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Abstract

This thesis focuseson the use of modern statistical methods to solve problems on
sampling, optimal cutting time and agricultural modelling in Portuguese cork oak and
eucalyptus stands. The results are contained in v e chapters that have been submitted
for publication as sciertic manuscripts.

The thesis rst addresseghe decisionof whento cut a rotation of eucalyptus produc-
tion forest. The aim is to optimise the long term volume production, correctedfor replant
costs. On the long term the total nancial yield divided by the total rotation time is an
important economicalasset. Successie rotations and their growth curvesare considered
as independert realisations of the same generating process. A Bayesian approach was
taken, using Shumacher curves. Prior information on the curve parameterswas basedon
a large number of obsened growth curves. For known or accurately estimated curves,
a 16 % gain in optimisation of cutting times could be achieved, as comparedto using a
common optimal cutting time. It is assumedthat a farmer takestwo volume measure-
ments to decide upon the cutting time of a rotation, the rst measuremen at a xed
age,the secondat an agethat possibly dependsupon the rst measuremeh Finding the
optimal secondmeasuremet time is entangled with nding the optimal cutting time. In
this thesis, simultaneousoptimisation is carried out using numerical methods. The gainin
using a variable optimised secondmeasuremen time, comparedwith an optimised xed
measuremen time, however, wasrelatively small (up to 0.1 %), which is hardly above the
numerical noiselevel.

A secondproblem addressedn this thesisconcernsestimation of stem diameter growth
curvesin cork oaks. A data-set of 24 trees was used. A D-optimal experimental design
has beencomparedwith equidistant designsto measuretrees at particular agesto allow
for an optimal estimation of individual growth curves. An experimental design that is
locally D-optimal for a certral parameter is proposed. This xed compromisedesigncan
be usedfor all trees. For individual growth curvesand under certain conditions that are
discussedn the thesissud a designprovides better estimatesthan an equidistant design.

The third study concernsspatial modelling of quartitativ e cork oak characteristics.
Spatial statistical methods are usedto analysecork oak stands, so-calledmontados. Spa-
tial correlations betweenneighbouring trees of crown shapes, of crown sizesand of stem
sizesare analysed using plots from two montados. A signi cant correlation is found be-
tweentree sizeand competition from neighbouring trees. In particular, larger trees have



a regular spatial distribution in a montado.

The nal study in this thesis comparesthree sampling methods for usein cork oak
farms. One method is currently in use by Portuguesefarmer's assaiations to estimate
cork value prior to stripping and the other two methods are comparedto it. The three
sampling methods are applied to two cork oak farms and to simulated stands. The latter
are generatedwith spatial simulation methods on the basisof information obtained else-
where. The current method has a 15-50% larger bias. For a clustered pattern standard
errors are lowest for the current method, but these are considerably higher for a regular
or a random pattern.

In conclusion, this thesis shows that modern statistical methods are valuable to im-
prove modelling and sampling of cork oak and eucalyptus forests. In particular, spatial
relations among neighbouring trees should preferably be included into managemen of
cork oak farms. Adequate sampling methods are basic to retrieve information of the
highest quality.
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Chapter 1

In tro duction

Systemsapproacdesare playing a prominent role in current agriculture and forest science.
In forestry, standsof treesmay serwe assilvopastoral systems. Such systemsare subject to

ervironmental and weather conditions, aswell asto managemei activities. Managemen

has to decide when, where and how actions have to be taken. Many decisionshave a
guantitativ e badkground, and require a quartitativ e answer. They are preferably taken
on the basis of measuremets on trees in the current system, in other systemsunder
similar conditions and on the same system in the past. They most likely could bene t

therefore from well-interpreted statistical analyses.

This thesisis basedon preciselythis approach. As a demand-drivenreseardt it inves-
tigates the role that current mathematical statistical methods can play to answer relevant
guantitativ e managemen questions. The thesis is focusedon four typical researt ques-
tions:

What is the optimal cutting time of a rotation?
What is an optimal experimental designto estimate stem diameter growth?
How could one model spatial competition e ects?

What is the optimal sampling strategy to estimate tree characteristics?

Current methods from mathematical statistics are applied to answer these questions
as good as possiblefrom nowadays' perspective.

Se\eral procedureshave recertly beendeveloped in mathematical statistics. Sincethe
early nineteennineties, Bayesianmethods, although dating badk to the 18th certury, have
found a place betweenother commonestimation and modelling procedures. This is mainly
due to the increased exibilit y and power of modern computer systemsin handling the

1



2 Chapter 1. Introduction

increasedamount of data and information required for such analysis. Bayesianprocedures
allow to make a better estimate of parameters on the basis of prior information. Using
actual data, the prior is updated to give posterior estimatesthat may have a lower variance
than the prior parameters. Another recert developmert has taken place in D-optimal

designs,where issuesof robustnessare of an increasing concern. In spatial statistics and
image analysisincreasingattention hasrecertly beengivento statistics of shapes. Shapes
are characterized by a low number (e.g. 4 { 8) of points to which possibly interpolating

splinesor polygonsare tted. Sofar, applications in agricultural and production forestry
are lacking, howewer, although the bene ts of these methods can be large.

This thesis developsthese methods on Portugueseagricultural and forestry systems.
As a production forest system it considersforest stands consisting of eucalyptus trees
and of cork oaks. The eucalyptus was introduced in Portugal as an ornamertal tree in
1829and becameeconomicallyimportant after the developmert of the paper industry in
1907. The most abundant eucalyptus speciesin Portugal is Eucalyptus globulus Labill.,
usedmainly for pulpwood production and sawvtimber. The eucalyptusis highly suited for
pulpwood production due to its fast growth and excellet b er qualities, yielding whiter
b er than any other tree species. Eucalyptus production forests are managedover very
short rotations (10-15years). Averageyearly volume production is usually between15-20
m3ha 1.

Cork oak (Quercus suker L.) is grown in Portugal mainly in montados. A montado is
a agroforestry system, where the farmer keepsone or more tree speciesin a low density
and grows cows or sheepin the samearea. Typically, montados occur in low populated
areaswhere the soil is too poor for agriculture, particularly in the south-eastpart of the
country. They cover large areas, often of a few hundreds of hectaresin size. Cork oaks
have a life span of 300{400 years, but are economically viable for lessthan 150 years.
Cork is a thick and contin uous layer of suberisedcells, producedby the meristematic cork
cambium (or phellogen). It makesup the external envelope of the stem and branches of
the tree. The value of cork for industrial purposeshighly dependson cork thickness. The
highest value is assaiated with thicknessesbetween 29 and 40 mm. The growth of the
treesand of the cork, aswell asits quality, are determined both by genetictree character-
istics, site quality and managemen practices. Managemen of cork oak stands includes
thinning, shape pruning, understorey clearing and soil fertilit y improvemert. Production
of cork is an important economicactivity, asthe world demand for cork keepsincreasing
and Portugal is its leading exporter.
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Purp ose

The purposeof this researd is to answer someimportant quartitativ e managememn ques-
tions with current mathematical statistical methods. As sud, it is a demand-driven
approach and exemplary for the analysis and support of decision making at an agricul-
tural and a forestry system. Attention is focusedon current systemsin Portugal, where
these questionswere raised. Sometypical problemsin cork oak farming and eucalyptus
forestry are addressed.The useof Bayesianstatistics is investigated. Attention is givento
optimal experimental design, spatial statistics and modern simulation techniques. These
allow a better insight into sampling and managemen of these systems. The statistical
basis will be partly usedin the initialization module of the SUBER model, a decision
support systemaimed to help cork oak farmers (seesection 5.5).

Outline

The outline of the thesisis as follows.

Chapters 2 and 3 addressthe optimal cutting time of eucalyptus production forests.
Eucalyptus is harvestedfor pulpwood when it attains approximately the biological rota-
tion age,i.e. the agefor which the averageyearly production in one rotation is maximal.
The economicalaim is to maximise the long term yearly volume production, corrected
for replant costs, as measuredover seweral rotations by allowing exible cutting time for
ead rotation by plantation age. The assumptionis made replant costsare xed in ead
rotation. The problem is divided into two parts. Chapter 2 determinesthe optimal cut-
ting time. For maximisation of the long term volume production di erent growth curve
are assumedto apply to ead rotation. It is shown that the optimal cutting time depends
both on the actual obsened growth curve, and on all potential growth curvesthan may
occur in future rotations. A prior distribution for the growth curve parametersis used.
The general prior applied in this study covers volume growth curvesobsened in seweral
standsin di erent parts of Portugal. Approximate optimal cutting time is obtained for
the practical situation that a farmer measuresreesat two di erent xed agesat an early
stage of their dewvelopmert and derivestwo total volume estimates for the forest. The
actual growth curve can be estimated from the two volume estimates. Chapter 3 explores
the last situation further. It is assumedthat a farmer makesthe rst measuremen at a
xed age. With that measuremen and prior knowledge of volume growth, the time for
the secondmeasuremen is chosenso that in conjunction with the cutting time choice,
the long term production is exactly optimised. Both approximate and exact optimisation
were reached by meansof extensive use of numerical methods.
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Chapters 4, 5 and 6 cover three separateproblemsin cork oak montados. Chapter 4
usesan optimal experimental designfor estimation of stem diameter growth. Treesare
commonly measuredto estimate tree growth by meansof a seriesof regular time points,
a so-called equidistant designs. A locally D-optimal experimental design as an alterna-
tive consists of measuring trees at those momerts in time, that the determinant of the
asymptotic variance matrix of the (growth) parametersis minimized. This is equivalent
to maximising the determinant of the information matrix of the parameters. This pro-
cedureyields measuremets that are performed on speci ¢ agesof the trees. It allows a
more precise estimation, but is sensitive to the parameter values. Advantages of using a
hybrid experimental design,D-optimal for a certral parameter, are analysedwith respect
to the estimation of individual tree growth on cork oaks. Its robustnessis studied under
parameter mis-speci cation.

Chapter 5 considersrelations betweenneighbouring treeswithin singlecork oak stands.
It is analyzedto which degreecompetition betweentreesin uences availabilit y of nutrients
and light and a ects the shape and the size of tree crowns, which, in turn, are related to
tree health and growth. Competition is measuredby current competition indices. Their
e ects are studied by meansof their correlation with tree diameter and tree height, crown
sizeand crown shape. Competition at the crown level is assumedto depend on the dis-
tancesto neighbouring trees and their sizes.

Chapter 6 comparesthree sampling proceduresfor estimation of density, basal area
and cork volume in cork oak montados. Current managemenm requires estimation of
the value of cork, just before cork extraction. This value depends upon quartity and
quality of cork. A yield estimate assistsa farmer to seta price for his cork. A commonly
used sampling procedure consists of a polygonal transept or zigzag with a corvenient
starting point and covering the whole montado. Every tree located on the transept is
sampled. The two other methods are cluster sampling with xed plot radius and cluster
sampling with a xed number of trees and variable plot radius. Comparison is done on
simulated montados with di erent point-and-diameter patterns. Bias and precision of the
estimators, and sampling costs are considered.



Chapter 2

Optimal Bayesian design
applied to volume yield and
optimal cutting time prediction

Maria Joao Paulo and Alb ert Otten
In Ermakov, S.M.; Kashtanov, Yu.N. and Melas, V.B. editors. Proceedings of the 4th St.
Petersbuig Workshop on Simulation. 2001. St. Petersburg University. 370-378.

In this study we consider a typical problem where a forester wants to
determine the optimal designin order to estimate the best cutting time
for a eucalyptus stand. We combine a Bayesianprior with obsenational
information to obtain estimates for the growth curve parameters and to
determine the best cutting time, our optimisation criterion being long
term net volume yield maximisation. Our preliminary results seemto
indicate that the obsenation variance and choice of prior have a greater
in uence on yield than the choice of design.
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2.1 Intro duction

In a eucalyptus production forest the farmer is interested in cutting the trees at the age
which maximises the long term volume production. For a particular (repeatedly used)
growth curve, this age is called the biological rotation age and is determined by the
line through the origin tangent to the volume growth curve. We take the Shumacher
growth curve V = Ae ¥t to explain Volume as a function of time t. Under this model
k is the biological rotation age,and the corresponding long term yearly yield is (A=e)=k.
Traditionally , the farmer wants to be able to predict early in time the biological rotation
ageand the corresponding yield. Howewer, the approac of cutting at the speci c curve's
rotation ageis not optimal when a new curve (parameters) is “drawn' from a known prior
distribution after ead rotation, and in this case nding the optimal cutting time is an
optimisation problem in itself. In order to make the cutting time optimisation problem
meaningful, we intro duce costsfor eac harvest, corresponding to a constart volume loss
Vp. First we describe the optimal cutting time strategy, and its numerical implications,
whenthe actual curveis known to the farmer. Next we describe the optimal strategy when
the actual curve is unknown but obsenations at 2 time points are made, and presen a
numerically feasible sub-optimal strategy for this situation. Using the latter strategy as
de nition of cutting time, we nally are able to addressthe designproblem of optimising
t; and t,.

2.2 Materials and metho ds

One growth curv e versus indep endent curv es from same prior

In the forestry literature a growth period (i.e. time from when a stand of trees is re-
generateduntil the time when it is harvested) is called rotation. Assuming we have one
volume growth curve V (t) = f (t) in all rotations, then it's well known that the cutting
time that maximisesthe long term volume production is given by the line through the
origin tangert to the volume growth curve, i.e. the point whereV (t)=t is maximum. This
cutting time is called the biological rotation age. A similar result holds with costs, with
V(t) Vo replacingV (t). If we have oneunknown growth curvein all rotations, on which
we make obsenations, then we get to know the biological rotation age better after eat
rotation. Here we consider the situation where instead of having one common curve in
every rotation for a given stand, we assumethat we can have any curve V(t) = f ( ;t)
ead time again, where hasa known prior distribution.
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Data

The data setusedis from plots belongingto a Portuguesepulp mill, Stora Celbi, Celulose
Beira Industrial, S.A. It contains the ewolution in time of volume per ha for 158 plots
of Eucalyptus globulus The plots have dierent areas,dierent tree densities and have
di erent quality indices. Each plot hasbeenmeasuredbetween4 and 25times, at di erent
ages. The volume has beenestimated from measuremets of diameter and height.

We used OLS to t 11 growth functions, among others the exponertial function (with
2 and 3 parameters), the logistic function and the Gompertz function, to the growth of
volume per ha in time. We selectedthe Shumacher function f ( ;t) = Ae 7, whereA is
the curve asymptote, and k is the biological rotation age. This function gave the best t
in most cases.

Prior information

We briey studied A and K, the OLS-estimated parametersfor the tted volume growth
curves. We obsened their histograms, probability plots and bivariate plots, and repeated
this for transformations of A and K. We found that In(A) and In(ﬁ) for the pooled data

followed approximately a bivariate normal distribution, with
| |

6:28 . 0:512 0:171 2.1)
2:56 0:171 0:134
The within plot componert is not negligible, but we proceedby taking o N(; ) as
the prior density for In(A) and In(k). Sowe generateparametersin the In scaleand when
necessarywe will transform them badk into the original scale. We note that the elemeris
of in (2.1) are the total variance due to prior variation in In( ), and in Iﬁ'\( ). We
further note that the prior density de ned above is a very “broad' one, obsened over all
158plots. Theseplots di er not only in location but alsohave di erent quality classesand
number of trees per hectare, for example. In a single plot we expect to obsene di erences
in volume growth due to someexternal factors such as weather and soil fertilization, as
well as genetic di erences. Therefore we expect that the prior density obsened for one
single plot or for a given quality classwill have, besidesdi erent meanvaluesfor the two
parameters,a smaller covariance matrix. In this researd it su ces to considerproperties
of onerotation. We assumethat the farmer knows the family of Shumacher growth curves
for the volume, and prior ¢ for (In(A);In(k)). We distinguish between (i) known and
(i) unknown to the farmer. In caseof unknown, he makestwo obsenations at times t;
and t, with someerror with known variance 2. Then he estimatesthe parameters, using
information from the obsenations and from the prior distribution. The cutting time is
then chosen. The fact that we use prior information has consequenceso the resulting
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cutting time, becausef we know the underlying family of growth curves,we may want to
reject a "bad' growth curve by cutting it earlier than the biological rotation age,or even
immediately at time t, (For known, we considert, to be the minimally allowed cutting
time, for comparisonreasons). Similarly, if our obsered curve seemsto be a very good
one, we may want to cut it a bit later than the biological rotation age. This seemsto
improve the long term production.

Strategy for the choice of the cutting time

With “strategy' we mean the rule or function which assignsa cutting time Cto a known
curve ( ) or data (y1;y2). Formally, for a given strategy, the long term production is
de ned asthe ratio = E(Ae ¢ Vo)=E(C), where the expectations are taken over
the prior distribution, and also over the obsenations (when the curve is unknown). The
cutting time optimisation problem is the problem of nding the strategy which maximises

. Analytical considerationsshonv how to choosethe cutting time oncewe Know  pax .
If is known (i.e. the curve parametersare known), then the chosencutting time C is
such that

is maximal, C  t,. This leadsto either C being the latest time when the tangent to
the growth curveequals nax, orto C = to. If is unknown, then giventhe obsenations
y1;Y2 (in the In scale),we would haveto replaceAe & with Eax (Ae kEjyl;yg), and seard
for C sudh that

Eax (Ae €jy1i¥2)  maxC (2.3)

is maximal. Sinceactually mnax is unknown, we take a guessfor max, S& , and use
it in (2.2) and (2.3) instead. Then every will de ne a cutting time strategy, and the
performancecan be measuredby ( ). The cutting time optimisation problem is reduced
now to nding the for which () is maximal. By construction, this optimal also
satises = ()and = pax. Maximising Eax (Ae %jyl;yz) C over Cis actually
too computer intensive, so we approximate this expressionwith

Re & ¢ (2.4)

whereA and k now arethe highest posterior density estimatesof A andk. The for which
() is maximal will be called suboptimal sinceit is expectedthat the approximation will
slightly degradeperformance.
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The algorithm

For a given , the ewvaluation of ( ) requirestwo-fold ( known) or four-fold ( unknown)
integrals. We only show the most complicated situation ( unknown):

RRRR ae & Voyh(ysys: ) dysdysdAdk
Ey[V(:;0 Wl _ kA mpyzrs g ° 0) h(y1;y2; ) dy2dys 2.5)
EyI[d kK A yi y, CN(Y1iy2; ) dy2dyidAdk
Hereyi( ;t) = In(A) k=t+"i,i=1;2,"; N(O; 2); h(y1;y»; ) is the joint density of
Y1; Y2 and , h(y1;y2; ) = d(y1:Y2j ) o ). Expression(2.5) for ( ) is equivalent to
R, RR R R 2, 2. 2, 2
D a o (Gt Welthd i denadnd
I\i |\:1L |\1_ I\i Ce %(Z%"‘ZS+Z§+Z§)dZ4dZSd22le .

obtained when !(A; K;y1;y2) are gqneratedfrom independert z,z N (O;1).
Here nto—_ o

In(A) Z
Obsenations at time points t; andt, arey; = In(A) k=t;+z3 andy, = In(A) k=t +
z4  respectively. " was obtained from y1;y, using a highestposterior density estimate.
The posterior density is that of giveny: ( jy) = % We found for eadt pair
of obsenations the " that maximised ( jyi;y»). The cutting time, C, dependson ", on
t, and on . For practical reasons,C was truncated at 30 (years). The ratio () in
(2.6) was programmed in Fortran using calls to IMSL subroutines. We also implemerted
the routine to optimise ( ) over . Note that we thus have the algorithm to produce a
(sub)optimal strategy for a given prior, 2 = 0.5, t1;t, and costsV, (wetook Vo = 50m3).
Therefore we can ask for the sensitivity of the corresponding (sub)optimal  (written as

from now on) and for the (sub)optimal design.

where U is the Cholesky root of , ie. UN =

Sensitivit y of the (sub)optimal long term pro duction

We calculated in the casethat is known for the following situations:

1. for somevalues of the prior |, ay and k), Mmaintaining the mean values of A
and k constart. We note that if In(X) N(; 2)then E(X) = e* 2. We
modi ed the original standard deviation |, ay and |,y in the prior distribution

by a multiplier %, 1, and 2 (and also0 for |, sy and 4 for |,(x)). SeeFigure 2.1.

2. for somevaluesof the prior corr(In(A);In(k)), maintaining ncay, Inw). I2n(A) and
2« constart (seeFigure 2.2).
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Figure 2.1: Dependenceof on the standard deviation of In(A) in the prior distribution (E(In(A))
xed). Axis shows multiplier of |,(a). Each curve correspondsto adierent |, multiplier: %
(% 3@)1()2()and4().

3. for somevalues of the time of the secondmeasuremen t,. In the casewhere is
known, no obsenations are generated,sot; is consideredto be the earliest possible
cutting time (seeFigure 2.2).

q known q known
21 23
L 1 220
20 o
19+ 21
o 20
18¢
19+
fai7l ° f 3
6 i8¢ o
. 17 O
° o
150 L o
16 0.,
14f 1 15t ° ]
14
32 0.4 0.6 0.8 1 0 5 10 15
corr(InA,Ink) t,

Figure 2.2: Dependenceof on the prior correlation (left), and on the earliest possible cutting
time in years(right).

As a rst step towards the seard for an optimal design, we also calculated in the case
that is unknown for the following situations:

4. for somevaluesoft; andt,, maintaining the prior distribution and (seeFigure 2.3).

5. for somevalues of the obsenation error standard deviation = 0;0:25;0:5;0:75; 1
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g unknown
16
L IR .
Lt ..
15.5F ¢ .
‘-
15+ R
‘ A 4 .
A
1450 R
A & Qe o
. LS
14 o “m
13,5
> ) 6 8 10 12 14

~ 0l

Figure 2.3: Dependenceof on design choice. Each curve correspondsto adierent ti: 1( ); 3
(4);5()and 7 ().

and 1 , maintaining the prior distribution constart and t; = 3;t, = 7 (seeFig-
ure 2.4).

2.3 Preliminary results

Case of known

In gures 1to 3 we can seehow changing someof the parameterscan a ect the resulting

ratio . We know that  will increasefor higher E(A) values and lower E (k) values.
The inuence of the prior standard deviations on is lessintuitive. When the curve
parametersare known, rst drops and then climbs, and we obsene that the minimum

shifts to larger |,(a) valueswhen i) increases. An explanation to the nal increase
could be that a high variation in the valuesof A will produce somebad volume curves
with low A-values,which will be cut with little time loss,and somevery pro table volume
curveswith high A-values, which will be cut at a very late time. The ratio also seems
to decreasewith a high correlation betweenthe curve parameters, and of coursewith a
higher t, (seeFigure 2.2). Heret; is only a minimum cutting time, and is not taking part

in the parameter estimation, therefore the higher t, is, the later the bad curves can be
cut. We note that in the casewhere is known, measuremei time optimisation doesnot

make sense.

Caseof unknown

In this casethe execution of the algorithm to nd the (sub)optimal strategy takes a
minimum of 2 hours for a simple situation with xed valuesfor the parametersused. If
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g unknown
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Figure 2.4: Dependenceof on the standard deviation of the obsenations, , in the casewhere
is unknown, t; = 3; t, = 7. The limit for when ! 1 is alsoshown.

we want to run the algorithm for somedi erent values,then the algorithm execution may
take seweral days. Figure 2.3 shaws that the e ect of t; is much greater on the resulting

than that of t;. The fact that very early t; producesthe best is causedby the chosen
obsenation errors. These are constart in the In scale, so the parameter estimation is
considerably more accurate when t; is small. For xed t; the curvesshow an optimum
for t,, asa result of two opposite e ects: a higher t, improvesparameter estimation, but
it prevents early cutting. An increasedstandard deviation of the obsenations, , also
producesa lower , asexpected (seeFigure 2.4).

2.4 Discussion

Although our goal is to determine the optimal designfor a given prior distribution and
obsenation error variance, we do not yet have results concerning optimal measuremen
times for the volume. The algorithm produced allowed us to ched the dependenceof
on its componens. We also concludethat is sensitive to the design choice. However,
we have basedour results on a very “broad' prior distribution, corresponding to very het-
erogeneou9lots, located in di erent points in Portugal. We expect a more homogeneous
behaviour in the volume growth in plots con ned to a particular region of the country.
Therefore we recommendthe use of a sharpenedprior in a practical situation.
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Chapter 3

A Bayesian approac h for exact
optimal measurement and
cutting times

Maria Joao Paulo and Alb ert Otten
Submitted to Environmental and Ecological Statistics

In a eucalyptus production forest the owner is traditionally interested in cutting the
trees at the age which maximises the yearly volume production. For a particular

growth curve, this age is called the biological rotation age and is determined by
the line through the origin tangent to the volume growth curve. In this study we
consider a more general situation where a di eren t growth curve, with a known prior

distribution, can occur in ead rotation. The goal now is to optimise the long term

(volume) production, here de ned aslong term yearly volume yield reduced by costs
of replanting. In this situation the optimal cutting time at ead rotation depends
both on the current growth curve and on the prior distribution. In this casewe have
two problems: estimating the growth curve for a particular rotation, and nding the
optimal cutting time for that rotation. Weassumethat two volume measuremers can
be performed in ead rotation, before deciding when to cut. The rst measuremen
is always taken at a xed age, but the age to perform the second measuremert can
be optimised, depending on the rst obsenation. We compare somedierent priors
and strategies with respect to the long term production. Volume is always assumed
to grow according to a Shumacher curve. Despite the simple form of the curve,
optimisation requires the use of numerical methods.

15
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3.1 Intro duction

The study is basedon 158 eucalyptus plots belonging to a Portuguese pulp mill, Stora
Celbi, CeluloseBeira Industrial, S.A. The study plots are very diversein tree density and
in quality index. Each plot was regularly measuredbetween 4 and 25 times during one
rotation, at di erent ages(one rotation is the period of time betweenseedingor planting
treesin a forest and their nal cut). The volumes(m3ha !) were subsequetly derived
from measuremets of tree height and diameter at breast height, for eadh measuremen
time. The Shumacdher growth curve V. = Ae k7! is used here to model the volume as
a function of time t. For this model, and under the assumption that the samevolume
curve is drawn at ead rotation, k is the biological rotation age, and the corresponding
long term yearly yield is (A=e)=k. Howewer, it is assumedhere that a di erent curve for
volume growth may be obsened in ead rotation. Here we usefor short = (A; k). We
assumethat two obsenations in the In-scaley; = In(A) k=tj + ", i = 1;2 are to be
made at times t; and t, for ead rotation, with "; independert N (0; 2). The parameters
(in the In-scale,In( ) = (In(A);In(k))) arethen t by leastsquares,in the In-scale. Based
on the data and under the Shumacher model, a prior distribution was obtained for the
curve parameters. It was found that for the pooled data, Ih( ) = (In(A); In(k)) followed

approximately a bivariate normal distribution N (; ), with
| |

6:28 0512 0:171

;o= (3.1)
2:56 0:171 0:134

in (3.1) includesthe variation both due to prior variation in In( ), and due to variation
in Ih( ) given In( ). The fact that we can use prior information has consequencedor
the choice of cutting time, becauseif the underlying family of growth curvesis known,
it becomesadvantageousto reject a "bad' growth curve by cutting it earlier than the
biological rotation age. On the other hand if the obsened curve is a very good one, then
cutting it later than the biological rotation ageimprovesthe long term production. In
order to make the problem more realistic we assumethat there are xed costsat eadh
rotation (for replanting the stand).

In a previous study (Paulo and Otten, 2001) we discussedthe optimisation of the
cutting time when obsenations at xed times t; and t, can be used. We studied the
behaviour of the long term production for changesin xed t; and t,, in error standard
deviation of the In-obsenations and in parameters of the prior distribution (all changes
weredoneone-at-a-time). Herewe extend that previousstudy, by consideringtwo strongly
interfering optimisation problems: to nd an optimal design(ti;tz) (with t; xed for all
curves, and t, variable) of times at which to measurevolume before deciding when to
cut, and to nd the optimal cutting time at any rotation, basedon the measuremets
performedat (t;;t2). Moreover, apart from approximate optimisation, exact optimisation
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Table 3.1: Overview of the possible combinations of optimisation. Time t; is always xed.

Situation  t2 C function to maximise over C result

I - xed optimal c

I xed sub-optimal Re R=C ¢ where (In(A);In(R)) are

11 sub-optimal (highest pos- hpd-estimates of the curve parameters  C2(y1;t2;y2)
v optimal terior density) givenyi;tz;y2

\% xed optimal

VI sub-optimal  (exact numeri-  Epay jy,:it,y,(Ae K5¢ O Ce(y1;t2:Yy2)
VI optimal cal integration)

will be carried out now. We compare the situations where t, and the cutting time are
xed or optimised, and alsowhent; is suboptimal. We also comparethe results obtained
when the optimal cutting time is approximated or obtained with an exact procedure.
We note that in this study it is not our aim to construct optimal designsfor parameter
estimation, such as D-optimal designs(asin Atkinson and Donev, 1992). Table 3.1 showns
the possiblecombinations of optimisation.

3.2 Optimisation of the long term pro duction

We assumefrom now on that a di erent volume growth curve can occur at ead rotation,
and that ead curve is drawn from a Shumacher family of volume growth curveswith the
prior distribution  shown in the previous section. The long term volume production we
want to maximise is de ned by the ratio

= E(V(Q Vo)=E(Q

where V is the total volume, Vy is a constart represerting a xed cost of one rotation
and C is the cutting time. The expectation E is taken over the joint distribution of
A, k and C. Practically, this expectation has to be expandedin iterated conditional
expectations which may alsoinvolve conditioning with respect to the obsenations. If the
curve is known and the maximum attainable value of , ax, is alsoknown, analytical
considerations shov that the optimal cutting time is either the latest time when the
tangent to the growth curve equals nax, Or it is asearly aspossible(usually at time t;).
Since max is usually not known, we take a guessfor for it, call it , and useit instead.
The cutting time optimisation problem is thus reducedto nding the that maximises

( ). By construction, this optimal alsosatises = ()and = pax. A similar
idea is preseried in Ribeiro and Betters (1995, eq.8) for a nite seriesof known growth
curves. Obviously ead value of will de ne dierent cutting times for the same prior
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Figure 3.1: Example of two cutting times, optimal for , for a good curve (A1 = 1250 k; = 17)
and for a bad one (A, = 350k, = 10). Two dierent assumed values (15 and 20) are use to
show the di erent choicesof cutting time. The curvesV (t) are shown in solid, and the tangents
to the curveswith a slope equalto are shown with dashedlines. The corresponding optimal
cutting time positions are also shovn with dashedlines. For = 15 (left) G = 27:7and G = 85.
For = 20 (right) G = 222 and G = t, (taken 0 in the graph).

information, with dierent resulting ( ). Although the cutting time (and later on also
t,) derived for a given is not optimal in the nal sense,we will usethe term optimal
here as well. Figure 3.1 shows the optimal cutting times for two dierent curves, and
giventwo dierent 's. As seenin the gure, as increasesthe optimal cutting times
decrease.We note here that if the cost Vg of onerotation was not usedthen there would
be no solution for the optimal cutting time, assumingthe curve is known. In this casefor
most curvesthe cutting times would becomeunrealistically low, and the more extreme
the selectionof "good' curves(with the rejection of “bad' ones), the better.

C optimal, t, xed

If is unknown, we take two measuremets y; and y, at xed timest; and t, respectively.
Given the obsenations, we needto nd C for which

Eakiyiy.(Ae ¢ maxQ) (3.2)
is maximal. As before, max iS unknown sowe use instead, and maximise
EA;kiY1;YZ(Ae k=C C)

In the notation of Table 3.1: C (y1;y2) = argmax Eaxjy,.y,(Ae k=C O Later, we
C; C to

seard for optimal , opt, sudh that opt = max. For agiven and C= C (y1;y2), the
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evaluation of ( ) requiresfour-fold integrals:

RRRR k=C (y1iy2) h(v::v>: ) dvodys dAdk
EyV(;Cyny2) Vol o « Ayl Vo) h(y1;y2; ) dy-dy:dA

E y [C(y1:y2)] kK A yi oy, C(Y1i¥2) h(y1;y2; ) dyzdyidAdk

Here h(y1;y2; ) is the joint density of yi1, y> and

C optimal, t, optimal

When optimising t», to will becomea function of y;, and the distribution of y, will
depend on y; through t,. For clarity we will write t, explicitly in funtion argumerts and
in (conditional) distributions. The natural evaluation order of the overall expectation is
now

Eyl(EYZiyﬂz(EA;kithzQ)’z)) (33)

In the inner expressionsit does not matter wether t, is xed or a function of y;. In
order to clarify the optimisation strategies someextra notation is usedfor C and t, as
functions of conditions and of (seeTable 3.1 and the derivations in the Appendix). Once
a functional form C (y1;t2;Yy2) is obtained for C, the next step is to optimise t,, still for
agiven , asafunction of y;. Thust, (y1) is obtained by maximising over t,:

Eak yajyit.[A€ K=C aitziy2) C (y1;t2;y2)] (3.4)

After carefully studying the optimal t, as a function of y; for dierent and t; simple
approximating functions for the optimal t, were constructed. To distinguish between
the dierent situations we use double indices, the rst referring to t, and the second
to C. The indices can be “e', "a' and 'f' meaning exact optimal, approximate optimal,
and xed optimal, respectively. For examplet5®(y;) refersto the situation where we use
C(y1;t2; y2) and an approximating function for t.

The last stepisto optimise over oncefunctionst, (y1) and C (y1;t2;Yy2) arechosen:

E[Ae k=C (y1itz (y1)y2) Vo]
E[C (y1:t2 (Y1):¥2)]

where the expectations are taken over the joint distribution of y;;y,; A; k. The resulting
optimal  will be written as g if t§ and C* are used, and the corresponding () will
be written accordingly as &2 , etc. In particular ;& will be the maximal attainable

whent; is xed optimised and C exact optimised. Once op is determined, the previous

functions have to be usedby the farmer to determine rst t, from y; and then C from
y1;t2; 2.

()=
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C sub-optimal using highest posterior density appro ximation

In Paulo and Otten (2001) the hpd approximation was introduced in order to save cpu
time. The technique consistsin using hpd estimates (Berger, 1988) In(A‘);In(ﬁ) for
In(A); In(k), given obsenations (y1;Y2), to approximate (3.2) by

Re k¢ ¢

and then optimise over C. The advantage of the approximation is that the mixture
Eakjyiy,Ae ¥ of growth curvesis reducedto one Shumacher curve Ae &=t The tech-
nigue producesa sub-optimal cutting time as a function of y; and y,. No modi cation
is neededin hpd estimation when t, is a function of y;, t, = t>(y1). Denoting param-
eter densities by , obsenations' densities by g and joint densities of parameters and
obsenations by h, we have

h( ;y1y2) = ()Y )a(yaiys;ta = ta(yr)) =  ()alys Yo ;t2 = ta(ya))

and posterior density ( jy1;y¥2) = h( ;y1;¥2)=d(y1;¥2). The marginal joint density
a(y1;y2) is t2(:) dependen, but is "~ xed' in the task of maximising the posterior den-
sity for giveny;;y,. The sub-optimal C, still for given , will be denoted C?(yy;t2;y2).
We recall that in the nal optimisation over , in general opt 8 ( opt). Although
the joint density can be composedas a product of normal densities, the presenceof k or
() in In(A) k=t preverts us from giving explicit expressionsfor hpd estimates.

Numerical optimisation and integration

The expectations E . jy,:t,:y, Can be conditioned one step further, yielding

Ekjyl;tz;yz (EAjY1;t2;YZ;k)

For givenys;ts;y2; k the volume asymptote A has a known log-normal distribution. Fur-
thermore, A is either not presert or is an isolated multiplier in the target functions of
E(), sowe can always write Eajy,.t,.y,x () explicitly asa function of y;;t2;y2; k. The
corresponding reduction in the number of iterated integrals neededmakes numerical in-
tegration feasible, but still at the cost of hours in cpu-time for the hardest situations
(situation where both t, and C are exactly optimised). The main reasonfor large cpu
loadsis that functions C andt, arerepeatedly calledby the optimisation and integration
routines, with new argumerts ead time (and results from previous calculations are not
reused). The calls branch and nest at se\eral stages. For example,a callto ( ) generates
an integral over y;; the integrand generatesa secondintegral over y,, but only after t,

has beenevaluated. This t, call in turn generatesseweral tries for candidate t, values.
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For eadh t, an integral over y, is generated;the integrand again needsC (y;;t2;Y2), etc.
An extra complication is that somenormalising constarts in conditional densitiestoo have
to be calculated by numerical integration.

Implemen tation

The optimisation of the long term production was implemented in Fortran, with use
of IMSL-routines wheneer possible. Exact C-optimisation was done with mixtures of
Newton-Raphson and/or interval halving techniques. The implicitly used assumption
that the shapesof the neededmixture curveswerestill of the sigmoidal type (lik e a single
growth curve) was never violated in the many test caseswe generated.

Exact optimisation of t, was performed only over integer values (or a ner grid).
Optimisation over was done either using iterated substitution (when t, and C were
exactly optimised) or using a IMSL-routine based on the Newton-Raphson algorithm.
For numerical integration the IMSL-routines were used.

Hpd estimates were also calculated using Newton-Raphsontechniques. For xed t;
andt, ane cien t way wasto |l in advancea ne grid of (y1;Yy2)-valueswith hpd estimates
and later useit to interpolate from this grid. This approad did not work in the caseof
to varying with y;.

3.3 Results

Cutting time xed but optimised

From now on times t; and t, are in y (years), and is in mha 'y 1. Furthermore,
the costs of one rotation are setto Vo = 50 m3ha !, and for practical reasonsC  30.
Having a xed cutting time (situation 1) in the presen setting is not an optimal choice,
but it is important to consider this situation to compareit with an optimal situation.
Furthermore, if the gain of an optimal procedureis small comparedto the investmert of
performing the two measuremets on the forest, then this canbe an attractiv e alternativ e.
The optimal xed cutting time is then C= 17:6, and yields = 13:5. This samevalue
was obtained in an earlier study (Paulo and Otten, 2001) as a limiting situation when
the standard deviation of the obsenations y; and y, wasincreasedto in nit y. Figure 3.2
shows how varieswith xed C.

Cutting time optimised, t; and t, xed

In this situation (V) the algorithm is run for a xed (t1;t;) and guessvaluesfor . We
then needto nd the optimal , i.e., for which is maximal for (t;;t;). Situation V
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Figure 3.2: Situation where the cutting time is xed, shown in detail on the right graph.

was run a number of times, for discrete (t1;t,) values: t; = 3;5 and sewral t, values.
We did not seard in earlier t; times becausethey might be too early to usein practice.
For the original prior distribution, and assumingthat = 0:5, the xed optimal design
is (t1;t2) = (3;10) yielding = 15.07. The result reported in our earlier study was
(t1;t2) = (3;9) when using the hpd approximation (situation 11). For the other choicesof
prior the xed optimal t, varies substartially. Figures 3.3 and 3.4 showv for xed t; for
dierent prior standard deviation values, |,a) and ). We also changed |,y and

in(k) accordingly in order to keepE(A) and E(k) at the original values. The standard
deviation values were modi ed by factors % and 2 ( na)) and by factors % and 1.3
( in(ky)- The original value of |,y is alsoshavn. Time t; = 3 with optimal t, produces
maximal in almost every situation, t; = 5 is better for halved |,y combined with
original |,a). For double |,(a) time t2 should be as early as possibleto accourt for the
greater variation in parameter A, but for halved |, a) t2 around 12 or later are optimal.
As seenin the graphs non-optimal designscan be considerably worse than the optimal
design. Figure 3.5 shows for dierent error standard deviations of the obsenations
(left), and for di erent correlations betweenIn(A) and In(k) (right).  was changedto
0.25and to 0.75, and the original value 0.5 is also shovn. The correlation betweenIn(A)
and In(k) waschangedto 0.32and 0.96,and and the original value 0.64is alsoshavn. The
other parameterswere left unchanged. An increaseof leadsto a xed optimal design
where t; and t, are further apart. In the caseof changing the prior correlation we see
that larger valuesproduce larger xed optimal t,. Data in these graphsis not complete
due to di culties in someintegral calculations.

The comparisonof the exact optimal cutting time routine with the hpd approximation
(V versusll) wasdonein terms of the optimal obtained in ead situation and in terms
of the computer time spent using ead routine. We found that for xed (t;;t2) the hpd
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Figure 3.3: Fixed (t1;t2) and corresponding  for the original |,(a), and changein ) by
factor 0.5 (4), 1 (unchanged, ) and 1.3 ( ). Time t; is either 3 (empty symbol) or 5 (lled
symbol).

routine always produced nearly the same optimal  as exact numeric integration (the
di erence in optimal wasup to 1%), and the time neededto run the exact computation
of optimal cutting time is at least 100 times larger.

Cutting time optimised, t; xed, t, optimised

The algorithm to nd the exact optimal cutting time can still be further optimised with

the simultaneous optimisation of t, (situation VII). This is a very computer intensive
procedure, and is used here mainly to nd an upper limit to . For a given prior distri-

bution, optimal t, dependsony; and on . The optimisation of a varying t, produced a
negligible improvemert (up to 0:1%) of optimal , comparedwith optimal xed t,. The
approximating function for optimal t, (situation VI) allowed fast computations and at
the sametime produced an (even smaller) improvemert of the resulting . Figure 3.6
shows someexamplesof optimal t, (restricted to discrete valuesonly), asa function of y;
(rst measuremen of volume, in the In-scale), for xed t; and for xed . As a result of
our curve type and distributional assumptions,y; can attain very low valueswhent; is
small. Theselow y; valuescorrespond to volumeswhich would be too small to measure
in practice. In order to presere numerical accuracyall y; were accourted for during the
integration process,but the optimal t, corresponding to very low y; valuesis very erratic

andthe nal isinsensitivefor t, for suc low y; values. Theselow y; valuesare therefore
not shawn in Figure 3.6, wherey; is truncated to practical acceptablevalues.
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Sina halved Sina doubled

Figure 3.4: Fixed (t1;t2) and corresponding for change in the prior |,(a) by factor % (left)
and 2 (right), and in () by factor 0.5 (4), 1 (unchanged, ) and 1.3 ( ). Time t; is either 3
(empty symbol) or 5 (lled symbol).

3.4 Discussion

In a previously published manuscript (Paulo and Otten, 2001) we found an approximate
optimal cutting time and discussedthe behaviour of the resulting long term production
under changesin the prior distribution of the growth curve parametersand in the error
standard deviation of the In-volume obsenations. In this study we focus mainly on the
optimisation of the volume production by optimising exactly the cutting time, and by
choosingoptimal times to measurevolume in a stand for the secondtime, when guided by
the rst measuremen The exact optimisation of the cutting times was achieved through
a changein the order of integration. The main di cult y herewasthat the integrand did
not have an explicit form, and thus a lot of calls to other functions an integrals had to
be made. As a result, computations becamevery heary, and sometimesthe numerical
integration routine could not read the specied numerical precision, and optimisation
was not feasible.

The optimisation of the long term production dependsobviously on the assumedtype
of growth curve, here it wasthe Shumacher type. We found that our objective function,
the long term production, was unexpectedly insensitive to the use of non-optimal cutting
times and non-optimal designs. Wethink that it could have beencausedby the Shumacher
curve properties. Even for one simple curve, the averageyearly volume as a function of
time is quite at in the neighbourhood of time k. Other curvetypesmight have produced
sharper results. In this study we considered xed replant costs,but the sameresults would
have beenobtained if we had consideredrandom costs,or systematically changing costsas
in the caseof regenerationby coppice (Rib eiro and Betters, 1995). In fact only the mean
of the costsin uences the function we are maximising, so our procedureis immediately



Chapter 3. Optimal measuremeh and cutting times 25

Error st. dev. Correlation

Figure 3.5: Fixed (t1;t2) and corresponding for di eren t valuesof the error standard deviations
of the obsenations (left): 0.25 (4 ), 0.5 (original value, ) and 0.75( ), and for dierent values
of the prior correlation (right): 0.32 (4 ), 0.64 (original value, ) and 0.96 ( ). Time t; is either
3 (empty symbol) or 5 (lled symbol).

applicable to variable costsper rotation aslong asthat value is known.

3.5 Conclusions

In this study we assumea Shumacher curve type to describe volume growth, a prior
distribution for the curve parameters' distribution and that the errors of the two obser-
vations in the In-scalecomefrom a N (0; 2) distribution. Under these assumptions, the
optimisation of the cutting time (instead of cutting at a xed optimal time) allows an
improvemert of 16% of the long term volume production, using a xed optimal design.
Optimising the secondmeasuremem time gave a very small extra improvemert of the long
term volume production, which is disappointing. This could be due to the growth curve
choice (Shumacher curve), which appearedto be very robust for the e ect of parameter
mis-speci cation on volume/time ratios. The useof an approximating function to optimal
to worked well, in the sensethat it did improve the objective function while substartially
reducing the computation time, but the improvemerts in the long term production were
even more disappointing. Under our model we think that a xed optimal designis good
enoughin practice to estimate the optimal cutting time, and recommendits useinstead
of an arbitrary design. We did not nd any practically useful explicit relation between
the xed optimal designand the parameters of the prior distribution. For practical ap-
plications of our routines the farmer needsto have a prior knowledge of the growth curve
type, and its parameters' distribution, and he needsa computer program to obtain t, and

Gopt -



26 Chapter 3. Optimal measuremeh and cutting times

Opt t2 for t1=3 Opt t2 for t1=5
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Figure 3.6: Optimal t, as a function of y;, for t; = 3 (left) and for t; = 5 (right), for = 14
(solid line) and for = 16 (dashed line). Values of y1 have been truncated. Piecewise linear
functions were usedto approximate optimal t,.
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App endix. Deriv ation of functions to be maximised

The needfor maximisation of e.g. (3.4) over t, was stated without proof. A derivation
of functions to be maximised is as follows. Suppose we choose speci ¢ functions t;(:)
and C(:) which assigna secondmeasuremenm time t,(y;) to the rst obsenation y; and a
cutting time C(y1;Y2) to the pair of obsenations (y;;Yy2), for all y; andy,. Let be the
attained long term production:

_ E[Ae k=Clyiiy2) ] _Ei.
E[Qy1:y2)] Ex’

Let t9(:) combined with CX:) be any other choice, leading to E?, E9 and ° Then the

pair ft2(:); C(:)g is optimal if and only if © for all t9(:); C%(:). Sincethe expected

cutting time EJ is positive, the latter condition is EY E 9 0 for all t3(:); CY:). For

ft2(0);C:)gwehaveE; E , = 0, soft,(:); C(})g maximisesE? E 9 and the maximum

is 0. Formulated in the nally usedway: ft,(:);C(:)g is optimal if and only if for some
> 0:

say:

i)E1 Eo= max (EY E9) and (i) E;=E; = :

(i) Ex 2 ftg(:);CO(:)g( 1 2) (i) Ei=E;
The solution to (i) and (ii ) is found by substituting results of (i) for given asa function
of in (ii ), and by next solving (ii ) asequationin only. The maximisation of E; E ;
for given can be solved ertirely in successie stepsby following the conditioning order
of (3.3):

E1 E2= EYl(EyziY1;t2(y1)(EA;ki)’1;tz()’1);)’2 [Ae K=Clyay2) Vo Cy1;y2)D):

For any valuesy;;ta(y1);y2 the inner expectation can be maximised separately Let the
function C (:) be de ned sud that C (y1;t2;y2) maximisesEax jy,:t,y,[A€ =C vy Q
over Cfor any yi;tz;y>. Then after substituting C in the inner expectation the middle
expectation can be maximised separately for any y; by suitable choice of to(y1). Hence
let to (:) bede ned such that t; (y1) maximises

Eyiysts (Eak jysitay,[Ae KZC 01220 v C (y;5t2;y2)])

over t, for any y;. Now for given , requiremert (i) leadsto: for giveny; measureagain
at time t, (yi1), and for givenys;y, cut at time C (y1;t2 (y1);Yy2). Note that V, can be
skipped in (i) but not in (ii).
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Chapter 4

Robustness and e ciency of
D-optimal exp erimen tal
designs in a growth problem

Maria Joao Paulo and Dieter A. M. K. Rasct
Biometrical Journal, 44 (2002) 5, 527-540

To assesstree growth, for example in diameter, a forester typically
measuresthe trees at regular time points. We call such designsequidis-
tant. In this study we look at the robustnessand e ciency of seweral
experimental designs,using the D-optimalit y criterion, in a casestudy
of diameter growth in cork oaks. We compare D-optimal designs (un-
restricted and replication-free) with equidistant designs. We further
compare designsin dierent experimental regions. Results indicate
that the experimental region should be adequate to the problem, and
that D-optimal designsare substantially more e cien t than equidistant
designs, even under parameter mis-speci cation.
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4.1 Intro duction

In this study we usedthe D-optimalit y criterion to determine the best allocation of ob-
senations for the estimation of the unknown parameter vector of a given regression
function E(yi) = f(xi; );i = 1,2, ;nwith T = (1; 25 ; p) the x; from a given
experimental region X.

We usedgrowth data of the diameter of 24 cork oaksfrom Portugueseforests. In order
to comparethe e ciency of seweral experimental designs,we rst tted a growth function
to eadh of our 24 trees (24 empirical growth curves) and then we obtained the D-optimal
designfor ead.

We looked at the robustnessof a D-optimal unrestricted compromise design against
parameter mis-speci cation. Further we looked at the relative e ciency of the equidistant
designand designsin di erent experimental regions. In particular we wanted to compare
D-optimal replication-free designswith the equidistant design. We proposethe useof a
compromisedesign (given by the average parameter vector) for all treesin the data set
in further measuremets.

The purposeof this study is to proposea designwhich is suitable for a high percerage
of trees that farmers could encourter in practice. We think a farmer will be interested
in and take action for a particular tree, where prot is not averagedover some prior
distribution of tree parameters. Or, asfar asa prior distribution is involved, it will vary
betweenapplications and will be narrowed in variabilit y comparedwith that in our data
set. Hencewe do not follow the re nements in estimators and designsthat would be
o ered by a random coe cien t approach with known prior distribution as described for
examplein Fedorov et al.(1993).

4.2 Materials and metho ds

Data

Measuremens of the annual diameter growth of ead of 24 cork oaks with agesbetween
41 and 139years(Tome et al., 1999)were used. The experimental region X wassetto the
interval [1; 144]to include all the agesof the treesand alsobecauset was cornveniert asit
will be seenlater. We tted v e non-linear functions with 3 parametersby ordinary least
squareson the measuremets of ead tree, and we usedthe residual variance criterion per
tree to rank them. The Bertalany function provided a good t to ewvery tree, having for
22 treesthe lowest or secondlowest value of the residual variance. All the other functions
tted worse. In table 4.1 we show the geometric mean of the 24 residual variancesfor
ead function.
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Table 4.1: Non-linear functions usedto t diameter growth.

Name Expression Geometric mean
of residual variance

Bertalan y f(x)=( + eX)3 0.50

Gompertz f(x)= e ¢ 0.61

exponential f(x)= + eX 0.80

logistic f(X)= 7~ 1.20

arc-tan f(x)= 5f1+ 2 arctan| (x )Jlg 2.46

We wanted to nd one suitable family of curvesto describe diameter growth for the
cork oak and therefore chosethe Bertalany function. For one tree, the Bertalany
function with p = 3 parametersand parametervector T = (; ; ) leadsto the regression
model

yi=( + eX)P+ (4.1)

for the diameter growth. Herey; is the measuremehn at time x; and ; is the disturbance.
Twenty four individual parametervectors T = (; ; ) wereestimated for the Berta-
lany function (for conveniencewe denote these 24 estimatesas  instead of ’\i).

Mo del and least squares estimation

Supposewe have the model y; = f(x;; )+ ;i =12 ;n and p-dimensional, with
( i.i.d. and having E( ;) = Oand var( ;) = 2. The least squaresestimator " minimizes

L (i f(xi; )2 The well-known linearization of the least squaresproblem with
iterativ e improvemert leads to a seriesof normal equations. The coe cien t matrices
are of the type FTF = L r f(x; )r fT(x;; ). In linear regressionwe would have
E(")= and

var(M) = 2(FTF) ! (4.2)

provided that is estimable. In non-linear regressionthese properties hold in an asymp-
totic sensewhenn! 1 and the Jenrich conditions (Jenrich, 1969) are ful lled. Hence,
further on, 2(FTF) ® will be called the asymptotic variance-covariance matrix of " and
we write V(") for this matrix. If the ;'s are normally distributed then (FTF)= 2 is also
the Fisher information matrix at . Sometimesit is corveniert to call FTF the informa-
tion matrix of the regressionproblem, and we will do so later in the text. We will base
designoptimality on V(") = 2(FTF) 1, regardlessof the quality of the asymptotics.
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Design theory

In an exact designfor estimating , the value of x hasto be speci ed for ead obsenation.

Equivalently, a seriesof distinct x-values(xj;i = 1;2; ;q) is given together with the
number of repliclgtes (ni;i = 1;2; ;0). The x; are called the support points of the
design,andn = n; is the sizeof the design. When developing a design, the x; have

to be chosenin a given experimental region X. An exact design canthus be represerted
in the form
X1 X2 Xq

= : 4.3
niy nNo Nq ( )

In a continuous (and normalized) design one speci es a discrete distribution over
support points with real “weights' m; and suc a designis written as

Xa
X1 Xz Xa . m=1 m>0 real (4.4)
mi; mp Mq

i=1

Each designof the form (2.2) can be speci ed by a corntinuous designand by its size
n (by setting m; = n;=n).

Replication-free designsare exact designsthat have the form

X1 X2 Xq

1 1 1 (45)

i.e. they are exact designswith onesingle measuremen at eac support point. Depending
on the problem, the support points may haveto satisfy side conditions. In this casestudy
we want to take oneyear asthe practical unit and therefore we require support points to
be integersin the experimental time region. This givesa nite set of candidate support
points. The equidistant designis an example of a replication-free design. Replication-free
designsare of interest to us becausein most casestree diameter is measuredno more
than oncea year. Whenewer confusionmay arise, we will call designswith no restriction
on the support points nor on the number of replications unrestricted.

D-optimal designs

We consider the D-optimality criterion based on the determinant of the asymptotic
variance-co/ariance matrix V(A) which takes the functional form V( ; ) now. In the
context of exact designs,a D-optimal designis de ned as:
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= argminjV( ; )j; subjectto support( ) X;size()=n (4.6)

i.e. givenn and X, the D-optimal design minimizes the determinant of the asymptotic
variance-co/ariance matrix, or equivalertly, maximizesjFTFj. If f is intrinsically non-
linear V( ; ) dependsnot only on but alsoon and thusthe D-optimal designwill also
depend on . Therefore such designsare called locally D-optimal.

We know (Fedorov, 1972,p.120) that the minimal number of support points g needed
to nd a D-optimal continuous designin any of our regressionsituations is restricted to
p g p(p+ 1)=2. 1t is alsoknown that for continuous D-optimal designswhereq = p
optimal weights are equal (Fedorov, 1972, p.85). In the caseof exact D-optimal designs
the n; are asequal as possible.

The information matrix for the Bertalany function can be written as:

0 1
1 eX X e Xi
X i
FTEF=9 (+ e¥)*B exn &x xenu X @4.7)
=1 xjeXi - xj& X 2xPe X
with j = L2 in numbering the obsenations. The asymptotic variance-

covariance matrix isV( ; ) = 2(FTF) ! and the D-optimalit y criterion for the Berta-
lany function is thus given by:

6
VO i = == (4.8)

FTFj

Sdlettwein (1987) showved that for the Bertalany function, theseasymptotic approx-
imations are good for D-optimal designs,even for small n; seealsothe discussionin Rasc
(1995a,p.631).

There is no analytical solutionto nd the D-optimal unrestricted designsothe problem
hasto be solved numerically for ead set of parameters. In our problem we take 2 =1
w.l.o.g.

We used the program CADEMO to nd a locally D-optimal exact design for eath
parameter vector ;. Wetook n = 12 measuremets, which seemeda good designsizeto
work with in practice. The experimental region was chosento be Xi44 = [1; 144]in order
to simplify the partition of the interval in twelve subintervals. Other choicesfor X and n
were also possible.
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Algorithm used to nd replication-free designs

The algorithm in Rasd et al. (1995) nds the D-optimal replication-free design by full
enumeration i.e. by evaluating all possible subsetsof n integer points from the set X.
It was veried that the points x; are allocated in the neighbourhood of the support
points of the D-optimal unrestricted design. This algorithm performs very well for a
small number of candidate points, that is, experimental regions Xy = [1;H] with H up
to 40, but in the presen casestudy we also have larger X so we could no longer use
it. Our experiencewith ne grid replication-free D-optimal designsis that the design
points appear in clusters around those of the unrestricted D-optimal designs. We used
this knowledgein the following heuristic algorithm, basedon the sequettial construction
of a D-optimal design(Atkinson and Donev, 1992)to obtain replication-free designswith
integer points:

1. Let the D-optimal uniestricted exactdesignwith n obsenations begivenby () =
X1 X2 Xq
niy nNo Nq

greaterthan 1). The x;'s don't have to be integersbut they have to be all di erent.
!

and n be greater than q (i.e. at least someof the n;'s are

2. Start with the design ! = )1(1 ’;2 ’;q and calculate jV( : 1)j with

expressions4.7 and 4.8. Let r = q.

3. For x02 thxyi  1;hxqi;hxqi+ kol 1 ol hxoi + 1; Tgi 1 Xqis gl + 1gin
X but not already in ", calculatejV( ; "[ x0Qj. ChoosexOfor which jV( ; "[ x0Qj
is minimal and let "* = [ xQ

If say xqg in "*! is nonintegerand is within distance 1 of xOthen deletexq (obtaining
thusanew ") and leaver unchanged. Otherwise setr = r + 1.

4. Repeat 3 until r = n.

For the smaller X it was veried that both algorithms found the same design. The
replication-free designs ; ( i) weredeterminedfor ;,i = 1;:::;24and X144, and for ¢
(seenext section), for someH values, both for n = 12 and for n = 20.

We then comparedthe di erent designs,obtained for dierent H. In particular we
wanted to seehow closethe D-optimal replication-free designswere to the D-optimal
unrestricted onesand whether increasingthe number of points from n = 12to n = 20in
the replication-free compromisedesignswould result in a signi cant improvemert of the
D-criterion value, and eventually compensate for the loss of e ciency due to a shorter
X. To comparethe designsin a simple and informativ e way we plotted the D-criterion
values, actually jV( ; )j*73, for all X and all designscalculated for .
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E ciency of experimen tal designs

Given two designsnl and 2, Jve can measurethe e ciency of design ; with respect to
IFTF (1)

1=p
FTE()] (cf. Atkinson and Donev, 1992), or equivalertly by

design 5, at , by

_ V(G )it
TV )i

This measureis proportional to the designsizeof ; regardlessof the dimension p of
the model, sothat for exampletwo replicates of design ; for which E = 0:5 would be as
e cien t asonereplicate of ,. Usually wewant to know the e ciency of somenon-optimal
design ; with respectto an optimal design ».

In practice an initial guessof may be quite bad, or we may want to work with one
parameter vector for all treesinstead of one for eat tree. With a robustnessmeasurewe
wanted to evaluate the performance of optimal designsin the caseof a mis-speci cation
of , that is, to seehow much information about is preserned when an optimal design
is usedfor another value of

n this casewe used a certral value of , given by the average parameter ¢ =
ﬁ izfl i, asthe mis-speci ed (but easily estimated) value. Then we chedked how ro-
bust the replication-free compromisedesign ; ( ¢), D-optimal for ¢, would be when
usedat 1; o; ; 24. The robustnessof the D-optimal replication-free compromisede-
sign against parameter mis-speci cation was calculated by expression(4.9), and setting

1= s(c)inXygand 2= ((i)in X, i=12 ;24

Another measurewe wanted to look at wasthe e ciency of the equidistant design eq
with respect to the locally D-optimal replication-free designs ; ( i), also calculated by
expression(4.9). The design ey has the support points f12, 24, 36, 48, 60, 72, 84, 96,
108, 120, 132, 144g and all n; 1 (this is an interesting design becauseit is similar to
those often usedin practice).

The robustnessof ; ( ¢) with respectto ; ( i), andthe e ciency of ¢q with respect
to ¢ ( i) are of interest in their own right. On the other hand, a comparison between
thesetwo measuresshould also provide information regarding how good eq is compared
to rf( C)-

We alsolooked at the e ciency of ( k) with respectto (i), k;i = 1;:::;24and
k 8 i, to comparewith the robustnessof ;( c).

The experimental region X144 = [1;144]is too long in practice and it doesnot make
much sensein the practical point of view to have measuremets during 144 years. For
comparison purposesD-optimal unrestricted designsfor ¢ were re-calculatedin shorter
experimental regionsXy = [1;H], with H 2 f 24, 36,48, 60, 72, 84, 96, 108,120,132 and
for n = 12. The e ciency of ( ¢) for Xy with respectto ( ¢) for X144 wasevaluated

(4.9)
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to seeif by shortening the experimental region we can still get designsalmost as good as
those for Xq44.

Summary of designs used in the case study

A summary of designsusedis givenin table 4.2. The have meaning: 1; »2; ;P24: pa-
1 24

rameter vectors of the individual trees; ¢: compromise,averagevalue, ¢ = 3; ; -

Table 4.2: Summary of designsin the casestudy.

Symbol Indices and variables Description
() i=1;2 ;24 Locally D-optimal design for tree i
H = 144
qg=3,n= 12
e (i) i=1;2; ;24 Locally D-optimal replication-free design
H = 144 for tree i
g=3,n=12
(¢) H = 144, 132, 120, 108, 96, Locally D-optimal for ¢, or compromise
84, 72, 60, 48, 36, 24 design.
g=3,n= 12
(c) H = 144,72, 60, 48, 36, 24 Locally D-optimal replication-free for ¢,
g=n,n=12and n= 20 or replication-fr ee compromise design.
eq H = 144,72, 60, 48, 36, 24 Equidistan t design.
g=n,n=12
4.3 Results

The growth curvesof the treeswerevery di erent ascan be seenfrom the four examples
in gure 4.1.

A brief study of the residuals showved presenceof autocorrelation, but no sign of
heteroscedasticiy. We proceededwith OLS.

The locally D-optimal exact designsfound were always designswith p = q = 3 sup-
port points. In every caseone of the support points was equal to the maximum of the
experimental region X.

The averageof the 24 parameter vectors was

c = (3:468 2416 0:042)": (4.10)
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0=(3.56, 2.92, 0.07) ' 9=(2.99, 1.91, 0.10) '

0 10 20 30 40 50 0 5 10 15 20 25 30 35 40
age age

9=(3.29, 1.52, 0.04) " g=(4.59, 3.45,0.01) '

0 10 20 30 40 50 0 5 10 15 20 25 30 35 40 45
age age

Figure 4.1: Empirical and tted growth curves for diameter for 4 cork oaks, shoving major
di erences in shape.

We veri ed that the e ciencies of the D-optimal replication-free . ( ;) relative to
the D-optimal unrestricted designs ( i) were nearly one, not surprising as the optimal
replication-free designpoints weregrouped around the optimal unrestricted designpoints.
Thereforewe think that the e ciencies in comparing two D-optimal designswill be nearly
equal when using both designsunrestricted or both replication-free.

The valuesfor the robustnessof ; ( ¢) with respectto . ( i);i = 1;2; ;24,calcu-
lated for X144, were 0.86in average,being greater than 0.8 in 19 out of the 24 trees. The
maximum value for the robustnesswas 0.997. The e ciency of the 12 point equidistant
design however was 0.68in averageand its maximum value was 0.80 (seetable 4.3). ¢q
performed better than ( ¢) only for two trees. From this we concludethat for the set
of 24 trees the D-optimal unrestricted designfor ¢ is, generally speaking, better than
the equidistant design.

Table 4.4 displays the e ciencies of locally optimal designswhenusedwith other trees,
i.e, the eciency of ;( k) with respectto (i), k;i = 1;:::;24and k 6 i. On the
diagonal we show the robustnessof ; ( ¢). We seethat for any given tree the e ciency
of ,;( c) is never inferior to the e ciency of a locally optimal designfor another tree.
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Table 4.3: jV( i; )j*® 10° valuesand e ciencies of the (replication-free) optimal design, com-
promise design and equidistant design, for X = [1; 144].

i iV(1)j¥® 10° for designs Eciency of ; relativeto »
(1) (c) eq (c); (i) eqs (i) ey (c)

1 16.64 19.28 26.71 0.86 0.62 0.72
2 42.56 96.45 127.35 0.44 0.33 0.76
3 34.26 48.61 67.44 0.71 0.51 0.72
4 7.85 8.73 10.16 0.90 0.77 0.86
5 451 5.55 5.70 0.81 0.79 0.97
6 20.58 21.33 31.51 0.97 0.65 0.68
7 9.28 10.42 12.01 0.89 0.77 0.87
8 16.83 17.67 22.33 0.95 0.75 0.79
9 18.58 18.63 26.47 1.00 0.70 0.70
10 16.90 17.27 23.56 0.98 0.72 0.73
11 11.61 13.79 14.70 0.84 0.79 0.94
12 6.75 8.56 8.50 0.79 0.80 1.01
13 41.66 42.98 60.12 0.97 0.69 0.72
14 10.44 11.65 13.34 0.90 0.78 0.87
15 12.84 15.00 23.25 0.86 0.55 0.65
16 11.61 12.43 18.18 0.93 0.64 0.68
17 5.69 6.79 7.27 0.84 0.78 0.94
18 11.30 15.25 16.72 0.74 0.68 0.91
19 14.18 15.01 22.31 0.95 0.64 0.67
20 27.55 28.95 38.01 0.95 0.73 0.76
21 10.12 12.22 13.00 0.83 0.78 0.94
22 14.27 15.48 18.35 0.92 0.78 0.84
23 11.12 12.60 14.44 0.88 0.77 0.87
24 4.46 6.44 5.56 0.69 0.80 1.16

In fact, only three locally optimal designsseemto perform aswell as ; ( ¢), namely the
locally optimal designsfor treesno. 9, 10 and 22.

The e ciency of the D-optimal designsfor dierent X 's can be seenin gure 4.2.
The e ciency decreases/ery quickly to zeroasthe X shortens. By using shorter X's we
have to acceptestimators for with high variabilit y.

The D-optimal unrestricted designs(n = 12) and D-optimal replication-free designs
(n=12,n = 20) for ¢ canbeseenin table 4.5 for eadh X . As mentioned before,n = 20
wasusedto nd out whether a higher n would compensatefor a smaller X.

Figure 4.3shawsjV ( ; )j*™ for the designsin table 4.5. From that we seethat for eac
experimental region the D-optimal and the D-optimal replication-free designsare clearly
better than the equidistant design. Further, by changing the experimental regions we
obtain dierent valuesof jV( ; )j*™3, and a larger experimenrtal region seemsessetial to
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Table 4.4: E( s ( «); ¢ ( i)'¥3, k6 i;in the diagonal E( ,;( c); (i) in X = [1;144].

(x)

1 2 3 4 5 6 7 8 9 10 11 12
1 0.86 0.72 0.91 0.65 0.62 0.90 0.66 0.79 0.90 0.81 0.67 0.67
2 0.75 0.44 0.94 0.42 0.38 0.71 0.43 0.40 0.63 0.58 0.34 0.34
3 0.94 0.92 0.70 0.55 0.51 0.84 0.55 0.60 0.79 0.72 0.50 0.50
4 0.50 0.28 0.37 0.90 0.99 0.81 1.00 0.91 0.87 0.95 0.97 0.98
5 0.38 0.21 0.28 1.00 0.81 0.69 0.99 0.83 0.76 0.87 0.95 0.96
6 0.83 0.58 0.77 0.82 0.78 0.96 0.82 0.79 0.97 0.96 0.74 0.74
7 0.49 0.30 0.37 1.00 0.99 0.81 0.89 0.88 0.87 0.95 0.95 0.96
8 0.74 0.33 0.54 0.88 0.87 0.90 0.88 0.95 0.97 0.95 0.94 0.96
9 0.87 0.51 0.72 0.85 0.82 0.98 0.85 0.91 1.00 0.97 0.84 0.84
10 0.72 0.43 0.59 0.92 0.89 0.97 0.92 0.88 0.98 0.98 0.86 0.86
11 0.46 0.18 0.30 0.97 0.98 0.75 0.97 0.94 0.84 0.91 0.84 1.00
12 0.37 0.14 0.24 0.97 0.98 0.68 0.97 0.88 0.77 0.86 0.98 0.79
13 0.93 0.53 0.76 0.77 0.75 0.94 0.77 0.92 0.97 0.90 0.81 0.82
14 0.50 0.24 0.35 0.99 0.99 0.80 0.99 0.94 0.87 0.94 0.99 1.00
15 0.72 0.69 0.81 0.72 0.67 0.97 0.73 0.58 0.88 0.89 0.56 0.56
16 0.97 0.69 0.89 0.72 0.69 0.96 0.73 0.82 0.95 0.88 0.71 0.71
17 0.49 0.19 0.32 0.96 0.96 0.77 0.95 0.96 0.86 0.91 1.00 1.00
18 0.21 0.28 0.22 0.89 0.84 0.64 0.89 0.42 0.60 0.80 0.56 0.56
19 0.74 0.59 0.75 0.80 0.75 0.99 0.80 0.67 0.93 0.94 0.65 0.65
20 0.86 0.43 0.66 0.81 0.79 0.91 0.81 0.97 0.96 0.91 0.87 0.88
21 0.40 0.27 0.32 1.00 0.99 0.71 1.00 0.81 0.77 0.89 0.92 0.93
22 0.57 0.25 0.39 0.97 0.96 0.84 0.97 0.98 0.91 0.95 0.99 1.00
23 0.48 0.30 0.36 1.00 0.99 0.80 1.00 0.87 0.86 0.95 0.94 0.95
24 0.25 0.11 0.17 0.93 0.95 0.52 0.93 0.70 0.59 0.74 0.87 0.89
(x)

13 14 15 16 17 18 19 20 21 22 23 24
1 0.94 0.76 0.85 0.99 0.60 0.59 0.89 0.88 0.66 0.71 0.66 0.45
2 0.58 0.46 0.76 0.81 0.27 0.44 0.73 0.44 0.43 0.40 0.43 0.27
3 0.79 0.62 0.85 0.96 0.42 0.53 0.85 0.67 0.55 0.56 0.56 0.36
4 0.78 0.99 0.71 0.58 0.94 0.89 0.78 0.80 1.00 0.98 1.00 0.88
5 0.65 0.94 0.58 0.44 0.94 0.90 0.65 0.68 1.00 0.94 0.99 0.95
6 0.90 0.87 0.96 0.93 0.64 0.77 0.99 0.79 0.83 0.81 0.83 0.59
7 0.76 0.98 0.71 0.58 0.91 0.91 0.78 0.77 1.00 0.96 1.00 0.88
8 0.96 0.98 0.79 0.79 0.91 0.74 0.86 0.98 0.89 0.96 0.88 0.69
9 0.98 0.93 0.91 0.93 0.77 0.76 0.96 0.93 0.85 0.88 0.85 0.62
10 0.90 0.96 0.90 0.82 0.78 0.85 0.95 0.84 0.93 0.91 0.93 0.71
11 0.76 0.99 0.63 0.53 1.00 0.83 0.71 0.81 0.97 0.99 0.96 0.87
12 0.67 0.95 0.57 0.44 0.99 0.83 0.64 0.73 0.97 0.96 0.96 0.92
13 0.97 0.88 0.85 0.94 0.76 0.67 0.91 0.98 0.78 0.85 0.78 0.56
14 0.79 0.90 0.68 0.57 0.97 0.86 0.76 0.82 0.99 0.99 0.99 0.87
15 0.74 0.74 0.86 0.90 0.45 0.73 0.99 0.55 0.73 0.65 0.74 0.50
16 0.96 0.82 0.91 0.93 0.64 0.66 0.94 0.88 0.73 0.76 0.73 0.50
17 0.80 0.99 0.65 0.57 0.84 0.81 0.73 0.85 0.96 0.99 0.95 0.84
18 0.38 0.70 0.64 0.34 0.46 0.74 0.65 0.29 0.89 0.64 0.90 0.84
19 0.80 0.81 0.99 0.89 0.54 0.78 0.94 0.64 0.81 0.74 0.81 0.57
20 0.99 0.92 0.81 0.88 0.83 0.68 0.88 0.95 0.81 0.89 0.81 0.60
21 0.65 0.94 0.62 0.47 0.89 0.93 0.68 0.67 0.83 0.93 0.99 0.94
22 0.85 1.00 0.72 0.64 0.98 0.83 0.80 0.89 0.97 0.92 0.96 0.82
23 0.75 0.98 0.70 0.56 0.91 0.91 0.77 0.75 1.00 0.96 0.88 0.89
24 0.48 0.83 0.43 0.29 0.89 0.84 0.49 0.52 0.93 0.85 0.92 0.69
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Figure 4.2: Eciency of ( ¢) for seweral experimental regions with respectto ( ¢) for X =
[1;144].

minimize jV( ; )j*3. By increasingthe number of points in the replication-free designwe
manageto decreasethe D-criterion value. In X4g and larger the 20-point replication-free
designhasa lower jV( ; )j*™ value than the D-optimal designfrom the X immediately
larger. For the smaller X's the increaseby 8 points doesnot compensatethe loss from
shortening the X .

4.4 Discussion

D-optimal designsprovide an economicand e cien t way to estimate unknown parameters
of a growth curve. The trees of our sample had growth curves of the samefamily but
with dierent parameters. We wanted to seeif a common D-optimal design could be
used to estimate the diameter growth parameters for all trees in a given forest since
it would not be practical to use one design per tree. We took the average of the 24
parametersfrom the sampleand found that under parameter mis-speci cation it provided
a robust compromisedesignto usewith all trees. This designperformed better than the
equidistant design, often usedin practice. The result agreeswith previously published
work (Rasdh et al, 1995b). Further, we saw that although replication-free designsare
not as e cient as unrestricted designsthey are better suited to the problem and are
still better than equidistant designs. The experimental region should also be adequate
to the curve. By shortening the experimental region we may loosetoo much information
about the parameters and decreasethe e ciency substartially. In general, increasing
the replication-free design size in short experimental regions compensated the loss of



Chapter 4. A D-optimal designfor stem growth 41

Table 4.5: Designs (D-optimal at ¢, equidistant and D-optimal replication-free at ¢) for each
experimental region.

Exp erim. D-optim um Equidistan t Replication-free Replication-free
region (n = 12)2 (n=12) (n=12) (n = 20)
(C) eq rf(c) rf(c)
X144 f9.52,41.36,144y 12,24, ,144g 8-11,39-43,142-144 {7-12,38-44,138-144
X72 £7.79,34.39,7y 6,12, ,72g f6-9,32-35,69-74 f5-11,30-36,67-7y
X60 f6.76,30.39,60 5,10, ,60g f 5-8,29-32,57-60g f4-10,27-33,55-6(y
Xas f5.59,26.11,48 f4,8, ,48g f4-7,24-27,45-48 f 3-9,22-28,43-48
X36 3.97,20.79,363 f3,6, ,36g f2-5,18-22,34-369 f1-7,17-24,32-369
Xoa f1.74,14.32,24 f2,4, ,24g f1-4,12-16,22-249 f1-6,10-18,20-24

aall with 4 replications per support point.

e ciency , exceptfor our two shortest intervals. A few remarks should be made about the
tting of a theoretical curve to growth data. The assumptionsmade in section 2 might
be non-realistic in someconfoundedaspects: the type of curve could be wrong, leading to
lack of t; the errors could be heteroscedasticand they could be substartially correlated
at little time lag, degrading the quality of ordinary least squares(OLS) estimators and
making the asymptotic variance formulae (4.2) for these estimators invalid when OLS is
applied. An analysis of the residuals was performed visually and numerically, to seeif
these assumptionswere violated in our case. We did not detect heteroscedasticiy. The
residuals were however highly autocorrelated. In order to ched for the consequences
of autocorrelated errors, we calculated the e ciencies preseried in table 4.3 for rst
order autoregressie errors with serial correlations (using OLS-estimators as before). The
resulting e ciencies showed a rapid degradation of the quality of the compromisedesign
with respect to the equidistant designas the serial correlation coe cient increased.To
have a better impressionof how the optimal compromisedesignwould changewhen serial
correlation is presert, we recalculatedthe replication-free compromisedesignfor seweral
valuesbetween0.1and 0.9, still usingthe OLS estimators. The designpoints obtained for

> 0 are still in the neighbourhood of the compromisedesign points obtained for = 0.
Howevwer, asthe serial correlation is increased,the intervals betweenthe resulting design
points increasesproportionally. For 0:6 we recommendto modify the unrestricted
compromise design by spacing the replicate design points with 10 yearsin between.
For higher valuesof the equidistant designis a better option, sincethe spacebetween
consecutive design points becomesirregular.

We think that a good solution, not coveredin this study, might require a model for
the seriesof incremerts, instead of a model for growth curve measuremets. In the latter
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Figure 4.3: D-optimalit y criterion to the power 1/3 in di eren t experimental regions, for designs:
replication free 20 ( ); replication free 12 (4 ); D-optimal ( ) and equidistant ( ).

model one should also think carefully about what has to be estimated: badkground pa-
rameters, or function(s) of the realization of the stochastic process(cf. Cambanis, 1985;
Fedorov, 1996).

Finally, the averageparameter vector ( ¢) here merely servesas a tool to determine
a compromise design; it is not intended to be an interesting population parameter to
be estimated again later on. A type of problem not consideredhere would be to design
estimation of a population parameter under constraints that the designis not too bad for
individual trees. Constraint optimization is discussede.g. in Cook and Fedorov (1995).
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Chapter 5

A spatial statistical analysis of
cork oak comp etition In two
Portuguese silv opastoral
systems.

Maria Joao Paulo, Alfred Stein and Margarida Tome
Accepted by the Canadian Journal of Forest Research

This study considers competition between cork oaks at three plots in
two represenativ e Portuguese stands. It usesspatial point pattern
functions to describe densities and quantify di erences betweenstands.
Relations betweencork oak characteristics and indices measuring inter-
tree competition are modelled. Tree competition hasa signicant e ect
on tree crown characteristics. In particular, cork oakswith much com-
petition have smaller and more elongated crowns. A standard model
to relate crown diameter with diameter at breast height was improved.
R? increased from 0.53 to 0.63 by including a crown shape parameter
and competition indices.
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5.1 Intro duction

The object of this study is the cork oak (Quercus suker L.) in two Portuguese stands
(montados). Worldwide, cork oak forests cover approximately 2.5 million ha, mainly in
sewen courtries: Portugal (which contains 30% of the world's cork oaks), Algeria (21%),
Spain (20%), Morocco (16%), France (5%), Italy (4%) and Tunisia (4%). In thesestands
the main product is cork, a thick and continuous layer of suberisedcells, produced by the
meristematic cork cambium (or phellogen), which makesup the external envelope of the
stem and branches.

In Portugal, cork oaksare grown in silvopastoral agroforestry systems, called monta-
dos. In a montado cork oak trees grow in a low density and are sometimesinter-mixed
with a small number of other tree species. Cattle or sheepgrazein the samearea. Tree
density in montados is usually belov 100treesha *.

Competition betweentreesin uences the availabilit y of nutrients and light and a ects
shape and size of crowns (Deleuze et al., 1996). On the other hand, crown condition
and shape are obviously related to tree health and growth (Dawkins, 1958; Ottorini et
al., 1996; Moravie et al., 1999; Gill et al., 2000). Most literature refersto relationships
betweentree growth and crown or tree growth and competition.

The aim of this study is to explore relations betweencrown size,tree size,crown shape
and inter-tree competition for cork oaks. Crown diameter is strongly related to diameter
at breast height. We explore the use of competition indices and crown shape parameters
to explain di erences in crown diameter. Sud relationships allow us to estimate crown
sizeusing diameter at breast height and spatial information.

5.2 Data description

Cork and cork oaks

A cork oak has a life span of 300{400 years. Cork oak trees are economically viable for
lessthan 150 yearshowever, as cork growth intensity decreasesvith age,leadingto cork
that is too thin. The cork of the rst harvest has a hard and irregular structure. The
cork from the secondharvestis more even, but only mature cork obtained at the third
and following debarking on trees of 40 years of age or older reachesa perfect quality. A
mature cork oak tree can produce more than 50 kg of cork in a single stripping.

During the rst 40 years,a farmer hasto make seweral investmerts before having any
prots. Any decisionduring this period may have consequence®n production in later
years. To allow cork harvest, the managemen of cork oak standsincludesthinning, shape
pruning, understorey clearing and soil fertilit y improvemert. Cork production is the main
driving force of this system, whereasother products are e cien tly usedaswell.
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In Portuguesecork oak stands, much attention focuseson maintenanceof cork quality.
Production of cork is an important economicactivity. Cork quality dependson the number
and size of pores, the absenceof defectssuch asinsect galleriesand the absenceof great
wood inclusions (Ferreira et al., 2000). The value of cork for industrial purposeshighly
depends on cork thickness. The highest value is assaiated with thicknesseshetween 29
and 40 mm. Cork quality is likely to be a ected by environmental and local characteristics
of the stand, such as tree density and competition. As producing large amounts of high
quality cork is a lengthy and uncertain process,competition is an important topic to
study.

In Portugal mainly two typesof montados occur: adult montados that were regener-
ated in the past by natural regenerationor seeding,and new plantations with cork oak
usually planted along lines. The rst typeis at the momen the most important as con-
cernscork production. Most of the new plantations are not yet ready for debarking. The
adult stands are greatly variable in terms of stand structure and stand density and go
from more or lessregularly distributed to aggregatedstands.

Study sites

Two montados are analyzed in this study. They are located approximately 60 km and
90 km east of Lisbon, respectively. The rst, My, is located in Herdade do Vale Mouro,
near the village of Coruche. The second,M,,, is located in Herdade Os Ruivos, near the
village of Mora. They cover dierent spatial structures as occurring in montados that
were selectedby the local Asscciation of landowners as represerativ e in the Coruche
region, which is important for cork production.

In M; we measured1 plot of a200 200m? size. It contains 389 cork oaks, of which
353 occur at production age and 36 are debarked for the rst time. This plot is located
in a at terrain at an altitude of approximately 100 m. In M,;; we measured?2 plots of
a 140 150m?2, plot M;;.a and plot M;.g, respectively. Plot M;.o contains 141 cork
oaks and 9 trees of other species,whereasplot M,,.g corntains 145 cork oaks and 3 trees
of other species. The plots at M, are located at approximately 130 m of altitude, on a
slightly uneventerrain. Dierence in altitude within the plots is smallerthan 1.5m. The
two montados were originally seededwith accornsand there has been grazing since the
trees were large enough. The initial tree density is unknown. Age of thesetreesis hard
to assessas no written recordsare available. M, has an uneven-agedstructure, and the
older treesare approximately 140yearsof age. The M;; montado is closerto an even-aged
stand, and the older trees are between 90 and 100 years. The soil is fertilized every 4 to
5 yearsand seededto allow grazing.

Treesweremeasuredshortly after cork extraction, during the month of July. Measured
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variables were coordinates of tree location, diameter at breast height (d) without cork, to-
tal height (h), crown radius (¢ ), meancrown diameter (d.) and basalarea(g)(T able5.1).
Crown radius was determined visually by stretching a tape from the tree bark to the edge
of the projection of the crown on the horizontal plane, and using a compassto determine
ead direction. The crown was measuredin 4 directions in M,, a procedure commonly
applied in sampling practices, and in 8 directions in M,; to test the e ect of sample size
on crown modelling.

Table 5.1: Variables measuredin cork oak plots.

Variable  Description Units

X Horizontal coordinate of tree m
(azimuth 30 for M| and 221 for M ;.o and My;.g )

y Vertical coordinate of tree m
(azimuth 120 for M| and 131 for M;.ao and Mg )

d Diameter at breast height cm

h Total height m

c Crown radius in direction m

=k =4 Mj;a and My;;g)
= =6+k =2(M,)

dc Mean crown diameter (obtained from c ) m
g Individual-tree basal area (obtained from d) m?
5.3 Metho ds

Point patterns

A key factor governing tree competition is the frequency of small inter-tree distancesfor
the sameoverall density. Competition is stronger with many small inter-tree distances,
that occur more frequertly in aggregatedpoint processeghan in random or regular point
processes. Point processesare stochastic processeswhose realisations consist of point
everts in time or spacecalled point patterns. To identify the point processunderlying
tree positions, a window W is de ned for ead plot, given by the plot boundaries. Let
N (d! ) denotethe number of treesat an areaof sized! . Then the intensity (! ) at! is
de ned as

()= lim fE[N(d!)]=jd! jg (5.1)
jdrji o

(Diggle, 1983),i.e. the number of treesin ead window divided by the areaof that window.
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To comparethe point pattern with a completely random spatial pattern (CSR), second
order characteristics are applied. The nearest-neighbour distance distribution function
G(r) is de ned as G(r)= P[distance from an arbitrary tree to the nearestother tree is
at most r]. For any distancer the empirical G(r) uncorrected function is the number of
treeswith at least one neighbour within distancer, divided by the total number of trees.
Similarly, the empty spacefunction is given by F (r)= P [distance from an arbitrary point
to the nearesttree is at most r]. The uncorrected F(r) function is the ratio of the total
area of the window which is covered by circles of radius r certered in eadt tree, and the
areaof the window. In this study we focuson the J(r)-function basedon the uncorrected
G(r) and F (r) functions (Van Lieshout and Baddeley, 1996;Baddeleyet al, 2000),de ned
as

1 G(r)

M TRD

(5.2)
for which edge correction is not necessary For the CSR process,J(r) = 1, whereas
J(r) < 1 suggestsclustering, and J(r) > 1 suggestsregularity. To compare the actual
point pattern with CSR, for M. 100 simulations are made of CSR processeswith the
sameintensity asin M. and J)(r) are calculated for s= 1;  ;100, using maximum
and minimum of S (r) as ernvelopes. These were plotted together with the estimated
J(r) and the averageJ\(r) of the simulations. The sameanalysis was done for the two
plOtS M, and M||;B.

Crown shape

Tree crown shape is largely determined by its vegetative growth characteristics and by
competition (Biging and Gill, 1997). Ellipses are usually applied to graphically represen
the cross-sectionsof tree crowns, usually basedon 4 measuredcrown radii. To improve
upon this, we measured8 radii in M. and in M;;.5. In M|, measuremets were made
into the 4 directions =6+ k =2 for k = 0;:::;3, and in M;;.a and M,;.g into the 8

directions k =4, k = 0;:::;7 clockwise from the north. For analytical purposeswe
described tree crowns as a polygon  with 120 vertices, obtained from the original 4 or
8 crown radii. For every ; with O K 1 i k 2 the radius is estimated by

weighted linear interpolation

(j  «1) (k)
¢e(j)=——cCc + ———= ¢ 5.3
( l) ( K K 1) 3 ( K K 1) ko1 ( )
wherek = 1;:::;8 (with o= g),j = 1;:::;120and c , arethe measuredcrown radii.

The estimated radii ¢( ;) equal the weighted averageof the two closestmeasuredradii,
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with weights inversely proportional to the absolute di erence between angles. Suc a
crown represenation is exact on the measuredradii and can be applied on any number of
measuremens. In addition, no parametric shape is forced to the crown, whereasthe nal
shape is smooth and has the samenumber of vertices regardlessof the initial number of
measuredradii.

Shape parameterswere calculated on the approximating polygons . A shape param-
eter is a function S() ! R? that is invariant to any translation, rotation or re-sizing of
polygon (Glasbey and Horgan, 1995,p.170). In this study, the area, perimeter, maxi-
mum diameter d. max and minimum diameter d; min of ead polygon  were calculated,
aswell aslength (1) and breadth (b) asde ned in Glasbey and Horgan (1995, p.153). The
following shape parameterswere used:

compactnessct = 4  area=(perimeter)?. The compactnessparameter comparesthe
area of with the area of a circle with the same perimeter. Values for ct vary
betweenO for a line segmen and 1 for a circle.

elongationel = |=h The elongationparameter measureghe length of ascompared
to its breadth. As el corresponds to tting the vertical projection of into a
rectangle with the samelength and breadth, it variesbetweenl and +1 .

ecceltricit y ec= d; max =tk min - The ecceltricit y parameter also measuresthe elon-
gation of , comparing largest with smallest diameter. The ec parameter varies
betweenl (when all diametersare equal) and 1 .

Comp etition indices

In this study competition e ects betweentrees are modelled in terms of crown size and
shape. Competition at the crown level is assumedto depend on the distance to neigh-
bouring trees, aswell ason their number and size. Thereforeten competition indiceswere
selectedfrom the literature (Moravie et al., 1999), and were adapted to properly measure
aspectsof competition. We usedall treesin the plots to calculate the competition indices,
therefore also trees from other speciesand border trees, i.e. treeswithin 10 m of the plot
border.

Most indices involved local tree density, inter-tree distances and size of neighbours
(Table 5.2). Distance independert indices were computed for seard radii of 10, 15, 20
and 30 m around ead tree. Correlation coe cien ts between crown shape and tree size
parameters, d, h and d. were computed, and bivariate plots were made to ched for
non-linear relationships.

To ched for the in uence of autocorrelation in the signi cance of correlation coe -
cients a size permutation test was performed. Observed tree sizeswere randomly allo-
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Table 5.2: Competition indices usedin this study (Moravie et al., 1999). The index i refersto
the subject tree, j refers to a competitor, %is a size measure,such asd, h or g, and rj is the
distance betweentree i and tree j. Distances usedwerer=10, 15,20and 30m (also 1 for ClI o).

Index  Expression Reference NCI;de)

Distance independent indices

Cly Number of trees (competitors) within -0.34
r meters, (N¢)

Cla Number of competitors within r me- -0.55
ters such that % > %

Cls um of size of trees within r meters, Steneker and Jarvis -0.25

) (1963)

Cla Sum of bal§al area of bigger trees within -0.38
rmeters 5 g L(og50)

Cls Size ratio, /—po/Ncl—o/? Daniels et al. (1986) 0.55

]

Distance dependert indices

Clg Distance to nearest tree (NN) 0.28

Cl7 Distance to NN such that % > % 0.51

Clg Dierence in size with nearest tree -0.46
Rin %

Clg §|ze ratlo proportional to distance Daniels et al. (1986), -0.54
Tome and Burkhart
(1989)

Clo f;lzedlerence proportional to distance -0.68
c %N %
I'ii

j:]- % rl]
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cated to the obsened tree locations and correlation coe cien ts betweentree sizeand the
competition indices were re-calculated. This was repeated 100 times, and the simulated
correlations were compared with the obsened one. The obsened correlation coe cien t
was signi cant if its absolute value exceededd5% of the simulated absolute correlations.

Directional crown parameters

Preferertial growth direction may in uence crown shape, as for example, isolated trees
may have a preferertial southern growth direction, where the crown intercepts most sun-
light. For treesin a stand, crown competition from a preferertial growth direction may
a ect trees more than competition from another direction. Analysis of the crown shape
parameters alone is unlikely to reveal a preferertial growth direction. A preferertial
growth direction could be found by analyzing summary statistics of crown radii of iso-
lated trees. A tree with crown c; is isolated from treeswith crownsc; at distancesr;;

if rj ~ maxc; + maxc; for all j. According to this de nition, 9 isolated cork oaks
occur in Myj-a.

Crowns well exposedto the south are expectedto have larger crowns as comparedto
crowns that are poorly exposedto the south direction. To test this for M., let °C5:4“
and 2—0 represernt the ratio betweencrown radius directions south-westand north-east, and
betweencrown radius directions south and north, respectively, and 22;‘%;‘ the relative
di erence between crown radius directions SW and NE . Scatter plots and correlations
are usedto study the relations betweenthese parametersand crown sizeor tree size.

Mo delling the crown diameter

For the relationship betweend; and d, Dawkins (1963) useda linear relation in tropical

high forest trees. This linear relation is reportedly weak for trees from other forests (see
for exampleDe Gier, 1989). However the PortugueseNational Forest Invertory currently

usesa linear regressionequation to estimate crown cover in cork oak montados (DGF,

1990). In this study the following relationships are explored:

de=b+ b d
do=lkp+b d+b h
de=lpy+b d+ b d?
dec = b+ by=d

To improve upon that basic relationship we introduced spatial information sudc as
competition indices into this model. Linear regressionmodels for d. with crown shape
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measurescrown directional parametersand competition parametersas explanatory vari-
ablesweredetermined. A rst selectionwasmadeto eliminate indices strongly correlated
with d. Stepwise regressionwith forward and backward elimination was then applied to
remove non-signi cant cortributors, using the S-Plus software. The procedure calculates
the Cp statistic for the current model, as well as for reduced and augmenied models. It
adds or drops the term that mostly reducesCp (MathSoft, 1997).

Data reduction

To investigate e ects of crown measuremen intensity, the crown data in M;;.a were re-
ducedfrom 8to 4 and a 120-\ertex polygonwas tted to both the full 8-radii data ( g) and
the reduced4-radii data( 4). Two setsof 4 wereobtained for eat crown, corresponding
to measuremeis on orthogonal directions. Shape parametersS( g) were comparedwith
shape parametersS( 4). The averageof the ratios for every tree in M;.ao betweenS( 4)
and S( g) was usedto measureits similarity, i.e. its logarithmic transformation should
be closeto zero. Let = log[S( g)=S( 4)]. The hypothesisHy : E() = 0 wastested
using Wilcoxon signedrank test (= 0:05).

5.4 Results

Description of the Plots

Summary statistics for the three plots in the two montados are givenin table 5.3. Average
d equals32cm at M, 40cm at M. and 37 cm at My,.g. The tallest cork oaksoccur at
Mi:a (h = 10:9 m), where trees are on average1.6 m higher than at M, (h = 9:3 m) and
1.4 m higher than at M;;.g (h = 9:5m). In M. tree height is more variable than in the
two other plots, asthe standard deviation is 2.8, whereasin M, it is 2.0 and in My,.g it
is 2.2. Averaged. is 7.0m at M, 8.1 m at M;.o and 7.4 m at M,,.g. This indicates that
cork oaksare largestin stem diameter, tallest and with the largest crown diameter in plot
Mi.a and are smallestin stem diameter, shortest and with the smallestcrown diameter
in plot M. Cork oaksin M, are more variable in d and d. than in M. and M,.z. Plot
M. is similar to plot My,.a in terms of tree sizes.

Point patterns

The windows W, , W, .o and W, .g for plots M, M. and M,,.g are givenin Figure 5.1.
Clearly, cork oaks are unequally spacedin M;.a and My,.g, and more regularly spaced
in M. Numbers of trees equal jW,,.aj = 145,jW,,.gj = 146 and jW,j = 380, leading
to processintensities equalto ;.4 = ;8 = 69treesha *and | = 95treesha *.
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Figure 5.1: Tree locations in M;, M;;;a and M. (from top to bottom). The X-axis values
increasein the 30° azimuth in M|, and in the 221° azimuth in M;;.a and M,;.s. The window
(inner frame) de nes the processarea.
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Table 5.3: Summary statistics of variables measuredin the cork oak plots.

X y d h dc
M
Min 0.3 0.7 135 4.4 2.1
Mean 320 93 7.0
Max 2039 2024 78.0 149 159
Std Dev. 13.0 20 2.8
Mii:a
Min -16.7 0.8 18.7 4.3 2.8
Mean 404 109 8.1
Max 140.1 149.2 71.3 198 14.0
Std Dev. 115 28 2.3
Mii;s
Min -0.7 1.9 17.8 3.8 2.2
Mean 371 95 7.4
Max 149.7 137.3 828 17.7 14.7
Std Dev. 115 2.2 2.1

The median inter-tree distancesare approximately 6 m for all three plots, and they are
larger than 4 m for 75% of the treesin the three plots. The J(r) function for the three
plots, aswell asthe CSR ervelopesand average,is showvn in Figure 5.2. The J(r) function
calculatedfor plot M, hasvaluesgreaterthan 1forr  10m falling outside the upper CSR
envelope. It shows that M, has a more regular pattern. For M;;.a J(r) is approximately
equalto 1 forr 5 m, and decreasedor r > 5 m. Both for small and large values of
r, J(r) valuesare inside the CSR envelopes, shawing no signi cant deviation from CSR.
Plot M. has more pronounced tree aggregationthan plot M;.a. The obsened $(r)
values are greater than 1 forr 5 m and forr 7 m they are smaller than 1. Some
values are outside the CSR envelopes, suggestingthat the underlying spatial processis
aggregated. This result is likely to be related to the two large open areasobsened in
Figure 5.1. According to the farmer, initially the seedsdid not dewelop in those areas,
and the exposureto grazing on a later stage made natural regenerationimpossible(pers.
comm.). This type of open areais very commonin Portuguesemontados.

Crown shape

Figures 5.3to 5.5show the tree crownsin the plots, described aspolygons. Clearly visible
overlapsof crowns on thesemapshave beenobsenedin the eld. Dierencesin tree crown
shape range from almost circular crowns to highly elongated crowns. Elongated crowns
occur in treesthat are closeto other trees, whereasisolated trees display a more regular,
round crown. Summary statistics of crown shape parameters from M;;.o are given in
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Figure 5.2: Empirical uncorrected J-function for My, M;;:a and My,.g (from top to bottom).
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Table 5.4. Valuesfor compactnesswere on average0.7, and the averageelongation (el) is
1.2. Averageeccertricit y (€0 is 1.5, and in generalec< 2. Two cork oakswere removed
from the data-set becausetheir crown diameter in one direction was closeto 0, thus
yielding very large ec values.

Table 5.4: Descriptiv e statistics of shape parameters for the crown in M;.a .
Variable min  mean max variance

ct 0.4 0.7 0.9 0.01
el 1.0 1.2 1.9 0.03
ec 11 15 4.0 0.23

Crown shape parametersare uncorrelated to d (j”j < 0:15) and h (j/j < 0:10), but d
wascorrelatedto ec(*= 0:4) and to alesserextent alsoto ct and el (jj < 0:3). Crowns
with a round shape may have a larger sizethan those that are elliptically shaped.

Comp etition indices

Competition indicesin table 5.2 were computed using d, h or basal areato comparetree
sizes,for dierent xed valuesofr. Treesize(d and h) had a high correlation with indices
Cl,, Cly4, Cls and Cl 7 to Cl 19, which accourt for the relative size of neighbours. For
example,d wasuncorrelatedwith the distanceto the closesttree (Cl g, #  0:1), but it was
highly correlated with the distance to the closestbigger tree (Cl 7, ~ = 0:62). This was
also obsened for h. Correlations with d; were betweenj”j = 0:25 for Cl 3 and j& = 0:68
for Cl 10. In general,indices with the number and/or distanceto bigger neighbours had
higher correlations with d; (Table 5.2).

The size-permutation test showed that the correlation coe cien ts betweenh and the
competition indices were all non-signi cant. Indices correlated with d were Cl ,, Cl s,
Cl; and Clg ( = 0:05). All indices were correlated with d;, the obsened correlation
valueslargely exceedingthe simulated ones. Correlations at the highest signi cance level
occur for valuesof r up to 20 m.

Correlation is also presert between competition indices and crown shape (j4  0:4)
in Mj;.a. Compactnesshad the highest correlation with Cl,, Cl 3, Clg4, Cls, Clg and
Clg (0:3 j& 0:4). Elongation was poorly correlated with all competition indices but
ecceitricit y was highly correlated with Cl g (j7j = 0:46). Treessubject to competition are
generally lesscompact, more elongatedand have eccertric crowns.
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Figure 5.5: Map of tree crowns for M. basedon 8 crown measuremers.

Directional crown growth

The comparison of minimum, average and maximum crown radii of isolated trees and
non-isolated trees is shown on gure 5.6. The size of the crown radii is more variable
in the caseof non-isolated trees. The summary statistics were calculated for ead crown
radius separately Both groups of trees display someelongation towards the north-south
direction. Sewernty per cert of the treesin M;;.a have a larger crown radius into the
south direction than into the north direction. Also, the crown radius into the south is
25% larger than the radius into the north for half of the trees. Correlations betweenthe
directional crown parameters and d. were all very low, and bi-variate plots showved no
structural relations.

Mo dels for crown diameter

Figure 5.7 shownsthe relationship betweend. and d for the three plots. A linear dependency
is preseri for the obsened values of d. and d. Model d. = by + by d (R? = 0:53)
tted the data from all three plots better than d. = by + by=d (R? = 0:47). Model
de=bp+ by d+ bp d? brought animprovemert of at most 0:002to the R? obtained for
the simple linear model.

The variable h also did not improve the linear model d; = Ip + by d much, as it
resulted in an increaseof R? with only 0:02. Therefore, the linear model d. = by + by d
was selected. The slope is larger for M, than for M. and M;,.g. The predicted values
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Figure 5.6: Comparison of average, minimum and maximum crown radii for isolated trees, and
average and maximum crown radii for non-isolated trees, in Mj;:a. The minimum radii of non-
isolated trees are zero.

of d; are larger in My;.a than in My;.g, for all d. M, haslarger d; than the two plots in
M, ford 32cm (Table 5.5 and Figure 5.7). A similar comparisonwas made between
isolated and non isolated trees, by tting the samemodel to ead of the two groups of
trees. The 9 isolated cork oaksin plot M;.a have larger predicted crown valuesfor the
samed than non-isolatedtreesin the sameplot. However, the small samplesizeof isolated
treesdoesnot allow us to concludethat there is any di erence in crown size betweenthe
two groups.

Table 5.5: Estimated parameters for a linear relationship dc = by + by d in the three plots.

Parameter M Miia My
bo 0.97 225 2.15
b 0.19 0.15 0.14
R2 0.73 0.53 0.58

Bi-variate plots of d. against correlated competition indices and against correlated
crown shape parameters (not shown), indicate that the relationships are approximately
linear. We obtained one improved model for mean crown diameter. Table 5.6 shows the
two linear models for d.. The rst is the samemodel asin table 5.5. The secondmodel
equals

de = 4:24+ 0:14 d 1:58 ec+ 0:12 Clg (R?= 0:63) (5.4)

It addsinformation on competition (Cl ) and on crown shape (ec) to the rst model. This
model is signi cantly better than the rst model. It predicts larger crowns in trees with
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a larger distance to their nearestneighbour. The predicted values and 0.95 con dence
intervals for d. can be found in Table 5.7. Here we used the approximately minimum,
median and maximum obsened valuesof the explanatory variables. The table shows that
for the samed and ecwe expect more than 1 m increasein d. if the distanceto the nearest
neighbour increasesfrom the minimum (2 m) to the maximum (14 m) obsened value in
Mii.a. This model also predicts more ecceitric crownsto be smaller in size (negative sign
in the relationship). Very eccertric crowns (ec= 2) are expectedto be 1.5 m smallerin
diameter than non-ecceftric crowns (ec= 1).

Table 5.6: Regressionmodels for d. according to a stepwise regressionprocedure, for My.a.

Variable Coecient Std. Error tvalue Pr(> jtj) R?
intercept  2.25 0.49 4.60 0.00 0.53
d 0.15 0.01 12.51 0.00

intercept  4.24 0.82 5.16 0.00 0.63
d 0.14 0.01 12.88 0.00

ec -1.58 0.33 -4.79 0.00

Clg 0.12 0.05 2.30 0.02

Table 5.7: Con dence intervals (95%) for dc =

f (d;ec;Cls), for Mj;a.

Con dence interval for d¢

ec Clg d=18 d=40 d=70

1 2 (466, 6.02) (7.78,8.87) (11.66, 13.15)
1 6  (5.28,6.35) (8.47,9.14) (12.29, 13.48)
1 14 (597, 757) (9.09, 10.42) (13.03, 14.65)
14 2 (414,527) (7.27,811) (11.10, 12.45)
14 6  (473,563) (7.97,838) (11.70, 12.80)
14 14 (532,6.94) (8.43,9.82)  (12.36, 14.05)
2 2 (3.21,430) (633, 7.16) (10.12, 11.52)
2 6  (3.73,4.73) (6.88, 7.57) (10.65, 11.94)
2 14 (425 611) (7.33,9.02) (11.26, 13.24)

Analysis of plots M, and Mg

Comparisonof the crown shape parametersobtained for the two plots reveal similar values
of ct and el to those found in M.a. In plot M|;.g we nd crowns slightly more ecceitric
than in plot M;.a, €= 1.7, whereasplot M, has lesseccertric crowns (ec= 1:3). We
found higher correlation betweenct and dc in M. (= 0:36) and M, (* = 0:41) than
those found in My.a. Correlations with d and h were low, asfor My;.a.
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Correlations betweenthe competition indices and tree sizewere higher in M,;.g than
in Myi.a, whereasM, had similar correlations valuesasin My.a .

The model d; = by + by d for plot M, has an R? of 0.73, whereasfor plot M. R?
is 0.58. The addition of variables Cl ¢ and ec improved the initial model in both plots.
Results were R? = 0:75 for M, and R? = 0:64 for M.

Data reduction

Six tests were performed in total, two tests ead for compactness,elongation and ec-
certricit y. The averageratios betweenthe shapes obtained with the reduced data and
the shapes obtained with the 8 measuremets were equal to 0.94 for compactness,1.05
for elongation and 1.2 for eccertricit y. The Wilcoxon signedrank test rejected the null
hypothesisfor compactnessand ecceirtricit y, but not for elongation ( = 0:05).

5.5 Discussion

Three parameterswere usedto analysecrowns in terms of their compactness,elongation
and eccertricit y, using crown radii measuremets. Shape parametersare applied onimages
of objects. Crown radii were interpolated towards 120 points of a polygon using a linear
interpolation procedure weighted by angular di erences. Other interpolation methods
might have beenapplied as well. The resulting shapes however were more realistic than
if we had joined the measuredradii for example with straight lines. Also, parametric
functions such as splines and trigonometric linear regressionfunctions force a particular
shape to the crown. Functions that t a larger variety of crown shapes need a larger
number of crown measuremets, and add random noise. These were therefore avoided.
When the 8 crown measuremets were reducedto 4, two of the three calculated shape
parameterswere signi cantly dierent from the previously obtained.

Treesunder competition had more elongated, lessround crowns than isolated trees.
This agreeswith ndings of Brisson (2001), that in forests of sugar maple isolated trees
have the most symmetrical crown, whereastrees under competition are more asymmet-
rical and display crowns more developed away from the main competitive pressure of
neighbouring trees. We found correlations indicating that eccertric crowns tend to be
smaller, whereasround crowns tend to be larger. But since we had a small number of
isolated trees, we could not nd a signi cant di erence in the sizesof the two groups of
trees.

Ledermann and Stage (2001) hypothesizethat stand-averagecompetition indicesrep-
resert the underground situation, while distance-dependen indices represen the above-
ground ervironment. We found large correlations between crown diameter and indices
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involving the number and size of neighbours, also in distance-independert indices. In-
dices weighting the size of competitors with their distance to the subject tree have a
confounding e ect with the subject tree's size, and result in increasedestimated corre-
lation values. The random allocation of tree sizesto the obsened tree locations yields
correlation valuesunder the independenceof tree sizeand tree location. The correlations
obsened in the montados can be comparedwith percertage points in the simulated dis-
tribution. All correlations betweend; and the competition indices were signi cant at the
= 0:05 level.

Larger competition e ects are found in aggregatedand random point patterns, for the
sameoverall density, becauseinter-tree distancescan be very small. Competition might
be reducedby reducing tree density and by planting treesaccordingto a regular pattern,
since both result in larger minimum tree distances (Smith et al., 1997). Larger crowns
for the samed are obsened in the plot with a regular pattern, M,, than in the plots with
random or aggregatedpatterns (M;;.a and My;.g). A more extensive study should be
performed to researt the e ect of point patterns on crown size,and to seeif decreasing
tree competition would increasecork production.

The linear model d. = bph + by d tted the data at least as well as the other tested
models. A quadratic function or more complex functions might better explain variation
in crown diameter for a di erent range of d. and d. Howewer, the chosenmodel is more
appealing becauseof its simplicity and the good t for the obsered values of crown
diameter.

This study should be ervisaged as a preliminary analysis aiming at de ning the
methodologiesto be usedin data collection in the future, and for the characterization
of the structure of adult montados to be usedin the initialization module of the SUBER
model (Tomeet al., 1999). The SUBER modelisto provide the landownerswith aforecast
of the consequencesf di erent silvicultural practices - thinnings, fertilisation, debarking
levels, grazing, etc - in the future yield of the stands, basedon spatial characteristics and
tree sizedistribution of their stands.

5.6 Conclusions

In this study we explored relations for cork oaks. Competition indices accourting for the
relativ e size of neighbouring trees were the most correlated to crown size. The crown of a
cork oak hasa di erent shape and sizewhen it is under competition, in particular if it is
closeto larger trees. It is more elongated and eccetric, and lessround. Ultimately this
may have an e ect on crown size,givenby its meandiameter. A model for crown diameter
was obtained using d, crown shape and distance to the nearestneighbour as explanatory
variables. The resulting model explains 63% of the variation in crown size, and is an
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improvemert on the model currently usedby the PortugueseNational Forest Inventory.
Increasinginter-tree distancesand decreasingdensity is likely to result in larger trees. In
particular, regular patterns help increaseminimum inter-tree distancesfor a given density.

Ac knowledgmen ts

Researt of the rst author was sponsoredby nancial support from the Fundacao para
a Cienciae a Tecnologia(FCT) and Fundo Sccial Europeu (FSE) through the program
Il Quadro Comunitario de Apoio' , to which we feel grateful. Data usedin this re-
seard was collected under the project CORKASSESS (Projecto CE FAIR CT97 1438
CORKASSESS - Field assessmenand modelling of cork production and quality). The
authors are also grateful to APF C (Associacao dos Produtores Florestais do Concelhode
Coruche e Lim trofes) for facilitating the eld work in the two montados.

References

Baddeley, A.J. and Gill, R.D. 1997. Kaplan-Meier estimators of distance distributions for spatial
point processesAnn. Statist. 25: 263-292.

Baddeley, A.J., Kerscher, M., Sdladitz ,K. and Scott, B.T. 2000. Estimating the J function
without edge correction, Statist. Neerlandica, 54: 315-328.

Biging, G.S. and Gill, S.J.1997. Stochastic models for conifer tree crown pro les. For. Sci. 43:
25-34.

Brisson, J. 2001. Neighbourhood competition and crown asymmetry in Acer sacharum. Can.
J. For. Res. 31: 2151-2159.

Dawkins, H.C. 1963. Crown diameter: their relation to bole diameter in tropical forest trees.
Commonwealth For. Rev. 42: 318-333.

Dawkins, H.C. 1958. The managemert of natural tropical high-forest with special referenceto
Uganda. Institute paper. Imperial forestry institute. Univ ersity of Oxford, Oxford.

DGF, 1990. Inventrio orestal do sobreiro. Direco Geral das Florestas, Estudos e Informao
300.

Deleuze, C., Herve, J.C., Colin, F. and Ribeyrolles, L. 1996. Modelling crown shape of Picea
abies: Spacing e ects. Can. J. For. Res. 26: 1957-1966.

Diggle, P.J. 1983. Statistical analysis of spatial point patterns. Academic Press, New York.

Ferreira, A., Lopes, F. and Pereira, H. 2000. Caracterisation de la croissanceet de la qualite
du liegedans une region de production. Ann. For. Sci. 57: 187-193.



66 Chapter 5. Spatial statistics for cork oak stands

De Gier, A. 1989. Woody biomass for fuel: estimating the supply in natural woodlands and
shrublands. PhD thesis, Alb ert-Ludwigs-Univ ersity, Freiburg.

Gill, S.J., Biging, G.S. and Murphy, E.C. 2000. Modelling conifer tree crown radius and esti-
mating canopy cover. For. Ecol. Manage. 126: 405-416.

Glasbey, C.A. and Horgan, G.W. 1995. Image Analyis for the Biological Sciences. Wiley,
Chichester.

Green, P.J. and Silverman, B.W. 1994. Nonparametric regressionand generalizedlinear models.
Chapman and Hall, London.

Ledermann, T. and Stage, A.R. 2001. E ects of competitor spacing in individual-tree indices
of competition. Can. J. For. Res. 31: 2143-2150.

MathSoft 1997. S-Plus 4 Guide to Statistics. MathSoft, Seattle.
The MathW orks 2000. Matlab function reference,Natick, MA, USA.

Moravie, M.A., Durand, M., and Houllier, F. 1999. Ecological meaning and predictiv e abilit y
of social status, vigour and competition indices in a tropical rain forest (India). For. Ecol.
Manage. 117: 221-240.

Ottorini, J.M., Le Go, N. and Cluzeau, C. 1996. Relationships betweencrown dimensions and
stem developmert in Fraxinus excelsior. Can. J. For. Res. 26: 394-401.

Smith, D.M., Larson, B.C. and Kelty, M.J. 1997. The practice of silviculture: applied forest
ecology Wiley, New York.

Tome, M., Coelho, M., Pereira, H. and Lopes, F. 1999. A managemern oriented growth and
yield model for cork oak standsin Portugal. In A. Amaro e M. Tome (edit.), Empirical and
Process-BasedModels for Forest Tree and Stand Growth Simulation, EdiceesSalamandra,
Lisboa, Portugal, pp. 271 -289.

Van Lieshout, M.N.M. and Baddeley, A.J. 1996. A nonparametric measureof spatial interaction
in point patterns, Statist. Neerlandica 50: 344-361.



Chapter 6

Comparison of three sampling
metho ds in the management of
cork oak stands

Maria Joao Paulo, Margarida Tome and Alb ert Otten
Submitted to Forest Ecology and Management

In this study we compare three sampling methods to estimate seweral
variables in cork oak stands. The rst method is to sample circular
plots with xed area. In the second method we sample circular plots
with xed number of trees. The third method consists in sampling
zigzags each consisting of trees closeto xed points in a pre-de ned
path. This latter method, commonly usedby Portuguese farmers, lead
in most situations to estimators with larger biasesand standard errors
than the other two methods.

67
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6.1 In tro duction

Cork oak is Portugal's secondmost important forest species.It occupiesan areaof 640000
ha and is the secondmost exported forest product. Portugal contributes to approximately
52% of the world's cork supply.

Cork oaksare grown speci cally for the production of cork in cork oak stands known
as montados silvopastoral systemswhere cork production is assaiated with cattle and
sheepbreeding and grazing. The cork oak grows in poor soils and adapts to di cult
conditions, such ashigh temperaturesand lack of rain for lengthy periods. They are often
grown in areasthreatened by deserti cation. Their economicvalue plays an important
role in the ecologicalprotection of large areas.

Extraction of cork takes place every 9 to 11 yearsin adult trees. Before extraction,
farmers sample the montado to estimate the value of cork. This dependsupon quartity
and quality of cork. The quality of cork is de ned by its thickness,the number and size
of pores, and seweral other characteristics. Each cork segmet is rated, basedon visual
assessmetn into oneof 7 quality classeswhereclassl is the bestquality and class7 (called
refugo is the worst. The yield estimate(s) helpsfarmersto set a price for their cork, and
in the choice of managemen alternatives. A commonly usedsampling procedurefollowed
by farmers is to de ne a polygonal transept (zigzag seeFigure 6.1) with a corvenient
starting point and covering the whole montado, and to sampleevery tree that crosseshe
transept.

Figure 6.1: Example of zigzag sampling in montados (left) and in the circular plots (right).

In this study we compare the results of zigzag sampling with two other sampling
methods - cluster sampling with xed plot radius, cluster sampling with a xed number
of trees (and variable plot radius). Cluster sampling with xed area is a widely used
sampling method in extensive inventories to estimate stand variables such astree density
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and basal area. A number of plots are randomly selected,and all treesin ead plot are
measured. The trees in the stand have an equal probability of being selectedand the
usual estimator of the population total is unbiased,if boundary e ects are negligible.

In their article from 1992,Jonssonet al. recommendthe useof an alternativ e method
for forest invertory, namely to measurea xed number of trees nearestto the cernter of
the plot. They claim the method is more e cien t than the xed circular plot sizemethod,
and is more accurate than other low-cost alternative methods. Furthermore, the authors
show that for simulated foreststhe estimators they proposehave a bias smaller than 10%,
under the condition that the variables of interest are independent of the underlying point
process.

The objective of this study is to extend the simulation to forestswhere the diameters
at breastheight are not spatially independert, and to extend the sampling methodsto the
three types mentioned above. Furthermore, we considerthe estimation of sometypical
cork oak characteristics. The sampling methods are comparedin terms of the bias and
precision of the estimators and sampling costs.

6.2 Sampling in montados

In cluster sampling, a simple random sample of n primary units over an areais selected,
followed by taking actual samplesat a number of my; k = 1;:::;n secondaryunits in
ead of the n primary units. In this study, the primary units are circular plots, and the
secondaryunits are the treesin ead plot. Although we actually measurethe secondary
units, it is the primary units that are selected. We assumethroughout this text that the
primary units are randomly sampled.

The trees can be sampledaround ead plot certre in two di erent ways: 1) sampleall
trees within a xed distancer from ead plot certre, or 2) samplea xed number m of
closesttreesto ead plot certre. Both methods can be described as cluster sampling, but
in method 1 trees are selectedinto the sample with equal probabilities, and in method
2 they are selectedwith unequal probability. Table 6.1 lists the variables usedin the
remainder of this chapter.

Cluster Sampling with equal inclusion probabilities

For cluster sampling with equal selection probabilities we usea xed radius r from the
certer of the circular plots. A sample taken with this method will be referred to as
Rir with k = 1;:::;n. For eat primary unit (plot) in the sample we can determine
the area (A), the number of cork oaks, and for ead tree, the tree diameter at breast
height without cork (d), the cork quality (cq) and thickness(c;). Thesestatistics can be
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Table 6.1: List with variables.

Variable
or index  Description

n Sample size, number of primary units in the sample
k Index for plots, k= 1;:::;n
m Number of trees in plot
M Total number of trees in a stand
r Plot radius
R, Ry Plot with xed radius
T, Tm Plot with xed number of trees
z Zigzag plot
A Area
i, ] Indices
X1, X2 Spatial coordinates
d Diameter at breast height (1.3 m) without cork
ct Cork thic kness
Cq Cork quality
hstem Stem height
heork Maxim um cork stripping height
N Stand tree density (number of trees divided by area)
G Stand basal area (total basal area in stand divided by area)
g Tree basal area (without cork, at 1.3 m)
\ Stand cork volume in quality classl, divided by area
7 Tree cork volume in quality class|
Cl Competition index
Y A population total divided by area
z A standard normal deviate
Mean value
2 Variance
s2 Sample variance
se Standard error
Distance
L Path length (b=b etween plots, w=within a plot)

C1;C2;C3  costs
. Constants
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combined to estimate the population density (N, number of trees divided by the area),
basal area (G, the total cross-sectionalarea at breast height divided by the stand area,
expressedhere in m?ha 1), and cork volume in ead quality class(V, in class! divided
by area). Cork volume was usedinstead of its weight, the latter being the usH,aI quannty

assaiated with cork value (price). Tree density (N) is estimated as K = H k=1 & Lmy,
where my is the number of cork oaks in pIoII5 k, andrsA is the (xed) plot area. The
estimator for the stand basal areais G = H k 1 (A i=3 Oki), where gy is the basal

area of geel in %ot k: g= (d=2)2. For the cork volume in class| we usethe estimator
v = H k=1 (A i=1 Vkix ); sincethe cork samplefrom ead tree is assignedone single
quality class,the contribution vi;; from onetree is either its whole cork volume vyi, or
zero.

Cluster Sampling with unequal inclusion probabilities

When a xed number m of treesis sampledat eac primary sampling unit ead tree is
assciated with a dierent probability of being selected(unequal probability sampling).
The Horvitz-Thompson approac to obtain the unbiased estimator for the population
total is to divide the measuremets performed on the obsened trees by their inclusion
probabilities (c.f.r. Thompson, 1992). In practice it is impossibleto calculate these
inclusion probabilities since they depend on the unobsened locations of all treesin the
surrounding area, and even if the locations of all trees were known, the calculation of the
inclusion probabilities would be cumbersome. This is becausefor a giventree, a joint area
of overlapping corvex simplicesis needed. The calculations are far more complicated than
thosefor the nearestneighbour Dirichlet cell (for the latter c.f.r. Ripley, 1981). For locally
random patterns the probability of inclusion in a single plot can be approximated by m
divided by the local tree density. The resulting estimators are approximately unbiasedif
the variable of interest takes(spatially) independert valuesfor di erent trees.

Samples(plots) with m trees are denoted by Ty.m, K = 1;:::;n. For the obsened
local tree density in plot k wetake (m 1)=Ay, for the samereasonasin Jonsson,i.e.,
Poissonprocesseghis is an unbiased estlmagar of the intensity. Then the estimator for
the population tree density becomesN = % k=1 Ao L(m 1), where Ay is the plot area
de ned by the d|stsnce to tree n]j The estimators for tBe stand basalaarea and for cork
volumeareG= 1" R (m2Ll " T gg),andV =21 [ (AL T viar), with g
and v, de ned as before.

Zigzag sampling

The sampling method followed by some farmers consistsin de ning a zigzag transept
covering the whole montado, and sampling every tree that crossesthat path. Here we
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adapt the method sothat it can be applied to smaller areas. Starting from a randomly
selectedpoint, we de ne a single path (primary unit) with a constart number of vertices
covering the whole plot, and at eat vertex we samplethe closesttree (secondaryunits).
The total areaA corresponding to the sampleunit is determined by the sum of the areas
of the circles around ead vertex in the path, with radius given by the distance to the
closesttree. Sometrees and area parts could be counted more than once here. Sample
sizeis set at n zigzag paths by choosing n starting points in the stand area. We name
theseplots Z. The estimators for tree density, basalareaand cork volume are then de ned
asin T plots, with m equalto the total number of trees measuredin ead zigzag.

Assumptions in sampling primary units

In many practical situations the proportion of total sampled area (or sampled number
of trees) is very small. In that casesampling of plots can be consideredas sampling
with replacemen. Here we consider only this situation. Thus no attempt is made here
to construct sampling of primary units without overlap, and the variance formulae for
samplingwith replacemen are assumedo be satisfactory. Let n bethe number of primary
units in the sample,and y a variable of interest. Then the variance of the above estimators
using cluster sampling (for bBth methods) and zigzag sampling can be estimated with
1

var(¥) = s?=n. Here¥ = 1" 1 9, and 9 are thPe estimators for the primary units,

and s? is the sample variance of the ¥, s> = -1z 1., (% ¥)2. In our simulation
experiment we do not sample many plots in one simulated stand. Instead, we simulate
the sametype of stand repeatedly and sample only one plot per stand. The variability
betweenplots and hences? obtained from theseplots re ects then the variability in large
scalestands. By large scalewe meanthat dependenciesof characteristics of di erent plots
in the samestand becomenegligible at plots distanceswhich are still small comparedto
the stand size. For the simulated stand typeswe estimate the standard error at an actual
sample size of n plots from one large stand as s:p n. The value of n will be chosento

meet certain requiremerts, suc as xed costs.

6.3 Simulated stands

To test the three sampling methods we simulated cork oak stands using information
obtained in the analysis of a 200 200m? plot in Herdade do Vale Mouro (M;). The
spatial characteristics of M, were analysedin Paulo et al. (2002). In M, the treeshad a
regular point pattern and tree density wasequalto 95ha *. The diameter at breastheight,
d, wasnot randomly distributed with respectto tree positions; a negative correlation was
presert betweenthe sizesof neighbouring trees. For cq or ¢; we found no evidenceagainst
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complete randomness.

Sincethe performanceof the estimators derived from a xed number of sampledtrees
is likely to depend on the spatial tree distribution aswell asthe spatial distribution of the
measuredvariables we simulated stands from di erent underlying point processesand
dierent degreesof spatial correlation for d. Tree coordinates were generated either as
random patterns, clustered or regular. Tree density was setto 100 ha ! to be similar
to the tree density obsened in M,. Further, diameters were generatedaccording to the
marginal distribution of d found in M,, which was approximately a shifted lognormal with
parameters = 3:3and = 0:4, and dmi, = 3 cm (observed meanis 32 cm and obsened
standard deviation is 13 cm). The marginal distributons obsened for ¢ and ¢ in M,
were usedsimilarly. For ¢; this distribution wasapproximately normal with mean = 31
mm and standard deviation = 7:5 mm. In M, the cork sampleswere classi ed into
classes3 to 7. The probabilities for ¢y usedin the simulations were derived from obsered
frequenciesof cork in eat quality classin M. The probabilities are 0.04,0.12,0.28,0.34,
and 0.22 for classescq = 3, 4, 5, 6 and 7, respectively. Generatedd values were either
randomly assignedto trees, or accordingto a penalty function in order to keeptrees at
some distance from neighbouring trees, this distance increasingwith tree size. We call
such a distribution of d values, among tree locations, regular, becauselarge trees tend
to exhibit a regular point pattern. Cork characteristics c; and ¢; were always assigned
independertly of tree locations and diameters.

Toroidal edge correction was performed to reduce edge e ects. With this method
the study area is regarded as a torus, so that points on opposite edgesare considered
to be close (Ripley, 1981). In a rectangular area of size P; by P, the distance between
tree i, with coordinates (x(li);x(zi)), and trge j, with coordinates (x(lj);gg(z”), becomes

i =  ( x1)?2+ ( x2)%,with X3 = min jx(li) x(lj)j; Py jx(li) x(lj)j and similarly
for xo.

In each simulated stand circular plots were sampledfrom the stand certre according
to the three methods. R plots were sampledwith xed radius r 2 f 20; 25; 30; 35; 40g, for
T plots we useda xed number of treesm 2 f13; 20; 28; 38, 50g. The m valuescorrespond
to the expected number of trees of the R plots (for the xed tree density of 100 ha 1).
Z samplesof trees in eat generated stand were obtained for a xed number of trees
(m = 14) by creating a spiral transept, with a maximum radius of 56 m, where the closest
tree to eadh vertex is sampled,the distance betweenverticesincreasingwith their distance
to the certer of the stand. The path waspre-de ned and equal for every simulated stand.

Generation of tree location and size distribution

Six types of stands were simulated (seeTable 6.2). For typesl|-V 250 stands with a size
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Table 6.2: Simulated stand types.

Type Point pattern Diameter (d)
spatial distribution

| random random
I moderately regular regular
11 very regular very regular
\Y regular random
\% random regular
\i clustered regular

of 160 160m? were generatedindependertly, with a xed number of trees, M = 256,
corresponding to a tree density of 100ha . For type VI 250 stands were generatedwith
a xed number of trees and with a larger areathat was posteriorly reduced by removing
the stand borders. Tree coordinates (X1, X2), and diameters d were generatedfor ead
tree. The simulation details for eat type of stand are as follows:

Treepositions weregeneratedfrom a uniform distribution, and for all treesdiameters
d weregeneratedindependertily of tree positions,di = dmin +€ © %,i=1;2;:::; M,
wherethe z; arei.i.d. standard normal deviates.

. For this stand type the joint distribution of positions and diameters was basedon

the minimization of a competition index depending on diameter and distance of tree
pairs, inspired in the Metropolis-Hastings algorithm with a (Gibbs-type) penalty
function:

(a) Generate coordinates X(10) and X(20) from a uniform distribution for M treesin
a xed sizearea.

(b) Generatetree diameters as for stand type I.

(c) For eath treei in turn, i = 1;2;:::; M, generatelgew candidate coordinates
M

x{ and x§, keepingd. Calculate index Cl =~ M, ., didj= 2, both at

the original location of i, (x(lo) ;x(zo) ), and at the new location for i, (x(ll) ;x(zl)).
If CI® < Cl1© then acceptthe new location for tree i. Otherwise acceptthe

new location with probability p= e c1® c1@y

(d) repeat step (c) 1000times.

Probability p of accepting the new location is partly determined by , a constant
controlling the scaleof CI .

After many cycles through step (c), the pattern obtained resenbles the pattern
obsenedin M,: the spatial tree pattern and nearest-neighbour distancedistributions
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VI.

are quite similar. The similarity of nearest-neighbour distributions was judged with
QQ-plots. The d valuesdisplayed a similar correlation value with Cl asthe obsened
in M. The resulting point pattern is moreregular than in I, and sois the combination
of the tree locations (point pattern) and the diameters (marks of the point pattern).

Stands as in I, but with a more regular pattern were simulated, by increasing
the value of (and so increasing the rejection probability of the new point). The
resulting pattern tends to be more regular than in Il, both for the tree pattern and
for the combination of tree locations (point patterns) and diameters (marks of the
point patterns).

Stands as in Il were produced by using Cl = P J_m:l ;s 1= j which does not
depend on the diameters. Here is again a constart determining the rejection
probability of the new tree location. In this casethe generatedtrees tend to be
regularly spaced,but tree diameter is independert of the diameters of other trees.

The following procedure was usedto simulate stands with a random point pattern
for tree locations and a regular diameter distribution:

(a) Generatetree coordinates x; and x,, from a uniform distribution.
(b) Generatetree diameters as for stand type I.

(c) Perform 200 random permutations of d. Each permutation correspondsto one
assignmen of the d valuesto treesin the stand.
P P
(d) For ead permutation calculate Cl = = 1, L, didj= ?.
(e) Choosethe permutation with minimum CI .

Clustered patterns of trees, with a regular diameter distribution. The point pattern
was obtained by generating a parent processuniformly distributed over an area
of 500 500 m?, and then generating children clustered around eac parent. Each
cluster had 20 children and a 60 m radius. The number of parents was xed to 97, to
obtain a tree density of 100ha ! asbefore. To avoid an edgee ect we discardedthe
stand border (of a width equalto the cluster radius) after which the point density at
the inner areawasin average100 ha ! aswished. To obtain a regular distribution
of diameters over tree positions we proceededas in (V) for the inner area of the
generatedstand.

6.4 Data

We applied the three sampling methods on available data from two cork oak montados,
onein Herdade da Machoqueira do Grou (HG), and the other in Herdade do Vale Mouro
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(M;). Both farms are located in Central Portugal, closeto the village of Coruche. In
montado M, one plot of a 200 200n¥ sizewas measuredin July 1998,shortly after cork
extraction. Measured variables were coordinates of tree location, d, hsiem, heork, ¢ @and
cq. It isavery homogeneougplot, but smallin sizeto test the three sampling methods. To
overcomethis, we can regard the total sampling areaasa grid of rectangles,all identical
to the measuredplot. The initial plot forms a border with mirrored copiesof itself, thus
extending the total areaavailable. SampleR plots with a radiusr 2 20;30;40m, T plots
with m 2 12; 27; 48 (corresponding to a tree density of 95 ha ') and Z plots are de ned
in this extendedarea. This is equivalent to assuminga toroidal surfacefor M,. Figure 6.2
shows the plot in M,, with an example of 14 circular sample plots. Sampling was done
repeatedly (250 times ead plot, with replacemert) in order to obtain preciseestimatesof
biasesand standard deviations.

Sample plots in MI

Figure 6.2: Circular sampleplots in M. Treesare marked aspoints, sampled trees have small cir-
clesaround them, plot centres are marked with squares. A toroidal-t ype of surface was assumed,
hencethe high frequency of overlapping plots.

Montado HG is one of seweral managemen units with cork oaksin Herdade da Ma-
choqueira do Grou. HG has 308 ha in total and is a mixed stand with cork oak, Pinus
pinea and occasionally also Pinus pinaster. It is very heterogeneousn terms of tree den-
sity. The sampling took place after cork extraction, in 1998. The stand was divided in 7
distinct strata accordingto speciescomposition and tree density, the year of harrowing,
and cq. Two random circular plots with a radius greater or equal than 40 m were sam-
pled from ead stratum. Table 6.3 summarizesthe plots (restricted to r=40 m) within
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the sewen strata in the montado.

Table 6.3: Main characteristics of the plots in HG.

Stratum Year of cork oak  size Plot Cork oaks cork oak
harrowing quantity (ha) number in plot* density (ha 1)
1 93/94 high 47.4 1 27 54
2 79 157
2 93/94 high 28.1 3 15 30
4 35 70
3 93/94 medium 48.5 5 21 42
6 40 80
4 94/95 medium 48.7 7 40 80
8 28 56
5 94/95 high 78.6 9 26 52
10 31 62
6 94/95 medium 34.7 11 35 70
12 32 64
7 94/95 low 21.3 13 17 34
14 21 42

! Circular plots with 40 m radii.

Every cork oak inside eath plot was measuredfor tree coordinates, d, hgiem and heork -
A smaller number of trees was also sampledfor ¢; and ¢g. Asin M;, R plots, T plots with
m 2 8;19; 33 (corresponding to a tree density of 65 ha 1) and Z plots were posteriorly
re-sampledfrom the measuredplots in HG.

Stratied sampling

To obtain the nal estimate of a population characteristic Y for HG we weighted ead
estimate, ¥ from plot k, with the area fraction of the corresponding stratum (h). If we
have a total number g Bf strata in the m?ptado, then the weight corr?ponding to eath
stratum hiswy = Ap= [_, An. Clearly 1, wy = 1,andthus¥ = 1, wnYs (with
Y the mean of the Y¢'s in stratum h). Similarly, we have var(¥) = = 1., w? 2=ny,
with np asthe number of plots in stratum h. Sincein the caseof HG we have n,, = 2,
h=1;:::;7,the 2 becomevery impreciseto estimate. We therefore simplify o ering
unbiasednessby e%imating one 2 for all strata, and thus in HG the estimated var(¥)
becomesvar(¢) = [_, w2s?=2, wheres? is pooled over strata.
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6.5 Mo del for cork volume

In the simulated stands cork volume of a tree was generatedfrom d and c¢; (generated)
values,becausecork quartit y is correlated with tree diameter. First a model wasobtained
for plot M, and then usedto generatevolumesin the simulated stands. In M, we had
direct measuremets of d and ¢;, and accurate estimatesof cork volume per tree, obtained
from ¢; and the measureddebarked surfacearea of eat tree. The model obtained in the
In-scalefor M, was

v=m® = e !(d=cm) 2(c;=mm) @ (6.1)

Here ;= 1397, ,= 2:20and 3= 1:09. An R? = 0:84 and *2 = 0:134 were obtained
for this model (in the In-scale). Therefore this expressionwas used to generate cork
volume from d and ¢; in the simulated stands (in M, the volumes have been obtained
directly from tree measuremets).

Since measuremets of cork quantity (volume or weight) are very dicult to obtain,
most of the time thesehave to be estimated from other tree measuremets. In HG there
were no measuremets of cork quartity (volume or debarked area) for individual trees.
Therefore, we cannot calibrate model (6.1) to usein HG. The measuremets performed
in HG include stripping height (maximum height of the stem which was debarked) and
height of fork (height at which the stem divides in two or more main branches). The
latter should be takeninto accourt becausebranched trees have a larger surfaceand thus
produce more cork. An alternative model to estimate individual volumeswasusedinstead
of (6.1):

v= cd(h + IOéhz) (6.2)

where hy = min(hgtem ; heork) @nd ha = max(0; heork  hstem). This expressionderives
from the fact that the diameter of twg branchesabove the fork (d; and d,) relate to the
diameter below the fork (dp) as do d? + d3 (the stem volume is more or Iessegually
distributed by the 2 branches). If we further assumethat d; d, then d; + dy 2do,
which can be usedwhen d; and d, are unknown. In M;, where volume measuremeis are
available, model (6.1) tted the data better than model (6.2).

6.6 Comparison of the metho ds

From here on we refer to the estimated single plot standard deviation as s, and to the
estimated standard error (s=p n) of an estimator as se. Means and standard deviations
were calculated for ¥y, k = 1;2;::: ; 250, for all characteristics, stand typesand sample
plot sizesconsidered. We comparedthe bias and s of the plots obtained with the three
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sampling methods from all simulated stand types. Bias in T-estimators was estimated
through paired comparisonwith the R-estimators for similar plot size- the R-estimators
being unbiased, and highly correlated with the T-estimators. The standard error of the
estimated bias was also calculated. Usually the F-test is usedto compare standard devi-
ations of two independert samples(normality assumed).But sincethe samplesobtained
from the simulated stands with the three dierent methods are in principle dependen,
the F-test is slightly consenative, so the Pitman test was also used. The test usesthe
fact that for two variablesY; and Y, (dependert or not), cov(Y1+ Y2; Y1 Y2)= 2 2

sothat under Ho : 3= 2 wehave (Y1+ Y2;Y: Y2) = 0 for the correlation. Since

t=Ap 2= 1 n'o th 2 (normality assumed), for the two-sided alternativ e hy-
pothesiswe reject Hg if jtj t- ,., .. The standard error is a usual measureto describe
the precision of estimators, and is assaiated with sample size. The standard deviations
can be compared immediately when proceduresare used at the same sample size of n
plots. To presen a fair comparison of the three methods, we also comparethem at the
same xed total costs,thus at dierent n values. Then in the (estimated) standard error
se= s=p n both s and n are varying with the method.

Determination  of sampling costs

To de ne the cost of sampling, we divide the costsinto two componerts: travelling costs
corresponding to moving inside and between plots, and costs of measuring the variables
of interest for eac tree. All costsare expressedas time units. To determine the time
of sampling in cork oak stands under the usual conditions we will assumethat distances
betweenplots R or plots T are covered by car, at a speedof 4 km h 1. This low speed
is chosento re ect the poor accessibiliy in montados. We also assumethat the distances
inside eadh plot are covered by foot, at a speedof 2 km h 1. We consider a further 3
minutes to measureead tree. To calculate the travelled path length inside the simulated
R and T plots, L, we assumethe forester follows a number of ring shaped paths inside
the circular plot until he has measuredall treesin the plot. The minimum path length,
for a di erent number of equal width rings, is then used. In Poissonforests the within
plot path length is approximately proportional to m, the number of treesin the plot. In
Z plots the total path length betweennodescan be calculated precisely We further add
to this the distance travelled by the forester from ead node to the sampled tree (and
bad). In HG the path length travelled inside ead plot can be easily determined because
the trees were sequettially numbered. To estimate the averagedistance between visited
plots, L, we assumethat the plots are randomly locatedin a stand with xed area. Then
with a reasonabletravelling strategy, L, dependson areaand samplesize,approximately
asLp = Asang =N. In HG Agang = 308ha, and for M, and for the simulated stands we
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consider Astang = 370 ha, as found in another montado. After the simulations, average
valuesof L, (all plots) and m (R-plots) are known. The total time neededfor a sample
sizeof n plots takesthe form

P—p_
ttot = €t Astand N+ N(CoLw + c3m) (6.3)

with ¢ = 1= hkm 1, ¢, = 1=2 hkm 1, and ¢ = 0:05 h. We note that time is
not proportional to samplesize. Sincea xed total sampling time is consideredfor eath
method, the corresponding number of plots, not rounded, can be found by solving equation
(6.3).

6.7 Results for the simulated stands

Standard deviation and standard error

In the following text we refer to the standard deviation of R, T and Z plots respectively
as s, S and s3. The R and T estimators obtained for sampleswith similar plot size
were highly correlated, with correlations between0:85 and 0:95, for all variables. Z and R
estimators, on the other hand, had correlations often lower than 0:1. In the comparisonof
R and T samplesthe Pitman test wasthereforeused. In the caseof the dependert samples,
relative di erences of lessthan 6% between s values were already signi cant. Standard
deviations for R and T plots were very similar, with s, up to 6% larger than s;, except
in the exceptional situation of volume estimation in the least frequert quality classes,
for the smallest T plots. We obsened that s; and s, were the highest for the clustered
stands, and minimal for the most regular point patterns. As expected, they decreased
with plot size, as Figure 6.3 shows. In general however, the ratio s,=s; did not change
with plot size,nor with point pattern nor with diameter distribution. In the comparison
between R and Z samples, relative di erences between s values were signi cant when
greater or equal to 10%. Standard deviation s3 was larger than s; for more than 10%
in most caseswith a larger di erence in regular patterns and for regular d distributions.
The ratio sz=s; was maximal (2:50) in the regular (type Il1) stands,and minimal in the
clustered stands with value approximately 0:80. The standard errors were compared for
the di erent sampling methods, and for three di erent forest types,for a variable number
of plots, corresponding to a constart time. The sampling time was setto 30 hours, and a
stand of 370 ha was assumed. Sample size (not rounded, seeTable 6.4) was determined
as described in the previous section. The resulting standard errors are also displayed in
Figure 6.4 for variablesN and G, and for the most extreme types of stand considered.
These gures show that, for the given sampling time, the standard errorsof R and T
estimators are approximately the samefor random and regular point patterns, regardless
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Table 6.4: Results from simulated stands: standard error of estimators for the di eren t methods
with a xed cost of 30 hours, and based on a stand area of 370 ha.

Stand typel
Metho d n E(m) Total length  average distance St. dev. St. error
within plot between plots ] G ) G
R2o 383 129 120 310 273 37 44 060
R3o 18.0 284 270 450 180 23 42 054
Rao 10.3 50.3 510 600 128 18 40 057
T3 375 13 150 310 290 38 47 062
Tos 18.0 28 300 450 19.0 24 45 057
Tso 10.3 50 520 600 134 18 42 057
z 27.4 14 600 370 309 43 59 083
Stand type lll
Metho d n E(m) Total length  average distance St. dev. St. error
within plot between plots \j G ) G
R20 388 126 130 310 184 30 23 040
R3o 179 284 280 460 106 18 2.0 0.38
Rao 10.2 50.3 530 600 80 13 19 037
T3 37.2 13 160 320 172 28 22 040
Tos 18.0 28 300 450 105 19 22 036
Tso 10.3 50 530 600 82 13 19 036
z 27.7 14 590 370 356 53 7.1 1.09
Stand type VI
Metho d n E(m) Total length  average distance St. dev. St. error
within plot between plots \j G ) G
R2o 399 124 110 310 519 54 82 0.86
R3o 184 278 260 450 423 41 99 095
Rao 104 496 500 600 375 37 116 1.15
T3 37.2 13 160 320 538 58 88 094
Tos 18.0 28 310 450 433 43 102 1.02
Tso 10.3 50 530 600 370 35 115 1.10
z 27.1 14 630 370 395 45 76 087




82 Chapter 6. Sampling methods for cork oaks stands

Density estimation Basal area estimation
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Figure 6.3: In(s(K)) vs In(r) (left) and In(s(&)) vs In(r) (right), obtained from simulations for
R plots (solid lines) and for T, plots (dotted). Dierent stand typesare shovn with dierent
symbols: typel (); typell ( ); typelll (.); typelV (); typeV (O); type VI ().

of plot size. For thesepatterns Z plots yield comparatively too large standard errors. For
clustered patterns Z plots and smallestR and T plots have the lowest standard errors.

Bias

Standard error of the bias estimatesin T estimators, obtained by paired comparisonwith
the R estimators, was always lower than 6% of the ¥ value. The estimated precision
of bias estimates was therefore satisfactorily low. In the T plots no signi cant bias was
found for the N and G estimators, for the simulated stand types. For the V estimators,
a bias of up to 15% was obsened, in the smaller plots. The bias was negligible in the
larger plots. The magnitude of the bias was not noticeably a ected by the point pattern
or d distribution.

Bias estimates of Z estimators had an estimated precision of lessthan 20% of . A
negligible bias was found for random patterns (stand types| and V). In the clustered
patterns (stand type VI) biaseswere presert of a magnitude up to 15%for all estimators.
In regular patterns (stand typesll, 111 and IV) biaswashighest: between30%and 50%in
moderately regular patterns (11), between20%and 30%in regular patterns with a random
d distribution (IV), and between45% and 80% in the very regular patterns (I11). Biases
were positive in sign for the regular patterns and negative for the clustered patterns. The
bias in Z plots was a ected both by the point pattern and by the combined distribution
of d and tree locations.
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Figure 6.4: In(se(K)) and In(se(G)) obtained from simulations for three di eren t point patterns
(horizontal axis). Results are shown for di eren t sampling methods, R plots are shovn with solid
lines, T plots are shown with dotted lines and black lled symbols: Ry and Ti3 ( ), Rs and
T2s (0), Rao and Tso ( ), and Z ( ). The number of plots in all situations was chosenfor xed
costs, equal to 30 hours.

6.8 Results for the montados

The standard errors of the estimators obtained in HG and in M,, for constart times of
30 hours and basedon a stand area of 308 ha and 370 ha respectively, are displayed in
Figure 6.5. In M, estimators of N and G have lower standard errors in smaller R and T
plots, and largest standard errors in Z plots. On the other hand V5 and V, (with small
frequencies),have lowest standard errors in the largest plots. In HG standard deviations
were estimated from 14 plots, thus e provides a very crude impression. In HG the lowest
standard errors for N and for G are obtained with the Z plots. The Z plots werenot used
to estimate cork volume for this data set becausethe number of cork samplesin these
plots wastoo low.

Sincethe values of the variables under study were not completely known in HG, bias
could not be ewvaluated for this data set. In the M, data set larger bias was obsened in
T 1o estimators, about 15% for the N and G estimators, and 20% for the V3 estimators,
which had a low obsened frequency For Z plots yet larger bias was obsened (up to 65%
for the N and G estimators, and 30% for the V estimators).
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Figure 6.5: In(se) obtained in data-sets M, (left) and HG (right), by each method (horizontal
axis). The estimators are for meantree density ( ,ha '), meanbasalarea( ,m?ha ?!), and mean
volume (4, ., O, /, and , by increasing order of quality, 0.1m®). The number of plots in all
situations was chosenfor xed costs, equal to 30 hours, and for a stand area of 370 ha in M, and
308 ha in HG. Standard deviations were estimated from a sample of 250 (re-sampled) plots in
M, and a sample of 14 plots in HG.

6.9 Discussion

The results in this study agreewith thosein Jonssonet al (1992). In their article they
report biasessmaller than 10% in T plots sampled from simulated forests. The main
purposeof this study wasto comparethe sampling methods for a fair number of di erent
point patterns and spatial distributions of diameters. In order to obtain good estimates
for the standard deviations and biases of the estimators, we focused our analysis on
simulated stands. Underlying stationary isotropic processesvere assumed. We did not
try however to exhaustall patterns that are likely to be found in practice. In fact there
may be montados where point pattern, tree density, and diameter size distribution vary
considerably in space,but those more complex situations were not simulated. Data was
usedto illustrate the diversity of situations arising in reality: the plot in M, illustrates a
homogenousstand, whereasHG exempli es the di culties that may arisein stands with
an inhomogeneousor non-stationary point pattern.

The total number of simulations (250) was limited by computer time, we think how-
ever that for practical purposesthe resulting precision of the simulations is satisfactory.
Further, stands were simulated with a xed number of trees to facilitate the storage of
the simulations in a matrix format, thus allowing very fast computations. This results
in an (unintentional) loss of randomness. This loss can be neglectedin the presert situ-
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ation becausethe sampling plots are small comparedto the stand size. In fact the loss
of variabilit y can be illustrated in the caseof the tree density estimator in type | stands.
The standard deviation of the tree density in the R4o plots is expected to be 14.1 (from
a Poissoncournt with parameter 50.3for an area of 0.503ha). The obsened value is 12.8
(Table 6.4), corresponding to a variabilit y loss of lessthan 10%, but in closeagreemen
with the theoretical conditional value, which is 12.7. Sincethe simulated stands of type
Il had somesimilarities with M,, the sampling results both for the simulations and data
were compared. Lower variabilit y and lower biaseswere found for the estimators obtained
from sampling the simulated stands.

The comparison between standard errors obtained with di erent sampling methods
depends of course on sample size. It seemedreasonablethen to use variable sample
sizesfor eadh method, corresponding to a xed amount of costs. The sampling times
(used as sampling costs) used here were merely illustrativ e. Other costscould have been
considered,such asextra time for setting R plots, or for taking cork samples. For example,
the path length within plots (when walking from tree to tree) was calculated basedon
a hypothetical rule according to which the forester samplesthe trees following a path
inside rings in the circular plots, which yield the valuesshown in Table 6.4. For treesin a
regular squaregrid, the distance betweentreesin an optimal path would be A=m, which
is approximately equal to the distancescalculated with our path in the simulations. For
random tree positions the expected nearest neighbour distancesare 0:5 A=m. A path
along nearest neighbours is nearly never possible. If the optimal path is usedto visit
trees (solution of the travelling salesmanproblem), then the expected averagedistance
betweentrees in the path is asymptotically (for A! 1 and A=m xed) cornverging to
0:7124 A=m (Jonhsonand McGeoch, 1997),that is, about 70% of the distance obtained
with our non-optimal path, For the travelling betweenplots in the stand we consideredan
averagedistanceequalto  A=n. Herealsoa reduction of up to 70%could be obtained. If
di erent costswere to be assumedthen di erent sample sizeswould have beenobtained,
with consequencedor the standard errors of estimators and for the choice of the most
cost-e ective method.

6.10 Conclusions

Methods R and T producevery similar estimatesfor the typesof forest consideredin this
study. The single plot standard deviations (s) obtained with the two methods di ered
very little, for equivalent plot sizes,and the biasesobsenedin T estimators werein most
casedower than 10%. Method Z produced estimators with a large biasin all non-random
point patterns. For the Z method s was considerably larger than the s obtained by the
other two methods, exceptin clustered forests and in the HG data set, which is very
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heterogeneous.

Although s decreasesith an increasein plot size,this is not necessarilytrue for the
standard errors (se€) of estimators when the number of plots dependson a xed amourt of
costs. For a xed amount of costs,in regular and random patterns the standard errors were
lowestfor R and T estimators obtained with large plot sizes,and highest for Z estimators.
In M, (which has a moderately regular point pattern) unexpectedly standard errors were
not always lowest for the large plot sizes.In clustered forests standard errors were lower
for R and T estimators obtained with small plot sizesand lowest for Z estimators. This
was also obsenedto somedegreein the HG data set.

The choice between R and T can safely be basedon practical convenience. The Z
method is clearly disadvantageoussinceit producesestimators with large biasesand in
all but clustered patterns also large standard errors.
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Chapter 7

General conclusions

In this thesisit has beenshown how the useof current mathematical statistical methods
can help to improve the modelling and estimation of cork oak and eucalyptus stand and
trees' characteristics. The improvemert of information in stand managemen of cork oak
and eucalyptusstandsis valuable for decisionmaking and may help to increaseproduction.

Optimisation of long term volume yield in eucalyptus stands depends upon a prior
distribution of the volume growth parameters,on the agesof measuremen and on the error
distribution of the volume obsenations. For the consideredprior and error distribution,
the long term volume vyield signi cantly increasesif individual optimised cutting time
is used instead of a common optimised cutting time. The main gain is obtained from
optimising xed measuremei times and individual cutting times. Only a small additional
increaseis obtained by optimising individually the secondmeasuremen time as well.

D-optimal designsare more economicaland e cien t for estimation of individual diam-
eter growth of cork oaks. A replication-free compromisedesign, D-optimal for the average
of the sample'sgrowth parameters, performed better than the equidistant design. Since
in practical situations the residuals obtained with tting parametric curvesto empirical
data are often autocorrelated, this situation was also analysed. For an autocorrelation up
to 0.6 a compromisedesignis still recommended,obtained by spacingwith 10 yearsthe
replicate design points from the unrestricted design. For higher autocorrelation values
the equidistant designis a better option.

Spatial relations between cork oak trees were explored in relation with competition
indicesbasedon sizeand distance of neighbouring trees. Those accourting for the relative
size of neighbours were signi cantly correlated to crown size of subject trees. The crown
of a cork oak di ers in shape and sizewhen it is under competition. A crown of a tree
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closeto larger trees is more elongated. This may have an e ect on crown sizein the
end. Crown diameter was modelled using stem diameter, crown shape and distance to
the nearest neighbour as explanatory variables. An increasein inter-tree distancesand
a decreasedensity is likely to result in larger trees. In particular, regular patterns help
increaseminimum inter-tree distancesfor a given density.

Three sampling methods were comparedto estimate tree density, basal areaand cork
volume: cluster plots with xed radius (method R), cluster plots with a xed number of
trees (method T), and sampling trees standing in a zigzagpath (method Z). Methods R
and T producedsimilar estimates. Bias of T estimators wasnegligible, and their standard
errors were equivalert to those producedby R estimators. A choicebetweenR and T can
therefore be basedon practical convenience.Method Z, often usedin Portuguesecork oak
farms, yields estimators with a larger bias and larger standard errors. Bias and standard
error dependedstrongly on the spatial pattern of the treesand on independence.Largest
bias and largest standard errors occurred for regular point patterns with a conditional
size distribution. In clustered patterns the obserwed standard errors were smaller than
those obtained by R and T estimators, but biaseswere larger than for T estimators.



Samenvatting

In dit proefsdirift worden moderne wiskundig statistische methoden toegepastop pro-
blemen binnen hedendaagsePortugese bosbouw systemen. Hier bestaat behocefte om
via betere beslissingenten aanzienvan het bosbeheerde productie te optimaliseren. Er
wordt achtereervolgens aandadit besteedaan het gebruik van Bayesiaansemethoden,
groeikrommen, optimale proefopzetten, ruimtelijk e analysevan patronen van kronen van
kurkeiken en aan steekproefmethoden. Vier onafhankelijk e vraagstellingen staan certraal
aangaandeopstandenvan kurkeik en eucalyptus.

De eerstevraagstelling richt zich op optimalisering van de omlooptijd van eucalyptus-
bossendie dienenten behoeve van pulpproductie. Opvolgenderotaties en meerin het bij-
zonder hun groeikrommen worden besdhouwd als onafhankelijke realisaties van hetzelfde
genererendeproces. Het doel is om de lange-termijn volumeproduktie, gecorrigeerdvoor
kostenvan herplanten, te optimaliseren. Op langetermijn is de totale nanci eleopbrengst
gedeelddoor de totale tijJd eeneconomist belangrijk gegeen. Een Bayesiaanseaanpakis
gewlgd, onder de veronderstelling van Shumacher groeikrommen en met gebruik making
van prior informatie t.a.v. de parameters. Dezeis gebaseerdop eengroot aartal waarge-
nomengroeikrommen. In het gewal van bekendeof adequaatgeshatte groeikrommenwas
de winst aanzienlijk in het optimaliseren van individuele kaptijdstipp en, vergelelen met
het kiezenvan eenvast kaptijdstip. In dezestudie is uitgegaanvan de veronderstelling dat
tweevolumemetingenworden verricht ter ondersteuningvan de keuzevan het kaptijdstip
van eenrotatie. De eerstemeting op eenvast tijdstip, tweedeedter op eentijdstip dat af-
hankelijk is van het resultaat van de eerstemeting. Een belangrijk probleemis het vinden
van eenoptimale strategie voor het kiezenvan dat tweedemeettijdstip. Dit proefopzet-
probleemis volledig verstrengeld met het kaptijdstip-probleem. Naar beide werd tegelijk
geoptimaliseerd,met behulp van numerieke methoden. De winst van eengeoptimaliseerd
variabel tweedetijdstip was gering, vergelelen met eenoptimaal vast tijdstip.

Het tweedeonderzcek behandelt het schatten van groeikrommenvan de stamdiameter
van individuele bomenin kurkeik opstanden. Aanbewlenwordt om eenlokaal D-optimale
proefopzette gebruikenin de keuzevan tijdstipp en waarop de diameter moet worden ge-
meten. De keuzeis dan zo dat de parameters van de groeikrommen zo goed mogelijk
gestat worden. Om praktische redenenwordt bij eengroep bomen het gebruik van een
gemeenshappelijk compromis van meettijdstipp en aanbewlen. In de besdikbare test-
gegeens gaf eendergelijke aanpak betere resultaten bij individuele groeicurvesdan het
gebruik van eenequidistante proefopzet.
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Het derde onderzaek betreft ruimtelijk e modellering en het gebruik van ruimtelijk e
statistische methoden bij kurkeik-opstanden. De analyse betrof de ruimtelijk e correlatie
tussenkroonvorm, kroononmvang en stamdiameter in paren naburige bomen. Er werd een
signi cante correlatie gevonden tussen de omvang van een boom en de competitiedruk
van naburige bomen. Vooral grotere bomen bleken binnen de opstand een regelmatige
ruimtelijk e distributie te hebben. De ruimtelijk invloedentussennaburige bomenzijn van
belang en de opstand kan er aanzienlijk voordeel bij hebben als hier ten aanzienvan het
beheerrekening meewordt gehouden.

Het vierde onderzoek richt zich op drie steekproefmethoden die men kan gebruiken in
kurkeik montado's (agroforestry systeem)voor het schatten van dichtheid, grondviak en
het kurkvolume. De schattingen zijn voor de producerten zowel van economist belang
Is om keuzeste maken ten aanzienvan het bosbeheer. De veelgebruikte zig-zag methode
is vergelelen met tweeandere bemonsteringsmethalen op gesinuleerde gegeens. Vanuit
diversebeginpunten is eenbeperktere zigzag bemonsterd om een eerlijke vergelijking te
kunnen maken. Deze methoden bemonsterenrond startpunten ofwel alle bomen binnen
eenbepaaldestraal, ofwel eenvast aantal van de meestnaburige bomen. De simulaties
zijn gebaseercdp moderneruimtelijk e simulatiemethoden en vertegerwoordigen eenbreed
scalavan in de praktijk optredende ruimtelijk e positie- en diameterpatronen. Onder de
meesteomstandighedenbleek de zigzag-methale te moeten worden afgeraden,omdat het
onzuivere schatters oplevert die tevens een grotere variantie hebben dan de scattingen
die met alternatieve methoden worden bepaald.

Het gebruik van moderne statistische methoden blijkt waardewl te zijn voor het verbe-
teren van schattingsmethoden en steekproefmethoden zoalsdie gebruikt wordenin kurkeik
en eucalyptus bossen.Adequate steekproefmethoden zijn essetieel om kwalitatief goede
informatie te verkrijgen.
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