations range over all scales and 
translations occurring in the Wavelab802 CWT algorithm as applied in the 
signal )(xy . The distribution of energy over the scales can be characterized by 
the total wavelet entropy (Rosso et al., 2001), defined as the Shannon entropy 
of the relative energy distribution ap : 
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( )−=
a

aaCWT ppS ln . (13) 
 
Lower values of this wavelet entropy represent higher degrees of order, which 
means that all energy is concentrated in a limited number of scales. The sward 
average wavelet entropy is then calculated as the average over all the image 
lines in a container: 
 

=

=
n

j
CWTsward jS

n
S

1

)(1 , (14) 

 
where n represents the number of image lines. The sensitivity of wavelet 
entropy estimates for various degrees of sward damage was evaluated. For this, 
9 individual mini swards were selected from a sward damage experiment (Schut 
& Ketelaars, Chapter 3). For reasons of clarity, only data of the September 
growth period were used. At harvest, the DM yield in the sward damage 
experiment varied between 1660 and 2302 kg DM ha-1, whereas dense swards 
here yielded 2696 kg DM ha-1 and clover swards yielded 2368 kg DM ha-1 
(Table 7.1). 
 
 

7.3 Results 

7.3.1  Growth 

Dry matter yields of the September harvest where higher than for the October 
harvest (Table 7.1). Yield depression in the last harvest was larger for white 
clover swards than for grass swards. Mixtures had lower N contents than either 
clover or grass, probably as a result of lower N applications. Mixture 2 
contained a higher fraction of clover than mixture 1 in both growing periods 
(Table 7.2). After harvest, clover GC was much higher than grass GC (Figure 
7.1). During the growth period, GC increase was higher for grass than for 
clover swards, resulting in minor differences at harvest. The three GC dips, on 
13, 16 and 23 October in clover and mixtures, were caused by early morning 
measurements. On these three dates, a cloudy sky caused low light levels at the 
time of measurement (08.30 hour), and clover leaves where still dark-adapted 
(leaves in almost vertical position). The strong decline in clover DM yield in 
late autumn (Table 7.1) is also reflected in slow vertical growth and 
consequently in low IRI values (Figure 7.2).  
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Table 7.1 Treatments in the experiment and treatment averages for dry matter (DM) yield, dry 

matter content and total nitrogen (N) content. 

Treatment DM yield 

(kg ha-1) 

DM content 

(%) 

Total N content 

(N kg DM-1, %) 

 ----------------------------------------September harvest---------------------------------

White clover 2368 12.30 4.19 

Grass/ clover mixture 1 2542 14.70 2.92 

Grass /clover mixture 2 1885 13.35 3.65 

Grass 2696 14.30 3.84 

 -------------------------- -------------October harvest------------------------------------

White clover 879 14.50 4.61 

Grass/ clover mixture 1 1222 14.75 3.52 

Grass /clover mixture 2 1488 14.05 4.01 

Grass 1403 12.97 4.88 

 
 
 
 
 
 

0

10

20

30

40

50

60

70

80

90

100

31-Aug 15-Sep 1-Oct 16-Oct 1-Nov

G
C

 (%
)

 
 

Figure 7.1 Image ground cover evolution for grass swards ( ), clover swards ( ), where ( ) 

indicate folded leaves, mixture 1 ( ) and mixture 2 (–). 
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Table 7.2 Visual scores of ground cover of white clover (GCc) and grass (GCg) in mixed white 

clover / grass swards. 

Treatment 22 September 13 October 

 GCc (%) GCg (%) GCc (%) GCg (%) 

Grass / clover mixture 1 26 70 31 58 

Grass / clover mixture 2 53 46 36 53 
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Figure 7.2 Index of reflection intensity (IRI) evolution for grass swards ( ), clover swards ( ), 

where ( ) indicate folded leaves, mixture 1 ( ) and mixture 2 (–). 

 

Spectral discrimination 

On pixel scale, the spectral curve differed between grass and clover in all three 
spectral domains (Figure 7.3). No specific absorption feature could be 
identified on which separation could be based. The difference in average curve 
of grass and clover was smaller than the standard deviation of grass pixels, 
throughout the range from 400 nm up to 1650 nm. The differences in spectra 
were also present in the position of the BE, GE and RE.  
On canopy scale, the average spectral curves for IC 3 showed differences 
between grass and clover in GE position before harvest (Figure 7.4), where 
white clover had a lower GE position than grass. Mixtures had intermediate  
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Figure 7.3 Average reflection curves for grass (–) and clover (–) pixels for the V7 (A), N10 (B) and 

N17 (C) sensor. Error bars indicate standard deviation for grass curves. 
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values. The GE position showed a clear evolution during growth, while changes 
were stronger for grass swards. In Figure 7.5, 2-Dimensional images are shown 
for mixtures and grass swards, recorded on three dates within one growth 
period. On pixel basis, variability in GE position within a small area is large 
(Figure 7.6), the same holds for BE and RE position (not shown). When the GE 
was calculated for each IC, it appeared that differences between grass and white 
clover were larger for higher IC’s than for lower IC’s (Figure 7.7). The shift in 
GE with IC was larger in grass and mixture swards than in white clover swards. 
The slope of the profiles distinguished grass from clover swards throughout the 
two growing periods (Figure 7.8), except for 23 October. The mixtures showed 
intermediate slope values.  
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Figure 7.4 Evolution of green edge position (GE) for reflection intensity class 3 for grass swards 

( ), clover swards ( ), where ( ) indicate folded leaves, mixture 1 ( ) and mixture 2 (–). 
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7.3.2  Discrimination of clover and grass 

 
 

 

Figure 7.5 Images of a sward with a grass clover mixture (top) and a pure grass sward (bottom), 

taken on 6 (left), 13 (middle) and 21 (right) July 2000.  

 
 

Textural discrimination 

Filter  
In Figure 7.9, reflection at 550 nm is shown for two image lines, with typical 
patterns for white clover and grass swards. The grass image line has a strong 
peaky pattern, whereas the clover image line has a more step-wise pattern, 
resulting from differences in leaf width and leaf orientation. The developed 
filter could distinguish these differences in pattern (Figure 7.10). In this figure, 
most white clover leaves were correctly marked. However, not all pixels on 
white clover leaves were recognised as such, and mistakes were made within 
grass swards when leaves were either clustered or lay parallel to the image line. 
In Figure 7.11, cover estimates are given for leaves larger than 10 mm  
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(Figure 7.11 A) and larger than 5 mm (Figure 7.11 B). In both figures, clover 
swards showed a larger cover of pixels above threshold size than grass swards, 
while mixtures were intermediate. Differences between grass and clover swards 
were larger than the variation within the mean of the grass swards. On 16 and 
23 October no differences were visible, presumably due to folded leaves. 
 
 
 
 
 

 
 
 
 

 
 
 

GE    : <566   <569  <572    <575  <578  <581  <584  <587   < 590 < 593 nm  
 

Figure 7.6 Images based on green edge (GE) classification for the Figure 7.5 images. 
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Figure 7.7 Green edge (GE) position profiles for grass swards ( ), clover swards ( ), where ( ) 

indicate folded leaves, mixture 1 ( ) and mixture 2 (–) on 30 October. 
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Figure 7.8 Slope estimates of a linear fit (IC = a + b GE) through green edge position profiles (see 

Figure 7.7), for classes IC 0 up to and including IC 5, for grass swards ( ), clover swards 

( ), where ( ) indicate folded leaves, mixture 1 ( ) and mixture 2 (–).  
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Figure 7.9 Typical image line patterns for average reflection value between 550- 555 nm for a clover 

(      ) and grass sward (       ) 

 
 
Spatial correlation 
In Figure 7.12, as an example, the correlation coefficient of pixel reflection 
values at 500-550 nm is given for each sward type as function of distance. In 
this figure, differences between grass and clover are present between 2 and 12 
mm distance, with largest absolute differences on shorter distances. At 
distances beyond 20 mm, correlation coefficient was below 0.1. This is in 
correspondence with the differences between grass and clover in Figure 7.9. 
Within the mixed swards, both leaf types will occur within the 42 image lines, 
resulting in an intermediate spatial correlation between the pure swards. In 
Figure 7.13, the correlation coefficient at a distance of 3 mm is depicted. Again, 
differences between grass and clover swards were clearly present. The value of 
the correlation coefficient varies within growth periods, especially for the 
mixtures. Shortly after harvest, the correlation coefficient of mixtures was 
similar to clover, but decreased towards values for grass swards at harvest.  
 
Wavelet transformation 
In Figure 7.14, examples of the distribution of relative wavelet energy over the 
wavelet scales are shown, for a single date, for 3 grass and 2 white clover 
swards. High frequencies correspond with great detail. At low frequency scales  
 



Detection of clover cover 

145 

 
 
 

 

Figure 7.10 Images with pixels on a large leaf (between 10-25 mm wide in horizontal direction and 

with maximum 1 IC class deviation) for grass pixels with an intensity class 3 or higher. 

Pixels on a large leaf are coloured red and all other pixels within the grass classes with an 

intensity class 3 or higher are coloured green. 

 
 
small details are less important, although details have a cone of influence on 
lower frequencies (Mallat, 1999). In the grass swards, relative energy decreased 
more or less linearly with frequency. The clover decreased in an exponential 
fashion with frequency. This difference is characterised by the wavelet entropy 
value (Figure 7.15), where clover swards had a lower wavelet entropy value 
than grass swards. Again, mixtures were intermediate. Wavelet entropy of 
mixture 1 was more similar to grass swards, whereas mixture 2 wavelet entropy 
was more similar to clover swards. This is in agreement with a higher clover 
fraction of mixture 1 when compared to mixture 2 (see Table 7.2).  
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Figure 7.11 Evolution of the percentage of large leaves, wider than 10 mm (A) and wider than 5 mm 

(B) within pixels with an intensity class of 3 or higher for grass swards ( ), clover swards 

( ), where ( ) indicate folded leaves, mixture 1 ( ) and mixture 2 (–).  

 
 
Although the white clover sward wavelet entropy increased on 13 and 16 
October, differences with grass swards were still large enough for separation.  
A single threshold was defined for separation of clover and grass swards, a 
wavelet entropy value of 3.4 discriminated between pure grass and pure clover 
during the entire period of observation, except within the first days after 
harvest. This value was, therefore, defined as the threshold value. The response  
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Figure 7.12 Correlation coefficient between reflection value (averaged between 550 and 555 nm) on 

position x on the image line and on position x + distance on the image line for grass 

swards (     ), clover swards (      ), mixture 1 (      ) and mixture 2 (     ). 

 
 
 
 
 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

31-Aug 15-Sep 1-Oct 16-Oct 1-Nov

C
or

re
la

tio
n 

co
ef

fic
ie

nt
 (r

)  
 .

 
 

Figure 7.13 Correlation coefficient between pixel reflection values (averaged between 550-555 nm) at 

a distance of 3mm for grass swards ( ), clover swards ( ), where ( ) indicate folded 

leaves, mixture 1 ( ) and mixture 2 (–). 
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Figure 7.14 Relative wavelet energy as function of the frequency scale for three grass (     ) and two 

clover swards (    ). 

 
 
of wavelet entropy of grass swards varies only slightly within a growth period, 
and it seems that wavelet entropy was specific for leaf shape within an image 
line. This is illustrated in Figure 7.16, where the wavelet entropy value for 
individual mini swards with various degrees of sward damage is depicted. The 
summed wavelet energy does show a clear evolution (not shown), similar to the 
evolution of IRI (Figure 7.2).  
 
 

7.4  Discussion  

The strong decrease in DM yield for white clover and the lower clover contents 
of the mixtures in the October growth period can be understood from the 
stronger temperature response of clover than of grass (Baker & Williams, 1987, 
p 133). Measurements of clover GC were also clearly disturbed by the circadian 
rhythm of leaf opening and closure (Baker & Williams, 1987, p 126). Our 
results showed that pixel spectra are highly variable, even within single 
intensity classes where effects of plant geometry are limited. Zwiggelaar (1998) 
discussed that this large variability is a common problem in spectral species 
recognition. Potentially, combinations of a number of wavelengths can reduce  
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Figure 7.15 Evolution of wavelet entropy for grass swards ( ), clover swards ( ), where ( ) indicate 

folded leaves, mixture 1 ( ) and mixture 2 (–).  
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Figure 7.16 Evolution of wavelet entropy for individual grass swards with various degree of sward 

damage (     ), and clover swards (     ). For clarity only the September growth period is 

depicted.  



Chapter 7  

150 

this variability, but then results might not be robust in time or in space 
(Zwiggelaar, 1998). On a higher aggregation level (sward), differences in 
spectral characteristics existed between grass and clover, but differences varied 
within growth cycles and with nutrient supply. Schut & Ketelaars (Chapter 4) 
found that edge profiles were present within grass canopies, which might have 
been the combined effect of sensor characteristics, leaf angle and differences in 
biochemical properties within a canopy. Edge profiles of grass and clover were 
clearly different and changed remarkably when clover leaves were folded, 
indicating that these profiles are indeed affected by changes in canopy 
geometry. Differences in image line texture were quantified with a filter, spatial 
correlation as well as with wavelet analysis. Grass swards and white clover 
could be successfully discriminated by all these methods. Estimates of clover 
content within a mixture varied within a growing period, as clover leaves 
dominated (when projected horizontally) shortly after harvest and grass leaves 
dominate in the second half of the growth period.  
Amongst the three methods studied, the wavelet entropy method was least 
sensitive for temporal changes in canopy geometry. Additionally, wavelet 
entropy was insensitive for the degree of sward damage. This indicates that 
wavelet entropy responds specifically to textural differences, rather than 
differences in density. Each method has pros and cons. The filter and spatial 
correlation can only be used in situations where leave sizes are clearly different, 
within a limited growth period. Both methods are fast and simple but have to be 
used with caution. Ideally, measurement direction has to be adjusted according 
to (grass) leaf orientation, appropriate thresholds have to be selected, and the 
filter width has to be adjusted according to leaf size in the field.  
Bradshaw & Spies (1992) showed that different canopy types had different 
patterns of wavelet variance. Therefore, it was expected that specific wavelet 
scales could be used to uniquely identify specific leaf types. The results show 
that in general there is a clear difference between grass and clover, but that no 
specific wavelet scale dominates. This means that the occurrence of other 
species in the sward may affect the wavelet entropy. Further studies may look 
into whether or how these results change when instead of continuous wavelet 
transform as used here, some form of discrete wavelet transform is used. It is 
expected that it will speed up calculations considerably, but one may lose some 
advantage of the redundancy in the continuous wavelet transform. Of course the 
approach is severely limited by the format of our basic data. If 2D images were 
available one could try and use a 2D wavelet transform, and exploit its 
sensitivity to direction (Van den Berg, 1999; Schut et al., Chapter 2).  
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Mixed swards usually consist of either clover or grass dominated patches. The 
fraction of clover in these patches show typical temporal oscillations (Schulte, 
2001), resulting from delayed N transfer (Loiseau et al., 2001). Therefore, it is 
probably sufficient to separate clover dominated patches from grass dominated 
patches. The clover fraction in the field can then be calculated from the relative 
cover of clover dominated patches. Within the farm N balance, little knowledge 
is available on N input from clover N2 fixation (Velthof et al., 2000). The N 
yield per unit mass of clover DM is rather stable, for pure clover swards values 
of 39-43 kg N t-1 clover DM are reported (Elgersma et al., 2000). Values of  
49-63 kg N t-1 clover DM are reported for mixtures (Elgersma & Hassink, 
1997; Elgersma et al., 1997). Additionally, the N2 fixation per unit of clover 
DM is rather stable, around 40-55 kg N t-1 DM (Velthof et al., 2000), even 
under varying N application (Van der Meer & Baan Hofman, 2000). These 
values are annual means, and may vary within the growing season, although 
‘Seasonal patterns of nitrogen fixation by white clover follow fairly closely the 
clover growth curve’ (Baker & Williams, 1987, p.192). Heuwinkel et al. (2000) 
reported that ‘N2-fixation could be calculated by multiplying the legume N-
yield by a factor of 0.9’. Watson & Goss (1997) reported a linear relationship 
between extra DM production of mixed swards, compared to grass swards, and 
N2 fixation. Clover DM can be determined with near-infrared reflectance 
spectroscopy (Heuwinkel et al., 2000; Wachendorf et al., 1999) and with clover 
GC (Schils et al., 1999). For grass, good estimates of DM yield, N content 
(Schut et al., Chapter 9), as well as N stress and N yield (Schut and Ketelaars, 
Chapter 4) can be made with imaging spectroscopy. From this, we hypothesise 
that with imaging spectroscopy grass N yield can be quantified within 
reasonable limits.  
Results in this paper show that texture of 1D images provide enough 
information for separation of clover and grass swards. There were 42 image 
lines available per 0.63 m2. Possibly, the number of image lines required for 
patch characterization can be reduced, depending on the method used. Spatial 
correlation and the filter method are more sensitive to leaf-orientation than 
wavelet entropy and, therefore, require more image lines for a robust estimate. 
Further study may reveal the minimum number of image lines per patch.  
When using 2D images, spatial and spectral information can be combined, 
improving classification results (Zhou & Robson, 2001). This may improve 
robustness, as textural analysis then becomes less sensitive to leaf-orientation. 
For practical purposes (recording speed, data volume), 2D images permit only a 
limited number of spectral bands. Only three spectral bands are required for 
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discrimination between soil and green material (Schut et al., Chapter 2). 
Estimates of N content in grass were based on a large number of spectral bands 
(Schut et al., Chapter 9) Therefore, simplifying the sensor might limit its 
applicability to ground cover estimates. Combined use of a hyperspectral sensor 
and a 2D sensor with three spectral bands for GC estimates could improve 
robustness and amplify processing speed. Processing speed can be further 
amplified with combination of the filter and wavelet entropy. The filter can be 
used on all images for spatial distribution of clover cover and results can then 
be validated with wavelet entropy, calculated for only a limited number of 2D 
images or hyperspectral image lines. 
 
 

7.5  Conclusion  

With imaging spectroscopy, a clear distinction was made between image lines 
of grass and clover swards. Based on image line texture, pure grass and clover 
swards could be separated with a simple filter, with correlation between single 
band reflection values of pixels at a small distance, and with wavelet entropy. 
Discrimination between grass and clover swards with wavelet entropy was 
robust throughout growth periods. Wavelet entropy was insensitive for various 
degrees of sward damage. In all textural methods, results of mixed swards of 
grass and clover were intermediate between grass and clover swards.  
The mean spectral curves of grass and clover swards differed throughout the 
spectral range of 405 up to 1650 nm, but differences were smaller than one 
standard deviation. In general, absorption features of grass and clover are 
similar and, therefore, no specific discriminating feature was found. At higher 
aggregation level (a sward) differences in blue, green and red edge positions 
were present. These differences were not consistent throughout re-growth 
periods and varied with N supply. Therefore, spectral discrimination will not 
result in a simple and robust discrimination method.  
Imaging spectroscopy provides new tools for quantification of clover cover. 
Based on literature, we conclude that accurate estimates of clover cover can be 
translated to estimates of clover N yield and N2 fixation. For field applications, 
a two-sensor system is proposed, combining 2D images with three spectral 
bands and a hyperspectral sensor. For analysis, joint use of the filter and 
wavelet entropy combines high processing speed and high information content, 
and ensures accurate measurements.  
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8. Abstract 
This paper describes the potential of imaging spectroscopy for assessment of 
seasonal dry matter yield (SDM) and sward quality. For this, relations between 
spatial heterogeneity of tiller density, light interception (LI), ground cover (GC) 
and SDM were studied. Sward heterogeneity was quantified with spatial GC 
standard deviation (GC-SSD) and logarithmically transformed GC (TGC-SSD), 
and patterns in GC transects were quantified with wavelet entropy. An 
experiment was conducted with 8 control swards (CS), 8 naturally damaged 
swards (NDS) and 12 artificially damaged swards (ADS). Swards were 
established in containers and spectroscopic images were recorded twice a week 
in a regular pattern. SDM was linearly related to a combination of means of GC 
and index of reflection intensity (R2 = 0.93). Spatial variation of tiller density 
was larger for ADS and NDS than for CS. Values of GC-SSD and wavelet 
entropy were larger for ADS and NDS than for CS. GC-SSD  of CS remained 
below 13% throughout the season, in contrast to values of NDS and ADS. 
Absolute differences in TGC-SSD between CS, ADS and NDS were largest 
within 8 days after harvest. Seasonal means of wavelet entropy (R2 = 0.70) and 
GC-SSD (R2 = 0.63) at harvest were linearly related to SDM. It is concluded 
that imaging spectroscopy can provide accurate means for assessment of SDM 
and sward heterogeneity. Effects of sward management and botanical 
composition on heterogeneity require further study, before conclusions can be 
drawn with regard to the implications of sward heterogeneity for sward 
reseeding or renovation. 
 

8.1  Introduction 

8.1.1  Sward quality and problem definition 

Grassland is with 880 884 ha of permanent grassland and 112 090 ha of grass-
land in rotation (CBS, 2001) the crop with the largest cultivated area in the 
Netherlands. Annually about 62 500 ha grassland is reseeded and 12 500 ha 
grassland is renovated. Reseeding is more frequent on sandy soils, in order to 
improve sward quality (Keuning & Vellinga, 1986; Anonymous, 2001; Aarts et 
al., 2002). Sward quality is defined as the production capacity of a sward as 
determined by botanical composition and sward density (Lantinga, 1986). This 
study focuses on the spatial aspects of sward density, i.e. the number and 
distribution of productive plants and tillers. Production capacity was measured 



Assessment of total DM yield and grass sward quality 

155 

by seasonal dry matter yield (SDM). Grassland renovation is expensive, and can 
only be economically justified when swards are heavily deteriorated (Elsässer, 
1991; Keuning & Vellinga, 1986; MacCarthy, 1982; Smith & Allcock, 1985; 
Spatz et al., 1981). Therefore, sward renovation should be evaluated on its 
economical merits, and assessments of potential yield improvements are 
required before reseeding or renovation. 
 

8.1.2  Determination of sward quality 

Sward quality deteriorates in case of local tiller or plant death as a result of e.g. 
frost or drought damage, urine scorch, treading, poaching or heavy cuts (e.g. 
Deenen, 1990; Keuning & Vellinga, 1986). Local tiller or plant death creates 
gaps, which may be filled with weeds (Keuning & Vellinga, 1986; Marriott et 
al., 1997). All this leads to heterogeneous swards, in terms of dry matter yield 
(DM) and feeding quality. This deterioration can be monitored and quantified 
either visually or by the absence frequency method, in which the absence 
frequency of tillers in rings of different sizes is recorded (Neuteboom et al., 
1992). Dry matter yield is strongly related to absence frequency, but genotype 
and sward management, such as harvest frequency and grazing, affect this 
relation (Van Loo, 1992). Absence frequencies provide valuable information on 
sward structure, but this method is laborious and difficult to automate. Aarts et 
al. (2002) concluded that there were no good judgement criteria for 
economically justified grassland renovation or reseeding. 
 

8.1.3 Alternatives with images 

Sward quality is related to the ability of a sward to convert solar radiation into 
dry matter with a high feeding value. Swards with gaps or a low tiller density 
are limited in their ability to intercept light. Swards with poor botanical 
composition are limited in the conversion from intercepted light energy to DM. 
Invasion of weed species and local tiller death increase spatial variability, in 
terms of light interception (LI) and DM yield. Therefore, we hypothesize that 
this spatial sward heterogeneity can be used as measure of LI capacity and, 
therefore, sward quality. Imaging spectroscopy provides accurate means to 
monitor growth, estimate DM yield, leaf area index (LAI) and LI. Light 
interception is strongly related to ground cover (GC), although sward density 
and weather conditions (clear or cloudy sky) affect this relation (Schut & 
Ketelaars, Chapter 3). Therefore, spatial sward heterogeneity may be directly 
related to spatial GC variability.  
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8.1.4  Objectives 

The first objective is to assess SDM of mini swards with imaging spectroscopy. 
The second objective is to explore the relation between spatial variability and 
sward quality and to quantify sward quality with imaging spectroscopy 
techniques. Spatial variability was studied in terms of variation of tiller density, 
variation of LI, variation of GC and spatial GC patterns. Spatial GC patterns 
were studied with wavelet entropy. SDM was used as a quantitative measure of 
sward quality. To this end images of damaged grass swards, due to drought 
damage or artificially created gaps, were recorded throughout the growing 
season of 2000. 
 
 

8.2 Materials and Methods 

8.2.1 Experiment 

In 2000, 28 mini swards were measured with a wide range of production 
capacities. These mini swards were available from experiments in which effects 
of drought on sward damage and production recovery was investigated. Natural 
and artificial sward damage was created in 1999. 
 

Mini swards 

Mini swards were established from seed in April 1999 using a mixture of 4 
Lolium perenne L. cultivars. Mini swards were grown in containers of 0.9 m 
long, 0.7 m wide and 0.4 m high, filled with a sandy soil with 3% organic 
matter. Throughout the growing season, containers were kept under a rain 
shelter, covered with foil (1999: 70% transparent, new foil in 2000: 80% 
transparent) and wind breaking fences at the sides. Water was supplied through 
perforated drains at 10 cm depth. Soil moisture content was monitored by 
weighing containers twice a week. During winter, containers were placed 
outside the greenhouse. 
 

Mini swards 1999 

In 1999, mini swards from a drought experiment were available (Grashoff et 
al., 2001). In April, mini swards received 8.1 g m-2 N, 13.8 g m-2 P2O5 and  
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24 g m-2 K2O. At harvesting, mini swards were hand cut to a stubble height of 4 
cm. After every harvest 9.4 g m-2 N (dissolved in water) was supplied. After 15 
September this dose was reduced to 5.1 g m-2 N. Drought stress was created 
during two periods (T1 and T2) and differed in length (control, 10, 20, 30 and 
40 days without extra water). The T1 drought period created sward damage 
with severe tiller death for the 40 days treatment, whereas the T2 period did not 
create any sward damage (Grashoff et al., 2001). From this drought experiment, 
only the control and the 40 days drought mini swards were used, see Table 8.1. 
For 12 of the T2 mini swards, artificial sward damage was created. Before this, 
any sward damage already present due to sampling for tiller analysis in the 
drought experiment was repaired. Then, an area of approximately 25%, 50% 
and 70% of the sward was removed with small rings of 12.5 cm or with large 
rings of 22.5 cm in diameter. The locations of gaps in the sward were selected 
by picking cross-points at random on a grid, restricted to non-overlapping gaps. 
 

Mini swards 2000 

On 17 March 2000, above ground fertiliser was supplied with 8.1 g m-2 N, 6.6 g 
m-2 P2O5 and 12 g m-2 K2O. On the 11th of July 3 g m-2 P2O5, 20 g m-2 K2O and 
6 g m-2 S was supplied. On 30 August an additional 6.3 g m-2 K2O was 
supplied. The mini swards were hand cut to a stubble height of 4 cm. After 
every harvest 9.4 g m-2 N (dissolved in water) was supplied. After 15 
September this dose was reduced to 5.1g m-2 N. In 2000, another drought 
experiment was conducted. From the 1999 experiment, mini swards without 
sward damage were selected and assigned at random to 5 drought treatments. 
These treatments were control, and 10, 20, 30 and 40 days without water in the 
period from 1 June to 10 July. The 20 days without water treatment did not 
create any sward damage, and SDM was not significantly different from control 
(p<0.05). From this experiment, the control and 20 days without water were 
used, see Table 8.1. There were three sward quality groups: dense swards from 
control treatments (CS), artificially damaged swards (ADS, swards with created 
gaps), and naturally damaged swards (NDS, drought-damaged swards) 
(Table 8.1). Not just the mini swards of control, but also the swards that were 
without extra water during 20 days in 2000 were considered as control swards 
since the 2000 drought period did not affect sward quality. All treatments had 
identical harvest regimes.  
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Table 8.1 Treatments and number of replicates for control swards (CS), naturally damaged swards 

(NDS) and artificially damaged swards (ADS). 

Treatment Replicates ( #) Sward quality group 

20 days drought from June 21 – 10 July 2000 4  CS 

Control 4  CS 

Drought damaged swards 8  NDS 

25% of sward removed, small gaps created  2  ADS 

47% of sward removed, small gaps created 2  ADS 

68% of sward removed, small gaps created 2  ADS 

25% of sward removed, large gaps created 2  ADS 

55% of sward removed, large gaps created 2  ADS 

75% of sward removed, large gaps created 2  ADS 

 
 

8.2.2  Measurements 

At harvest, fresh matter yield was determined and samples were taken for 
analysis of DM and N content. Swards were harvested on 25 April, 12 May, 30 
May, 20 June, 11 July, 8 August, 29 August, 27 September, and 31 October 
2000. For two ADS swards, samples of one harvest were lost. These swards 
were excluded in the regression of SDM data. For the Figures 8.2 and 8.3, 
missing values were replaced by the mean value of ADS.  
 

Tillers 

Tillers were counted just after harvest on 20 September or 1 October 1999, and 
between 26 and 28 April 2000. Counts were made in 10 cm long and 15 cm 
wide grid cells. These grid cells were positioned within two (2000) or three 
(1999) 15 cm wide and 70 cm long bands with 7 grid cells each. For each mini 
sward the mean and tiller standard deviation over grid cells were calculated. 
The tiller coefficient of variation (CV) was calculated as the (spatial) standard 
deviation divided by the mean. 
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Light interception 

Light interception was measured by hand with a DECAGON LI-meter twice a 
week. This LI-meter has 80 light sensitive cells of 1 cm2 on a 1 m long and  
1 cm high stick. The LI-stick is longer than the container width. For below 
canopy measurements, the LI-stick was placed on the container sides. Per mini 
swards 7-14 alternating measurements above and below canopy were made. 
Afterwards, LI was calculated per cell by 100% * below / above canopy 
readings. Results were averaged per 15 cm, matching bands of spectroscopic 
image recording, excluding positions outside scanned areas. This resulted in  
21-42 LI estimates per mini sward. From these LI measurements, means, 
standard deviations and CVs were calculated.  
 

Images and image analysis 

Twice a week, image lines were recorded with the experimental imaging 
spectroscopy system (Schut et al., Chapter 2). The image lines were 15.3 cm 
long and 1.39 mm wide, and were recorded in a regular pattern with 3 bands 
next to one another per mini sward. In each band 14 image lines were recorded, 
each 5 cm apart, resulting in 42 image lines per mini sward (see Figure 8.1). 
The system combines high spatial (0.28-1.45 mm2 per pixel) and high spectral 
resolution (5-13 nm). Three imaging spectrographs (V7, N10 and N17) were 
used, measuring reflectance in the spectral range from 400 up to 1650 nm. The 
image lines were classified with maximum likelihood procedures (Schut & 
Ketelaars, Chapter 3). The spectral library contained classes for soil, grass, 
leaves with specular reflection, dead material and an intermediate class between 
soil and dead material. Reflection intensity is a function of leaf angle and 
position of the reflecting surface in the canopy (Schut et al., Chapter 2). 
Therefore, the grass and specular classes in the spectral library were further 
subdivided into reflection intensity classes (IC), ranging from 0 up to and 
including 6 for grass and from 0 up to and including 2 for leaves with specular 
reflection. Image line ground cover was calculated per intensity class. Total 
image line ground cover ( ILGC ) was calculated as the sum of grass (GCG) and 
specular classes (GCS): 
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where ic is the index number of the intensity class.  
Sward GC was calculated as mean over the 42 GCIL estimates. The index of 
reflection intensity (IRI) is then calculated as: 
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This IRI measures the presence of highly reflecting green pixels as a percentage 
of ground cover. A higher value represents a higher canopy with more 
horizontally oriented leaves (Schut et al., Chapter 2). Relations between DM 
yield and GC in the first harvest of 2000 strongly deviated from other cuts 
(Schut & Ketelaars, Chapter 3). This was due to camera saturation of the V7 
sensor in high swards, e.g. swards with generative tillers. Therefore, only image 
recordings after 26 April were included in the analysis. 
 
 
 
 

 

Figure 8.1 Position of 42 image lines in container mini sward. 
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8.2.3  Sward heterogeneity 

Sward heterogeneity can be considered as the variation within a sward in terms 
of the spatial distribution of plants, tillers and leaves. Heterogeneity may also 
be present in image GC. Image GC is strongly related with LI, LAI and DM 
yield (Schut & Ketelaars, Chapter 3). Heterogeneity can then be defined as the 
spatial variation of measured GC values. This GC variation may also have a 
spatial context, GCIL of neighbouring image lines are probably more alike than 
GCIL of image lines on a greater distance. The GCIL estimates can also be 
considered as transect signal itself. In a homogeneous sward, deviations in GCIL 
estimates are randomly distributed, whereas in heterogeneous sward deviations 
are clustered. These clusters may be of varying sizes. These aspects of 
heterogeneity were studied in terms of spatial GC variation, and wavelet 
entropy. Wavelets decompose a signal into signals of different frequencies. The 
wavelet entropy is a measure of the number of spatial frequencies needed to 
describe the signal. 
 

Spatial GC variation 

The spatial GC standard deviation (GC-SSD) was used as measure for the 
spatial variation, and was calculated as standard deviation of the 42 image line 
GC estimates. It is likely that GC variation decreases towards GC values of 0 or 
100%. Therefore, image line GC values are transformed (TGC) with a logistic 
function: 
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The value of 101 is chosen in order to maximize relative differences near 100 
and 0% GC and to avoid divisions by zero. A high GC value will result in 
positive TGC values, and a low value will result in negative TGC values. Again 
spatial TGC standard deviation (TGC-SSD) was calculated over the 42 TGCIL 
estimates. 
 

Wavelet transformation 

Schut & Van den Berg (Chapter 7) found that wavelet entropy is a useful 
measure for discrimination of grass and clover image lines, based on 
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differences in spatial patterns of reflectance within an image line. The wavelet 
analysis used here is very similar, although other signals are studied and 
parameter settings were slightly changed. Let us consider a sward with N GC 
estimates on a transect. This response (of any type) may be oscillating on a 
large or small scale, with high or low amplitudes. The wavelet is a smooth and 
quickly vanishing oscillating function with good localization in both frequency 
and location (e.g. in time or space). A wavelet family ba ,ψ  is the set of 
elementary functions generated by dilations and translations of a unique mother 
wavelet )(xψ : 
 

−= −

a
bxaxba ψψ 2/1

, )(  (4) 

 
where a, b ∈R, (a  0) are the scale parameter and the translation parameter 
respectively, and x the (image line) position within the transect. As a decreases, 
the wavelet becomes narrower, and as b changes the center of the wavelet 

ba ,ψ shifts along the x-axis. The continuous wavelet transform (CWT) of GC is 
defined as the inner product of the function )(xGC with the wavelet )(, xbaψ for 
each a and b:  
 

( ) baGCdx
a

bxxGCabaGCW ,
*2/1 ,)()(, ψψψ =−=

∞

∞−

−  (5) 

 
The Wavelab802 CWT command (Buckheit et al., 1995) was used with the 
Morlet function as mother wavelet: 
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where 0ξ indicates the modulation frequency, usually taken to be 5.33 
(Daubechies, 1992, p76). Here, the modulation frequency was arbitrarily set to 
2.5, to limit the amplitude and number of oscillations of the mother wavelet. 
The CWT transformation yields a signal in the wavelet domain in 48 frequency 
scales (12 voices per octave with 4 octaves), for each transect x-position. The 
question is whether the distribution of transformation values over frequency 
scales is different with varying sward quality. To identify the important scales, 
the relative wavelet energy might be a good measure. Rosso et al. (2001) 
calculated the relative wavelet energy ap  in scale a for each scale as: 
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where aE is the energy per scale, 
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and totE the total energy in the image line, 
 

=
a
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The parameters a and b in these summations range over all scales and 
translations occurring in the Wavelab802 CWT algorithm as applied in the 
signal )(xy . The distribution of energy over the scales can be characterized by 
the total wavelet entropy (Rosso et al., 2001), defined as the Shannon entropy 
of the relative energy distribution ap : 
 

( )−=
a
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Lower values of this wavelet entropy (S) represent higher degrees of order, 
which means that energy is concentrated in a smaller number of scales. The 
wavelet entropy is calculated in three different ways per mini sward. First, 
wavelet entropy was calculated for the transect of 42 GC estimates in the order 
indicated in Figure 8.1. The second transect consisted of 42 TGC estimates. 
The concatenation of the three bands in Figure 8.1 introduced a discontinuity in 
the transect signal. Thirdly, therefore, wavelet entropy was calculated per band, 
with 14 GC estimates per transect. The mini sward wavelet entropy was then 
calculated as mean of these estimates per band. 
 
 

8.3 Results 

8.3.1  DM yield, tiller counts and LI measurements 

The CS had a higher SDM yield and a lower N concentration than ADS and 
NDS, see Table 8.2. For the 28 mini swards, there was a linear decrease   
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Table 8.2 Means and standard deviations of dry matter yield (kg ha-1), seasonal dry matter yield 

(SDM) and seasonal mean N concentration for control swards (CS), artificially damaged 

swards (ADS) and naturally damaged swards (NDS). Different uppercase letters within a 

row indicate significant differences between means (p<0.05). 

 CS ADS NDS 

25 April 3222 + 266 2940 + 355 3335 + 453 

12 May 1914 + 150 1452 + 227 1631 + 244 

30 May 832 + 154 566 + 197 635 + 148 

20 June 1523 + 242 1147 + 376 1322 + 228 

11 July 958 + 278 820 + 177 992 + 156 

8 August 2691 + 445 1811 + 655 2314 + 374 

29 August 2368 + 338 1620 + 247 1791 + 234 

27 September 2403 + 193 1947 + 278 1979 + 222 

31 October 1166 + 144 845 + 316 920 + 161 

SDM (t ha-1 yr-1) 17.08 + 1.36a 13.67 + 1.67b 14.92 + 1.39b 

*N (%) 3.66 + 0.11a 3.93 + 0.10b 3.93 + 0.14b 

* Regression on individual mini swards: N (%) = 4.9 - 0.069 * SDM, R2 = 0.60, SE observations = 

0.11. 

 
 
 
 
 

Table 8.3 Means and standard errors of tiller density (T) in October 1999 and April 2000 and light 

interception at harvest (LI) for dense control swards (CS), artificially damaged swards 

(ADS) and naturally damaged swards (NDS). 

 T-1999 

(#/m2) 

T-2000 

(#/m2) 

LI 

(%) 

CS 5330 + 250 6250 + 360 84 + 1.0 

ADS 2610 + 270 3860 + 240 67 + 2.2 

NDS 3600 + 340 3660 + 390 74 + 1.8 
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Table 8.4 Means and standard errors of coefficient of variations of tiller density (T) in October 

1999 and April 2000 and light interception just before harvest (LI) for control swards 

(CS), artificially damaged swards (ADS) and naturally damaged swards (NDS). 

 T-1999 

CV* 

T-2000 

CV* 

LI 

CV* 

CS 0.23 + 0.02 0.19 + 0.02 0.05 + 0.003 

ADS 0.66 + 0.05 0.52 + 0.03 0.12 + 0.019 

NDS 0.83 + 0.08 0.74 + 0.08 0.13 + 0.013 

* CV calculated as spatial standard deviation divided by mean per mini sward 

 
 
(R2 = 0.60) in N content with higher SDM yield. This higher N content in ADS 
and NDS can originate from higher N availability per plant. Treatment 
differences in DM yields were relatively small in the first cut, in which NDS 
had highest yields. In all other cuts, except 11 July, CS had highest yields 
(Table 8.2). The CS had higher tiller densities and LI just before harvest than 
the ADS and NDS (Table 8.3). In spring 2000, tiller density was higher when 
compared to the fall of 1999. In spring, tiller density of CS ranged from 4893 – 
8127 tillers m-2. The increase in tiller density was lower for NDS than for CS 
and ADS. Spatial coefficient of variation of tiller density and LI was higher for 
ADS and NDS than for CS (Table 8.4). The coefficient of variation of tiller 
density in 1999 was higher than in 2000 with reductions of 17% (CS), 21% 
(ADS) and 11% (NDS).  
 

8.3.2  Relation between SDM yield and mean GC and IRI 

Control swards had a higher seasonal mean GC than ADS and NDS 
(Figure 8.2). The seasonal mean GC values ranged from 36% to 56%. These 
GC values are linearly related to visually scored GC (GCv) estimates, where 
GCv equals 8.63 + 1.076 × GC (Schut & Ketelaars, Chapter 3), leading to GCv 
ranges of 47% to 69%. A decrease of GC by 1% decreased SDM by 0.31 t ha-1 
(Table 8.5). This slope changes to 0.35 when the intercept was not set to zero. 
The ranges in Figure 8.2 reveal that the relative decrease was stronger for SDM 
than for GC.  
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Figure 8.2. Seasonal mean GC versus Seasonal DM (SDM) yield in 2000 for control swards (♦), 

artificially damaged swards ( ), artificially damaged swards with missing observation 

( ) and naturally damaged swards ( ). See Table 8.5 for equation of fitted line. 

 
 
 
 
 
 
 

Table 8.5 Linear regression of ground cover (GC) and index of reflection intensity (IRI) with 

seasonal dry matter yield (SDM, t ha-1 yr-1). 

Model a b c R2 SE observations

SDM = a + b GC2 0 0.31  0.77 0.97 

SDM = a + b IRI2 10.7 1.02  0.77 0.97 

SDM = a + b GC2 + c IRI2 2.8 0.2 0.58 0.89 0.69 

SDM = a + b GC1 -4.32 0.29  0.87 0.74 

SDM = a + b IRI1 10.8 0.51  0.82 0.86 

SDM = a + b GC1 + c IRI1 1.17 0.17 0.24 0.93 0.56 

1 Calculated as mean over observations just before harvest 
2 Calculated as mean over all observations 

 



Assessment of total DM yield and grass sward quality 

167 

10

11

12

13

14

15

16

17

18

19

20

0 2 4 6 8 10

Seasonal mean IRI (%)

SM
D

 (t
 h

a-1
 y

r-1
)

 

Figure 8.3 Seasonal mean index of reflection intensity (IRI) versus seasonal dry matter yield (SDM) 

yield for control swards (♦), artificially damaged swards ( ), artificially damaged 

swards with missing observation ( ) and naturally damaged swards ( ). See Table 8.5 for 

equation of fitted line. 
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Figure 8.4 Evolution of ground cover (GC) for control swards (♦), artificially damaged swards ( ) 

and naturally damaged swards ( ). Error bars indicate standard error of the mean for 

control swards. 
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High yielding swards had a higher mean IRI (Figure 8.3). Relative differences 
in IRI were larger than in GC (compare Figures 8.2 and 8.3). The combination 
of GC and IRI (R2=0.89) explained more SDM variation than GC (R2=0.77) or 
IRI alone (R2=0.70) (Table 8.5). Even more SDM variation was explained with 
means of GC and IRI measurements just before harvest (R2=0.93, Table 8.5).  
The GC of ADS and NDS was lower than CS throughout the season, with 
exception of the June-July growth period were NDS had a higher GC than CS 
(Figure 8.4). In this growth period, the DM yields of CS were also lower than 
NDS. The highest positive correlations between GC and SDM were found in 
the summer period, whereas in the first and last growth period of 2000 
correlations were weak or even negative (Figure 8.5). In general, the correlation 
between GC and SDM was weaker just after than just before harvest.  
 

8.3.3  Heterogeneity in relation to sward quality 

Spatial GC patterns were consistently present in ADS and NDS. This is 
illustrated in Figure 8.6, where means were calculated over all measurements 
from days just before harvest for three individual mini swards. There were only 
small variations in GC for the dense sward, but the ADS and NDS clearly had 
locations within the sward with a lower GC throughout the year. Although GC 
level between NDS image lines 12 and 33 were on a similar GC level as CS, 
there were two peaks present at image lines 19 and 25. These peaks could be 
identified as two distinct plants. The dips in the ADS image line were locations 
where round gaps with a 22.5 cm diameter were created. 
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Figure 8.5 Pearson correlation coefficient between ground cover and seasonal dry matter yield. 
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Figure 8.6. Transects of mean ground cover (GC) at harvest for a dense sward (♦), an artificially 

damaged sward ( ), and a naturally damaged sward ( ) 
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Figure 8.7 Evolution of spatial ground cover standard deviation (GC-SSD) for control swards (♦), 

artificially damaged swards ( ), and naturally damaged swards ( ). Error bars indicate 

standard error of the mean for control swards. 
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Spatial GC and TGC variation 

Spatial GC variability throughout the season was smaller for CS than for ADS 
and NDS (Figure 8.7). Variability automatically decreases as GC estimates 
approach 100%. This effect is evident in Figure 8.7, were GC-SSD decreased 
stronger towards 7 and 29 August and 27 September when DM yields 
(Table 8.2) and GC estimates were high. The maximum GC-SSD was reached 
when mean GC ranged between 40 and 60% (compare Figure 8.4 and 8.7). The 
relation between GC and GC-SSD is illustrated in Figure 8.8. Mini swards 
within ADS and NDS strongly varied in GC-SSD value. On nearly all dates, 
GC-SSD of ADS and NDS was higher than for CS (Figure 8.7). GC-SSD of CS 
remained below 13% throughout the season, were ADS and NDS exceeded this 
threshold almost every growth period. The logistic transformation of GC 
strongly affected TGC-SSD values just after harvest (compare Figure 8.7 and 
Figure 8.9). The transformation did not enlarge sward quality differences just 
before harvest. The changes within a growth period in GC-SSD and TGC-SSD 
were larger for NDS and ADS than CS (Figure 8.7 and 8.9). Seasonal means of 
GC-SSD and TGC-SSD showed that NDS had larger heterogeneity than ADS 
just after harvest, whereas ADS had higher or equal heterogeneity than NDS 
just before harvest (Table 8.6). TGC-SSD of CS was fairly constant at the 
different intervals, whereas TGC-SSD of ADS and NDS decreased strongly 
within the growing period. Absolute differences in TGC-SSD between 
damaged swards and CS were largest 5-8 days after harvest. Correlation 
between SDM and GC-SSD was weak just after harvest (Figure 8.10). The 
correlation became stronger up to GC values of 50-60% (Figure 8.4), reaching 
strong negative values in the second half of the growth period. This can be 
understood when considering the differences in evolution of GC-SSD for the 
sward quality groups. The SDM of CS was highest and ADS lowest 
(Table 8.2), whereas CS had lowest and NDS highest GC-SSD values just after 
harvest (Table 8.6). The correlation between SDM and TGC-SSD (Figure 8.11) 
just after harvest was more negative when compared to GC-SSD (Figure 8.10). 
The correlation became weaker when GC values approached 80% (compare 
Figure 8.4 with Figure 8.10). 
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Figure 8.8 Ground cover spatial standard deviation (GC-SSD) as function of GC value for control 

swards (         ), artificially damaged swards (       ) and naturally damaged swards (         ). 

Lines correspond to measurements of individual mini swards throughout the season. 
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Figure 8.9 Evolution of spatial standard deviation of logistically transformed ground cover  

(TGC-SSD) for control swards (♦), artificially damaged swards ( ), and naturally 

damaged swards ( ). Error bars indicate standard error of the mean for control swards. 



Chapter 8  

172 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov

C
or

re
la

tio
n 

co
ef

fic
ie

nt
 (r

)

 

Figure 8.10 Pearson correlation coefficient between ground cover spatial standard deviation and 

seasonal dry matter yield. 
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Figure 8.11 Pearson correlation coefficient between logistically transformed ground cover spatial 

standard deviation and seasonal dry matter yield. 
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Wavelet entropy 

On most measurement dates, the wavelet entropy value, calculated over 42 GC 
estimates per mini sward, of NDS and ADS was higher than for CS 
(Figure 8.12). This means that, indeed, there were fewer frequencies (or scales) 
needed to describe the GC transect for CS than for ADS and NDS. Wavelet 
entropy values were slightly higher in summer than in spring or fall, and the 
greatest differences between treatments were found in the summer. Within a 
growth period, the wavelet entropy value strongly decreased. Wavelet entropy 
does not respond to the amplitude of the signal, but responds to relative 
amplitude changes. Towards the end of a growth period, absolute variability 
decreased and GC increased. This results in smaller relative amplitude changes, 
and decreased wavelet entropy values. The TGC wavelet entropy (R2 = 0.60) 
were slightly weaker related to SDM than GC wavelet entropy (R2 = 0.70, 
Table 8.7). The wavelet entropy calculated per band did not improve 
predictions (R2 = 0.59). Therefore, wavelet entropy values were not strongly 
affected by concatenation of GC estimates recorded in three bands. 
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Figure 8.12 Evolution of wavelet entropy of 42 GC estimates for control swards (♦), artificially 

damaged swards ( ), and naturally damaged swards ( ). Error bars indicate standard 

error of the mean for control swards. 
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Table 8.6 Seasonal means and standard error of ground cover (GC), GC spatial standard deviation 

(GC-SSD) and logistically transformed values of GC (TGC-SSD) for intervals of days 

after harvest (DAC). Different uppercase letters within a row indicate significant 

differences between means (p<0.05). 

Interval CS ADS NDS 

 -----------------------------------------------GC--------------------------------------------

1-4 DAC 24.90 + 0.82a 22.03 + 1.23a 23.20 + 0.36a 

5-8 DAC 34.87 + 0.81a 28.03 + 1.59b 32.89 + 0.92ab 

9-13 DAC 51.38 + 1.25a 41.47 + 2.30b 48.51 + 1.26a 

14-21 DAC 66.25 + 1.01a 56.18 + 1.98b 62.75 + 1.00a 

At harvest 73.75 + 1.06a 62.30 + 1.83b 68.29 + 0.93c 

 -------------------------------------------GC-SSD--------------------------------------- 

1-4 DAC 9.22 + 0.23a 10.30 + 0.42ab 11.93 + 0.45b 

5-8 DAC 10.77 + 0.16a 12.56 + 0.42b 14.65 + 0.71b 

9-13 DAC 10.50 + 0.18a 13.44 + 0.39b 15.00 + 0.59b 

14-21 DAC 9.78 + 0.15a 12.67 + 0.39b 12.64 + 0.53b 

At harvest 9.25 + 0.21a 11.79 + 0.52b 11.70 + 0.45b 

 -------------------------------------------TGC-SSD-------------------------------------- 

1-4 DAC 0.56 + 0.01a 0.72 + 0.02b 0.82 + 0.03b 

5-8 DAC 0.53 + 0.01a 0.77 + 0.03b 0.85 + 0.05b 

9-13 DAC 0.48 + 0.01a 0.70 + 0.04b 0.72 + 0.04b 

14-21 DAC 0.51 + 0.01a 0.61 + 0.03b 0.60 + 0.02b 

At harvest 0.56 + 0.01a 0.60 + 0.03a 0.60 + 0.02a 

 

Linear regressions relating heterogeneity parameters to SDM and tiller CV 

The within mini sward LI standard deviation was linearly related to SDM 
(R2=0.5, Table 8.7). The GC coefficient of variation (R2 = 0.71) and TGC 
wavelet entropy (R2 = 0.70) explained more SDM variation than the spatial GC 
standard deviation did (R2 = 0.63). The tiller coefficient of variation (TCV) was 
linearly related (R2 = 0.69) to spatial GC standard deviation, calculated as mean 
over all measurements within the growing season. At harvest, this spatial 
variation faded, and this resulted in a weakened relation between TCV and 
spatial GC standard deviation if only observations just before harvest were 
taken into consideration (R2 = 0.33, Table 8.7). 



Assessment of total DM yield and grass sward quality 

175 

 
Table 8.7 Linear regressions of heterogeneity variables with seasonal dry matter yield (SDM, t ha-1 

yr-1) and the spatial tiller coefficient of variation (TCV) in 2000. 

Model a b R2 SE observations  

SDM = a + b LI-SD1 18.5 -0.40 0.50 1.32 

SDM = a + b GC-CV1 20.5 -30.5 0.71 1.10 

SDM = a + b GC-SSD1 25.0 -0.92 0.63 1.23 

SDM = a + b GC-WE1 100.1 -27.3 0.70 1.11 

SDM = a + b TGC-WE1 91.7 -22.0 0.60 1.28 

SDM = a + b GC-WE1,3 131.8 -37.7 0.59 1.30 
     
GC-SSD2 = a + b TCV 9.4 5.2 0.69 0.89 

GC-SSD1 = a + b TCV 9.0 4.11 0.33 1.45 

1 Calculated as mean over observations just before harvest 

2 Calculated as mean over all observations 

3 Calculated as mean of three wavelet entropy estimates per mini sward, one for each band 

 

8.4 Discussion and conclusion 

As expected, artificially damaged swards (ADS) and naturally damaged swards 
(NDS) had lower seasonal dry matter yield (SDM) than control swards (CS). In 
the first cut, yield differences were small, with highest yields for NDS. The 
largest differences in DM yield arose in summer. The N content of ADS and 
NDS was higher than for CS, indicating luxury consumption. This reflects the 
higher N availability per unit DM produced. This is in agreement with Richards 
& Wolton (1975), who found that grazing damage affected the DM to N ratio. 
Deenen (1994, p38) concluded that ‘sward quality strongly affects the absolute 
and marginal response of herbage and implicitly animal production to fertiliser 
N applied’. Therefore, it is concluded that N supply requires fine-tuning for 
differences in sward quality (Mooij & Vellinga, 1993).  
 

8.4.1  Ground cover 

The control swards had a seasonal mean ground cover (GC) between 36% and 
56%, which correspond to visually scored GC values of 47% and 69%. These 
values are similar to data from Alberda (1968), from which mean GC values of 
67% for hay type and 65% for pasture type were calculated for the 4 weeks 
harvest intervals. Longer harvest intervals decreased mean GC in the first four 
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weeks after harvest by 20% (Alberda, 1968). An increase of 1% GC rose SDM 
with 0.31 t DM ha-1. Over the growth period from 26 April through 30 October 
(186 days), the nearby meteorological station of Wageningen received on 
average 13.83 MJ m-2 d-1 solar radiation. The rain shelter foil transmitted 80% 
of solar radiation. The fraction photosynthetically active radiation is equal to 
50% of the total solar radiation. Therefore, mini swards received a total of 5.6 
MJ PAR m-2 d-1. In the GC range around 50% GC, increasing GC with 1% 
increases LI with 1.42% under a cloudy and clear sky (Schut & Ketelaars, 
Chapter 3). In the LINGRA growth model (Schapendonk et al., 1998), Lolium 
perenne L. has a maximum light use efficiency of 3.0 g DM MJ-1 (PAR, 
calibrated value for Northern Europe) and a fraction of 0.165 for root growth 
(Bouman et al., 1996). The maximum light use efficiency is corrected for 
intense radiation resulting in a light use efficiency of 2.694 g DM MJ-1 (PAR). 
From this, it was calculated that an increase of 1% GC would increase SDM 
with 0.33 t DM ha-1, a value similar to the regression coefficient found for the 
relation between GC and SDM. The relative range in SDM (11.4-19.2 t DM 
ha-1) was larger than the relative range in seasonal mean GC (36-56%). Open 
swards have a lower light interception capacity per unit GC under clear sky 
conditions (Schut & Ketelaars, Chapter 3). The relatively strong response of 
SDM to changes in GC can be attributed to these changes in light interception 
capacity per unit GC. This also means that plants surrounding gaps did not 
compensate for yield loss. This in contrast to Fehmi et al. (2001), who found in 
California annual grassland that plants surrounding gaps partly compensated 
yield loss, as 0.75-1.50 dm2 size gaps did not limit the realised productivity. 
 

8.4.2  Relation between image parameters and SDM 

The linear regression between SDM and repeated measurements of ground 
cover (GC) and index of reflection intensity allowed accurate SDM prediction 
(R2 = 0.93). Correlation between GC and SDM showed strong changes within a 
growing period. Correlations were strongest just before harvest (r = 0.55-0.87). 
Therefore, it is concluded that growth capacity of a sward can best be judged 
after a period of growth.  
 

8.4.3  Spatial variability in relation to sward quality groups 

The spatial variation in tiller density and light interception was larger for ADS 
and NDS than for CS. This spatial heterogeneity was also present in the images 
of ADS and NDS, although image heterogeneity faded during growth. 
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Transects of GC estimates revealed that the variability was clustered, as shown 
by wavelet entropy. Both spatial GC standard deviation (GC-SSD) and patterns 
in GC estimates were stronger for ADS and NDS than for CS, especially during 
summer. The GC-SSD reached its maximum value when GC values were 
between 40 and 60%. The spatial standard deviation of the logistically 
transformed GC values (TGC-SSD) amplified differences between CS, ADS 
and NDS just after harvest. In the second half of the growth period GC-SSD 
and TGC-SSD decreased and GC increased, although patterns remained visible. 
Therefore, relative variability decreased, diminishing also the importance of 
clusters. As a result, wavelet entropy values strongly decreased within a growth 
period. Sward heterogeneity showed a seasonal pattern, with maximum 
heterogeneity in the summer period for the ADS and NDS.  
 

8.4.4  Discrimination of sward quality groups 

Calculating seasonal means of GC-SSD and TGC-SSD improved 
discrimination of ADS and NDS from CS. The GC-SSD showed maximum 
differences between groups at 50% GC. Discrimination at low GC values 
strongly improved with a logistic conversion of GC values. The seasonal mean 
TGC-SSD of the CS remained below 0.6 in all harvest intervals, whereas ADS 
and NDS had a TGC-SSD value equal or greater than 0.6. The absolute 
differences between seasonal means of CS, ADS and NDS were largest 9-13 
days after harvest for GC-SSD and 5-8 days after harvest for TGC-SSD. In 
contrast to this, correlation between SDM and GC-SSD and TGC-SSD became 
stronger towards harvest. This was caused by differences in the dynamics of 
heterogeneity for CS, ADS and NDS. The NDS showed a stronger decrease in 
seasonal mean GC-SSD and TGC-SSD within a re-growth period than ADS, 
whereas seasonal mean GC-SSD and TGC-SSD of CS changed only slightly 
during re-growth. 
 

8.4.5  Assessment of sward quality with image parameters 

In this study, seasonal dry matter yield (SDM) was used as quantitative measure 
of sward quality. The combination of seasonal mean GC and IRI proved to be 
the best predictor of SDM. However, values of SDM and seasonal mean GC 
and IRI are strongly affected by sward management, e.g. grazing, harvest 
intervals and nutrient application. Therefore, assessment of sward quality with 
seasonal means of GC and IRI requires an accurate reference, i.e. an estimate of 
optimal seasonal mean values of GC and IRI for the given sward management. 



Chapter 8  

178 

This reference may be derived from the best field or the best location within a 
field or from accurate predictions of yield potential by grass growth models.  
The spatial heterogeneity of swards was expected to be less sensitive to changes 
in sward management than SDM or seasonal mean GC. The spatial variation 
present in tiller density and light interception was also present in GC estimates. 
Unfortunately, the accumulation of biomass masked spatial heterogeneity, 
strongly decreasing spatial GC heterogeneity above 50% GC. Although spatial 
GC heterogeneity was related to SDM (R2 =0.59-0.71), discriminating power of 
this relationship was unsatisfactory with standard errors of observations 
between 1.1 and 1.3 t DM ha-1 yr-1. The dynamic aspects of heterogeneity may 
affect the relations between heterogeneity and production capacity found in this 
study. Management practices, such as grazing, may temporarily increase or 
decrease heterogeneity. Dung and urine patches increase heterogeneity 
(Keuning & Vellinga, 1986). Dung and urine may also create gaps in the 
canopy (Lantinga, 1986), especially under high stocking rates (Wolton, 1978). 
Small and medium sized gaps in the canopy are rapidly filled by vegetative 
expansion or seedlings (Marriott et al., 1997). Therefore, the dynamics of 
heterogeneity should be incorporated in a sward quality assessment, and this 
requires repeated measurements during the growing season.  
It is concluded that imaging spectroscopy provides means for accurate SDM 
assessment. Differences in TGC-SSD between sward quality groups were 
largest within 8 days after harvest, whereas the correlation between SDM of 
individual swards and GC-SSD became stronger negative towards harvest. 
Grassland renovation is expensive, and may only be economically justified 
when swards are heavily deteriorated (Elsässer, 1991; Keuning & Vellinga, 
1986; MacCarthy, 1982; Smith & Allcock, 1985; Spatz et al., 1981). Sward 
renewal is economically attractive when the production increase compensates 
the cost of reseeding or renovation. Reseeding is beneficial at 18-23% yield 
increase for 5 year reseeding intervals and 10-15% for 10 year reseeding 
intervals (Aarts et al., 2002). The actual production can be quantified with 
imaging spectroscopy. The calculation of the potential increase of production 
requires an additional reference for comparison with actual production. Mini 
sward heterogeneity was well quantified with imaging spectroscopy. The 
effects of botanical composition and management strategies on image 
heterogeneity characteristics, and the self-recovery capacity of deteriorated 
swards require further study before conclusions can be made with regard to the 
implications of sward heterogeneity for sward reseeding or renovation. 
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9. Abstract 
The potential of imaging spectroscopy (IS) was explored as a robust tool for 
pasture management. The experimental IS system measured reflectance 
between 404-1650 nm with three sensors at high spatial (0.28-1.45 mm2) and 
spectral (5-13 nm) resolution. The prediction accuracy of dry matter (DM) 
yield, mineral concentration (N, P, K, S, Ca, Mg, Mn, Zn and Fe), crude fiber 
(CF), ash, sugar and DM content of grass swards was evaluated. Two data sets 
were used from Lolium perenne L. mini sward experiments, conducted in 2000 
in containers under a rain shelter. The first data set included up to 300 
observations from 9 harvests of mini swards with adequate N supply that varied 
in sward damage. The second data set included up to 100 observations from 6 
harvests of an experiment where N application varied from 0 up to 120 kg N 
ha-1 harvest-1. Partial least square (PLS) regression models were built from the 
leaf reflectance data, and were calibrated and validated per data set. PLS 
models were evaluated per sensor and for a combination of 2 sensors. The  
2-sensor PLS models were combined with ground cover (GC) and index of 
reflection intensity (IRI). The potential reduction in model error was explored 
for 10, 25 and 50 observations per field for a large and small model bias 
contribution. The 2-sensor PLS model including GC and IRI performed best. 
The mean prediction errors for exp. 1 and 2 were 268 and 235 kg DM ha-1, 0.24 
and 0.34 N (%), 1.68 and 0.96 DM (%), 16.2 and 27.7 sugar (g kg-1 DM), 6.5 
and 5.8 ash (g kg-1 DM) and 10.4 and 8.36 CF (g kg-1 DM). The predictions for 
P, K, S, and Mg allowed identification of deficiency levels, in contrast to Na. 
Predictions were poor for Zn, Mn and Ca. With 25 replicate measurements, the 
calculated prediction error of DM yield may be maximally reduced to 95-142 
kg ha-1 for fields with a within-field standard deviation of 300 kg ha-1. It is 
concluded that imaging spectroscopy provides robust and accurate means for 
assessment of DM yield and feeding quality of standing grass. This opens up 
new means for improvement of grassland and dairy farm management. The 
methodology requires further evaluation under field conditions, including a 
range of grass species and management practices. 
 
 

9.1  Introduction 

In the Netherlands more than 1 million ha of grass is used for the feeding of 
dairy cows. Optimisation of the grassland management by dairy farmers will 
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help to reduce the cost price of milk and reduce emissions to the environment. 
Planning of grassland use, timing and quantity of manuring and fertilising, 
timing of grazing and mowing and adaptation of parcel size are at hand to 
improve the quantity and quality of own produced roughage. A prerequisite for 
all these management options is to estimate or measure the production capacity 
of the land (Hack-ten Broeke, 2000). Potential deficiencies or excesses of 
minerals in grassland are important, and mostly related to the use of fertilisers 
(Hopkins et al., 1994). Adequate concentrations of mineral contents in the grass 
influence the efficiency of the grass growth (McKenzie & Jacobs, 2002). 
Therefore it might be of interest to be able to measure the mineral content of the 
grass. Dutch farmers are used to calculate the ration for cows based on feed 
information. Dry matter content, mineral content, and feeding value are 
important. Feeding values of grass and maize silage and concentrates are mostly 
available, but feeding value of fresh grass is mostly unknown. Farmers have the 
possibility to collect a sample of fresh grass, based on 25 hand plucks per parcel, 
and send it to the Dutch Laboratory for Soil and Crop Testing (BLGG) where it 
is analysed for dry matter content, sugar content, feeding values and mineral 
contents. The time delay between sampling and return of laboratory results is a 
disadvantage of this method. Within the concept of Precision Agriculture, very 
little research has been focused on grassland yield mapping. Lokhorst & Kasper 
(1998) performed a field test in 1997 to get insight in the measuring capabilities 
of existing measuring techniques and in the spatial and temporal variation in 
grass yield under Dutch conditions. The main conclusion from that work was 
that available techniques were not suitable to measure accurately and non-
destructively grass yield and quality. Therefore, new measuring techniques 
should be developed. With the recently developed system for hyperspectral 
imaging spectroscopy, new automatic means for grass sward characterisation are 
available (Schut et al., Chapter 2). Reflection intensity measured by the system 
is related to position in the canopy and leaf angle. With this feature, image 
ground cover (GC) can be differentiated into reflection intensity classes, where 
the distribution of pixels over the intensity classes is indicative for canopy 
geometry. Due to the non-destructive nature of reflection measurements, 
evolution of GC, canopy geometry and leaf spectra can be studied. GC estimates 
are strongly related to light interception, leaf area index and biomass (Schut & 
Ketelaars, Chapter 3). The objective of the study is to establish relations between 
information from imaging spectroscopy, obtained from direct non-destructive 
measurement of the grass and various grass quality parameters, which are 
determined after harvesting of the grass. The objective of the analyses is to: 1) 
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predict values of these quality parameters solely based on image information, 
with the help of calibrated relationships, 2) to estimate the precision with which 
these parameters can be predicted, and 3) to identify important image parameters 
and spectral regions, that are highly predictive for these quality parameters. This 
information can possibly be used in future applications of the technique for 
practical use in the field. This paper describes the test results in which the 
imaging spectroscopy system was tested in two experiments under laboratory 
conditions. Grass characteristics that were studied with the system were yield, 
dry matter content, sugar, N, nutrient concentrations and feeding values.  
 
 

9.2  Materials and Methods 

9.2.1  Experiments 

In 2000, two experiments were conducted with mini swards of Lolium perenne 
L., grown in containers of 0.9 m long, 0.7 m wide and 0.4 m high, filled with a 
sandy soil (3% organic matter). The containers were placed under a rain shelter 
covered with 80% light-transparent foil, with wind breaking fencing at the 
sides. Soil moisture content was maintained at field capacity by weighing twice 
a week. Data from two experiments (where the degree of sward damage and N 
application varied) were used as a representation of Dutch grasslands.  
 

Experiment 1 

This experiment is described in detail in Schut & Ketelaars (Chapter 3). In 
short, a total of 36 mini swards were available from a two year drought 
experiment (Grashoff et al., 2001). There were 8 mini swards with damaged 
swards, due to a period of 40 days without additional water. Artificial sward 
damage was created in 12 mini swards. On random locations in the sward, 
circular patches of 12.5 and 22.5 cm diameter were removed with a total area of 
25, 50 or 75% of the sward. The remaining 16 swards were part of an drought-
stress experiment, with control swards and swards were no extra water was 
supplied for 20, 30 and 40 days in the period from 1 June through 10 July. 
Harvests from severely dried out swards were excluded from the data set. On 
17 March 2000, fertiliser was supplied with 8.1 g m-2 N, 6.6 g m-2 P2O5 and 12 
g m-2 K2O. On the 11th of July, 3 g m-2 P2O5, 20 g m-2 K2O and 6 g m-2 S was 
supplied, with an additional 6.3 g m-2 K2O on 30 August. After every cut  
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9.4 g m-2 N (dissolved in water) was supplied. After 15 September the N dose 
was reduced to 5.1 g m-2. 
 

Experiment 2 

The second experiment is described in detail in Schut & Ketelaars (Chapter 4). 
In this experiment, nitrogen (N) application varied in 5 levels, equivalent to 0, 
30, 60, 90 and 120 kg N ha-1. This experiment consisted of two observation 
periods. For the first period, a mixture of Lolium perenne L. cultivars (BG3, 
Barenburg) was sown in April 2000. Before sowing, 8.1 g m-2 N, 13.8 g m-2 
P2O5 and 24 g m-2 K2O was applied. Once a good sward was established, grass 
was cut (30 May) and the day after, N was supplied according to the treatments. 
For the second observation period, 5-10 cm thick grass swards (sown in autumn 
1999) were transplanted into containers on 6 July. After a two-month start-up 
period without additional N, N was supplied after each harvest from 8 August 
onwards. Swards were harvested on 25 July, 8 August, 29 August, 27 
September, and 31 October. Because of the time of the year, N levels were 
reduced to 0, 20, 40, 60 and 90 kg N per ha-1 after the 27 September harvest. 
Application of N was further reduced with one N level when N-min content 
was higher than 22.5 kg ha–1. 
 

9.2.2  Measurements 

Laboratory analysis 

At harvest, swards were hand-cut to a stubble height of 4 cm. In Table 9.1, 
harvest dates and DM yields are given. At harvest, fresh material was collected 
and weighted and samples were taken. These samples were analysed at the 
Dutch Laboratory of Soil and Crop Research (BLGG) for chemical analysis. 
From each sample, dry matter (DM) yield, fresh matter (FM) yield and DM 
content (DMc) was determined by weighing, sugar and N content and feeding 
value was determined using NIRS, and mineral composition (P, K, S, Ca, Mg, 
Mn, Zn, Fe) was determined using ICP-OES. The feeding value of fresh grass 
can be calculated with estimates of N content, DMc, ash content, crude fiber 
(CF) content and sugar content. The ash content is the residue of ash after 
heating (550oC), and the CF is the amount lost after boiling in an acid and  
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Table 9.1 Harvest dates and treatment mean DM yield (kg DM ha-1) in experiment 1 and 2. 

 Experiment 1  Experiment 2 

Treatment control N0 N30 N60 N90 N120 

25 April 3308 - - - - - 

12 May 1953 - - - - - 

30 May 912 - - - - -- 

20 June 1643 2430 3161 3198 3612 3786 

11 July 1156 - - - - - 

25 July* - 1471 1488 1418 1439 1361 

8 August* 2941 916 1030 948 1053 918 

29 August 2348 591 1381 1514 2066 2001 

27 September 2358 356 1304 1913 2587 2696 

31 October 1115 253 836 1109 1298 1403 

* In experiment 2: intermediate harvests without N supply 

 
 
caustic solution (Anonymous, 1998). In Table 9.2, the repeatability of the 
BLGG measurement procedure is given for each variable, with mean and 
standard deviation values in fresh grass samples analysed in 2001. 
 
Imaging spectroscopy 

The experimental system used is described in detail elsewhere (Schut et al., 
Chapter 2). In short, image lines were recorded with three sensors: the V7, N10 
and N17. The V7 sensor detects reflectance between 404-709 nm, the N10 
sensor between 680-970 nm and the N17 sensor between 960-1650 nm. The 
sensors have a spectral resolution of 5 nm (V7 and N10) and 13 nm (N17), and 
a spatial resolution at soil level of 0.28 mm2 (V7 and N10) and 1.45 mm 2 
(N17). At soil level, an image line is 1.39 mm wide and 152.5 mm long for the 
V7 and N10 sensor, and 1.39 mm wide and 133.1 mm long for the N17 sensor. 
Per image line, reflection was measured in 768 (V7 and N10) and 128 (N17) 
picture elements (pixels). Light is focussed with a bar lens, and only a 2-4 cm 
wide strip is illuminated. Light is projected vertically to the soil, and reflectance 
is measured under an angle of 2 degree from nadir. On 42 positions per mini- 
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Table 9.2 Confidence boundary for repeatability (p<0.05) of duplicate samples at the Dutch 

Laboratory for Soil and Crop Research (BLGG), mean values and standard deviations of 

fresh grass analysis in 2001 (BLGG, personal communication). 

 Repeatability Mean values in 2001 

Ash (g kg-1 DM) 11 107 + 12 

CF (g kg-1 DM) 13 228 + 21 

Sugar (g kg-1 DM) 14 93 + 53 

N (g kg-1 DM) 1.8 37 + 8 

K (g kg-1 DM) 1 36 + 7 

P (g kg-1 DM) 0.1 4.3 + 0.8 

S (g kg-1 DM) 0.2 4.1 + 1.3 

Mg (g kg-1 DM) 0.2 2.6 + 0.5 

Ca (g kg-1 DM) NA 5.8 + 1.7 

Na (g kg-1 DM) 0.2 2.4 + 1.3 

Mn (mg kg-1 DM) 3 98 + 57 

Zn (mg kg-1 DM) 3 44 + 20 

Fe (mg kg-1 DM) 9 155 + 143 

 
 
sward, image lines were recorded in a regular pattern. In general, image lines 
were recorded two times per week. Swards were harvested a day after image 
recording, with exception of the 27 September harvest, which was harvested 
two days after image recording. Schut et al. (Chapter 2) defined threshold 
values for soil, grass leaves (G), leaves with specular reflection (S), and dead 
material (D) classes and an intermediate class between soil and dead material. 
Separation between classes was based on ratios of reflectance (R) at 450, 550 
and 680 nm. These classes are subdivided into reflection intensity classes (IC), 
based on the reflection intensity at predefined wavelengths (550 nm for the V7, 
746 nm for the N10 and 1100 nm for the N17 sensor). The intensity classes 
ranged for grass from IC 0 up to and including IC 6 for the V7 sensor and from 
IC 0 up to and including IC 10 for the N10 and N17 sensor. For leaves with 
specular reflection, IC ranged from 0 up to and including 2, and for dead 
material from IC 0 up to and including 3. A large number of pixel reflection 
spectra per intensity class are stored in a spectral library. With this library, pixel 
spectra of the recorded image lines were classified with maximum likelihood 
procedures (Schut & Ketelaars, Chapter 3). The classification procedure was 
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based on a limited number of wavelengths, selected according to a statistical 
function maximising class to class separation (Feyaerts & Van Gool, 2001). 
After classification, spectra of pixels were normalised, according to equations 
in Schut et al. (Chapter 2). Normalisation means that reflection was divided by 
the mean reflection in the 550-555 nm range for the V7 sensor, 800-850 nm 
range for the N10 sensor and 1070-1130 nm for the N17 sensor. Mean sward 
reflection spectra were calculated per sensor from normalised spectra of all 
pixels in grass IC 1 trough 10. It is stressed that with this procedure only grass 
pixels were selected, eliminating pixels with soil and dead material. Ground 
cover was calculated per mini sward for each IC. Total image line (IL) ground 
cover (GCIL, %) was calculated as sum of ground cover of all grass IC (GCG) 
and IC of all specular classes (GCS) from the V7 sensor:  
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where ic is the index number of the intensity class. The mini sward GC was 
calculated as the average of the GCIL over the 42 image lines. The index of 
reflection intensity (IRI, %) was then calculated as: 
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This IRI measures the presence of highly reflecting green pixels as a percentage 
of GC. A high value represents a dense canopy with more horizontally oriented 
leaves (Schut & Ketelaars, Chapter 3). 
 

Partial least squares 

The available spectral information is highly multivariate and (in general) very 
co-linear, i.e. the information in single wavelengths is usually highly correlated 
with information in other wavelengths. Furthermore, the number of 
observations is smaller than the number of wavelengths detected by the sensors. 
Partial least squares (PLS) regression is most suitable for these two data-
properties. PLS combines data reduction with a regression model: 
 

eXY += β , 
 
where Y is vector with the measured variables of interest, X is the matrix with 
reflection values per spectral band and β is the matrix with coefficients 
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estimated with PLS and e is the error vector. PLS searches for latent variables 
(LVs) in the spectral space that explain as much variation as possible in both 
the spectral data and the variable of interest. The minimum prediction error sum 
of squares of the (leave one-out) cross-validated predictions was used as 
criterion to select the appropriate number of LVs. As an example, Figure 9.1 
shows the minimum prediction error sum of squares, as function of the number 
of LVs included in the PLS model for DM yield in experiment 1. For each 
variable per experiment, the optimum number of LVs was determined. An 
extensive introduction to PLS regression can be found in Geladi & Kowalski 
(1986). Data were analysed using Matlab version 6.0 with the Matlab PLS-
toolbox (Matlab, 2000; PLS_Toolbox, 2000). 
 

9.2.3  Model evaluation 

The data were, per experiment and per sensor, pseudo-randomly divided, i.e. 
with regard to treatment and cutting date, into calibration and validation sets 
with a ratio of 2:1. All spectra were visually inspected for each sensor and 
excluded from the data set when abnormal or missing. The N17 sensor was 
defect from 14th August up to 15th October 2000 and, therefore, data of the 29 
August and 27 September harvests were not available. In experiment 1,  
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Figure 9.1 Root means square error of cross validation (RMSECV) as function of number of latent 

variables included in the PLS calibration model for DM yield in experiment 1 for sensor 

1 ( ), 2 ( ) and 3 ( ). 
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293 to 307 (V7 and N10 sensor) and 220 observations (N17 sensor) were 
available and in experiment 2 95-100 (V7 and N10 sensor) and 57 observations 
(N17 sensor) were available. PLS models were constructed with the calibration 
set. These PLS models were used to generate predictions of the response 
variables in the validation set. To evaluate the calibration models the following 
criteria were used: 
 

( )
( )−

−
−=

i i

ii

yy
yy

R 2

2
2

ˆ
ˆ

1 , (1) 

 
where i and yi were respectively the leave-one-out predictions and measured 
values of the variable of interest, while y  was the average value of the variable 
of interest in the calibration set. The root mean squared error of cross-validation 
(RMSECV) was calculated as: 
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The validation models were evaluated with: 
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where i

v and yi
v were the predicted and measured values of the variable of 

interest in the validation set and y the average value of the variable of interest 
in the calibration set. The Q2 can be interpreted as the fraction of variation 
explained by the model. The Q2 is (as in R2), therefore, strongly sensitive to the 
variation within the data set. Therefore, one should be careful when looking at 
Q2 values. The root mean squared standard error of prediction (RMSEP) was 
calculated as: 
 

( )
n

yy
RMSEP i

vv
ii

−
=

2ˆ
. (4) 

 
With imaging spectroscopy, the number of samples for analysis can easily be 
expanded without additional costs. Increasing the number of observations (N) 
per field will reduce the variance (random error component) of the model 
prediction error (RMSEPM) of imaging spectroscopy ( ISS ) according to: 
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N
SRMSEPRMSEPS xM

BIS

22
2 ++=  (5) 

 
The S2

x is the sampling error due to within-field variation. This does not reduce 
the model bias (RMSEPB, the systematic error component). Van der Voet 
(personal communication) found that the ratio between RMSEPB and RMSEPM 
was between 0.03 and 0.30 for NIRS determination of N and CF content in 
samples of ensiled grass. Therefore, potential reductions in RMSEP were 
calculated with an intermediate and high estimate of the ratio of RMSEPB / 
RMSEPM of 0.25 and 0.50, under 10, 25 and 50 observations in the field. For 
this, the RMSEP of the best model averaged over two experiments were used. 
The xS was estimated from the within-field standard deviation of a data set with 
100 subplots of 4 m2, within a newly sown field of 1.2 ha. Each plot had three 
harvests (Lokhorst & Kasper, 1998). The within-field standard deviations, 
averaged over three harvests, were: 5.09 t ha-1 FM yield, 660 kg ha-1 DM yield, 
in the FM 12.8 g kg-1 DMc, and in the DM 6.9 g kg-1 ash, 12.9 g kg-1 CF, 3.7 g 
kg-1 N, 4.6 g kg-1 K, 0.51 g kg-1 P, 1.0 g kg-1 Ca, 0.34 g kg-1 Mg and 2.0 g kg-1 
Na. These estimates are conservative, as the large subplot size is expected to 
average out small-scale variation, which do contribute to the variation in a 
composite sample of hand-plucks. The calculated ISS  was compared with the 
total error of laboratory fresh grass analysis and within field variation ( FGS ). 
Laboratory analysis is performed on one composite sample per field, where 
sub-samples are collected in a regular pattern over the field. Due to sampling, 
the FGS  error is the combination of the laboratory error labS and the error 
originating from analysing only one composite sample per field: 
 

N
SSS x

labFG

2
2 +=  (6) 

 
The labS  multiplied with 2.8 indicates the repeatability of laboratory 
measurements, which is presented in Table 9.2. The number of observation (N) 
equalled 25 (Anonymous, 1998). The ratio between standard deviation in the 
data set and RMSECV was calculated. It has been suggested that for near 
infrared spectroscopy, a ratio above 2.5 indicate that the calibration is adequate 
for quality screening purposes. A ratio above 3.0 indicate that the calibration 
should perform well for quantitative analysis (Sinnaeve et al., 1994; Park et al., 
1998). 
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9.2.4  Data sets 

At first, spectra were analysed for each sensor separately, resulting in three 
different calibration models for each variable of interest. 
 

Combination of sensors 

For each experiment, a large data set was constructed in which spectra of 
sensors were combined. PLS models attempt to describe all variability in 
spectra as well as in the variable of interest. Variable predictability with PLS 
models only improve when including spectral bands describing yet unexplained 
variation. Therefore, only the V7 and N17 data sets are combined, as 
predictability with spectra of the N10 sensor was limited. Again, calibration and 
validation models were constructed for this 2-sensor data set and tested 
according to the methodology described above. 
 

Including ground cover and IRI parameters 

Schut & Ketelaars (Chapter 3) showed that GC was strongly related to light 
interception and LAI in grass swards. The IRI was related to canopy geometry, 
and there was a linear relation between GC, IRI and DM yield (R2

adj = 0.75). 
Therefore, three additional models (A, B and C) were constructed. Model A 
included GC and model B included GC and IRI. Model C included all GC 
estimates of GCG and GCS classes, containing detailed information about the 
relative importance of various classes. The 2-sensor spectra were combined 
with these additional variables. The models were block-scaled, which implied 
that both blocks, spectra and additional variables contributed equally to the total 
sum of squares. With these combined data new PLS models were built, 
according to procedures described above. 
 

9.3 Results 

9.3.1  Data sets 

In Table 9.3, means and standard deviations for the calibration and validation 
data sets for the V7 sensor are presented. The two experiments had similar DM 
yields, but differed considerably in DMc and concentrations of CF, ash, sugar 
and minerals. The variability of N and sugar was smaller and variability of K 
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and Ca was considerably larger in experiment 1 than in experiment 2. The high 
N concentration in experiment 1 indicated that N application was sufficient, 
whereas in experiment 2 N deficiency occurred. In general, there were no large 
differences between the calibration and validation sets. There were strong 
correlation coefficients found between variables within the data sets (Table 9.4). 
Based on previous studies, good predictability was expected for DM yield, N 
and DMc when combining GC, IRI and reflectance. Therefore, high correlation 
with one of these variables may be important for the predictability. Pearson 
correlation coefficients (r) above 0.5 in both data sets were found for DM yield 
and FM yield (r=0.98), N (r<-0.5), P (r>0.52), K (r>0.64), S (r>0.66), Mg (r<–
055), Ca (r<–0.71) and Na (r=-0.81). The correlation was also strong between 
DMc and FM (r<-0.54), K (r<-0.54), Mg (r>0.67) and Ca (r=0.81) and between 
N and Na (r>0.61), Zn (r>0.61) and Fe (r>0.55).  
 

Table 9.3 Means and standard deviations (SD) for variables in calibration and validation data sets 

of the V7 sensor.  

 Experiment 1 Experiment 2 

 Calibration(n=207) Validation(n=100) Calibration (n=66) Validation(n=34) 

 Mean SD Mean SD Mean SD Mean SD 

FM yield (t ha-1) 10.0 5.9 10.3 6.4 9.6 5.7 9.8 4.8 

DM yield (kg ha-1) 1731 840 1752 902 1634 939 1694 832 

Ash (g kg-1 DM) 84.8 9.8 86.4 9.0 97.1 10.9 96.9 11.4 

CF (g kg-1 DM) 217 12 218 13 244 16 242 12 

DMc (g kg-1 FM) 187 37 184 29 177 25 176 28 

Sugar (g kg-1 DM) 123 26 119 26 147 64 148 67 

N (g kg-1 DM) 39 4 39 4 28 8 29 7 

K (g kg-1 DM) 26.0 10.9 26.5 11.2 34.4 5.5 35.2 5.4 

P (g kg-1 DM) 3.7 1.2 3.8 1.1 4.3 0.8 4.2 0.9 

S (g kg-1 DM) 4.1 1.0 4.2 1.1 5.2 1.4 5.1 1.4 

Mg (g kg-1 DM) 3.0 0.8 3.0 0.8 3.2 0.6 3.2 0.6 

Ca (g kg-1 DM) 12.1 4.1 11.9 3.6 6.7 1.6 6.6 1.4 

Na (g kg-1 DM) 2.5 0.9 2.5 0.8 2.5 1.4 2.4 1.1 

Mn (mg kg-1 DM) 170 51 175 51 158 57 157 38 

Zn (mg kg-1 DM) 98 15 100 17 45 10 45 9 

Fe (mg kg-1 DM) 116 22 116 25 122 38 124 43 
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9.3.2  Spectra per sensor 

In general, the R2 and Q2 values where higher for the V7 and N17 sensor than 
for the N10 sensor (Table 9.5). The mean Q2 value of the N10 sensor was 
extremely low in experiment 2, whereas mean Q2 value was comparable with 
the N17 sensor in experiment 1. The V7 sensor responded strongest to CF and 
nutrients, whereas the N17 sensor responded strongest to FM and DM yield, 
DMc and sugar. Remarkably, the N17 sensor had high Q2 values for the 
nutrients in experiment 1, but low Q2 values in experiment 2. The Q2 values of 
the N17 sensor for DM (0.85 and 0.84) and FM (0.93 and 0.89) yield and DMc 
(0.61 and 0.60) were high in both experiments. The V7 sensor had higher Q2 
values in experiment 1 than in experiment 2 for DM (0.89 vs. 0.41) and FM 
(0.88 vs. 0.45) yield and DMc (0.71 vs. 0.38), whereas Q2 values for N, P, S, 
Mg and Zn were comparable. This indicates that the high Q2 values for these 
nutrients did not result from auto-correlation with DM and FM yield or DMc 
alone. 
 
Table 9.4 Pearson correlation coefficient (r) between variables for experiment 1 in the upper right 

half, and experiment 2 in the lower left half in Italic. 

 FM DM Ash CF DMc Sugar N K P S Mg Ca Na Mn Zn Fe 

FM  0.98 0.51 0.35 -0.54 0.21 -0.53 0.72 0.56 0.73 -0.62 -0.78 -0.82 -0.05 -0.39 -0.25

DM 0.98  0.49 0.41 -0.42 0.35 -0.50 0.68 0.52 0.68 -0.55 -0.71 -0.81 -0.02 -0.38 -0.25

Ash 0.60 0.55  0.67 -0.35 -0.06 0.31 0.80 0.52 0.77 -0.35 -0.46 -0.19 -0.04 0.11 0.32

CF 0.43 0.44 0.59  0.18 0.27 0.33 0.38 0.43 0.47 0.16 -0.01 -0.01 0.36 0.26 0.27

DMc -0.63 -0.53 -0.53 -0.05  0.42 0.31 -0.54 -0.40 -0.42 0.74 0.81 0.42 0.39 0.37 0.16

Sugar -0.12 0.03 -0.38 -0.09 0.52  -0.24 -0.01 -0.23 -0.10 0.22 0.11 -0.27 0.13 -0.03 -0.26

N -0.54 -0.56 0.14 -0.02 0.27 -0.21  -0.15 0.03 -0.06 0.44 0.52 0.73 0.18 0.64 0.64

K 0.67 0.64 0.80 0.33 -0.62 -0.26 -0.13  0.38 0.78 -0.63 -0.72 0.72 -0.32 -0.27 -0.04

P 0.64 0.56 0.59 0.40 -0.53 -0.47 -0.08 0.38  0.71 -0.37 -0.58 0.56 0.31 -0.02 0.17

S 0.73 0.66 0.75 0.41 -0.52 -0.35 -0.09 0.66 0.78  -0.58 -0.61 0.73 -0.01 -0.12 0.17

Mg -0.67 -0.62 -0.53 -0.11 0.67 0.34 0.37 -0.69 -0.41 -0.55  0.85 -0.62 0.49 0.58 0.18

Ca -0.81 -0.75 -0.60 -0.19 0.81 0.28 0.49 -0.70 -0.61 -0.66 0.75  -0.78 0.32 0.52 0.24

Na -0.78 -0.81 -0.33 -0.08 0.42 -0.12 0.61 -0.62 -0.30 -0.51 0.60 0.67  -0.05 -0.39 -0.25

Mn -0.12 -0.15 -0.07 0.14 0.16 -0.09 0.18 -0.34 0.31 0.07 0.49 0.17 0.28  0.53 0.25

Zn -0.48 -0.51 -0.07 0.04 0.36 -0.04 0.61 -0.32 -0.08 -0.14 0.51 0.54 0.60 0.43  0.49

Fe -0.06 -0.12 0.34 0.12 -0.08 -0.43 0.55 0.14 0.29 0.32 -0.06 0.05 0.29 0.16 0.42  
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The mean R2 and Q2 values were on average higher in experiment 1 than in 
experiment 2. PLS model performance was directly related to the amount of 
variation in the data set (compare Tables 9.3 and 9.5). 
 

9.3.3  Spectra of 2 sensors combined 

In Table 9.6, the R2, RMSECV, Q2 and RMSEP of the 2-sensor model are 
presented. When compared to the single V7 and N17 sensor models (Table 9.5), 
Q2 values of sugar, Ca, Na and Mn improved slightly in experiment 1.  
 
 
 
 

Table 9.5 Calibration and validation results for the V7, N10 and N17 sensor. 

 Experiment 1 Experiment 2 

 Calibration, 

(n=150), R2 

Validation, 

(n=74), Q2 

Calibration, 

(n=39), R2 

Validation, 

(n=21), Q2 

 V7 N10 N17 V7 N10 N17 V7 N10 N17 V7 N10 N17 

FM yield  0.92 0.69 0.92 0.88 0.67 0.93 0.78 0.80 0.99 0.45 -0.39 0.89 

DM yield  0.92 0.82 0.89 0.89 0.83 0.85 0.74 0.51 0.95 0.41 0.23 0.84 

Ash 0.72 0.57 0.73 0.64 0.42 0.46 0.61 0.21 0.42 0.42 0.04 0.57 

CF 0.72 0.48 0.58 0.30 0.36 0.04 0.78 0.59 0.57 0.63 0.44 0.53 

DMc 0.87 0.77 0.83 0.71 0.64 0.61 0.59 0.69 0.75 0.38 0.19 0.60 

Sugar 0.50 0.57 0.68 0.53 0.57 0.44 0.88 0.22 0.69 0.47 -0.04 0.64 

N 0.62 0.44 0.60 0.64 0.54 0.45 0.93 0.46 0.71 0.61 0.00 0.24 

K 0.78 0.75 0.83 0.77 0.63 0.67 0.63 0.47 0.31 0.21 0.38 0.16 

P 0.71 0.69 0.85 0.68 0.71 0.71 0.64 0.71 0.93 0.59 0.43 -1.79 

S 0.66 0.64 0.73 0.63 0.58 0.68 0.85 0.77 0.99 0.66 0.46 -0.99 

Mg 0.70 0.72 0.78 0.54 0.49 0.72 0.82 0.22 0.82 0.42 -0.17 0.06 

Ca 0.89 0.79 0.83 0.74 0.62 0.72 0.52 0.48 0.77 0.15 -0.30 -0.08 

Na 0.85 0.75 0.74 0.74 0.71 0.62 0.80 0.41 0.83 0.46 0.05 0.07 

Mn 0.32 0.20 0.24 0.23 0.02 -0.01 0.82 0.92 0.98 0.01 0.08 0.12 

Zn 0.51 0.36 0.50 0.37 0.27 0.12 0.63 0.62 0.64 0.35 -0.36 0.53 

Fe 0.19 0.22 0.34 0.15 0.22 0.27 0.76 0.49 0.05 0.45 -0.56 0.07 

Mean 0.68 0.59 0.69 0.59 0.52 0.52 0.74 0.54 0.71 0.42 0.03 0.15 
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In experiment 2, Q2 values improved considerably for sugar, N, K, Mg, Na and 
Mn, whereas results improved only slightly for DMc, S and Zn. The mean Q2 
value was higher for the 2-sensor model than for separate sensors (compare 
Table 9.5 and 9.6). This indicates that the different parts of the spectra indeed 
contained additional information. 
 

9.3.4  Regression results of 2-sensor spectra combined with GC, GC and 
IRI or all GCG and GCS classes 

Including GC as variable (model A) did not further improve Q2 values much in 
experiment 1 and improved slightly in experiment 2 (Table 9.7). The 
predictions for experiment 2 further improved for both data sets when  
 
 

Table 9.6 Calibration and validation results for the 2-sensor PLS model. 

 Experiment 1 Experiment 2 

 Calibration (n=138) Validation (n=68) Calibration (n=37) Validation (n=21) 

 R2 RMSECV Q2 RMSEP R2 RMSECV Q2 RMSEP 

FM yield (t ha-1) 0.96 1.36 0.93 1.83 0.97 0.91 0.80 1.99 

DM yield (kg ha-1) 0.96 188 0.91 286 0.90 322 0.85 344 

Ash (g kg-1 DM) 0.80 4.7 0.55 6.4 0.51 8.5 0.47 8.3 

CF (g kg-1 DM) 0.63 7.8 0.31 10.8 0.56 8.9 0.28 8.6 

DMc (g kg-1 FM) 0.90 12 0.71 16 0.83 8 0.63 10 

Sugar (g kg-1 DM) 0.68 15 0.57 16 0.81 32 0.87 25 

N (g kg-1 DM) 0.74 2 0.64 3 0.84 3 0.77 4 

K (g kg-1 DM) 0.88 4.0 0.72 6.5 0.97 1.0 0.38 5.2 

P (g kg-1 DM) 0.89 0.4 0.85 0.4 0.66 0.4 -0.10 0.6 

S (g kg-1 DM) 0.79 0.5 0.68 0.6 0.93 0.4 0.72 0.8 

Mg (g kg-1 DM) 0.79 0.4 0.58 0.5 0.95 0.2 0.69 0.4 

Ca (g kg-1 DM) 0.89 1.5 0.77 1.9 0.87 0.7 0.15 1.3 

Na (g kg-1 DM) 0.89 0.3 0.78 0.4 0.91 0.5 0.64 0.8 

Mn (mg kg-1 DM) 0.39 42 0.24 44 0.87 14 0.35 27 

Zn (mg kg-1 DM) 0.61 9 0.20 14 0.77 4 0.62 6 

Fe (mg kg-1 DM) 0.41 17 0.33 21 0.55 29 0.43 36 

Mean 0.76  0.61  0.81  0.53  
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including both GC and IRI. The largest improvements, as expected, were found 
for FM and DM yields. Including all GCG and GCS variables did not further 
improve Q2, i.e. the extra information provided in model C when compared to 
model B did not compensate the decrease in degrees of freedom in the model. 
 

9.3.5  Best predictive models 

In general, Q2 values were highest for the model with GC and IRI included 
(model B, Table 9.7). It was, therefore, concluded that model B had the best 
overall performance. In Table 9.8, the RMSEP and Q2 of this model B can be 
found. This model performed reasonably well for most variables. The Q2 values  
 
 
 

Table 9.7 Validation Q2 results for the 2-sensor PLS model (2-SM) extended with ground cover 

(A), ground cover and index of reflection intensity (B) and GCG and GCS classes (C). 

 Experiment 1 Experiment 2 

Model 2-SM A B C 2-SM A B C 

FM yield 0.93 0.94 0.94 0.94 0.80 0.80 0.91 0.93 

DM yield 0.91 0.93 0.93 0.93 0.85 0.85 0.93 0.94 

Ash 0.55 0.52 0.53 0.58 0.47 0.65 0.76 0.47 

CF 0.31 0.19 0.36 0.35 0.28 0.46 0.57 0.41 

DMc 0.71 0.66 0.69 0.74 0.63 0.80 0.65 0.44 

Sugar 0.57 0.55 0.58 0.60 0.87 0.84 0.84 0.64 

N 0.64 0.64 0.67 0.69 0.77 0.91 0.80 0.79 

K 0.72 0.72 0.75 0.76 0.38 0.26 0.37 0.05 

P 0.85 0.85 0.82 0.85 -0.10 0.44 0.45 0.44 

S 0.68 0.66 0.67 0.72 0.72 0.80 0.82 0.64 

Mg 0.58 0.58 0.57 0.61 0.69 0.66 0.69 0.55 

Ca 0.77 0.81 0.84 0.83 0.15 0.28 0.09 0.03 

Na  0.78 0.78 0.78 0.75 0.64 0.56 0.58 0.66 

Mn  0.24 0.18 -0.01 -0.00 0.35 0.68 0.77 0.66 

Zn  0.20 0.17 0.14 0.12 0.62 0.63 0.65 0.08 

Fe  0.33 0.39 0.42 0.38 0.43 0.59 0.61 0.62 

Mean 0.61 0.60 0.61 0.62 0.53 0.64 0.66 0.52 
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for Ca in experiment 2 and Mn and Zn in experiment 1 were low. These 
variables had a poor predictability in all models (Table 9.5 and 9.7). The Q2 
values for DMc, sugar, N, S, Mg and Na were well above 0.5 in both 
experiments. The RMSEP of FM and DM yield were low with values of 1.64 t 
ha-1 FM and 268 kg ha-1 DM for experiment 1 and 1.44 t ha-1 FM and 235 kg 
ha-1 DM for experiment 2. The RMSEP includes the error of the reference 
method. Therefore, the RMSEP is by definition larger than the standard 
deviation of laboratory analysis. Although Q2 values of ash and CF were 0.53 
and 0.36 in experiment 1, RMSEP (6.46 and 10.4 g kg-1 DM for ash and CF) 
was only 1.6 and 2.2 times larger than standard deviation of laboratory analysis 
(3.93 and 4.64 g kg-1 DM for ash and CF, values of repeatability in Table 9.2 
divided by 2.8). The RMSEP of N was a factor 4-6 larger, S, Mg, Na and Fe 
were a factor 5-11 larger and K and P were a factor 11-17 larger. The ratio 
between standard deviation and RMSECV was larger than 3.5 for FM yield, 
DM yield and sugar content in experiments 1 and 2. This ratio was larger than 
2.5 for DMc, ash and S in experiments 1 and 2. In experiment 1, this ratio was 
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Figure 9.2 Measured values (on the x-axis) versus predicted values (on the y-axis) for experiment 1. 

The units can be found in Table 9.3. 
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lower than 2.5 for N, Na and Fe, whereas all other variables had a ratio above 
2.5. In experiment 2, only N and Na had a ratio larger than 2.5. In figures 9.2 
and 9.3, scatter plots are presented of model B with measured vs. predicted 
values of variables in experiments 1 and 2. In general, the predictions were 
reasonably well distributed around the 1:1 lines. This indicates that there was 
no discrepancy between the calibration and validation data sets, see also results 
of individual sensors in Table 9.5.  
 
 
 
 
 

Table 9.8 Measurement accuracy of fresh grass analysis in the field (SFG), Q2, root mean squared 

error of prediction (RMSEP) and the ratio between SD within the data set and root mean 

squared error of cross validation (RMSECV) for model B. 

 Experiment 1 Experiment 2 

 SFG Q2 RMSEP SD/RMSECV Q2 RMSEP SD/RMSECV

FM yield (t ha-1) - 0.94 1.64 10.4 0.91 1.44 4.5 

DM yield (kg ha-1) - 0.93 268 7.7 0.93 235 5.1 

Ash (g kg-1 DM) 4.2 0.53 6.46 2.9 0.76 5.84 2.5 

CF (g kg-1 DM) 5.3 0.36 10.4 4.6 0.57 8.36 2.2 

DMc (g kg-1 FM) * 0.69 16.8 9.8 0.65 9.6 2.7 

Sugar (g kg-1 DM) * 0.58 16.2 6.5 0.84 27.7 4.4 

N (g kg-1 DM) 1.0 0.67 2.4 1.4 0.80 3.4 4.0 

K (g kg-1 DM) 1.0 0.75 6.01 6.0 0.37 5.12 1.4 

P (g kg-1 DM) 0.11 0.82 0.50 5.3 0.45 0.62 2.4 

S (g kg-1 DM) * 0.67 0.66 3.3 0.82 0.70 2.7 

Mg (g kg-1 DM) 0.10 0.57 0.53 4.2 0.69 0.37 1.7 

Ca (g kg-1 DM) * 0.84 1.55 7.2 0.09 1.34 1.4 

Na (g kg-1 DM) 0.41 0.78 0.43 2.4 0.58 0.81 4.8 

Mn (mg kg-1 DM) * -0.01 50.8 4.2 0.77 16.0 1.4 

Zn (mg kg-1 DM) * 0.14 14.7 3.9 0.65 5.67 1.2 

Fe (mg kg-1 DM) * 0.42 19.5 1.4 0.61 29.3 2.4 

* No BLGG repeatability data available  
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Figure 9.3 Measured values (on the x-axis) versus predicted values (on the y-axis) for experiment 2. 

The units can be found in Table 9.3. 

 
 

9.3.6  Potential reduction in model errors for an example field 

Under the assumption that the ratio between RMSEPB / RMSEPM equaled 0.25 
with 10 replicate measurements for an example field in the Netherlands (Table 
9.9), SIS was smaller than SFG for ash, CF and N, whereas K, P, Mg and Na 
were slightly larger than SFG (compare Table 9.8 and 9.9). When the ratio 
between RMSEPB / RMSEPM was 0.5, the error for CF became also slightly 
larger than SFG. Although the spatial variation in the field considered was high 
(660 kg DM ha-1), the prediction error was low with 226 and 247 kg DM ha-1 
for a RMSEPB / RMSEPM ratio of 0.25 and 0.5 respectively. Increasing the  
number of observations to 25 may further reduce this error to 151-184 kg DM 
ha-1. For more homogeneous fields, e.g. with a standard deviation of 300 kg 
DM ha-1, this error may be reduced to 128-162 kg DM ha-1 for 10 observations, 
95-142 kg DM ha-1 for 25 observations and 80-134 kg DM ha-1 for 50 
observations.  
 



Imaging spectroscopy for grass sward management 

199 

Table 9.9 Potential RMSEP values (averaged over experiment 1 and 2) for imaging spectroscopy 

measurements in the field for two ratios (R) between RMSEPB and RMSEPM and three 

observation frequencies (N).  

 R = 0.25 R = 0.5 

 N=10 N=25 N=50 N=10 N=25 N=50 

FM yield (t ha-1) 1.69 1.11 0.83 1.80 1.29 1.06 

DM yield (kg ha-1) 226 151 116 247 184 158 

Ash (g kg-1 DM) 3.04 2.26 1.93 3.89 3.43 3.26 

CF (g kg-1 DM) 5.21 3.76 3.14 6.40 5.44 5.08 

DMc (g kg-1 DM) 6.1 4.6 4.0 8.0 7.2 6.9 

N (g kg-1 DM) 1.6 1.1 0.9 1.9 1.7 1.6 

K (g kg-1 DM) 2.41 1.87 1.65 3.27 2.98 2.89 

P (g kg-1 DM) 0.25 0.19 0.17 0.33 0.30 0.29 

Mg (g kg-1 DM) 0.19 0.15 0.13 0.26 0.24 0.23 

Ca (g kg-1 DM) 0.30 0.19 0.13 0.30 0.19 0.13 

Na (g kg-1 DM) 0.67 0.44 0.33 0.72 0.51 0.42 

 
 

9.3.7  PLS β coefficient weights 

There were broad spectral regions with high absolute values for PLS β 
coefficients (Figure 9.4, 9.5 and 9.6). For the 404-709 nm wavelength range, 
there were large differences in PLS β coefficient values between the 
experiments. For experiment 2, the patterns of the 404-709 nm wavelength 
range for N and DMc are similar, but mirrored with the abscissa. For DMc 
(Figure 9.5), weights were quite similar for the 960-1650 nm wavelength range 
in both experiments. The pattern of PLS β coefficients for DM yield was very 
irregular in experiment 1. For experiment 2, the higher (absolute) values were 
located at equivalent wavelengths as N concentration (Figure 9.4 and 9.6).  
 

9.4  Discussion and conclusion 

The partial least square models accurately predicted herbage mass, with a Q2 
value of 0.93. The mean prediction errors of the partial least square models for 
dry matter (DM) yield, using only spectral information from the wavelength 
range of 404-709 nm and 960-1650 nm, were 286 and 344 kg ha-1 for 
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respectively experiments 1 and 2. This error was further reduced to 268 and 235 
kg ha-1 for experiment 1 and 2 when including (image estimates of) ground 
cover (GC) and index of reflection intensity (IRI) in the models.  
The accurate predictions of herbage mass with only spectral information (Q2 = 
0.85-0.91) can be understood when considering the influence of canopy 
geometry, i.e. the horizontal and vertical arrangement of plant parts, on the 
measured reflection. Reflection intensity of leaf pixels is directly related to 
height in the canopy and leaf angle, as result of the specific characteristics of 
the imaging spectroscopy system (Schut et al., Chapter 2). Reflection curve 
characteristics, measured with the system, are directly related to reflection 
intensity (Schut & Ketelaars, Chapter 4). Schut & Van den Berg (Chapter 7) 
found that this relation differentiated clover (with more horizontally oriented 
leaves) from grass swards.  
The predictive power of spectra in the 404-709 nm wavelength range was 
higher than in the 960-1650nm range. Predictive power was poor for the 680-
970 nm wavelength range. The combination of 404-709 nm and 960-1650 nm 
spectra improved predictive power slightly, when compared to separate 
wavelength ranges. Including GC and IRI further improved predictive power. 
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Figure 9.4 Values for PLS beta coefficient for N concentration regression in experiments 1 (green 

line) and 2 (red line) for the combined sensor model. 
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Figure 9.5 Values for PLS beta coefficient for DM content regression in experiments 1 (green line) 

and 2 (red line) for the combined sensor model. 
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Figure 9.6 Values for PLS beta coefficient for DM yield regression in experiments 1 (green line) and 

2 (red line) for the combined sensor model. 
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Schut & Ketelaars (Chapter 3) found that GC was curvilinearly related to 
herbage mass, where sensitivity was highest at low amounts of herbage mass. 
The combination of GC and IRI was linearly related to herbage mass. Including 
GC and IRI improved predictions more than including GC only.  
The feeding value of fresh grass can be calculated with content estimates of N, 
DM content, ash, CF and sugar (Anonymous, 1998). The mean prediction 
errors for the best model in experiments 1 and 2 were: 2.4 and 3.4 g kg-1 DM N, 
16.8 and 9.6 g kg-1 FM DMc, 16.2 and 27.7 g kg-1 DM sugar, 6.46 and 5.84 g 
kg-1 DM ash and 10.4 and 8.36 g kg-1 DM CF. The mean prediction errors of 
the best model for experiment 1 and 2 were 6.0 and 5.1 g kg-1 DM K, 0.5 and 
0.6 g kg-1 DM P, 0.7 and 0.7 g kg-1 DM S, 0.5 and 0.4 g kg-1 DM Mg, 0.4 and 
0.8 g kg-1 DM Na and 19.5 and 29.3 mg kg-1 DM Fe. Predictions of Ca, Mn and 
Zn were poor. This predictive power resulted mainly from reflectance in the 
404-709 nm wavelength range. The ratio between standard deviation in the data 
set and RMSECV of sugar was larger than 3.5 in experiments 1 and 2. This 
ratio was larger than 2.5 for ash, DMc and S in both experiments, and larger 
than 2.5 for N, K, P, Mg, Na in either experiment 1 or 2. Obviously, this ratio 
depends strongly on the variation within the data set. A ratio above 3.5 
indicates that the calibrations can be used for quantitative analysis and a ratio 
above 2.5 indicates that the calibrations can be used for qualitative analysis 
(Sinnaeve et al., 1994; Park et al., 1998). It is concluded that calibrations of 
sugar allow quantitative analysis and calibrations of ash, DMc, N, K, P, S, Mg 
and Na allow qualitative analysis.  
The predictability of nutrient contents can be understood when considering the 
accurate predictions of NIRS on undried grass silage (Sinnaeve et al., 1994; 
Park et al., 1998) and the strong correlations found with other variables such as 
DM yield and N concentration. These strong correlations originate from the 
dilution of nutrients when DM accumulates (Greenwood et al., 1990; Lemaire 
et al., 1989; Peeters & Van Bol, 1993). Prummel (1973), Hopkins et al. (1994) 
& McKenzie & Jacobs (2002) showed that N supply also affects nutrient 
concentration. Many authors found strong relations between reflectance and N 
supply at the leaf and canopy scale (Blackmer et al., 1996; Daughtry et al., 
2000; Ercoli et al., 1993; Everitt et al., 1985; Pinar & Curran, 1996; Schepers et 
al., 1996). Concentrations of Mg, Zn, Fe and Mn are also closely related to 
chlorophyll content and leaf reflectance (Adams et al., 2000a; b; Mariotti et al., 
1996; Milton et al., 1991; Gáborcík et al., 2000). Gausman et al. (1973) & 
Graeff et al. (2001) found that with specific wavelength ranges deficiencies of 
N, Mg, Fe, P and S can be identified from leaf reflectance.  
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It is, therefore, concluded that the high predictability of nutrient concentrations 
were most likely the result of interactions between these nutrients and DM 
yield, DM content, N concentration and canopy geometry. Nevertheless, the Q2 
values of FM and DM yield, and contents of DM, ash, CF, sugar, N, K, P, S, 
Mg, Na and Fe allowed robust predictions in both experiments, in contrast to 
Mn, Zn and Ca.  
In this study, there were no wavelength regions identified of particular 
importance for the prediction of a single variable. There were spectral regions 
with stronger positive or negative values for the estimated PLS coefficients, but 
the weights and locations of these regions differed between experiments and 
between DM yield, DM content and N concentration. Seasholtz & Kowalski 
(1990) concluded that ambiguities exist in the β coefficients of the PLS model 
as a result of interference with multiple absorbing constituents. Therefore, 
multiple spectral regions are required for the PLS model in order to extract the 
response of a single variable from the matrix of all variables that affect leaf 
reflectance.  
It was calculated that with replicate measurements, the accuracy of imaging 
spectroscopy for field application considerably improved. Replicate 
measurements average out the random error component of the predictions, 
whereas the model bias does not change. Van der Voet (personal 
communication) found that the model bias contributed a fraction of 0.03 to 0.3 
to the total model error. The amount of noise in the spectra recorded with the 
experimental system is likely to be larger than in spectra recorded with 
instruments under controlled laboratory conditions. Smoothing of the spectral 
data (with cubic splines) hardly changed the results (mean Q2 value deviation 
between smoothed spectra and raw spectra of 0.008 and 0.005 in experiment 1 
and 2 respectively). It is, therefore, unlikely that spectral noise is an important 
factor for the analysis in this paper. Under the assumption that this model bias 
contributed an intermediate (0.25) and high (0.5) fraction to the total model 
error, it was shown that capability of replicate measurements within one field 
reduced prediction error strongly. Increasing the number of measurements 
reduces prediction error stronger when model bias is low. It was calculated for 
a specific field that imaging spectroscopy with a low fraction of model bias and 
50 replicate measurements was more accurate for ash, CF, N and Na than 
laboratory analysis of a single, composite fresh grass sample. Laboratory 
analysis was more accurate for K, P and Mg. Economic considerations limit the 
laboratory analysis of fresh grass to one composite sample per field. Therefore, 
large spatial variability will considerably decrease accuracy of laboratory 
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determination. Imaging spectroscopy does not have this disadvantage as the 
number of observations can be expanded without additional cost for analysis.  
Nutrient concentrations are considered sufficient for both grass and animal 
production when above 25 g kg-1 DM K, 3 g kg-1 DM P and 2 g kg-1 DM for 
Na, Mg and S (Anonymous, 1999; Bakker et al., 2000). The difference between 
these thresholds and the 2001 nutrient means in fresh grass (measured by 
BLGG) equaled 1.8 and 2.1, 2.6 and 2.1, 3.2 and 3.0, 1.1 and 1.6 and 0.9 and 
0.5 times RMSEP for K, P, S, Mg and Na in experiment 1 and 2 respectively. 
These distances increased with 50 observations and low model bias to 6.7, 7.6, 
2.3 and 1.2 times RMSEP for K, P, Mg and Na respectively. It is concluded that 
for practical purposes with replicate measurements the accuracy for K, P and 
Mg permits, therefore, identification of deficiency levels, in contrast to Na.  
The required accuracy of DM yield predictions for fertilisation and planning 
practices on the farm amounts to 10% (mean deviation from the actual yield) 
(Sanderson et al., 2001; Lokhorst & Kasper, 2001). The mean prediction error 
found for DM assessment (<270 kg DM ha-1) is promising for development of 
on-farm applications, especially when considering that these errors may be 
strongly reduced. With 25 replicate measurements within one field, the error 
could be reduced to 151-184 kg DM ha-1 for fields with a standard deviation of 
660 kg DM ha-1 and 95-142 kg DM ha-1 for fields with a standard deviation of 
300 kg DM ha-1. These results are an improvement over other, currently 
available non-destructive methods. Gabriels & Van den Berg (1993) reported a 
residual standard error of about 450 kg DM ha-1 at 1600 kg DM yield for a 
combination of the capacitance probe and rising plate meter in Lolium perenne 
L. swards, while errors further increased at higher DM yields. Harmoney et al. 
(1997), Sanderson et al. (2001) & Virkajärvi (1999) found an even lower 
accuracy for various methods.  
It is concluded that imaging spectroscopy provides robust and accurate means 
for assessment of DM yield and feeding quality of standing grass. The potential 
assessment accuracy with replicate measurements in the field of crude fiber and 
ash content, N and Na concentration in the field is satisfactory. The accuracy of 
K, P, S and Mg allows identification of nutrient deficiency. This opens up new 
means for improvement of grassland management and fine-tuning of rations of 
dairy cattle in the grazing season. The data sets were obtained from experiments 
with only Lolium perenne L., without grazing. Therefore, the methodology 
requires further testing under field conditions, including a range of grass 
species and management practices. 
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10. General discussion 
In this Chapter, the results from the previous Chapters will be evaluated and 
discussed. Some general conclusions are drawn relating to the objectives stated 
in the general introduction concerning system design and operation (10.1), 
information from imaging spectroscopy (10.2) and imaging spectroscopy in 
grass swards (10.3). In section 10.4 perspectives of imaging spectroscopy and 
recommendations for field-based systems are discussed. 
 
 

10.1  System design and operation 

The system for imaging spectroscopy designed operates within the 405-1659 
nm range, with spectral resolutions between 5 and 13 nm and spatial resolutions 
ranging from 0.28 - 1.45 mm2 at soil level. This spectral range was chosen to 
include various absorption features responsive to changes in pigment and O-H, 
C-H or N-H bonds. The combination of dispersing elements with charge 
coupled devices (CCD), allowed instantaneous measurements in combination 
with high spatial and high spectral resolution with a large number of spectral 
bands (Herrala and Okkonen, 1996). 
The system design was strongly determined by the high irradiation requirements 
of the sensors. Therefore, light-sources in combination with bar lenses and 
nadir illumination were used, positioned relatively close to the crop for 
adequate irradiation levels. The small angle between projected light and 
reflected light that was detected by the system determined that the system 
records reflection in the hotspot. 
 

Spatial resolution 

In most periods of the growing season, ground cover of grass swards is 
incomplete (Chapter 2; Alberda, 1968). Therefore, remote sensing applications 
with a low resolution contain pixels of grass swards that are a mixture of soil, 
grass leaves and dead material. In the described imaging spectroscopy system, 
pixel width is much smaller than leaf width of Lolium perenne L., strongly 
reducing the number of pixels affected by background characteristics (dead 
material in the sward and soil). As shown in Appendix I, increasing pixel width 
(lowering spatial resolution) not only increased background influence, but also 
altered various spectral characteristics. The amplitude of this effect depended 
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on the width of the pixels on the image line, wavelength and background 
characteristics. The effects of pixel width were larger for stressed swards than 
for control swards. 
 

Classification procedure 

In Chapter 2, thresholds were defined for identification of classes 
differentiating soil, dead material and green material with and without specular 
reflection. Based on the spectral characteristic, grass could be easily 
distinguished from soil and dead material by simple thresholds and ratios. 
Pixels were further subdivided into intensity classes. The distribution of pixels 
over these intensity classes differentiated images of a production sward from 
sports-field images. The fraction of pixels in intensity classes with high 
reflection intensity, which is called the index of reflection intensity (IRI), 
responded to vertical sward geometry. There were no improvements in the 
predictions of the variables studied in Chapter 9 when including cover fractions 
of all intensity classes when compared to including only GC and IRI. 
Therefore, it is concluded that IRI described most of the relevant information 
present in the distribution of pixels over intensity classes. It must be noted that 
IRI is sensitive to the choice of intensity class boundaries. Another approach 
would be to functionally characterise the distribution of pixel reflection 
intensity in a specific spectral band within image lines, without prior 
classification, but this possibility was not further investigated. 
The classification procedure with simple thresholds and ratios resulted in 
satisfactory classification results, although pixels with erroneous spectra were 
not excluded. These erroneous pixel spectra can strongly influence the mean 
spectral curve of a sward. Therefore, maximum likelihood procedures were 
used, selecting spectra within explicit ranges of acceptance. 
 

Sampling pattern 

One of the objectives of this thesis was to characterise grass swards. A 
sampling scheme per mini sward was chosen in order to record representative 
figures and reduce sampling time and disk space. The choice of this sampling 
scheme was to a certain extent arbitrarily. However, the outer 10 cm from each 
mini sward was excluded from the sampling scheme, in order to minimise 
biased observations arising from side effects. Image lines were recorded from 
the inner part (50 cm wide and 70 cm long) of mini swards in a regular pattern, 
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with 5 cm distance between image lines. Recordings were made in three lanes, 
resulting in 42 image lines per mini sward. This sampling pattern excluded a 
full hyperspectral analysis in 2 spatial dimensions. In Appendix I, it is shown 
that the inaccuracy resulting from the sampling scheme was limited for dense 
swards, when compared to adjacent image lines. This inaccuracy was larger for 
heterogeneous swards. 
It is important to consider that the choice of sampling pattern definitely 
influenced the heterogeneity measures described, although repeatability of GC 
estimates was high with a coefficient of variance of 1.9% for GC (Appendix I). 
 

System characteristics 

Reflection intensity increased with leaf height position in the canopy, resulting 
from the combination of distance and the effects of a slightly diverging light 
beam (Chapter 2). With this feature, images of a production sward could be 
easily distinguished from images of sports-field swards. Reflection intensity 
was also strongly affected by leaf angle. Body reflection of nearly vertical 
leaves is a factor 4 lower when compared to horizontal leaves. The intertwined 
effects of leaf angle, irradiation-level and leaf height position in the canopy 
required a large dynamic range of the camera. Unfortunately, the peaky pattern 
of (xenon) light sources consumed part of the available dynamic range. This 
resulted in limited sensor sensitivity, which affected various image parameters. 
The resulting variation in reflection masked intrinsic spectral differences 
between leaves. Normalisation, taking ratios at pre-defined wavelengths, was 
expected to remove most of this intensity variation. Polder et al. (2002) 
described a colour-constancy method, i.e. taking ratios of the sum of the 
complete spectrum per sensor. This method and e.g. base-line correction could 
not be used, due to limitations in dynamic range of the sensors i.e. there was not 
sufficient signal at all wavelengths in “dark” pixels. Therefore, ratios were 
taken at wavelengths with high reflectance that were minimally affected by 
absorption features. 
 

Error sources in imaging spectrometry systems 

Jørgensen (2002) identified and summarized a large number of potential error 
sources with imaging spectroscopy systems. The most important error sources 
were related to distortions in the horizontal and vertical direction of the image 
and noise. Therefore, neighboring pixels have effect on the spectral information 
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of the pixel under consideration. The influence of this image-distortion is 
expected to be relatively small, as spectral information was averaged over a 
large number of pixels on various image line positions. These image-distortions 
become important when considering spectra of single pixels, and appropriate 
calibrations should be performed with regard to x and y location on the CCD 
(Jørgensen, 2002; Polder & Van der Heijden, 2001). The approach of 
Borregaard et al. (2000), of using only spectra of those pixels at the centre of 
leaves, may decrease the importance of this error source. 
 
 

10.2  Information from imaging spectroscopy 

From our experimental imaging spectroscopy system, we had 4 different types 
of information available: ground cover, reflection intensity, spectra and image 
texture. Spectral information was available per intensity class. Texture was 
quantified on the scale of an image line and on the scale of a mini sward. Due 
to the sampling scheme used, resulting in collections of image lines rather than 
images, object shape could not be used as information source. Various 
parameters were identified to quantify these information sources (Table 10.1). 
 

GC and IRI  

Variation in crop density is reflected in GC and IRI. The GC estimated from 
images was an underestimation of the visually estimated GC. In the lower GC 
range, this was probably due to the overestimation of the fraction of dead 
material, and in the higher range due to limited exposure times when the 
camera was light saturated. The IRI strongly responded to changes in leaf angle 
and crop height. 
 

Texture 

In this thesis, texture analysis was limited to sequences of parameter-values 
within and between image lines. This resulted in transects with various 
sampling patterns and frequencies. Transects were quantified in terms of 
correlation between spatially separated pixels with a defined distance and 
wavelet entropy of reflection intensity. Wavelet entropy is defined as Shannon 
entropy of the relative wavelet energy distribution over various wavelet  
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Table 10.1  Identified and studied image parameters. 

Parameter description Abbreviation Unit Chapter 

------------------------------------------------------ground cover---------------------------------------------------------

Ground cover of green material GC % 2-9 

Ground cover ith intensity class GCGI / GCSI % 2 

Ground cover dead material GCD % 2, 8 

Logistically transformed GC TGC -/- 4, 5, 6, 8 

--------------------------------------------------reflection intensity------------------------------------------------------

Mean sward reflection in n bands MSS % 2-9 

Mean sward reflection in n bands per intensity class MICS % 2-7 

Index of reflection intensity IRI % 2-9 

----------------------------------------------------------texture------------------------------------------------------------

GC-Spatial standard deviation GC-SSD % 4, 5, 6, 8 

TGC-Spatial standard deviation TGC-SSD -/- 4, 5, 6, 8 

GC-wavelet entropy GC-WE -/- 8 

Image line - wavelet entropy IL-WE -/- 7 

Correlation between pixel reflection intensity within 

an image line 

IL-corr -/- 7 

Cover of continuous green area with minimum width IL-filter % 7 

--------------------------------------------------spectra characteristics--------------------------------------------------

Half height position on blue, green and red edge BE, GE, RE nm 4, 5 

Ratio between red and blue reflectance R / B -/- 5 

Slope of relation between intensity class and edge 

position 

b Class nm-1 5, 7 

Position of minimum or maximum derivatives i nm 6 

Slope at position of minimum or maximum 

derivatives 

d i nm 6 

 
 
frequencies (Rosso et al. 2001). Sequences in reflection intensity within image 
lines are related to leaf-orientation and leaf-size, and can be used to quantify 
canopy types (grass, clover and mixtures of grass and clover). Sequences of 
image line GC were used to quantify patchiness. GC values are bounded 
between zero and one hundred with low variation at both low and high crop 



General discussion 

211 

densities, masking variation in plant and tiller density. Therefore, values of 
GC / (1 - GC) were logarithmically transformed in order to increase variation at 
high and low GC values. 
 

Spectral information 

In the recent past, understanding of the effect of cellular arrangement, water- 
and pigment content on leaf reflectance has resulted in accurate reflectance 
models (Jacquemoud et al., 1996; Maier et al., 1999). These models do not 
include pigments other than chlorophyll and require information about leaf 
structure. Fourty (1996) found that leaf optical properties of dry leaves may be 
modeled from explicit description of leaf biochemistry with sugar, cellulose and 
hemicellulose as main components. The effects of leaf dry matter components 
and leaf water content were, however, less clear for fresh leaves (Baret & 
Fourty, 1997).  
Information from the spectral curves available was described with various 
methods. Spectral bands were recombined with principal component analysis 
and partial least squares, including all spectral bands available in the analysis. 
These approaches are statistical by nature, and require relatively large data sets 
as reference to understand parameter responses.  
The spectral edges (BE, GE and RE) were defined as the wavelength at which 
reflection is equal to a predefined fraction of the difference between the 
minimum and maximum reflection of the edge. This provided a robust estimate 
of edge position, responsive to changes at both minimum and maximum, and 
the curvature of the edge. In literature, various methods are described for 
characterising reflection curves, such as fitting functions to edge regions and 
calculation of derivatives or indices. Fitting a Gaussian function to the edge 
region is limited to edges with a more or less Gaussian shape (Bonham-Carter, 
1988). Obviously, this approach is suitable for the BE and RE, but not for the 
GE. Polynomials (e.g. cubic splines) do not have this limitation (Railyan & 
Korobov, 1993). Horler et al. (1983) used derivative analysis to characterise 
spectral changes in the red edge region. In Chapter 6, derivative analysis was 
used on MSS (transformed with cubic splines) to quantify changes in spectral 
characteristics. It was found that position of minimum and maximum 
derivatives depends on the degree of smoothing, agreeing with Rollin & Milton 
(1998). The half-height red edge and maximum derivative at the red edge were 
closely correlated (r=0.95, Table 10.2). The relative low correlation coefficients 
between BE, GE and RE (and also between λ517, λ570, and λ705) indicate that 
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these spectral regions contain different information. In Chapter 6, it was found 
that response of λ570 and λ705 was very different under severe drought stress, 
where λ705 increased and λ570 decreased. The edge half-height is closely related 
to the position of maximum derivatives with correlation values of 0.89, 0.80 
and 0.95 for the BE, GE and RE respectively. The CAW is slightly stronger 
affected by GE than RE, whereas the difference between λ705 and λ570 is 
stronger affected by λ705 than λ570. 
There exists a strong relation between spectral characteristics and reflection 
intensity (i.e. intensity classes) in data recorded with the experimental system 
(Chapter 4, 5 and 7). Leaf angle distribution was probably the most important 
factor affecting this relation, reinforced by system specific limitations in 
dynamic range. This is illustrated by the clear differences in the relation 
between spectral characteristics and reflection intensity between grass and 
clover swards with contrasting leaf angle distributions and the strong response 
to the circadian rhythm of cloverleaf opening and closure (Chapter 7).  
The ratio between reflection at red and blue wavelengths responded to leaf 
angle and nitrogen supply (Chapter 5). Combinations of this ratio, the relation 
between reflection intensity and edge position, and CAW may be useful to 
separate effects of leaf angle from pigment concentration. 
 
 
 
 

Table 10.2 Correlation coefficients between spectral parameters of edge half-height (BE, GE, RE) 

and position of minimum or maximum derivatives (λ517, λ570, λ705) at these edges of mean 

sward spectra recorded just before harvest in the drought- and nitrogen experiments in 

2000 and 2001. 

 BE GE RE λ517 λ570 λ705 CAW 

GE -0.47       

RE 0.56 -0.49      

λ517 0.89 -0.77 0.62     

λ570 -0.18 0.80 -0.45 -0.55    

λ705 0.54 -0.51 0.95 0.61 -0.51   

CAW 0.58 -0.93 0.78 0.82 -0.77 0.78  

λ705-λ570 0.50 -0.65 0.91 0.66 -0.70 0.97 0.86 
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10.3  Imaging spectroscopy in grass swards 

Light interception 

In grass swards, GC was strongly related to light interception (for dense 
swards: R2

adj=0.87-0.94). The relation between GC and light interception was a 
function of cloudiness, linear under a cloudy sky and more logistic under a 
clear sky. Haverkort et al. (1991) found a linear relationship between GC and 
LI for potatoes, whereas Van der Zaag (1984) described a non-linear relation. 
Van Delden (2001) argued that for potatoes, light interception was non-linearly 
related to GC and that ‘this non-linearity can be explained by clustering of the 
leaves’. It must be noted that these authors did not differentiate between 
recordings at cloudy and clear sky conditions. 
The parameters in the relations between GC and light interception under clear 
and cloudy sky conditions differed for heterogeneous and homogeneous 
swards. At similar GC values, heterogeneous swards had a lower light 
interception than homogeneous swards under clear sky conditions. Under a 
cloudy sky, heterogeneous swards intercepted more light than homogeneous 
swards when GC was below 55% and less when above 55%. This may be 
understood when considering that swards are taller within a patch in 
heterogeneous swards than in homogeneous swards at similar GC values. When 
considering multiple angles of incident light, occurring under a cloudy sky, 
taller swards may compensate for the fraction of light that falls on bare soil. 
The total leaf surface exposed to sunlight may then be larger for heterogeneous 
swards than for homogeneous swards in the lower GC range, i.e. it is less 
important where leaf elements are located. Goudriaan & Van Laar (1994) 
proposed a clustering factor that lowers the extinction coefficient in the relation 
between LAI and light interception. This clustering factor should, therefore, 
also depend on the directional distribution of the radiation reaching the crop.  
 

Horizontal sward structure and canopy geometry 

The canopy structure is defined as the distribution and arrangement of the 
above ground plant parts within a plant community (Davies et al., 1993). Laca 
& Lemaire (2000) distinguished horizontal and vertical sward structure. The 
horizontal sward structure was described with GC and the spatial distribution of 
GC. The vertical sward structure was partly described with IRI, although IRI 
responded primarily to height position and orientation of the top leaf layer. 
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Therefore, it is more appropriate to relate IRI to canopy geometry rather than to 
vertical sward structure. 
The LAI is most commonly used to describe the horizontal and vertical sward 
structure (Laca & Lemaire, 2000; Denison & Russotti, 1997). Alternatively, 
relations between GC, IRI and LAI can be used. The LAI was curvilinearly 
related to GC (R2

adj =0.88), limiting reliability of LAI estimates in the higher 
LAI range. The relation between logarithmically transformed LAI and GC, IRI 
and LAR was linear and slightly stronger (R2

adj =0.91). Combining multiple 
viewing angles may further improve LAI estimates (Laca & Lemaire, 2000 and 
references therein). 
 

Growth monitoring 

It was found that the GC was a very sensitive parameter for monitoring growth 
under various conditions, GC differentiated mini swards in initial status, growth 
and growth rate. The sensitivity of GC for growth monitoring may be illustrated 
with stressed swards: drought stress decreased GC ‘growth rate’ even before 
changes in leaf water content were noticeable (Figure 6.2). Another example is 
the steady increase in GC at consecutive measurements and the similar changes 
in GC growth rate for various treatments in response to weather changes 
(Figures 3.7, 4.1, 5.1 and 8.4).  
Seasonal mean ground cover was strongly related (R2

adj=0.77, Figure 8.2) to 
seasonal dry matter yield (SDM). These seasonal mean GC values were similar 
to data from Alberda (1968). An increase of 1% GC raised SDM with 0.31 t 
DM ha-1, corresponding with a value that can be expected (0.33 t DM ha-1 per 
percent GC increase) from an increase in light interception. 
Within a growing period, IRI values strongly increased when GC values were 
above 60% for homogeneous swards (Figure 3.11). Therefore, IRI values could 
be used to monitor and differentiate mini sward in the higher DM yield range. 
Seasonal mean IRI was strongly related to seasonal dry matter yield. Even more 
variation was explained when combining seasonal means of GC and IRI 
(R2

adj=0.89-0.93). Therefore, it is concluded that GC and IRI contain additive 
information about the process of biomass accumulation. 
 

Dry matter yield 

Obviously, the relation between dry matter yield and GC had a curvilinear 
nature (R2

adj = 0.82-0.91, Chapter 3 and Appendix II). It was concluded that IRI 
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is sensitive to lodging (Appendix II). Combining GC and IRI yielded stronger 
relations with DM yield (R2

adj = 0.82-0.95, Chapter 2, 4 and Appendix II). 
The mean deviation from the regression line equalled 305-340 kg DM (within 
the range of 292-4075 kg DM ha-1). Mean sward spectra from the V7 and N17 
sensors also contained information about DM yield (Chapter 9). In the 
validation sets, mean errors of prediction for the sward damage and nitrogen 
experiment in 2000 were 286 - 344 kg DM ha-1. Combining spectral 
information with GC and IRI further reduced these prediction errors to 235 - 
268 kg DM ha-1.  
These prediction errors were much smaller than the errors in the relation 
between DM yield and crop height or Cropscan NDVI and WDVI. The 
discriminating ability of NDVI is severely limited above 1800-2000 kg 
DM ha-1. The WDVI and crop height were linearly related to DM yield, but a 
large amount of variation remained unexplained (Appendix II; King et al. 1986; 
Lokhorst & Kasper, 2001). Including all available Cropscan bands in the 
regression equations increased the amount of explained variation, although 
even more variation was explained with the experimental imaging spectroscopy 
system.  
The required accuracy of DM yield predictions for fertilization and planning 
practices on the farm is about 10% (mean deviation from the actual yield) 
(Sanderson et al., 2001; Lokhorst & Kasper, 2001). The mean prediction error 
found for yield assessment is promising for development of on-farm 
applications, especially when considering that these errors may be reduced by 
27 to 40% with 25 replicate observations. These results are an improvement 
over other, currently available non-destructive methods such as rising plate 
meter or capacitance probe (Gabriels & Van den Berg, 1993; Harmoney et al., 
1997; Murphy et al., 1995; Sanderson et al., 2001; Stockdale & Kelly, 1984; 
Virkajärvi, 1999). 
 

Sward spatial heterogeneity 

Sward heterogeneity was studied for three types of swards: (dense) control 
swards, artificially damaged swards, and naturally damaged swards. These 
groups differed significantly in mean tiller density and in spatial variation of 
tiller density and light interception. This spatial heterogeneity was also present 
in the images, although image heterogeneity faded during growth. This means 
that growth stage or GC has to be taken in consideration for interpretation of 
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image heterogeneity measures (Figure 8.8). Both spatial GC-SSD and patterns 
in GC estimates were stronger for damaged swards than for control swards.  
Calculating seasonal means over intervals after harvest of GC-SSD and TGC-
SSD significantly differentiated damaged from control swards. The 
heterogeneity measures were found to be insensitive for the short term effects 
of drought- and nitrogen stress, as GC-SSD and TGC-SSD in these experiments 
were comparable to the values for CS in the sward damage experiment and 
nitrogen treatments were not different in GC-SSD and TGC-SSD (Chapter 4, 5 
and 6). 
Ground cover transects of highly yielding swards had a lower wavelet entropy 
than transects of poorly yielding swards. This indicates that the GC variation 
present was distributed over more wavelet frequencies (read scales) in low 
yielding swards than in high yielding swards. It must be noted that there is a 
strong resemblance between the GC wavelet entropy derived from images and 
the tiller absence frequency distribution over core samples of various sizes 
(Neuteboom et al., 1992), as both methods quantify differences in tiller density 
over multiple scales.  
In this thesis, seasonal dry matter yield (SDM) was used as quantitative 
measure of sward quality. As mentioned above, a combination of seasonal 
mean GC and IRI explained more variation in SDM than heterogeneity 
parameters. However, values of SDM and seasonal mean GC and IRI are 
expected to be sensitive to sward management such as grazing, cutting 
frequency and nutrient application level, in contrast to spatial heterogeneity 
measures. Although spatial GC heterogeneity was related to SDM (R2 =0.59-
0.71), discriminating power of this relationship was unsatisfactory with 
standard errors of observations between 1.1 and 1.3 ton DM ha-1 yr-1. 
Alternatively, assessment of sward quality with seasonal means of GC and IRI 
can be done with a reference, i.e. an estimate of optimal seasonal mean values 
of GC and IRI for the given sward management. This reference may be derived 
from the best field on a farm, from the best location within a field or from 
accurate predictions of yield potential by grass growth models. 
 

Detection of nitrogen deficiency 

Nitrogen treatments differed in evolution of GC, IRI and spectral 
characteristics. The dynamics of edges (BE, GE and RE) at limited N supply 
differed from those at liberal N supply, agreeing with Blackmer et al. (1994), 
Schepers et al. (1996) and Masoni et al. (1997). The CAW at limited N supply 
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decreased in the second half of the growth period, in contrast to liberal N 
supply. The CAW was strongly exponentially related to relative dry matter 
yield at harvest (R2=0.95, Chapter 5). The data points of the second harvests of 
the 2001 N experiment fitted well within this relationship, with relative yields 
of 20, 55 and 81% and a CAW of 116.4, 127.7 and 130.0 nm. The relative 
yields in the first harvest of 2001 were relatively low when compared to their 
CAW value (21.9, 41.2, 73.3% with a CAW of 100.1, 118.1, 125.8 nm for low, 
intermediate and high N supply respectively). This was probably due to N 
deficiency of the highest N supply treatment (Chapter 6), as indicated by low 
CAW values, low N contents in harvested material and low mineral N contents 
of the soil after harvest. 
The differences in CAW were small under near optimal N supply. Higher N 
supply treatments (60, 90 and 120 kg N ha-1) could, therefore, not be separated 
from each other for all growth periods. The relation between N supply and 
chlorophyll (Chl) concentration has a curvilinear character (Wood et al., 1992; 
Kantety et al., 1996) and reflection decreases asymptotically with increasing 
Chl (Everitt et al., 1985; Boochs et al., 1990; Ercoli et al., 1993; Schepers et 
al., 1996). Gitelson et al. (1996) found that ‘variation of inflection point 
position with change in chlorophyll content was small for yellow-green to dark 
green leaves’. Therefore, identification of near-optimally N-fertilised swards 
with leaf reflectance alone remains difficult.  
The relative DM yield was also strongly related to principal components of 
mean sward spectra. However, principal components were also strongly related 
to DM yield and N concentration. This intertwined response of principal 
components to DM yield, N concentration and leaf colour made interpretation 
difficult. Therefore, detection of N stressed swards under a range of harvesting 
frequencies requires extensive calibration and validation in order to correct for 
differences in DM yield, related to the length of the growth period rather than N 
deficiency. 
Horizontally oriented leaves had lower CAW values than vertically oriented 
leaves (Chapter 5). CAW values increased slightly after harvesting at 16 cm 
above the soil, resulting in a larger fraction of vertical canopy elements 
becoming visible (Chapter 5). The decrease in CAW in the second half of the 
growth period resulted, therefore, from an intertwined response of changes in 
leaf angle and leaf color, although the strongest changes in leaf angle (due to 
lodging, see Appendix II) occurred under high N supply where decrease in 
CAW was smaller than at low N supply. Discriminating power of reflectance 
measurements may, therefore, be improved when combining red/blue ratio, 
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slope of the relation between reflection intensity and edge position, and CAW 
in order to separate effects of leaf angle from effects of pigment concentration. 
 

Detection of drought stress 

Drought stress became first visible in retarded GC development. Within a 
growth period, all absorption features visible in reflectance spectra between 
400-1650 nm deepened and widened in unstressed swards. Under drought 
stress, all absorption features became shallower and narrower again (Chapter 6, 
Ripple, 1986; Bowman, 1989; Inoue et al., 1993; Penuelas & Inoue, 1999). 
Water absorption features (with maximum light absorption near 970, 1200 and 
1450 nm) responded earlier to drought stress than absorption features in the 
visible wavelength range, agreeing with Carter (1991, 1993). From the moment 
that leaf DM content of drought-stressed swards deviated from unstressed 
swards, also inflection points near 960, 990, 1140, 1390 and 1500 nm differed 
significantly.  
Moderate drought stress did not change the position of inflection points in the 
green and red wavelength ranges, in contrast to the slope near these inflection 
points, agreeing with data of Penuelas et al. (1994). These absorption features 
did respond at more advanced stages of drought when GC already decreased. 
This was probably due to chlorophyll breakdown and decreased light absorption 
of chlorophyll (Carter, 1991). Drought stress accelerated the increase of IP 
position near 705 nm up to harvest (Chapter 6; Penuelas et al., 1993; Horler et 
al. 1983). Horler et al. (1983) discussed that this shift might result from 
changes in internal leaf structure.  
In presence of a control, drought stress can be identified by means of 
comparison of GC and IP position. With repeated measurements in time, the 
reversed shift of IP position can identify drought-stressed swards. The IP 
position showed a clear evolution during unstressed growth. Therefore, growth 
stage should be taken into consideration when interpreting IP positions without 
a control. The relation between the IP position near 705 and 1390 nm provided 
such a growth stage reference, and with this relation, unstressed swards shortly 
after harvest can be differentiated from drought-stressed swards in a later 
growth stage. 
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Estimation of clover content in swards with white clover and grass 

Mixed swards have a patchy character, where both grass and white clover 
dominated patches oscillate (Schulte, 2001), resulting from delayed N transfer 
(Loiseau et al., 2001). For an estimate of white clover content in mixed swards, 
it is probably sufficient to count the area in a limited number of classes e.g. 
clover and grass dominated patches and mixed patches.  
Separation of white clover from grass swards based on spectral characteristics 
was unsuccessful. Pixel spectra were highly variable, even within single 
intensity classes where variations in leaf angle are limited. Zwiggelaar (1998) 
argued that combinations of a number of wavelengths can reduce this 
variability, but then results might not be robust in time or in space. Differences 
in characteristics of the mean sward spectra occurred between grass and clover. 
Unfortunately, these differences varied in time and responded to nutrient 
supply. 
The relation between reflection intensity and (GE) edge position was clearly 
different for grass and clover swards. This relation changed remarkably for 
white clover swards when leaves folded, due to the circadian rhythm of leaf 
opening and closure (Baker & Williams, 1987). In Chapter 5 it is concluded 
that leaf angle is the most important factor in the relation between edge position 
and reflection intensity. 
Alternatively, image line texture can be used to identify white clover and grass 
dominated patches. Grass and white clover swards were successfully 
discriminated by correlation of reflection intensity of distant pixels, a filter and 
wavelet entropy. Estimates of clover content within a mixture varied within a 
growing period, as clover leaves dominate shortly after cutting and grass leaves 
in the second half of the growth period. Amongst the three methods studied, the 
wavelet entropy method was least sensitive to temporal changes in canopy 
geometry. Bradshaw & Spies (1992) showed that different canopy types had 
different patterns of wavelet variance. Therefore, it was expected that specific 
wavelet scales could be used to uniquely identify specific leaf types. The results 
show that, in general, there is a clear difference between grass and clover, but 
that no specific wavelet scale dominates. This means that the occurrence of 
other species in the sward may affect the wavelet entropy. The value of wavelet 
entropy was found to be insensitive to the degree of sward damage. 
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Estimation of feeding value and nutrient content 

The feeding value of fresh grass can be calculated with content estimates of N, 
DM, ash, CF and sugar (Anonymous, 1998). The prediction errors relative to 
the mean (of validation sets) in the sward damage and N experiment were 6.2-
11.7% for N content, 5.5-9.1% for DM content, 13.6-18.7% for sugar content, 
6.0-7.5% for ash content, and 3.5-4.8% for CF content (Chapter 9).  
The difference between nutrient means in fresh grass samples and critical 
concentrations for cattle grass growth were, when compared to the prediction 
errors for nutrient concentrations, large enough to identify nutrient deficiency 
(Chapter 9). The predictability of nutrient contents can be understood when 
considering the accurate predictions of NIRS on undried grass silage and the 
strong correlations found with e.g. DM yield, N concentration and chlorophyll 
content (Chapter 9; Sinnaeve et al., 1994; Park et al., 1998; Prummel, 1973; 
Hopkins et al., 1994; McKenzie & Jacobs, 2002; Adams et al., 2000a; b; 
Mariotti et al., 1996; Milton et al., 1991; Gáborcík et al., 2000). It was 
concluded that the high predictability of nutrient concentrations were most 
likely the result of interactions between these nutrients and DM yield, DM 
content, N concentration and canopy geometry. Nevertheless, the predictions of 
DMc, ash, CF, sugar and concentrations of N, K, P, S, Mg, Na and Fe were 
robust, in contrast to those for Mn, Zn and Ca.  
It was calculated for a specific field that estimates with a low fraction of model 
bias combined with 50 replicate measurements were probably more accurate for 
ash, CF, N and Na content than laboratory analysis of a single, composite fresh 
grass sample. Laboratory analysis was more accurate for K, P and Mg. 
Economic considerations limit the laboratory analysis of fresh grass to one 
composite sample per field. Therefore, large spatial variability will 
considerably decrease accuracy of determination. Imaging spectroscopy does 
not have this disadvantage as the number of observations can be expanded 
without additional cost for analysis. 
 

Selected image parameters for various agronomic variables of interest 

Selected image parameters for various agronomic variables of interest are given 
in Table 10.3. It must be noted that not all (available) image parameters were 
compared for each agronomic variable, although the selected variables 
explained most of the variation.  
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Table 10.3 Selected image parameters for various agronomic variables of interest. 

Agronomic variable of interest Selected image parameters Chapter 

Growth, LI, LAI GC, IRI 2 

DM yield at harvest GC, IRI, MSS 2, 9, Appendix II 

Seasonal yield Seasonal means of GC and IRI at harvest 8 

N deficiency CAW, edge position VIS 4, 5 

Drought stress Edge position NIR, edge position VIS, CAW 6 

Clover content Wavelet-IL, MICS-b 7 

Spatial heterogeneity GC/TGC-SSD 8 

Feeding value and nutrient content MSS, GC, IRI 9 

 
 
10.4  Imaging spectroscopy in the field 

Imaging spectroscopy can be a valuable tool for monitoring and evaluating 
experimental fields and comparison of treatments in research. The non-invasive 
character permits growth monitoring on individual experimental plots or fields 
and quantification of light interception, N and drought stress, spatial 
heterogeneity, dry matter yield and clover content of (grass) swards.  
Imaging spectroscopy systems may also be useful in other agricultural crops. 
Obviously, growth monitoring, yield and nutrient content estimation and 
detection of deficiencies is important for management of most agricultural 
crops. The approach developed may be used for other crops, although 
applications in other crops again require calibration and validation for most 
relations described. In principle, imaging spectroscopy systems provides eyes to 
vision systems capable of detecting reflection in any wavelength, as long as a 
sensor and radiator are available. For example, ultraviolet reflection may be 
used to detect urine tracks of animals (Viitala et al., 1995). The combination of 
high spatial resolution in 2D and hyperspectral information is highly suitable 
for detection of patterns within crops and even within leaves. An example of 
such a pattern is the nerve system within a leaf, clearly visible in strong water 
absorbing wavelengths. Also patterns within a plant or within a plant 
community or planting row can be made “visible” with such a system (Moshou 
et al., 2001). These patterns may be linked to foliar pests and diseases and may 
be used to separate species or types of species, important for weed control and 
selective herbicide application. 
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Imaging spectroscopy may also be an important information source for fine-
tuning grassland management on dairy farms. Grass sward management on 
farms largely depends on qualitative expert knowledge, which is derived from 
guidelines and rules of thumb. In the absence of measurement methods, farmers 
lack reliable feedback for evaluation and optimisation of various management 
decisions. For example, comparison of fields on and between farms may 
identify weak and strong points in sward management. 
Imaging spectroscopy may also be used in a decision support system. Under 
pressure of environmental legislation, farmers will reduce N fertilisation levels 
to approximately 250 to 300 kg ha-1 (Smit et al., 2003). In this moderate N 
supply range, leaf reflection is responsive to changes in N supply. Then, 
differences between and within fields in N availability due to e.g. N 
mineralisation, delayed N release from previous slurry applications and urine 
and dung depositions during grazing, may be quantified. This provides means 
for fine-tuning timing and amount of N supplied to field, site or even spot 
specific conditions. 
Important in this respect is the quantification of spatial (and temporal) 
heterogeneity and the relation between heterogeneity and reduction in dry 
matter yield and nutrient use efficiency. Spatial heterogeneity within a mini 
sward was well quantified with imaging spectroscopy. However, effects of 
botanical composition, management strategies and the self-recovery capacity of 
deteriorated swards require further study before conclusions can be made with 
regard to the implications for necessity of sward reseeding or renovation.  
The successful separation of image lines recorded in white clover- and grass 
dominated swards and mixed swards allows quantification and monitoring of 
the fraction of white clover in a mixed sward (Chapter 7). The N yield 
(Elgersma et al., 2000; Elgersma & Hassink, 1997; Elgersma et al., 1997) and 
N2 fixation per unit mass of clover dry matter is rather stable, even under 
varying N application (Velthof et al., 2000; Van der Meer & Baan Hofman, 
2000). Quantification of white clover content in mixed swards may, therefore, 
be linked with N2 fixation and clover dry matter yield through its relation with 
ground cover (Schils et al., 1999). 
Calculations revealed that replicate measurements should allow accurate 
assessments of feeding value and nutrient contents. The accuracy of estimation 
of K, P, S and Mg content allows identification of nutrient deficiency. This 
opens up new means for improvement of grassland management and fine-
tuning of rations of dairy cattle in the grazing season. Despite these 
encouraging results, it must be noted that the methodology requires further 
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testing under field conditions, including a range of grass species and 
management practices before final conclusions can be drawn. 
 

System requirements 

Application of an imaging spectroscopy system in fields on farms require a 
mobile system that allows fast and accurate image recording with high spatial 
coverage. The type of sensor depend on the use envisaged for the system. For 
quantification of GC, IRI and texture (with e.g. wavelet entropy) a simple 2D 
camera with e.g. 3 bands with high contrast between green material and soil 
will probably suffice. For instance, a 2D camera with spectral bands at 600, 710 
and 800 combines a high contrast between green material and background and 
permits, therefore, easy recognition of green material. It is also sensitive for 
changes in chlorophyll content (600 and 710 nm) and leaf stacking (800 nm). 
Such a sensor would be useful for e.g. the assessment of growth, light 
interception, clover content, yield level, and probably also of N stress. With a 
2D system, classification routines based on object shape (e.g. clover or weed 
leaves) can be included.    
Quantification of nutrient and drought stress and prediction of DM yield, 
feeding value and mineral content require hyperspectral sensors. Such a 
hyperspectral system must be able to record reflection in the 400-1650 nm 
range, preferably in image lines to maintain high spectral and spatial resolution 
within a spatial context. Ideally, both 2D and hyperspectral sensors are 
combined in one system, allowing both high spatial coverage and high spatial 
and spectral resolution. The system should be equipped with a global 
positioning system for visualisation of data and quantification of patterns on a 
spatial scale larger than one image line or 2D image.  
Working speed and the advantages of replicate observations make image 
recording while driving attactive. Measurements under motion ask for special 
attention for exposure times of the cameras, in order to maintain high spatial 
resolution. Brief exposure requires high irradiation levels.  
When using sunlight instead of artificial light sources, reflection intensity of 
leaves will vary with sky conditions and with the position relative to other 
leaves in the canopy, due to shadow en multiple reflections. This disturbs the 
relation between reflection intensity and height position. Therefore, the amount 
of light from the light sources on the crop should dominate the amount of light 
from the sun, and the system should exclude solar influence by working under 
dark or shadowed conditions. In the experimental system, the halogen light 
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source produces around 265 µmol APAR m-2 s-1. At an solar angle of 42o with 
the horizont, the sun produces between 200 and 1400 µmol APAR m-2 s-1 under 
cloudy and clear sky conditions respectively (J. Kornet, pers. comm.).  
The specific character of the light conditions used in the experimental system 
provided valuable information about vertical canopy geometry. Canopy 
geometry was an important information source for various variables of interest. 
The light sources used in the experimental system had a vertically projected and 
slightly diverging light beam, resulting in lower irradiation close to the soil 
surface. In the experimental system, the dynamic range and sensitivity at low 
irradiation levels was limited. Therefore, it is required that the dynamic range 
of the cameras is large enough to measure the full spectrum of vertically 
oriented leaves, including those in low canopy positions. Currently, the Institute 
of Agricultural and Environmental Engineering together with Plant Research 
International are building such a mobile imaging spectroscopy system. 
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Introduction 
Dairy husbandry systems under temperate climatic conditions mostly use grass 
as a major feed source. Currently, grassland management on dairy farms largely 
depends on qualitative expert knowledge. Management practices may be 
improved with the help of objective and quantitative information on the actual 
status of grass swards. Such information may be obtained from digital sward 
images. Just before the project started, new imaging technology became 
available. With this new technology, hyperspectral images can be recorded 
instantaneously, providing means to combine spatial resolutions at sub-leaf 
level with  reflection measurements in a large number of spectral bands. This 
means that leaf pixels in digital sward images can be differentiated from pixels 
containing dead material and soil, prior to spectral analysis. Sward images may 
then provide not only quantitative information on the presence of grass (leaves) 
but also on, for instance, nutritional status and nutritive value of the grass crop. 
The objectives in the study were (1) to develop and build an experimental 
imaging spectrometry system, capable of recording reflection of leaves within a 
standing grass sward in the visible and near infrared wavelength range; (2) to 
derive and select parameters from the images that characterise growth and 
heterogeneity and identify nutrient- and drought stress; and (3) to study and 
quantify the relations between image parameters and growth, dry matter (DM) 
yield, sward heterogeneity and growth capacity, clover coverage, degree of 
nitrogen (N) and drought stress, and nutritive value of grass swards.  
 

Novel imaging spectroscopy 

In Chapter 2, detailed information is provided on design, characteristics and test 
results of an experimental imaging spectroscopy system. From a height of 1.3 
meter above the ground, the system detects reflections at high spatial (0.28-1.45 
mm2) and high spectral resolutions (5-13 nm) at wavelengths between 405 and 
1659 nm.  
Results show that reflection intensity of leaf pixels is related to leaf height 
position in the sward and leaf angle. With the described system, canopy 
structure can be characterised by ground cover, the distribution of reflection 
intensity over leaf pixels and image texture. Spectral characteristics can be 
obtained at leaf level, unconfounded by background influences. 
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Growth monitoring 

The potential of this experimental imaging system for monitoring growth of 
grass swards is explored in Chapter 3. An experiment was conducted with 36 
Lolium perenne L. mini swards, differing in the degree of sward damage. 
Classification procedures of images using maximum likelihood procedures 
yielded (several) estimates of image ground cover (GC) and an index of 
reflection intensity (IRI) indicating the proportion of highly reflecting grass 
pixels. Leaf pixels with similar reflection intensity were grouped in intensity 
classes (IC).  
Results showed that image GC was highly correlated with visually scored GC 
(R2

adj =0.94), Leaf Area Index (LAI) (R2
adj =0.88), and light interception (LI) 

(R2
adj =0.94, for dense swards under a cloudy sky). However, relations between 

GC and LI depended on sky cloudiness and sward quality. Under a cloudy sky, 
LI was linearly related to GC, whereas under a clear sky, this relation had a 
more logistic character. Open swards had on average a lower GC and a lower 
IRI when compared to dense swards at similar growth stages. Regression 
analysis of GC, IRI and dry matter (DM) yields showed correlations with R2

adj 
ranging between 0.75-0.82. The mean error of DM yield estimates was 340 kg 
DM ha-1. It was concluded that imaging spectrometry allows accurate, non-
destructive monitoring of grass sward growth from increases in estimated GC 
and IRI. 
 

Detection of nitrogen (N) stress 

The potential of imaging spectroscopy for early detection of nitrogen stress is 
explored in Chapter 4. An experiment was conducted with 15 Lolium perenne 
L. mini swards and 5 N supply levels. Blue edge (BE), green edge (GE) and red 
edge (RE) positions were calculated for each IC.  
It was found that both GC and IRI increased until harvest, with largest 
increases for liberal N supply. The width of the chlorophyll dominated 
absorption band around 680 nm (CAW, calculated as the difference between 
RE and GE position) increased up to a maximum of 133 nm for both liberal and 
limited N in the first two weeks after harvesting. The CAW decreased for 
limited N in the second half of the growth period in contrast to liberal N. At 
harvest, CAW explained 95% of the variation in relative DM yield between N 
treatments. Principal component analyses showed an intertwined response of 
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the principal components to both DM yield and N concentration. Edge positions 
changed strongly with IC.  
 

Effects of leaf angle, leaf height and pigment content on reflectance 

In Chapter 5, effects of leaf angle, leaf height and pigment content on 
reflectance spectra of grass swards are studied. An experiment was conducted 
with mini swards of Lolium perenne L. and 4 N supply levels. At harvest, 
swards were harvested in three strata (>16 cm, 9-16 cm, and 4-9 cm) and strata 
were analysed for chemical composition, including pigments. Effects of leaf 
angle and height were studied independently with the help of detached leaves.  
Contents of N and pigments, on average,  increased with increasing N level and 
decreased downwards in the sward. BE, GE and RE showed strong, N 
treatment dependent, changes with IC. At harvest, CAW of intact swards 
increased with N level, with absolute values being similar to values measured at 
harvested material of the upper stratum. When upper strata were subsequently 
removed, CAW of the remaining sward decreased much less than expected 
from measurements at harvested material. Varying leaf angle from horizontal to 
nearly vertical shifted BE 2 nm, GE 6 nm and RE 2 nm, and increased CAW 
about 6 nm. Decreasing leaf height up to 20 cm, hardly affected BE, shifted GE 
2.3 nm and RE 4.9 nm, and decreased CAW 2.6 nm.  The ratio between red and 
blue reflectance was also strongly affected by leaf angle. Changes of edge 
positions with IC could only partly be explained by the summed effects of leaf 
height and leaf angle and may have been augmented by sensor characteristics. It 
is concluded that combinations of the red/blue ratio, shifts of GE with IC and 
CAW may be useful to separate effects of leaf angle on sward reflectance from 
effects of leaf pigment concentration per se. 
 

Detection of drought stress 

The potential of imaging spectroscopy for early detection of drought stress in 
grass swards is explored in Chapter 6. A climate chamber experiment was 
conducted with 9 Lolium perenne L. mini swards with drought stress treatments 
at two N levels. Wavelength position of inflection points of derivative spectra 
were estimated and analysed in relation to a progressively increasing degree of 
drought stress.  
Drought stress increased leaf dry matter content and sugar concentration. 
Drought stress decelerated and ultimately reversed GC evolution, and kept IRI 
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at low values. In contrast to unstressed growth, all absorption features narrowed 
and became shallower under drought stress. The inflection points near 1390 and 
1500 nm were most sensitive to drought stress. Differences between drought 
stressed and control swards were detected just before leaf water content 
dropped below 80%. The evolution of wavelength position of inflection points 
reversed under drought stress, except for the red edge of which the shift to 
longer wavelengths during growth accelerated. The relation between inflection 
points at 705 and 1390 nm differentiated unstressed swards in an early growth 
stage from drought stressed swards in a later growth stage. 
 

Quantification of clover cover 

In Chapter 7, the potential of imaging spectroscopy is explored for robust 
discrimination between grass, white clover and mixed mini swards at various 
growth stages. For this, spectra of grass and clover swards were compared and 
image line texture was analysed using spatial correlation, a special filter and 
wavelet entropy. In 2000, an experiment with mini swards was conducted 
including two white clover (Trifolium repens L.) swards, three perennial 
ryegrass (Lolium perenne L.) swards and four swards with a grass and white 
clover mixture.  
Results showed that the mean spectral curves of pixels of grass and clover 
swards differed throughout the spectral range, but differences were small when 
compared to the variation in grass spectra. No specific discriminating spectral 
feature was found. Differences in edge positions between grass and clover 
swards were not consistent within growth periods. With image line texture, 
pure grass and clover swards could be separated with the filter, spatial 
correlation and wavelet entropy. Only wavelet entropy resulted in robust 
discrimination on all recording dates. With all three discriminating methods, 
results of mixed swards were intermediate between pure swards. 
 

Assessment of total DM yield and sward quality 

Relations between spatial heterogeneity of tiller density, LI, GC, and seasonal 
DM (SDM) yield are studied in Chapter 8. Sward heterogeneity was quantified 
with spatial standard deviation of GC (GC-SSD) and logistically transformed 
GC (TGC-SSD), and patterns in GC transects were quantified with wavelet 
entropy. An experiment was conducted with control swards (CS), naturally 
damaged swards (NDS) and artificially damaged swards (ADS). 
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Spatial variation of tiller density was larger for ADS and NDS than for CS. 
SDM was linearly related to a combination of seasonal means of GC and IRI 
(R2 = 0.93). An increase of 1% unit in seasonal mean GC was shown to 
increase SDM with 0.31 t DM ha-1. This is in agreement with predictions of a 
grass growth model. Values of GC-SSD and wavelet entropy were larger for 
ADS and NDS than for CS. GC-SSD  of CS remained below 13% throughout 
the season, in contrast to values of NDS and ADS. Absolute differences in 
TGC-SSD between CS, ADS and NDS were largest within 8 days after harvest. 
Seasonal means of wavelet entropy (R2 = 0.70) and GC-SSD (R2 = 0.63) at 
harvest were linearly related to SDM. It was concluded that imaging 
spectroscopy provides accurate means for assessment of SDM and sward 
heterogeneity. Effects of sward management and botanical composition on 
heterogeneity require further study, before conclusions can be drawn with 
regard to the implications of sward heterogeneity for sward reseeding or 
renovation. 
 

Imaging spectroscopy for pasture management 

The accuracy of imaging spectroscopy as a tool to estimate dry matter (DM) 
yield, contents of N, crude fiber, ash, sugar and DM, and mineral concentration 
(P, K, S, Ca, Mg, Mn, Zn, and Fe) of grass swards is evaluated in Chapter 9. 
Two data sets were used from Lolium perenne L. experiments where the degree 
of sward damage or N application varied. Partial least square (PLS) regression 
models were built from the leaf reflectance data, and were calibrated and 
validated per data set. PLS models were evaluated per sensor and for a 
combination of 2 sensors. The 2-sensor PLS models were combined with GC 
and IRI. Furthermore, the potential reduction in model error was explored for 
10, 25 and 50 observations per field for a large and small model bias 
contribution.  
Results showed that the 2-sensor PLS model including GC and IRI performed 
best. The mean prediction errors for experiment 1 and 2 were 268 and 235 kg 
DM ha-1, 0.24 and 0.34 N (%), 1.68 and 0.96 DM (%), 16.2 and 27.7 sugar (g 
kg-1 DM), 6.5 and 5.8 ash (g kg-1 DM) and 10.4 and 8.36 crude fiber (g kg-1 
DM). The predictions for P, K, S, and Mg allowed identification of deficiency 
levels, in contrast to Na. Predictions were poor for Zn, Mn and Ca. With 25 
replicate measurements, the calculated prediction error of DM yield may be 
maximally reduced to 95-142 kg ha-1 for fields with a within-field standard 
deviation of 300 kg ha-1. It is concluded that imaging spectroscopy provides 
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robust and accurate means for assessment of DM yield and feeding quality of 
standing grass. The methodology, however, requires further evaluation under 
field conditions, including a range of grass species and management practices. 
 

Effects of sampling strategy and effects of spatial resolution  

In Appendix I calculations are given to assess effects of the used sampling 
strategy for image recording and spatial resolution (pixel width). Results 
showed that the mean errors made within a growth period with the used 
sampling strategy are small. This error was 2-5 times larger for heterogeneous 
swards than for homogeneous swards. Spatial resolution had a strong effect on 
reflectance characteristics. Increasing amounts of bare soil and dead material 
enlarged effects of spatial resolution.  
 

Comparison of techniques for DM yield assessment 

In Appendix II the accuracy of imaging spectroscopy for DM yield assessment 
is compared with that of a disk plate meter and Cropscan. Data from 
experiments varying in the degree of sward damage and N application were 
used. The disk plate meter resulted in R2

adj values of 0.55-0.66 and Cropscan in 
R2

adj values ranging between 0.59-0.87. Imaging spectroscopy calibrations 
resulted in R2

adj values of 0.96-0.99, and prediction errors were between 235-
268 kg DM ha-1. It is concluded that imaging spectroscopy was more accurate 
for DM yield assessment than the disk plate meter and Cropscan. 
 

General discussion 

In Chapter 10, results of previous chapters and the appendices are evaluated, 
with consideration of the initial objectives. It was argued that, in the 
experiments reported here, imaging spectroscopy provided non-destructive and 
accurate means to monitor growth; to quantify N deficiency; to detect drought 
stress in an early stage; to assess DM yield at harvest and seasonal DM yield; to 
quantify the content of clover in mixtures of grass and clover; to quantify 
spatial heterogeneity and differentiate swards  into groups with various degrees 
of sward damage; and to predict feeding value and nutrient content. The 
outcome of this study now needs to be tested under field conditions. 
Application of imaging spectroscopy in fields on farms requires a mobile 
system that allows image recording while moving and with high spatial 
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coverage. Such a system should be able to record hyperspectral reflectance in 
the 400-1650 nm range, and should preferably be equipped  with a camera 
capable of recording 2D images with high contrast between green material and 
background. The 2D image will allow both high spatial resolution and high 
spatial coverage. The system should be equipped with a global positioning 
system for visualisation of data and quantification of patterns on a spatial scale 
larger than one image (line). The system should exclude solar influence by 
working under dark or shadowed conditions. The vertically projected and 
slightly diverging light beam of the light sources used in the experimental 
system should be maintained. Finally, it is required that the dynamic range of 
the cameras is large enough to measure the full spectrum of leaves, even for 
vertically oriented leaves in low canopy positions.  
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Introductie 
Melkveehouderijsystemen in een gematigd klimaat gebruiken meestal gras als 
belangrijkste voedermiddel. Graslandmanagement is nog steeds voornamelijk 
gebaseerd op kwalitatieve expertise van de veehouder. Graslandmanagement 
kan mogelijk worden verbeterd met behulp van objectieve en kwantitatieve 
informatie over de actuele status van de graszode. Deze informatie kan 
mogelijk worden verkregen aan de hand van digitale beelden van de graszode. 
Net voor het project startte, kwam een nieuwe beeldvormende techniek 
beschikbaar. Met deze techniek kunnen instantaan hyperspectrale opnamen 
worden gemaakt. Hierdoor kunnen ruimtelijke resoluties op sub-bladniveau 
worden gecombineerd met reflectiemetingen in een groot aantal spectrale 
banden. Dit betekent dat bladpixels in digitale zodenbeelden kunnen worden 
onderscheiden van pixels met dood zodenmateriaal en grond voorafgaand aan 
spectrale analyse. Zodenbeelden kunnen dan niet alleen informatie verschaffen 
over de aanwezigheid van grasbladeren, maar mogelijk ook over bijvoorbeeld 
nutriëntvoorziening en voederwaarde van het gewas. 
Deze studie had tot doel (1) om een experimenteel beeldvormend 
spectrometrisch systeem te ontwerpen en te bouwen waarmee reflectie kan 
worden gedetecteerd van bladeren in een te velde staand gewas in het zichtbare 
en nabij-infrarode golflengtegebied; (2) om beeldparameters te definiëren en 
selecteren waarmee groei, heterogeniteit, en nutriënt- en droogtestress kunnen 
worden gekarakteriseerd; (3) het bestuderen en kwantificeren van relaties 
tussen beeldparameters en groei, droge stof (DM) opbrengst, 
zodenheterogeniteit en groeicapaciteit, bedekking van klaver, de mate van 
stikstof (N) en droogtestress en de voederwaarde van een grasgewas. 
 

Innovatief systeem voor beeldvormende spectroscopie 

Hoofdstuk 2 geeft gedetailleerde informatie over ontwerp, eigenschappen en 
testresultaten van een experimenteel, beeldvormend spectroscopisch systeem. 
Het systeem detecteert reflectie met hoge ruimtelijke (0,28-1,45 mm2) en 
spectrale resolutie (5-13 nm) tussen 405 en 1659 nm op een hoogte van 1,3 m 
boven het grondoppervlak. 
Uit de testresultaten blijkt dat reflectie-intensiteit van bladpixels is gerelateerd 
aan de hoogte van het blad in het gewas en de bladhoek. Met het systeem kan 
de structuur van het gewas worden beschreven door middel van 
grondbedekking, de verdeling van reflectie-intensiteit over bladpixels en 
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beeldtextuur. Op bladniveau kunnen spectrale karakteristieken worden 
verkregen, zonder verstorende invloeden van de achtergrond. 
 

Groeimonitoring 

De mogelijkheden van dit experimentele beeldvormende systeem voor 
groeimonitoring van graszoden worden verkend in Hoofdstuk 3. Er is een 
experiment uitgevoerd met 36 Lolium perenne L. minizoden die verschilden in 
de mate van zodenschade. Classificatieprocedures voor beelden, 
gebruikmakend van ‘maximum likelihood’, resulteerden in (meerdere) 
schattingen voor grondbedekking en in een index voor reflectie intensiteit (IRI). 
Deze index is een maat voor het aandeel sterk reflecterende gewaspixels. 
Bladpixels met vergelijkbare reflectie-intensiteiten zijn gegroepeerd in 
intensiteitklassen (IC). 
De resultaten laten zien dat GC geschat uit beelden sterk was gecorreleerd met 
de visueel ingeschatte GC (R2

adj=0,94), de leaf area index (LAI) (R2
adj=0,88) en 

lichtonderschepping (LI) (R2
adj=0,94 voor dichte zoden onder een bewolkte 

hemel). De relaties tussen GC en LI verschilden voor bewolkte en onbewolkte 
hemelcondities. Onder een bewolkte hemel was de LI lineair gerelateerd aan 
GC, terwijl deze relatie een meer logistisch karakter had bij een onbewolkte 
hemel. Open zoden hadden, vergeleken met dichte zoden bij vergelijkbare 
groeistadia, gemiddeld een lagere GC en een lagere IRI. Regressie analyse 
tussen GC, IRI en DM opbrengst resulteerde in correlaties met een R2

adj van 
0,75-0,82. De gemiddelde schattingsfout van DM opbrengst was 340 kg  
ha-1. Geconcludeerd werd dat met beeldvormende spectroscopie, door middel 
van toename in geschatte GC en IRI, de groei accuraat en non-destructief kan 
worden gevolgd. 
 

Detectie van stikstofstress 

De mogelijkheden voor een vroege herkenning van stikstof (N) stress m.b.v. 
beeldvormende spectroscopie worden verkend in Hoofdstuk 4. Hiervoor is een 
experiment met 15 Lolium perenne L. minizoden en 5 N giften uitgevoerd. Blue 
edge (BE), green edge (GE) en red edge (RE) posities zijn berekend voor elke 
IC. 
Zowel GC als IRI namen toe tot de oogst, met de grootste toename voor hoge N 
giften. De breedte van de chlorofyl-absorptieband (CAW, berekend als verschil 
tussen RE en GE positie) nam in de eerste 2 weken na oogst toe tot een 
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maximum van 133 nm, voor zowel hoge als beperkte N giften. Bij een lage N 
gift nam de CAW af in de tweede helft van de groeiperiode in tegenstelling tot 
de situatie bij een hoge N gift. Bij oogst verklaarde CAW 95% van de variatie 
in relatieve  DM opbrengst tussen N giften. Principale componentenanalyse 
vertoonde een verstrengelde respons met betrekking tot DM opbrengst en N 
concentratie.  De positie van de edges veranderde sterk met IC. 
 

Effecten van bladhoek, -hoogte en pigment concentratie op reflectie 

In Hoofdstuk 5 worden de effecten bestudeerd van bladhoek, bladhoogte en 
pigmentconcentratie op de reflectiespectra van graszoden. Er is een experiment 
uitgevoerd met Lolium perenne L. minizoden en 4 N giften. Bij oogst is het 
gewas geoogst in 3 strata (>16 cm, 9-16 cm en 4-9 cm) en strata zijn 
geanalyseerd op chemische samenstelling inclusief pigmenten. Effecten van 
bladhoek en -hoogte zijn onafhankelijk hiervan bestudeerd met behulp van 
geplukte bladeren. 
Gehalten van N en pigmenten namen gemiddeld toe met de grootte van de N 
gift en namen gemiddeld af met toenemende diepte in het gewas. BE, GE en 
RE vertoonden een sterke verandering met IC, afhankelijk van N gift. Bij oogst 
nam de CAW van intacte zoden toe met de N gift, waarbij de absolute waarden 
overeenkwamen met waarden gemeten aan geoogst materiaal. Na oogst van het 
bovenste stratum nam de CAW van het overblijvende gewas minder af dan op 
basis van metingen aan geoogst materiaal verwacht kon worden. Het variëren 
van de bladhoek van horizontaal naar bijna verticaal verschoof BE 2 nm, GE 6 
nm, en RE 2 nm en verhoogde de CAW met ongeveer 6 nm. Het verlagen van 
de bladhoogte met 20 cm had weinig effect op de BE, verschoof de GE met 2,3 
nm en de RE met 4,9 nm en verlaagde de CAW met 2,6 nm. De ratio tussen 
reflectie bij rode en blauwe golflengten werd ook sterk beïnvloed door de 
bladhoek.  Verschuivingen van hellingsposities met IC konden slechts 
gedeeltelijk worden verklaard door de gesommeerde effecten van bladhoek en 
bladhoogte en werden mogelijk versterkt door sensor eigenschappen. 
Geconcludeerd werd dat de combinaties van de verhouding tussen reflectie bij 
rode en blauwe golflengten, van verschuivingen van de GE met IC, en van 
CAW mogelijk gebruikt kunnen worden om de effecten van bladhoek en 
pigmentconcentratie op gewasreflectie te scheiden. 
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Detectie van droogtestress 

De mogelijkheden voor een vroege herkenning van droogtestress m.b.v. 
beeldvormende spectroscopie worden verkend in Hoofdstuk 6. Hiervoor is een 
klimaatkamerexperiment met 9 Lolium perenne L. minizoden met 
droogtebehandelingen bij 2 N giften uitgevoerd. Golflengtepositie van 
buigpunten van afgeleide spectra werden geschat en geanalyseerd in relatie tot 
de progressief toenemende mate van droogtestress. 
Door droogtestress nam het drogestofgehalte van bladeren en het suikergehalte 
toe. Droogtestress vertraagde en keerde de GC ontwikkeling uiteindelijk om en 
hield IR op lage waarden. In tegenstelling tot niet-gestresste groei werden alle 
absorptiebanden smaller en minder diep bij droogtestress. De buigpunten nabij 
1390 en 1500 nm waren het meest gevoelig voor droogtestress. Verschillen 
tussen zoden met en zonder droogtestress werden gedetecteerd net voordat het 
watergehalte van bladeren onder 80% zakte. Het verloop van de 
golflengtepositie van buigpunten keerde om bij droogtestress, behalve voor de 
RE waarvan de verschuiving naar langere golflengten gedurende de groei werd 
versterkt. De relatie tussen buigpunten nabij 705 en 1390 nm onderscheidde 
niet-gestresste zoden in een vroeg groeistadium van gestresste zoden in een laat 
groeistadium. 
 

Bepaling van de bedekkingsgraad van klaver 

In Hoofdstuk 7 worden de mogelijkheden van beeldvormende spectroscopie 
verkend voor een robuust onderscheid tussen gras-, klaver- en gemengde zoden 
in verschillende groeistadia. Hiervoor zijn de spectra van deze zoden 
vergeleken en is de beeldlijntextuur geanalyseerd met behulp van ruimtelijke 
correlatie, een speciaal filter en wavelet entropie. In 2000 is een experiment met 
minizoden uitgevoerd met twee witte klaver (Trifolium repens L.) zoden, drie 
engels raaigras (Lolium perenne L.) zoden en vier gemengde zoden met gras en 
witte klaver. 
Uit de resultaten bleek dat de gemiddelde spectrale curve van gras- en witte 
klaverpixels verschilden over het gehele gemeten golflengtebereik, maar dat de 
verschillen klein waren in vergelijking tot de variatie in spectra van graspixels. 
Er is geen specifiek onderscheidend spectraal kenmerk gevonden. Verschillen 
in hellingsposities tussen gras- en witte klaverzoden waren niet consistent 
binnen groeiperioden. Pure gras- en klaverzoden konden worden onderscheiden 
aan de hand van beeldlijntextuur, zowel met het filter, als de ruimtelijke 



  

262 

correlatie en wavelet entropie. Alleen wavelet entropie resulteerde in een 
robuust onderscheid op alle opnamedagen. De resultaten van gemengde zoden 
lagen tussen de resultaten van pure gras- en witte klaverzoden. 
 

Schatting van jaaropbrengst en zodenkwaliteit 

Relaties tussen ruimtelijke heterogeniteit van spruitdichtheid, LI, GC,  en DM 
opbrengst in een seizoen (SDM) worden bestudeerd in Hoofdstuk 8. 
Zodeheterogeniteit is gekwantificeerd met de ruimtelijke standaard deviatie van 
GC (GC-SSD) en logistisch getransformeerde GC (TGC-SSD), patronen in GC 
transecten zijn gekwantificeerd met wavelet entropie. Een experiment is 
uitgevoerd met controle zoden (CS), zoden met een natuurlijke beschadiging 
(NDS) en kunstmatig beschadigde zoden (ADS). 
Ruimtelijke variatie van spruitdichtheid was groter voor ADS en NDS dan voor 
CS. SDM was lineair gerelateerd aan een combinatie van GC en IRI (R2=0,93). 
Het bleek dat een toename van 1% eenheid in het seizoensgemiddelde van GC 
de SDM deed toenemen met 0,31 t DM ha-1. Dit komt overeen met 
voorspellingen van een grasgroeimodel. Waarden van GC-SSD en wavelet 
entropie waren groter voor ADS en NDS dan voor CS. GC-SSD van CS bleef 
beneden 13% gedurende het gehele seizoen, dit in tegenstelling tot de waarden 
voor NDS en ADS. Absolute verschillen in TGC-SSD tussen CS, ADS en NDS 
waren het grootst binnen 8 dagen na oogst. Seizoensgemiddelden van wavelet 
entropie (R2=0,70) en GC-SSD (R2=0,63) bij oogst waren lineair gerelateerd 
aan SDM. Geconcludeerd werd dat beeldvormende spectroscopie een accurate 
techniek is om SDM en zodeheterogeniteit in te schatten. Effecten van 
zodenmanagement en botanische samenstelling behoeven nadere studie voordat 
conclusies getrokken kunnen worden met betrekking tot de relatie tussen 
zodeheterogeniteit en de noodzaak van graslandverbetering. 
 

Beeldvormende spectroscopie voor graslandmanagement 

De nauwkeurigheid van beeldvormende spectroscopie als schatter van DM 
opbrengst, gehalten van N, ruwe celstof, ruwe as, suiker, droge stof, en 
concentratie van mineralen (P, K, S, Ca, Mg, Mn, Zn, Fe) van graszoden wordt 
geëvalueerd in Hoofdstuk 9. Twee datasets zijn gebruikt van Lolium perenne L. 
experimenten waarin de mate van zodenschade en N gift varieerde. Regressie 
modellen zijn samengesteld uit bladreflectie data door middel van de partiële 
kleinste kwadraten (PLS) methode en zijn gekalibreerd en gevalideerd per 
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dataset. PLS modellen zijn geëvalueerd per sensor en voor een combinatie van 
2 sensoren. Het 2-sensor PLS model is gecombineerd met GC en IRI. Daarnaast 
is de potentiële reductie in modelfout verkend voor 10, 25 en 50 waarnemingen 
per veld met een grote en een kleine bijdrage van de modelafwijking. 
De resultaten lieten zien dat het 2-sensor model in combinatie met GC en IRI 
het beste presteerde. De gemiddelde schattingsfouten voor experiment 1 en 2 
waren 268 en 235 kg DM ha-1, 0,24 en 0,34 N (%), 1,68 en 0,96 DM (%), 16,2 
en 27,7 suiker (g kg-1 DM), 6,5 en 5,8 ruwe as (g kg-1 DM) en 10,4 en 8,36 
ruwe celstof (g kg-1 DM). De voorspellingen voor P, K, S en Mg lieten 
identificatie van tekorten toe, in tegenstelling tot Na. Voorspellingen voor Zn, 
Mn en Ca waren zwak. Voor velden met een variatie binnen het veld in DM 
opbrengst van 300 kg ha-1 kan met 25 waarnemingen per veld de 
voorspellingsfout voor DM opbrengst met maximaal 95-142 kg DM ha-1 
worden gereduceerd. Geconcludeerd werd dat beeldvormende spectroscopie 
een robuust en accuraat middel is om DM opbrengst en voederwaarde van een 
grasgewas te schatten. De methodologie behoeft nog wel een evaluatie onder 
veldcondities, waaronder inbegrepen een breed spectrum aan grassoorten en 
verschillende vormen van graslandgebruik. 
 

Effecten van bemonsteringsstrategie en ruimtelijke resolutie  

In Appendix I worden berekeningen gemaakt om de effecten van de gebruikte 
bemonsteringsstrategie voor beeldopname en de ruimtelijke resolutie (pixel 
breedte) in te schatten. De resultaten toonden aan dat de gemiddelde fout in een 
groeiperiode die werd gemaakt met de gebruikte bemonsteringsstrategie klein 
was. Deze fout was 2-5 keer groter voor heterogene zoden dan voor homogene 
zoden. Ruimtelijke resolutie had een groot effect op reflectiekarakteristieken. 
Toenemende aandelen kale grond en dood materiaal versterkten het effect van 
ruimtelijke resolutie. 
 

Vergelijking van technieken voor de schatting van grasopbrengst 

In Appendix II wordt de nauwkeurigheid van de schatting van DM opbrengst 
van beeldvormende spectroscopie vergeleken met die van de gewashoogtemeter 
en de Cropscan. Er is gebruik gemaakt van data van experimenten waarin de 
mate van zodenschade en N gift varieerde. De gewashoogtemeter resulteerde in 
R2

adj waarden van 0,55-0,66, voor de Cropscan lagen deze waarden op 0,59-
0,87. Calibraties van beeldvormende spectroscopie resulteerde in R2

adj waarden 
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van 0,96-0,99 en voorspellingsfouten lagen tussen 235 en 268 kg DM ha-1. 
Geconcludeerd werd dat de DM opbrengstschattingen met beeldvormende 
spectroscopie nauwkeuriger waren dan met de gewashoogtemeter of met de 
Cropscan. 
 

Algemene discussie 

In Hoofdstuk 10 worden de resultaten van voorgaande hoofdstukken en de 
bijlagen geëvalueerd met betrekking tot de oorspronkelijk doelen. 
Beargumenteerd is dat, voor de besproken experimenten, beeldvormende 
spectroscopie een non-destructief en nauwkeurig middel is om groei te 
monitoren; om N gebrek te kwantificeren; om droogtestress in een vroeg 
stadium te detecteren; om DM opbrengst bij oogst en seizoensopbrengst van 
DM te schatten; om het aandeel van klaver in gemengde zoden met gras en 
witte klaver te schatten; om ruimtelijke zodeheterogeniteit te schatten en 
groepen te onderscheiden met een verschillende mate van zodenschade en om 
de voederwaarde en nutriëntgehalte te schatten. De resultaten van deze studie 
moeten nu getest worden onder veldomstandigheden. 
Toepassing van beeldvormende spectroscopie op praktijkpercelen vereist een 
mobiel systeem waarmee al rijdend beelden kunnen worden opgenomen met 
een grote ruimtelijke dekkingsgraad. Een dergelijk systeem zou de 
mogelijkheid moeten hebben om hyperspectrale reflectie te detecteren van 400 
tot 1650 nm en zou bij voorkeur uitgerust moeten zijn met een camera voor 2D 
beelden met een groot contrast tussen groen materiaal en achtergrond. De 2D 
beelden zorgen voor zowel een grote ruimtelijke resolutie als voor een grote 
ruimtelijke dekking. Het systeem zou uitgerust moeten zijn met een “global 
positioning system” voor de visualisatie van data en het kwantificeren van 
patronen op een ruimtelijke schaal die groter is dan een beeld(lijn). Het systeem 
moet de invloed van de zon uitsluiten door te werken onder donkere of 
beschaduwde condities. De vertikaal geprojecteerde en enigszins divergerende 
lichtbundel, zoals gebruikt in het experimentele systeem, zou opnieuw gebruikt 
moeten worden. Tenslotte moet het dynamisch bereik van de camera’s groot 
genoeg zijn om het volledige spectrum van bladeren te bemeten, zelfs van 
verticaal georiënteerde bladeren onder in het bladerdek. 
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A1.1  Introduction 

The objective of this appendix is to identify and quantify error sources of the 
experimental imaging spectroscopy system, the sampling strategy and spatial 
resolution used in particular. Effects of six sampling strategies in mini swards 
with a low to intermediate heterogeneity and effects of replicate measurements 
on a single mini sward were evaluated. For this, 2-dimensional images, 
composed of 300 image lines were available from the drought experiment, as 
described in Chapter 6. Effects of spatial resolution on derivatives from mean 
leaf reflectance spectra from swards were also studied with data from the 
drought experiment. Other error sources, related to the instrument design and 
described by Jørgensen (2002), are summarised and discussed. 
 
 

A1.2  Materials and methods 

A1.2.1 Images available 

The number of image lines recorded with the experimental imaging 
spectroscopy system was chosen at 42 per mini sward. To evaluate the effects 
of this choice, different recording strategies were compared.  
In the drought experiment (Chapter 6) there were 2-dimensional (2D) 
hyperspectral images constructed from 300 adjacent image lines. These 300 
image lines covered an area of 300 mm long and 133.1 mm wide. Images of 
three swards were used, from treatments control (mini sward 1), drought 
stressed with high N (mini sward 2) and drought stressed with low N (mini 
sward 3). The images recorded on 5, 9, 13, 17, 21 and 25 November were 
analysed, to include a range of growth stages.  
Spatial variability is the determining factor in the number of recordings per 
mini sward required. In Chapter 6, it was concluded that drought stress did not 
significantly increase sward heterogeneity. Therefore, results of this study are 
only valid for swards with a comparable heterogeneity. 
 

A1.2.2 Sampling strategies 

The sampling strategies (SAST) included a number of distances between image 
lines in a regular grid (Table I.1). With regular distances between image 
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Table I.1 Sampling strategies (SAST) studied. In boldface, the default sampling strategy. 

SAST Distance between  

image lines (mm) 

Image lines (#) Replicates (#) 

1 2 150 2 

2 4 75 4 

3 12 25 10 

4 25 12 25 

5 50 6 50 

6 100 3 100 

 
 
lines, this distance determined the number of image lines per SAST on the 300 
mm surface. Shifting the starting position 1 mm resulted in a number of 
possible replicate recordings per sampling strategy. All possible starting 
positions for recording were considered and this resulted in a number of 
replicates per SAST. 
The images were classified according to procedures described in Chapter 3. 
Only results of the V7 sensor were used. The means and standard deviations of 
GC, IRI and blue edge (BE) and green edge (GE) position were calculated from 
these replicates. These parameters were calculated per image line, in contrast to 
the procedure described in Chapter 3. 
The errors made with sampling were compared with the mean value, calculated 
over the 300 image lines. The spatial standard deviation (SSD) was calculated 
as standard deviation over the 300 estimates. 
The errors of sampling strategies were evaluated with the root mean square 
error, calculated for GC as: 
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where s is the sampling strategy, t the mini sward, d is the recording date, r is 
replicate number, n is the total number of replicates, i is the number of image 
lines and il the number of image lines per sampling strategy.  
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A1.2.3  Replicate measurements in one mini sward 

With the default sampling strategy, 42 image lines per mini sward, 8 replicate 
recordings were made on the same day in one mini sward. For this, the 
container with the mini sward was placed under the experimental system, and 
removed afterwards. This was repeated for each recording. The mini sward was 
unfertilised in 2002 and had a very heterogeneous colour pattern, with many 
dead leaves and dead leaf-tips. The coefficient of variance (CV, %) was 
calculated as the quotient between the mean and standard deviation, expressed 
as percentage. 
 

A1.2.4  Effects of spatial resolution on GC, IRI and derivatives 

The effects of spatial resolution were studied on the 2D-data from the drought 
experiment. Mean GC, IRI and reflection of green pixels were calculated from 
the 300 image lines. Positions of minimum or maximum derivatives at 518, 
570, 1140, 1220 and 1390 nm were calculated according to procedures 
described in Chapter 6. Only data from the V7 and N17 sensor were used. For 
this, radiance data from several pixels on the image line were summed (before 
calculating reflectance, this is sometimes called ‘binning’). This resulted in a 
lower number of pixels per image line. In total, five spatial resolutions were 
compared: 128, 32, 16, 8 and 4 pixels per image line for the N17, with pixel 
widths on the soil of 1.04, 4.16, 8.32, 16.64 and 33.28 mm respectively. For the 
V7 sensor, the compared spatial resolutions were 768, 192, 96, 48, 24, and 12 
pixels per image line. This resulted in pixel widths on the soil of 0.20, 0.79, 
1.59, 3.17, 6.35 and 12.71 mm respectively. The root mean square error was 
calculated as difference with the finest resolution, averaged over 6 dates. 
 
 

A1.3  Results  

A1.3.1  Spatial variability of GC in the mini swards 

The GC-SSD of mini sward 1 was smaller than mini swards 2 and 3 from 9 
November onwards (Table I.2). The SSD of BE and GE decreased strongly 
during growth for mini sward 1, whereas SSD of mini sward 2 and 3 increased. 
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Table I.2 Means + spatial standard deviation per mini sward. 

Sward 5/11 9/11 13/11 17/11 21/11 25/11 Mean 

 -------------------------------------------------GC (%)-----------------------------------------------------

1 25.4 + 7.7 44.0 + 9.4 57.5 + 8.2 64.1 + 9.2 72.5 + 6.7 83.7 + 6.1 57.87 

2 16.1 + 5.5 29.3 + 9.8 35.1 + 10.2 34.1 + 11.6 33.3 + 13.2 25.2 + 12.5 28.85 

3 28.2 + 9.5 41.8 + 10.2 44.4 + 9.0 45.7 + 8.5 42.4 + 8.0 40.3 + 9.1 40.47 

 -------------------------------------------------IRI (%)-----------------------------------------------------

1 2.0 + 3.1 2.6 + 3.3 3.7 + 2.8 3.0 + 3.6 4.2 + 2.8 17.1 + 4.2 5.43 

2 3.1 + 4.6 3.0 + 5.0 4.1 + 4.1 4.4 + 4.4 3.4 + 3.0 2.4 + 2.5 3.40 

3 1.2 + 2.4 0.8 + 1.6 1.8 + 2.1 1.9 + 2.0 4.0 + 3.1 3.5 + 3.5 2.20 

 -------------------------------------------------BE (nm)----------------------------------------------------

1 518.7 + 1.2 520.1 + 0.9 520.5 + 0.6 520.8 + 0.5 521.2 + 0.4 520.4 + 0.3 520.28 

2 518.9 + 1.1 520.2 + 0.8 520.6 + 0.6 520.6 + 0.6 520.4 + 0.6 520.3 + 0.7 520.17 

3 518.3 + 1.0 520.3 + 0.9 520.5 + 0.7 520.5 + 0.7 520.6 + 0.4 520.5 + 0.5 520.12 

 -------------------------------------------------GE (nm)----------------------------------------------------

1 588.6 + 8.0 580.5 + 3.0 579.5 + 1.3 578.3 + 1.5 577.6 + 0.9 578.9 + 0.6 580.57 

2 591.3 + 10.0 581.2 + 2.5 579.7 + 1.9 581.5 + 3.5 583.0 + 6.1 592.4 + 11.2 584.85 

3 596.2 + 10.8 581.9 + 5.2  579.8 + 1.7 580.0 + 1.5 580.4 + 1.6 584.5 + 5.5 583.80 

 
 

A1.3.2  Sampling strategies 

As expected, the RMSE increased with lower sampling intensity (Table I.3). 
The mean RMSE of GC was larger for mini swards 2 (1.16%) and 3 (1.55%) 
than for mini sward 1 (0.72%). For homogeneous swards, the mean (absolute) 
error with the default sampling-strategy (SAST 5) was 0.95% GC and 0.59% 
IRI, 0.10 nm for the BE and 0.34 nm for the GE. These values increased for the 
more heterogeneous swards 2 and 3, as shown by the mean values. Reducing 
the RMSE with 50% requires an increase in sampling intensity of more than a 
factor two. There was a strong temporal effect in RMSE for the spectral 
characteristics. For mini sward 1, BE and GE RMSE decreased from 0.26 and 
0.75 nm at the beginning of the growth period to 0.02 and 0.05 nm at the end of 
the growth period (Table I.4).  
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Table I.3 RMSE for sampling strategies (SAST) 1-6 in mini swards 1-3. Default sampling SAST is 

printed in boldface. 

Sward SAST 1 SAST 2 SAST 3 SAST 4 SAST 5 SAST 6 Mean 

 ----------------------------------------------------GC (%)--------------------------------------------------

1 0.12 0.37 1.00 0.65 0.95 1.21 0.72 

2 0.06 0.27 0.85 0.99 1.7 3.07 1.16 

3 0.22 0.52 1.06 1.94 3.34 2.22 1.55 

Mean 0.13 0.39 0.97 1.19 2.00 2.17  

 ----------------------------------------------------IRI (%)--------------------------------------------------

1 0.03 0.11 0.38 0.34 0.59 0.58 0.34 

2 0.06 0.23 0.64 0.55 0.53 0.97 0.50 

3 0.07 0.12 0.42 0.64 0.95 0.47 0.45 

Mean 0.05 0.15 0.48 0.51 0.69 0.67  

 ----------------------------------------------------BE (nm)-------------------------------------------------

1 0.01 0.02 0.07 0.05 0.10 0.19 0.07 

2 0.02 0.05 0.11 0.06 0.13 0.16 0.09 

3 0.01 0.04 0.11 0.16 0.26 0.12 0.12 

Mean 0.01 0.04 0.10 0.09 0.16 0.16  

 ----------------------------------------------------GE (nm)-------------------------------------------------

1 0.01 0.13 0.32 0.27 0.34 0.56 0.27 

2 0.21 0.39 0.92 0.64 0.70 1.08 0.66 

3 0.08 0.16 0.45 1.08 1.70 0.74 0.70 

Mean 0.10 0.23 0.56 0.66 0.91 0.79  

 
 
The RMSE of GE of the drought stressed swards 2 and 3 first decreased, but 
then GE increased again. The RMSE value of BE remained at a higher level for 
mini swards 2 and 3 than mini sward 1, but did not show a consistent pattern. 
 

A1.3.3  Replicate recordings on one sward 

The replicate measurements were performed on a sward with an intermediate 
GCT-SSD (9.0%) and GCT-SSD (0.4) value, indicating a homogeneous sward, 
with 49.6% GC (Table I.5).  
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Table I.4 Temporal aspects of sampling strategy 5 on blue edge (BE) and green edge (GE) RMSE 

in mini swards 1-3. 

Sward 5 Nov 9 Nov 13 Nov 17 Nov 21 Nov 25 Nov 

 --------------------------------------------------BE (nm)------------------------------------------------

1 0.26 0.17 0.10 0.04 0.02 0.02 

2 0.27 0.08 0.14 0.06 0.13 0.11 

3 0.46 0.28 0.26 0.26 0.18 0.18 

Mean 0.33 0.18 0.17 0.12 0.11 0.10 

 --------------------------------------------------GE (nm)------------------------------------------------

1 0.75 0.70 0.24 0.16 0.13 0.05 

2 1.34 0.36 0.38 0.26 0.86 0.98 

3 4.68 1.92 0.75 0.50 0.58 1.76 

Mean 2.26 0.99 0.46 0.31 0.52 0.93 

 
 

Table I.5 Means, standard deviation of the mean (SDM) and coefficient of variance (CV, %) of 8 

replicate measurements in a single mini sward for soil, dead material (DM), ground cover 

(GC), GC spatial standard deviation (SSD), logarithmically transformed GC (GCT) SSD, 

index of reflection intensity (IRI) and blue edge (BE) and green edge (GE) position. 

 Soil  

(%) 

DM 

(%) 

GC 

(%) 

IRI 

(%) 

GC-SSD 

(%) 

GCT-SSD

(%) 

BE 

(nm) 

GE 

(nm) 

Mean 35.3 14.9 49.6 2.8 9.0 0.4 519.9 601.6 

SDM 1.36 1.13 0.93 0.48 0.97 0.04 0.11 1.14 

CV 3.8 7.6 1.9 17.2 10.7 10.8 0.02 0.19 

 
 
The relative error of GC was small with a CV of 1.9%. The individual intensity 
classes had a CV of 7.5, 5.1, 4.8, 11.2, 17.6, 29.0 and 45.8 for GCG0-6, where 
CV increased with a lower mean value.  
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A1.3.5  Effects of spatial resolution 

Increasing the spatial resolution increases reflectance considerably (Figure I.1 
and I.2). The largest changes can be found at wavelengths were reflection of  
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Figure I.1 Effects of pixel width on reflectance, measured on 17 November with the V7 sensor from 

mini sward 1 with adequate water supply (A) and mini sward 2 with drought stress (B). 

Pixel widths: 0.20 (     ), 0.79 mm (     ), 1.59 mm (      ), 3.17 (     ), 6.35 mm(    ) and 

12.71 mm (     ).  
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green material is low. Spatial resolution had minor effect on reflectance at the 
transition from the red to the infrared i.e. all curves had similar normalised 
reflection at one wavelength on the edge.  
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Figure I.2 Effects of pixel width on reflectance, measured on 17 November with the N17 sensor 

from mini sward 1 with adequate water supply (A) and mini sward 2 with drought stress 

(B). Pixel widths: 1.04 mm (     ), 4.16mm (    ), 8.32 mm (    ), 16.64 mm (    ) and 

32.28mm (     ). 
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The wavelength position of this crossing point was slightly higher for mini 
sward 2 than 1. The effects of spatial resolution were slightly larger for mini 
sward 2 than 1. This difference was probably due to the differences in GC, 
visible dead sward material and water content of the soil. On 17 November, GC 
was 64.1% for mini sward 1 and 34.1% for mini sward 2 (Table I.2). 
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Figure I.3 Position of minimum derivative near 1390nm for mini sward 1 (A) and 2 (B). Pixel 

widths: 1.04 mm (   ), 4.16mm (   ), 8.32 mm (   ) , 16.64 mm (   ) and  

32.28mm (       ). 
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Obviously, these changes in spectral curve also affected the position of 
minimum or maximum derivatives. As an example, the position of the 
minimum derivative near 1390 nm is shown (Figure I.3).  
The effects of spatial resolution were stronger for mini sward 2 than 1 (Figure 
I.2). The trends were similar for various spatial resolutions. The water content 
of the soil under mini sward 2 was low, in contrast to the soil under mini sward 
1. Therefore, the contrast in reflectance pattern between soil and green material 
was larger for mini sward 2 than 1. This effect was largest around 13 
November, and thereafter the contrast decreased when leaves dried out, 
resulting in smaller differences between spatial resolutions (Figure I.3).  
Increasing pixel widths affected the position of minimum and maximum 
derivatives stronger for mini sward 2 and 3 than 1 (Table I.6).  
Based on these numbers, no critical pixel width could be identified. Positions of 
other minimum or maximum derivatives were in a similar fashion affected by 
spatial resolution. Although the spectra crossed at one point on the red edge, 
maximum derivatives showed shift in the position of the maximum derivative 
with spatial resolution for the drought-stressed mini sward 2, in contrast to mini 
sward 1. 
 
 
 

Table I.6 Root mean squared error of position of minimum and maximum derivatives near 570 and 

1390 nm, averaged over 6 dates, for various pixel widths. 

Pixel Width (mm) Mini sward 1 Mini sward 2 Mini sward 3 Mean 

 ------------------------------------------------570 nm ---------------------------------------------

0.79 0.36 0.58 1.01 0.65 

1.59 0.94 1.09 1.95 1.33 

3.17 1.02 2.01 4.02 2.35 

6.35 1.86 2.28 1.54 1.89 

12.71 1.96 3.25 3.57 2.93 

 --------------------------------------------1390 nm---------------------------------------------- 

4.16 0.51 0.33 1.00 0.61 

8.32 0.72 1.36 1.95 1.34 

16.64 0.71 1.41 1.93 1.35 

32.28 1.49 2.31 2.22 2.01 
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A1.3.5 Error sources due to system design 

Jørgensen (2002) described the error sources of lenses, dispersing spectrograph 
and camera extensively. The main sources of error are due to specifics of the 
imaging spectrograph and charge coupled device (CCD).  
Consider the projection of an image line on the CCD, with spatial information 
on the horizontal axis and spectral information on the vertical axis. The location 
of specific wavelengths varies slightly with the position of the spatial axis. This 
means that if calibration is performed on the spectra in the centre of the spatial 
axis, there will be an error at the left and right end of the spatial axis. The 
manufacturer’s test-report indicated that the bending across the spatial axis for 
the V7 sensor was 0.5 nm at 693 nm and 1.5 nm at 436 nm. Polder & Van der 
Heijden (2001) found a bending of 1.3 nm at 670 nm wavelength on a similar 
sensor. The bending ranged between 0.5-1.5 nm for the N10 sensor. 
Lens distortions introduced also a bending on the vertical axis. The barrel 
distortion of the front lens is compensated by the pincushion distortion of the 
rear lens under the condition of symmetry. The diffraction in the PGP element 
causes asymmetry, and the barrel and pincushion distortions are no longer 
completely compensated.  
Jørgensen (2002) found for the horizontal distortion H∆ on the CCD for their 
imaging spectrograph a relation of the form: 
 

dHdaH ××=∆ 2λ  
 
where H∆ indicates the error in mm, λd the displacement on the vertical axis 
when compared to the image centre and dH the displacement on the horizontal 
axis when compared to the image centre. This indicates that the error was 
largest on the outer-ends of the CCD-image.  
The main error sources occurring in the CCD are due to dark current noise and 
pattern noise. Dark current noise is signal generated by the CCD itself, and 
strongly depends on temperature. Pattern noise arises from differences between 
pixels in e.g. size, material and thickness of coatings. Therefore, sensitivity to 
incident light varies between pixels. These error sources are important, and 
require pixel-based calibration. 
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A1.4  Discussion and conclusion 

The errors made with the default sampling strategy were small for 
homogeneous swards. The mean RMSE (absolute error) of the default sampling 
strategy within a growth period was 0.95% GC, 0.59% IRI, 0.10 nm for the BE 
and 0.34 nm for the GE. It was shown that these values increased with a factor 
2-5 for more heterogeneous mini swards. The RMSE of the spectral parameters 
BE and GE strongly decreased during the growth period for the homogeneous 
sward, from 0.36 nm (BE) and 0.75 nm (GE) at the beginning of the growth 
period to 0.02 nm (BE) and 0.05 nm (GE) at the end of the growth period.  
The replicate measurements on a single sward showed a standard deviation 
(over replicate measurements) comparable to the default sampling strategy 
RMSE for GC and IRI, whereas the standard deviation was larger than RMSE 
for the spectral parameters BE and GE. This was probably due to the stronger 
spatial colour-heterogeneity of the sward on which the replicate measurements 
were performed. It should be noted that BE and GE were calculated per image 
line. Normally, the BE and GE were based on the average spectral curve of 
grass leaves in 42 image lines. 
Spatial resolution had a strong effect on reflectance, and on the position of 
minimum and maximum derivatives. The amplitude of this effect depended on 
the width of the pixels on the image line, wavelength and background 
characteristics. Results of Horler et al. (1983) suggested that the derivative of 
the red edge position in field applications would be unaffected by ground cover, 
i.e. spatial resolution. Although different spatial resolutions had a common 
point were reflectance spectra crossed at the red edge, this point was not 
located at the point of maximum slope for mini swards 2 and 3. Therefore, the 
fraction of ground cover affected red edge position, probably because the 
background material may have had a clear reflectance slope from the red to the 
infrared.  
The changes in reflection with spatial resolution were strongest in wavelength 
regions with low reflection. Increasing pixel widths up to 4 mm only slightly 
affected the mean reflection curve. This is equal to pixel sizes on the soil 
surface around 5.5 mm2. The changes in reflection curve with increasing pixel 
widths were stronger for the drought stressed sward than for the control sward. 
These mini swards differed in GC and the amount of soil and dead material 
visible. This clearly illustrates that variation in spectral properties of the 
background must be accounted for, when measuring leaf reflectance with a 
system with pixel sizes equal or larger than leaf widths. Therefore, it is 
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concluded that background influence for field based systems, measuring under 
various background conditions, can be successfully reduced with pixel sizes 
smaller than leaf width.  
Jørgensen (2002) identified and summarised a large number of potential error 
sources within imaging spectroscopy systems. The most important error sources 
were related to bending in horizontal and vertical direction on the image. The 
most important conclusion from this is that, when considering an image line, 
the spectral information of one location on the image line is influenced by its 
neighbours, where the amplitude depends on the position on the image line. The 
spectral information may also be somewhat shifted, i.e. the reflectance curve of 
a leaf in the centre of the image line deviates slightly from the reflectance 
curves from the same leaf measured at the left and right ends of the image line. 
The influence of these two error sources on the measured reflectance is 
expected to be small for the V7 and N10 sensors, as spectral information was 
averaged over a large number of pixels on various image line positions. The 
spectral library contained spectra from various pixel positions on the image 
line. Therefore, the classes include variation due to position on the image line. 
From Chapter 3, it can be concluded that the spectral differences between 
classes were still large enough for successful classification.  
These error sources become important when working with spectra of individual 
pixels, and appropriate calibrations should be performed (Jørgensen, 2002). 
Polder & Van der Heijden (2001) concluded that each position on the image 
line requires separate spectral calibration. From the work of Jørgensen, (2002) 
it can be concluded that pixel based calibrations are required in the spectral as 
well as the spatial direction. 
The effects of dark current noise is limited by the short time lag between 
recording of ‘standard’ images (dark image and images of 50% reflecting 
surface) and by averaging over multiple reference images. The pattern noise 
was removed by pixel based calibration procedures. Dark current noise was 
probably the most important error source in the CCD, as the V7 and N10 
sensors were not cooled.  
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A2.1  Introduction 

Currently, there are a number of non-destructive grass dry matter (DM) yield 
assessment methods available, such as rulers, the disk-plate meter (DPM), 
capacitance meter or crop reflection meters. The disk or rising plate meter is a 
thoroughly studied method for non-destructive DM yield assessment in grass 
swards (Gabriels & Van den Berg, 1993; Harmoney et al., 1997; Murphy et al., 
1995; Sanderson et al., 2001; Stockdale & Kelly, 1984; Virkajärvi, 1999). The 
crop reflection, measured with Cropscan (Cropscan Inc.), is currently used for 
fertilisation recommendation in a variety of crops (Booij et al., 2001). 
The accuracy of dry matter (DM) yield assessment with imaging spectroscopy 
was evaluated by means of comparison with DPM and Cropscan. For the sward 
damage and nitrogen experiment in 2000, crop height measurements were made 
at harvest with a disk plate meter. Crop reflection was measured with the 
Cropscan at three harvests. The Cropscan measurements were primarily 
intended for comparison of reflectance measurements with a low and high 
spatial resolution. 
 
 

A2.2  Materials and methods 

The crop height and crop reflection were measured in the sward damage 
experiment of 2000 (described in Chapter 3 and 8) and N experiment of 2000 
(described in Chapter 4). The sward damage experiment will be referred to as 
experiment 1, the N experiment as experiment 2. 
 

A2.2.1  Disk plate meter 

Sward height was measured with a plate meter at all harvests. The plate meter 
consisted of a PVC rod surrounded by a circular polystyrene foam plate with a 
diameter of 0.6 m. The rod is placed on the soil and then the plate sinks on the 
grass and the height of the grass can then be read from the rod. The sward 
height measured with the DPM depends on the height and density of the sward. 
The PVC rod was placed in the centre of the mini swards and height of the 
foam plate was recorded. In experiment 2, some swards with high N supply 
were slightly lodged. 
Gabriels and Van den Berg (1993) reported that logarithmic transformations of 
both DM yield and crop height resulted in approximately homogeneous residual 
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variances. Therefore, both DM yields and crop heights were logarithmically (ln) 
transformed. The coefficient of variance (CV) was calculated as:  
 

1100(%)
2

−×= reCV σ  (1) 
 
where 2

rσ equalled the residual variance of ln transformed DM yield after 
regression.  
 

A2.2.2  Cropscan 

At three harvests, on 20 June, 29 August and 31 October, crop reflection was 
recorded with a Cropscan (Cropscan inc.). The Cropscan records reflection in 8 
bands with centre wavelengths (and associated bandwidths) at 460 (27), 510 
(32), 560 (25), 610 (27), 660 (26), 710 (33), 760 (28) and 810 (32) nm, under a 
viewing angle of 28o. 
Crop reflection was recorded for all mini swards in experiment 2 and for mini 
swards with artificial and natural sward damage in experiment 1. The Cropscan 
was held 80 cm above soil surface, resulting in a field of view with 0.2 m 
radius. Means of two measurements, directed to opposite sides of the mini 
sward, were calculated. The Cropscan was used in the rain shelter, what might 
have influenced the results slightly. 
In literature, a large number of vegetation indices are proposed for yield 
assessment from crop reflection measurements with remote sensing (e.g. 
Purevdorj et al., 1998). The weighted difference vegetation index (WDVI) and 
normalised difference vegetation index (NDVI) are widely used for dry matter 
yield assessment (Clevers, 1989; Clevers & Verhoef, 1993) 
 
The NDVI was calculated as: 
 

660810

660810

RR
RR

NDVI
+
−

=  (2) 

 
where R810 and R660 is the crop reflection measured with the 810 and 660 nm 
band. The NDVI is sensitive to optical properties of the soil background (Baret 
& Guyot, 1991). The WDVI corrects for soil background and moisture content 
(Clevers, 1989). The WDVI was calculated as: 
 

560810 * RSRWDVI −=  (3) 
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where S is the soil correction factor and R560 is the crop reflection in the 560nm 
band. For S, a value of 2.1 was used. This assumes that for soil the reflection in 
the R810 band is 2.1 times higher than the R560 band. 
 

A2.2.3  Imaging spectroscopy 

The relation between GC, IRI and DM yield can be found in Chapter 3. In 
Chapter 9, results are presented on the predictive power of the combination of 
GC, IRI with spectral information for DM yield. For experiment 1, relations 
were taken from Chapter 3. In this appendix, these relations were estimated for 
experiment 2. Additionally, some regressions were made with data of the N 
experiment in 2001, as described in Chapter 5. 
 

A2.2.4  Statistics 

The experiments were studied separately. Were appropriate, an exponential or a 
linear relation was used for regression. When residuals deviated from the 
normal distribution, data were logarithmically converted. The equations were 
evaluated with the adjusted R2 (R2

adj) and with the standard error (SE) of 
observation. The SE of observation was calculated as the mean root square 
error of the residuals. For regressions on logarithmically converted data, the SE 
of observation was estimated with the relative error at the mean DM yield in the 
experiment. 
 
 

A2.3  Results 

A2.3.1  Disk plate meter 

Preliminary regression between crop height and DM yield showed residual 
variances that were proportional to DM yield, i.e. the variation in DM yield 
increases with crop height (Figure II.1 A). Therefore, regressions were based 
on logaritmically transformed data. The sward height was linearly related to 
DM yield after logaritmic transformation in experiment 1 and 2 (Figure II.1 B).  
The CV was 32.1 and 40.6% for experiments 1 and 2 respectively. On log 
scale, the relative error was 32 and 39%, equivalent to an error of 555 and  
645 kg DM ha-1 at the mean yields (1733 and 1654 kg DM ha-1) in experiment 
1 and 2 (Table II.1). 
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Figure II.1 Sward height measured with the disk plate meter vs. DM yield before (A) and after (B) 

logarithmic transformation for experiment 1 (-) and experiment 2 for 0N (×), 30N ( ), 

60N( ), 90N( ) and 120N( ). See Table II.1 for regression equations. 

 
 
The mean root squared error, calculated with the re-transformed regression 
equations was 419 and 541 kg DM ha-1 in experiment 1 and 2. The mini swards 
with high N supply (90 and 120 kg N ha-1 harvest-1) in experiment 2 had a high 
DM yield but sward height remained below 20 cm. This was due to lodging of 
these swards. 
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A2.3.2  Cropscan 

The NDVI was exponentially related to DM yield (Figure II.2). The 
discriminating ability of this relation is severely limited above 2000 kg DM ha-1 
or 0.8 NDVI. 
 
The WDVI was linearly related to DM yield (Figure II.3). The R2

adj was 0.47 
for experiment 1 and 0.65 for experiment 2, with a standard error of 
observation of 298 and 638 kg DM ha-1. The variation in DM yield increased 
with WDVI value. 
The red edge inflexion point was also significantly correlated to DM yield in 
experiment 2, with an R2

adj of 0.33. There was no significant correlation 
between red edge inflexion point and DM yield in experiment 1. 
Regressing a combination of all significant bands against DM yield improved 
results (Figure II.4), with higher R2

adj and lower SE observation values (R2
adj 

=0.72 and 215 kg DM ha-1 SE obs. in experiment 1, and R2
adj 0.87 and 395 kg 

DM ha-1 SE obs. in experiment 2). Unfortunately, bands selected in experiment 
1 differed from bands selected in experiment 2 (Table II.1). 
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Figure II.2 Normalised difference vegetation index (NDVI) vs. DM yield for experiment 1 ( ) and 

experiment 2 for 0N (×), 30N ( ), 60N( ), 90N( ) and 120N( ). See Table II.1 for 

regression equations. 
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Figure II.3 Weighted difference vegetation index (WDVI) vs. DM yield for experiment 1 ( ) and 

experiment 2 for 0N (×), 30N ( ), 60N( ), 90N( ) and 120N( ). The observation with 

( ) was not included in the analysis. See Table II.1 for regression equations. 
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Figure II.4 Regression result of combinations of Cropscan bands vs. DM yield for experiment 1 ( ) 
and experiment 2 ( ). See Table II.1 for regression equations. 
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A2.3.3  Relations between DM yield and GC and IRI 

DM yield (in tons) was curvilinearly related to GC in experiment 1 with a R2
adj 

of 0.82 (GC = -7.9 + 91.5 × (1-e-1.44 × DM yield)) and in experiment 2 with a R2
adj 

of 0.89 (GC = 21.7 + 66.4 × (1-e-1.36 × DM yield)), as found in Chapter 3 earlier for 
experiment 1,  R2

adj = 0.82), see Figure II.5. 
Although parameter values were slightly different between experiments 1 and 
2, the maximum GC value was comparable, with 82.6 and 88.1 for experiments 
1 and 2 respectively. The extinction coefficient values were also similar, with -
1.44 in exp.1 and –1.36 in exp. 2, with a standard error of 0.1 in both 
experiments. 
The combination of GC and IRI had a strong relation (R2

adj=0.82-0.89) with 
DM yield (Table II.1). The relation between GC, IRI and DM yield did not 
require a logarithmic transformation in experiment 2, in contrast to experiment 1. 
Also the 2001 N experiment did not require a logarithmic transformation 
(R2

adj=0.92, SE observation 289 kg DM ha-1, data from Chapter 5). 
The relation between GC-GCG0-GCG1, IRI and DM yield also had different 
parameter values for the three experiments in 2000 and 2001. These differences 
were partly explained by the relation between IRI and DM yield. In experiment 1 
the relation between IRI and DM yield was: IRI=-3.2 (+0.7) + 8.1 (+0.4) × DM 
yield (ton ha-1), with R2

adj=0.56 and SE observations of 4.94. In experiment 2  
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Figure II.5 DM yield vs. GC for experiment 1 ( ) and experiment 2 ( ). See Table II.1 for 

regression equations. 
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Figure II.6 Measured DM yield vs. estimates of DM yield calculated with GC and IRI (A) and PLS 

calibration models including GC and IRI (B) for experiment 1 ( ) and experiment 2 ( ). 

See Table II.1 for regression equations. 

 
this relation was IRI=-2.3 (+1.1) + 10.4 (+0.5) × DM yield (ton ha-1), 
R2

adj=0.91, SE obs=3.72. From the standard errors of the parameters, it can be 
concluded that the slope of these two relations was slightly, but significantly 
different. 
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The slightly stronger negative extinction coefficient in the DM yield and GC 
relation indicates that 1 ton DM yield difference affected GC stronger in 
experiment 1 than in experiment 2. Therefore, the differences between the 
experiments were also partly due to specific leaf area, as limited N supply in 
experiment 2 resulted in thicker leaves. 
In Chapter 9 it was concluded that combining GC, IRI and spectral information 
of leaves resulted in an even stronger relation with DM yield, with a root mean 
square error of predictions of 268 and 235 kg DM ha-1 for experiment 1 and 2. 
With only information of normalised spectra, root mean square errors of 
prediction were 286 and 343 kg DM ha-1 for experiments 1 and 2. Obviously, 
these errors were smaller for the calibration sets with 188 and 322 kg DM ha-1 
for the normalised spectra and 183 and 109 kg DM ha-1 for the normalised 
spectra in combination with GC and IRI for experiment 1 and 2 respectively 
(Table II.1). 
 

A2.3.4 Comparing methods 

The standard errors of the relations between DM yield and crop height 
measured with the disk plate meter were high, with 555 and 645 kg DM ha-1 for 
experiment 1 and 2 (Table II.1). These errors were lower for Cropscan NDVI 
(163 kg DM ha-1) and WDVI (298 kg DM ha-1) in experiment 1, but higher in 
experiment 2 (689 and 638 kg DM ha-1) than for crop height. The large 
differences between the experiments were due to the differences in DM yield 
range between the experiments, with maximum yields of 2293 kg DM ha-1 in 
experiment 1 and 4075 kg DM ha-1 in experiment 2 (Figure II.1 and II.2). DM 
yields of experiment 2 were clearly beyond the sensitivity range. Combining 
various Cropscan bands reduced SE of experiment 2 to 395 kg DM ha-1, 
whereas SE in experiment 1 remained higher than with NDVI as regresssion 
variable.  
The GC is strongly (R2

adj=0.79 and 0.88) related to DM yield. This relation can 
only be used for DM yield estimation in the lower DM yield range (< 2000 kg 
DM ha-1). Combining GC and IRI allowed a linear regression, especially when 
including only intensity classes with high reflection intensity (Chapter 3). With 
normalised spectra of 2 sensors as input for partial least square models (PLS), 
root mean square error of cross validation was still rather high (322 kg DM 
ha-1) for experiment 2. This error was strongly reduced to 183 and 109 kg DM 
ha-1 when including also GC and IRI in the model. 
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Table II.1 Regression equations for disk plate meter, Cropscan and the imaging spectroscopy 

system for DM yield. 

 Experiment Observations # Model R2
adj SE 

------------------------------------------------------------------Disk plate meter------------------------------------------------------------------ 

Crop height 1 306 e4.69+1.06×ln(crop height) 0.66 555* 

 2 98 e2.35+1.90×ln(crop height) 0.55 645* 

-----------------------------------------------------------------------Cropscan----------------------------------------------------------------------- 

NDVI 1 44 608+5.68 × 580NDVI 0.84 163 

 2 59 248+2.41 × 2687NDVI 0.59 689 

WDVI 1 44 420 + 41.5 × WDVI 0.47 298 

 2 59 70.2 × WDVI 0.65 638 

Band combinations 1 44 1208-117.0 × R460 + 98.5 × R560 + 

25.3 × R610-123.2 × R660 

0.72 215 

 2 59 1567 + 328.7 × R460 -303 × R510 -

199 × R710 + 64.8 × R760 

0.87 395 

---------------------------------------------------------------Imaging spectroscopy---------------------------------------------------------------- 

GC 1 334 236 + 59.2 × 1.044GC 0.79 311 

 2 100 381 + 1.13 × 1.092GC 0.88 308 

GC+IRI 1 334 e5.19 + 0.028 × GC + 0.010 × IRI 0.82 323* 

 2 100 13.94 × GC -174.9 × IRI + 2.601 × 

GC × IRI 

0.89 303 

Two sensor model 1** 147 PLS 0.96 188 

 2** 37 PLS 0.90 322 

Two sensor model, 

with GC and IRI 

1** 147 PLS 0.96 183 

 2** 37 PLS 0.99 109 

* Regression based on ln transformed data, SE approximated with the relative error at the average 

DM yield in the experiments. 

** Calibration models, SE approximated with root mean squared error of cross validation. 
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A2.4  Discussion and conclusion 

It is concluded that the accuracy of DM yield assessment with imaging 
spectroscopy (109-183 kg DM ha-1) is better than with the disk plate meter 
(529-743 kg DM ha-1) or Cropscan (215-395 kg DM ha-1). The data used were 
not measured with the intention to compare methods. Therefore, data sets 
differed for Cropscan and disk plate meter and imaging spectroscopy, although 
measured in the same experiments. Cropscan data in experiment 1 did not 
include yields above 2500 kg DM ha-1, and regressions results are, therefore, 
expected to be better than in a data set where higher DM yields are included.  
The crop height, recorded with the disk plate meter was very sensitive for 
lodging of the swards, which occurred in the N experiment under high N 
supply. The spatial variability of damaged swards was large. This resulted in 
high values of CV (32.1 and 40.6) for the sward damage and N experiment. 
These values are comparable with data of grazed swards (Gabriels and Van den 
Berg, 1993).  
The fitted equations yielded higher R2 values for the Cropscan. The NDVI and 
WDVI were severely limited in their applicability at higher DM yields, as 
sensitivity decreased strongly with DM yields above 2000 kg ha-1. This is in 
accordance with findings of King et al. (1986). They concluded that the 
accuracy of sward reflection (red-far red ratio) was very similar to sward height 
measured with a ‘sward stick’ in the 700 to 1800 kg DM ha-1 range and that 
reflection could not be used above LAI 3-4, or 2000 kg DM ha-1. Lokhorst and 
Kasper (1998) compared Cropscan with DPM for dry matter yield assessment 
in the higher DM yield range and found that the performance of Cropscan was 
not better than DPM. Gabriels and Van den Berg (1993) concluded that 
refinements are necessary before the capacitance meter or DMP can be usefully 
integrated into a management system. 
The reflection signals recorded with Cropscan and the experimental imaging 
spectroscopy system cannot be compared directly. Firstly, the characteristic of 
the light sources used differs. Secondly, the Cropscan records reflection from 
the combination of soil, crop and dead material, whereas soil and dead material 
influences are minimised in the used classification procedure of the 
experimental system. Thirdly, both systems will respond differently to changes 
in canopy geometry. Fourthly, the fixed and limited distance between light 
source and crop caused reflection intensity to respond strongly to crop height in 
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the imaging spectroscopy system, whereas this information is not available for 
systems based on solar radiation, such as the Cropscan. 
The strong relations between imaging spectroscopy parameters and DM yield 
can be attributed to the accurate information of ground cover and index of 
reflection intensity. GC was exponentially related to DM yield and, therefore, 
only sensitive below 2000 kg DM ha-1. Relations became more linear when 
including IRI, expanding the range of sensitivity considerably. In contrast to the 
disk plate meter, imaging spectroscopy was not very sensitive for lodging. 
Decreasing crop height decreases reflection intensity, but this effect is to a large 
extent compensated by a more horizontal leaf orientation. With normalised 
spectral information only, DM yield predictability was also good, with root 
mean square errors of prediction of 286 and 344 kg DM ha-1 (Chapter 9). This 
can probably be attributed to the effects of canopy geometry (mean leaf height 
and angle) on the mean leaf spectra measured with the imaging spectroscopy 
system. Combining GC and IRI with leaf spectral information further reduced 
the prediction error, when compared to GC and IRI or spectral info alone, to 
268 and 235 kg DM ha-1. 
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