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Abstract

This thesis focuseson the use of modern statistical methods to solve problems on

sampling, optimal cutting time and agricultural modelling in Portuguesecork oak and

eucalyptus stands. The results are contained in �v e chapters that have been submitted
for publication as scienti�c manuscripts.

The thesis �rst addressesthe decisionof whento cut a rotation of eucalyptus produc-
tion forest. The aim is to optimise the long term volume production, correctedfor replant

costs. On the long term the total �nancial yield divided by the total rotation time is an

important economicalasset. Successive rotations and their growth curvesare considered
as independent realisations of the same generating process. A Bayesian approach was

taken, using Shumacher curves. Prior information on the curve parameterswas basedon
a large number of observed growth curves. For known or accurately estimated curves,

a 16 % gain in optimisation of cutting times could be achieved, as compared to using a
common optimal cutting time. It is assumedthat a farmer takes two volume measure-

ments to decide upon the cutting time of a rotation, the �rst measurement at a �xed
age,the secondat an agethat possibly dependsupon the �rst measurement. Finding the

optimal secondmeasurement time is entangled with �nding the optimal cutting time. In

this thesis,simultaneousoptimisation is carried out using numerical methods. The gain in
using a variable optimised secondmeasurement time, compared with an optimised �xed

measurement time, however, wasrelatively small (up to 0.1 %), which is hardly above the
numerical noise level.

A secondproblem addressedin this thesisconcernsestimation of stemdiameter growth

curves in cork oaks. A data-set of 24 trees was used. A D-optimal experimental design
has beencomparedwith equidistant designsto measuretrees at particular agesto allow

for an optimal estimation of individual growth curves. An experimental design that is
locally D-optimal for a central parameter is proposed. This �xed compromisedesigncan

be usedfor all trees. For individual growth curvesand under certain conditions that are
discussedin the thesissuch a designprovidesbetter estimatesthan an equidistant design.

The third study concernsspatial modelling of quantitativ e cork oak characteristics.

Spatial statistical methods are usedto analysecork oak stands, so-calledmontados. Spa-
tial correlations betweenneighbouring trees of crown shapes,of crown sizesand of stem

sizesare analysedusing plots from two montados. A signi�can t correlation is found be-
tweentree sizeand competition from neighbouring trees. In particular, larger trees have
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a regular spatial distribution in a montado.

The �nal study in this thesis comparesthree sampling methods for use in cork oak

farms. One method is currently in use by Portuguesefarmer's associations to estimate

cork value prior to stripping and the other two methods are compared to it. The three
sampling methods are applied to two cork oak farms and to simulated stands. The latter

are generatedwith spatial simulation methods on the basisof information obtained else-
where. The current method has a 15-50% larger bias. For a clustered pattern standard

errors are lowest for the current method, but theseare considerably higher for a regular
or a random pattern.

In conclusion, this thesis shows that modern statistical methods are valuable to im-

prove modelling and sampling of cork oak and eucalyptus forests. In particular, spatial
relations among neighbouring trees should preferably be included into management of

cork oak farms. Adequate sampling methods are basic to retrieve information of the

highest quality.
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Chapter 1

In tro duction

Systemsapproachesare playing a prominent role in current agriculture and forest science.

In forestry, standsof treesmay serveassilvopastoral systems.Such systemsare subject to
environmental and weather conditions, aswell as to management activities. Management

has to decide when, where and how actions have to be taken. Many decisionshave a
quantitativ e background, and require a quantitativ e answer. They are preferably taken

on the basis of measurements on trees in the current system, in other systems under

similar conditions and on the samesystem in the past. They most likely could bene�t
therefore from well-interpreted statistical analyses.

This thesis is basedon precisely this approach. As a demand-driven research it inves-
tigates the role that current mathematical statistical methods can play to answer relevant

quantitativ e management questions. The thesis is focusedon four typical research ques-
tions:

� What is the optimal cutting time of a rotation?

� What is an optimal experimental designto estimate stem diameter growth?

� How could one model spatial competition e�ects?

� What is the optimal sampling strategy to estimate tree characteristics?

Current methods from mathematical statistics are applied to answer these questions
as good as possiblefrom nowadays' perspective.

Several procedureshave recently beendeveloped in mathematical statistics. Sincethe
early nineteennineties, Bayesianmethods, although dating back to the 18th century , have

found a placebetweenother commonestimation and modelling procedures.This is mainly
due to the increased
exibilit y and power of modern computer systemsin handling the

1



2 Chapter 1. Intro duction

increasedamount of data and information required for such analysis. Bayesianprocedures

allow to make a better estimate of parameters on the basis of prior information. Using
actual data, the prior is updated to giveposterior estimatesthat may havea lower variance

than the prior parameters. Another recent development has taken place in D-optimal

designs,where issuesof robustnessare of an increasingconcern. In spatial statistics and
imageanalysisincreasingattention hasrecently beengiven to statistics of shapes. Shapes

are characterized by a low number (e.g. 4 { 8) of points to which possibly interpolating
splinesor polygonsare �tted. So far, applications in agricultural and production forestry

are lacking, however, although the bene�ts of thesemethods can be large.

This thesis develops these methods on Portugueseagricultural and forestry systems.

As a production forest system it considers forest stands consisting of eucalyptus trees

and of cork oaks. The eucalyptus was intro duced in Portugal as an ornamental tree in
1829and becameeconomically important after the development of the paper industry in

1907. The most abundant eucalyptus speciesin Portugal is Eucalyptus globulus Labill.,
usedmainly for pulpwood production and sawtimber. The eucalyptus is highly suited for

pulpwood production due to its fast growth and excellent �b er qualities, yielding whiter
�b er than any other tree species. Eucalyptus production forests are managedover very

short rotations (10-15years). Averageyearly volume production is usually between15-20
m3ha� 1.

Cork oak (Quercus suber L.) is grown in Portugal mainly in montados. A montado is

a agroforestry system, where the farmer keepsone or more tree speciesin a low density
and grows cows or sheepin the samearea. Typically, montados occur in low populated

areaswhere the soil is too poor for agriculture, particularly in the south-eastpart of the
country . They cover large areas,often of a few hundreds of hectaresin size. Cork oaks

have a life span of 300{400 years, but are economically viable for less than 150 years.

Cork is a thick and continuous layer of suberisedcells,producedby the meristematic cork
cambium (or phellogen). It makesup the external envelope of the stem and branchesof

the tree. The value of cork for industrial purposeshighly dependson cork thickness. The
highest value is associated with thicknessesbetween 29 and 40 mm. The growth of the

treesand of the cork, aswell as its quality, are determined both by genetic tree character-
istics, site quality and management practices. Management of cork oak stands includes

thinning, shape pruning, understorey clearing and soil fertilit y improvement. Production
of cork is an important economicactivit y, as the world demand for cork keepsincreasing

and Portugal is its leading exporter.
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Purp ose

The purposeof this research is to answer someimportant quantitativ e management ques-
tions with current mathematical statistical methods. As such, it is a demand-driven

approach and exemplary for the analysis and support of decision making at an agricul-
tural and a forestry system. Attention is focusedon current systemsin Portugal, where

these questionswere raised. Sometypical problems in cork oak farming and eucalyptus

forestry are addressed.The useof Bayesianstatistics is investigated. Attention is given to
optimal experimental design,spatial statistics and modern simulation techniques. These

allow a better insight into sampling and management of these systems. The statistical
basis will be partly used in the initialization module of the SUBER model, a decision

support system aimed to help cork oak farmers (seesection 5.5).

Outline

The outline of the thesis is as follows.

Chapters 2 and 3 addressthe optimal cutting time of eucalyptus production forests.

Eucalyptus is harvestedfor pulpwood when it attains approximately the biological rota-

tion age,i.e. the agefor which the averageyearly production in one rotation is maximal.
The economicalaim is to maximise the long term yearly volume production, corrected

for replant costs,as measuredover several rotations by allowing 
exible cutting time for
each rotation by plantation age. The assumption is made replant costsare �xed in each

rotation. The problem is divided into two parts. Chapter 2 determines the optimal cut-
ting time. For maximisation of the long term volume production di�eren t growth curve

are assumedto apply to each rotation. It is shown that the optimal cutting time depends
both on the actual observed growth curve, and on all potential growth curves than may

occur in future rotations. A prior distribution for the growth curve parameters is used.

The generalprior applied in this study covers volume growth curvesobserved in several
stands in di�eren t parts of Portugal. Approximate optimal cutting time is obtained for

the practical situation that a farmer measurestrees at two di�eren t �xed agesat an early
stage of their development and derives two total volume estimates for the forest. The

actual growth curve can be estimated from the two volume estimates. Chapter 3 explores
the last situation further. It is assumedthat a farmer makes the �rst measurement at a

�xed age. With that measurement and prior knowledge of volume growth, the time for
the secondmeasurement is chosenso that in conjunction with the cutting time choice,

the long term production is exactly optimised. Both approximate and exact optimisation
were reached by meansof extensive useof numerical methods.
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Chapters 4, 5 and 6 cover three separateproblems in cork oak montados. Chapter 4
usesan optimal experimental design for estimation of stem diameter growth. Treesare

commonly measuredto estimate tree growth by meansof a seriesof regular time points,

a so-calledequidistant designs. A locally D-optimal experimental design as an alterna-
tiv e consistsof measuring trees at those moments in time, that the determinant of the

asymptotic variance matrix of the (growth) parameters is minimized. This is equivalent
to maximising the determinant of the information matrix of the parameters. This pro-

cedureyields measurements that are performed on speci�c agesof the trees. It allows a
more preciseestimation, but is sensitive to the parameter values. Advantagesof using a

hybrid experimental design,D-optimal for a central parameter, are analysedwith respect
to the estimation of individual tree growth on cork oaks. Its robustnessis studied under

parameter mis-speci�cation.

Chapter 5 considersrelations betweenneighbouring treeswithin singlecork oak stands.

It is analyzedto which degreecompetition betweentreesin
uences availabilit y of nutrients
and light and a�ects the shape and the sizeof tree crowns, which, in turn, are related to

tree health and growth. Competition is measuredby current competition indices. Their
e�ects are studied by meansof their correlation with tree diameter and tree height, crown

size and crown shape. Competition at the crown level is assumedto depend on the dis-
tancesto neighbouring trees and their sizes.

Chapter 6 comparesthree sampling proceduresfor estimation of density, basal area

and cork volume in cork oak montados. Current management requires estimation of

the value of cork, just before cork extraction. This value depends upon quantit y and
quality of cork. A yield estimate assistsa farmer to set a price for his cork. A commonly

used sampling procedure consists of a polygonal transept or zigzag, with a convenient
starting point and covering the whole montado. Every tree located on the transept is

sampled. The two other methods are cluster sampling with �xed plot radius and cluster
sampling with a �xed number of trees and variable plot radius. Comparison is done on

simulated montados with di�eren t point-and-diameter patterns. Bias and precisionof the
estimators, and sampling costsare considered.



Chapter 2

Optimal Bayesian design

applied to volume yield and

optimal cutting time prediction

Maria Jo~ao Paulo and Alb ert Otten
In Ermakov, S.M.; Kashtanov, Yu.N. and Melas, V.B. editors. Proceedings of the 4th St.

Petersburg Workshop on Simulation. 2001. St. Petersburg University. 370-378.

In this study we consider a typical problem where a forester wants to

determine the optimal design in order to estimate the best cutting time

for a eucalyptus stand. We combine a Bayesianprior with observational

information to obtain estimates for the growth curve parameters and to

determine the best cutting time, our optimisation criterion being long

term net volume yield maximisation. Our preliminary results seemto

indicate that the observation variance and choice of prior have a greater

in
uence on yield than the choice of design.
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6 Chapter 2. Volume yield optimisation

2.1 In tro duction

In a eucalyptus production forest the farmer is interested in cutting the trees at the age
which maximises the long term volume production. For a particular (repeatedly used)

growth curve, this age is called the biological rotation age and is determined by the
line through the origin tangent to the volume growth curve. We take the Shumacher

growth curve V = Ae� k=t to explain Volume as a function of time t. Under this model
k is the biological rotation age,and the corresponding long term yearly yield is (A=e)=k.

Traditionally , the farmer wants to be able to predict early in time the biological rotation
ageand the corresponding yield. However, the approach of cutting at the speci�c curve's

rotation ageis not optimal when a new curve (parameters) is `drawn' from a known prior

distribution after each rotation, and in this case�nding the optimal cutting time is an
optimisation problem in itself. In order to make the cutting time optimisation problem

meaningful, we intro duce costsfor each harvest, corresponding to a constant volume loss
V0. First we describe the optimal cutting time strategy, and its numerical implications,

when the actual curve is known to the farmer. Next wedescribe the optimal strategy when
the actual curve is unknown but observations at 2 time points are made, and present a

numerically feasiblesub-optimal strategy for this situation. Using the latter strategy as
de�nition of cutting time, we �nally are able to addressthe designproblem of optimising

t1 and t2.

2.2 Materials and metho ds

One growth curv e versus indep endent curv es from same prior

In the forestry literature a growth period (i.e. time from when a stand of trees is re-

generateduntil the time when it is harvested) is called rotation. Assuming we have one
volume growth curve V (t) = f (t) in all rotations, then it's well known that the cutting

time that maximises the long term volume production is given by the line through the
origin tangent to the volume growth curve, i.e. the point whereV (t)=t is maximum. This

cutting time is called the biological rotation age. A similar result holds with costs, with
V (t) � V0 replacing V (t). If we have oneunknown growth curve in all rotations, on which

we make observations, then we get to know the biological rotation agebetter after each
rotation. Here we consider the situation where instead of having one common curve in

every rotation for a given stand, we assumethat we can have any curve V (t) = f (� ; t)
each time again, where � has a known prior distribution.
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Data

The data set usedis from plots belonging to a Portuguesepulp mill, Stora Celbi, Celulose
Beira Industrial, S.A. It contains the evolution in time of volume per ha for 158 plots

of Eucalyptus globulus. The plots have di�eren t areas, di�eren t tree densities and have
di�eren t quality indices. Each plot hasbeenmeasuredbetween4 and 25 times, at di�eren t

ages.The volume has beenestimated from measurements of diameter and height.

We used OLS to �t 11 growth functions, among others the exponential function (with
2 and 3 parameters), the logistic function and the Gompertz function, to the growth of

volume per ha in time. We selectedthe Shumacher function f (� ; t) = Ae� k=t , where A is
the curve asymptote, and k is the biological rotation age. This function gave the best �t

in most cases.

Prior information

We brie
y studied Â and k̂, the OLS-estimated parameters for the �tted volume growth
curves. We observed their histograms, probabilit y plots and bivariate plots, and repeated

this for transformations of Â and k̂. We found that ln( Â) and ln( k̂) for the pooled data
followed approximately a bivariate normal distribution, with

� =

 
6:28

2:56

!

; � =

 
0:512 0:171

0:171 0:134

!

(2.1)

The within plot component is not negligible, but we proceedby taking � 0 � N (�; �) as
the prior density for ln(A) and ln(k). Sowe generateparametersin the ln scaleand when

necessarywe will transform them back into the original scale. We note that the elements
of � in (2.1) are the total variance due to prior variation in ln( � ), and in [ln( � ). We

further note that the prior density de�ned above is a very `broad' one, observed over all
158plots. Theseplots di�er not only in location but alsohave di�eren t quality classesand

number of treesper hectare, for example. In a singleplot we expect to observe di�erences

in volume growth due to someexternal factors such as weather and soil fertilization, as
well as genetic di�erences. Therefore we expect that the prior density observed for one

single plot or for a given quality classwill have, besidesdi�eren t mean valuesfor the two
parameters,a smaller covariancematrix. In this research it su�ces to considerproperties

of onerotation. We assumethat the farmer knows the family of Shumacher growth curves
for the volume, and prior � 0 for (ln( A); ln(k)). We distinguish between(i) � known and

(ii) � unknown to the farmer. In caseof � unknown, he makestwo observations at times t1

and t2 with someerror with known variance � 2. Then he estimatesthe parameters,using

information from the observations and from the prior distribution. The cutting time is
then chosen. The fact that we use prior information has consequencesto the resulting



8 Chapter 2. Volume yield optimisation

cutting time, becauseif we know the underlying family of growth curves,we may want to

reject a `bad' growth curve by cutting it earlier than the biological rotation age,or even
immediately at time t2 (For � known, we consider t2 to be the minimally allowed cutting

time, for comparison reasons). Similarly, if our observed curve seemsto be a very good

one, we may want to cut it a bit later than the biological rotation age. This seemsto
improve the long term production.

Strategy for the choice of the cutting time

With `strategy' we mean the rule or function which assignsa cutting time C to a known
curve (� ) or data (y1; y2). Formally, for a given strategy, the long term production is

de�ned as the ratio � = E(Ae� k
C � V0)=E(C), where the expectations are taken over

the prior distribution, and also over the observations (when the curve is unknown). The
cutting time optimisation problem is the problem of �nding the strategy which maximises

� . Analytical considerationsshow how to choosethe cutting time once we know � max .
If � is known (i.e. the curve parameters are known), then the chosencutting time C� is

such that

Ae� k
C � � max C (2.2)

is maximal, C� � t2. This leads to either C� being the latest time when the tangent to
the growth curve equals� max , or to C� = t2. If � is unknown, then given the observations

y1; y2 (in the ln scale),wewould have to replaceAe� k
C with EA;k (Ae� k

C jy1; y2), and search
for C� such that

EA;k (Ae� k
C jy1; y2) � � max C (2.3)

is maximal. Since actually � max is unknown, we take a guessfor � max , say � , and use
it in (2.2) and (2.3) instead. Then every � will de�ne a cutting time strategy, and the

performancecan be measuredby � (� ). The cutting time optimisation problem is reduced

now to �nding the � for which � (� ) is maximal. By construction, this optimal � also
satis�es � = � (� ) and � = � max . Maximising EA;k (Ae� k

C jy1; y2) � � C over C is actually

too computer intensive, so we approximate this expressionwith

Âe� k̂
C � � C (2.4)

whereÂ and k̂ now are the highestposterior density estimatesof A and k. The � for which

� (� ) is maximal will be called suboptimal sinceit is expected that the approximation will
slightly degradeperformance.
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The algorithm

For a given � , the evaluation of � (� ) requirestwo-fold (� known) or four-fold (� unknown)
integrals. We only show the most complicated situation (� unknown):

E � ;y [V (� ; C) � V0]
E � ;y [C]

=

R
k

R
A

R
y1

R
y2

(Ae� k
C � V0) h(y1; y2; � ) dy2dy1dAdk

R
k

R
A

R
y1

R
y2

Ch(y1; y2; � ) dy2dy1dAdk
(2.5)

Here yi (� ; t) = ln(A) � k=t + " i , i = 1; 2, " i � N (0; � 2); h(y1; y2; � ) is the joint density of
Y1; Y2 and � , h(y1; y2; � ) = g(y1; y2j� )� 0(� ). Expression(2.5) for � (� ) is equivalent to

R1
�1

R1
�1

R1
�1

R1
�1 (Ae� k

C � V0) e� 1
2 (z2

1 + z2
2 + z2

3 + z2
4 ) dz4dz3dz2dz1

R1
�1

R1
�1

R1
�1

R1
�1 Ce� 1

2 (z2
1 + z2

2 + z2
3 + z2

4 ) dz4dz3dz2dz1
(2.6)

obtained when (A; k; y1; y2) are generatedfrom independent z, z � N (0; I ).

Here

 
ln(k)
ln(A)

!

= � + U0

 
z1

z2

!

where U is the Cholesky root of �, i.e. U0U = �.

Observations at time points t1 and t2 are y1 = ln(A) � k=t1 + z3 � � and y2 = ln(A) � k=t2 +
z4 � � respectively. �̂ was obtained from y1; y2 using a highestposterior density estimate.

The posterior density is that of � given y: � (� jy) = � ( � )g(y j � )
g(y ) . We found for each pair

of observations the �̂ that maximised � (� jy1; y2). The cutting time, C, depends on �̂ , on
t2 and on � . For practical reasons,C was truncated at 30 (years). The ratio � (� ) in

(2.6) was programmed in Fortran using calls to IMSL subroutines. We also implemented
the routine to optimise � (� ) over � . Note that we thus have the algorithm to produce a

(sub)optimal strategy for a given prior, � 2 = 0:5, t1; t2 and costsV0 (we took V0 = 50m3).

Therefore we can ask for the sensitivity of the corresponding (sub)optimal � (written as
� from now on) and for the (sub)optimal design.

Sensitivit y of the (sub)optimal long term pro duction �

We calculated � in the casethat � is known for the following situations:

1. for some values of the prior � ln( A ) and � ln( k ) , maintaining the mean values of A
and k constant. We note that if ln(X ) � N (�; � 2) then E(X ) = e� + � 2 =2. We

modi�ed the original standard deviation � ln( A ) and � ln( k ) in the prior distribution

by a multiplier 1
4 , 1

2 , and 2 (and also 0 for � ln( A ) and 4 for � ln( k ) ). SeeFigure 2.1.

2. for somevaluesof the prior corr (ln (A); ln(k)), maintaining � ln( A ) , � ln (k ) , � 2
ln( A ) and

� 2
ln (k ) constant (seeFigure 2.2).
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Figure 2.1: Dependenceof � on the standard deviation of ln( A) in the prior distribution (E (ln (A))

�xed). Axis shows multiplier of � ln ( A ) . Each curve corresponds to a di�eren t � ln ( k ) multiplier: 1
4

(� ); 1
2 (4 ); 1 (� ); 2 ( � ) and 4 (� ).

3. for somevalues of the time of the secondmeasurement t2. In the casewhere � is

known, no observations are generated,so t2 is consideredto be the earliest possible

cutting time (seeFigure 2.2).
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Figure 2.2: Dependenceof � on the prior correlation (left), and on the earliest possible cutting

time in years(right).

As a �rst step towards the search for an optimal design,we also calculated � in the case

that � is unknown for the following situations:

4. for somevaluesof t1 and t2, maintaining the prior distribution and � (seeFigure 2.3).

5. for somevalues of the observation error standard deviation � = 0; 0:25; 0:5; 0:75; 1
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Figure 2.3: Dependenceof � on design choice. Each curve corresponds to a di�eren t t 1 : 1 (� ); 3

(4 ); 5 (� ) and 7 ( � ).

and 1 , maintaining the prior distribution constant and t1 = 3; t2 = 7 (see Fig-

ure 2.4).

2.3 Preliminary results

Caseof known �
In �gures 1 to 3 we can seehow changing someof the parameterscan a�ect the resulting

ratio � . We know that � will increasefor higher E(A) values and lower E(k) values.
The in
uence of the prior standard deviations on � is less intuitiv e. When the curve

parametersare known, � �rst drops and then climbs, and we observe that the minimum
shifts to larger � ln (A ) values when � ln( k ) increases.An explanation to the �nal increase

could be that a high variation in the values of A will produce somebad volume curves

with low A-values,which will be cut with little time loss,and somevery pro�table volume
curves with high A-values, which will be cut at a very late time. The ratio also seems

to decreasewith a high correlation between the curve parameters, and of coursewith a
higher t2 (seeFigure 2.2). Here t2 is only a minimum cutting time, and is not taking part

in the parameter estimation, therefore the higher t2 is, the later the bad curves can be
cut. We note that in the casewhere � is known, measurement time optimisation doesnot

make sense.
Caseof unknown �

In this case the execution of the algorithm to �nd the (sub)optimal strategy takes a
minimum of 2 hours for a simple situation with �xed values for the parameters used. If
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Figure 2.4: Dependenceof � on the standard deviation of the observations, � , in the casewhere

� is unknown, t1 = 3; t2 = 7. The limit for � when � ! 1 is also shown.

we want to run the algorithm for somedi�eren t values,then the algorithm executionmay

take several days. Figure 2.3 shows that the e�ect of t1 is much greater on the resulting
� than that of t2. The fact that very early t1 producesthe best � is causedby the chosen

observation errors. These are constant in the ln scale, so the parameter estimation is

considerably more accurate when t1 is small. For �xed t1 the curves show an optimum
for t2, as a result of two opposite e�ects: a higher t2 improvesparameter estimation, but

it prevents early cutting. An increasedstandard deviation of the observations, � , also
producesa lower � , as expected (seeFigure 2.4).

2.4 Discussion

Although our goal is to determine the optimal design for a given prior distribution and
observation error variance, we do not yet have results concerning optimal measurement

times for the volume. The algorithm produced allowed us to check the dependenceof �
on its components. We also conclude that � is sensitive to the design choice. However,

we have basedour results on a very `broad' prior distribution, corresponding to very het-
erogeneousplots, located in di�eren t points in Portugal. We expect a more homogeneous

behaviour in the volume growth in plots con�ned to a particular region of the country .
Therefore we recommendthe useof a sharpenedprior in a practical situation.
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Chapter 3

A Bayesian approac h for exact

optimal measuremen t and

cutting times

Maria Jo~ao Paulo and Alb ert Otten
Submitted to Environmental and Ecological Statistics

In a eucalyptus production forest the owner is traditionally interested in cutting the

trees at the age which maximises the yearly volume production. For a particular

growth curve, this age is called the biological rotation age and is determined by

the line through the origin tangent to the volume growth curve. In this study we

consider a more general situation where a di�eren t growth curve, with a known prior

distribution, can occur in each rotation. The goal now is to optimise the long term

(volume) production, here de�ned as long term yearly volume yield reduced by costs

of replanting. In this situation the optimal cutting time at each rotation depends

both on the current growth curve and on the prior distribution. In this casewe have

two problems: estimating the growth curve for a particular rotation, and �nding the

optimal cutting time for that rotation. We assumethat two volume measurements can

be performed in each rotation, before deciding when to cut. The �rst measurement

is always taken at a �xed age, but the age to perform the secondmeasurement can

be optimised, depending on the �rst observation. We compare some di�eren t priors

and strategies with respect to the long term production. Volume is always assumed

to grow according to a Shumacher curve. Despite the simple form of the curve,

optimisation requires the use of numerical methods.

15
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3.1 In tro duction

The study is basedon 158 eucalyptus plots belonging to a Portuguesepulp mill, Stora

Celbi, CeluloseBeira Industrial, S.A. The study plots are very diversein tree density and
in quality index. Each plot was regularly measuredbetween 4 and 25 times during one

rotation, at di�eren t ages(one rotation is the period of time betweenseedingor planting
trees in a forest and their �nal cut). The volumes (m3ha� 1) were subsequently derived

from measurements of tree height and diameter at breast height, for each measurement
time. The Shumacher growth curve V = Ae� k=t is used here to model the volume as

a function of time t. For this model, and under the assumption that the samevolume
curve is drawn at each rotation, k is the biological rotation age, and the corresponding

long term yearly yield is (A=e)=k. However, it is assumedhere that a di�eren t curve for

volume growth may be observed in each rotation. Here we use for short � = (A; k). We
assumethat two observations in the ln-scale yi = ln(A) � k=ti + " i , i = 1; 2 are to be

madeat times t1 and t2 for each rotation, with " i independent N (0; � 2). The parameters
(in the ln-scale,ln( � ) = (ln (A); ln(k))) are then �t by least squares,in the ln-scale. Based

on the data and under the Shumacher model, a prior distribution was obtained for the
curve parameters. It was found that for the pooled data, [ln( � ) = (ln( Â); ln( k̂)) followed

approximately a bivariate normal distribution N (�; �), with

� =

 
6:28

2:56

!

; � =

 
0:512 0:171

0:171 0:134

!

(3.1)

� in (3.1) includes the variation both due to prior variation in ln( � ), and due to variation
in [ln( � ) given ln( � ). The fact that we can use prior information has consequencesfor

the choice of cutting time, becauseif the underlying family of growth curves is known,
it becomesadvantageous to reject a `bad' growth curve by cutting it earlier than the

biological rotation age. On the other hand if the observed curve is a very good one, then
cutting it later than the biological rotation age improves the long term production. In

order to make the problem more realistic we assumethat there are �xed costs at each

rotation (for replanting the stand).
In a previous study (Paulo and Otten, 2001) we discussedthe optimisation of the

cutting time when observations at �xed times t1 and t2 can be used. We studied the
behaviour of the long term production for changesin �xed t1 and t2, in error standard

deviation of the ln-observations and in parameters of the prior distribution (all changes
weredoneone-at-a-time). Hereweextend that previousstudy, by consideringtwo strongly

interfering optimisation problems: to �nd an optimal design(t1; t2) (with t1 �xed for all
curves, and t2 variable) of times at which to measurevolume before deciding when to

cut, and to �nd the optimal cutting time at any rotation, based on the measurements
performed at (t1; t2). Moreover, apart from approximate optimisation, exact optimisation
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Table 3.1: Overview of the possible combinations of optimisation. Time t 1 is always �xed.
Situation t2 C function to maximise over C result

I - �xed optimal Cf

I I �xed sub-optimal Âe� k̂ =C � � C, where (ln( Â ); ln( k̂)) are
I I I sub-optimal (highest pos- hpd-estimates of the curve parameters Ca

� (y1 ; t2 ; y2 )
IV optimal terior density) given y1 ; t2 ; y2

V �xed optimal
VI sub-optimal (exact numeri- E A;k j y 1 ;t 2 ;y 2

(Ae� k =C � � C) Ce
� (y1 ; t2 ; y2 )

VI I optimal cal integration)

will be carried out now. We compare the situations where t2 and the cutting time are

�xed or optimised, and also when t2 is suboptimal. We also comparethe results obtained
when the optimal cutting time is approximated or obtained with an exact procedure.

We note that in this study it is not our aim to construct optimal designsfor parameter
estimation, such asD-optimal designs(as in Atkinson and Donev, 1992). Table 3.1 shows

the possiblecombinations of optimisation.

3.2 Optimisation of the long term pro duction

We assumefrom now on that a di�eren t volume growth curve can occur at each rotation,
and that each curve is drawn from a Shumacher family of volume growth curveswith the

prior distribution � shown in the previous section. The long term volume production we
want to maximise is de�ned by the ratio

� = E(V (C) � V0)=E(C)

where V is the total volume, V0 is a constant representing a �xed cost of one rotation

and C is the cutting time. The expectation E is taken over the joint distribution of

A, k and C. Practically, this expectation has to be expanded in iterated conditional
expectations which may also involve conditioning with respect to the observations. If the

curve is known and the maximum attainable value of � , � max , is also known, analytical
considerations show that the optimal cutting time is either the latest time when the

tangent to the growth curve equals� max , or it is as early as possible(usually at time t2).
Since � max is usually not known, we take a guessfor for it, call it � , and use it instead.

The cutting time optimisation problem is thus reduced to �nding the � that maximises
� (� ). By construction, this optimal � also satis�es � = � (� ) and � = � max . A similar

idea is presented in Ribeiro and Betters (1995, eq.8) for a �nite seriesof known growth
curves. Obviously each value of � will de�ne di�eren t cutting times for the sameprior



18 Chapter 3. Optimal measurement and cutting times

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

t

V
(t

)

r =15.0

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

t

V
(t

)

r =20.0

Figure 3.1: Example of two cutting times, optimal for � , for a good curve (A 1 = 1250; k1 = 17)

and for a bad one (A 2 = 350; k2 = 10). Two di�eren t assumed� values (15 and 20) are use to

show the di�eren t choicesof cutting time. The curvesV (t) are shown in solid, and the tangents

to the curves with a slope equal to � are shown with dashed lines. The corresponding optimal

cutting time positions are also shown with dashedlines. For � = 15 (left) C1 = 27:7 and C2 = 8:5.

For � = 20 (righ t) C1 = 22:2 and C2 = t2 (tak en 0 in the graph).

information, with di�eren t resulting � (� ). Although the cutting time (and later on also

t2) derived for a given � is not optimal in the �nal sense,we will use the term optimal
here as well. Figure 3.1 shows the optimal cutting times for two di�eren t curves, and

given two di�eren t � 's. As seenin the �gure, as � increasesthe optimal cutting times
decrease.We note here that if the cost V0 of one rotation was not usedthen there would

be no solution for the optimal cutting time, assumingthe curve is known. In this casefor

most curves the cutting times would becomeunrealistically low, and the more extreme
the selectionof `good' curves(with the rejection of `bad' ones), the better.

C optimal, t2 �xed

If � is unknown, we take two measurements y1 and y2 at �xed times t1 and t2 respectively.

Given the observations, we needto �nd C for which

EA;k jy1 ;y 2 (Ae� k=C � � max C) (3.2)

is maximal. As before, � max is unknown so we use � instead, and maximise

EA;k jy1 ;y 2 (Ae� k=C � � C)

In the notation of Table 3.1: C� (y1; y2) = argmax
C; C� t 2

�
EA;k jy1 ;y 2 (Ae� k=C � � C)

	
Later, we

search for optimal � , � opt , such that � opt = � max . For a given � and C = C� (y1; y2), the



Chapter 3. Optimal measurement and cutting times 19

evaluation of � (� ) requires four-fold integrals:

E � ;y [V (� ; C� (y1; y2)) � V0]
E � ;y [C� (y1; y2)]

=

R
k

R
A

R
y1

R
y2

(Ae� k=C� (y1 ;y 2 ) � V0) h(y1; y2; � ) dy2dy1dAdk
R

k

R
A

R
y1

R
y2

C� (y1; y2) h(y1; y2; � ) dy2dy1dAdk

Here h(y1; y2; � ) is the joint density of y1, y2 and � .

C optimal, t2 optimal

When optimising t2, t2 will become a function of y1, and the distribution of y2 will

depend on y1 through t2. For clarit y we will write t2 explicitly in funtion arguments and

in (conditional) distributions. The natural evaluation order of the overall expectation is
now

Ey1 (Ey2 j y1 ;t 2 (EA;k jy1 ;t 2 ;y 2 )) (3.3)

In the inner expressionsit does not matter wether t2 is �xed or a function of y1. In
order to clarify the optimisation strategies someextra notation is used for C and t2 as

functions of conditions and of � (seeTable 3.1 and the derivations in the Appendix). Once
a functional form C� (y1; t2; y2) is obtained for C, the next step is to optimise t2, still for

a given � , as a function of y1. Thus t2 � (y1) is obtained by maximising over t2:

EA;k ;y 2 j y1 ;t 2 [Ae� k=C� (y1 ;t 2 ;y 2 ) � � C� (y1; t2; y2)] (3.4)

After carefully studying the optimal t2 as a function of y1 for di�eren t � and t1 simple
approximating functions for the optimal t2 were constructed. To distinguish between

the di�eren t situations we use double indices, the �rst referring to t2 and the second
to C. The indices can be `e', `a' and `f' meaning exact optimal, approximate optimal,

and �xed optimal, respectively. For example ta;e
2 � (y1) refers to the situation where we use

Ce
� (y1; t2; y2) and an approximating function for t2.

The last step is to optimise � over � oncefunctions t2 � (y1) and C� (y1; t2; y2) arechosen:

� (� ) =
E [Ae� k=C� (y1 ;t 2 � (y1 ) ;y 2 ) � V0]

E [C� (y1; t2 � (y1); y2)]

where the expectations are taken over the joint distribution of y1; y2; A; k. The resulting
optimal � will be written as � e;a

opt if te
2 and Ca are used, and the corresponding � (� ) will

be written accordingly as � e;a
max , etc. In particular � f ;e

max will be the maximal attainable �
when t2 is �xed optimised and C exact optimised. Once � opt is determined, the previous

functions have to be used by the farmer to determine �rst t2 from y1 and then C from
y1; t2; y2.
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C sub-optimal using highest posterior densit y appro ximation

In Paulo and Otten (2001) the hpd approximation was intro duced in order to save cpu

time. The technique consists in using hpd estimates (Berger, 1988) ln( Â); ln( k̂) for

ln(A); ln(k), given observations (y1; y2), to approximate (3.2) by

Âe� k̂=C � � C

and then optimise over C. The advantage of the approximation is that the mixture

EA;k jy1 ;y 2 Ae� k=t of growth curves is reducedto one Shumacher curve Âe� k̂=t . The tech-
nique producesa sub-optimal cutting time as a function of y1 and y2. No modi�cation

is neededin hpd estimation when t2 is a function of y1, t2 = t2(y1). Denoting param-
eter densities by � , observations' densities by g and joint densities of parameters and

observations by h, we have

h(� ; y1; y2) = � (� )g(y1 j� )g(y2 jy1; t2 = t2(y1)) = � (� )g(y1; y2j� ; t2 = t2(y1))

and posterior density � (� jy1; y2) = h(� ; y1; y2)=g(y1; y2). The marginal joint density
g(y1; y2) is t2(:) dependent, but is `�xed' in the task of maximising the posterior den-

sity for given y1; y2. The sub-optimal C, still for given � , will be denoted Ca
� (y1; t2; y2).

We recall that in the �nal optimisation over � , in general � opt 6= � (� opt ). Although
the joint density can be composedas a product of normal densities, the presenceof k or

eln (k ) in ln(A) � k=t prevents us from giving explicit expressionsfor hpd estimates.

Numerical optimisation and in tegration

The expectations EA;k jy1 ;t 2 ;y 2 can be conditioned one step further, yielding

Ek jy1 ;t 2 ;y 2 (EA jy1 ;t 2 ;y 2 ;k )

For given y1; t2; y2; k the volume asymptote A has a known log-normal distribution. Fur-

thermore, A is either not present or is an isolated multiplier in the target functions of
E(�), so we can always write EA jy1 ;t 2 ;y 2 ;k (�) explicitly as a function of y1; t2; y2; k. The

corresponding reduction in the number of iterated integrals neededmakesnumerical in-
tegration feasible, but still at the cost of hours in cpu-time for the hardest situations

(situation where both t2 and C are exactly optimised). The main reason for large cpu
loadsis that functions C� and t2 � are repeatedly calledby the optimisation and integration

routines, with new arguments each time (and results from previous calculations are not
reused). The calls branch and nest at several stages.For example,a call to � (� ) generates

an integral over y1; the integrand generatesa secondintegral over y2, but only after t2 �

has beenevaluated. This t2 � call in turn generatesseveral tries for candidate t2 values.
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For each t2 an integral over y2 is generated;the integrand again needsC� (y1; t2; y2), etc.

An extra complication is that somenormalising constants in conditional densitiestoo have
to be calculated by numerical integration.

Implemen tation

The optimisation of the long term production was implemented in Fortran, with use

of IMSL-routines whenever possible. Exact C-optimisation was done with mixtures of
Newton-Raphson and/or interval halving techniques. The implicitly used assumption

that the shapesof the neededmixture curveswerestill of the sigmoidal type (lik e a single

growth curve) was never violated in the many test caseswe generated.

Exact optimisation of t2 was performed only over integer values (or a �ner grid).

Optimisation over � was done either using iterated substitution (when t2 and C were
exactly optimised) or using a IMSL-routine based on the Newton-Raphson algorithm.

For numerical integration the IMSL-routines were used.

Hpd estimates were also calculated using Newton-Raphson techniques. For �xed t1

and t2 an e�cien t way wasto �ll in advancea �ne grid of (y1; y2)-valueswith hpd estimates

and later use it to interpolate from this grid. This approach did not work in the caseof
t2 varying with y1.

3.3 Results

Cutting time �xed but optimised

From now on times t1 and t2 are in y (years), and � is in m3ha� 1y� 1. Furthermore,

the costs of one rotation are set to V0 = 50 m3ha� 1, and for practical reasonsC � 30.
Having a �xed cutting time (situation I) in the present setting is not an optimal choice,

but it is important to consider this situation to compare it with an optimal situation.
Furthermore, if the gain of an optimal procedure is small comparedto the investment of

performing the two measurements on the forest, then this can be an attractiv e alternativ e.
The optimal �xed cutting time is then C = 17:6, and yields � = 13:5. This samevalue

was obtained in an earlier study (Paulo and Otten, 2001) as a limiting situation when
the standard deviation of the observations y1 and y2 was increasedto in�nit y. Figure 3.2

shows how � varies with �xed C.

Cutting time optimised, t1 and t2 �xed

In this situation (V) the algorithm is run for a �xed (t1; t2) and guessvalues for � . We
then need to �nd the optimal � , i.e., � for which � is maximal for (t1; t2). Situation V
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Figure 3.2: Situation where the cutting time is �xed, shown in detail on the right graph.

was run a number of times, for discrete (t1; t2) values: t1 = 3; 5 and several t2 values.

We did not search in earlier t1 times becausethey might be too early to use in practice.
For the original prior distribution, and assumingthat � = 0:5, the �xed optimal design

is (t1; t2) = (3; 10) yielding � = 15:07. The result reported in our earlier study was
(t1; t2) = (3; 9) when using the hpd approximation (situation I I). For the other choicesof

prior the �xed optimal t2 varies substantially . Figures 3.3 and 3.4 show � for �xed t1 for
di�eren t prior standard deviation values, � ln( A ) and � ln (k ) . We also changed � ln( A ) and

� ln( k ) accordingly in order to keepE(A) and E(k) at the original values. The standard

deviation values were modi�ed by factors 1
2 and 2 (� ln( A ) ) and by factors 1

2 and 1.3
(� ln( k ) ). The original value of � ln( k ) is also shown. Time t1 = 3 with optimal t2 produces

maximal � in almost every situation, t1 = 5 is better for halved � ln( k ) combined with
original � ln( A ) . For double � ln (A ) time t2 should be asearly aspossibleto account for the

greater variation in parameter A, but for halved � ln( A ) t2 around 12 or later are optimal.
As seenin the graphs non-optimal designscan be considerably worse than the optimal

design. Figure 3.5 shows � for di�eren t error standard deviations of the observations �
(left), and for di�eren t correlations between ln(A) and ln(k) (right). � was changed to

0.25 and to 0.75, and the original value 0.5 is also shown. The correlation betweenln(A)
and ln(k) waschangedto 0.32and 0.96,and and the original value 0.64is alsoshown. The

other parameters were left unchanged. An increaseof � leads to a �xed optimal design

where t1 and t2 are further apart. In the caseof changing the prior correlation we see
that larger valuesproduce larger �xed optimal t2. Data in these graphs is not complete

due to di�culties in someintegral calculations.

The comparisonof the exact optimal cutting time routine with the hpd approximation

(V versus I I) was done in terms of the optimal � obtained in each situation and in terms
of the computer time spent using each routine. We found that for �xed (t1; t2) the hpd
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Figure 3.3: Fixed (t1 ; t2) and corresponding � for the original � ln ( A ) , and change in � ln( k ) by

factor 0.5 (4 ), 1 (unchanged,� ) and 1.3 ( � ). Time t 1 is either 3 (empty symbol) or 5 (�lled

symbol).

routine always produced nearly the same optimal � as exact numeric integration (the

di�erence in optimal � wasup to 1%), and the time neededto run the exact computation
of optimal cutting time is at least 100 times larger.

Cutting time optimised, t1 �xed, t2 optimised

The algorithm to �nd the exact optimal cutting time can still be further optimised with
the simultaneous optimisation of t2 (situation VI I). This is a very computer intensive

procedure,and is usedhere mainly to �nd an upper limit to � . For a given prior distri-
bution, optimal t2 dependson y1 and on � . The optimisation of a varying t2 produced a

negligible improvement (up to 0:1%) of optimal � , comparedwith optimal �xed t2. The

approximating function for optimal t2 (situation VI) allowed fast computations and at
the same time produced an (even smaller) improvement of the resulting � . Figure 3.6

shows someexamplesof optimal t2 (restricted to discrete valuesonly), asa function of y1

(�rst measurement of volume, in the ln-scale), for �xed t1 and for �xed � . As a result of

our curve type and distributional assumptions,y1 can attain very low values when t1 is
small. These low y1 valuescorrespond to volumeswhich would be too small to measure

in practice. In order to preserve numerical accuracyall y1 were accounted for during the
integration process,but the optimal t2 corresponding to very low y1 valuesis very erratic

and the �nal � is insensitive for t2 for such low y1 values. Theselow y1 valuesare therefore
not shown in Figure 3.6, where y1 is truncated to practical acceptablevalues.
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Figure 3.4: Fixed (t1 ; t2) and corresponding � for change in the prior � ln ( A ) by factor 1
2 (left)

and 2 (righ t), and in � ln ( k ) by factor 0.5 (4 ), 1 (unchanged,� ) and 1.3 ( � ). Time t 1 is either 3

(empty symbol) or 5 (�lled symbol).

3.4 Discussion

In a previously published manuscript (Paulo and Otten, 2001) we found an approximate

optimal cutting time and discussedthe behaviour of the resulting long term production
under changesin the prior distribution of the growth curve parameters and in the error

standard deviation of the ln-volume observations. In this study we focus mainly on the
optimisation of the volume production by optimising exactly the cutting time, and by

choosingoptimal times to measurevolume in a stand for the secondtime, when guided by

the �rst measurement. The exact optimisation of the cutting times wasachieved through
a changein the order of integration. The main di�cult y here was that the integrand did

not have an explicit form, and thus a lot of calls to other functions an integrals had to
be made. As a result, computations becamevery heavy, and sometimesthe numerical

integration routine could not reach the speci�ed numerical precision, and optimisation
was not feasible.

The optimisation of the long term production dependsobviously on the assumedtype
of growth curve, here it was the Shumacher type. We found that our objective function,

the long term production, was unexpectedly insensitive to the useof non-optimal cutting
times and non-optimal designs.Wethink that it could havebeencausedby the Shumacher

curve properties. Even for one simple curve, the averageyearly volume as a function of
time is quite 
at in the neighbourhood of time k. Other curve typesmight have produced

sharper results. In this study weconsidered�xed replant costs,but the sameresults would
havebeenobtained if we had consideredrandom costs,or systematically changingcostsas

in the caseof regenerationby coppice(Rib eiro and Betters, 1995). In fact only the mean
of the costs in
uences the function we are maximising, so our procedure is immediately
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Figure 3.5: Fixed (t1 ; t2) and corresponding � for di�eren t valuesof the error standard deviations

of the observations (left): 0.25 (4 ), 0.5 (original value, � ) and 0.75 ( � ), and for di�eren t values

of the prior correlation (righ t): 0.32 (4 ), 0.64 (original value, � ) and 0.96 ( � ). Time t 1 is either

3 (empty symbol) or 5 (�lled symbol).

applicable to variable costsper rotation as long as that value is known.

3.5 Conclusions

In this study we assumea Shumacher curve type to describe volume growth, a prior

distribution for the curve parameters' distribution and that the errors of the two obser-
vations in the ln-scalecomefrom a N (0; � 2) distribution. Under theseassumptions,the

optimisation of the cutting time (instead of cutting at a �xed optimal time) allows an
improvement of 16% of the long term volume production, using a �xed optimal design.

Optimising the secondmeasurement time gavea very small extra improvement of the long
term volume production, which is disappointing. This could be due to the growth curve

choice (Shumacher curve), which appeared to be very robust for the e�ect of parameter

mis-speci�cation on volume/time ratios. The useof an approximating function to optimal
t2 worked well, in the sensethat it did improve the objective function while substantially

reducing the computation time, but the improvements in the long term production were
even more disappointing. Under our model we think that a �xed optimal design is good

enough in practice to estimate the optimal cutting time, and recommendits use instead
of an arbitrary design. We did not �nd any practically useful explicit relation between

the �xed optimal design and the parameters of the prior distribution. For practical ap-
plications of our routines the farmer needsto have a prior knowledgeof the growth curve

type, and its parameters' distribution, and he needsa computer program to obtain t2 and
Copt .
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Figure 3.6: Optimal t2 as a function of y1 , for t1 = 3 (left) and for t1 = 5 (righ t), for � = 14
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App endix. Deriv ation of functions to be maximised

The need for maximisation of e.g. (3.4) over t2 was stated without proof. A derivation

of functions to be maximised is as follows. Suppose we choose speci�c functions t2(:)
and C(:) which assigna secondmeasurement time t2(y1) to the �rst observation y1 and a

cutting time C(y1; y2) to the pair of observations (y1; y2), for all y1 and y2. Let � be the
attained long term production:

� =
E [Ae� k=C(y1 ;y 2 ) � V0]

E [C(y1; y2)]
=

E1

E2
; say:

Let t0
2(:) combined with C0(:) be any other choice, leading to E 0

1, E 0
2 and � 0. Then the

pair f t2(:); C(:)g is optimal if and only if � 0 � � for all t0
2(:); C0(:). Since the expected

cutting time E 0
2 is positive, the latter condition is E 0

1 � �E 0
2 � 0 for all t0

2(:); C0(:). For

f t2(:); C(:)g we have E1 � �E 2 = 0, so f t2(:); C(:)g maximisesE 0
1 � �E 0

2 and the maximum
is 0. Formulated in the �nally used way: f t2(:); C(:)g is optimal if and only if for some

� > 0:

(i ) E1 � �E 2 = max
f t 0

2 ( :) ;C0( :)g
(E 0

1 � �E 0
2) and (ii ) E1=E2 = �:

The solution to (i ) and (ii ) is found by substituting results of (i ) for given � asa function
of � in (ii ), and by next solving (ii ) as equation in � only. The maximisation of E1 � �E 2

for given � can be solved entirely in successive steps by following the conditioning order
of (3.3):

E1 � �E 2 = Ey1 (Ey2 j y1 ;t 2 (y1 ) (EA;k jy1 ;t 2 (y1 ) ;y 2 [Ae� k=C(y1 ;y 2 ) � V0 � � C(y1; y2)])) :

For any values y1; t2(y1); y2 the inner expectation can be maximised separately. Let the
function C� (:) be de�ned such that C� (y1; t2; y2) maximisesEA;k jy1 ;t 2 ;y 2 [Ae� k=C � V0 � � C]

over C for any y1; t2; y2. Then after substituting C� in the inner expectation the middle
expectation can be maximised separately for any y1 by suitable choice of t2(y1). Hence

let t2 � (:) be de�ned such that t2 � (y1) maximises

Ey2 j y1 ;t 2 (EA;k jy1 ;t 2 ;y 2 [Ae� k=C� (y1 ;t 2 ;y 2 ) � V0 � � C� (y1; t2; y2)])

over t2 for any y1. Now for given � , requirement (i ) leadsto: for given y1 measureagain
at time t2 � (y1), and for given y1; y2 cut at time C� (y1; t2 � (y1); y2). Note that V0 can be

skipped in (i ) but not in (ii ).
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Chapter 4

Robustness and e�ciency of

D-optimal exp erimen tal

designs in a growth problem

Maria Jo~ao Paulo and Dieter A. M. K. Rasch
Biometrical Journal, 44 (2002) 5, 527-540

To assesstree growth, for example in diameter, a forester typically

measuresthe trees at regular time points. We call such designsequidis-

tant. In this study we look at the robustness and e�ciency of several

experimental designs,using the D-optimalit y criterion, in a casestudy

of diameter growth in cork oaks. We compare D-optimal designs (un-

restricted and replication-free) with equidistant designs. We further

compare designs in di�eren t experimental regions. Results indicate

that the experimental region should be adequate to the problem, and

that D-optimal designsare substantially more e�cien t than equidistant

designs,even under parameter mis-speci�cation.

29
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4.1 In tro duction

In this study we used the D-optimalit y criterion to determine the best allocation of ob-

servations for the estimation of the unknown parameter vector � of a given regression

function E(yi ) = f (x i ; � ); i = 1; 2; � � � ; n with � T = (� 1; � 2; � � � ; � p), the x i from a given
experimental region X .

We usedgrowth data of the diameter of 24 cork oaksfrom Portugueseforests. In order

to comparethe e�ciency of several experimental designs,we �rst �tted a growth function
to each of our 24 trees (24 empirical growth curves) and then we obtained the D-optimal

designfor each.

We looked at the robustnessof a D-optimal unrestricted compromisedesign against

parameter mis-speci�cation. Further we looked at the relative e�ciency of the equidistant

designand designsin di�eren t experimental regions. In particular we wanted to compare
D-optimal replication-free designswith the equidistant design. We proposethe use of a

compromisedesign (given by the averageparameter vector) for all trees in the data set
in further measurements.

The purposeof this study is to proposea designwhich is suitable for a high percentage

of trees that farmers could encounter in practice. We think a farmer will be interested
in and take action for a particular tree, where pro�t is not averaged over some prior

distribution of tree parameters. Or, as far as a prior distribution is involved, it will vary
betweenapplications and will be narrowed in variabilit y comparedwith that in our data

set. Hence we do not follow the re�nements in estimators and designsthat would be
o�ered by a random coe�cien t approach with known prior distribution as described for

example in Fedorov et al.(1993).

4.2 Materials and metho ds

Data

Measurements of the annual diameter growth of each of 24 cork oaks with agesbetween

41 and 139years(Tom�e et al., 1999)wereused. The experimental region X wasset to the
interval [1; 144] to include all the agesof the treesand alsobecauseit wasconvenient as it

will be seenlater. We �tted �v e non-linear functions with 3 parametersby ordinary least
squareson the measurements of each tree, and we usedthe residual variancecriterion per

tree to rank them. The Bertalan�y function provided a good �t to every tree, having for
22 trees the lowest or secondlowest value of the residual variance. All the other functions

�tted worse. In table 4.1 we show the geometric mean of the 24 residual variances for
each function.
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Table 4.1: Non-linear functions used to �t diameter growth.

Name Expression Geometric mean
of residual variance

Bertalan�y f (x) = (� + � e
 x )3 0.50
Gompertz f (x) = �e � e
 x

0.61
exponential f (x) = � + � e
 x 0.80
logistic f (x) = �

1+ � e
 x 1.20

arc-tan f (x) = �
2 f 1 + 2

� arctan [
 (x � � )]g 2.46

We wanted to �nd one suitable family of curves to describe diameter growth for the

cork oak and therefore chose the Bertalan�y function. For one tree, the Bertalan�y
function with p = 3 parametersand parametervector � T = (�; � ; 
 ) leadsto the regression

model

yi = (� + � e
 x i )3 + � i (4.1)

for the diameter growth. Here yi is the measurement at time x i and � i is the disturbance.

Twenty four individual parameter vectors � T = (�; � ; 
 ) wereestimated for the Berta-
lan�y function (for conveniencewe denote these24 estimatesas � i instead of �̂ i ).

Mo del and least squares estimation

Supposewe have the model yi = f (x i ; � ) + � i ; i = 1; 2; � � � ; n and � p-dimensional, with

� i i.i.d. and having E(� i ) = 0 and var(� i ) = � 2. The least squaresestimator �̂ minimizes
P n

i =1 (yi � f (x i ; � ))2. The well-known linearization of the least squaresproblem with

iterativ e improvement leads to a series of normal equations. The coe�cien t matrices
are of the type F T F =

P n
i =1 r f (x i ; � )r f T (x i ; � ). In linear regressionwe would have

E(�̂ ) = � and

var(�̂ ) = � 2(F T F ) � 1 (4.2)

provided that � is estimable. In non-linear regressiontheseproperties hold in an asymp-

totic sensewhen n ! 1 and the Jenrich conditions (Jenrich, 1969) are ful�lled. Hence,
further on, � 2(F T F ) � 1 will be called the asymptotic variance-covariancematrix of �̂ and

we write V (�̂ ) for this matrix. If the � i 's are normally distributed then (F T F )=� 2 is also
the Fisher information matrix at � . Sometimesit is convenient to call F T F the informa-

tion matrix of the regressionproblem, and we will do so later in the text. We will base
designoptimalit y on V (�̂ ) = � 2(F T F ) � 1, regardlessof the quality of the asymptotics.
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Design theory

In an exact designfor estimating � , the value of x has to be speci�ed for each observation.
Equivalently , a seriesof distinct x-values (x i ; i = 1; 2; � � � ; q) is given together with the

number of replicates (n i ; i = 1; 2; � � � ; q). The x i are called the support points of the
design,and n =

P q
i =1 ni is the sizeof the design. When developing a design,the x i have

to be chosenin a given experimental region X . An exact design� can thus be represented

in the form

� =

 
x1 x2 � � � xq

n1 n2 � � � nq

!

: (4.3)

In a continuous (and normalized) design one speci�es a discrete distribution over

support points with real `weights' m i and such a design is written as

 
x1 x2 � � � xq

m1 m2 � � � mq

!

;
qX

i =1

mi = 1; m i > 0 real. (4.4)

Each designof the form (2.2) can be speci�ed by a continuous designand by its size

n (by setting m i = n i =n).

Replication-free designsare exact designsthat have the form

 
x1 x2 � � � xq

1 1 � � � 1

!

(4.5)

i.e. they are exact designswith onesinglemeasurement at each support point. Depending
on the problem, the support points may have to satisfy sideconditions. In this casestudy

we want to take one year as the practical unit and therefore we require support points to

be integers in the experimental time region. This givesa �nite set of candidate support
points. The equidistant designis an exampleof a replication-free design. Replication-free

designsare of interest to us becausein most casestree diameter is measuredno more
than oncea year. Whenever confusionmay arise, we will call designswith no restriction

on the support points nor on the number of replications unrestricted.

D-optimal designs

We consider the D-optimalit y criterion based on the determinant of the asymptotic

variance-covariance matrix V(�̂ ) which takes the functional form V (� ; � ) now. In the
context of exact designs,a D-optimal design is de�ned as:
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� � = argmin jV (� ; � )j; subject to support( � ) � X ; size(� ) = n (4.6)

i.e. given n and X , the D-optimal design� � minimizes the determinant of the asymptotic

variance-covariance matrix, or equivalently , maximizes jF T F j. If f is intrinsically non-
linear V (� ; � ) dependsnot only on � but alsoon � and thus the D-optimal designwill also

depend on � . Therefore such designsare called locally D-optimal.

We know (Fedorov, 1972,p.120) that the minimal number of support points q needed

to �nd a D-optimal continuous design in any of our regressionsituations is restricted to

p � q � p(p + 1)=2. It is also known that for continuous D-optimal designswhere q = p
optimal weights are equal (Fedorov, 1972, p.85). In the caseof exact D-optimal designs

the n i are as equal as possible.

The information matrix for the Bertalan�y function can be written as:

F T F = 9
nX

j =1

(� + � e
 x j )4

0

B
@

1 e
 x j � x j e
 x j

e
 x j e2
 x j � x j e2
 x j

� x j e
 x j � x j e2
 x j � 2x2
j e2
 x j

1

C
A (4.7)

with j = 1; 2; � � � ; n numbering the observations. The asymptotic variance-
covariance matrix is V (� ; � ) = � 2(F T F ) � 1 and the D-optimalit y criterion for the Berta-

lan�y function is thus given by:

jV (� ; � )j =
� 6

jF T F j
: (4.8)

Schlettwein (1987) showed that for the Bertalan�y function, theseasymptotic approx-
imations are good for D-optimal designs,even for small n; seealsothe discussionin Rasch

(1995a,p.631).

There is no analytical solution to �nd the D-optimal unrestricted designsothe problem

has to be solved numerically for each set of parameters. In our problem we take � 2 = 1

w.l.o.g.

We used the program CADEMO to �nd a locally D-optimal exact design for each

parameter vector � i . We took n = 12 measurements, which seemeda good designsizeto
work with in practice. The experimental region was chosento be X144 = [1; 144] in order

to simplify the partition of the interval in twelve subintervals. Other choicesfor X and n
were also possible.
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Algorithm used to �nd replication-free designs

The algorithm in Rasch et al. (1995) �nds the D-optimal replication-free design by full

enumeration i.e. by evaluating all possible subsetsof n integer points from the set X .
It was veri�ed that the points x i are allocated in the neighbourhood of the support

points of the D-optimal unrestricted design. This algorithm performs very well for a

small number of candidate points, that is, experimental regions XH = [1; H ] with H up
to 40, but in the present casestudy we also have larger X so we could no longer use

it. Our experience with �ne grid replication-free D-optimal designs is that the design
points appear in clusters around those of the unrestricted D-optimal designs. We used

this knowledgein the following heuristic algorithm, basedon the sequential construction
of a D-optimal design(Atkinson and Donev, 1992) to obtain replication-free designswith

integer points:

1. Let the D-optimal unrestricted exact designwith n observations be given by � � (� ) = 
x1 x2 � � � xq

n1 n2 � � � nq

!

and n be greater than q (i.e. at least someof the n i 's are

greater than 1). The x i 's don't have to be integersbut they have to be all di�eren t.

2. Start with the design � 1 =

 
x1 x2 � � � xq

1 1 � � � 1

!

and calculate jV (� ; � 1)j with

expressions4.7 and 4.8. Let r = q.

3. For x02 fhx1i � 1; hx1 i ; hx1 i + 1; hx2 i � 1; hx2 i ; hx2 i + 1; � � � ; hxqi � 1; hxqi ; hxq i + 1g in

X but not already in � r , calculate jV (� ; � r [ x0)j. Choosex0for which jV (� ; � r [ x0)j
is minimal and let � r +1 = � r [ x0.

If say xd in � r +1 is non integerand is within distance1 of x0then deletexd (obtaining

thus a new � r ) and leave r unchanged. Otherwise set r = r + 1.

4. Repeat 3 until r = n.

For the smaller X it was veri�ed that both algorithms found the same design. The
replication-free designs� �

r f (� i ) weredetermined for � i , i = 1; : : : ; 24 and X144 , and for � C

(seenext section), for someH values,both for n = 12 and for n = 20.

We then compared the di�eren t designs,obtained for di�eren t H . In particular we

wanted to seehow close the D-optimal replication-free designswere to the D-optimal
unrestricted onesand whether increasingthe number of points from n = 12 to n = 20 in

the replication-free compromisedesignswould result in a signi�can t improvement of the
D-criterion value, and eventually compensate for the loss of e�ciency due to a shorter

X . To compare the designsin a simple and informativ e way we plotted the D-criterion
values,actually jV (� ; � )j1=3, for all X and all designscalculated for � C .
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E�ciency of exp erimen tal designs

Given two designs� 1 and � 2, we can measurethe e�ciency of design � 1 with respect to

design� 2, at � , by
n

jF T F ( � 1 ) j
jF T F ( � 2 ) j

o 1=p
(cf. Atkinson and Donev, 1992), or equivalently by

E =
jV (� ; � 2)j1=p

jV (� ; � 1)j1=p
(4.9)

This measureis proportional to the designsizeof � 1 regardlessof the dimension p of
the model, so that for example two replicates of design� 1 for which E = 0:5 would be as

e�cien t asonereplicate of � 2. Usually we want to know the e�ciency of somenon-optimal

design� 1 with respect to an optimal design� 2.

In practice an initial guessof � may be quite bad, or we may want to work with one

parameter vector for all trees instead of one for each tree. With a robustnessmeasurewe
wanted to evaluate the performanceof optimal designsin the caseof a mis-speci�cation

of � , that is, to seehow much information about � is preserved when an optimal design
is usedfor another value of � .

In this case we used a central value of � , given by the average parameter � C =
1

24

P 24
i =1 � i , as the mis-speci�ed (but easily estimated) value. Then we checked how ro-

bust the replication-free compromisedesign � �
r f (� C ), D-optimal for � C , would be when

usedat � 1; � 2; � � � ; � 24. The robustnessof the D-optimal replication-free compromisede-

sign against parameter mis-speci�cation was calculated by expression(4.9), and setting
� 1 = � �

r f (� C ) in X144 and � 2 = � �
r f (� i ) in X144 , i = 1; 2; � � � ; 24.

Another measurewe wanted to look at was the e�ciency of the equidistant design� eq

with respect to the locally D-optimal replication-free designs� �
r f (� i ), also calculated by

expression(4.9). The design � eq has the support points f 12, 24, 36, 48, 60, 72, 84, 96,
108, 120, 132, 144g and all n i � 1 (this is an interesting design becauseit is similar to

those often used in practice).

The robustnessof � �
r f (� C ) with respect to � �

r f (� i ), and the e�ciency of � eq with respect

to � �
r f (� i ) are of interest in their own right. On the other hand, a comparison between

thesetwo measuresshould also provide information regarding how good � eq is compared

to � �
r f (� C ).

We also looked at the e�ciency of � �
r f (� k ) with respect to � �

r f (� i ), k; i = 1; : : : ; 24 and

k 6= i , to comparewith the robustnessof � �
r f (� C ).

The experimental region X144 = [1; 144] is too long in practice and it doesnot make

much sensein the practical point of view to have measurements during 144 years. For
comparisonpurposesD-optimal unrestricted designsfor � C were re-calculated in shorter

experimental regionsXH = [1; H ], with H 2 f 24, 36, 48, 60, 72, 84, 96, 108,120,132g and
for n = 12. The e�ciency of � � (� C ) for XH with respect to � � (� C ) for X144 wasevaluated
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to seeif by shortening the experimental region we can still get designsalmost as good as

those for X144 .

Summary of designs used in the case study

A summary of designsusedis given in table 4.2. The � have meaning: � 1; � 2; � � � ; � 24: pa-

rameter vectors of the individual trees; � C : compromise,averagevalue, � C = 1
24

P 24
i =1 � i .

Table 4.2: Summary of designsin the casestudy.
Symbol Indices and variables Description

� � (� i ) i = 1; 2; � � � ; 24 Locally D-optimal design for tree i
H = 144
q = 3, n = 12

� �
r f (� i ) i = 1; 2; � � � ; 24 Locally D-optimal replication-free design

H = 144 for tree i
q = 3, n = 12

� � (� C ) H = 144, 132, 120, 108, 96,
84, 72, 60, 48, 36, 24

Locally D-optimal for � C , or compromise
design.

q = 3, n = 12

� �
r f (� C ) H = 144, 72, 60, 48, 36, 24 Locally D-optimal replication-free for � C ,

q = n, n = 12 and n = 20 or replication-fr ee compromise design.

� eq H = 144, 72, 60, 48, 36, 24 Equidistan t design.
q = n, n = 12

4.3 Results

The growth curvesof the trees were very di�eren t as can be seenfrom the four examples
in �gure 4.1.

A brief study of the residuals showed presenceof autocorrelation, but no sign of

heteroscedasticity. We proceededwith OLS.

The locally D-optimal exact designsfound were always designswith p = q = 3 sup-

port points. In every caseone of the support points was equal to the maximum of the
experimental region X .

The averageof the 24 parameter vectors was

� C = (3:468; � 2:416; � 0:042)T : (4.10)
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Figure 4.1: Empirical and �tted growth curves for diameter for 4 cork oaks, showing major

di�erences in shape.

We veri�ed that the e�ciencies of the D-optimal replication-free � �
r f (� i ) relative to

the D-optimal unrestricted designs� � (� i ) were nearly one, not surprising as the optimal

replication-free designpoints weregrouped around the optimal unrestricted designpoints.
Thereforewe think that the e�ciencies in comparing two D-optimal designswill be nearly

equal when using both designsunrestricted or both replication-free.

The valuesfor the robustnessof � �
r f (� C ) with respect to � �

r f (� i ); i = 1; 2; � � � ; 24, calcu-
lated for X144, were 0.86 in average,being greater than 0.8 in 19 out of the 24 trees. The

maximum value for the robustnesswas 0.997. The e�ciency of the 12 point equidistant
designhowever was 0.68 in averageand its maximum value was 0.80 (seetable 4.3). � eq

performed better than � � (� C ) only for two trees. From this we conclude that for the set
of 24 trees the D-optimal unrestricted design for � C is, generally speaking, better than

the equidistant design.

Table4.4displays the e�ciencies of locally optimal designswhenusedwith other trees,
i.e, the e�ciency of � �

r f (� k ) with respect to � �
r f (� i ), k; i = 1; : : : ; 24 and k 6= i . On the

diagonal we show the robustnessof � �
r f (� C ). We seethat for any given tree the e�ciency

of � �
r f (� C ) is never inferior to the e�ciency of a locally optimal design for another tree.
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Table 4.3: jV (� i ; � )j1=3 � 105 values and e�ciencies of the (replication-free) optimal design, com-

promise design and equidistant design, for X = [1; 144].

� i jV (� i )j1=3 � 105 for designs E�ciency of � 1 relativ e to � 2

� � (� i ) � � (� C ) � eq � � (� C ); � � (� i ) � eq ; � � (� i ) � eq ; � � (� C )

1 16.64 19.28 26.71 0.86 0.62 0.72
2 42.56 96.45 127.35 0.44 0.33 0.76
3 34.26 48.61 67.44 0.71 0.51 0.72
4 7.85 8.73 10.16 0.90 0.77 0.86
5 4.51 5.55 5.70 0.81 0.79 0.97
6 20.58 21.33 31.51 0.97 0.65 0.68
7 9.28 10.42 12.01 0.89 0.77 0.87
8 16.83 17.67 22.33 0.95 0.75 0.79
9 18.58 18.63 26.47 1.00 0.70 0.70
10 16.90 17.27 23.56 0.98 0.72 0.73
11 11.61 13.79 14.70 0.84 0.79 0.94
12 6.75 8.56 8.50 0.79 0.80 1.01
13 41.66 42.98 60.12 0.97 0.69 0.72
14 10.44 11.65 13.34 0.90 0.78 0.87
15 12.84 15.00 23.25 0.86 0.55 0.65
16 11.61 12.43 18.18 0.93 0.64 0.68
17 5.69 6.79 7.27 0.84 0.78 0.94
18 11.30 15.25 16.72 0.74 0.68 0.91
19 14.18 15.01 22.31 0.95 0.64 0.67
20 27.55 28.95 38.01 0.95 0.73 0.76
21 10.12 12.22 13.00 0.83 0.78 0.94
22 14.27 15.48 18.35 0.92 0.78 0.84
23 11.12 12.60 14.44 0.88 0.77 0.87
24 4.46 6.44 5.56 0.69 0.80 1.16

In fact, only three locally optimal designsseemto perform aswell as � �
r f (� C ), namely the

locally optimal designsfor trees no. 9, 10 and 22.

The e�ciency of the D-optimal designsfor di�eren t X 's can be seenin �gure 4.2.

The e�ciency decreasesvery quickly to zero as the X shortens. By using shorter X 's we
have to accept estimators for � with high variabilit y.

The D-optimal unrestricted designs(n = 12) and D-optimal replication-free designs

(n = 12, n = 20) for � C can be seenin table 4.5 for each X . As mentioned before,n = 20
was usedto �nd out whether a higher n would compensatefor a smaller X .

Figure 4.3shows jV (� ; � )j1=3 for the designsin table 4.5. From that weseethat for each
experimental region the D-optimal and the D-optimal replication-free designsare clearly

better than the equidistant design. Further, by changing the experimental regions we
obtain di�eren t valuesof jV (� ; � )j1=3, and a larger experimental region seemsessential to
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Table 4.4: E (� �
r f (� k ); � �

r f (� i )) 1=3 , k 6= i ; in the diagonal E (� �
r f (� C ); � �

r f (� i )) 1=3 in X = [1; 144].
� � ( � k ) � i

1 2 3 4 5 6 7 8 9 10 11 12
1 0.86 0.72 0.91 0.65 0.62 0.90 0.66 0.79 0.90 0.81 0.67 0.67
2 0.75 0.44 0.94 0.42 0.38 0.71 0.43 0.40 0.63 0.58 0.34 0.34
3 0.94 0.92 0.70 0.55 0.51 0.84 0.55 0.60 0.79 0.72 0.50 0.50
4 0.50 0.28 0.37 0.90 0.99 0.81 1.00 0.91 0.87 0.95 0.97 0.98
5 0.38 0.21 0.28 1.00 0.81 0.69 0.99 0.83 0.76 0.87 0.95 0.96
6 0.83 0.58 0.77 0.82 0.78 0.96 0.82 0.79 0.97 0.96 0.74 0.74
7 0.49 0.30 0.37 1.00 0.99 0.81 0.89 0.88 0.87 0.95 0.95 0.96
8 0.74 0.33 0.54 0.88 0.87 0.90 0.88 0.95 0.97 0.95 0.94 0.96
9 0.87 0.51 0.72 0.85 0.82 0.98 0.85 0.91 1.00 0.97 0.84 0.84

10 0.72 0.43 0.59 0.92 0.89 0.97 0.92 0.88 0.98 0.98 0.86 0.86
11 0.46 0.18 0.30 0.97 0.98 0.75 0.97 0.94 0.84 0.91 0.84 1.00
12 0.37 0.14 0.24 0.97 0.98 0.68 0.97 0.88 0.77 0.86 0.98 0.79
13 0.93 0.53 0.76 0.77 0.75 0.94 0.77 0.92 0.97 0.90 0.81 0.82
14 0.50 0.24 0.35 0.99 0.99 0.80 0.99 0.94 0.87 0.94 0.99 1.00
15 0.72 0.69 0.81 0.72 0.67 0.97 0.73 0.58 0.88 0.89 0.56 0.56
16 0.97 0.69 0.89 0.72 0.69 0.96 0.73 0.82 0.95 0.88 0.71 0.71
17 0.49 0.19 0.32 0.96 0.96 0.77 0.95 0.96 0.86 0.91 1.00 1.00
18 0.21 0.28 0.22 0.89 0.84 0.64 0.89 0.42 0.60 0.80 0.56 0.56
19 0.74 0.59 0.75 0.80 0.75 0.99 0.80 0.67 0.93 0.94 0.65 0.65
20 0.86 0.43 0.66 0.81 0.79 0.91 0.81 0.97 0.96 0.91 0.87 0.88
21 0.40 0.27 0.32 1.00 0.99 0.71 1.00 0.81 0.77 0.89 0.92 0.93
22 0.57 0.25 0.39 0.97 0.96 0.84 0.97 0.98 0.91 0.95 0.99 1.00
23 0.48 0.30 0.36 1.00 0.99 0.80 1.00 0.87 0.86 0.95 0.94 0.95
24 0.25 0.11 0.17 0.93 0.95 0.52 0.93 0.70 0.59 0.74 0.87 0.89

� � ( � k ) � i

13 14 15 16 17 18 19 20 21 22 23 24
1 0.94 0.76 0.85 0.99 0.60 0.59 0.89 0.88 0.66 0.71 0.66 0.45
2 0.58 0.46 0.76 0.81 0.27 0.44 0.73 0.44 0.43 0.40 0.43 0.27
3 0.79 0.62 0.85 0.96 0.42 0.53 0.85 0.67 0.55 0.56 0.56 0.36
4 0.78 0.99 0.71 0.58 0.94 0.89 0.78 0.80 1.00 0.98 1.00 0.88
5 0.65 0.94 0.58 0.44 0.94 0.90 0.65 0.68 1.00 0.94 0.99 0.95
6 0.90 0.87 0.96 0.93 0.64 0.77 0.99 0.79 0.83 0.81 0.83 0.59
7 0.76 0.98 0.71 0.58 0.91 0.91 0.78 0.77 1.00 0.96 1.00 0.88
8 0.96 0.98 0.79 0.79 0.91 0.74 0.86 0.98 0.89 0.96 0.88 0.69
9 0.98 0.93 0.91 0.93 0.77 0.76 0.96 0.93 0.85 0.88 0.85 0.62

10 0.90 0.96 0.90 0.82 0.78 0.85 0.95 0.84 0.93 0.91 0.93 0.71
11 0.76 0.99 0.63 0.53 1.00 0.83 0.71 0.81 0.97 0.99 0.96 0.87
12 0.67 0.95 0.57 0.44 0.99 0.83 0.64 0.73 0.97 0.96 0.96 0.92
13 0.97 0.88 0.85 0.94 0.76 0.67 0.91 0.98 0.78 0.85 0.78 0.56
14 0.79 0.90 0.68 0.57 0.97 0.86 0.76 0.82 0.99 0.99 0.99 0.87
15 0.74 0.74 0.86 0.90 0.45 0.73 0.99 0.55 0.73 0.65 0.74 0.50
16 0.96 0.82 0.91 0.93 0.64 0.66 0.94 0.88 0.73 0.76 0.73 0.50
17 0.80 0.99 0.65 0.57 0.84 0.81 0.73 0.85 0.96 0.99 0.95 0.84
18 0.38 0.70 0.64 0.34 0.46 0.74 0.65 0.29 0.89 0.64 0.90 0.84
19 0.80 0.81 0.99 0.89 0.54 0.78 0.94 0.64 0.81 0.74 0.81 0.57
20 0.99 0.92 0.81 0.88 0.83 0.68 0.88 0.95 0.81 0.89 0.81 0.60
21 0.65 0.94 0.62 0.47 0.89 0.93 0.68 0.67 0.83 0.93 0.99 0.94
22 0.85 1.00 0.72 0.64 0.98 0.83 0.80 0.89 0.97 0.92 0.96 0.82
23 0.75 0.98 0.70 0.56 0.91 0.91 0.77 0.75 1.00 0.96 0.88 0.89
24 0.48 0.83 0.43 0.29 0.89 0.84 0.49 0.52 0.93 0.85 0.92 0.69
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Figure 4.2: E�ciency of � � (� C ) for several experimental regions with respect to � � (� C ) for X =

[1; 144].

minimize jV (� ; � )j1=3. By increasingthe number of points in the replication-free designwe

manageto decreasethe D-criterion value. In X48 and larger the 20-point replication-free

designhas a lower jV (� ; � )j1=3 value than the D-optimal design from the X immediately
larger. For the smaller X 's the increaseby 8 points does not compensatethe loss from

shortening the X .

4.4 Discussion

D-optimal designsprovide an economicand e�cien t way to estimate unknown parameters

of a growth curve. The trees of our sample had growth curves of the samefamily but
with di�eren t parameters. We wanted to seeif a common D-optimal design could be

used to estimate the diameter growth parameters for all trees in a given forest since

it would not be practical to use one design per tree. We took the average of the 24
parametersfrom the sampleand found that under parameter mis-speci�cation it provided

a robust compromisedesignto usewith all trees. This designperformed better than the
equidistant design, often used in practice. The result agreeswith previously published

work (Rasch et al, 1995b). Further, we saw that although replication-free designsare
not as e�cien t as unrestricted designs they are better suited to the problem and are

still better than equidistant designs. The experimental region should also be adequate
to the curve. By shortening the experimental region we may loosetoo much information

about the parameters and decreasethe e�ciency substantially . In general, increasing
the replication-free design size in short experimental regions compensated the loss of
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Table 4.5: Designs (D-optimal at � C , equidistant and D-optimal replication-free at � C ) for each

experimental region.

Exp erim. D-optim um Equidistan t Replication-free Replication-free
region (n = 12)a (n = 12) (n = 12) (n = 20)

� � (� C ) � eq � �
r f (� C ) � �

r f (� C )

X144 f 9.52,41.36,144g f 12,24,� � � ,144g f 8-11,39-43,142-144g f 7-12,38-44,138-144g
X72 f 7.79,34.39,72g f 6,12,� � � ,72g f 6-9,32-35,69-72g f 5-11,30-36,67-72g
X60 f 6.76,30.39,60g f 5,10,� � � ,60g f 5-8,29-32,57-60g f 4-10,27-33,55-60g
X48 f 5.59,26.11,48g f 4,8,� � � ,48g f 4-7,24-27,45-48g f 3-9,22-28,43-48g
X36 f 3.97,20.79,36g f 3,6,� � � ,36g f 2-5,18-22,34-36g f 1-7,17-24,32-36g
X24 f 1.74,14.32,24g f 2,4,� � � ,24g f 1-4,12-16,22-24g f 1-6,10-18,20-24g

a all with 4 replications per support point.

e�ciency , except for our two shortest intervals. A few remarks should be madeabout the
�tting of a theoretical curve to growth data. The assumptionsmade in section 2 might

be non-realistic in someconfoundedaspects: the type of curve could be wrong, leading to

lack of �t; the errors could be heteroscedasticand they could be substantially correlated
at little time lag, degrading the quality of ordinary least squares(OLS) estimators and

making the asymptotic variance formulae (4.2) for theseestimators invalid when OLS is
applied. An analysis of the residuals was performed visually and numerically, to seeif

these assumptionswere violated in our case. We did not detect heteroscedasticity. The
residuals were however highly autocorrelated. In order to check for the consequences

of autocorrelated errors, we calculated the e�ciencies presented in table 4.3 for �rst
order autoregressive errors with serial correlations (using OLS-estimators asbefore). The

resulting e�ciencies showed a rapid degradation of the quality of the compromisedesign
with respect to the equidistant designas the serial correlation coe�cien t � increased.To

have a better impressionof how the optimal compromisedesignwould changewhen serial

correlation is present, we recalculatedthe replication-free compromisedesignfor several �
valuesbetween0.1 and 0.9, still using the OLS estimators. The designpoints obtained for

� > 0 are still in the neighbourhood of the compromisedesignpoints obtained for � = 0.
However, as the serial correlation is increased,the intervals betweenthe resulting design

points increasesproportionally . For � � 0:6 we recommendto modify the unrestricted
compromise design by spacing the replicate design points with 10� years in between.

For higher values of � the equidistant design is a better option, since the spacebetween
consecutive designpoints becomesirregular.

We think that a good solution, not covered in this study, might require a model for
the seriesof increments, instead of a model for growth curve measurements. In the latter
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Figure 4.3: D-optimalit y criterion to the power 1/3 in di�eren t experimental regions, for designs:

replication free 20 (� ); replication free 12 (4 ); D-optimal (� ) and equidistant ( � ).

model one should also think carefully about what has to be estimated: background pa-

rameters, or function(s) of the realization of the stochastic process(cf. Cambanis, 1985;
Fedorov, 1996).

Finally, the averageparameter vector (� C ) here merely servesas a tool to determine
a compromise design; it is not intended to be an interesting population parameter to

be estimated again later on. A type of problem not consideredhere would be to design
estimation of a population parameter under constraints that the designis not too bad for

individual trees. Constraint optimization is discussede.g. in Cook and Fedorov (1995).
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A spatial statistical analysis of
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systems.
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This study considers competition between cork oaks at three plots in

two representativ e Portuguese stands. It uses spatial point pattern

functions to describe densities and quantify di�erences betweenstands.

Relations betweencork oak characteristics and indices measuring inter-

tree competition are modelled. Tree competition has a signi�can t e�ect

on tree crown characteristics. In particular, cork oaks with much com-

petition have smaller and more elongated crowns. A standard model

to relate crown diameter with diameter at breast height was improved.

R2 increased from 0.53 to 0.63 by including a crown shape parameter

and competition indices.

45



46 Chapter 5. Spatial statistics for cork oak stands

5.1 In tro duction

The object of this study is the cork oak (Quercus suber L.) in two Portuguese stands

(montados). Worldwide, cork oak forests cover approximately 2.5 million ha, mainly in
seven countries: Portugal (which contains 30% of the world's cork oaks), Algeria (21%),

Spain (20%), Morocco (16%), France (5%), Italy (4%) and Tunisia (4%). In thesestands
the main product is cork, a thick and continuous layer of suberisedcells, producedby the

meristematic cork cambium (or phellogen), which makesup the external envelope of the
stem and branches.

In Portugal, cork oaks are grown in silvopastoral agroforestry systems,called monta-
dos. In a montado cork oak trees grow in a low density and are sometimesinter-mixed

with a small number of other tree species. Cattle or sheepgraze in the samearea. Tree

density in montados is usually below 100 trees ha� 1.
Competition betweentrees in
uences the availabilit y of nutrients and light and a�ects

shape and size of crowns (Deleuze et al., 1996). On the other hand, crown condition
and shape are obviously related to tree health and growth (Dawkins, 1958; Ottorini et

al., 1996; Moravie et al., 1999; Gill et al., 2000). Most literature refers to relationships
betweentree growth and crown or tree growth and competition.

The aim of this study is to explore relations betweencrown size,tree size,crown shape
and inter-tree competition for cork oaks. Crown diameter is strongly related to diameter

at breast height. We explore the useof competition indices and crown shape parameters

to explain di�erences in crown diameter. Such relationships allow us to estimate crown
sizeusing diameter at breast height and spatial information.

5.2 Data description

Cork and cork oaks

A cork oak has a life span of 300{400 years. Cork oak trees are economically viable for

lessthan 150 yearshowever, as cork growth intensity decreaseswith age, leading to cork
that is too thin. The cork of the �rst harvest has a hard and irregular structure. The

cork from the secondharvest is more even, but only mature cork obtained at the third
and following debarking on trees of 40 yearsof ageor older reachesa perfect quality. A

mature cork oak tree can produce more than 50 kg of cork in a single stripping.
During the �rst 40 years,a farmer has to make several investments beforehaving any

pro�ts. Any decision during this period may have consequenceson production in later
years. To allow cork harvest, the management of cork oak stands includesthinning, shape

pruning, understorey clearing and soil fertilit y improvement. Cork production is the main
driving force of this system, whereasother products are e�cien tly usedas well.
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In Portuguesecork oak stands,much attention focuseson maintenanceof cork quality.

Production of cork is an important economicactivit y. Cork quality dependson the number
and sizeof pores, the absenceof defectssuch as insect galleriesand the absenceof great

wood inclusions (Ferreira et al., 2000). The value of cork for industrial purposeshighly

depends on cork thickness. The highest value is associated with thicknessesbetween 29
and 40mm. Cork quality is likely to be a�ected by environmental and local characteristics

of the stand, such as tree density and competition. As producing large amounts of high
quality cork is a lengthy and uncertain process,competition is an important topic to

study.

In Portugal mainly two typesof montados occur: adult montados that were regener-

ated in the past by natural regeneration or seeding,and new plantations with cork oak
usually planted along lines. The �rst type is at the moment the most important as con-

cernscork production. Most of the new plantations are not yet ready for debarking. The
adult stands are greatly variable in terms of stand structure and stand density and go

from more or lessregularly distributed to aggregatedstands.

Study sites

Two montados are analyzed in this study. They are located approximately 60 km and
90 km east of Lisbon, respectively. The �rst, M I , is located in Herdade do Vale Mouro,

near the village of Coruche. The second,M I I , is located in Herdade Os Ruivos, near the
village of Mora. They cover di�eren t spatial structures as occurring in montados that

were selectedby the local Association of landowners as representativ e in the Coruche
region, which is important for cork production.

In M I we measured1 plot of a 200 � 200 m2 size. It contains 389 cork oaks,of which
353 occur at production ageand 36 are debarked for the �rst time. This plot is located

in a 
at terrain at an altitude of approximately 100 m. In M I I we measured2 plots of
a 140 � 150 m2, plot M I I ;A and plot M I I ;B , respectively. Plot M I I ;A contains 141 cork

oaks and 9 trees of other species,whereasplot M I I ;B contains 145 cork oaks and 3 trees
of other species. The plots at M I I are located at approximately 130 m of altitude, on a

slightly uneven terrain. Di�erence in altitude within the plots is smaller than 1.5 m. The
two montados were originally seededwith accornsand there has been grazing since the

trees were large enough. The initial tree density is unknown. Age of these trees is hard

to assess,as no written records are available. M I has an uneven-agedstructure, and the
older treesare approximately 140yearsof age. The M I I montado is closerto an even-aged

stand, and the older trees are between90 and 100 years. The soil is fertilized every 4 to
5 yearsand seededto allow grazing.

Treesweremeasuredshortly after cork extraction, during the month of July. Measured
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variableswerecoordinates of tree location, diameter at breast height (d) without cork, to-

tal height (h), crown radius (c� ), meancrown diameter (dc) and basalarea(g)(Table 5.1).
Crown radius wasdetermined visually by stretching a tape from the tree bark to the edge

of the projection of the crown on the horizontal plane, and using a compassto determine

each direction. The crown was measuredin 4 directions in M I , a procedure commonly
applied in sampling practices, and in 8 directions in M I I to test the e�ect of samplesize

on crown modelling.

Table 5.1: Variables measured in cork oak plots.
Variable Description Units

x Horizon tal coordinate of tree m
(azimuth 30� for M I and 221� for M I I ;A and M I I ;B )

y Vertical coordinate of tree m
(azimuth 120� for M I and 131� for M I I ;A and M I I ;B )

d Diameter at breast height cm
h Total height m
c� Crown radius in direction � , m

� = k � � =4 (M I I ;A and M I I ;B )
� = � =6 + k � � =2 (M I )

dc Mean crown diameter (obtained from c� ) m
g Individual-tree basal area (obtained from d) m2

5.3 Metho ds

Poin t patterns

A key factor governing tree competition is the frequency of small inter-tree distancesfor

the sameoverall density. Competition is stronger with many small inter-tree distances,
that occur more frequently in aggregatedpoint processesthan in random or regular point

processes. Point processesare stochastic processes,whose realisations consist of point

events in time or spacecalled point patterns. To identify the point processunderlying
tree positions, a window W is de�ned for each plot, given by the plot boundaries. Let

N (d! ) denote the number of trees at an area of sized! . Then the intensity � (! ) at ! is
de�ned as

� (! ) = lim
j d! j ! 0

f E [N (d! )] =jd! jg (5.1)

(Diggle, 1983), i.e. the number of treesin each window divided by the areaof that window.
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To comparethe point pattern with a completely random spatial pattern (CSR), second

order characteristics are applied. The nearest-neighbour distance distribution function
G(r ) is de�ned as G(r )= P[distance from an arbitrary tree to the nearest other tree is

at most r ]. For any distance r the empirical Ĝ(r ) uncorrected function is the number of

trees with at least one neighbour within distance r , divided by the total number of trees.
Similarly, the empty spacefunction is given by F (r )= P[distance from an arbitrary point

to the nearest tree is at most r ]. The uncorrected F̂ (r ) function is the ratio of the total
area of the window which is covered by circles of radius r centered in each tree, and the

areaof the window. In this study we focuson the J (r )-function basedon the uncorrected
G(r ) and F (r ) functions (Van Lieshout and Baddeley, 1996;Baddeleyet al, 2000),de�ned

as

J (r ) =
1 � G(r )
1 � F (r )

(5.2)

for which edge correction is not necessary. For the CSR process,J (r ) = 1, whereas

J (r ) < 1 suggestsclustering, and J (r ) > 1 suggestsregularity. To compare the actual

point pattern with CSR, for M I I ;A 100 simulations are made of CSR processeswith the
sameintensity as in M I I ;A and Ĵ (s) (r ) are calculated for s = 1; � � � ; 100, using maximum

and minimum of Ĵ (s) (r ) as envelopes. These were plotted together with the estimated
Ĵ (r ) and the averageĴ (r ) of the simulations. The sameanalysis was done for the two

plots M I and M I I ;B .

Cro wn shape

Tree crown shape is largely determined by its vegetative growth characteristics and by
competition (Biging and Gill, 1997). Ellipses are usually applied to graphically represent

the cross-sectionsof tree crowns, usually basedon 4 measuredcrown radii. To improve

upon this, we measured8 radii in M I I ;A and in M I I ;B . In M I , measurements were made
into the 4 directions � =6 + k � � =2 for k = 0; : : : ; 3, and in M I I ;A and M I I ;B into the 8

directions k � � =4, k = 0; : : : ; 7 clockwise from the north. For analytical purposeswe
described tree crowns as a polygon � with 120 vertices, obtained from the original 4 or

8 crown radii. For every � j with 0 � � k � 1 � � j � � k � 2� the radius is estimated by
weighted linear interpolation

ĉ(� j ) =
(� j � � k � 1)
(� k � � k � 1)

� c� k +
(� k � � j )

(� k � � k � 1)
� c� k � 1 (5.3)

where k = 1; : : : ; 8 (with � 0 = � 8), j = 1; : : : ; 120 and c� k are the measuredcrown radii.
The estimated radii ĉ(� j ) equal the weighted averageof the two closestmeasuredradii,
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with weights inversely proportional to the absolute di�erence between angles. Such a

crown representation is exact on the measuredradii and can be applied on any number of
measurements. In addition, no parametric shape is forced to the crown, whereasthe �nal

shape is smooth and has the samenumber of vertices regardlessof the initial number of

measuredradii.

Shape parameterswerecalculated on the approximating polygons�. A shape param-

eter is a function S(�) ! R1 that is invariant to any translation, rotation or re-sizing of

polygon � (Glasbey and Horgan, 1995,p.170). In this study, the area, perimeter, maxi-
mum diameter dc max and minimum diameter dc min of each polygon � were calculated,

aswell as length (l ) and breadth (b) asde�ned in Glasbey and Horgan (1995,p.153). The
following shape parameterswere used:

� compactnessct = 4� � area=(perimeter)2. The compactnessparameter comparesthe

area of � with the area of a circle with the same perimeter. Values for ct vary
between0 for a line segment and 1 for a circle.

� elongationel = l=b. The elongationparametermeasuresthe length of � ascompared

to its breadth. As el corresponds to �tting the vertical projection of � into a
rectangle with the samelength and breadth, it varies between1 and + 1 .

� eccentricit y ec= dc max =dc min . The eccentricit y parameter also measuresthe elon-
gation of �, comparing largest with smallest � diameter. The ec parameter varies

between1 (when all diameters are equal) and 1 .

Comp etition indices

In this study competition e�ects between trees are modelled in terms of crown size and
shape. Competition at the crown level is assumedto depend on the distance to neigh-

bouring trees,aswell ason their number and size. Therefore ten competition indiceswere
selectedfrom the literature (Moravie et al., 1999),and wereadapted to properly measure

aspectsof competition. We usedall trees in the plots to calculate the competition indices,
therefore also trees from other speciesand border trees, i.e. trees within 10 m of the plot

border.

Most indices involved local tree density, inter-tree distances and size of neighbours
(Table 5.2). Distance independent indices were computed for search radii of 10, 15, 20

and 30 m around each tree. Correlation coe�cien ts between crown shape and tree size
parameters, d, h and dc were computed, and bivariate plots were made to check for

non-linear relationships.

To check for the in
uence of autocorrelation in the signi�cance of correlation coe�-
cients a size permutation test was performed. Observed tree sizeswere randomly allo-
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Table 5.2: Competition indices used in this study (Moravie et al., 1999). The index i refers to

the subject tree, j refers to a competitor, %is a size measure, such as d, h or g, and r ij is the

distance betweentree i and tree j . Distances usedwere r =10, 15, 20 and 30 m (also 1 for CI 10 ).

Index Expression Reference �̂ (CI ; dc)

Distance independent indices

CI 1 Number of trees (competitors) within
r meters, (N c )

-0.34

CI 2 Number of competitors within r me-
ters such that %j > %i

-0.55

CI 3 Sum of size of trees within r meters,
P N c

j =1 %j

Steneker and Jarvis
(1963)

-0.25

CI 4 Sum of basal area of bigger trees within
r meters

P N c
j =1 gj 1( %j >% i )

-0.38

CI 5 Size ratio, %i

%i +
P N c

j =1 %j
Daniels et al. (1986) 0.55

Distance dependent indices

CI 6 Distance to nearest tree (N N ) 0.28

CI 7 Distance to N N such that %j > %i 0.51

CI 8 Di�erence in size with nearest tree
%N N � %i

-0.46

CI 9 Size ratio prop ortional to distance
P N c

j =1
%j
%i

1
r ij

Daniels et al. (1986),
Tom�e and Burkhart
(1989)

-0.54

CI 10 Size di�erence prop ortional to distance
P N c

j =1
%j � %i

r ij

-0.68



52 Chapter 5. Spatial statistics for cork oak stands

cated to the observed tree locations and correlation coe�cien ts betweentree sizeand the

competition indices were re-calculated. This was repeated 100 times, and the simulated
correlations were compared with the observed one. The observed correlation coe�cien t

was signi�can t if its absolute value exceeded95% of the simulated absolute correlations.

Directional crown parameters

Preferential growth direction may in
uence crown shape, as for example, isolated trees

may have a preferential southern growth direction, where the crown intercepts most sun-
light. For trees in a stand, crown competition from a preferential growth direction may

a�ect trees more than competition from another direction. Analysis of the crown shape
parameters alone is unlikely to reveal a preferential growth direction. A preferential

growth direction could be found by analyzing summary statistics of crown radii of iso-
lated trees. A tree with crown c�;i is isolated from trees with crowns c�;j at distancesr ij

if r ij � max
�

c�;i + max
�

c�;j for all j . According to this de�nition, 9 isolated cork oaks
occur in M I I ;A .

Crowns well exposedto the south are expected to have larger crowns as comparedto
crowns that are poorly exposedto the south direction. To test this for M I I ;A , let c5� = 4

c� = 4

and c�
c0

represent the ratio betweencrown radius directions south-westand north-east, and

betweencrown radius directions south and north, respectively, and c5� = 4 � c� = 4

c5� = 4 + c� = 4
, the relative

di�erence between crown radius directions SW and NE . Scatter plots and correlations
are usedto study the relations betweentheseparametersand crown sizeor tree size.

Mo delling the crown diameter

For the relationship betweendc and d, Dawkins (1963) useda linear relation in tropical

high forest trees. This linear relation is reportedly weak for trees from other forests (see
for exampleDe Gier, 1989). However the PortugueseNational Forest Inventory currently

usesa linear regressionequation to estimate crown cover in cork oak montados (DGF,
1990). In this study the following relationships are explored:

� dc = b0 + b1 � d

� dc = b0 + b1 � d + b2 � h

� dc = b0 + b1 � d + b2 � d2

� dc = b0 + b1=d

To improve upon that basic relationship we intro duced spatial information such as
competition indices into this model. Linear regressionmodels for dc with crown shape
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measures,crown directional parametersand competition parametersas explanatory vari-

ablesweredetermined. A �rst selectionwasmadeto eliminate indicesstrongly correlated
with d. Stepwise regressionwith forward and backward elimination was then applied to

remove non-signi�cant contributors, using the S-Plus software. The procedurecalculates

the Cp statistic for the current model, as well as for reduced and augmented models. It
adds or drops the term that mostly reducesCp (MathSoft, 1997).

Data reduction

To investigate e�ects of crown measurement intensity, the crown data in M I I ;A were re-

ducedfrom 8 to 4 and a 120-vertex polygon was�tted to both the full 8-radii data (� 8) and
the reduced4-radii data(� 4). Two setsof � 4 wereobtained for each crown, corresponding

to measurements on orthogonal directions. Shape parametersS(� 8) were comparedwith

shape parametersS(� 4). The averageof the ratios for every tree in M I I ;A betweenS(� 4)
and S(� 8) was used to measureits similarit y, i.e. its logarithmic transformation should

be closeto zero. Let � = log [S(� 8)=S(� 4)]. The hypothesis H0 : E (�) = 0 was tested
using Wilcoxon signedrank test (� = 0:05).

5.4 Results

Description of the Plots

Summary statistics for the three plots in the two montados are given in table 5.3. Average
d equals32 cm at M I , 40 cm at M I I ;A and 37 cm at M I I ;B . The tallest cork oaksoccur at

M I I ;A (h = 10:9 m), where trees are on average1.6 m higher than at M I (h = 9:3 m) and
1.4 m higher than at M I I ;B (h = 9:5 m). In M I I ;A tree height is more variable than in the

two other plots, as the standard deviation is 2.8, whereasin M I it is 2.0 and in M I I ;B it
is 2.2. Averagedc is 7.0 m at M I , 8.1 m at M I I ;A and 7.4 m at M I I ;B . This indicates that

cork oaksare largest in stem diameter, tallest and with the largest crown diameter in plot
M I I ;A and are smallest in stem diameter, shortest and with the smallest crown diameter

in plot M I . Cork oaks in M I are more variable in d and dc than in M I I ;A and M I I ;B . Plot

M I I ;B is similar to plot M I I ;A in terms of tree sizes.

Poin t patterns

The windows WI , WI I ;A and WI I ;B for plots M I , M I I ;A and M I I ;B are given in Figure 5.1.
Clearly, cork oaks are unequally spacedin M I I ;A and M I I ;B , and more regularly spaced

in M I . Numbers of trees equal jWI I ;A j = 145, jWI I ;B j = 146 and jWI j = 380, leading
to processintensities equal to � I I ;A = � I I ;B = 69 trees ha� 1 and � I = 95 trees ha� 1.



54 Chapter 5. Spatial statistics for cork oak stands

0 50 100 150 200

0

50

100

150

200

X coordinate

Y
 c

o
o

rd
in

a
te

0 50 100 150

0

50

100

150

X coordinate

Y
 c

o
o

rd
in

a
te

0 50 100 150

0

50

100

150

X coordinate

Y
 c

o
o

rd
in

a
te

Figure 5.1: Tree locations in M I , M I I ;A and M I I ;B (from top to bottom). The X-axis values

increase in the 30o azimuth in M I , and in the 221o azimuth in M I I ;A and M I I ;B . The window

(inner frame) de�nes the processarea.
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Table 5.3: Summary statistics of variables measured in the cork oak plots.
x y d h dc

M I

Min 0.3 0.7 13.5 4.4 2.1
Mean 32.0 9.3 7.0
Max 203.9 202.4 78.0 14.9 15.9
Std Dev. 13.0 2.0 2.8

M I I ;A

Min -16.7 0.8 18.7 4.3 2.8
Mean 40.4 10.9 8.1
Max 140.1 149.2 71.3 19.8 14.0
Std Dev. 11.5 2.8 2.3

M I I ;B

Min -0.7 1.9 17.8 3.8 2.2
Mean 37.1 9.5 7.4
Max 149.7 137.3 82.8 17.7 14.7
Std Dev. 11.5 2.2 2.1

The median inter-tree distancesare approximately 6 m for all three plots, and they are

larger than 4 m for 75% of the trees in the three plots. The Ĵ (r ) function for the three

plots, aswell asthe CSR envelopesand average,is shown in Figure 5.2. The Ĵ (r ) function
calculated for plot M I hasvaluesgreater than 1 for r � 10m falling outside the upper CSR

envelope. It shows that M I has a more regular pattern. For M I I ;A Ĵ (r ) is approximately
equal to 1 for r � 5 m, and decreasesfor r > 5 m. Both for small and large values of

r , Ĵ (r ) valuesare inside the CSR envelopes,showing no signi�can t deviation from CSR.
Plot M I I ;B has more pronounced tree aggregation than plot M I I ;A . The observed Ĵ (r )

values are greater than 1 for r � 5 m and for r � 7 m they are smaller than 1. Some
values are outside the CSR envelopes, suggestingthat the underlying spatial processis

aggregated. This result is likely to be related to the two large open areas observed in
Figure 5.1. According to the farmer, initially the seedsdid not develop in those areas,

and the exposureto grazing on a later stagemade natural regenerationimpossible(pers.

comm.). This type of open area is very common in Portuguesemontados.

Cro wn shape

Figures 5.3 to 5.5 show the tree crowns in the plots, described aspolygons. Clearly visible

overlapsof crownson thesemapshavebeenobserved in the �eld. Di�erences in tree crown
shape range from almost circular crowns to highly elongated crowns. Elongated crowns

occur in trees that are closeto other trees, whereasisolated trees display a more regular,
round crown. Summary statistics of crown shape parameters from M I I ;A are given in
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Figure 5.2: Empirical uncorrected J -function for M I , M I I ;A and M I I ;B (from top to bottom).
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Table 5.4. Valuesfor compactnesswere on average0.7, and the averageelongation (el) is

1.2. Averageeccentricit y (ec) is 1.5, and in generalec< 2. Two cork oaks were removed
from the data-set becausetheir crown diameter in one direction was close to 0, thus

yielding very large ec values.

Table 5.4: Descriptiv e statistics of shape parameters for the crown in M I I ;A .
Variable min mean max variance

ct 0.4 0.7 0.9 0.01
el 1.0 1.2 1.9 0.03
ec 1.1 1.5 4.0 0.23

Crown shape parametersare uncorrelated to d (j�̂ j < 0:15) and h (j�̂ j < 0:10), but dc

wascorrelated to ec(�̂ = � 0:4) and to a lesserextent alsoto ct and el (j�̂ j < 0:3). Crowns
with a round shape may have a larger sizethan those that are elliptically shaped.

Comp etition indices

Competition indices in table 5.2 were computed using d, h or basal area to comparetree

sizes,for di�eren t �xed valuesof r . Treesize(d and h) had a high correlation with indices
CI 2, CI 4, CI 5 and CI 7 to CI 10, which account for the relative size of neighbours. For

example,d wasuncorrelatedwith the distanceto the closesttree (CI 6, �̂ � 0:1), but it was

highly correlated with the distance to the closestbigger tree (CI 7, �̂ = 0:62). This was
also observed for h. Correlations with dc were between j�̂ j = 0:25 for CI 3 and j�̂ j = 0:68

for CI 10. In general, indices with the number and/or distance to bigger neighbours had
higher correlations with dc (Table 5.2).

The size-permutation test showed that the correlation coe�cien ts betweenh and the
competition indices were all non-signi�cant. Indices correlated with d were CI 2, CI 5,

CI 7 and CI 9 (� = 0:05). All indices were correlated with dc, the observed correlation
valueslargely exceedingthe simulated ones. Correlations at the highest signi�cance level

occur for valuesof r up to 20 m.

Correlation is also present between competition indices and crown shape (j�̂ j � 0:4)

in M I I ;A . Compactnesshad the highest correlation with CI 2, CI 3, CI 4, CI 5, CI 6 and
CI 9 (0:3 � j�̂ j � 0:4). Elongation was poorly correlated with all competition indices but

eccentricit y washighly correlated with CI 9 (j�̂ j = 0:46). Treessubject to competition are
generally lesscompact, more elongatedand have eccentric crowns.
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Figure 5.3: Map of tree crowns for M I basedon 4 crown measurements.
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Figure 5.4: Map of tree crowns for M I I ;A basedon 8 crown measurements.
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Figure 5.5: Map of tree crowns for M I I ;B basedon 8 crown measurements.

Directional crown growth

The comparison of minimum, averageand maximum crown radii of isolated trees and

non-isolated trees is shown on �gure 5.6. The size of the crown radii is more variable
in the caseof non-isolated trees. The summary statistics were calculated for each crown

radius separately. Both groups of trees display someelongation towards the north-south
direction. Seventy per cent of the trees in M I I ;A have a larger crown radius into the

south direction than into the north direction. Also, the crown radius into the south is
25% larger than the radius into the north for half of the trees. Correlations betweenthe

directional crown parameters and dc were all very low, and bi-variate plots showed no

structural relations.

Mo dels for crown diameter

Figure 5.7showsthe relationship betweendc and d for the three plots. A linear dependency
is present for the observed values of dc and d. Model dc = b0 + b1 � d (R2 = 0:53)

�tted the data from all three plots better than dc = b0 + b1=d (R2 = 0:47). Model
dc = b0 + b1 � d + b2 � d2 brought an improvement of at most 0:002 to the R2 obtained for

the simple linear model.

The variable h also did not improve the linear model dc = b0 + b1 � d much, as it

resulted in an increaseof R2 with only 0:02. Therefore, the linear model dc = b0 + b1 � d
was selected. The slope is larger for M I than for M I I ;A and M I I ;B . The predicted values
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Figure 5.6: Comparison of average, minim um and maximum crown radii for isolated trees, and

average and maximum crown radii for non-isolated trees, in M I I ;A . The minim um radii of non-

isolated trees are zero.

of dc are larger in M I I ;A than in M I I ;B , for all d. M I has larger dc than the two plots in

M I I for d � 32 cm (Table 5.5 and Figure 5.7). A similar comparison was made between
isolated and non isolated trees, by �tting the samemodel to each of the two groups of

trees. The 9 isolated cork oaks in plot M I I ;A have larger predicted crown values for the
samed than non-isolatedtreesin the sameplot. However, the small samplesizeof isolated

trees doesnot allow us to concludethat there is any di�erence in crown sizebetweenthe

two groups.

Table 5.5: Estimated parameters for a linear relationship dc = b0 + b1 � d in the three plots.
Parameter M I M I I ;A M I I ;B

b0 0.97 2.25 2.15
b1 0.19 0.15 0.14
R2 0.73 0.53 0.58

Bi-variate plots of dc against correlated competition indices and against correlated
crown shape parameters (not shown), indicate that the relationships are approximately

linear. We obtained one improved model for mean crown diameter. Table 5.6 shows the
two linear models for dc. The �rst is the samemodel as in table 5.5. The secondmodel

equals

dc = 4:24+ 0:14� d � 1:58� ec+ 0:12� CI 6 (R2 = 0:63) (5.4)

It addsinformation on competition (CI 6) and on crown shape(ec) to the �rst model. This
model is signi�can tly better than the �rst model. It predicts larger crowns in trees with
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Figure 5.7: Relationship betweendiameter at breast height (d) and crown diameter (dc), for the

three plots M I (top), M I I ;A (middle) and M I I ;B (bottom). The �tted regression lines are those

speci�ed in Table 5.5.
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a larger distance to their nearest neighbour. The predicted values and 0.95 con�dence

intervals for dc can be found in Table 5.7. Here we used the approximately minimum,
median and maximum observed valuesof the explanatory variables. The table shows that

for the samed and ecwe expect more than 1 m increasein dc if the distanceto the nearest

neighbour increasesfrom the minimum (2 m) to the maximum (14 m) observed value in
M I I ;A . This model alsopredicts more eccentric crowns to be smaller in size(negative sign

in the relationship). Very eccentric crowns (ec = 2) are expected to be 1.5 m smaller in
diameter than non-eccentric crowns (ec= 1).

Table 5.6: Regressionmodels for dc according to a stepwise regressionprocedure, for M I I ;A .
Variable Coe�cien t Std. Error t value Pr( > jt j) R2

intercept 2.25 0.49 4.60 0.00 0.53
d 0.15 0.01 12.51 0.00

intercept 4.24 0.82 5.16 0.00 0.63
d 0.14 0.01 12.88 0.00
ec -1.58 0.33 -4.79 0.00
CI 6 0.12 0.05 2.30 0.02

Table 5.7: Con�dence intervals (95%) for dc = f (d; ec;CI 6), for M I I ;A .
Con�dence interval for dc

ec CI 6 d=18 d=40 d=70

1 2 (4.66, 6.02) (7.78, 8.87) (11.66, 13.15)
1 6 (5.28, 6.35) (8.47, 9.14) (12.29, 13.48)
1 14 (5.97, 7.57) (9.09, 10.42) (13.03, 14.65)

1.4 2 (4.14, 5.27) (7.27, 8.11) (11.10, 12.45)
1.4 6 (4.73, 5.63) (7.97, 8.38) (11.70, 12.80)
1.4 14 (5.32, 6.94) (8.43, 9.82) (12.36, 14.05)
2 2 (3.21, 4.30) (6.33, 7.16) (10.12, 11.52)
2 6 (3.73, 4.73) (6.88, 7.57) (10.65, 11.94)
2 14 (4.25, 6.11) (7.33, 9.02) (11.26, 13.24)

Analysis of plots M I and M I I ;B

Comparisonof the crown shapeparametersobtained for the two plots revealsimilar values

of ct and el to those found in M I I ;A . In plot M I I ;B we �nd crowns slightly more eccentric
than in plot M I I ;A , ec = 1:7, whereasplot M I has lesseccentric crowns (ec = 1:3). We

found higher correlation between ct and dc in M I I ;B (�̂ = 0:36) and M I (�̂ = 0:41) than
those found in M I I ;A . Correlations with d and h were low, as for M I I ;A .
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Correlations betweenthe competition indices and tree sizewere higher in M I I ;B than

in M I I ;A , whereasM I had similar correlations valuesas in M I I ;A .

The model dc = b0 + b1 � d for plot M I has an R2 of 0.73, whereasfor plot M I I ;B R2

is 0.58. The addition of variables CI 6 and ec improved the initial model in both plots.
Results were R2 = 0:75 for M I and R2 = 0:64 for M I I ;B .

Data reduction

Six tests were performed in total, two tests each for compactness,elongation and ec-
centricit y. The averageratios between the shapes obtained with the reduced data and

the shapes obtained with the 8 measurements were equal to 0.94 for compactness,1.05
for elongation and 1.2 for eccentricit y. The Wilcoxon signed rank test rejected the null

hypothesis for compactnessand eccentricit y, but not for elongation (� = 0:05).

5.5 Discussion

Three parameterswere usedto analysecrowns in terms of their compactness,elongation
and eccentricit y, usingcrown radii measurements. Shapeparametersareapplied on images

of objects. Crown radii were interpolated towards 120 points of a polygon using a linear
interpolation procedure weighted by angular di�erences. Other interpolation methods

might have beenapplied as well. The resulting shapeshowever were more realistic than
if we had joined the measuredradii for example with straight lines. Also, parametric

functions such as splines and trigonometric linear regressionfunctions force a particular
shape to the crown. Functions that �t a larger variety of crown shapes need a larger

number of crown measurements, and add random noise. These were therefore avoided.

When the 8 crown measurements were reduced to 4, two of the three calculated shape
parameterswere signi�can tly di�eren t from the previously obtained.

Treesunder competition had more elongated, less round crowns than isolated trees.

This agreeswith �ndings of Brisson (2001), that in forests of sugar maple isolated trees
have the most symmetrical crown, whereastrees under competition are more asymmet-

rical and display crowns more developed away from the main competitiv e pressure of
neighbouring trees. We found correlations indicating that eccentric crowns tend to be

smaller, whereasround crowns tend to be larger. But since we had a small number of

isolated trees, we could not �nd a signi�can t di�erence in the sizesof the two groups of
trees.

Ledermann and Stage(2001) hypothesizethat stand-averagecompetition indices rep-

resent the underground situation, while distance-dependent indices represent the above-
ground environment. We found large correlations between crown diameter and indices
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involving the number and size of neighbours, also in distance-independent indices. In-

dices weighting the size of competitors with their distance to the subject tree have a
confounding e�ect with the subject tree's size, and result in increasedestimated corre-

lation values. The random allocation of tree sizesto the observed tree locations yields

correlation valuesunder the independenceof tree sizeand tree location. The correlations
observed in the montados can be comparedwith percentage points in the simulated dis-

tribution. All correlations betweendc and the competition indices were signi�can t at the
� = 0:05 level.

Larger competition e�ects are found in aggregatedand random point patterns, for the
sameoverall density, becauseinter-tree distancescan be very small. Competition might

be reducedby reducing tree density and by planting trees according to a regular pattern,
since both result in larger minimum tree distances (Smith et al., 1997). Larger crowns

for the samed are observed in the plot with a regular pattern, M I , than in the plots with

random or aggregatedpatterns (M I I ;A and M I I ;B ). A more extensive study should be
performed to research the e�ect of point patterns on crown size,and to seeif decreasing

tree competition would increasecork production.

The linear model dc = b0 + b1 � d �tted the data at least as well as the other tested

models. A quadratic function or more complex functions might better explain variation
in crown diameter for a di�eren t range of dc and d. However, the chosenmodel is more

appealing becauseof its simplicit y and the good �t for the observed values of crown

diameter.

This study should be envisaged as a preliminary analysis aiming at de�ning the

methodologies to be used in data collection in the future, and for the characterization
of the structure of adult montados to be usedin the initialization module of the SUBER

model (Tom�eet al., 1999). The SUBER model is to provide the landownerswith a forecast
of the consequencesof di�eren t silvicultural practices - thinnings, fertilisation, debarking

levels, grazing, etc - in the future yield of the stands, basedon spatial characteristics and

tree sizedistribution of their stands.

5.6 Conclusions

In this study we explored relations for cork oaks. Competition indices accounting for the

relative sizeof neighbouring trees were the most correlated to crown size. The crown of a
cork oak has a di�eren t shape and sizewhen it is under competition, in particular if it is

closeto larger trees. It is more elongatedand eccentric, and lessround. Ultimately this
may havean e�ect on crown size,givenby its meandiameter. A model for crown diameter

was obtained using d, crown shape and distance to the nearestneighbour as explanatory
variables. The resulting model explains 63% of the variation in crown size, and is an
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improvement on the model currently used by the PortugueseNational Forest Inventory.

Increasing inter-tree distancesand decreasingdensity is likely to result in larger trees. In
particular, regular patterns help increaseminimum inter-tree distancesfor a given density.
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Chapter 6

Comparison of three sampling

metho ds in the managemen t of

cork oak stands

Maria Jo~ao Paulo, Margarida Tom�e and Alb ert Otten
Submitted to Forest Ecology and Management

In this study we compare three sampling methods to estimate several

variables in cork oak stands. The �rst method is to sample circular

plots with �xed area. In the second method we sample circular plots

with �xed number of trees. The third method consists in sampling

zigzags each consisting of trees close to �xed points in a pre-de�ned

path. This latter method, commonly used by Portuguese farmers, lead

in most situations to estimators with larger biasesand standard errors

than the other two methods.
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6.1 In tro duction

Cork oak is Portugal's secondmost important forest species.It occupiesan areaof 640000

ha and is the secondmost exported forest product. Portugal contributes to approximately
52% of the world's cork supply.

Cork oaksare grown speci�cally for the production of cork in cork oak stands known
as montados, silvopastoral systemswhere cork production is associated with cattle and

sheepbreeding and grazing. The cork oak grows in poor soils and adapts to di�cult
conditions, such ashigh temperaturesand lack of rain for lengthy periods. They are often

grown in areas threatened by deserti�cation. Their economicvalue plays an important
role in the ecologicalprotection of large areas.

Extraction of cork takes place every 9 to 11 years in adult trees. Before extraction,
farmers sample the montado to estimate the value of cork. This depends upon quantit y

and quality of cork. The quality of cork is de�ned by its thickness,the number and size
of pores, and several other characteristics. Each cork segment is rated, basedon visual

assessment, into oneof 7 quality classes,whereclass1 is the bestquality and class7 (called
refugo) is the worst. The yield estimate(s) helps farmers to set a price for their cork, and

in the choiceof management alternativ es. A commonly usedsampling procedurefollowed

by farmers is to de�ne a polygonal transept (zigzag, seeFigure 6.1) with a convenient
starting point and covering the whole montado, and to sampleevery tree that crossesthe

transept.

Figure 6.1: Example of zigzag sampling in montados (left) and in the circular plots (righ t).

In this study we compare the results of zigzag sampling with two other sampling
methods - cluster sampling with �xed plot radius, cluster sampling with a �xed number

of trees (and variable plot radius). Cluster sampling with �xed area is a widely used
sampling method in extensive inventories to estimate stand variables such as tree density
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and basal area. A number of plots are randomly selected,and all trees in each plot are

measured. The trees in the stand have an equal probabilit y of being selectedand the
usual estimator of the population total is unbiased, if boundary e�ects are negligible.

In their article from 1992,Jonssonet al. recommendthe useof an alternativ e method
for forest inventory, namely to measurea �xed number of trees nearest to the center of

the plot. They claim the method is more e�cien t than the �xed circular plot sizemethod,
and is more accurate than other low-cost alternativ e methods. Furthermore, the authors

show that for simulated foreststhe estimators they proposehave a bias smaller than 10%,
under the condition that the variables of interest are independent of the underlying point

process.

The objective of this study is to extend the simulation to forestswhere the diameters

at breast height are not spatially independent, and to extend the sampling methods to the
three types mentioned above. Furthermore, we consider the estimation of sometypical

cork oak characteristics. The sampling methods are compared in terms of the bias and
precision of the estimators and sampling costs.

6.2 Sampling in mon tados

In cluster sampling, a simple random sampleof n primary units over an area is selected,

followed by taking actual samplesat a number of mk ; k = 1; : : : ; n secondaryunits in
each of the n primary units. In this study, the primary units are circular plots, and the

secondaryunits are the trees in each plot. Although we actually measurethe secondary
units, it is the primary units that are selected.We assumethroughout this text that the

primary units are randomly sampled.

The trees can be sampledaround each plot centre in two di�eren t ways: 1) sampleall

trees within a �xed distance r from each plot centre, or 2) sample a �xed number m of
closesttrees to each plot centre. Both methods can be described as cluster sampling, but

in method 1 trees are selectedinto the sample with equal probabilities, and in method
2 they are selectedwith unequal probabilit y. Table 6.1 lists the variables used in the

remainder of this chapter.

Cluster Sampling with equal inclusion probabilities

For cluster sampling with equal selection probabilities we use a �xed radius r from the

center of the circular plots. A sample taken with this method will be referred to as
Rk ;r with k = 1; : : : ; n. For each primary unit (plot) in the sample we can determine

the area (A), the number of cork oaks, and for each tree, the tree diameter at breast
height without cork (d), the cork quality (cq) and thickness(ct ). Thesestatistics can be
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Table 6.1: List with variables.
Variable
or index Description

n Sample size, number of primary units in the sample
k Index for plots, k = 1; : : : ; n
m Number of trees in plot
M Total number of trees in a stand
r Plot radius
R, Rr Plot with �xed radius
T, T m Plot with �xed number of trees
Z Zigzag plot
A Area
i , j Indices
x1 , x2 Spatial coordinates
d Diameter at breast height (1.3 m) without cork
ct Cork thic kness
cq Cork qualit y
hstem Stem height
hcork Maxim um cork stripping height
N Stand tree density (number of trees divided by area)
G Stand basal area (total basal area in stand divided by area)
g Tree basal area (without cork, at 1.3 m)
Vl Stand cork volume in qualit y class l , divided by area
vl Tree cork volume in qualit y class l
CI Competition index
Y A population total divided by area
z A standard normal deviate
� Mean value
� 2 Variance
s2 Sample variance
se Standard error
� Distance
L Path length (b=b etween plots, w=within a plot)
c1 ; c2 ; c3 costs
� , � , 
 Constants
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combined to estimate the population density (N , number of trees divided by the area),

basal area (G, the total cross-sectionalarea at breast height divided by the stand area,
expressedhere in m2ha� 1), and cork volume in each quality class(Vl in class l divided

by area). Cork volume was usedinstead of its weight, the latter being the usual quantit y

associated with cork value (price). Tree density (N ) is estimated as N̂ = 1
n

P n
k=1

1
A mk ,

where mk is the number of cork oaks in plot k, and A is the (�xed) plot area. The

estimator for the stand basal area is Ĝ = 1
n

P n
k=1 ( 1

A

P m k
i =1 gk i ), where gk i is the basal

area of tree i in plot k: g = � (d=2)2. For the cork volume in classl we usethe estimator

V̂l = 1
n

P n
k=1 ( 1

A

P m k
i =1 vk i;l ); since the cork sample from each tree is assignedone single

quality class, the contribution vk i;l from one tree is either its whole cork volume vk i , or

zero.

Cluster Sampling with unequal inclusion probabilities

When a �xed number m of trees is sampled at each primary sampling unit each tree is
associated with a di�eren t probabilit y of being selected(unequal probabilit y sampling).

The Horvitz-Thompson approach to obtain the unbiased estimator for the population

total is to divide the measurements performed on the observed trees by their inclusion
probabilities (c.f.r. Thompson, 1992). In practice it is impossible to calculate these

inclusion probabilities since they depend on the unobserved locations of all trees in the
surrounding area, and even if the locations of all trees were known, the calculation of the

inclusion probabilities would be cumbersome.This is becausefor a given tree, a joint area
of overlapping convex simplicesis needed.The calculations are far more complicated than

thosefor the nearestneighbour Dirichlet cell (for the latter c.f.r. Ripley, 1981). For locally
random patterns the probabilit y of inclusion in a single plot can be approximated by m

divided by the local tree density. The resulting estimators are approximately unbiasedif
the variable of interest takes(spatially) independent valuesfor di�eren t trees.

Samples(plots) with m trees are denoted by T k ;m , k = 1; : : : ; n. For the observed
local tree density in plot k we take (m � 1)=Ak , for the samereasonas in Jonsson,i.e., in

Poissonprocessesthis is an unbiased estimator of the intensity. Then the estimator for
the population tree density becomesN̂ = 1

n

P n
k=1

1
A k

(m � 1), where Ak is the plot area

de�ned by the distance to tree m. The estimators for the stand basal area and for cork
volume are Ĝ = 1

n

P n
k=1 ( m � 1

m
1

A k

P m
i =1 gk i ), and V̂l = 1

n

P n
k=1 ( m � 1

m
1

A k

P m
i =1 vk i;l ), with g

and vl de�ned as before.

Zigzag sampling

The sampling method followed by some farmers consists in de�ning a zigzag transept
covering the whole montado, and sampling every tree that crossesthat path. Here we
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adapt the method so that it can be applied to smaller areas. Starting from a randomly

selectedpoint, we de�ne a single path (primary unit) with a constant number of vertices
covering the whole plot, and at each vertex we samplethe closesttree (secondaryunits).

The total area A corresponding to the sampleunit is determined by the sum of the areas

of the circles around each vertex in the path, with radius given by the distance to the
closest tree. Sometrees and area parts could be counted more than once here. Sample

size is set at n zigzag paths by choosing n starting points in the stand area. We name
theseplots Z. The estimators for tree density, basalareaand cork volume are then de�ned

as in T plots, with m equal to the total number of trees measuredin each zigzag.

Assumptions in sampling primary units

In many practical situations the proportion of total sampled area (or sampled number

of trees) is very small. In that casesampling of plots can be consideredas sampling
with replacement. Here we consider only this situation. Thus no attempt is made here

to construct sampling of primary units without overlap, and the variance formulae for
samplingwith replacement areassumedto besatisfactory. Let n bethe number of primary

units in the sample,and y a variable of interest. Then the varianceof the aboveestimators
using cluster sampling (for both methods) and zigzag sampling can be estimated with

^var(Ŷ ) = s2=n. Here Ŷ = 1
n

P n
k=1 Ŷk , and Ŷk are the estimators for the primary units,

and s2 is the sample variance of the Ŷk , s2 = 1
n � 1

P n
k=1 (Ŷk � Ŷ )2. In our simulation

experiment we do not sample many plots in one simulated stand. Instead, we simulate

the sametype of stand repeatedly and sample only one plot per stand. The variabilit y
betweenplots and hences2 obtained from theseplots re
ects then the variabilit y in large

scalestands. By large scalewe meanthat dependenciesof characteristics of di�eren t plots
in the samestand becomenegligible at plots distanceswhich are still small comparedto

the stand size. For the simulated stand typeswe estimate the standard error at an actual
sample size of n plots from one large stand as s=

p
n. The value of n will be chosento

meet certain requirements, such as �xed costs.

6.3 Simulated stands

To test the three sampling methods we simulated cork oak stands using information
obtained in the analysis of a 200� 200m2 plot in Herdade do Vale Mouro (M I ). The

spatial characteristics of M I were analysedin Paulo et al. (2002). In M I the trees had a
regular point pattern and tree density wasequalto 95ha� 1. The diameter at breastheight,

d, wasnot randomly distributed with respect to tree positions; a negative correlation was
present betweenthe sizesof neighbouring trees. For cq or ct we found no evidenceagainst
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complete randomness.

Sincethe performanceof the estimators derived from a �xed number of sampledtrees
is likely to depend on the spatial tree distribution aswell as the spatial distribution of the

measuredvariables we simulated stands from di�eren t underlying point processes,and
di�eren t degreesof spatial correlation for d. Tree coordinates were generatedeither as

random patterns, clustered or regular. Tree density was set to 100 ha� 1 to be similar
to the tree density observed in M I . Further, diameters were generatedaccording to the

marginal distribution of d found in M I , which wasapproximately a shifted lognormal with
parameters� = 3:3 and � = 0:4, and dmin = 3 cm (observed mean is 32 cm and observed

standard deviation is 13 cm). The marginal distributons observed for cq and ct in M I

wereusedsimilarly. For ct this distribution was approximately normal with mean � = 31
mm and standard deviation � = 7:5 mm. In M I the cork sampleswere classi�ed into

classes3 to 7. The probabilities for cq usedin the simulations werederived from observed
frequenciesof cork in each quality classin M I . The probabilities are 0.04,0.12,0.28,0.34,

and 0.22 for classescq = 3, 4, 5, 6 and 7, respectively. Generated d values were either
randomly assignedto trees, or according to a penalty function in order to keep trees at

somedistance from neighbouring trees, this distance increasing with tree size. We call
such a distribution of d values, among tree locations, regular, becauselarge trees tend

to exhibit a regular point pattern. Cork characteristics cq and ct were always assigned

independently of tree locations and diameters.

Toroidal edge correction was performed to reduce edge e�ects. With this method
the study area is regarded as a torus, so that points on opposite edgesare considered

to be close(Ripley, 1981). In a rectangular area of size P1 by P2 the distance between
tree i , with coordinates (x ( i )

1 ; x( i )
2 ), and tree j , with coordinates (x ( j )

1 ; x( j )
2 ), becomes

� ij =
p

(� x1)2 + (� x2)2, with � x1 = min
n

jx( i )
1 � x( j )

1 j; P1 � jx( i )
1 � x( j )

1 j
o

and similarly

for � x2.

In each simulated stand circular plots were sampled from the stand centre according
to the three methods. R plots were sampledwith �xed radius r 2 f 20; 25; 30; 35; 40g, for

T plots we useda �xed number of treesm 2 f 13; 20; 28; 38; 50g. The m valuescorrespond

to the expected number of trees of the R plots (for the �xed tree density of 100 ha� 1).
Z samplesof trees in each generated stand were obtained for a �xed number of trees

(m = 14) by creating a spiral transept, with a maximum radius of 56 m, wherethe closest
tree to each vertex is sampled,the distancebetweenverticesincreasingwith their distance

to the center of the stand. The path waspre-de�ned and equal for every simulated stand.

Generation of tree location and size distribution

Six typesof stands were simulated (seeTable 6.2). For types I-V 250 stands with a size
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Table 6.2: Simulated stand types.
Type Point pattern Diameter (d)

spatial distribution

I random random
I I moderately regular regular
I I I very regular very regular
IV regular random
V random regular
VI clustered regular

of 160� 160m2 were generatedindependently , with a �xed number of trees, M = 256,
corresponding to a tree density of 100 ha� 1. For type VI 250 stands were generatedwith

a �xed number of trees and with a larger area that was posteriorly reducedby removing
the stand borders. Tree coordinates (x1, x2), and diameters d were generatedfor each

tree. The simulation details for each type of stand are as follows:

I. Treepositions weregeneratedfrom a uniform distribution, and for all treesdiameters

d weregeneratedindependently of tree positions, di = dmin + e� + � z i , i = 1; 2; : : : ; M ,
where the zi are i.i.d. standard normal deviates.

I I. For this stand type the joint distribution of positions and diameters was basedon

the minimization of a competition index depending on diameter and distanceof tree
pairs, inspired in the Metropolis-Hastings algorithm with a (Gibbs-type) penalty

function:

(a) Generatecoordinates x (0)
1 and x(0)

2 from a uniform distribution for M trees in
a �xed sizearea.

(b) Generate tree diameters as for stand type I.

(c) For each tree i in turn, i = 1; 2; : : : ; M , generatenew candidate coordinates

x(1)
1 and x(1)

2 , keeping d. Calculate index CI = �
P M

j =1 ;j 6= i di dj =� 2
ij , both at

the original location of i , (x (0)
1 ; x(0)

2 ), and at the new location for i , (x (1)
1 ; x(1)

2 ).

If CI (1) < CI (0) then accept the new location for tree i . Otherwise accept the
new location with probabilit y p = e� [C I (1) � C I (0) ].

(d) repeat step (c) 1000times.

Probabilit y p of accepting the new location is partly determined by � , a constant
controlling the scaleof CI .

After many cycles through step (c), the pattern obtained resembles the pattern
observed in M I : the spatial tree pattern and nearest-neighbour distancedistributions
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are quite similar. The similarit y of nearest-neighbour distributions was judged with

QQ-plots. The d valuesdisplayed a similar correlation value with CI asthe observed
in M I . The resulting point pattern is moreregular than in I, and sois the combination

of the tree locations (point pattern) and the diameters (marks of the point pattern).

I I I. Stands as in I I, but with a more regular pattern were simulated, by increasing

the value of � (and so increasing the rejection probabilit y of the new point). The
resulting pattern tends to be more regular than in I I, both for the tree pattern and

for the combination of tree locations (point patterns) and diameters (marks of the
point patterns).

IV. Stands as in I I were produced by using CI = �
P m

j =1 ;j 6= i 1=� ij which does not

depend on the diameters. Here � is again a constant determining the rejection
probabilit y of the new tree location. In this casethe generated trees tend to be

regularly spaced,but tree diameter is independent of the diameters of other trees.

V. The following procedure was used to simulate stands with a random point pattern

for tree locations and a regular diameter distribution:

(a) Generate tree coordinates x1 and x2, from a uniform distribution.

(b) Generate tree diameters as for stand type I.

(c) Perform 200 random permutations of d. Each permutation corresponds to one

assignment of the d valuesto trees in the stand.

(d) For each permutation calculate CI =
P m

i =1

P m
j =1 di dj =� 2

ij .

(e) Choosethe permutation with minimum CI .

VI. Clustered patterns of trees, with a regular diameter distribution. The point pattern
was obtained by generating a parent processuniformly distributed over an area

of 500� 500 m2, and then generating children clustered around each parent. Each
cluster had 20 children and a 60 m radius. The number of parents was�xed to 97, to

obtain a tree density of 100ha� 1 asbefore. To avoid an edgee�ect we discardedthe
stand border (of a width equal to the cluster radius) after which the point density at

the inner area was in average100 ha� 1 as wished. To obtain a regular distribution

of diameters over tree positions we proceededas in (V) for the inner area of the
generatedstand.

6.4 Data

We applied the three sampling methods on available data from two cork oak montados,
one in Herdadeda Machoqueira do Grou (HG), and the other in Herdadedo Vale Mouro
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(M I ). Both farms are located in Central Portugal, close to the village of Coruche. In

montado M I oneplot of a 200� 200m2 sizewasmeasuredin July 1998,shortly after cork
extraction. Measuredvariables were coordinates of tree location, d, hstem , hcork , ct and

cq. It is a very homogeneousplot, but small in sizeto test the three sampling methods. To

overcomethis, we can regard the total sampling area as a grid of rectangles,all identical
to the measuredplot. The initial plot forms a border with mirrored copiesof itself, thus

extending the total area available. SampleR plots with a radius r 2 20; 30; 40 m, T plots
with m 2 12; 27; 48 (corresponding to a tree density of 95 ha� 1) and Z plots are de�ned

in this extendedarea. This is equivalent to assuminga toroidal surfacefor M I . Figure 6.2
shows the plot in M I , with an example of 14 circular sample plots. Sampling was done

repeatedly (250 times each plot, with replacement) in order to obtain preciseestimatesof
biasesand standard deviations.
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Figure 6.2: Circular sampleplots in M I . Treesare marked aspoints, sampled trees have small cir-

clesaround them, plot centres are marked with squares. A toroidal-t ype of surface was assumed,

hence the high frequency of overlapping plots.

Montado HG is one of several management units with cork oaks in Herdade da Ma-

choqueira do Grou. HG has 308 ha in total and is a mixed stand with cork oak, Pinus
pinea and occasionallyalso Pinus pinaster. It is very heterogeneousin terms of tree den-

sity. The sampling took place after cork extraction, in 1998. The stand was divided in 7
distinct strata according to speciescomposition and tree density, the year of harrowing,

and cq. Two random circular plots with a radius greater or equal than 40 m were sam-
pled from each stratum. Table 6.3 summarizesthe plots (restricted to r=40 m) within
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the seven strata in the montado.

Table 6.3: Main characteristics of the plots in HG.
Stratum Year of cork oak size Plot Cork oaks cork oak

harrowing quantit y (ha) number in plot 1 density (ha � 1 )

1 93/94 high 47.4 1 27 54
2 79 157

2 93/94 high 28.1 3 15 30
4 35 70

3 93/94 medium 48.5 5 21 42
6 40 80

4 94/95 medium 48.7 7 40 80
8 28 56

5 94/95 high 78.6 9 26 52
10 31 62

6 94/95 medium 34.7 11 35 70
12 32 64

7 94/95 low 21.3 13 17 34
14 21 42

1 Circular plots with 40 m radii.

Every cork oak inside each plot wasmeasuredfor tree coordinates, d, hstem and hcork .

A smaller number of treeswasalsosampledfor ct and cq. As in M I , R plots, T plots with
m 2 8; 19; 33 (corresponding to a tree density of 65 ha� 1) and Z plots were posteriorly

re-sampledfrom the measuredplots in HG.

Strati�ed sampling

To obtain the �nal estimate of a population characteristic Y for HG we weighted each

estimate, Ŷk from plot k, with the area fraction of the corresponding stratum (h). If we
have a total number q of strata in the montado, then the weight corresponding to each

stratum h is wh = Ah =
P q

h=1 Ah . Clearly
P q

h=1 wh = 1, and thus Ŷ =
P q

h=1 wh �Yh (with
�Yh the mean of the Ŷk 's in stratum h). Similarly, we have var(Ŷ ) =

P q
h=1 w2

h � 2
h =nh ,

with nh as the number of plots in stratum h. Since in the caseof HG we have nh = 2,
h = 1; : : : ; 7, the � 2

h becomevery imprecise to estimate. We therefore simplify o�ering

unbiasednessby estimating one � 2 for all strata, and thus in HG the estimated var(Ŷ )
becomes ^var(Ŷ ) =

P 7
h=1 w2

h s2=2, where s2 is pooled over strata.
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6.5 Mo del for cork volume

In the simulated stands cork volume of a tree was generatedfrom d and ct (generated)

values,becausecork quantit y is correlated with tree diameter. First a model wasobtained
for plot M I , and then used to generatevolumes in the simulated stands. In M I we had

direct measurements of d and ct , and accurateestimatesof cork volume per tree, obtained
from ct and the measureddebarked surfacearea of each tree. The model obtained in the

ln-scale for M I was

v=m3 = e
 1 (d=cm)
 2 (ct =mm)
 3 (6.1)

Here 
 1 = � 13:97, 
 2 = 2:20 and 
 3 = 1:09. An R2 = 0:84 and �̂ 2 = 0:134 were obtained
for this model (in the ln-scale). Therefore this expressionwas used to generate cork

volume from d and ct in the simulated stands (in M I the volumes have been obtained
directly from tree measurements).

Sincemeasurements of cork quantit y (volume or weight) are very di�cult to obtain,
most of the time thesehave to be estimated from other tree measurements. In HG there

were no measurements of cork quantit y (volume or debarked area) for individual trees.
Therefore, we cannot calibrate model (6.1) to use in HG. The measurements performed

in HG include stripping height (maximum height of the stem which was debarked) and
height of fork (height at which the stem divides in two or more main branches). The

latter should be taken into account becausebranched treeshave a larger surfaceand thus

producemore cork. An alternativ emodel to estimate individual volumeswasusedinstead
of (6.1):

v = � ct d(h1 +
p

2h2) (6.2)

where h1 = min(hstem ; hcork ) and h2 = max(0; hcork � hstem ). This expressionderives
from the fact that the diameter of two branchesabove the fork (d1 and d2) relate to the

diameter below the fork (d0) as d0 �
p

d2
1 + d2

2 (the stem volume is more or lessequally

distributed by the 2 branches). If we further assumethat d1 � d2 then d1 + d2 �
p

2d0,
which can be usedwhen d1 and d2 are unknown. In M I , where volume measurements are

available, model (6.1) �tted the data better than model (6.2).

6.6 Comparison of the metho ds

From here on we refer to the estimated single plot standard deviation as s, and to the
estimated standard error (s=

p
n) of an estimator as se. Means and standard deviations

were calculated for Ŷk , k = 1; 2; : : : ; 250, for all characteristics, stand types and sample
plot sizesconsidered. We compared the bias and s of the plots obtained with the three



Chapter 6. Sampling methods for cork oaksstands 79

sampling methods from all simulated stand types. Bias in T-estimators was estimated

through paired comparisonwith the R-estimators for similar plot size- the R-estimators
being unbiased, and highly correlated with the T-estimators. The standard error of the

estimated bias was also calculated. Usually the F-test is usedto comparestandard devi-

ations of two independent samples(normalit y assumed).But sincethe samplesobtained
from the simulated stands with the three di�eren t methods are in principle dependent,

the F-test is slightly conservative, so the Pitman test was also used. The test usesthe
fact that for two variablesY1 and Y2 (dependent or not), cov(Y1 + Y2; Y1 � Y2) = � 2

1 � � 2
2 ,

so that under H0 : � 2
2 = � 2

1 we have � (Y1 + Y2; Y1 � Y2) = 0 for the correlation. Since
t = �̂

p
n � 2=

p
1 � �̂ 2 H 0� tn � 2 (normalit y assumed), for the two-sided alternativ e hy-

pothesiswe reject H0 if jt j � t �= 2;n � 2. The standard error is a usual measureto describe
the precision of estimators, and is associated with sample size. The standard deviations

can be compared immediately when proceduresare used at the same sample size of n
plots. To present a fair comparison of the three methods, we also compare them at the

same�xed total costs, thus at di�eren t n values. Then in the (estimated) standard error

se = s=
p

n both s and n are varying with the method.

Determination of sampling costs

To de�ne the cost of sampling, we divide the costs into two components: travelling costs
corresponding to moving inside and betweenplots, and costs of measuring the variables

of interest for each tree. All costs are expressedas time units. To determine the time
of sampling in cork oak stands under the usual conditions we will assumethat distances

between plots R or plots T are covered by car, at a speed of 4 km�h� 1. This low speed
is chosento re
ect the poor accessibility in montados. We also assumethat the distances

inside each plot are covered by foot, at a speed of 2 km�h� 1. We consider a further 3
minutes to measureeach tree. To calculate the travelled path length inside the simulated

R and T plots, L w , we assumethe forester follows a number of ring shaped paths inside

the circular plot until he has measuredall trees in the plot. The minimum path length,
for a di�eren t number of equal width rings, is then used. In Poissonforests the within

plot path length is approximately proportional to m, the number of trees in the plot. In
Z plots the total path length betweennodescan be calculated precisely. We further add

to this the distance travelled by the forester from each node to the sampled tree (and
back). In HG the path length travelled inside each plot can be easily determined because

the trees were sequentially numbered. To estimate the averagedistance between visited
plots, L b, we assumethat the plots are randomly located in a stand with �xed area. Then

with a reasonabletravelling strategy, L b dependson area and samplesize,approximately
as L b =

p
Astand =n. In HG Astand = 308 ha, and for M I and for the simulated stands we



80 Chapter 6. Sampling methods for cork oaksstands

consider Astand = 370 ha, as found in another montado. After the simulations, average

valuesof L w (all plots) and m (R-plots) are known. The total time neededfor a sample
sizeof n plots takesthe form

tTot = c1

p
Astand

p
n + n(c2L w + c3m) (6.3)

with c1 = 1=4 h�km� 1, c2 = 1=2 h�km� 1, and c3 = 0:05 h. We note that time is

not proportional to samplesize. Sincea �xed total sampling time is consideredfor each

method, the corresponding number of plots, not rounded, canbe found by solving equation
(6.3).

6.7 Results for the simulated stands

Standard deviation and standard error

In the following text we refer to the standard deviation of R, T and Z plots respectively
as s1, s2 and s3. The R and T estimators obtained for sampleswith similar plot size

werehighly correlated, with correlations between0:85 and 0:95, for all variables. Z and R
estimators, on the other hand, had correlations often lower than 0:1. In the comparisonof

R and T samplesthe Pitman test wasthereforeused. In the caseof the dependent samples,
relative di�erences of less than 6% between s values were already signi�can t. Standard

deviations for R and T plots were very similar, with s2 up to 6% larger than s1, except
in the exceptional situation of volume estimation in the least frequent quality classes,

for the smallest T plots. We observed that s1 and s2 were the highest for the clustered

stands, and minimal for the most regular point patterns. As expected, they decreased
with plot size, as Figure 6.3 shows. In general however, the ratio s2=s1 did not change

with plot size,nor with point pattern nor with diameter distribution. In the comparison
between R and Z samples, relative di�erences between s values were signi�can t when

greater or equal to 10%. Standard deviation s3 was larger than s1 for more than 10%
in most cases,with a larger di�erence in regular patterns and for regular d distributions.

The ratio s3=s1 was maximal (2:50) in the regular (t ype I I I) stands, and minimal in the
clustered stands with value approximately 0:80. The standard errors were compared for

the di�eren t sampling methods, and for three di�eren t forest types,for a variable number
of plots, corresponding to a constant time. The sampling time was set to 30 hours, and a

stand of 370 ha was assumed. Samplesize (not rounded, seeTable 6.4) was determined

as described in the previous section. The resulting standard errors are also displayed in
Figure 6.4 for variables N and G, and for the most extreme typesof stand considered.

These�gures show that, for the given sampling time, the standard errors of R and T
estimators are approximately the samefor random and regular point patterns, regardless
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Table 6.4: Results from simulated stands: standard error of estimators for the di�eren t methods

with a �xed cost of 30 hours, and basedon a stand area of 370 ha.

Stand t yp e I
Metho d n E(m) Total length average distance St. dev. St. error

within plot between plots N̂ Ĝ N̂ Ĝ

R20 38.3 12.9 120 310 27.3 3.7 4.4 0.60
R30 18.0 28.4 270 450 18.0 2.3 4.2 0.54
R40 10.3 50.3 510 600 12.8 1.8 4.0 0.57
T 13 37.5 13 150 310 29.0 3.8 4.7 0.62
T 28 18.0 28 300 450 19.0 2.4 4.5 0.57
T 50 10.3 50 520 600 13.4 1.8 4.2 0.57
Z 27.4 14 600 370 30.9 4.3 5.9 0.83

Stand t yp e I I I
Metho d n E(m) Total length average distance St. dev. St. error

within plot between plots N̂ Ĝ N̂ Ĝ

R20 38.8 12.6 130 310 18.4 3.0 2.3 0.40
R30 17.9 28.4 280 460 10.6 1.8 2.0 0.38
R40 10.2 50.3 530 600 8.0 1.3 1.9 0.37
T 13 37.2 13 160 320 17.2 2.8 2.2 0.40
T 28 18.0 28 300 450 10.5 1.9 2.2 0.36
T 50 10.3 50 530 600 8.2 1.3 1.9 0.36
Z 27.7 14 590 370 35.6 5.3 7.1 1.09

Stand t yp e VI
Metho d n E(m) Total length average distance St. dev. St. error

within plot between plots N̂ Ĝ N̂ Ĝ

R20 39.9 12.4 110 310 51.9 5.4 8.2 0.86
R30 18.4 27.8 260 450 42.3 4.1 9.9 0.95
R40 10.4 49.6 500 600 37.5 3.7 11.6 1.15
T 13 37.2 13 160 320 53.8 5.8 8.8 0.94
T 28 18.0 28 310 450 43.3 4.3 10.2 1.02
T 50 10.3 50 530 600 37.0 3.5 11.5 1.10
Z 27.1 14 630 370 39.5 4.5 7.6 0.87
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Figure 6.3: ln( s(N̂ )) vs ln( r ) (left) and ln( s(Ĝ)) vs ln( r ) (righ t), obtained from simulations for

Rr plots (solid lines) and for T m plots (dotted). Di�eren t stand types are shown with di�eren t

symbols: type I (� ); type I I ( � ); type I I I (. ); type IV (� ); type V (O); type VI (� ).

of plot size. For thesepatterns Z plots yield comparatively too large standard errors. For

clustered patterns Z plots and smallest R and T plots have the lowest standard errors.

Bias

Standard error of the bias estimatesin T estimators, obtained by paired comparisonwith

the R estimators, was always lower than 6% of the Ŷ value. The estimated precision
of bias estimates was therefore satisfactorily low. In the T plots no signi�can t bias was

found for the N and G estimators, for the simulated stand types. For the V estimators,
a bias of up to 15% was observed, in the smaller plots. The bias was negligible in the

larger plots. The magnitude of the bias was not noticeably a�ected by the point pattern

or d distribution.

Bias estimates of Z estimators had an estimated precision of lessthan 20% of � . A

negligible bias was found for random patterns (stand types I and V). In the clustered
patterns (stand type VI) biaseswerepresent of a magnitude up to 15%for all estimators.

In regular patterns (stand typesI I, I I I and IV) bias washighest: between30%and 50%in
moderately regular patterns (I I), between20%and 30%in regular patterns with a random

d distribution (IV), and between45% and 80% in the very regular patterns (I I I). Biases
werepositive in sign for the regular patterns and negative for the clusteredpatterns. The

bias in Z plots was a�ected both by the point pattern and by the combined distribution
of d and tree locations.
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Figure 6.4: ln( se(N̂ )) and ln( se(Ĝ)) obtained from simulations for three di�eren t point patterns

(horizontal axis). Results are shown for di�eren t sampling methods, R plots are shown with solid

lines, T plots are shown with dotted lines and black �lled symbols: R20 and T 13 (� ), R30 and

T 28 (O), R40 and T 50 ( � ), and Z (� ). The number of plots in all situations was chosen for �xed

costs, equal to 30 hours.

6.8 Results for the mon tados

The standard errors of the estimators obtained in HG and in M I , for constant times of
30 hours and basedon a stand area of 308 ha and 370 ha respectively, are displayed in

Figure 6.5. In M I estimators of N and G have lower standard errors in smaller R and T
plots, and largest standard errors in Z plots. On the other hand V3 and V4 (with small

frequencies),have lowest standard errors in the largest plots. In HG standard deviations
wereestimated from 14 plots, thus ŝe provides a very crude impression. In HG the lowest

standard errors for N and for G are obtained with the Z plots. The Z plots werenot used
to estimate cork volume for this data set becausethe number of cork samplesin these

plots was too low.

Sincethe valuesof the variables under study were not completely known in HG, bias

could not be evaluated for this data set. In the M I data set larger bias was observed in
T12 estimators, about 15% for the N and G estimators, and 20% for the V3 estimators,

which had a low observed frequency. For Z plots yet larger bias was observed (up to 65%
for the N and G estimators, and 30% for the V estimators).
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Figure 6.5: ln( se) obtained in data-sets M I (left) and HG (righ t), by each method (horizontal

axis). The estimators are for mean tree density ( � ,ha� 1), mean basal area (� ,m2ha� 1), and mean

volume (4 , . , O, / , and � , by increasing order of qualit y, 0.1m3 ). The number of plots in all

situations was chosenfor �xed costs, equal to 30 hours, and for a stand area of 370 ha in M I and

308 ha in HG. Standard deviations were estimated from a sample of 250 (re-sampled) plots in

M I and a sample of 14 plots in HG.

6.9 Discussion

The results in this study agreewith those in Jonssonet al (1992). In their article they

report biasessmaller than 10% in T plots sampled from simulated forests. The main
purposeof this study was to comparethe sampling methods for a fair number of di�eren t

point patterns and spatial distributions of diameters. In order to obtain good estimates
for the standard deviations and biases of the estimators, we focused our analysis on

simulated stands. Underlying stationary isotropic processeswere assumed. We did not

try however to exhaust all patterns that are likely to be found in practice. In fact there
may be montados where point pattern, tree density, and diameter sizedistribution vary

considerably in space,but those more complex situations were not simulated. Data was
usedto illustrate the diversity of situations arising in reality: the plot in M I illustrates a

homogenousstand, whereasHG exempli�es the di�culties that may arise in stands with
an inhomogeneousor non-stationary point pattern.

The total number of simulations (250) was limited by computer time, we think how-

ever that for practical purposesthe resulting precision of the simulations is satisfactory.
Further, stands were simulated with a �xed number of trees to facilitate the storage of

the simulations in a matrix format, thus allowing very fast computations. This results
in an (unintentional) lossof randomness.This losscan be neglectedin the present situ-
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ation becausethe sampling plots are small compared to the stand size. In fact the loss

of variabilit y can be illustrated in the caseof the tree density estimator in type I stands.
The standard deviation of the tree density in the R40 plots is expected to be 14.1 (from

a Poissoncount with parameter 50.3 for an area of 0.503ha). The observed value is 12.8

(Table 6.4), corresponding to a variabilit y loss of lessthan 10%, but in closeagreement
with the theoretical conditional value, which is 12.7. Since the simulated stands of type

I I had somesimilarities with M I , the sampling results both for the simulations and data
werecompared. Lower variabilit y and lower biaseswerefound for the estimators obtained

from sampling the simulated stands.

The comparison between standard errors obtained with di�eren t sampling methods

depends of course on sample size. It seemedreasonablethen to use variable sample
sizes for each method, corresponding to a �xed amount of costs. The sampling times

(used as sampling costs) usedhere were merely illustrativ e. Other costscould have been
considered,such asextra time for setting R plots, or for taking cork samples.For example,

the path length within plots (when walking from tree to tree) was calculated basedon
a hypothetical rule according to which the forester samples the trees following a path

inside rings in the circular plots, which yield the valuesshown in Table 6.4. For trees in a

regular squaregrid, the distancebetweentreesin an optimal path would be
p

A=m, which
is approximately equal to the distancescalculated with our path in the simulations. For

random tree positions the expected nearest neighbour distancesare 0:5
p

A=m. A path
along nearest neighbours is nearly never possible. If the optimal path is used to visit

trees (solution of the travelling salesmanproblem), then the expected averagedistance
between trees in the path is asymptotically (for A ! 1 and A=m �xed) converging to

0:7124
p

A=m (Jonhson and McGeoch, 1997), that is, about 70%of the distanceobtained
with our non-optimal path. For the travelling betweenplots in the stand we consideredan

averagedistanceequal to
p

A=n. Herealsoa reduction of up to 70%could be obtained. If

di�eren t costswere to be assumedthen di�eren t samplesizeswould have beenobtained,
with consequencesfor the standard errors of estimators and for the choice of the most

cost-e�ective method.

6.10 Conclusions

Methods R and T producevery similar estimatesfor the typesof forest consideredin this
study. The single plot standard deviations (s) obtained with the two methods di�ered

very little, for equivalent plot sizes,and the biasesobserved in T estimators were in most
caseslower than 10%. Method Z producedestimators with a large bias in all non-random

point patterns. For the Z method s was considerably larger than the s obtained by the
other two methods, except in clustered forests and in the HG data set, which is very
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heterogeneous.

Although s decreaseswith an increasein plot size, this is not necessarilytrue for the
standard errors (se) of estimators when the number of plots dependson a �xed amount of

costs. For a �xed amount of costs,in regular and random patterns the standard errorswere

lowest for R and T estimators obtained with large plot sizes,and highest for Z estimators.
In M I (which has a moderately regular point pattern) unexpectedly standard errors were

not always lowest for the large plot sizes. In clustered forests standard errors were lower
for R and T estimators obtained with small plot sizesand lowest for Z estimators. This

was also observed to somedegreein the HG data set.
The choice between R and T can safely be based on practical convenience. The Z

method is clearly disadvantageoussince it producesestimators with large biasesand in
all but clustered patterns also large standard errors.
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Chapter 7

General conclusions

In this thesis it has beenshown how the useof current mathematical statistical methods
can help to improve the modelling and estimation of cork oak and eucalyptus stand and

trees' characteristics. The improvement of information in stand management of cork oak
and eucalyptusstandsis valuablefor decisionmaking and may help to increaseproduction.

Optimisation of long term volume yield in eucalyptus stands depends upon a prior
distribution of the volumegrowth parameters,on the agesof measurement and on the error

distribution of the volume observations. For the consideredprior and error distribution,

the long term volume yield signi�can tly increasesif individual optimised cutting time
is used instead of a common optimised cutting time. The main gain is obtained from

optimising �xed measurement times and individual cutting times. Only a small additional
increaseis obtained by optimising individually the secondmeasurement time as well.

D-optimal designsare more economicaland e�cien t for estimation of individual diam-

eter growth of cork oaks. A replication-free compromisedesign,D-optimal for the average
of the sample'sgrowth parameters, performed better than the equidistant design. Since

in practical situations the residuals obtained with �tting parametric curves to empirical

data are often autocorrelated, this situation wasalso analysed. For an autocorrelation up
to 0.6 a compromisedesignis still recommended,obtained by spacingwith 10� yearsthe

replicate design points from the unrestricted design. For higher autocorrelation values
the equidistant design is a better option.

Spatial relations between cork oak trees were explored in relation with competition
indicesbasedon sizeand distanceof neighbouring trees. Thoseaccounting for the relative

sizeof neighbours were signi�can tly correlated to crown sizeof subject trees. The crown
of a cork oak di�ers in shape and size when it is under competition. A crown of a tree
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close to larger trees is more elongated. This may have an e�ect on crown size in the

end. Crown diameter was modelled using stem diameter, crown shape and distance to
the nearest neighbour as explanatory variables. An increasein inter-tree distancesand

a decreasedensity is likely to result in larger trees. In particular, regular patterns help

increaseminimum inter-tree distancesfor a given density.

Three sampling methods were comparedto estimate tree density, basal area and cork
volume: cluster plots with �xed radius (method R), cluster plots with a �xed number of

trees (method T), and sampling trees standing in a zigzagpath (method Z). Methods R
and T producedsimilar estimates. Bias of T estimators wasnegligible, and their standard

errors wereequivalent to thoseproducedby R estimators. A choicebetweenR and T can
thereforebe basedon practical convenience.Method Z, often usedin Portuguesecork oak

farms, yields estimators with a larger bias and larger standard errors. Bias and standard
error dependedstrongly on the spatial pattern of the treesand on independence.Largest

bias and largest standard errors occurred for regular point patterns with a conditional

size distribution. In clustered patterns the observed standard errors were smaller than
those obtained by R and T estimators, but biaseswere larger than for T estimators.



Samenvatting

In dit proefschrift worden modernewiskundig statistische methoden toegepastop pro-
blemen binnen hedendaagsePortugese bosbouw systemen. Hier bestaat behoefte om

via betere beslissingenten aanzienvan het bosbeheerde productie te optimaliseren. Er
wordt achtereenvolgens aandacht besteedaan het gebruik van Bayesiaansemethoden,

groeikrommen, optimale proefopzetten, ruimtelijk e analysevan patronen van kronen van
kurkeiken en aan steekproefmethoden. Vier onafhankelijke vraagstellingenstaan centraal

aangaandeopstandenvan kurkeik en eucalyptus.

De eerstevraagstelling richt zich op optimalisering van de omlooptijd van eucalyptus-

bossendie dienenten behoeve van pulpproductie. Opvolgenderotaties en meer in het bij-
zonder hun groeikrommen worden beschouwd als onafhankelijke realisatiesvan hetzelfde

genererendeproces. Het doel is om de lange-termijn volumeproduktie, gecorrigeerdvoor
kostenvan herplanten, te optimaliseren. Op langetermijn is de totale �nanci •eleopbrengst

gedeelddoor de totale tijd eeneconomisch belangrijk gegeven. Een Bayesiaanseaanpak is
gevolgd, onder de veronderstelling van Shumacher groeikrommen en met gebruik making

van prior informatie t.a.v. de parameters. Dezeis gebaseerdop eengroot aantal waarge-

nomengroeikrommen. In het geval van bekendeof adequaatgeschatte groeikrommenwas
de winst aanzienlijk in het optimaliseren van individuele kaptijdstipp en, vergeleken met

het kiezenvan �e�envast kaptijdstip. In dezestudie is uitgegaanvan de veronderstellingdat
tweevolumemetingenworden verricht ter ondersteuningvan de keuzevan het kaptijdstip

van eenrotatie. De eerstemeting op eenvast tijdstip, tweedeechter op eentijdstip dat af-
hankelijk is van het resultaat van de eerstemeting. Een belangrijk probleemis het vinden

van eenoptimale strategie voor het kiezen van dat tweedemeettijdstip. Dit proefopzet-
probleem is volledig verstrengeldmet het kaptijdstip-probleem. Naar beide werd tegelijk

geoptimaliseerd,met behulp van numerieke methoden. De winst van eengeoptimaliseerd
variabel tweedetijdstip was gering, vergeleken met eenoptimaal vast tijdstip.

Het tweedeonderzoek behandelt het schatten van groeikrommenvan de stamdiameter
van individuele bomenin kurkeik opstanden. Aanbevolen wordt om eenlokaal D-optimale

proefopzet te gebruiken in de keuzevan tijdstipp en waarop de diameter moet worden ge-
meten. De keuze is dan zo dat de parameters van de groeikrommen zo goed mogelijk

geschat worden. Om praktische redenenwordt bij eengroep bomen het gebruik van een
gemeenschappelijk compromis van meettijdstipp en aanbevolen. In de beschikbare test-

gegevensgaf een dergelijke aanpak betere resultaten bij individuele groeicurvesdan het
gebruik van eenequidistante proefopzet.
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Het derde onderzoek betreft ruimtelijk e modellering en het gebruik van ruimtelijk e
statistische methoden bij kurkeik-opstanden. De analysebetrof de ruimtelijk e correlatie

tussenkroonvorm, kroonomvang en stamdiameter in paren naburige bomen. Er werd een

signi�can te correlatie gevonden tussen de omvang van een boom en de competitiedruk
van naburige bomen. Vooral grotere bomen bleken binnen de opstand een regelmatige

ruimtelijk e distributie te hebben. De ruimtelijk invloedentussennaburige bomenzijn van
belang en de opstand kan er aanzienlijk voordeel bij hebben als hier ten aanzienvan het

beheerrekening meewordt gehouden.

Het vierde onderzoek richt zich op drie steekproefmethoden die men kan gebruiken in
kurkeik montado's (agroforestry systeem)voor het schatten van dichtheid, grondvlak en

het kurkvolume. De schattingen zijn voor de producenten zowel van economisch belang
ls om keuzeste maken ten aanzienvan het bosbeheer. De veelgebruiktezig-zagmethode

is vergeleken met tweeanderebemonsteringsmethoden op gesimuleerdegegevens. Vanuit

diversebeginpunten is een beperktere zigzag bemonsterd om een eerlijke vergelijking te
kunnen maken. Dezemethoden bemonsterenrond startpunten ofwel alle bomen binnen

een bepaaldestraal, ofwel een vast aantal van de meest naburige bomen. De simulaties
zijn gebaseerdop moderneruimtelijk e simulatiemethodenen vertegenwoordigeneenbreed

scala van in de praktijk optredende ruimtelijk e positie- en diameterpatronen. Onder de
meesteomstandighedenbleek de zigzag-methode te moeten worden afgeraden,omdat het

onzuivere schatters oplevert die tevens een grotere variantie hebben dan de schattingen
die met alternatieve methoden worden bepaald.

Het gebruik van modernestatistischemethodenblijkt waardevol te zijn voor het verbe-
teren van schattingsmethodenensteekproefmethodenzoalsdie gebruikt worden in kurkeik

en eucalyptus bossen.Adequate steekproefmethoden zijn essentieel om kwalitatief goede
informatie te verkrijgen.
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