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General introduction.
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Introduction

The cell wall provides rigidness to the living plant and protects it against physical

damage and microbial attack. The cell wall is composed of approximately 90% of

polysaccharides and 10% proteins. The three main polysaccharides that have been

identified are celluloses, hemicelluloses like arabinoxylans, and pectic polysaccharides

[39]. Basically, the primary cell wall is a network of cellulose microfibrils. These

microfibrils consist of several dozens linear chains of β-1,4-linked D-glucose molecules

which are condensed to form long crystalline structures that wrap around each cell. The

principal polymers that interlock the microfibrils are (glucurono)arabinoxylans, linear

chains of β-1-4-linked D-xylose molecules, which can be substituted with single L-

arabinose units and less frequently, single glucuronic acid units [10]. When growing in

their natural habitat, saprophytes as well as phytopathogens are able to secrete a broad

range of enzymes that can degrade these complex polymers. This is necessary since the

cell cannot directly take up these large polymers. Filamentous fungi, such as Aspergillus

niger and Trichoderma reesei, are capable of secreting cellulolytic, xylanolytic and

pectinolytic enzymes. Despite the fact that many glycosylhydrolases and their encoding

genes have been isolated and characterised, little is known how microorganisms regulate

their polysaccharide-degrading enzyme systems to degrade plant cell wall materials to

metabolisable carbon sources.

Regulation of gene expression

In general, the expression of polysaccharide degrading enzymes is controlled by

induction via a specific transcriptional activator and by carbon catabolite repression.

Carbon catabolite repression is a global regulatory mechanism, in which the presence of

rapidly metabolisable carbon sources represses the expression of genes involved in the

utilisation of less-favoured carbon sources. This enables the microorganism to use the

energetically most favourable carbon source and not waste energy on the synthesis of

other catabolic systems.
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The general concept for regulation of expression and secretion of polysaccharide

degrading enzymes is that low constitutive levels of particular enzymes are secreted and

released in the medium or are bound to the conidial surface. These enzymes produce

‘signal molecules’ if certain polymers are present. The ‘signal molecules’ are taken up by

the cell, where they may be converted or act directly as an inducer for synthesis of a

subset of enzymes required to degrade the polymer. This model is largely based on the

induction of the cellulolytic system of T. reesei [9,47]. Signal molecules that have been

shown to function in Aspergilli are monomeric sugars, or products thereof formed

intracellularly, like D-xylose in the case of the Aspergillus tubingensis xlnA gene

encoding an endoxylanase [22] and similarly L-arabinose and L-arabitol act as inducers

for the arabinan degrading system of A. niger [64]. A second class of signal molecules

are homo- and heterosaccharides, which can be formed as degradation products or by

transglycosylation reactions. In Aspergillus terreus the heterodisaccharide D-glucose-β-

1,2-D-xylose induces both cellulolytic and xylanolytic enzymes, whereas

homodisaccharides induce selectively cellulases (e.g. sophorose = D-glucose-β-1,2-D-

glucose) or xylanases (e.g. D-xylose-β-1,2-D-xylose)[25]. The presence of an inducer

activates an induction pathway, which results in the synthesis of the enzyme system. In

principle, this pathway consists of an uptake system for the inducer which may or may

not be constitutive, and of a transcriptional activator, since the expression of the

polysaccharide degrading enzymes is regulated at the level of transcription. The

transcriptional activator drives directly or indirectly the transcription of the structural

genes encoding the polysaccharidases.

Xylan degradation

Xylan is next to cellulose the most abundant polysaccharide present in the plant cell

wall. It is a heteropolymer consisting of a backbone of β-1,4-linked D-xylose residues

which can be modified by various substituents: 1,2-linked α-D-glucuronic acid or 4-O-

methyl-α-D-glucuronic acid residues can be present, as well as 1,2- and 1,3-linked α-L-

arabinose residues. In some cases these L-arabinose residues are esterified with ferulic

and p-coumaric acid, enabling cross-linking of the xylan to the lignin-matrix. Depending
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on the source of the plant material, the D-xylose residues in the backbone can be

modified by acetylation at the C-2 or C-3 position [72].

Complete degradation of this heteropolymer requires the synergistic action of a

spectrum of enzymes (Fig. 1). Enzymes involved in xylan degradation are endoxylanase

(EC 3.2.1.8), β-xylosidase (EC 3.2.1.37), acetylxylan esterase (EC 3.1.1.72), L-arabinose

releasing enzymes such as α-L-arabinofuranosidase (EC 3.2.1.55) and arabinoxylan

arabinofuranohydrolase, α-glucuronidase (EC 3.2.1.139), feruloyl esterase, and p-

coumaroyl esterase [7]. Recently, enzymes have been found that have a high specificity

towards arabinoxylan or arabinoxylan derived oligosaccharides and which are active

against L-arabinofuranosyl groups linked to double-substituted D-xylopyranosyl residues

[34].

Endoxylanases attack xylan at the D-xylose backbone thus rapidly lowering the

degree of polymerisation. Most xylanases are strongly inhibited in their activity by side

groups attached to the D-xylose backbone, e.g. acetyl groups, L-arabinose or D-glucuronic

acid residues. Accessory enzymes, like AxeA, AxhA or AguA, which remove these side

groups, have been shown to have strong synergistic effect with endoxylanases, thus

facilitating the complete degradation of the heteropolymer [31]. Synergy is the

Fig. 1.  Arabinoxylan structure and enzymes involved in arabinoxylan degradation (adapted from

Biely)[7].
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enhancement of activity over the added activities of the individual enzymes. The xylo-

oligosaccharides are further hydrolysed by β-xylosidase.

Several genes encoding arabinoxylan degrading enzymes have been cloned from A.

niger, viz. two endoxylanase genes xlnB [28] and xlnC [20], a β-xylosidase gene xlnD

[42], an α-L-arabinofuranosidase gene abfB [19], an arabinoxylan

arabinofuranohydrolase gene axhA [21], an acetylxylan esterase gene axeA [23], an α-

glucuronidase gene aguA [69] and a feruloyl esterase gene faeA [68]. A. tubingensis,

which is closely related to A. niger has a third endoxylanase encoding gene xlnA, which

is not present in A. niger [22].

Induction of the xylanolytic system in A. niger

The induction pathway of an extracellular enzyme system consists in principle of an

uptake system for the inducer and a transcriptional activator that drives the transcription

of structural genes. The polymer is too large to be taken up directly by the cell. It is

therefore assumed that initial degradation products of the polysaccharide induce the

expression of the enzymes, which are involved in its further hydrolysis.

In the case of xylan, these degradation products are D-xylose and probably also

small xylo-oligosaccharides. Not much is known about the uptake system for the inducer

in A. niger. Both D-xylose and xylobiose are thought to be taken up by the fungus and act

as an inducer. More is known about the formation of the inducing compounds. The A.

niger β-xylosidase, encoded by xlnD, could have an important role in xylanolytic inducer

formation. The enzyme has been shown to be active towards xylan and xylo-

oligosaccharides resulting in the formation of D-xylose, which is shown to be a good

inducer of xylanolytic enzymes in A. niger [22,42,44,68,69,70]. Moreover,

transglycosylation products of D-xylose by β-xylosidase have been implicated to play a

role in induction [48]. Northern blot analysis revealed no significant differences in the

expression of xylanolytic genes between wild-type and a xlnD disruption mutant when

these strains were grown on D-xylose or xylan. Therefore, β-xylosidase is not necessary

for inducer formation and induction during growth on xylan and D-xylose. These data

also show that induction does not result from transglycosylation reactions catalysed by β-

xylosidase [42].
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The second component of the induction pathway is the specific transcriptional

activator. The A. tubingensis xlnA gene proved to be an essential tool for the cloning of

the gene encoding the xylanolytic transcriptional activator protein XlnR in A. niger. After

conducting promoter deletion analysis experiments, a region was identified containing an

upstream activating element (UAS) involved in xylan-specific induction of xlnA in A.

tubingensis. This fragment was cloned in front of a reporter gene and it was shown that

both xylan and low-molecular-weight carbon sources, e.g. D-xylose, were able to induce

expression of xylanase genes and the reporter gene. It was found that both induction and

carbon catabolite repression are mediated via this fragment. Thus, it was hypothesised

that carbon catabolite repression acts both directly on the xlnA gene and indirectly by

repressing transcription of the route-specific transcriptional activator (Fig. 2)[22].

Fig. 2.  Schematic model for the regulation of the genes involved in degradation of xylan of A. niger.
The model assumes the requirement of a transcriptional regulator XlnR encoded by the xlnR gene to
activate the transcription of the structural genes (upper panel). Under conditions of carbon repression
both the structural gene as well as the xlnR gene are repressed by CreA (lower panel)[43].
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The next step was to clone a 158 bp fragment containing the UAS in front of the bi-

directional marker gene pyrA, i.e. for a positive PYR+ (uridine prototrophic) or a negative

PYR- (fluoro-orotic acid resistant) phenotype, under conditions with a normally opposite

phenotype. By controlling expression using this regulated promoter fragment, it was

possible to select for xylanolytic regulatory mutants, designated as NXA (non-xylanase

producers). Ten of these mutants showed poor growth on xylan as sole carbon source.

Growth experiments in liquid cultures using D-xylose or xylan as carbon source showed

that the isolated mutants had strongly decreased endoxylanase and β-xylosidase activities

compared to the wild-type strain, while the expression of α-L-arabinofuranosidase

activity was not affected. This indicated a mutation in a trans-acting factor involved in

the expression of endoxylanase and β-xylosidase [44]. The uridine auxotrophy of the

NXA mutants on D-xylose was used to clone the complementing gene. Sequence analysis

of the isolated xlnR gene revealed the presence of a zinc binuclear DNA-binding domain

in the protein encoded. DNaseI footprint analysis and comparison of xylanolytic

promoter sequences led to the identification of the sequence 5’-GGCTAA-3’ as the

binding site of XlnR. Mutational analysis demonstrated the second G to be essential for

functionality of the UAS [44].

The availability of both the xlnR gene and the A. niger XlnR loss-of-function

mutants gave the opportunity to study the spectrum of genes being controlled by XlnR at

the transcriptional level. Northern blot analysis was conducted to study the transcription

of genes which are transcriptionally regulated by XlnR in an A. niger wild-type strain, an

xlnR loss-of-function mutation and a strain containing multiple copies of the xlnR gene.

From the results it was concluded that XlnR not only activates transcription of the genes

encoding the main xylanolytic enzymes, such as xlnB, xlnC and xlnD, but also genes

encoding accessory enzymes involved in the xylan degradation (Chapter 5). The elevated

expression of aglB and lacA, encoding α-galactosidase B and β-galactosidase A,

respectively, observed on xylan and D-xylose could also be assigned to regulation via

XlnR [67]. Moreover, some genes involved in the degradation of cellulose are also

transcriptionally activated by XlnR indicating that the transcriptional regulation by XlnR

is not to restricted the genes encoding xylanolytic enzymes and includes regulation of

two endoglucanase encoding genes and two cellobiohydrolase encoding genes. (Chapters

5 and 6). These results emphasise the key role of XlnR in the induction of hemicellulose

and cellulose degrading enzymes.
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Cellulose degradation

Cellulose, the major component of plant cell wall, is a linear polysaccharide

composed of 30-15,000 β-D-glucopyranosyl units linked by β-1,4-glucosidic bonds.

Cellulose is arranged in fibres that have a fully extended flat conformation and are tightly

packed into microfibrils by hydrogen bonds to form an insoluble fibrous material. These

insoluble fibres are also known as microcrystalline cellulose and they can be interrupted

by short amorphous regions [30]. The complete enzymatic hydrolysis of cellulose to D-

glucose requires the action of at least three different types of cellulases: endo-β-1,4-D-

glucanase (EC 3.2.1.4), exo-β-1,4-D-glucanase or exo-β-1,4-D-cellobiohydrolase (EC

3.2.1.91) and β-glucosidase (EC 3.2.1.21). The cellobiohydrolases (Cbh) are subdivided

into two classes. CbhI enzymes attack cellulose at the reducing ends of cellulose chains,

whereas CbhII enzymes attack cellulose at the non-reducing end [60]. For both enzymes

this results in the release of cellobiose. Recently, a novel exoglucanase I (ExoI) was

isolated from the cellulolytic fungus Humicola grisea. Although this protein has some

structural similarities to CbhI proteins, its activity results in the release of D-glucose

instead of cellobiose [58].

Because of its structural rigidity, crystalline cellulose is resistant to the action of

individual cellulases. Effective conversion of cellulose to monosaccharides is therefore

only possible by the synergistic action of these enzymes (Fig. 3)[73]. As cellulose is a

natural polymer, its crystallinity is rarely perfect. Amorphous regions occur in particular

near the crystal surfaces and are prone to enzymatic attack. Endoglucanases are thought

to attack in the middle of the more disordered regions of cellulose and the

cellobiohydrolases attack the crystalline areas at the opposite chain ends. These two types

of enzyme activities are most effective in the so-called endo-exo synergism. A simplified

model of endo-exo synergism is that the endoglucanases hydrolyse the cellulose

internally, thereby producing more free ends to which the cellobiohydrolases can bind

and start to hydrolyse. The synergism observed is thus due to the increase in substrate for

the cellobiohydrolases. Also, cellobiohydrolases act progressively along the cellulose

chain thereby loosening the cellulose chain from the microfibril and exposing new sites

of attack for endoglucanases [60]. The smaller cello-oligosaccharides are further

hydrolysed by cellobiohydrolases and β-glucosidases.
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The best studied fungal cellulolytic system is that of T. reesei. Eight genes encoding

different enzymes have been cloned. Two major cellobiohydrolase genes, cbh1 [54,62]

and cbh2 [11,61], two major endoglucanase genes egl1 [1,45] and egl2 (originally called

egl3)[52], and a β-glucosidase encoding gene bgl1 [6]. Three additional endoglucanase

genes encoding minor activities were found later; egl3 [67], egl4 [53] and egl5 [50].

With the exception of EglIII and BglI, all the T. reesei cellulases have a modular

structure. This modular structure consists of a catalytic domain and a cellulose binding

domain (CBD) separated by a linker peptide rich in serine, threonine and proline

residues. The CBD is a well-conserved domain and is found at either the N-terminus or

C-terminus. In T. reesei two hemicellulases, an endo-mannanase [55] and an acetyl-xylan

esterase [38], have been found which also have a modular overall architecture with a C-

terminal CBD. This feature is also common for all the cellulases and hemicellulases

cloned from the prokaryote Pseudomonas fluorescence subsp. cellulosa (see [24] for

review). The exact role for CBD and linker sequences has yet to be established. One

proposed function of the CBD is the release of cellulose chains from the cellulose crystal

prior to hydrolysis by the catalytic domain thereby increasing the activity of cellulases

against the more resistant forms of insoluble cellulose [29]. Removal of the CBD has

Fig. 3.  Cellulose structure and enzymes involved in cellulose degradation.
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little effect on the activity of cellulases towards soluble substrates, whereas the activity

towards insoluble substrates is clearly decreased [36]. The CBD therefore enhances the

catalytic activity by promoting close contact between the catalytic domain and its target

substrate, i.e. by lowering the effective Km of the enzyme for natural substrates.

Cellulases with CBDs are required in the early stages of cellulose degradation when most

of the substrate is still insoluble. At later stages, when most of the substrate has been

solubilised, enzymes without CBDs might be preferred. In T. reesei, it has been shown

that in later stages of cellulose degradation the CBD is proteolytically removed from

EglII [46] and it is thought that this same mechanism also applies for other cellulases

including cellobiohydrolases. The proteolytic removal of the linker peptide and the CBD

may serve as an in vivo mechanism to alter the properties of cellulases during hydrolysis,

when complex insoluble substrates are gradually shortened to soluble and more

accessible substrates [46]. Recently several genes have been cloned which lack a CBD

and consist of only a catalytic domain. One is the above-mentioned exoglucanase (ExoI)

from H. grisea [58]. The gene product of Phanerochaete chrysosporium cbh1-1 also

lacks a hinge region and a CBD. The white rot fungus P. chrysosporium has multiple

genes exhibiting significant homology to the T. reesei cbh1 gene. Among these genes

cbh1-1 is the only gene lacking a CBD [13]. These organisms express, in contrast to most

cellulolytic fungi, two or more genes encoding similar activities, however, some with and

some without a linker peptide and CBD. These organisms utilise a different strategy to

achieve the same goal, since they are able to synthesise cellobiohydrolases with and

without a CBD.

Induction of the cellulolytic system

Crystalline cellulose can not be taken up by fungi directly and therefore needs to be

degraded to mono- and/or oligosaccharides by cellulases secreted by the fungus. Despite

the progress that has been made in the characterisation of T. reesei cellulase systems, it is

still poorly understood how the biosynthesis of cellulases is triggered by the extracellular

and insoluble cellulose. On the one hand, it was long hypothesised that the fungus

contains low, constitutive cellulase levels, which may attack cellulose when available and

thus lead to the formation of the inducer activity of cellulase biosynthesis. It has been
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shown that this is indeed true for the cbh1 and egl1 genes in T. reesei. Transcripts of

these genes are present in low levels in the non-induced conditions and are induced at

least 1100-fold in the presence of cellulose [9]. On the other hand there are reports that

conidial bound CBHII is responsible for the initial attack on cellulose and the subsequent

release of inducer [40]. According to both mechanisms, the major end product` formed

by the initial attack is cellobiose. This disaccharide is the first soluble compound released

from cellulose, and its appearance in the cell should specifically indicate the presence of

extracellular cellulose. Cellobiose could therefore be the natural inducer of further

cellulase biosynthesis. And indeed, there are several microorganisms known in which the

biosynthesis of cellulases can be induced by cellobiose [8,25,26,57]. However, the

transglycosylation product of cellobiose, sophorose, was found to be a much stronger

inducer of cellulases in both T. reesei and A. terreus [25,26]. Both BglA and EglI are

known to form sophorose by transglycosylation [12,65]. In T. reesei, cellobiose can

induce cellulase biosynthesis in comparable amounts as cellulose when it is slowly fed or

when cellobiose hydrolysis by β-glucosidase is inhibited. This suggests that the

cellobiose concentration is critical in determining whether cellobiose can act as an

inducer or not, and it may do so only if it is not hydrolysed by β-glucosidase. Both

sophorose and cellobiose can be transported rapidly into the cells by a β-diglucoside

permease. The affinity of this permease towards cellobiose is much higher than that of β-

glucosidase, whereas the maximal activity is much lower. It is therefore assumed that the

induction of cellulases by slow feeding of cellobiose is due to a preferred uptake by the

permease if the concentration of cellobiose is low [32]. The reason why sophorose acts as

a stronger inducer than cellobiose is not well understood. One explanation is that

sophorose is less rapidly metabolised by the fungus and can therefore exert induction

more effectively.

Limited data are available regarding a putative transcriptional activator which

regulates the transcription of genes encoding cellulolytic enzymes. Studies using T.

reesei mutants defective in cellulose induction suggested a mechanism of co-ordinately

regulating the expression of cellulase genes. It was proposed that these mutants are most

probably defective in (a) transcription factor(s) shared by these cellulase-encoding genes,

which is required for induction and/or the uptake of the soluble inducer formed on

cellulose [63]. An 11 bp element was found in the promoter of the T. reesei cbh2 gene

which was designated as cbh2-activating element (CAE). This element is responsible for



Chapter 118

the formation of protein complexes from cellulase-forming (induced) and non-induced

mycelia and is essential for induction of gene expression on sophorose and cellulose in

vivo. CAE consists of a 5’-CCAAT-3’ and a 5’-GTAATA-3’ binding motif which

probably interacts with a specific transcriptional activator. The 3’ region bears some

resemblance to the A. niger XlnR binding site. However competitive binding studies

using oligonucleotides derived from the A. niger xlnD promoter demonstrated that the

protein binding to the 3’ fragment is not the XlnR homologue in T. reesei [74]. To date

there are two putative transcriptional activators known (AceI and AceII) which were

isolated with the yeast one-hybrid cloning system using the promoter of the T. reesei

cbh1 gene. AceII contains a zinc binuclear DNA-binding domain and was reported to

bind to the DNA sequence 5’-GGCTAATAA-3’resembling the A. niger XlnR binding

site, however its primary structure differs significantly from XlnR [51]. At this moment it

is not clear if one or both of these regulators activate the transcription of genes encoding

other cellulolytic or non-cellulolytic enzymes.

Carbon catabolite repression

The degradation of large and heterogeneous polysaccharides into monomeric sugars

is a complex process in which a wide variety of (hemi-)cellulolytic enzymes is involved.

It is therefore important for the fungus to synthesise these enzymes only when they are

necessary. In the presence of readily metabolisable sugars, such as D-glucose, the

synthesis of polysaccharidases is repressed due to carbon catabolite repression. This is a

global regulatory mechanism in fungi, such as Aspergilli and T. reesei, by which, in the

presence of rapidly metabolisable carbon sources, the expression of genes involved in the

utilisation of less-favoured carbon sources is repressed. From the viewpoint of cellular

physiology this is beneficial for two reasons. Firstly, the energetically most favourable

carbon source is used and secondly, no energy is wasted on the synthesis of other

catabolic systems [49]. It is now clear that in Aspergilli the repressor protein CreA plays

a major role in carbon repression. CreA inhibits transcription of many target genes by

binding to specific sequences in the promoters of these genes.

A. nidulans strains carrying creA mutant alleles were isolated using areA loss-of-

function mutants with compounds which can act both as carbon and nitrogen source [3].
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AreA, a wide-domain regulator protein for nitrogen metabolism, is required for

expression of genes related to utilisation of other nitrogen sources than ammonia or

glutamine. Some of these alternative nitrogen sources, e.g. proline or acetamide, are

controlled by nitrogen and carbon repression as they can serve both as nitrogen and

carbon source. Relief of either nitrogen or carbon repression permits utilisation of these

compounds, but growth on a combination of a repressing nitrogen source and a

repressing carbon source completely blocks proline and acetamide catabolism. Therefore

areA null mutants are unable to utilise proline as a nitrogen source in the presence of a

repression carbon source, such as D-glucose. Arst and Cove [3] used this phenotype to

isolate mutations that interfere with carbon repression. These mutations are designated as

creAd mutations. Another strategy makes use of A. nidulans pdhA mutants, lacking a

functional pyruvate dehydrogenase complex. A number of creA mutants were isolated as

pseudo-revertants of pdhA on media containing D-glucose and ethanol [5]. The creA gene

thus identified was thought to be a negatively acting wide domain regulator [2,4]. The A.

nidulans creA gene has been cloned and characterised by Dowzer and Kelly [15,16].

DNase I footprinting experiments have led to the definition of a binding site for CreA,

5’-SYGGRG-3’ [33]. However, not all possible sequences included in this consensus are

always functional, i.e. the binding affinity for certain variants is context-dependent on the

sequences outside the hexanucleotide [14]. The A. niger creA gene [17], the T. reesei

homologue cre1 [27,56], and the creA gene from the cellulolytic fungus H. grisea have

also been cloned [59].

In the case of the ethanol regulon of A. nidulans carbon catabolite repression

operates at two levels. It represses both alcR, encoding the transcription activator for alc

genes and the structural genes alcA, encoding alcohol dehydrogenase I and aldA,

encoding aldehyde dehydrogenase. Thus, the ethanol catabolism is carbon repressed by a

double-lock mechanism as proposed by Felenbok. [18]. This model for regulation of the

alc system might be valid in general for catabolic systems. Carbon repression mediated

by CreA has also been observed in genes encoding xylanolytic and cellulolytic enzymes

[22,37,41,46,57,58,59].

Recently it has been shown that in A. niger CreA modulates the XlnR-induced

transcription of genes encoding xylanolytic enzymes when the fungus is grown on D-

xylose. The transcription of the xlnB, xlnD, aguA and faeA genes on D-xylose was studied

in a wild-type strain and in a creAd mutant. A decrease was observed in transcription
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levels of all four genes with increasing D-xylose concentrations, whereas the transcription

levels were unaffected in the creAd mutant strain. The results indicated that the

transcription levels of these xylanolytic genes were partially repressed at D-xylose

concentrations higher than 1 mM [70]. These results demonstrate that studies on the

effect of D-xylose on the xylanolytic system in fungi, and in particular A. niger, should

not only focus its role as an inducer, but also as a factor triggering carbon repression.

Thus, both a specific regulator and the CreA repressor protein regulate transcription of

these genes. Presence and concentration of the carbon source determine the balance

between induction and repression controlled by these regulatory proteins. This is also

illustrated by the influence of D-glucose concentrations on the regulation of cellulase

biosynthesis, as the end-product of cellulose hydrolysis, D-glucose, inhibits further

synthesis of cellulases. In T. reesei, it has been shown that D-glucose interferes with

cellulase biosynthesis by blocking the uptake of diglucosides that can act as an inducer

[32] and by repression of de novo biosynthesis of cellulases via the transcriptional

repressor protein Cre1. However the underlying mechanisms need still to be unravelled.

Aim and outline of this thesis

Glycosylhydrolases as cellulases and xylanases are of great importance for the

ecological recycling of biomass. In addition, a whole range of commercial enzyme

preparations containing fungal polysaccharidases is used in industrial applications. For

example, xylanases and cellulases are used in the food and feed industry, in pulp and

paper applications, such as improvement of bleachability of pulp and lowering of the

pulp viscosity [66], whereas cellulases are also used in the textile industry in biostoning

applications [35]. The aim of this thesis is to clone and study regulation of genes

encoding novel activities capable of degrading (hemi-)cellulose. Many of these novel

activities are minor activities, which are difficult to detect and identify using standard

conditions for growth. Several strategies will therefore be exploited to find these novel

activities in Aspergilli. Firstly, the conditions of induction need to be optimal. This

involves both the carbon source as well as the duration of growth (Chapter 4). Secondly,

accumulation of the inducer often results in higher levels of expression (Chapter 3). Also

the use of derepressed creAd strains can result in elevated levels of expression as is
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shown in Chapters 2 and 3. Chapter 3 also shows that gene disruption of the major α-L-

arabinofuranosidase encoding gene can reveal minor activities which are otherwise

difficult to identify. Finally, increasing the gene dosage of a specific transcriptional

activator can increase the transcription levels of genes controlled by that activator

(Chapters 5 and 6). Despite the fact that many glycosylhydrolases and their encoding

genes have been isolated from a wide variety of microorganisms, little is known at the

molecular level about the factors that are involved in the expression of these genes. The

research described in this thesis gives a better understanding of the mechanisms

underlying the regulation of expression of genes encoding cellulose- and hemicellulose-

degrading enzymes produced by Aspergillus.

Chapter 2 describes the isolation of A. niger creAd mutants relieved of carbon

repression and the effects of the mutations `on the expression of arabinanases and L-

arabinose catabolic enzymes. This system was selected to illustrate that the expression of

genes involved in the utilisation of less-favoured carbon sources could be enhanced in

derepressed creAd mutant strains. Chapters 3 and 4 focus on genes encoding enzymes

that are able to release L-arabinose from arabinoxylan. Chapter 3 describes the cloning

and characterisation of the A. nidulans abfB gene, as well as the analysis of expression of

the L-arabinofuranosidase encoding gene in an A. nidulans wild-type strain and several

mutant strains. Super-induction of the abfB gene can be accomplished by combining a

mutation leading to the intracellular accumulation of an inducer with a creAd mutation, as

is shown by expression analyses. This chapter also describes the identification of minor

L-arabinose releasing activities when the major α-L-arabinofuranosidase activity was

disrupted in a derepressed creAd genetic background. The cloning, characterisation and

analysis of expression of the axhA genes from the closely related fungi A. niger and A.

tubingensis is described in Chapter 4. These genes encode an arabinoxylan-

arabinofuranohydrolase A enzyme which specifically releases L-arabinose substituents

from arabinoxylan. This chapter also describes the transcriptional analysis of the axhA

and abfB genes in A. niger. It demonstrates that the regulation of transcription of the two

genes differs significantly, although both genes encode L-arabinose releasing activities.

The transcription of genes encoding enzymes involved in xylan degradation and two

endoglucanases involved in the degradation of cellulose in A. niger is studied in Chapter

5. In particular, the role of the transcriptional activator XlnR in the regulation of

transcription of these genes was investigated. This analysis is extended in Chapter 6,



Chapter 122

which describes the cloning and characterisation of two cellobiohydrolase encoding

genes in A. niger, cbhA and cbhB, which are also involved in the degradation of

cellulose. The results described in Chapters 5 and 6 illustrate that the range of genes

transcriptionally regulated by a specific activator is not necessarily restricted to genes

encoding pathway-specific enzymes but that it also includes genes encoding non-pathway

specific activities. Furthermore, the data described in these chapters give evidence that

increasing the gene dosage of a specific transcriptional activator could elevate the

expression of a broad range of genes controlled by that activator. Finally, the results

presented in this thesis are summarised and discussed.
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ABSTRACT

Aspergillus niger mutants relieved of carbon repression were isolated from an

areA parental strain by selection of strains that exhibited improved growth on a

combination of 4-aminobutanoic acid (GABA) and D-glucose. In addition to

derepression of the utilisation of GABA as a nitrogen source in the presence of D-

glucose, three of the four mutants also showed derepression of L-alanine and L-

proline utilisation. Transformation of the mutants with the A. niger creA gene,

encoding the repressor protein CreA, re-established the areA phenotype on GABA/D-

glucose, identifying the mutations as creAd. The creA gene mapped on chromosome

IV by linkage analysis and CHEF hybridisation. The creA mutants obtained were

used to study the involvement of CreA in repression by D-glucose of arabinanases

and L-arabinose catabolism in A. niger. In wild-type A. niger α-L-

arabinofuranosidase A, α-L-arabinofuranosidase B, endo-arabinanase, L-arabinose

reductase and L-arabitol dehydrogenase were induced on L-arabinose, but addition

of D-glucose prevented this induction. Repression was relieved to varying degrees in

the creA mutants showing that biosynthesis of arabinanases and L-arabinose

catabolic enzymes is under control of CreA.

INTRODUCTION

Carbon repression is a global regulatory mechanism by which in the presence of D-

glucose or other rapidly metabolisable carbon sources the expression of genes involved in

the utilisation of less-favoured carbon sources is repressed [19,27,29] for reviews on

carbon repression in fungi). It allows microorganisms to cope fluently with changes in the

carbon sources present in their environment. Genetic analysis has shown that carbon

repression in Aspergillus nidulans is mediated by a major regulatory gene creA, which acts

in a negative manner [2,3]. Mutations in A. nidulans creA result in derepression of a

variety of activities, which are normally repressed by D-glucose [1,4,17]. creA mutations

were isolated by several strategies including selection of pseudorevertants of areA-

defective strains. The creA gene has been cloned and sequenced both from A. nidulans

[7,8] and A. niger [9] and shown to encode a DNA-binding protein containing two zinc

fingers of the Cys2His2 type, which are very similar to the zinc fingers of MIG1, the
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repressor involved in D-glucose repression of the GAL and SUC2 genes in Saccharomyces

cerevisiae [24,25].

Plant cell walls consist of complex polysaccharides of which L-arabinan is one of the

constituents. Hyphal fungi are able to degrade these polysaccharides into monomeric

sugars which are subsequently metabolised further. The L-arabinan degrading system of A.

niger consists of two distinct α-L-arabinofuranosidases (AbfA and AbfB) and an endo-1,5-

α-arabinanase (AbnA) [32]. The expression of these three enzymes is under the control of

pathway specific induction and carbon repression. Three arabinanase-encoding genes

abfA, abfB and abnA have been cloned and characterised [11,12,13,14]. In the promoters

of these three genes several putative CreA binding sites, i.e. sequence elements identical to

the A. nidulans CreA-motif 5'-G/CPyGGPuG-3' [6,20], as well as some elements common

to all arabinanase genes can be found [14].

Although the A. niger creA gene was cloned, the selection of A. niger creA mutants

has thus far never been described. By conventional mutagenesis we have now isolated four

A. niger creA mutants which are useful to establish whether various metabolic systems are

under CreA control. As an example we have studied L-arabinan degradation and L-

arabinose catabolism.

MATERIALS AND METHODS

A. niger strains, isolation of mutants and linkage analysis. All strains used were descendants from A.

niger N400 (CBS 120.49). N402 (cspA1) was used for CHEF analysis. NW141 (areA1, bioA1, cspA1,

pyrA13) was isolated from NW140 (areA1, bioA1, cspA1)[15]. N616 [5] was used as a tester strain for

genetic analysis.

UV-mutagenesis and isolation of pyrA mutants was performed as described by Goosen et al. [16].

The survival of the spores for the selection of the pyrA13 marker was more than 50%. Selection of the creA

mutants was done after UV-mutagenesis, resulting in 38% survival. Irradiated conidia (4.5*107) of strain

NW141 were plated on 10 minimal medium (MM)[26] plates containing 1% (w/v) 4-aminobutanoic acid

(GABA) and 1% (w/v) D-glucose. After 4 days of incubation at 30°C 80 colonies were picked and tested on

various combinations of carbon and nitrogen sources.

Linkage analysis was performed as described by Bos et al. [5]. Tester strain N616 contains genetic

markers on 6 linkage groups: fwnA1 (I), hisD4 (II), lysA7 (III), leuA1 (IV), nicA1 (V) and pabA1 (VI).

Medium and culture conditions. Mycelium was cultured on MM containing 0.02% (v/v) of a trace metal

solution [36] and appropriate carbon and nitrogen sources. Where necessary media were supplemented with

4 µg biotin l-1, 1 mg nicotinamide l-1, 1.4 mg p-amino benzoic acid l-1, 200 mg histidine l-1, 200 mg leucine

l-1, 365 mg lysine l-1 and 1.22 g uridine l-1. For plate tests MM was solidified with 1.5% (w/v) agar unless
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stated otherwise. For expression studies strains were grown for 26 h on MM containing 10 mM ammonium

tartrate, 0.05% (w/v) yeast extract and 2% (w/v) sucrose in an orbital shaker at 250 rpm at 30°C. Mycelium

was then harvested, washed with MM, transferred to MM containing 10 mM ammonium tartrate, 1 % (w/v)

carbon source as indicated and incubated for another 4 h.

Transformation of A. niger, northern analysis and CHEF analysis. Transformation of A. niger was

essentially performed as described by Kusters-van Someren et al. [21] using the A. niger pyrA gene [16] as

a selective marker. Plasmid pCRA006 [23] contains the A. niger creA and pyrA genes (the A. niger creA

gene was isolated by heterologous hybridisation with a probe constructed from A. nidulans creA; the

identity of the gene was established by comparing the restriction map of the cloned gene with the sequence

of A. niger creA published by Drysdale et al. [9].

For northern analysis total RNA was isolated using TRIzolTM (Life Technologies) according to the

manufacturers instructions. Total RNA (20 µg for each sample) was run on formaldehyde containing gels

as described by Sambrook et al. [28] and transferred onto Hybond N (Amersham) membranes by capillary

blotting in 10 X SSC. Hybridisation was done at 42°C in buffer containing 50% (w/v) formamide, 0.75 M

NaCl, 50 mM sodium phosphate pH 7.4, 10 mM EDTA, 2 X Denhardt's, 0.1% (w/v) SDS and 10% (w/v)

dextran sulphate. Northern blots were washed at 65°C down to 0.2 X SSC / 0.1% (w/v) SDS. Probes were

prepared using the random priming method [28]. The following DNA fragments were used as probes: a 1.5

kb PstI fragment from plasmid pC2X1 (containing the C-terminal region of abfA) [13], a 1.7 kb EcoRI-

XhoI fragment from plasmid pB2 (containing the abfB full length cDNA) [11], a 1.1 kb EcoRI-XhoI

fragment from plasmid pC2N4 (containing the abnA full length cDNA) [12] and a 0.9 kb EcoRI fragment

from plasmid p28S (containing the A. bisporus gene encoding 28S rRNA) [30]. RNA levels were

quantified by laser densitometric scanning of autoradiograms (Ultroscan XL, LKB).

Contour-clamped homogeneous electric field (CHEF) analysis was performed according to Verdoes

et al. [35] with chromosomal DNA of A. niger N402. Hybridisation was performed using a 840 bp Xho1 -

EcoR1 fragment of pCRA004 (containing an internal fragment of creA) [23] as a probe.

Preparation of cell extracts and enzyme assays. Preparation of cell extracts and assay of L-arabinose

reductase and L-arabitol dehydrogenase were performed as described by Witteveen et al. [37]. Enzyme

assays were performed on a COBAS Bio autoanalyser (Roche) connected to an MS-DOS computer for

datalogging. Biochemicals were from Boehringer Mannheim. Protein concentration in extracts was

determined as described previously [37] using the bicinchoninic acid method (Sigma). α-L-

Arabinofuranosidase activity was determined by measuring hydrolysis of p-nitrophenyl-α-L-

arabinofuranoside (pNP-A, Sigma) as described previously [32].

Western blotting. Denaturing electrophoresis in 10% (w/v) polyacrylamide gels containing 0.1% (w/v)

SDS was performed as described by Laemmli [22] in a Mini-V system (Life Technologies). Protein was

blotted onto nitro-cellulose filters and blots were then incubated with specific antisera, followed by staining

with alkaline phosphatase labelled goat anti-mouse IgG and alkaline phosphatase labelled goat anti-rabbit

IgG as described by the manufacturer (BioRad). Antibodies raised against A. niger arabinofuranosidase A

and B and endo-arabinanase A have been described previously [32].

Polyol extraction and determination. Extraction and determination of intracellular polyols was done as

described by Witteveen et al. [37].
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RESULTS

Isolation and characterisation of A. niger creAd mutants

A. niger creA mutations were isolated as pseudorevertants of an areA loss-of-

function mutation. Following UV mutagenesis of the areA1 strain NW141, strongly

growing colonies were selected on minimal medium containing 1% (w/v) D-glucose and

1% (w/v) 4-aminobutanoic acid (GABA). Preliminary growth tests on solid media

containing different combinations of carbon and nitrogen sources revealed four putative

creA mutants which were characterised in more detail. These four mutants were clearly

derepressed for the use of GABA as a nitrogen source in the presence of D-glucose (Table

1). Three of the four mutants, creA2, creA4 and creA5, also showed derepression for L-

alanine and L-proline utilisation. Growth of the parental areA strain NW141 on GABA

was very poor and comparable to growth on GABA + D-glucose. The same was observed

for L-proline and L-proline + D-glucose. A. nidulans areA strains grow rather well on these

amino acids, but growth is reduced when D-glucose is added due to repression by D-

glucose of amino acid metabolism [29]. For A. niger this is only observed with L-alanine.

The explanation for this behaviour is that GABA and L-proline, and to a lesser extent L-

alanine, are poor carbon substrates for A. niger. In the presence of D-glucose the amino

acids are only required as a nitrogen source, but as D-glucose represses amino acid

metabolism, growth is still very poor.

Three classes of morphology were observed (Table 1). creA5 exhibited a normal

morphology, i.e. comparable to the parental areA1 strain NW141. creA2, creA4, and to a

lesser extent creA1, had difficulty to form conidiospores. The mycelium of creA1 was

yellow, unlike the parental strain and the other three mutants, which formed the usual

white mycelium.

To test complementation of the mutations with the A. niger creA gene, the mutants

were transformed with plasmid pCRA006, which contains the A. niger creA and pyrA

genes. For all four mutants uridine prototrophic strains were obtained. Growth of these

transformants on GABA/D-glucose was indistinguishable from the areA pyrA+ strain

NW140. In addition, whereas the morphology of creA1, creA2 and creA4 was clearly

different from parental strain NW141, their pyrA+ creA+ transformants were reverted to

NW140 morphology.
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The genetic localisation of the creA1 (strain NW142) and creA2 (strain NW143)

mutations was determined by linkage analysis. From cross NW142//N616 a number of 58

out of 102 progeny carried areA1 and those were tested for derepression of GABA

utilisation in the presence of D-glucose. The recombination frequency between creA1 and

leuA1 was 5.2%. All other markers gave recombination frequencies between 37% and

54%. Cross NW143//N616 gave comparable results. From a total progeny of 89, 33

recombinants contained areA1. Between creA2 and leuA1 12.1% recombination was

observed, while between creA2 and the other markers recombination varied from 38% to

62%. This positioned creA on linkage group IV. Localisation of the creA gene on

chromosome IV was confirmed by CHEF analysis (Fig. 1).

Effects of creA mutations on expression of α-L-arabinofuranosidase and L-arabinose

catabolic enzymes.

The possible involvement of CreA in repression by D-glucose of arabinanases and L-

arabinose catabolic enzymes was studied in the creA mutants. Wild-type strain NW141

and creA mutants were grown for 26 h on minimal medium with 2% sucrose and mycelia

were subsequently transferred to 1% L-arabinose, 1% L-arabinose + 1% D-glucose and 1%

D-glucose for 4 h. Samples were taken to analyse arabinanase transcript levels, arabinanase

Fig. 1.  Chromosome assignment of creA by CHEF analysis. Lane A, ethidium bromide stained
chromosomes of wild-type A. niger strain N402 separated by CHEF electrophoresis. Lane B, hybridisation
of the CHEF blot obtained from the gel shown in lane A with the 840 bp Xho1 - EcoR1 fragment of creA.
Linkage groups of A. niger N402 are indicated by Roman numerals at the left.
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protein levels, activity of arabinanases and L-arabinose catabolic enzymes and

accumulation of the intermediates of L-arabinose metabolism, L-arabitol and xylitol.

Northern analysis using probes of abfA, abfB and abnA revealed that upon transfer to

L-arabinose the wild-type strain expressed all three arabinanases (Fig. 2). Upon transfer of

the wild-type strain to D-glucose or L-arabinose + D-glucose no expression of the three

arabinanase genes was detected. In the creA mutants, however, the arabinanase genes were

clearly expressed on L-arabinose + D-glucose. The strongest derepression was observed for

mutants creA2 and creA4, whereas creA1 and creA5 resulted in moderate derepression. On

L-arabinose a higher expression level of the arabinanase genes was observed for all four

Glc + Ara Arabinose

W 1 2 4 5 W 1 2 4 5

abfA 0 8.8 14.9 11.9 4.2 1 8.1 10.5 9.5 6.4

abfB 0 0.9 1.5 2.0 1.0 1 1.3 3.1 2.6 2.1

abnA 0 0.5 3.5 2.7 0.2 1 2.6 5.0 4.5 0.3

Fig. 2. Arabinanase expression in A. niger wild-type and creA mutants. Mycelium was grown on sucrose,
washed and transferred to D-glucose, D-glucose + L-arabinose (Glc + Ara) or L-arabinose as indicated in the
figure. Northern blots were prepared as described under Methods and hybridised separately with abfA,
abfB, abnA and 28S probes. RNA levels were quantified by laser densitometric scanning of
autoradiograms. The 28S rRNA probe was used as an internal control. In the Table the amounts of abfA,
abfB and abnA mRNA relative to 28S rRNA are given for the growth conditions L-arabinose and D-glucose
+ L-arabinose. After growth on D-glucose transcript levels were insignificant. In addition, for each of the
three genes values were normalised to the induced wild-type level (i.e. NW141 grown on L-arabinose)
which was set to 1. W, wild-type; 1, creA1; 2, creA2; 4, creA4; 5, creA5.
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creA mutants except for abnA in mutant creA5. Again the effect was most pronounced in

the case of creA2 and creA4. Relative to the induced wild-type levels, abfA and abnA

expression was increased more than abfB.

Arabinanase activities were measured in the culture filtrates. During growth on L-

arabinose + D-glucose α-L-arabinofuranosidase (Abf) activity, measured as pNP-A

hydrolysis, was insignificant in a culture filtrate of the wild-type strain, but clearly present

in the creA mutants (Fig. 3). Abf activity of strain creA2 and creA4 even approached the

induced wild-type level (i.e. comparable to NW141 grown on L-arabinose). On L-

arabinose Abf activity in creA2, creA4 and creA5 was 1.6-, 2.5- and 2.1-fold the wild-type

level respectively, whereas creA1 was comparable to wild-type. Endo-arabinanase activity

remained too low to be accurately measured.

Immunochemical detection of the arabinanase proteins by western blotting

qualitatively corroborated the results of the northern analysis and the activity

measurements (data not shown) and confirmed that of the two α-L-arabinofuranosidases

present in wild-type A. niger (AbfA and AbfB), AbfB is the main activity [33]. Endo-

arabinanase was not detected. Both AbfA and AbfB were clearly derepressed in the creA

mutants grown on L-arabinose + D-glucose. On L-arabinose, the quantity of AbfB

produced by the creA mutants was apparently comparable to that observed for the wild-

type strain, but the AbfA levels of the creA mutants were higher than that of the wild-type.

However, one should realise that western analysis does not provide quantitative data.

Activities of the enzymes involved in catabolism of L-arabinose (L-arabinose

reductase, L-arabitol dehydrogenase, L-xylulose reductase and xylitol dehydrogenase) were

analysed in parallel. For all strains the activity of L-arabinose reductase and L-arabitol

dehydrogenase was low during growth on D-glucose (Fig. 4). On D-glucose + L-arabinose

Fig. 3.  α-L-arabinofuranosidase activity in
culture filtrates of A. niger wild-type and creA
mutants. Growth was performed as described
in the legend of Fig. 2. Arabinofuranosidase
activity was determined by measuring
hydrolysis of pNP-A. Activities are expressed
as mU (mg dry weight)-1 (equivalent to nmol
pNP produced min-1 (mg dry weight)-1). DW,
dry weight; WT, wild-type. Data are the
average of two experiments.
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the L-arabinose reductase and L-arabitol dehydrogenase activities were still low in wild-

type strain NW141, but were increased in the creA mutants. Similar results were obtained

for L-xylulose reductase and xylitol dehydrogenase (data not shown). Derepression was

most pronounced in the case of L-arabitol dehydrogenase for which the activities in creA1

and creA4 were approximately 4-fold the wild-type activity. In contrast to the results

obtained for arabinanases where creA2 and creA4 were derepressed strongest, creA1 and

creA4 were derepressed most for the L-arabinose catabolic enzymes. During growth on L-

arabinose the activities of L-arabinose reductase and L-arabitol dehydrogenase were up to

2-fold higher in the creA mutants than in wild-type strain NW141.

Derepression of the L-arabinose catabolic enzymes during growth on a combination

of D-glucose and L-arabinose might result in intracellular accumulation of the polyol

compounds xylitol and L-arabitol, which are intermediates in L-arabinose degradation [37].

L-arabitol levels cannot be determined unequivocally due to simultaneous formation of D-

arabitol from the pentose phosphate pathway intermediate D-xylulose-5-phosphate under

all conditions and the inability to distinguish between D- and L-arabitol by HPLC analysis.

The appearance of xylitol, however, is diagnostic for the presence of L-arabitol. No xylitol

was observed in any of the strains during growth on D-glucose, whereas a considerable

amount of xylitol accumulated during growth on L-arabinose (Table 2). On D-glucose + L-

arabinose, a very low level of xylitol was observed in the wild-type strain, but xylitol did

accumulate in the creA mutants indicative of derepression of L-arabinose catabolism. As

expected, arabitol was found under all growth conditions, but the levels were relatively

high during growth on L-arabinose, implying accumulation of L-arabitol.

Fig. 4.  Specific activity of L-arabinose reductase and L-arabitol dehydrogenase in cell extracts of A. niger
wild-type and creA mutants. Mycelium was cultured as described in the legend of Fig. 2. Activities were
measured as described under 'Methods'. WT, wild-type. Data are the average of two experiments.
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DISCUSSION

Hyphal fungi seem to share the regulatory system responsible for carbon repression

which was first described for A. nidulans on the basis of mutations in creA [1,4,17] and

further substantiated by the cloning of this gene [7,8]. The A. niger creA gene was found to

be very similar to the A. nidulans creA gene and, moreover, was shown to be functional in

A. nidulans [9]. However, thus far no creA mutants have been described for A. niger. In

this report we describe such mutants which have, as expected, a derepressed phenotype.

The following results imply that the mutants we isolated are impaired in creA. The

mutants were derepressed for a number of systems involved in carbon catabolism. In an

areA background the creA mutations allowed utilisation of GABA, L-proline or L-alanine

as nitrogen sources in the presence of D-glucose (Table 1). Whereas the parent showed

repression of arabinanases and L-arabinose catabolism in medium containing both L-

arabinose and D-glucose, these functions were clearly derepressed in the creA mutants

under the same conditions (Figs. 2 to 4). Finally, transformation of the mutant strains with

the A. niger creA gene resulted in a phenotype that was indistinguishable from the parental

areA strain. The finding that the A. niger creA gene was able to complement the mutations

is a strong indication that we have isolated creA mutants.

The different A. niger creA alleles also displayed non-hierarchical heterogeneity,

observed with A. nidulans creA mutants as well [3] and indicative for a direct effect of

CreA on transcription. For example, whereas creA2 and creA4 were strongly derepressed

for the use of GABA and L-alanine in the presence of D-glucose and less for L-proline,

creA5 showed exactly the opposite phenotype.

A. niger creA mutants further exhibited decreased growth rates and reduced

sporulation. In addition, A. niger creA1 produced a yellow pigment, which is probably a

secondary metabolite whose biosynthesis is normally repressed by D-glucose.

From our results it appears that creA2 and creA4 are the most severe alleles. These

alleles are extremely useful to investigate the involvement of CreA in control of other

systems subject to carbon repression. Cloning and sequencing of the creA alleles may be

useful to identify domains in the protein, other than the zinc-finger region, that are

important for its function. This was recently done by Shroff et al. [31] for a number of A.

nidulans creA alleles. Three of the A. nidulans creA alleles analysed have missense

mutations in the zinc finger domain whereas four other mutations result in truncations of

CreA between the zinc finger domain and the C-terminus of the protein.
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Analysis of arabinanase expression in A. nidulans creA mutants has demonstrated

that the arabinanase system is suitable to investigate carbon repression in this fungus [34].

L-arabinose and L-arabitol induce the A. niger arabinanases (AbfA, AbfB and AbnA),

whereas addition of D-glucose prevents this induction [33,34]. Similarly, enzymes

involved in catabolism of L-arabinose are expressed during growth on L-arabinose, but not

on D-glucose [37]. These observations suggest repression of arabinanases and L-arabinose

catabolic enzymes by D-glucose. In this report we show that this repression is in fact

mediated by CreA. On a combination of L-arabinose + D-glucose no expression of abfA,

abfB and abnA was detected in the wild-type strain. In the creA mutants, however, the

three arabinanase genes were clearly expressed under these conditions (Fig. 2).

Biosynthesis and secretion of the arabinanases was confirmed by western analysis and

activity in the case of AbfA and AbfB, but not for AbnA (Fig. 3). The absence of endo-

arabinanase protein is explained by the delayed expression of abnA compared to abfA and

abfB, which has been observed previously [14]. L-arabinose reductase and L-arabitol

dehydrogenase, the enzymes involved in L-arabinose catabolism, were also derepressed in

the creA mutants (Fig. 4). Several putative CreA binding sites are present in the promoters

of the three arabinanase-encoding genes [14] and it is most likely that CreA directly

represses the genes encoding arabinanases and L-arabinose catabolic enzymes by binding

to its cognate sequence(s) in the promoters of these genes. This is substantiated by the

non-hierarchical heterogeneity amongst the different creA alleles. Thus, while creA2 and

creA4 showed stronger derepression of abnA than of abfB, derepression of abnA was

much less than that of abfB in creA5. Similarly, derepression of arabinanase genes was

more pronounced for creA2 and creA4 than for creA1, but creA1 was more derepressed for

L-arabinose reductase and L-arabitol dehydrogenase. Two other possible mechanisms of

repression of genes encoding arabinanases and L-arabinose catabolic enzymes are (1) a

cascade mechanism, i.e. repression of a common transcription activator protein and (2)

lack of inducer formation. A common transcription activator for arabinanases has been

proposed by Flipphi et al. [14] on the basis of the finding that extra gene copies of either

abfA or abfB decreased expression of the other abf gene and, more clearly, of the more

weakly expressed abnA gene. A cascade mechanism for repression is operating in the case

of the alc system in A. nidulans. The gene encoding the transcription activator of the alc

system, alcR, is repressed by D-glucose, partially preventing induction of the alc system

[20]. However, most of the alc genes, including alcA which is the structural gene for

alcohol dehydrogenase I, are also repressed directly  by CreA [10,20]. The second
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alternative for direct repression is lack of inducer formation. Arabinanases are induced by

L-arabitol, an intermediate of L-arabinose metabolism [33], and derepression of L-

arabinose uptake and L-arabinose reductase, which could result in intracellular

accumulation of L-arabitol, might be sufficient to induce expression of arabinanases. Such

a mechanism operates for example in the case of the gal genes in S. cerevisiae, where

MIG1 represses the expression of the D-galactose permease thereby reducing the level of

functional inducer [18]. Proper investigation of the relative contribution of the three

repression mechanisms mentioned requires isolation of the genes encoding the putative

arabinanase transcription activator, the L-arabinose permease and the enzymes involved in

L-arabinose catabolism.
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ABSTRACT

Using a DNA fragment containing the Aspergillus niger abfB gene as a probe

the homologous Aspergillus nidulans gene, designated abfB, has been cloned from a

genomic library containing size-selected HindIII fragments. The nucleotide

sequence of the abfB gene shows strong homology with the A. niger abfB,

Trichoderma reesei abf-1 and Trichoderma koningii α-L-arabinofuranosidase / β-

xylosidase genes. Regulation of abfB expression has been investigated in cultures

induced with L-arabitol. The accumulation of abfB mRNA, total α-L-

arabinofuranosidase activity and AbfB protein levels have been determined in a

wild-type A. nidulans strain as well as in different mutant strains. These strains are

affected either in their response to ambient pH (palA1 and pacCc14 mutants),

carbon catabolite repression (creAd4 mutant), the ability to utilise L-arabitol as a

carbon source (araA1 mutant) or a combination of both latter mutations (araA1

creAd4). The results obtained indicate that the expression of the A. nidulans abfB

gene was higher at acidic pH and was super-induced in this double mutant.

Furthermore, disruption of the abfB gene demonstrated that in A. nidulans AbfB is

the major p-nitrophenyl-α-L-arabinofuranoside-hydrolysing activity but at least one

minor activity is expressed, which is involved in the release of L-arabinose from

polysaccharides.

INTRODUCTION

L-arabinose is a constituent of plant cell wall polysaccharides. It is found in a

polymeric form as in L-arabinan, in which the backbone is formed by α-1,5-linked L-

arabinose residues which can be branched via α-1,2- and α-1,3-linked L-arabinofuranose

side chains. L-arabinose is also found as a side chain residue in arabinogalactans (α-1,3-

or α-1,6-linked), arabinoxylans (α-1,2- or α-1,3-linked) and in pectin (α-1,3-linked). The

enzymatic modification of these polysaccharides is technologically relevant in the

processing of agricultural products like fruits, vegetables and cereals [32,33].

In nature different microorganisms secrete endo-arabinanases and α-L-

arabinofuranosidases (Abf, EC 3.2.1.55) to degrade polysaccharides containing L-
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arabinose. Most commercial enzyme preparations containing L-arabinanases are obtained

from filamentous fungi like Aspergillus niger. This fungus secretes two

arabinofuranosidases (AbfA and AbfB) and one endo-arabinanase, which all three have

been purified and characterised. AbfA acts only on small linear α-1,5-linked L-

arabinofuranosyl oligosaccharides, whereas AbfB hydrolyses 1,5-, 1,3- and 1,2-α-

linkages in both oligosaccharides and in polysaccharides, which contain terminal non-

reducing L-arabinofuranoses in side chains [15,22,28]. The encoding genes have been

cloned and characterised [5,6,7,8]. In A. niger the synthesis of these enzymes is induced

by both L-arabinose, the final product of L-arabinan degradation, and by L-arabitol, an

intermediate of the catabolic pathway of L-arabinose, though the latter is a stronger

inducer [29]. Furthermore, the expression of the L-arabinanase system is under carbon

catabolite repression when more preferable carbon sources like D-glucose are present in

the medium [23,29].

Like in A. niger, L-arabinanase biosynthesis in A. nidulans is induced by L-

arabinose-containing substrates as e.g. sugar beet pulp, by the monomeric sugar L-

arabinose and more strongly by L-arabitol [21]. When correlating arabinanase

biosynthesis and the accumulation of L-arabitol in a L-arabitol dehydrogenase negative

mutant, de Vries et al. [34] obtained evidence that L-arabitol is the actual inducer.

Besides an endo-arabinanase activity, only one α-L-arabinofuranosidase (Abf) activity

has been found in A. nidulans. These two proteins show immunological cross-reactivity

with antibodies raised against A. niger AbnA and AbfB, respectively, and these enzymes

are also similar to the A. niger counterparts in their kinetic and physico-chemical

properties [21]. Van der Veen et al. [30] investigated the regulation of these two

extracellular enzyme activities and of the enzymes of the L-arabinose catabolic pathway

generating the inducer, in particular with respect to carbon catabolite repression. In order

to extend the previous analysis to the transcriptional level we have now cloned and

characterised the A. nidulans abfB gene. Furthermore, disruption of the abfB gene will

facilitate us to identify possible new minor Abf functions.

MATERIALS AND METHODS

Strains, media and culture conditions. Escherichia coli DH5α was used as a host for cloning

experiments. All Aspergillus strains used in this paper are described in Table 1. See Clutterbuck [2] for
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definition of gene symbols. Aspergillus minimal medium was prepared as described by Pontecorvo et al.

[19] and contained per litre 0.04 ml of a trace element solution [31]. Strains used in the shift experiment

were pre-grown for 18 h at 37 °C in 250 ml minimal medium (MM) containing 100 mM D-glucose and

0.05 % (w/v) yeast extract. After harvesting, the mycelium was washed with 0.9 % (w/v) NaCl and 3 g

portions were transferred to 50 ml MM containing 50 mM L-arabitol or 50 mM L-arabitol and 20 mM

glycerol. These transfer cultures were grown for additional periods of 6 and 10 h. Where necessary the

media were supplemented with 1.5 mg l-1 p-aminobenzoate or 4 µg l-1 biotin.

DNA isolation and manipulations. Fungal DNA was obtained as described earlier [20]. Amplification

of the A. niger abfB gene was done as described previously [25] using oligonucleotides Abf2 (5’-

GACCTATTTACAAAGCTTTCTCC-3’), which anneals 85 bp downstream the stop codon, and Abf4

(5’-GAGCCTGCAGTAATGCTCCACAATGTTCTCC-3’), which includes the ATG translation start

codon.

Construction and screening of an Aspergillus nidulans partial genomic library. Southern blot

analyses of A. nidulans DNA using a 1.6 kb DNA fragment obtained by PCR representing the entire A.

niger abfB gene as a probe were carried out under different hybridisation and washing conditions. This

revealed the existence of multiple hybridising DNA fragments. To avoid isolating false positives upon

screening library the following scheme was devised. A. nidulans DNA was digested with HindIII.

Samples were fractionated in triplicate by agarose gel electrophoresis. After transfer and UV fixation of

the DNA to a nylon membrane, the membrane was cut into three pieces containing the same samples.

Table 1. Aspergillus strains used in this article

Strain Genotype Source/reference

A. niger

N402 cspA1 Derived from CBS 120.49

A. nidulans

V023 argB2, biA1, metG1 M. A. Peñalva*

WG096 pabaA1, yA2 FGSC 187

G094 araA1, biA1, wA2 [3]

creAd4 biA1, creAd4 H. N. Arst, Jr †

NW186 araA1, biA1, creAd4, cnxH4 This study

pacCc14 biA1, pacCc14 H. N. Arst, Jr †

palA1 pabaA1, palA1 H. N. Arst, Jr †

NW187 biA1, creAd4, pyrG90 This study

NW190 biA1, creAd4, pyrG90, ∆abfB-pyrA+ This study
* CIB, CSIC, Madrid.

† Royal Postgraduate Medical School, London.
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Each one was hybridised under heterologous conditions (last wash step with 4 × SSC and 0.1 % (m/v)

SDS at 60 °C) with either the complete A. niger abfB gene, a 0.9 kb KpnI fragment containing the 5´

region of the A. niger abfB gene, or the remaining 0.7 kb fragment which corresponds to the 3´ region of

the A. niger abfB gene. Comparison of the hybridisation patterns showed that a 6 kb HindIII fragment

hybridised with the three probes under heterologous conditions. Subsequently, a partial library of A.

nidulans was constructed. A. nidulans DNA was completely digested with HindIII and DNA fragments

were separated through a 0.7 % (m/v) agarose gel electrophoresis. Fragments between 5 and 7 kb in

length were recovered from the gel using a Geneclean kit (Bio 101 Inc.) and ligated into pBluescript II

SK (+) which had previously been digested with HindIII and dephosphorylated. The ligated fragments

were used to transform E. coli DH5α competent cells. The library was screened by colony hybridisation

under heterologous conditions using the PCR amplified A. niger abfB gene as a probe. Approximately

12,000 recombinant clones were screened.

Sequence determination and analysis. DNA was sequenced by the dideoxynucleotide chain

termination method [on double stranded plasmid (Sequenase 2.0, Amersham). A series of nested

deletions were obtained by the exoIII-S1 nuclease method [12]. In addition, synthetic oligonucleotides

were used to determine the sequence on both DNA strands. Computer analysis was done using the

PC/GENE program (IntelliGenetics) and version 7 of the Genetics Computer Group package (GCG,

Madison). The DNA sequence of the A. nidulans abfB gene has been deposited in the EMBL database

under accession number Y13759.

RNA isolation and northern analysis. Total RNA was isolated using TRIzol (Life Technologies)

according to the manufacturer’s instructions. Northern analysis was performed as described by

Sambrook et al. [24]. Ten µg of total RNA was applied per lane. Northern blots were probed with the

0.65 kb EcoRI-KpnI Aspergillus nidulans abfB fragment or with the 0.9 kb EcoRI fragment from the

Agaricus bisporus 28S rDNA gene [27], which was used as an internal control. The blots were washed

down to 0.2 x SSC at 65 °C. RNA levels were quantified by liquid scintillation analysis in a Packard

Ultracarb 1500. Samples were corrected for loading differences using the 28S rDNA. All values were

normalised for the sample of WG096 transferred to L-arabitol and grown for 10 h.

Construction of an abfB disruption plasmid. Plasmid pH12S1 containing the 3.6 kb SmaI insert of the

abfB gene was digested using XbaI and HindIII and ligated into pGEM7, resulting in plasmid pLIG318.

SalI-digested pLIG318 was ligated with a 2.4 kb XhoI fragment containing the A. niger pyrA gene

(EMBL Acc. No. X06626), generating pLIG343. In this plasmid 400 bp of the abfB coding region was

replaced by the selection marker pyrA. The BamHI site located in the pyrA gene was modified to a XhoI

site using a BamHI-XhoI linker (5’-GATCACTCGAGT-3’) which retains the correct reading frame. The

resulting plasmid pIM3005 was digested using BamHI and the 5.6 kb abfB disruption fragment was used

for transformation.

Determination of α-L-arabinofuranosidase (Abf) activity and western blotting. α-L-

arabinofuranosidase activities were measured at 37 ºC using p-nitrophenyl-α-L-arabinofuranoside (pNP-

A) as a substrate [28]. Western blotting was also performed as described by van der Veen et al. [28].

The Abf detection by enzyme staining was conducted as described by Gallego et al. [9] using 4-

methylumbelliferryl-α-L-arabinofuranoside (MU-ara) in 50 mM sodium acetate buffer pH 4.0 to

visualise Abf activities.
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RESULTS AND DISCUSSION

Cloning of the A. nidulans abfB gene.

Southern blot analyses of A. nidulans DNA revealed the existence of multiple

hybridising DNA fragments when probed with a PCR fragment representing the entire A.

niger abfB gene. A strategy was devised to avoid the isolation of false positives upon

screening of a library (see Methods). Twenty-two hybridising colonies were found when

a partial plasmid library was screened. Physical maps of the plasmids isolated from these

colonies allowed us to group them into five classes. One member of each class was

further analysed by Southern blot analysis using either the 5’ or 3’ region of the A. niger

abfB as probes under heterologous conditions. One of these plasmids, designated pH12,

showed strong hybridisation signals with both probes in an overlapping region, thus

being likely to contain a gene homologous to A. niger abfB. A 3.6 kb SmaI fragment

from plasmid pH12, shown in Fig. 1, was subcloned in both orientations into the EcoRV

site of pBluescript, yielding plasmids pH12S1 and pH12S4. It is interesting to note that

of the twenty two positive clones initially isolated, six of those, all belonging to the same

class, contained the abfB gene. The remaining clones were not further analysed since

they might represent false positives.

Sequence analysis of the A. nidulans abfB gene.

The nucleotide sequence of a 3141 bp SmaI-XhoI fragment of pH12 was

determined for both strands. The determined sequence contains an open reading frame of

1530 bp. The predicted amino acid sequence of the encoding protein consists of 510

amino acids and contains a putative signal peptide of 24 amino acids. The mature protein

has a calculated molecular mass of 50.6 kDa and a calculated pI of 3.9.

Fig. 1.  Restriction map of the SmaI fragment containing the A. nidulans abfB gene. The KpnI-EcoRI
DNA fragment which hybridises with probes derived from both 5’and 3’regions of the A. niger abfB
gene is indicated by a boxed pattern.
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ABFBNID  MTMSRSSRSSVLALALATGSLVAAGPCDIYSSGGTPCIAAHSTTRALYSSYNGPLYQVQR
ABFBNIG  MF----SRRNLVALGLAAT--VSAGPCDIYEAGDTPCVAAHSTTRALYSSFSGALYQLQR
ABF1REE  ML---SNARIIAAGCIAAGSLVAAGPCDIYSSGGTPCVAAHSTTRALFSAYTGPLYQVKR
XYL1KON  ML---SNARIIAAGCIAAGSLVAAGPCDIYSSGGTPCVAAHSTTRALFSAYTGPLYQVKR
         *           *   *    * *******  * *** ********* *   * ***  *

ABFBNID  ASDGTTTTITPLSAGGVADASAQDAFCENTTCLITIIYDQSGNGNDLTQAPPGGFNGPDV
ABFBNIG  GSDDTTTTISPLTAGGVADASAQDTFCANTTCLITIIYDQSGNGNHLTQAPPGGFDGPDV
ABF1REE  GSDGATTAISPLSSG-VANAAAQDAFCAGTTCLITIIYDQSGRGNHLTQAPPGGFSGPES
XYL1KON  GSDGATTAISPLSSG-VANAAAQDAFCAGTTCLITIIYDQSGRGNHLREAPPGGFSGPES
          **  ** * **  * ** * *** **  ************* ** *  ****** **

ABFBNID  GGYDNLAGAIGAPVTLNGKKAYGVFVSPGTGYRNNEAIGTATGDEPEGMYAVLDGTHYND
ABFBNIG  DGYDNLASAIGAPVTLNGQKAYGVFMSPGTGYRNNEATGTATGDEPEGMYAVLDGTHYND
ABF1REE  NGYDNLASAIGAPVTLNGQKAYGVFVSPGTGYRNNAASGTAKGDAAEGMYAVLDGTHYNG
XYL1KON  NGYDNLASAIGAPVTLNGQKAYGVFVSPGTGYRNNAASGTAKGDAAEGMYAVLDGTHYNG
          ****** ********** ****** ********* * *** **  *************

ABFBNID  GCCFDYGNAETSSLDTGNGHMEAIYYGTNTAWGYGAGNGPWIMADLENGLFSGQSSDYNA
ABFBNIG  ACCFDYGNAETSSTDTGAGHMEAIYLGNSTTWGYGAGDGPWIMVDMENNLFSGADEGYNS
ABF1REE  ACCFDYGNAETNSRDTGNGHMEAIYFGDSTVWGTGSGKGPWIMADLENGLFSGSSPGNNA
XYL1KON  ACCFDYGNAETNSRDTGNGHMEAIYFGDSTVWGTGSGKGPWIMADLENGLFSGSSPGNNA
          ********** * *** ******* *  * ** * * ***** * ** ****     *

ABFBNID  GDPSISYRFVTAILKGGPNLWALRGGNAASGSLSTYYNGIRPTDASGYNPMSKEGAIILG
ABFBNIG  GDPSISYSFVTAAVKGGADKWAIRGGNAASGSLSTYYSGARP-DYSGYNPMSKEGAIILG
ABF1REE  GDPSISYRFVTAAIKGQPNQWAIRGGNAASGSLSTFYSGARP-QVSGYNPMSKEGAIILG
XYL1KON  GDPSISYRFVTAAIKGQPNQWAIRGGNAASGSLSTFYSGARP-QVSGYNPMSKEGAIILG
         ******* ****  **    ** ************ * * **   ***************

ABFBNID  IGGDNSVSAQGTFYEGAMTDGYPDDATENSVQADIVAAKYATTSLISGPALTVGDTVSLK
ABFBNIG  IGGDNSNGAQGTFYEGVMTSGYPSDDVENSVQENIVAAKYVSGSLVSGPSFTSGEVVSLR
ABF1REE  IGGDNSNGAQGTFYEGVMTSGYPSDATENSVQANIVAARYAVAPLTSGPALTVGSSISLR
XYL1KON  IGGDNSNGGQGTFYEGVMTSGYPSDATENSVQANIVAARYAVAPLTSGPALTVGSSISLR
         ******   ******* ** *** *  *****  **** *    * ***  * *   **

ABFBNID  VTTSGYDTRYIAHTGSTINTQVVSSSSSSTLKQQASWTVRTGLASTAAANGCVSFESVDT
ABFBNIG  VTTPGYTTRYIAHTDTTVNTQVVDDDSSTTLKEEASWTVVTGLANSQ----CFSFESVDT
ABF1REE  ATTACCTTRYIAHSGSTVNTQVVSSSSATALKQQASWTVRAGLAN----NACFSFESRDT
XYL1KON  ATTACCTTRYIAHSGSTVNTQVVSSSSATALKQQASWTVRAGLAN----NACFSFESQDT
          **    ******   * *****   *   **  *****  ***       * **** **

ABFBNID  PGSYIRHSNFALLLNANDGTKLFSEDATFCPQDSFNDDGTNSIRSWNYPTRYWRHYENVL
ABFBNIG  PGSYIRHYNFELLLNANDGTKQFHEDATFCPQAPLNGEGT-SLRSWSYPTRYFRHYENVL
ABF1REE  SGSYIRHSNFGLVLNANDGSKLFAEDATFCTQAGINGQGS-SIRSWSYPTRYFRHYNNTL
XYL1KON  SGSYIRHSNFGLVLNANDGSKLFAEDATFCTQAGINGQGS-SIRSWSYPTRYFRHYNNTL
          ****** ** * ****** * * ****** *   *  *  * *** ***** *** * *

ABFBNID  YVASNGGVNTFDAATAFTDDVSWVVADGFA-
ABFBNIG  YAASNGGVQTFDSKTSFNNDVSFEIETAFAS
ABF1REE  YIASNGGVHVFDATAAFNDDVSFVVSGGFA-
XYL1KON  YIASNGGVHVFDATAAFNDDVSFVVSGGFA-
         * ******  **    *  ***      **

Fig. 2.  Amino acid sequence comparison of A. nidulans AbfB (ABFBNID), A. niger AbfB (ABFBNIG)
[5], T. reesei Abf1 (ABF1REE) [18] and T. koningii Xyl1 (XYLKON) [14] sequences. Alignment was
done with the CLUSTAL V program. Identical amino acids (*) are shown.
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Similarity searches against databases revealed that A. nidulans AbfB is homologous

to A. niger N400 AbfB (77% identity) [5], and also to Trichoderma reesei Abf1 [18] and

to the Trichoderma Abf/β-xylosidase [14] proteins. Alignment of A. nidulans AbfB with

these other fungal proteins, excluding putative signal peptides, shows a high overall

similarity which is calculated to be 64% (Fig. 2).

A. niger AbfB and T. koningii Abf/β-xylosidase proteins have recently been

included in a new family of glycosyl hydrolases (Family 54) [13]. Family 54 thus

includes A. nidulans AbfB as well. It is interesting to note that, whereas both

Trichoderma enzymes also show β-xylosidase activity, this was not found for the A.

niger equivalents [5] or for A. nidulans AbfB.

In the promoter region of the A. nidulans abfB gene, consensus recognition

sequences were found for the wide domain regulators CreA (-127, -253 and -435) and

PacC (-299, -312, -416, -742, -884, -973 and -985), that mediate carbon catabolite

repression and pH regulation, respectively.

Regulation of abfB expression.

Van der Veen et al. [30] studied the role of the CreA repressor protein in the

expression of several enzymes of the L-arabinose catabolic pathway and in the

biosynthesis of AbfB in A. nidulans. In the creAd4 and creAd30 strains, very marked,

elevated inducibility was noticed both for the extracellular enzyme and for the

intracellular enzymes. De Vries et al. [34] characterised the araA1 mutant that turned out

to lack NAD+-dependent L-arabitol dehydrogenase activity and is unable to utilise L-

arabinose or L-arabitol. This strain featured elevated expression of AbfB caused by the

accumulation of L-arabitol. Here we have extended these studies by comparing under

inducing conditions only the expression of abfB in the wild-type strain, the araA1

mutant, a carbon catabolite derepressed mutant (creAd4) [1] and an araA1 creAd4 double

mutant. The strains were cultivated as described in Methods. In this way, any

biosynthesis of AbfB can be addressed to induction by L-arabitol, since pre-growth on D-

glucose strongly represses AbfB expression and therefore no AbfB is present at the start

of the induction period.

We first determined the pNP-A hydrolysing activities in the culture filtrates in the

various A. nidulans strains, which is shown in Fig. 3. Hydrolysis of pNP-A was

significantly increased in the creAd mutant compared to those measured in the wild-type.
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The increase of pNPase activity was less in the araA mutant than in the creAd mutant. In

the araA1 creAd4 double mutant, however, the level of pNP-A hydrolysing activity was

higher compared to those determined in the two single-mutant strains separately. In this

strain, the combination of the creAd mutation and the intracellular accumulation of

inducer leads to super-induction.

Previous Abf induction studies in A. nidulans were limited to enzyme activity

measurements, western blotting and inducer-level effects [30,34]. With the availability of

the abfB gene, we also studied the abfB expression at the transcriptional level. As is

shown in Fig. 4, the abfB transcript accumulation paralleled the total extracellular Abf

activity and AbfB protein levels in the culture filtrate. This is in agreement with the

results found for the abfB-disruption strain in which it was shown that AbfB is the major

component of the pNP-A hydrolysing activities in A. nidulans (see below). The abfB

transcription was also analysed when the strains were transferred to media containing 50

mM L-arabitol and 20 mM glycerol as mixed carbon source. Glycerol was added as a

non-repressing carbon source to sustain growth of strains carrying the araA1 mutation,

which are unable to utilise L-arabitol (Figs. 3-5). HPLC analysis showed that the

concentrations of L-arabitol in the culture filtrates were 30-45 mM after 10 h of growth.

Those of glycerol, if added to the cultures, were 4-9 mM (data not shown). Although the

Fig. 3.  Determination of pNPase activities in the culture filtrates of various A. nidulans strains. Strains
were pre-grown on 100 mM D-glucose and shifted to fresh media containing 50 mM L-arabitol with (A +
G) or without (A) 20 mM glycerol and grown further for 6 and 10 h. Activities are expressed in mU/mg
mycelial dry weight.
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expression levels were lower than in the L-arabitol cultures, the overall pattern of abfB

expression is very similar. Under the conditions tested, glycerol repressed the L-arabitol-

induced abfB expression. This repression by glycerol was also found when A. nidulans

wild-type was cultured directly on 100 mM L-arabinose in combination with 100 mM

glycerol [34]. Transcript levels of the Agaricus bisporus genes cel2 and cel4, encoding a

cellobiohydrolase I and a β-mannanase, respectively, are also moderately repressed when

glycerol was added to cellulose-induced cultures [35]. These findings indicate that

glycerol can act as a repressing carbon source in different organisms, although it can also

be a neutral or inducing carbon source on the expression of different enzymes.

As in the case of the A. nidulans ipnA [4], xlnA and xlnB [17] genes, the presence of

putative PacC-binding sites suggest possible regulation in response to external pH.

Therefore, we have investigated the potential role of PacC by studying AbfB induction in

a constitutive mutant (pacCc14), which mimics growth under alkaline conditions, and in

a pal mutant (palA1), which mimics growth under acidic conditions. The level of pNPase

activity was higher in the palA1 strain than the wild-type, whereas in the pacCc strain it

Fig. 4.  Northern blot analysis of abfB transcription in various A. nidulans strains. Strains were pre-
grown on 100 mM D-glucose and shifted to fresh media containing 50 mM L-arabitol with (A+G) or
without 20 mM glycerol (A) and grown further for 6 and 10 h (first and second lane of each strain,
respectively). The relative abfB RNA levels, which are expressed in arbitrary units, are also shown. The
abfB transcript levels were corrected for loading differences and all values were normalised for the
sample of WG096 transferred to L-arabitol and grown for 10 h.
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was lower than in the wild-type (Fig. 3). The repression of AbfB induction by the

pacCc14 mutation is shown in Figs. 4 and 5. Thus it can be concluded that the expression

of the abfB gene is pH regulated and is higher at acidic pHs.

Disruption of the A. nidulans abfB gene.

AbfB was found to be the major α-L-arabinofuranosidase activity in A. nidulans,

since no abfA homologue could be detected in A. nidulans [21]. We therefore constructed

a strain in which the abfB gene was disrupted to test this and to explore the possibility

that other unknown α-L-arabinofuranosidase functions are present in A. nidulans. A

linear 5.6 kb BamHI fragment containing the abfB gene disrupted by a functional clone

of the A. niger pyrA gene was derived from the plasmid pIM3005. This fragment was

introduced in a genetic background, which displays a high level of Abf activity compared

to wild-type, facilitating the possible identification of other minor L-arabinose releasing

activities. For this purpose, we first tried to cross in the pyrG89 allele in a creAd4

background. Despite the distance between the creA and pyrG alleles (3.6 cM), we only

obtained recombinant strains that showed a wild-type phenotype for both alleles.

Therefore, we introduced a new pyrG90 mutation, which was induced by UV-

mutagenesis and selected using fluoroorotic acid, in the carbon catabolite derepressed

strain carrying the creAd4 allele. The resulting strain, NW187, was used as recipient

strain in the disruption experiment. Disruptant NW187::pIM3005-8, designated as

NW190, was chosen for further analysis. Strains WG096, NW187 and NW190 were used

in transfer cultures as described in Fig. 5. No AbfB protein could be detected in the

culture filtrate of the ∆abfB strain using A. niger AbfB antibodies (Fig. 6a). Furthermore,

the pNPase activity was reduced approximately 100-fold to1.2 % of the level seen in

control strain NW187 (Fig. 6c). Activities were expressed in mU ml-1 since we did not

Fig. 5.  Western blot analysis of 15 x concentrated culture filtrates using antibodies raised against A.
niger AbfB. Strains were pre-grown on 100 mM D-glucose and shifted to fresh media containing 50 mM
L-arabitol as sole carbon source and grown further for 10 h. Track order; 1: WG096 [wt], 2: G094
[araA1], 3: creAd4 [creAd4], 4: NW186 [araA1/creAd4], 5: pacCc [pacCc14], 6: palA [palA1].
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determine the actual dry weights of all samples. This reduction in pNPase activity

indicates that AbfB is the major component responsible for the observed pNPase values

in A. nidulans. No AbfB activity could be detected when SDS-PAGE was conducted

followed by a renaturation step and active enzyme staining using 4-methylumbelliferryl-

α-L-arabinofuranoside (MU-ara). However, two other MU-ara activities having an

apparent molecular mass of 30 and 33 kDa, respectively, could be visualised (Fig. 6d).

Western blot analysis demonstrated that the 33 kDa band reacted with antibodies raised

against A. tubingensis arabinoxylan arabinofuranohydrolase A (AxhA)(Fig. 6b). This

protein is likely to be the A. nidulans equivalent of AxhA from A. tubingensis. AxhA was

found to release L-arabinose residues from arabinoxylans only [16], and its expression

was induced by L-arabitol [10]. The A. tubingensis AxhA enzyme has a much higher

specific activity towards MU-ara than to pNP-A. The specific activity of A. tubingensis

AxhA on pNP-A is approximately 1,5 x 10-2 U mg-1 against 23.5 U mg-1 for AbfB [11].

The AxhA equivalent in A. nidulans is therefore a significant component of the residual

pNPase activity present in the ∆abfB strain. Besides AxhA, another MU-ara hydrolysing

activity corresponding with a 30 kDa band is present in A. nidulans, but it is unknown

whether this contributes to the pNP-A hydrolysing activity.

Fig. 6.  Western blot analysis of the 15 x concentrated culture filtrates visualised using antibodies raised
against A. niger AbfB (a) or A. tubingensis AxhA (b). (c) pNP-A activities of 15 x concentrated samples
are expressed in mU ml-1. (d) SDS-PAGE followed by zymography of the 15 x concentrated culture
filtrates visualised using the chromogenic substrate MU-ara. Strains were pre-grown on 100 mM D-
glucose and shifted to fresh media containing 50 mM L-arabitol and grown further for 10 h. Track order;
1: WG096 [-], 2: NW187 [creAd4], 3: NW190 [creAd4, ∆abfB].
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ABSTRACT

The genes encoding arabinoxylan arabinofuranohydrolase, which enzyme

releases L-arabinose from arabinoxylan, have been cloned from the closely related

fungi Aspergillus niger and Aspergillus tubingensis and were shown to be functional in

A. niger. Integration of multiple copies in the genome resulted in overexpression of the

enzymes. The arabinofuranohydrolases encoded comprise 332 amino acids and have

94% amino acid identity. Their primary structure is not related to those of other α-L-

arabinofuranosidases, except for a low similarity with XylC, a bacterial α-L-

arabinofuranosidase from Pseudomonas fluorescens which acts on oat spelt xylan.

The axhA expression pattern in A. niger differed from that of abfB, since it was

strongly induced by birchwood xylan and much less by L-arabitol or L-arabinose.

Furthermore, northern analysis revealed that axhA expression was derepressed in

creAd mutants and carbon catabolite repressed by D-glucose.

INTRODUCTION

Microbial degradation of structural polysaccharides of the plant cell wall such as

cellulose, hemicellulose and pectin, is an important process in nature. A wide variety of

enzyme activities are involved in this degradation process, which are mainly produced by

saprophytic fungi and bacteria. Of the hemicelluloses known, xylan is the most abundant

compound. The main chain of this polysaccharide consists of ß-1,4-linked D-

xylopyranoside residues. Depending on the species from which the xylan originates, the

sugar residues can be partly modified by acetylation of D-xylose at the O-2 or the O-3

position as is the case for instance in xylan from birch wood. The main chain can also be

branched as a result of O-2- or O-3-linked L-arabinofuranose and O-2-linked D-glucuronic

acid and 4-O-methyl-D-glucuronic acid residues [34].

Due to the complex composition of xylan, a spectrum of enzyme activities is

necessary for the complete hydrolysis of this polysaccharide. Endo-xylanases (E.C. 3.2.1.8)

are only capable to hydrolyse the xylan backbone at non-modified residues. Therefore

microorganisms synthesise a number of enzymes capable to remove substituents from the

xylan backbone, e.g. α-L-arabinofuranosidase B (AbfB)(E.C. 3.2.1.55) [31], acetyl xylan

esterase (AxeA)(E.C. 3.1.1.6) [17] and (1,4)-ß-D-arabinoxylan arabinofuranohydrolase
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(AxhA) [15]. These enzymes, which were all identified in various Aspergillus species,

show strong synergistic effects with endoxylanase activity resulting in an enhanced

degradation of xylan.

AxhA was first isolated and described by Kormelink et al. [15]. This enzyme releases

1,2-α- and 1,3-α-linked arabinofuranosyl groups from arabinoxylans and arabinoxylan-

derived oligosaccharides but not from other L-arabinose-containing substrates as arabinans

and arabinogalactans [15,16]. This in contrast to AbfB which also shows arabinose-

releasing activity towards L-arabinan and arabinogalactan and 1,5-α-linked α-

arabinofuranosyl oligosaccharides [31]. From kinetic experiments it was concluded that

AxhA is able to release arabinofuranosyl substituents from terminal as well as from non-

terminal single substituted xylopyranosyl residues in low molecular weight

oligosaccharides, whereas AbfB can only release arabinofuranosyl substituents from

terminal single substituted xylopyranosyl residues [16].

In this study we have cloned the axhA gene from two related Aspergilli. Kusters-van

Someren et al. [20] proposed that the A. niger aggregate consists of two distinct species, A.

niger and A. tubingensis. Although these two species are very closely related, the

divergence between them has its consequences for the properties of some cell-wall

degrading enzymes and their industrial application. Qualitative differences were found in

the xylanase spectrum of both species; i.e. the xlnA gene is present in the A. tubingensis but

absent in the A. niger genome [8]. Differences can also be quantitative, as was reported for

the polygalacturonase encoding pgaII genes of both strains [3]. In view of this, it is useful

to isolate and compare the axhA gene of both species.

MATERIALS AND METHODS

Fungal strains, bacterial strains, phages and plasmids. A. tubingensis NW756 [20] and A. niger N402

(cspA1), which is a low-conidiophore derivative from N400 (CBS 120.49), were used as wild-type strains

in all the experiments described. In A. niger transformation experiments the N402-derived strain NW219

(cspA1 leuA1 nicA1 pyrA6) was used as a recipient. Strains NW138 (cspA1 fwnA6 nicA1 pacC2), 502.17

(cspA1 creAd2) and 555.6 (cspA1 creAd4) were used in transfer experiments to analyse axhA expression.

Escherichia coli strains DH5α (Gibco-BRL) LE392, XL1-Blue MRF' were supplied by Stratagene. Phage

ExAssist (Stratagene) was used as a helper phage for phagemid excision. Plasmid vectors pBluescript II
SK- [29], pUC19 [35], pGEM5, pGEM7 and pGEM-T (Promega) were used for subcloning. Plasmid

pGW635, which contains the A. niger pyrA gene encoding orotidine-5'-phosphate decarboxylase, was used

to co-transform A. niger [19].
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Aspergillus cultivation: media and conditions. All the media used for fungal growth and induction

experiments were based on Aspergillus minimal medium, which had a composition described by

Pontecorvo et al. [23]. The final pH was adjusted to 6.0. To the minimal medium carbon sources were

added as indicated in the particular experiments. The growth temperature was 30°C in all cases. Mycelium

to be used for protoplast formation was pregrown for 18 h on minimal medium with 100 mM D-glucose as

carbon source supplemented with 0.2% casamino acids and 0.5% yeast extract. Where necessary the media

were supplemented with 10 mM nicotinamide, 2 mM leucine or 10 mM uridine.

Amino acid sequence determination, cyanogen bromide cleavage and enzymatic deglycosylation of A.
tubingensis AxhA. Approximately 1 nmol of purified AxhA was subjected to SDS-polyacrylamide gel

electrophoresis and electroblotted onto Immobilon-P (Millipore) polyvinylidene difluoride membranes

[22]. The membrane fragment containing the main band with an apparent molecular mass of 32 kDa, was

used for sequence analysis using a gas-phase sequencer equipped with a PTH analyser [1]. In addition, also

the sequence of an internal peptide was determined. For this approximately 2 nmol of purified AxhA was

cleaved using a 200-fold molar excess of CNBr. The resulting peptides were separated by SDS-

polyacrylamide gel electrophoresis and electroblotted onto Immobilon-P membrane. The appropriate piece

of membrane containing a peptide with an apparent molecular mass of 9 kDa was recovered and used in

sequence analysis.

N-linked carbohydrate moieties were removed from purified, denatured AxhA by treatment with N-

glycanase F (Boehringer Mannheim) as recommended by the manufacturer.

Construction and screening of an arabinoxylan-induced cDNA library of A. niger N400. A. niger

N400 was cultivated for 69 and 81 h using 2% wheat arabinoxylan as carbon source. Total RNA was

isolated by using the guanidium thiocyanate/CsCl protocol [26], except that the RNA was centrifuged twice

using a CsCl gradient. Poly A+ mRNA was isolated from 5 mg of total RNA by oligo(dT)-cellulose

chromatography [2,26] with the following modification; SDS was omitted from all solutions.

PolyA+ RNA was pooled and 7 mg was used to synthesise cDNA. 120 ng of cDNA was ligated into

1.2 mg of vector arms of bacteriophage lambda λ Uni-ZAP XR using the ZAP-cDNA synthesis kit

(Stratagene) according to the manufacturers instructions. After ligation of the cDNA into Uni-ZAP XR

vector arms, the phage DNA was packaged using Packagene extracts (Promega) according to the

manufacturers instructions resulting in a primary library consisting of 3.5 x 104 independent recombinant

clones. The primary library was amplified using E. coli XL1-Blue MRF', titrated and stored at 4°C.

The immunochemical screening of the cDNA expression library was basically performed as

described by Flipphi et al. [7] using anti-AxhA antiserum raised against A. tubingensis AxhA in a New

Zealand white rabbit.

Polymerase chain reaction (PCR). The amino acid sequence of the internal peptide fragment was used

to derive the oligonucleotide mixture AB4264 (5'-ATG ATK GTI GAR GCI ATK GG-3'), in which I

stands for an inosine; K for an A, T or C and R for an A or G. This oligonucleotide mixture was used in

PCR in combination with the T7 sequence primer (Stratagene).

As a template for amplification 50 ng of λ-cDNA, isolated from the cDNA library phage stock [26],

was amplified using the following sequence: the DNA was heat denatured by incubation for 3 min at 95°C

which was followed by 25 cycli of 1 min at 95°C, 1 min at 42°C and 1 min at 72°C. The reaction was

terminated after a final 5-min incubation at 72°C.

Isolation and cloning of the A niger and  A. tubingensis axhA genes. The A. tubingensis genomic library

in λEMBL3 [8] was screened by using a 500 bp fragment, generated by PCR and containing A. niger axhA

cDNA sequences, as probe. The A. niger N400 genomic library in λEMBL4 [10] was screened using a 1.2
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kb EcoRI-XhoI fragment from a positive cDNA clone (see results). In both cases approximately 1.5 x 104

pfu were screened using the following conditions for hybridisation. After prehybridisation of the filters for

2 h in prehybridisation buffer containing 6x SSC (1x SSC: 0.15 M NaCl, 0.015 M Na3citrate pH 7.6) [26],
32P-labelled probe was added to the prehybridisation solution and hybridised overnight at 65°C. After

hybridisation the filters were washed down to 0.1x SSC at 65°C. Other DNA manipulations such as

plasmid DNA isolation, λDNA isolation, Southern blot analysis and subcloning, were performed as

described by Sambrook et al. [26].

DNA sequence determination, sequence analysis and primer extension mapping. For sequencing

DNA fragments were subcloned into the plasmid vectors pBluescript, pGEM and pUC. The DNA

sequence was determined by the dideoxynucleotide chain-termination method [27] using the T7

Sequencing Kit (Pharmacia) according to the suppliers instructions. Alkali-denatured plasmid DNA was

used as template and both universal oligonucleotides as well as gene specific oligonucleotides were

employed as primers. Computer analysis was done using the PC/GENE programme (IntelliGenetics) and

the University of Wisconsin software [5].
Primer extension mapping to determine transcription initiation sites was performed according to

Calzone et al. [4] using polyA+ RNA isolated from transformants containing multiple copies of either the A.

niger or the A. tubingensis axhA gene. These strains were grown for 40 h on minimal medium containing

1.5 % (w/v) wheat arabinoxylan as carbon source. RNA was isolated from mycelial powder with TRIZol

(Gibco-BRL) according to the manufacturers instructions. PolyA+ RNA was isolated from 2 mg of total

RNA as described above.

Northern analysis. Mycelium to be used transfer experiments was pregrown for 18 h on minimal medium

with 100 mM D-fructose as carbon source supplemented with 0.2% casamino acids and 0.5% yeast extract.

After harvesting and washing with saline, 3 g of mycelium (wet weight) were transferred to 250 ml

Erlenmeyer flasks containing 50 ml minimal medium and grown for an additional 6-12 h. Total RNA was

isolated with TRIZol (Gibco-BRL) according to the manufacturers instructions and 20 mg of total RNA

was loaded on formaldehyde agarose gels [26], transferred to Hybond-N membranes (Amersham) and UV-

cross linked. Hybridisation and washing of the membranes were carried out essentially as described [26].

Analysis of culture medium protein. After growth of the fungus, the mycelium was removed by filtration

over a Büchner funnel. The resulting culture medium samples were then centrifuged (8000xg, 10 min) to

pellet debris. Proteins secreted into the medium were analysed by electrophoresis in 10% polyacrylamide

gels containing 0.1% SDS [21] on a midget gel electrophoresis system (Pharmacia). For the specific

detection of AxhA, western analysis was used by incubating nitro-cellulose blots with anti-AxhA antiserum

followed by staining with alkaline phosphatase labelled goat anti-rabbit IgG conducted as described by the

manufacturer (Bio-Rad).

RESULTS

Determination of amino acid sequences.

The AxhA enzyme was purified from medium filtrates after culturing A. tubingensis

on crude wheat arabinoxylan. These filtrates which were enriched in AxhA were a kind gift

of Gist-brocades. The apparent molecular mass of the purified enzyme, as determined by
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SDS-PAGE using a 10% gel, was 32 kDa and the isoelectric point was determined to be

3.6. These data are in agreement with the data reported for AxhA [15]. The A. tubingensis

AxhA protein was also used to raise antibodies. These antibodies reacted also strongly with

A. niger AxhA.

N-terminal amino acid sequences were determined for the isolated mature protein as

well as for a 9 kDa peptide obtained by cyanogen bromide cleavage. The N-terminal amino

acid sequence of the whole protein was determined to be [K X A L P S S Y]. The amino

acid residue at position 2 could not be assigned and is therefore designated as "X". Since in

the sequencing procedure cysteine residues are only determined if the protein is S-

pyridylethylated before analysis, which is not the case here, it is possible that a cysteine

occurs at this position. For the internal cyanogen bromide fragment the N-terminal amino

acid sequence [I V E A I G S T G H R Y F (R/N) (S) (F) (T)] was found. As the last four

amino acids are ambiguous, these are given between brackets.

Isolation of an A. niger axhA cDNA clone.

The wild-type strain N402 was grown on minimal medium containing 2 % (w/v)

crude wheat arabinoxylan and samples of the culture medium were taken 48, 69, 81 and 96

h after inoculation. Analysis of these samples by western blot analysis for AxhA expression

revealed high expression levels of the enzyme at 69, 81 and 96 h after inoculation (data not

shown). Mycelia harvested at 69 and 81 h were chosen to construct a cDNA expression

library. After amplification of the library, 5 x 104 pfu were immunologically screened for

expression of AxhA cDNA. About fifty positive plaques were found. Upon purification

and excision of eight positive clones, the resulting plasmids were isolated and cDNA insert

lengths were determined by digestion with EcoRI and XhoI and subsequent agarose

electrophoresis. All eight clones were partially sequenced at both the 5' and the 3' end of

the cDNA. All these clones contained the complete coding region, since the N-terminal

amino acid sequence, as determined for the mature AxhA protein, was in all cases

confirmed by the nucleotide sequence. cDNA clone pC61A had the longest cDNA insert,

as it contained a 5' leader sequence of 56 nucleotides in front of the putative translation

start site. The complete nucleotide sequence of this clone was determined for both strands.

Isolation of the A. niger axhA gene.

To obtain the AxhA encoding gene, the A. niger N400 genomic library [10] was

screened using a 1.2 kb EcoRI-XhoI fragment of cDNA clone pC61A. This resulted in the
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isolation of ten positive clones. The inserts of four of these phages were partially

characterised by Southern analysis. In all four clones fragments originating from the same

genomic region were found and a 3.7 kb XhoI fragment containing the AxhA encoding

gene was cloned into pBluescript SK-, resulting in pIM3002 (Fig.1).

Generating a probe for the A. tubingensis AxhA encoding gene and isolation of the A.

tubingensis axhA gene.

The partial amino acid sequence of the internal CNBr fragment was used to design

the complex oligonucleotide mixture AB4264. This oligonucleotide mixture was derived

from amino acid 1 (I) to amino acid 6 (G) including the methionine residue of the peptide

preceding the CNBr fragment.

The oligonucleotide mixture was used in combination with the universal sequence

primer T7 in a PCR on λ-cDNA isolated from the cDNA library described above. Analysis

of the reaction products revealed two distinct products of about 500 bp and 600 bp. Both

PCR fragments were cloned into pGEM-T and partially sequenced for identification. The

500 bp PCR fragment had a high degree of identity with the nucleotide sequence of the A.

niger cDNA clone and included also the amino acid sequence of 17 residues of the internal

cyanogen bromide fragment. The nucleotide sequence of the first 220 bp of the 600 bp

PCR fragment showed significant homology with aldose/aldehyde reductases from several

organisms and was therefore regarded as a PCR artefact.

Fig. 1.  (a) Restriction map of the 5.5 kb SstI fragment, present on plasmid pIM3001, containing the A.

tubingensis axhA gene and its flanking regions. (b) Restriction map of the 3.7 kb XhoI fragment, present on

the plasmid pIM3002, containing the A. niger axhA gene and its flanking regions. The position of the axhA

genes is represented by the black bars, the arrows indicate the direction of transcription.
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An A. tubingensis genomic library [8] was screened to isolate the gene encoding

AxhA by homologous hybridisation using the 500 bp PCR fragment described above

resulting in three hybridising plaques. The inserts of the three phages were characterised by

limited Southern analysis. In all three clones fragments originating from the same genomic

region were found and a 5.5 kb SstI fragment containing the AxhA encoding gene from A.

tubingensis was cloned into pBluescript SK-, resulting in pIM3001 (Fig.1).

Primary structure of A. niger and A. tubingensis axhA genes and their deduced

protein structure.

The nucleotide sequences of both the A. niger axhA (pIM3002) and the A. tubingensis

axhA (pIM3001) were determined for both strands by subcloning fragments from pIM3001

and pIM3002, in combination with the use of specific oligonucleotides as primers in the

sequencing reactions. The sequence determined for the A. niger axhA gene was 2098 bp

long and contained 780 bp of the 5' non-coding region and 322 bp of the 3' non-coding

region. The sequence determined for the A. tubingensis axhA gene was 2177 bp long and

contained 823 bp of the 5' non-coding region and 358 bp of the 3' non-coding region. The

nucleotide sequences of both axhA genes and their deduced amino acid sequences are

shown in Fig. 2. The structure of the two axhA genes was very similar and the nucleotide

sequences were 82% identical. The nucleotide sequence identity in the coding region, viz.

89%, was higher than in the 5' and 3' non-coding flanking sequences (80% and 70%,

respectively).

The transcription start points (tsp) were determined by primer extension mapping

using polyA+ RNA isolated from transformants containing multiple copies of either the A.

niger or the A. tubingensis axhA. Both strains were grown for 40 h on minimal medium

containing 1.5 % (w/v) crude wheat arabinoxylan as a carbon source. For both genes a

major tsp was found at position -64 and two minor tsp's were found at positions -57 and -71

relative to the translation start site. The leader of the longest A. niger cDNA clone (pC61A)

starts one nucleotide downstream of the minor tsp at position -57. Analysis of the 5' non-

coding region of the A. tubingensis axhA gene revealed the presence of sequence elements

resembling general promoter elements for fungal genes [9,30] like a TATA and a CAAT

box, located respectively 46 bp and 108 bp upstream of the major tsp, respectively. In the 5'

non-coding region of the A. niger axhA gene, the elements AAATAT and CTAAT were

found at corresponding positions. In addition a CT-stretch directly upstream of the major

tsp was found in the promoter of both genes.
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Analysis of the 3' end of the A. niger axhA cDNA clones revealed two transcription

stops, 172 and 183 bp downstream of the stop codon. Although a few AT-rich sequences

were found in the 3' non-coding region of both genes, the consensus polyadenylation

signal, which is sometimes found in other fungal genes, was not present [24].

The coding regions of both genes consisted of a single open reading frame of 996 bp

in length, and contained no introns. This was concluded by comparing the A. niger cDNA

and genomic axhA sequences. The open reading frame encodes a protein of 332 amino acid

residues. The derived amino acid sequences for both genes were 94% identical. The N-

terminal amino acid sequence, as determined for the mature A. tubingensis AxhA, is

preceded by a pre-sequence of 26 residues, which presumably serves as signal peptide. The

cleavage site between residues 26 and 27 conforms to the "-3 -1" rule with a small, non-

aromatic/charged amino acid (valine) at the -3 position and a small amino acid (alanine) at

the -1 position, as proposed by von Heijne [11] for cleavage of signal peptides. The amino

acid sequence of the internal fragment was found to be present from position 233 to 249 in

the derived amino acid sequence. Removal of the signal sequences leaves a mature protein

of 306 amino acid residues in both cases, which have deduced molecular mass values of

33250 Da and 33101 Da and a theoretical isoelectric point of 4.2 and 4.1 for A. tubingensis

AxhA and A. niger AxhA, respectively. Furthermore, the A. tubingensis AxhA contains

one possible N-glycosylation site at position 313 whereas the A. niger AxhA does not.

However, the difference in apparent molecular mass as observed in Fig.3a, was not

resolved by enzymatic N-deglycosylation with N-glycanase F. The possibility of O-

glycosylation was not examined.

Expression of the A. niger and A. tubingensis axhA genes in A. niger grown on wheat

arabinoxylan.

To investigate whether the cloned genes were functional the plasmids pIM3001 and

pIM3002 were introduced in A. niger NW219 by co-transformation using pGW635, which

carries the A. niger pyrA gene, as the primary selection marker. Nineteen A. niger

prototrophic transformants were randomly chosen in each case and analysed for expression

of AxhA. The transformants and the A. niger N402 control strain were grown on minimal

medium containing crude wheat arabinoxylan. Samples of the growth media were taken at

20 and 41 h after inoculation for the transformants of the A. tubingensis axhA gene and at

24 and 40 h for the transformants of the A. niger axhA. Culture filtrates were analysed by

western analysis using anti-AxhA antibodies. Twelve of the nineteen transformants of the
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A. tubingensis axhA gene and eight of the nineteen transformants of the A. niger axhA gene

analysed overexpressed the corresponding gene product (Fig.3). Southern analysis of

transformants of the A. niger axhA gene confirmed that the highly overproducing strains

contained multiple copies (5-10) of the A. niger axhA gene, integrated in tandem.

Induction and carbon catabolite repression of AxhA expression in A. niger.

The expression of both AxhA and AbfB, encoded by abfB [6] was studied in transfer

experiments. A. niger wild-type strain N402 was pregrown on 2% D-fructose and aliquots

of mycelium were transferred to minimal medium containing either L-arabinose, L-arabitol,

D-fructose, D-glucose, D-xylose (all 50 mM) or 1% (w/v) birchwood xylan. These cultures

were grown for additional growth periods of 6 h and 12 h. Western analysis of the culture

filtrates revealed that AxhA was mainly expressed when grown on xylan and much less on

L-arabitol, whereas AbfB was highly expressed on almost all carbon sources except D-

glucose and D-fructose (Fig.4a,c). Northern analysis of axhA transcription showed similar

results. Transcription of abfB was strongly induced by L-arabitol and L-arabinose and only

weakly by xylan (Fig.4b,d).

To study the effect of carbon catabolite repression on AxhA expression, two A. niger

strains carrying creAd mutations [33] and the wild-type were pregrown on 100 mM D-

fructose and transferred to minimal medium containing either 1% (w/v) birchwood xylan or

1% (w/v) birchwood xylan in combination with 50 mM D-glucose and cultured for another

6 h. Both northern and western analysis gave similar results viz. AxhA expression was

derepressed in the creAd2 and creAd4 mutant strains compared to wild-type when grown on

Fig. 3.  Western blot analysis of AxhA expression by A. niger wild-type N402 and A. niger transformants
upon growth on minimal medium containing 1.5 % crude wheat arabinoxylan as carbon source. From each
strain 20 µl of a culture medium sample was loaded on gel. (a) A. niger transformants, containing copies of
the A. tubingensis axhA gene, were grown for 20 h (lanes 1-5) and 41 h (lanes 6-10). Lanes 1 and 6: N402;
2 and 7: NW219::pIM3001-3/11; 3 and 8: -3/13; 4 and 9: -15/5; 5 and 10: -15/13. (b) A. niger transformants
containing additional copies of the A. niger axhA gene, were grown for 24 h (lanes 1-5) and 40 h (lanes 6-
10) are shown panel (B): Lanes 1 and 6: N402; 2 and 7: NW219::pIM3002-15; 3 and 8: -28; 4 and 9: -29; 5
and 10: -30.
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xylan, whereas AxhA expression levels were very low both in wild-type and in the creA

mutant strains when grown on 1% xylan in combination with 50 mM D-glucose (Fig.5).

DISCUSSION

The nucleotide sequences of the genes encoding AxhA in A. niger as A. tubingensis

have been determined and comparison with the EMBL and GenBank databases did not

Fig. 4.  Expression analysis of the A. niger axhA gene. (a) Western analysis of transfer cultures of A. niger
N402 after 6 h growth. Lane 1: 50 mM L-arabinose; 2: 50 mM L-arabitol; 3: 50 mM D-fructose; 4: 50 mM
D-glucose; 5: 50 mM D-xylose; 6: 1% birchwood xylan; visualised with anti-AxhA or anti-AbfB. (b)
Northern analysis of total RNA of N402 transfer cultures; Lanes 1 and 2: 50 mM L-arabinose; 3 and 4: 50
mM L-arabitol; 5 and 6: 50 mM D-fructose; 7 and 8: 50 mM D-glucose; 9 and 10: 50 mM D-xylose; 11 and
12: 1% birchwood xylan after 6 h growth (lanes 1, 3, 5, 7, 9 and 11) and 12 h (lanes 2, 4, 6, 8, 10, 12). The
blots were probed with axhA, abfB [6] or 28S rDNA [28] as loading control.

Fig. 5.  Expession analysis of A. niger axhA in A.
niger wild-type and strains carrying creAd2 or
creAd4 mutations. (a) Western blot analysis and
(b) northern analysis of transfer cultures after 6 h
growth of N402 (lanes 1 and 2); creAd2 (lanes 3
and 4) and creAd4 (lanes 5 and 6) on 1%
birchwood xylan (lanes 1, 3 and 5) or 1%
birchwood xylan/50 mM D-glucose (lanes 2, 4
and 6).
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result in identification of significant primary sequence similarities. However, comparison

of the amino acid sequences with the SWISSPROT database revealed a low, but

significant, homology with XylC from Pseudomonas fluorescens subsp. cellulosa, which is

an α-L-arabinofuranosidase acting only on oat spelt xylan [13]. XylC consists of a cellulose

binding domain and a catalytic domain. Both AxhA mature proteins show 32% identity

with this catalytic domain of XylC (Fig.6).

The major tsp, 64 bp upstream of the putative start codon, is in both genes preceded

by a 13 bp CT-rich element TTATTCGTTCTCPy. Pyrimidine-rich tracts or CT boxes are

frequently observed in promoters of filamentous fungal genes and have been postulated to

have a function in correct initiation of transcription [25]. The 5' non-coding regions of the

A. tubingensis and A. niger axhA genes contain one sequence motif, 167 bp upstream of the

major tsp (numbering refers to the A. niger sequence), perfectly matching the CreA

AXHNIG KCALPSTYSWTSTDALATPKS-GWTALKDFTDVVSNGKHIVYASTTDTQG   75
AXHTUB KCALPSSYSWSSTDALATPKS-GWTALKDFTDVVSDGKHIVYASTTDEAG   75
XYLC -CELKAPLRWTSTGPLISPKNPGWISIKDPSIVKYNDTYHVYATYYDTA-  368

 *.* .. .*.**..* .**. **...** . *  .... ***.  *..
 
AXHNIG NYGSMGFGAFSDWSDMASASQTATSFS----AVAPTLFYFQPKSIWVLAY  121
AXHTUB NYGSMTFGAFSEWSNMASASQTATPFN----AVAPTLFYFKPKSIWVLAY  121
XYLC -YRSM-YTSFTDWNTAQQAPHISMNGSRVGNTVAPQVFYFRPHNKWYLIT  416

 * ** ...*..*.. . *....   .    .*** .***.*.. * * 
 
AXHNIG QWGSSTFTYRTSQDPTNVNGWSSEQALFTGKISGSSTGAIDQTVIGDDTN  171
AXHTUB QWGSSTFTYRTSQDPTNVNGWSSEQALFTGKISDSSTNAIDQTVIGDDTN  171
XYLC QWAGA---YATTDDIRNPN-WSAKQKLLQGE----PNGALDFWVICNDTH  458

**...   * *..*  * * **..* *. *.    ...*.*  ** .**.
 
AXHNIG MYLFFAGDNGKIYRSSMSINDFPGSFGSQYEEILSGATND----LFEAVQ  217
AXHTUB MYLFFAGDNGKIYRSSMSINDFPGSFGSQYEVILSGARND----LFEAVQ  217
XYLC CYLYFSRDDGVLYVSKTTLANFP-NFSG-YSIVMEDHRGNGNSYLFEAAN  506

 **.*. *.* .* *. ....** .*.. *. ....  ..    ****..
 
AXHNIG VYTVDGGEGDSKYLMIVEAIGSTGHRYFRSFTASSLGGEWTAQAA---SE  264
AXHTUB VYTVDGGEGDTKYLMIVEAIGSTGHRYFRSFTASSLGGEWTAQAA---SE  264
XYLC VYKLDG---QNRYLLMVEAYISG-----RAFSAPGQRPAWMAHGPLADTE  548

**..**   ...**..***  *.     *.*.*..   .* *...   .*
 
AXHNIG DQPFAGKANSGATWTDDISHGDLVRNNPDQTMTVDPCNLQLLYQGHDPNS  314
AXHTUB DQPFAGKANSGATWTEDISHGDLVRNNPDQTMTVDPCNLQLLYQGHDPNS  314
XYLC ANPFAGM---------------MFCFTMASSLKVYTC-----Y-------  571

..****.               .   . . ...* .*     *      

Fig. 6.  Amino acid comparison of A. niger AxhA (AXHNIG), A. tubingensis AxhA (AXHTUB) and P.
fluorescens XylC (XYLC). Amino acid sequences were aligned using the program CLUSTAL
(IntelliGenetics). Identical amino acids are shown by '*' and similar amino acids are shown by '.'.
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consensus sequence [G/C C/T G G G G]. This element is involved in D-glucose-mediated

carbon catabolite repression by the DNA-binding protein CreA [18]. Two pairs of inverted

repeats, conserved in both axhA sequences, were found 170/142 bp and 134/102 bp

upstream of the major tsp, respectively. Whether these repeats are functional in vivo

remains to be investigated, since none of these sequence elements could be found in

promoters of other xylanolytic genes in Aspergillus. Downstream of the proposed stop

codon, the mRNA of A. niger axhA contains a non-coding region which can vary in size,

viz. 172 and 183 bp. This suggests the presence of (at least) two polyadenylation sites,

which are frequently observed for other fungal genes [9]. Although a few AT-rich

sequences were found in the 3' non-coding region of both genes, a consensus

polyadenylation signal was not present [24].

Comparison of the two deduced amino acid sequences revealed differences at 21

positions. Eleven of these amino acid substitutions arise from single point mutations. In

addition to the mutations leading to amino acid substitutions, 76 silent mutations were

found. The close relationship between A. niger and A. tubingensis is illustrated by

comparing their respective axhA, endoxylanase B (xynB), polygalacturonase II (pgaII) and

pectin methyl esterase (pme) genes. As shown in Table 1, the nucleotide identity between

the axhA genes is comparable to those of the other three systems [32]. Next to comparison

of DNA sequence data, the black Aspergillus can also be classified on the basis of RFLP

patterns and biochemical features, such as mobility on SDS-PAGE or isoelectric focusing.

The axhA gene can be used as a probe in RFLP analysis of chromosomal DNA, since the

restriction maps of the A. niger and A. tubingensis axhA genes and their flanking sequences

show significant differences (Fig.1).

Table 1.  Homology between the A. niger and A. tubingensis axhA, xynB, pgaII and pme genes.

Item axhAa) xynBb) pgaIIc) pmed)

Amino acid identity 94% 92% 94% 98%

Nucleotide identity

   Coding sequence 89% 91% 90% 96%

   Intron(s) - 69% 79% 75%

   5’ non-coding 80% 78% 81% 95%

   3’ non-coding 70% 78% 82% 74%

a) This study
b) Ito [12], Kinoshita et al. [14]
c) Bussink et al. [3]
d) Visser et al. [32]
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Although both AxhA and AbfB are active on arabinoxylan, the expression of these

two L-arabinose releasing activities is regulated differently as shown by the transfer

experiments. The results also demonstrate that the expression is transcriptionally regulated.

Whereas AbfB expression was strongly induced by L-arabitol and L-arabinose, AxhA

expression was strongly induced by xylan and much less by L-arabitol, L-arabinose and D-

xylose as shown in Fig.4. Expression of axhA is possibly regulated in a similar manner as

proposed for the expression of xlnA in A. tubingensis [8]. Transcription of axhA is most

likely under direct control of a route-specific transcriptional activator. The northern

analysis shown in Fig.5 demonstrated that carbon catabolite repression of axhA

transcription is controlled at two levels, i.e. directly by repression of axhA transcription,

and indirectly by repression of the expression of a transcriptional activator. The direct

involvement of creA is demonstrated by increased axhA transcription in the creAd mutants

under inducing conditions. However, when grown on xylan and D-glucose, axhA

transcription is still repressed both in wild-type and creAd mutant strains caused by non-

creA mediated carbon catabolite repression effects on the expression of the transcriptional

activator. This type of mechanism would be similar to the mechanism for the regulation of

gene expression of xlnA in A. tubingensis [8].
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ABSTRACT

The expression of genes encoding enzymes involved in xylan degradation and

two endoglucanases involved in cellulose degradation was studied at the mRNA

level in the filamentous fungus Aspergillus niger. A strain with a loss-of-function

mutation in the xlnR gene encoding the transcriptional activator XlnR and a strain

with multiple copies of this gene were investigated in order to define which genes

are controlled by XlnR. The data presented in this paper show that the

transcriptional activator XlnR regulates the transcription of the xlnB, xlnC, and

xlnD genes encoding the main xylanolytic enzymes (endoxylanases B and C and β-

xylosidase, respectively). Also, the transcription of the genes encoding the accessory

enzymes involved in xylan degradation, including α-glucuronidase A, acetylxylan

esterase A, arabinoxylan arabinofuranohydrolase A and feruloyl esterase A, was

found to be controlled by XlnR. In addition, XlnR also activates transcription of

two endoglucanase encoding genes, eglA and eglB, indicating that transcriptional

regulation by XlnR goes beyond the genes encoding xylanolytic enzymes and

includes regulation of two endoglucanase-encoding genes.

INTRODUCTION

The two most abundant structural polysaccharides in nature are cellulose and the

hemicellulose xylan, which are closely associated in plant cell walls [4]. Filamentous

fungi, particularly Aspergillus and Trichoderma species, are well-known and efficient

producers of both cellulolytic and hemicellulolytic enzymes. The cellulase degradation

system of these organisms consists of three classes of enzymes [2]: endoglucanases (EC

3.2.1.4), cellobiohydrolases (EC 3.2.1.91), and β-glucosidases (EC 3.2.1.21). Members

of all of these classes are necessary to degrade cellulose, a homopolymer of β-1,4-linked

D-glucose. Xylan, however, is a heterogeneous polymer with a backbone consisting of β-

1,4-linked D-xylose residues, which can be substituted at the C-2 and C-3 positions with

various residues, such as acetic acid, α-L-arabinofuranose, (4-O-methyl) glucuronic acid,

ferulic acid, and p-coumaric acid [5]. Due to this heterogeneous composition, a more

complex set of enzymes is required for xylan degradation. The following enzymes have
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been found to be necessary during the co-operative process of xylan breakdown:

endoxylanase (EC 3.2.1.8), β-xylosidase (EC 3.2.1.37), acetylxylan esterase (EC

3.1.1.72), α-L-arabinofuranosidase (EC 3.2.1.55), arabinoxylan arabinofuranohydrolase,

β-glucuronidase (EC 3.2.1.139), feruloyl esterase, and p-coumaroyl esterase [3].

The expression of cellulose- and xylan-degrading enzymes by Aspergillus and

Trichoderma species has been studied extensively at the cellular level [1,18,19,23]. It has

been shown that xylanase- and cellulase-encoding genes are regulated at the

transcriptional level [17,21,30,34]. In the presence of D-glucose the genes are not

expressed, and it has been shown that the carbon catabolite repressor protein CreA is

involved in transcriptional repression of xylanase-encoding [17] and arabinanase-

encoding [38] genes in Aspergillus species. It has been demonstrated that in Trichoderma

reesei the CreA counterpart Cre1 causes repression of transcription of cellulase-encoding

[20,21] and xylanase-encoding genes [28,30]. However, far less is known about the

mechanism by which cellulase- and xylanase-encoding genes are induced. The inducing

abilities of various saccharides have been tested, and some saccharides induce the

synthesis of both xylanases and cellulases [17,19,30,37,48]. Nevertheless, on the basis of

biochemical data [1,18,19] and mRNA expression analysis data [21,30], a separate

induction mechanism has been proposed for these systems in both Aspergillus and

Trichoderma.

Recently, a selection system was developed to isolate Aspergillus niger strains

having mutations in a transcription factor involved in induction of expression of

xylanolytic genes. Complementation of such a mutation by transformation with a plasmid

library led to the isolation of the A. niger xlnR gene, which encodes a transcriptional

activator of the A. niger xylanolytic system [35]. This xlnR gene encodes a zinc binuclear

cluster protein, which is a member of the GAL4 family of transcription factors. Isolation

of both the xlnR gene and A. niger xlnR loss-of-function mutants provided an opportunity

to study the spectrum of genes that are controlled by XlnR at the transcriptional level.

MATERIALS AND METHODS

Aspergillus strains, transformation and culture conditions. All of the A. niger strains used were

derived from wild-type strain N400 (= CBS 120.49). The strains used were A. niger N402 (cspA1), a
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short-conidiophore derivative, NW205::130 (argB13, cspA1, nicA1, pyrA6, UAS(xlnA)-pyrA), NXA1-4

(argB13, cspA1, nicA1, pyrA6, UAS(xlnA)-pyrA, xlnR1) (strains NW205::130 and NXA1-4 are

described more extensively by Peij et al.[35], and N902 (argB15, cspA1, fwnA1, metB10, pyrA5).

Strain N902::230-25.12 (argB15, cspA1, fwnA1, metB10), which contains approximately 20 additional

copies of xlnR, as determined by a phopho-imager analysis of Southern blots, was obtained by

cotransformation of A. niger N902. The cotransforming plasmids were pIM230 [35] and pGW635 [15],

which contain the functional xlnR gene (EMBL accession no. AJ001909) and the pyrA gene (EMBL

accession no. X96734), respectively. Transformation was carried out as described previously [25].

All media were based on Aspergillus minimal medium [36]. The media contained the carbon

sources indicated below, and the starting pH of each medium was 6. Spores were inoculated at a

concentration of 106 spores ml-1. In transfer experiments the first culture containing D-fructose was

supplemented with 0.2% (wt/vol) Casamino Acids and 0.1% (wt/vol) yeast extract. After overnight

growth, mycelia were recovered by filtration and washed with saline.  These mycelia were transferred to

media containing D-xylose or xylan as a carbon source, and 0.05% (wt/vol) Casamino Acids. The xylan

used was birchwood xylan (Roth-7500).

Expression cloning of A. niger glucanases in Escherichia coli. A xylan-induced cDNA library of A.

niger [34] was screened for the expression of endoglucanases by using a modified procedure [6,46,47].

Plates contained 20 ml of 2* TY, 0.2% carboxymethylcellulose (CMC) (Sigma), 1.5% agar, and 100 µg

of ampicillin per ml. E. coli cells were plated in an overlay consisting of 5 ml of the same medium

containing about 300 colonies per plate, and the plates were incubated for 48 h at 37°C. Next, 5 ml of

0.1 % Congo red (Aldrich) was poured onto each plate. After it was stained for 1 to 2 h, each plate was

destained with 5 ml of 5M NaCl for 0.5 to 1 h. About 12,000 colonies from the A. niger cDNA library

were plated. Screening on CMC resulted in 89 colonies that had halos after staining with Congo red.

None of these colonies produced a halo when it was screened with Remazol Brilliant Blue-modified

xylan. All colonies contained a full-length cDNA copy, which appeared to originate from two different

genes. Both of the enzymes encoded were active on CMC and on β-glucan (unpublished data). The

corresponding genes, eglA and eglB were cloned by using these cDNA fragments.

Northern blot analysis. Total RNA was isolated from powdered mycelia by using TRIzol reagent (Life

Technologies) according to the supplier’s instructions. For northern blot analysis 10 µg of total RNA

was glyoxylated and separated on a 1.6% (wt/vol) agarose gel [39]. After capillary blotting onto

Hybond-N filters (Amersham), the amounts of RNA were checked by staining the rRNA on the Hybond

filters with a 0.2% (wt/vol) methylene blue solution. The filters were hybridised at 42°C in a solution

containing 50% (vol/vol) formamide, 10% (wt/vol) dextran sulphate, 0.9 M NaCl, 90 mM trisodium

citrate, 0.2% (wt/vol) Ficoll, 0.2% (wt/vol) polyvinylpyrrolidone, 0.2% (wt/vol) bovine serum albumin,

0.1% (wt/vol) sodium dodecyl sulphate, and 100 µg of single-stranded herring sperm DNA per ml.

Washing was done under homologous hybridisation conditions with a solution containing 30 mM NaCl,

3 mM trisodium citrate, and 0.1% (wt/vol) sodium dodecyl sulphate at 68°C. The 32P-labelled DNA

probes used were either cDNA or genomic fragments, as shown in Table 1.

A 1 kb β-glucosidase cDNA fragment of A. niger, as determined by sequence analysis, was

isolated from a xylan-induced cDNA library [34] by using PCR with degenerate oligonucleotides based

on the Aspergillus kawachii (EMBL accession no. AB003470) and Aspergillus aculeatus (EMBL

accession no. P48825) sequences for β-glucosidase and cloned into pGEM-T (Promega).



XlnR-controlled gene expression in A. niger 79

Nucleotide sequence accession numbers. The eglA and eglB sequences have been deposited in the

Genbank-EMBL sequence database under accession no. AJ224451 and AJ224452, respectively.

RESULTS AND DISCUSSION

Induction of the xylanolytic system.

An A. niger mutant having a loss-of-function mutation in the xylanolytic

transcriptional activator gene xlnR lacks transcription of the endoxylanase B and β-

xylosidase encoding genes xlnB and xlnD [35]. To investigate the spectrum of genes,

which are under control of the transcriptional activator xlnR, expression in an A. niger

wild-type strain and expression in the strain with the XlnR loss-of-function mutation

were analysed by northern blot analysis. To do this, we used fragments of genes cloned

from A. niger encoding enzymes which are potentially involved in the breakdown of

xylan (Table 1). A. niger NW205::130 (wild-type) and NXA1-4 (a xlnR mutant) were

precultured and subsequently transferred to media cultures containing 1 % birchwood

xylan and to media cultures containing 1 % D-xylose (both birchwood xylan and D-xylose

Table 1.  Probes used in northern blot analysis.

Gene EMBL Enzyme encoded Fragment used Reference

abfB X74777 α-L-Arabinofuranosidase B 1.7 kb EcoRI-XhoI [11]

aguA Y15405 α-Glucuronidase A 0.8 kb EcoRV-KpnI b [44]

axeA A22880 Acetylxylan esterase A 1.5 kb HinDIII a, b [16]

axhA Z78011 Arabinoxylan hydrolase A 1.2 kb EcoRI-XhoI [13]

bglA - β-Glucosidase A 1.0 kb NcoI-SstI This work

eglA AJ224451 Endoglucanase A 0.9 kb XhoI This work

eglB AJ224452 Endoglucanase B 1.1 kb EcoRI-XhoI This work

faeA Y09330 Feruloyl esterase A 0.5 kb EcoRV-XhoI b [43]

xlnB D38071 Endoxylanase B 0.9 kb EcoRI-XhoI [22]

xlnC - Endoxylanase C 1.2 kb EcoRI-XhoI [14]

xlnD Z84377 β-Xylosidase D 2.8 kb PstI-NsiI b [34]

18S X78538 18S rRNA subunit 0.7 kb EcoRI [31]
a fragment from the Aspergillus tubingensis axeA gene.
b genomic fragment instead of cDNA.
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are known to be carbon sources that induce the xylanolytic system in A. niger)[17].

Northern blot analysis of RNA obtained from the wild-type strain showed that

xylanolytic, arabinanolytic, and cellulolytic genes were induced when the organism was

grown on xylan, which is the natural substrate, and on D-xylose (Fig. 1a). High levels of

expression were obtained in most cases after 6 h of growth on the polymeric carbon

source xylan, although the patterns of expression for individual genes differed. Whereas

some genes, including xlnD and aguA, had a high transcription level during the early

phase of induction, other genes, including axeA and eglB were highly transcribed at a

later stage. The level of induction on D-xylose was usually lower than the level of

induction on xylan, but some genes, including xlnD and xlnB, had a relatively high level

of expression on D-xylose. As expected for extracellular enzyme systems under the

control of carbon catabolite repression [17,38], none of the genes was expressed on D-

fructose.

Effect of the xlnR loss-of-function mutation on expression.

An analysis of transcription in the xlnR loss-of-function mutant NXA1-4 revealed

expression of only abfB and bglA upon growth on D-xylose and xylan (Fig. 1a). Mutant

NXA1-4 lacks the ability to induce transcription of genes encoding xylanolytic enzymes

which are involved in the degradation of the polyxylose backbone of xylan. Also,

transcription of genes encoding accessory enzymes is absent in this mutant. These

findings explain the previously described impaired growth of NXA mutants on xylan

[35]. Strains with an XlnR loss-of-function mutation are not able to express the

xylanolytic enzymes, which results in impaired release of saccharides (and therefore

carbon source) from the polymeric xylan. Although arabinofuranosidase B is expressed

in these mutants apparently, the L-arabinose released from arabinoxylan by this enzyme is

not sufficient to allow normal growth of the fungus. The inability of the xlnR loss-of-

function mutants to degrade xylan also effects the release of inducer from the polymeric

substrate. Induction by D-xylose, however, is independent of the presence of the

xylanolytic enzyme system. Therefore, gene expression was re-examined in a second

experiment by using mutant NXA1-4, wild-type strain N902, and xlnR multicopy strain

N902::230-25.12; D-xylose was used as the inducing carbon source in this experiment.
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Fig. 1.  Northern blot analysis of expression of A. niger genes encoding cellulose- and xylan-degrading
enzymes. (a) Time course of induction in A. niger NW205::130 (wt) and NXA1-4 (xlnR1) (a loss-of-
function mutant). Both strains were cultured for 18 h in medium containing 3% D-fructose (Fr), and
mycelia were subsequently transferred to medium containing 1% xylan (Xa) or 1% D-xylose (Xo), and
incubated for the times indicated. Each lane contained 10 µg of total RNA, which was checked by
hybridisation with the 18S rRNA probe. Blots were hybridised with gene-specific probes as indicated.
(b) Comparison of expression of genes encoding cellulose- and xylan-degrading enzymes in A. niger
N902 (wt), NXA1-4 (xlnR1), and N902-pIM230-25.12 (XlnR+) (N902 with multiple copies of xlnR)
upon transfer to medium containing 1% D-xylose for 6 h after growth for 18 h in medium containing 1%
D-fructose. A northern blot analysis was performed exactly as described above. The signal intensities of
the different blots cannot be compared to each other due to the unknown specific activities of the probes
used and the different exposure times used for the various blots.
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Effect of multiple copies of xlnR.

In the wild-type strain all of the genes tested were induced on D-xylose (Fig. 1b),

whereas in strain NXA1-4 only abfB and bglA transcription was observed. In xlnR

multicopy strain N902::230-25.12 all of the genes were also expressed. Some genes (for

example aguA and faeA) had equal transcript levels in both the wild-type and xlnR

multicopy strains, whereas other genes (for example abfB, axhA, bglA, xlnB and xlnC)

had increased transcription levels in the xlnR multicopy strain, compared to the wild-type

strain. From this finding we concluded that the transcriptional activator XlnR regulates

the transcription of the xlnB, xlnC, and xlnD genes encoding the main xylanolytic

enzymes (endoxylanases B and C and β-xylosidase, respectively). In addition, the aguA,

axeA, axhA, and faeA genes encoding accessory enzymes (α-glucuronidase A,

acetylxylan esterase A, arabinoxylan arabinofuranohydrolase A, and feruloyl esterase A)

are controlled by the transcriptional regulator XlnR. The transcriptional activator XlnR

also activates transcription of the eglA and eglB genes, which encode endoglucanases A

and B. This indicates that regulation by the transcriptional activator XlnR goes beyond

regulation of the genes encoding xylanolytic enzymes and also includes regulation of at

least two endoglucanase-encoding genes.

All of the genes that were found to be controlled by the transcriptional activator

XlnR, exhibited differences in their levels of expression in response to increased xlnR

gene copies. The differences in the responses to the xlnR gene copy number might

originate from differences in the XlnR binding sites in the various xylanolytic promoters.

The sequence 5’-GGCTAAA-3’ has been suggested previously to be a consensus binding

site for the XlnR protein; this suggestion was based on the results of a comparison of a

limited number of mainly endoxylanase promoters of different Aspergillus species [35].

The results presented here shown that expression of at least nine genes in A. niger is

controlled by XlnR. The axeA, axhA, eglA, eglB, and xlnC genes, for which an increased

xlnR copy number has a positive effect on the level of transcription, all have a nucleotide

other than adenine at the last position. Transcription of xlnB, which has an adenine at the

last position, however, is also positively influenced. A comparison of the sequences of

these nine promoters (Table 2) suggests, therefore, that the last nucleotide in the

proposed consensus sequence is less important and that 5’-GGCTAA-3’ is a more

appropriate consensus sequence, but the seventh nucleotide could play a role in XlnR

binding.
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All of the A. niger genes, for which XlnR transcriptional control has been

demonstrated, contain one or more copies of this consensus sequence in the promoter

region. The different genes vary in the number of putative XlnR binding sites present, as

four genes have two putative sites. Also, the orientation varies, as some genes have the

opposite orientation or both orientations are present. The differences found in the effect

of the xlnR copy number and the level of transcription of the individual genes cannot be

explained by the differences in the presumed XlnR binding sites, since the mode of

binding of XlnR is not known [35].

The context in which the sites are located in the promoter region may also play an

important role. The putative XlnR binding site is not a direct or inverted repeat, while

most zinc binuclear cluster proteins have a dimeric nature and bind to symmetric sites.

However, some proteins (for example, the AlcR protein of Aspergillus nidulans) are

thought to act as monomers. Two molecules of AlcR can simultaneously bind to

symmetric sites, whereas only one molecule occupies a direct repeat [26].

It has been proposed that repression by CreA of the xylanolytic genes [17,35] is

analogous to the double lock mechanism described for the ethanol regulon in A. nidulans

Table 2.  Putative XlnR binding sites in the upstream region
of XlnR controlled genes

 Gene XlnR binding site Position (s) a

 aguA GGCTAAa -276

 axeA GGCTAAt -261 (R)

 axhA GGCTAAt

GGCTAAg

-340

-850 (R)

 eglA GGCTAAg -710

 eglB GGCTAAg -128

 faeA GGCTAAa -265, -225

 xlnB GGCTAAa -124, -216

 xlnC GGCTAAt

GGCTAAg

-290

-500

 xlnD GGCTAAa -133, -147
a position relative to the ATG translation start codon. (R) indicates
the opposite orientation of the putative XlnR binding site
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[9,24]. In this model CreA represses both the positive and autoregulated trans-acting

gene alcR and structural genes such as alcA and aldA [10,23,26,29]. Some CreA binding

sites in the alcA and alcR upstream region are close to or overlap the AlcR targets

[10,24]. Therefore, it has been suggested that competition between the AlcR and CreA

proteins for the same region is a mechanism in the regulation of the ethanol regulon

genes. This is also the case in the regulation of expression of amdS by the trans-acting

factors AmdR, FacB, AmdA, AmdX, AreA, and CreA [8,27,32,33]. The overlap of

AmdX binding sites with CreA and AmdA binding sites suggests that there is

competition for binding sites by multiple factors [32]. The repressor protein CreA has

been shown to also have a function in regulation of xylanolytic gene expression in A.

niger [13,17]. However, putative CreA sites in the XlnR-controlled genes in A. niger are

generally at distances of more than 40 bp from the putative XlnR binding sites; an

exception is the 1-bp distance in the xlnD upstream region [34]. Thus, XlnR-CreA

competition for all xylanolytic promoters is unlikely. Besides the trans-acting factors

XlnR and CreA, other trans-acting factors may have a function in modulating the

transcription of the various XlnR-controlled genes.

Transcription of the β-glucosidase encoding gene bglA is under separate control,

and therefore not all genes encoding cellulolytic enzymes are controlled by XlnR. Of the

genes involved in xylan degradation, the abfB gene is the only gene whose transcription

is not controlled by XlnR. The encoded enzyme, however, is involved in hydrolysis of L-

arabinofuranosyl residues not only from arabinoxylan but also from arabinan [41] and

pectin [40]. The abfB gene expression is under coordinate control with expression of the

arabinofuranosidase A-encoding abfA gene and the endoarabinase encoding abnA gene

[12]. Although it is clear from the results presented here that the abfB and bglA genes are

not controlled by XlnR, the level of transcription is increased in both the NXA1-4 mutant

and the xlnR multicopy transformant. The promoter sequence of the A. niger bglA gene is

not available, but the abfB gene does not contain the XlnR binding site. The increase in

the level of expression of abfB and bglA on D-xylose may be an indirect effect of the

xlnR loss-of-function mutation and gene dosage. For example, there could be an effect on

pentose catabolism [45], thereby influencing the L-arabitol concentration, which is the

inducer of the abfB gene [42].

The use of a loss-of-function mutation in the transcriptional activator XlnR is a

powerful tool for understanding the fungal strategy for degrading the variety of xylan
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structures that occur in nature. The fact that expression of the xylanolytic enzymes and

expression of some cellulolytic enzymes are co-ordinately regulated at the molecular

level provides new insight into the regulation of expression of both enzyme systems. The

findings presented here strengthen the hypothesis that there is an evolutionary

relationship between some of the xylanolytic and cellulolytic enzyme systems. Xylanases

and cellulases have been shown to be related at various levels. The three dimensional

structures of, for example, family 11 endoxylanases and family 12 endoglucanases are

similar [7]. Also, there are similarities in the primary structures of, for example, β-

xylosidase XlnD and β-glucosidase BglA, both of which are members of the family 3

glycosyl hydrolases [34]. Here we provide evidence that there is co-ordination in the

regulation of xylanases and some cellulases.
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ABSTRACT

Two cellobiohydrolase encoding genes, cbhA and cbhB, have been isolated

from the filamentous fungus Aspergillus niger. The deduced amino acid sequence

shows that CbhB has a modular structure consisting of a fungal-type cellulose-

binding domain (CBD) and a catalytic domain separated by a Pro/Ser/Thr-rich

linker peptide. CbhA consists only of a catalytic domain and lacks a CBD and linker

peptide. Both proteins are homologous to fungal cellobiohydrolases in family 7 of

the glycosyl hydrolases. Northern blot analysis shows that the transcription of the

cbhA and cbhB genes is induced by D-xylose and not by sophorose, and furthermore

required the xylanolytic transcriptional activator XlnR.

INTRODUCTION

Cellulose or β-1,4-glucan is the most abundant polysaccharide in nature and is

closely associated in plant cells walls with the hemicellulose xylan [4]. Filamentous

fungi, in particular Aspergillus and Trichoderma species, are well-known and efficient

producers of plant cell wall degrading enzymes. The cellulose degrading system of these

organisms consists of three classes of enzymes [3]: endoglucanases (EC 3.2.1.4),

cellobiohydrolases (EC 3.2.1.91), and β-glucosidases (EC 3.2.1.21). Members of all

these classes are necessary to degrade cellulose.

The most studied fungal cellulolytic system is that of Trichoderma reesei. Of the

proteins secreted by T. reesei, more than 60% is cellobiohydrolase I (CBHI), which is the

major component of the cellulase system and plays a central role in the degradation of

crystalline cellulose [36]. More recently, the genes for CbhI from Trichoderma viride,

Agaricus bisporus, Penicillium janthinellum, Phanerochaete chrysosporium, Humicola

grisea, Neurospora crassa and Aspergillus aculeatus have been characterised

[1,5,6,21,35,37]. All but one of these CbhI proteins consist of a catalytic domain and a

cellulose binding domain (CBD) linked by a Pro/Ser/Thr-rich linker peptide.

The expression of cellulose degrading enzymes by Aspergillus and Trichoderma

species has been studied extensively [2,15,16,22]. It has been shown that cellulase

encoding genes are regulated at the transcriptional level [17,26,29]. In the presence of D-
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glucose, the genes are not expressed and the carbon catabolite repressor protein Cre1 in

T. reesei causes transcriptional repression of some (hemi-)cellulase encoding genes

[17,18]. However, less is known about the mechanism by which the transcription of

cellulase encoding genes is induced. Recently, it was demonstrated that the Aspergillus

niger xylanolytic transcriptional activator XlnR also directs the transcription of two

endoglucanase encoding genes, eglA and eglB [28]. Here, we describe the cloning and

characterisation of two cellobiohydrolase encoding genes (cbhA and cbhB) in A. niger

and demonstrate that XlnR is also involved in the regulation of transcription of these Cbh

encoding genes.

MATERIALS AND METHODS

Strains and culture conditions. All A. niger strains used were derived from the wild type strain N400

(CBS 120.49). Strains used were N402 (cspA1), NW188 (prtF28, goxC1, cspA1, leuA1, pyrA6),

NW188::pIM3012-115 (which contains the CbhA expression construct), NW188::pIM3011-34 (which

contains the CbhB expression construct), NW197 (argB15, fwnA6, nicA1, cspA1, ∆xlnR-argB+),

N902::pIM230-3.9 (argB15, fwnA1, metB10, cspA1, pyrA5, xlnR+-pyrA+)[10 xlnR copies],

N902::pIM230::pIM101-6 (20 copies of the A. tubingensis xlnA gene(10)), N902::pIM230::pIM101-10

(6 xlnA copies), and N902::pIM230::pIM101-12 (2 xlnA copies). Copy numbers of the various genes

have been determined by the quantification of Southern blots by PhosphorImager analysis (Molecular

Dynamics). Signals were corrected for the amount of DNA loaded in each lane by using the signal of the

endogenous abfB gene.

All media had a pH of 6 and were based on Aspergillus minimal medium [31] with the carbon

sources as indicated in the figures. Spores were inoculated at 106 ml-1. In transfer experiments the pre-

cultures with D-fructose were supplemented with 0.2% (w/v) casamino acids and 0.2% (w/v) yeast

extract. After 18 h of growth, mycelia were recovered by filtration and washed with minimal medium

without carbon source. These mycelia were transferred to minimal medium containing thecarbon sources

as indicated in the figures.

Amino acid sequence determination. A. niger  was grown for 96 h at 30°C in minimal medium

supplemented with 1.5 % (w/v) wheat arabinoxylan. The culture filtrate was collected after filtration,

diluted three times with water and adjusted to a pH of 6.0. DEAE-Sephadex A-50, equilibrated in 50

mM sodium acetate buffer (pH 5.0), was added to the culture filtrate. After 30 to60 min of stirring at

4°C, the DEAE-Sephadex was collected by filtration and transferred to a column. Protein from this

column was first eluted with 50 mM sodium acetate buffer (pH 5.0), and then with 50 mM sodium

acetate buffer (pH 5.0) plus 0.5 M NaCl. Pooled fractions were applied on a DEAE-Sepharose Fast Flow

column, and protein was eluted from this column with a linear gradient of 0.5 M NaCl in 20 mM

piperazine-HCl buffer pH 5.0. The next fractionation step was conducted with a Sephacryl S-300

column, from which protein was eluted with 20 mM piperazine-HCl (pH 5.0)-0.1 M NaCl.

Subsequently, a Superdex 75 column (Hiload 6/60)(Amersham Pharmacia Biotech) and protein was



Chapter 692

loaded and eluted with 20 mM piperazine-HCl (pH 5.0)-0.1 M NaCl. The final purification was done on

a Mono S cation exchange column (HR 5/5,Amersham Pharmacia Biotech). Protein was eluted with a

linear gradient of 1 M NaCl in 10 mM sodium acetate buffer (pH 3.5). These fractions were enriched in

cellobiohydrolase activity. Trypsic digests were made by EUROSEQUENCE, and peptides were

separated to determine their amino acid sequences. Edman degradation was performed with an

automated sequenator (Model 477A, Perkin-Elmer Applied Biosystems) coupled to a high-performance

liquid chromatograph (HPLC)(Model 120A, Perkin-Elmer Applied Biosystems) for analysis of the

phenylthiodantoin amino acids.

PCR. The region encoding the mature protein of the A. bisporus cel2 gene [38] was amplified by PCR

with the oligonucleotides CEL2MAT (5’-GTCGGTACCAACATGGCCG-3’) and CEL2STOP (5’-

ACTCAGAAACATTGGCTATAG-3’) and a full size cDNA clone of cel2 as the template. The amino

acid sequences of the internal peptide fragments of the purified A. niger cellobiohydrolase were used to

derive the oligonucleotide mixtures AD2 (5’-GAYGAYAGYAAYTAYGARCTNTTYAA-3’) and AD6

(5’-GTRAANGGRCTRTTNGTRTC-3’). These oligonucleotide mixtures were used in a PCR with an

excised phagemid library, derived from a xylan-induced cDNA library of A. niger [8], as a template. The

DNA was heat-denatured by incubation for 5 min at 94°C followed by 24 cycles of 1 min at 94°C, 1.5

min at the annealing temperature, and 1.5 min at 72°C. The annealing started at 48°C and was lowered

in each cycle by increments of 0.3 to 40°C. Then, ten additional cycles of 1 min at 94°C, 1.5 min at 40°C

and 1.5 min at 72°C were conducted. The reaction was terminated after a final 5 min incubation at 72°C.

Isolation, cloning and characterisation of the A. niger cbhA and cbhB genes. Plaque hybridisation

with Hybond-N filters (Amersham Pharmacia Biotech) was performed as described by Sambrook et al.

[33]. For the isolation of a cDNA clone of A. niger cbhA, a xylan-induced cDNA library of A. niger [8]

was screened with a 1.5 kb PCR fragment containing Agaricus bisporus cel2 sequences as a probe.

Hybridisation was performed overnight at 56°C. The filters were washed with SSC and SDS (final

concentrations, 0.5x and 0.5%, respectively [1*SSC contains 0.15 M NaCl and 0.015 M sodium citrate].

All other hybridisations were performed overnight at 65°C, and filters were washed until concentrations

of 0.2*SSC and 0.1% SDS were reached. The A. niger cbhA and cbhB genes were isolated after

screening of an A. niger N400 genomic library in λEMBL4 [12]. Standard methods were used for other

DNA manipulations, such as Southern blot analysis, subcloning, DNA digestions, and λ phage and

plasmid isolations [33]. Sequence reactions were performed with a Thermo-Sequenase fluorescent-

labelled primer cycle sequencing kit (Amersham Pharmacia Biotech) with universal sequencing primers

and a Thermo-Sequenase dye terminator cycle sequencing kit (Amersham Pharmacia Biotech) with

gene-specific oligonucleotides. The sequencing reactions were analysed on an ALFexpress sequencer

(Amersham Pharmacia Biotech). Nucleotide sequences were determined for both strands, while the

coding regions were also determined by sequencing of the cDNA. Sequence analysis was performed

with the WinStar software package (DNASTAR). Database searches were performed using the National

Center for Biotechnology Information BLAST software.

Expression vectors for the A. niger cbhA and cbhB genes. The cbhA gene was fused to the promoter

of the A. niger pkiA gene [9] at its start codon with a 3.5 kb NsiI genomic fragment, resulting in

pIM3012. This fragment includes the coding region and 3’ non-coding flanking region of the cbhA gene.

A cDNA clone of cbhB was modified using PCR. A NsiI restriction site was introduced at the ATG start

codon and a BamHI restriction was introduced directly downstream of the stop codon. The cbhB gene

was fused to the promoter of the A. niger pkiA gene at its start codon. The terminator of the Aspergillus
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nidulans trpC gene was ligated downstream of the cbhB stop codon, resulting in pIM3011.

Transformation was performed as described previously by Kusters-van Someren et al. [24].

Northern blot analysis. Total RNA was isolated from powdered mycelia with TRIzol Reagent (Life

Technologies), according to the supplier’s instructions. Poly(A)+ mRNA was isolated with the

PolyATract system IV (Promega), according to the manufacturer’s instructions. For northern blot

analysis, 10 µg of total RNA or 2 µg of poly(A)+ mRNA was glyoxylated and separated on a 1.5% (w/v)

agarose gel [33]. After capillary blotting to Hybond-N membrane (Amersham Pharmacia Biotech), the

transfer and amount of RNA were checked by staining the rRNA on the Hybond filter in a 0.2% (w/v)

methylene blue solution. Filters were hybridised at 42°C in a solution of 50% (v/v) formamide, 10%

(w/v) dextran sulphate, 6*SSC, 0.2% (w/v) Ficoll, 0.2% (w/v) polyvinylpyrrolidone, 0.2% (w/v) bovine

serum albumin, 0.1% (w/v) SDS and 100 µg single stranded herring sperm DNA ml-1. Washes were

performed under homologous hybridisation conditions to 0.2*SSC and 0.1% (w/v) SDS at 65°C. The
32P-labelled DNA probes used were the cDNA fragments listed in Table 1.

Nucleotide sequence accession numbers. cbhA and cbhB sequences have been deposited in the

GenBank and EMBL sequence databases under accession no. AF156268 and AF156269, respectively.

RESULTS

Cloning and analysis of the primary stucture of the A. niger cbhA gene.

Fractions enriched in cellobiohydrolase activities were obtained after fractionation

of culture filtrate of A. niger grown on arabinoxylan. The conditions were the same as

those used to purify endoglucanases A and B and clone their corresponding genes [29].

The protein was enzymatically hydrolysed with trypsin, and from two of the internal

Table 1.  Probes used in northern blot analysis

Gene EMBL accession no. Enzyme encoded Fragment used Reference

ActA M22869 Actin 1.6-kb NcoI-KpnIa) 7

BglA β-Glucosidase A 1.0-kb NcoI-SstI 29

CbhA AF156268 Cellobiohydrolase A 1.7-kb EcoRI-XhoI This study

CbhB AF156269 Cellobiohydrolase B 1.8-kb EcoRI-XhoI This study

EglA AJ224451 Endoglucanase A 0.9-kb XhoI 29

eglB AJ224452 Endoglucanase B 1.1-kb EcoRI-XhoI 29

xlnB D38071 Endoxylanase B 0.9-kb EcoRI-XhoI 19

18S X78538 18S rRNA subunit 0.7-kb EcoRI 27
a) Genomic fragment from the Aspergillus nidulans actA gene.
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peptides obtained, we determined the N-terminal amino acid sequences, specifically, L Y

L M S D D S N Y E L F K (S1) (14 residues) and L G N T D F Y G P G L T V D T N S

P F T V V T Q (S2) (24 residues). Both sequences showed high identity to a cDNA clone

of cel2 from Agaricus bisporus [38], which encodes a cellobiohydrolase. Screening of a

xylan-induced cDNA library of A. niger [8] with this PCR fragment carrying this gene

resulted in the isolation of a full-length cDNA clone, designated CbhA-C9. This cDNA

clone was subsequently used as a probe to screen an A. niger N400 genomic library [12].

A 9 kb EcoRI fragment containing the cbhA gene was cloned resulting in pIM3010.

The sequence determined for the cbhA gene was 3498 bp long and contained 1130

bp of the 5’ non-coding region and 857 bp of the 3’ non-coding region. In the promoter

region, one putative binding site for the CreA protein [23], involved in carbon catabolite

repression, was found at position -934. Also, one putative XlnR binding site [28] was

found 731 bp upstream of the ATG translation start codon.

 The structural part of the cbhA gene is interrupted by three introns. All three

introns fit the features that are generally found for introns in genes from filamentous

fungi [11]. These introns and their positions were confirmed by sequencing the cDNA

clone CbhA-C9. By removing the intron sequences, an open reading frame consisting of

451 amino acids which had a putative pre-sequence of 17 amino acids was found. The

pre-sequence has all the characteristics of a typical signal peptide [13]. However, the N-

terminal amino acid sequences as determined for the internal tryptic fragments were not

found in the derived amino acid sequence. Thus, cbhA does not encode the

cellobiohydrolase activity found in the enzyme fraction. We noticed in addition that

CbhA consists only of a catalytic domain and lacks both the cellulose binding domain

and the linker peptide, which generally links both domains in fungal cellobiohydrolases.

Cloning and analysis of the primary structure of the A. niger cbhB gene.

Degenerate oligonucleotide primers were designed to isolate the gene

corresponding to the trypsic peptides. These primers were used on DNA from the

template xylan-induced cDNA library [8] in a touch-down PCR protocol. A 500 bp PCR

fragment, showing high homology with fungal cellobiohydrolase genes, was used to

isolate the full-length cDNA clone CbhB-C1. This clone was used as a probe to isolate

the cbhB gene, which was present on a 5.5 KpnI fragment and subsequently cloned,

resulting in pIM3013.
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Chapter 696

The sequence determined for the cbhB gene was 2622 bp long and contained 607

bp of the 5’ non-coding region and 407 bp of the 3’ non-coding region. In the promoter

region, two putative CreA binding sites [23] were found at positions -444 and -502. One

putative XlnR binding site [28] was found at position -157.

The structural part of the cbhB gene did not contain introns. The absence of introns

was confirmed by sequencing the cDNA clone ChbB-C1. The derived polypeptide

sequence consists of 536 amino acids and contains a pre-sequence of 21 amino acids,

which complies to the (-3,-1) rule as proposed by von Heine [13]. Both amino acid

sequences determined for the two trypsic fragments were found in the derived amino acid

sequence. Thus, we can conclude that cbhB encodes the cellobiohydrolase activity found

in the purified enzyme fraction.

Alignment of the amino acid sequences of CbhA and CbhB with other fungal

cellobiohydrolases.

The deduced amino acid sequences of CbhA and CbhB were aligned with the

deduced amino acid sequences of other fungal cellobiohydrolases from family 7 of the

glycosyl hydrolases [14](Fig. 1). CbhA showed the highest similarity with CbhB (65.3%)

and CbhI from P. janthinellum [20](62.9%). CbhB showed the highest similarity with

CbhI from A. aculeatus [35](72.6%).

Functionality of the cbhA and cbhB genes.

Both genes were fused at their ATG translation start codons to the constitutive

promoter of the A. niger pkiA gene [9]. This enables expression of these genes under

conditions where normally no induction of cellulases occurs. However, various but low

levels of endoglucanase activity were still present under these conditions of cultivation,

as was concluded after we conducted isoelectric focussing followed by activity staining.

Fig.1. (See former page). Amino acid sequence comparison of A. niger CbhA (AnCbhA), A. niger
CbhB (AnCbhB), P. chrysosporium CbhI-1 (PcCbhI)[6], A. aculeatus CbhI (AaCbhI)[34], A. bisporus
Cel2 (AbCel2)[37], P. janthinellum CbhI (PjCbhI)[21] and T. reesei CbhI (TrCbhI)[33]. Aligment was
performed with the CLUSTAL V program Identical amino acids (*) and 5 out of 7 amino acids identical
(.) are shown.
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This endoglucanase activity was confirmed by incubation of carboxymethyl cellulose

(CMC) with culture filtrate of the parental strain followed by HPLC analysis (data not

shown). After introduction of these expression constructs in A. niger, transformants were

screened for expression of cellobiohydrolase activity with the chromogenic substrate 4-

methylumbelliferryl-β-cellobiose (MU-C). Hydrolysis products of this substrate are

fluorescent when they are excited by UV light. Transformants which gave the largest

halo were selected for submerged cultivation. Southern blot analysis confirmed the

integration into the genome of additional copies of the expression constructs carrying the

respective cbh gene (data not shown). Table 2 shows the cellobiohydrolase activities

Table 2.  Cellobiohydrolase activities determined in culture filtrates of recombinant A. niger strains
NW188::pIM3012-115 and NW188::pIM3011-34a. which produce CbhA and CbhB respectively.

Cellobiohydrolase activityb

After cultivation lasting:Strain

24 h 40 h

NW188          2.3        5.2

NW188::pIM3012-115 (CbhA) 171 201

NW188::pIM3011-34 (CbhB) 220 252
a NW188::pIM3012-115 and NW188::pIM3011-34 produce CbhA and CbhB, respectively. The parent
strain NW188 was used as a control.
b
 Activities are expressed in microunits of mycelia (dry weight) per milligram.

Fig. 2.  Saccharification of cellulose by CbhA and CbhB. 1% (w/v) cellulose was digested with enzyme
solutions enriched in CbhA or CbhB overnight at 30°C. 50 µl of twofold-diluted heat-inactivated (5
min, 100°C) samples was analysed by high-performance anion-exchange chromatography on a Dionex
system with a Carbopac PA-100 column and pulsed amperometrical detection using a gradient of 0.05
M-0.90 M NaOH suitable for glucose oligosaccharide separation. Standards used are D-glucose and
cellobiose.
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determined from the culture filtrates after cultivation of these transformants on 5% D-

glucose. The transformants clearly demonstrated elevated cellobiohydrolase activity,

indicating that both genes encode functional cellobiohydrolases. HPLC analysis (Fig. 2)

revealed that the enzyme preparations enriched in either CbhA or CbhB released

cellobiose upon incubation with CMC. The presence of D-glucose oligosaccharides larger

than cellobiose was probably due to impurities in the enzyme preparations (mainly

endoglucanases).

Both cbhA and cbhB are expressed in the presence of D-xylose but not of sophorose.

The transcription of five cellulase encoding genes, including the two cbh genes,

was studied in a transfer experiment with three different strains. The strains used were

NW197, a strain in which the xylanolytic transcriptional activator gene xlnR is disrupted,

N902::pIM230-3.9, which has multiple copies of the xlnR gene and the wild-type strain

Fig. 3.  Northern blot analysis on total RNA of expression of A. niger genes encoding cellulose- and
xylan-degrading enzymes. Time course induction of A. niger NW197 (∆xlnR; xlnR deletion mutant),
N402 (wt) and N902::pIM230-3.9 (xlnR+; ten copies of xlnR). All three strains were cultured for 18 h
in 3 % (w/v) D-fructose and mycelia were subsequently transferred to 25 mM sorbitol, 25 mM sorbitol
+ 1 mM D-xylose or 25 mM sorbitol + 1 mM sophorose. Blots were hybridised with gene specific
probes as indicated and with an 18S rRNA probe as loading control. The arrows indicate low but
detectable hybridisation signals.
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N402. These three strains were pre-grown on 3% (w/v) D-fructose for 18 h. The

mycelium was harvested, washed with minimal medium, and transferred to minimal

medium with different carbon sources. After 2, 4 and 8 h, the mycelium was harvested

and northern blot analysis was performed with total RNA isolated from the mycelium

samples. Although the levels of transcription were low, transcription of both cbh genes

on D-xylose was observed (Fig. 3). In the xlnR multicopy strain, transcription of cbhA,

cbhB, eglA, eglB, and xlnB was visible 2 h after transfer and disappeared 4 h after

transfer, probably due to exhaustion of the inducer D-xylose. The transcription of cbhA

and cbhB was also analysed in the wild type which was transferred to 1% (w/v) xylan or

1% (w/v) Avicel cellulose and grown for 24 h. Both cbh genes showed higher transcript

levels on xylan than on D-xylose, whereas only cbhB was transcribed on cellulose (data

not shown). The fact that genes are more strongly induced by xylan than by D-xylose has

been before [10,26]. It has been shown that although D-xylose induces the transcription

of genes controlled by XlnR, the carbon catabolite repressing effect of D-xylose is

different from that of xylan. For some of these genes D-xylose displayed repressing

properties already at concentrations higher than 1 mM [37]. The patterns of transcription

of cbhA and cbhB resemble those of both of the endoglucanase genes eglA and eglB and

that of the gene encoding endoxylanase B. However, no transcription of cbhB was

detected in the wild type strain. The xlnR disruptant strain was not able to express any of

the examined genes except bglA, suggesting control of regulation of transcription by the

xylanolytic activator XlnR. This control has already been established for the xlnB, eglA,

and eglB genes [28,29]. Addition of sophorose to cultures did not result in an increase in

the expression of bglA, cbhA, cbhB, eglA, eglB, or xlnB. The transcription of bglA was

not specifically induced by D-xylose or sophorose or regulated by XlnR. Thus, although

bglA is not directly regulated by XlnR, its transcription is indirectly influenced by XlnR.

However, the basis of this mechanism is unknown. These findings confirm data obtained

earlier [29].

As expected for extracellular enzyme systems under the control of carbon

catabolite repression, none of the genes was expressed on D-fructose. The presence of the

CreA binding motif in the promoters of cbhA and cbhB, in combination with the absence

of expression of both genes when grown on D-fructose, suggest CreA mediated carbon

catabolite repression of cbhA and cbhB. Similar data where reported for the cbhI gene in

A. aculeatus, which is repressed by D-glucose under inducing conditions [35].
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Transcription of cbhA and cbhB is regulated by the xylanolytic transcriptional

activator XlnR.

The data obtained from the northern blot analysis shown in Fig. 2 suggest that, in

addition to eglA and eglB, cbhA and cbhB are regulated by XlnR. Because of the low

transcription levels, this northern blot analysis was repeated with a selection of the

samples, which were enriched for poly(A)+ mRNA (Fig. 4). Transcription of cbhA was

observed in the wild-type, whereas the transcription levels were increased in the xlnR

multicopy strain. Transcription of cbhB was observed only in the xlnR multicopy strain,

and no transcription of cbhA and cbhB was observed in the xlnR disruptant strain.

Fig. 4.  Northern blot analysis on polyA+ mRNA of expression of A. niger genes encoding cellulose-
and xylan-degrading enzymes. A. niger strains NW197 (∆xlnR), N402 (wt) and N902::pIM230-3.9
(xlnR+) were cultured for 18 h in 3 % (w/v) D-fructose and mycelia were subsequently transferred to 25
mM sorbitol + 1 mM D-xylose and grown for 2 h. Blots were hybridized with gene specific probes as
indicated and with 18S rRNA and actin (actA) probes as loading controls. The arrows indicate low but
detectable hybridisation signals.
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The effect of additional copies of the Aspergillus tubingensis xlnA gene on the

expression of cbhA and cbhB.

The A. tubingensis xlnA gene contains three copies of the XlnR binding motif 5’-

GGCTAA-3’ [28] and strongly titrates XlnR, leading to a decreased expression of other

XlnR controlled genes [30]. Similar results have also been obtained with Aspergillus

oryzae [20]. Northern blot analysis was performed after a transfer experiment with

several A. niger N902::3xlnR-9 strains containing different numbers of A. tubingensis

xlnA copies integrated into the genome. In this experiment, the A. niger strain

N902::pIM230-3.9 was chosen as the parental strain because of the elevated levels of

transcription of cellulase and xylanase encoding genes. The transcript levels of cbhA,

cbhB, eglA, and xlnB decreased with an increasing number of copies of the A. tubingensis

xlnA (Fig. 5).

Fig. 5.  The effect of additional copies of the A. tubingensis xlnA gene integrated into the genome of A.
niger N902::pIM230-3.(ten copies of xlnR)(lane 1) on the transcription of xylan- and cellulose-
degrading genes. Strain N902::pIM230::pIM101-6 contains 20 copies of the xlnA gene (lane 2),
N902::pIM230::pIM101-10 contains 6 xlnA copies (lane 3) and N902::pIM230::pIM101-12 contains 2
xlnA copies (lane 4). The strains were cultured for 18 h on 3 % (w/v) D-fructose and mycelia were
subsequently transferred to 1 % (w/v) D-xylose and grown for 8 h. Blots were hybridized with gene
specific probes as indicated and with an 18S rRNA probes as loading control.
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DISCUSSION

Two cellobiohydrolase encoding genes from A. niger have been isolated and

characterised. The cbhB gene is not interrupted by introns. The same result was obtained

for the A. aculeatus cbhI gene [35], whereas all the other fungal cbhI genes sequenced,

including the A. niger cbhA gene, had their structural genes interrupted by introns at

various positions. By the classification method based on hydrophobocity analyses of

amino acid sequences as proposed by Henrissat and Bairoch [14], both A. niger Cbh

proteins belong to the glycosyl hydrolases of family 7.

Cellobiohydrolases are composed mostly of three structural domains: a core which

contains the hydrolytic site, a Pro/Ser/Thr-rich hinge which protrudes from the catalytic

core and tends to be highly glycosylated, and attached to the hinge a highly conserved tail

which binds crystalline cellulose [25]. The overall structure of CbhB is similar to those

of most other fungal cellobiohydrolases of family 7 in that it contains both the hinge and

the conserved CBD at its C-terminus. However, CbhA lacks the CBD and the linker

peptide. Covert et al. [6] reported that one of the Panerochaete chrysosporium genes

cellobiohydrolases, namely cbhI-1, also consists of a catalytic domain only. The

nucleotide sequence downstream of the stop codon of A. niger cbhA does not bear

resemblance to the conserved CBD in any frame, excluding the possibility of a frame-

shift due to sequencing errors. It also has no homology with the region downstream of

the stop codon of P. chrysosporium cbhI-1. It is now well established that the removal of

the CBD has little influence on the activities of cellulases towards soluble substrates

while but that it clearly decreases their activity towards insoluble cellulose [25]. It is

possible that cellulases with CBDs are required in the early stages of cellulose

degradation, when most of the substrate is still insoluble [32]. At later stages, when most

of the substrate has been solubilised into oligosaccharides, enzymes without CBDs might

be preferred. In T. reesei these are generated by proteolysis of the CBD. Apparently, both

A. niger and P. chrysosporium utilize different strategies to achieve the same goal, since

both organisms, in contrast to Trichoderma species, are able to synthesize

cellobiohydrolases with and without a CBD.

A few studies have noted that cellulose and sophorose give rise to the highest

levels of cellulase gene expression in T. reesei and Aspergillus terreus [15,17,26]. The

data obtained by the authors of those studies clearly demonstrated the strong inducing

power of sophorose when it is added in concentrations of 1 to 2 mM. Sophorose is
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therefore regarded as the principal candidate for being the natural inducer of cellulase

biosynthesis in Trichoderma [17]. Furthermore, the transcription of two endoxylanases

(xyn1 and xyn2) and of β-xylosidase (bxl1) was also activated when the fungus was

cultured on cellulose and, to a lesser level, when it was grown on a mixture of sorbitol

and sophorose [26]. Similar results were obtained with A. terreus in which cellulose (or

derivatives thereof) is able to provoke the biosynthesis of cellulases and xylanases but in

which xylan (or derivatives thereof) only induces xylanases [15,16]. Our data suggest an

entirely different pattern in A. niger. In this fungus the transcription of the two

endoglucanases eglA and eglB and the two cellobiohydrolases cbhA and cbhB is

specifically triggered by D-xylose and not by sophorose. The gene encoding β-

glucosidase does not follow this pattern. However, the transcription levels of the

cellulase-encoding genes in A. niger are less abundant than in Trichoderma.

The fact that, besides the xylanolytic genes, four cellulolytic genes are expressed

when A. niger is grown on D-xylose suggests a common regulatory mechanism

controlling the transcription of all these genes. Recently, we demonstrated that the

regulation of transcription by XlnR not only directs genes encoding enzymes involved in

the degradation of (arabino)xylan but also directs genes encoding two endoglucanases

[29]. The transcription pattern of the cellobiohydrolase-encoding gene cbhA resembles

that of the endoglucanases: no transcription was detected in the xlnR disruption mutant,

whereas cbhA had increased transcription levels in the xlnR multicopy strain compared to

levels inthe wild-type strain. With cbhB we were not able to clearly demonstrate

transcription in the presence of D-xylose in the wild-type strain, although, as in cbhA, an

XlnR binding site (5’-GGCTAA-3’) is present in the promoter. It seems that the cbhB

gene is transcribed at 24 h and later. Transcription of cbhB was visible in the wild type

strain after being induced by xylan or cellulose for 24 h. Also note that the cDNA clones

of cbhB were isolated from a xylan-induced cDNA library, which was constructed with

RNA isolated 81 and 96 h after inoculation [8]. It is therefore likely that an induction

period of 2 h on D-xylose is probably too short to achieve high transcription levels of

cbhB. In the xlnR multicopy strain, however, transcription of both cbhA and cbhB was

evident. Furthermore, introduction of multiple copies of the A. tubingensis xlnA gene,

which contains three XlnR binding sites, resulted in decreased transcription levels of the

xlnB gene as well as of all four cellulase-encoding genes. This result suggests the

titration of a regulatory factor that all these genes have in common. This regulatory factor
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appears to be XlnR activator protein. In T. reesei, however, based on results of detailed

in vitro binding experiments, two adjacent protein binding motifs in the promoter of the

cbh2 gene, which encodes cellobiohydrolase II, were identified. Although a sequence

resembling the A. niger XlnR binding site was found in the promoter region, based on the

results from competition experiments with oligonucleotides derived from the A. niger

xlnD promoter, it was concluded that the protein that binds to the fragment is not the

XlnR homologue in T. reesei [39]. This conclusion implies mechanistic differences in the

systems of regulation of transcription of genes encoding cellulolytic enzymes in A. niger

and T. reesei.
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SUMMARISING DISCUSSION

Glycosylhydrolases like amylases, pectinases, arabinanases, cellulases and

xylanases are of great interest, not only for their important role in ecological recycling of

biomass, but also for their industrial applications. Improved fungal strains which are

hyperproductive have been obtained by mutagenesis and selection strategies. Over the

last fifteen years many fungal genes encoding glycosylhydrolases were cloned and

characterised This has opened the way to study the mechanisms of regulation of gene

expression and secretion, and to molecular approaches in strain breeding. When growing

in their natural habitat Aspergilli encounter a wide variety of polysaccharides, such as

cellulose, pectin, lignin and hemicelluloses as e.g. (arabino-)xylan. Since these large

molecules cannot be taken up by the fungus directly, Aspergilli secrete a broad range of

enzymes that can degrade these complex polymers to monomeric sugars. The research

described in this thesis focuses on the molecular genetics of genes involved in the

degradation of cellulose and the hemicellulose arabinoxylan.

Chapters 2, 3 and 4 describe studies on the release of L-arabinose residues from

arabinoxylan. In Chapter 2, Aspergillus niger creA mutants relieved of carbon repression

were isolated and the effects of the mutations were studied on the expression of

arabinanases and L-arabinose catabolic enzymes. Carbon catabolite repression is a global

regulatory mechanism by which in the presence of D-glucose or other rapidly

metabolisable carbon sources the expression of genes involved in the utilisation of less-

favoured carbon sources is repressed (see for review [27]). The A. niger creA mutants

were isolated from an areA parental strain by selection of colonies that exhibited

improved growth on a combination of 4-aminobutanoic acid (GABA) and D-glucose. The

creA mutants obtained were used to study the involvement of CreA in repression by D-

glucose of arabinanases and L-arabinose catabolism in A. niger. In the wild-type A. niger

strain, α-L-arabinofuranosidase A (AbfA), α-L-arabinofuranosidase B (AbfB), endo-

arabinanase (AbnA), L-arabinose reductase and L-arabitol dehydrogenase were induced

by L-arabinose, but the addition of D-glucose prevented this induction. Repression was

relieved to varying degrees in the creA mutants, showing that biosynthesis of

arabinanases and L-arabinose catabolic enzymes is under control of CreA. The different

A. niger creA alleles displayed non-hierarchical heterogeneity. This behaviour was also

observed in Aspergillus nidulans when the effects of several creA alleles was studied on
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the arabinanase system in this fungus [31]. In fact, the overall patterns of arabinanase

expression in both A. niger and A. nidulans are so similar, that the results from studies

conducted with A. nidulans can be extrapolated to A. niger and vice versa.

The latter remark is important in view of the results described in Chapter 3. In this

chapter, the cloning, characterisation and disruption of the A. nidulans abfB gene is

described. The deduced amino acid sequence of the A. nidulans abfB gene shows a high

identity with other α-L-arabinofuranosidases of family 54 of glycosylhydrolases [10].

Chapter 3 also describes the analysis of expression of abfB in an A. nidulans wild type

strain and several mutant strains. These strains are affected either in their response to

ambient pH (palA1 and pacCc14), carbon catabolite repression (creAd4), the ability to

utilise L-arabitol as a carbon source (araA1) or a combination of both latter mutations.

Analysis of abfB expression is facilitated in A. nidulans, since AbfB is the major α-L-

arabinofuranosidase activity found in A. nidulans [25]. This in contrast to A. niger which

has two α-L-arabinofuranosidases, namely AbfA and AbfB [32]. p-Nitrophenyl-α-L-

arabinofuranoside (pNP-A) activities determined in the culture medium can thus be

correlated to the transcription level of abfB. Furthermore, the existence of some well

defined mutants gives an excellent tool to investigate the effect of several alleles on the

expression of the abfB gene in A. nidulans. The accumulation of abfB mRNA, total α-L-

arabinofuranosidase activity and AbfB protein levels have been determined in these

strains. The data obtained clearly demonstrated a super-induction of AbfB expression in

the araA1/creAd4 double mutant, i.e. the effect of the combination of both alleles on the

expression of AbfB was higher than the sum of the alleles separately. This indicates that

both the accumulation of inducer and relieve of repression of transcription, in this case

carbon catabolite repression, needs consideration when designing strain improvement

strategies.

Although disruption of the A. nidulans abfB gene demonstrated that this gene

codes for the major α-L-arabinofuranosidase, also other pNP-A hydrolysing activities are

expressed in this fungus. Based on immunological data, it was concluded that one of

those minor activities appeared to be an enzyme similar to A. niger/A. tubingensis

arabinoxylan arabinofuranohydrolase A (AxhA)(see also Chapter 4).

Chapter 4 describes the isolation and characterisation of the arabinoxylan-

arabinofuranohydrolase A (AxhA) encoding genes from the closely related fungi A. niger

and A. tubingensis. The primary structure of these enzymes is not related to those of other
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α-L-arabinofuranosidases, except for a low, but significant similarity with XylC, a

bacterial α-L-arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa which

acts only on oat spelt xylan. Recently, both Aspergillus AxhA proteins have been

included in family 62 of glycosyl hydrolases [10]. This family also includes P.

fluorescence XylC and two α-L-arabinofuranosidases from Streptomyces species [26,33].

All the enzymes classified in this family are L-arabinose releasing activities which act

specifically on (arabino-)xylan. These proteins were assigned to this family on the basis

of the similarity of their catalytic domains. However, the AxhA enzymes consist only of

a catalytic domain, whereas P. fluorescence XylC contains also a cellulose binding

domain (CBD) and both Streptomyces proteins contain a xylan binding domain (XBD)

instead. The primary structure of the substrate-binding domains, CBD and XBD

respectively, are clearly distinct [33]. This explains why XylC binds specifically to

Avicel and not to xylan [15], whereas S. lividans AbfB binds specifically to insoluble

xylan [33].

AxhA was first isolated and described by Kormelink et al. [19]. The enzyme

releases 1,2-α- and 1,3-α-linked arabinofuranosyl groups from arabinoxylans and

arabinoxylan-derived oligosaccharides but not from other L-arabinose-containing

substrates. Moreover, AxhA shows a very low activity towards artificial substrate (pNP-

A)[18,19]. This in contrast to AbfB which also displays arabinose-releasing activity

towards L-arabinan, arabinogalactan and 1,5-α-linked α-arabinofuranosyl

oligosaccharides and is active towards pNP-A [32]. The specific activity of A.

tubingensis AxhA on pNP-A is approximately 15 x 10-3 U mg-1 versus 23.5 U mg-1 for

AbfB [6]. Apparently, the nature of the group to which the α-L-arabinosyl residue is

attached is more important for the activity of AxhA than of AbfB. Although both AxhA

and AbfB are active on polymeric arabinoxylan, AxhA removes the L-arabinosyl residues

more efficiently. This is reflected in plate assays with 5% D-glucose + 1% oat spelt xylan

comparing A. niger transformants harbouring expression constructs in which the axhA or

the abfB gene is driven by the A. niger pkiA promoter. AxhA producing strains could be

selected on the basis of a halo of precipitated xylan appearing around the colony. By the

removal of most of the L-arabinose side residues, the xylan chains can form hydrogen

bonds in the absence of steric hindrance by the α-L-arabinosyl residues and therefore

precipitate. None of the AbfB transformants caused any halo suggesting a less efficient

removal of the L-arabinosyl residues from the xylan backbone [6,19]. Kinetic
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experiments demonstrated that AxhA is able to release L-arabinosyl substituents from

terminal, as well as from non-terminal, single substituted D-xylopyranosyl residues in low

molecular weight oligosaccharides, whereas AbfB can only release L-arabinosyl

substituents from terminal single substituted D-xylose units [18]. Besides this difference

in mode of action, AxhA and AbfB differ also in their stereochemical course the

hydrolysis. Whereas AbfB, like many other exo-glycanases, acts by retaining of anomeric

sugar configuration, AxhA is tentatively classified as an inverting enzyme, like many

other glycosidases and endo-glycanases [24]. If also the sizes of both enzymes are taken

into account, it is tempting to suggest a different manner in which the α-L-

arabinofuranosyl residues are released from the D-xylose backbone by both enzymes.

AbfB, which has a molecular weight of approx. 65 kDa, shows a true exo-type

mechanism: it encloses the L-arabinofuranosyl residue and hydrolyses the linkage

between the L-arabinofuranosyl residue and the xylose backbone. Due to its relative small

size of 32 kDa, AxhA is able to squeeze itself down to the arabinose-xylan linkage and

hydrolyses this linkage in an endo-type fashion.

Chapter 4 also describes the transcriptional analysis of the axhA gene in A. niger.

Northern blot analysis demonstrated that the expression of axhA was regulated at the

transcriptional level. Transcription of axhA was derepressed in creAd mutants and carbon

catabolite repressed by D-glucose. Furthermore, the axhA expression pattern differed

from that of abfB, since the former gene was strongly induced by birchwood xylan and

much less by L-arabitol or L-arabinose, which were the strongest inducers of abfB

transcription. Although both AxhA and AbfB are active on arabinoxylan, the expression

of these two L-arabinose releasing activities is regulated differently. From these

experiments it was concluded that the transcription of axhA is possibly regulated in a

similar manner to that proposed for the expression of xlnA in A. tubingensis [7]. For xlnA

gene expression the presence of a specific transcriptional activator was demonstrated.

This activator was proposed to stimulate the transcription other structural xylanolytic

genes as well. The transcriptional analysis data described in Chapters 2 and 4

demonstrate that both abfB and axhA are subjected to carbon catabolite repression in A.

niger. Both genes are also supposed to be regulated by a route-specific transcriptional

activator protein [5](Chapters 2, 4 and 5). However, it is most likely that abfB and axhA

are regulated by different route-specific transcriptional activator proteins. This was
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concluded after comparison of the transcription patterns of both genes under inducing

conditions in the presence D-glucose in creAd genetic backgrounds.

The same conclusion is drawn in Chapter 5 which clearly demonstrates that axhA

is transcriptionally regulated by XlnR, whereas abfB is not. The xlnR gene, encoding a

transcriptional activator co-ordinating xylanolytic expression in A. niger, was isolated by

complementation of an A. niger mutant lacking xylanolytic activity [23]. The XlnR

protein consists of 875 amino acids capable of forming a zinc binuclear cluster domain

with similarity to the zinc clusters of the GAL4 superfamily of transcription factors. The

XlnR-binding site 5’-GGCTAA-3’ is also found within several xylanolytic promoters of

various Aspergillus species, Trichoderma reesei and Penicillium chrysogenum. Chapter 5

gives a more detailed transcriptional analysis of genes encoding enzymes involved in

xylan degradation and two endoglucanases involved in cellulose degradation in A. niger.

A strain with a loss-of-function mutation in the xlnR gene, a strain with multiple copies

of this gene and a wild-type strain were investigated in order to define which genes are

controlled by XlnR. The data presented show that the transcriptional activator XlnR

regulates the transcription of the xlnB, xlnC and xlnD genes encoding the main

xylanolytic enzymes (endoxylanases B and C and β-xylosidase, respectively). Also, the

transcription of the genes encoding the accessory enzymes involved in xylan degradation,

including α-glucuronidase A (aguA), acetylxylan esterase A (axeA), arabinoxylan

arabinofuranohydrolase A (axhA) and feruloyl esterase A (faeA), were found to be

controlled by XlnR. In addition to the genes already mentioned, XlnR is involved in the

regulation of transcription of two cellobiohydrolase encoding genes (cbhA and cbhB; see

chapter 6), an α-galactosidase and a β-galactosidase encoding gene (aglB and lacA,

respectively)[34].AglB and LacA are both expressed when grown on arabinoxylan or D-

xylose and are implicated to be involved in the degradation of hemicelluloses, including

arabinoxylan, and pectin [34]. These results indicate a key role of the xylanolytic

regulator XlnR in the degradation of hemicellulose and cellulose.

The fact that XlnR also regulates the transcription of two genes encoding EglA and

EglB encouraged us to study the transcriptional regulation of two cellobiohydrolase

genes, cbhA and cbhB. This research is described in Chapter 6. cDNA clones of both

genes were isolated from a xylan-induced cDNA library of A. niger. The cDNA clones

were subsequently used to isolate the corresponding genes from an A. niger genomic

library. An unexpected result was that cbhA and cbhB are both induced by D-xylose and
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not by sophorose. However, the transcription of cellulase-encoding genes in A. niger is

less pronounced compared to T. reesei. The induction of cbhA, cbhB, eglA and eglB by

D-xylose is differenr to what is generally found in T. reesei [14,21]. There it was found

that when a wild-type T. reesei strain was grown on cellulose or sorbitol + sophorose, the

gene encoding cellobiohydrolase 1 (cbh1) was strongly induced and the genes encoding

β-xylosidase (bxl1) and two endoxylanases (xyn1 and xyn2) were moderately induced.

However, when grown on oat spelt xylan bxl1, xyn1 and xyn2 were more induced, while

cbh1 was only poorly expressed. No expression of any of these genes was found when

grown on 5% D-xylose, although the authors suggest that the high D-xylose concentration

probably had a repressive effect [21]. Growth on sorbitol + xylobiose resulted in a poor

induction of bxl1 and xyn2 and no induction of cbh1. Specificity of cellulase and

xylanase induction was already demonstrated in T. reesei [12] and similar results were

obtained when T. reesei was cultivated on media based on cellulose and xylan as main

carbon source [1]. Also in Aspergillus terreus, biosynthesis of cellulose- and xylan-

degrading enzymes appears to be under separate regulatory control [13]. Later, the effect

of homo- and heterodisaccharides composed of D-glucose and D-xylose on the induction

of cellulose- and xylan-degrading enzyme systems in A. terreus was studied in more

detail [11]. This showed that the heterodisaccharide 2-O-β-D-glucopyranosyl D-xylose

(Glc-β1-2Xyl) was the most powerful inducer of both cellulolytic and xylanolytic

enzymes. Sophorose only induced cellulases, whereas xylobiose induced the biosynthesis

of xylanases and only poorly that of cellulases. These findings support the concept of

separate regulatory control of the synthesis of cellulases and xylanases in A. terreus.

Hrmová et al. [11] proposed an important role for mixed disaccharides, composed of D-

glucose and D-xylose moieties, which may occur in nature, in regulating the synthesis of

wood-degrading enzymes. But as indicated by the authors, the group of

heterodisaccharides examined cannot be regarded as universal inducers of cellulases and

xylanases in fungi, since these compounds were ineffective in T. reesei. In Aspergillus

aculeatus F50, which is related to A. niger, synthesis of cellulases was most pronounced

when the fungus was cultured on (arabino-)xylan. The levels of cellulase activities in the

medium was approx. 2-5 fold compared to cultures with cellulose-based media [22].

From the literature reports cited above, it may be concluded that fungi interact with

their environment in their own specific way and that the underlying mechanisms of gene

expression can be different from organism to organism. When comparing the data
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described in this thesis with data obtained in T. reesei [12,14,21], it is clear that the

mechanisms of induction of cellulase- and xylan-degrading enzymes in T. reesei and A.

niger are significantly different. This makes it interesting to compare these two fungi in

relation to the regulation of the gene expression of these enzyme systems.

 The data presented in Chapter 6 show that the xylanolytic transcriptional activator

XlnR is involved in the regulation of transcription of the A. niger cellobiohydrolase

genes cbhA and cbhB. The fact that in addition to xylanolytic genes, also four cellulolytic

genes are expressed when grown on D-xylose suggests a common regulation mechanism

controlling the expression of these genes. The pattern of transcription of cbhA resembles

those of eglA and eglB. No expression was detected in the xlnR disruption mutant,

whereas cbhA had increased transcription levels in the xlnR multicopy strain compared to

the wild-type strain. In the case of cbhB we were not able to clearly demonstrate

transcription in the wild-type strain in the presence of D-xylose. It seems that the cbhB

gene is transcribed late during growth under induction conditions and it is therefore

likely that level of cbhB transcription was sub-optimal under the conditions tested. In the

xlnR multicopy strain, however, transcription of both cbhA and cbhB is evident. The

presence of the XlnR binding site 5’-GGCTAA-3’ in the promoters of the xylanolytic

genes, eglA, eglB and both cbhA and cbhB genes supports the findings obtained by

northern blot analysis that XlnR is involved in the activation of transcription of both cbh

genes. Furthermore, the introduction of multiple copies of the A. tubingensis xlnA gene,

which contains three XlnR binding sites [7,23], resulted in decreased transcription levels

of the xlnB gene as well as of all four cellulase-encoding genes. This suggests titration of

the regulatory factor XlnR which all these genes have in common. Titration of a common

transcriptional regulatory factor involved in the expression of genes encoding xylanolytic

enzymes was also demonstrated in Aspergillus oryzae. Introduction of 64 copies of the

promoter region of the endoxylanase encoding gene xynF1 in the same direction led to

reduced expression of both xylanase and β-xylosidase genes in the transformants [16].

Recently, two adjacent protein binding motifs acting co-operatively in the induction by

cellulose were identified in the cbh2 (cellobiohydrolase II-encoding) promoter of T.

reesei. The nucleotide sequence 5’-ATTGGGTAATA-3’, designated as cbh2-activating

element (CAE), is responsible for binding of protein complexes from cellulase-forming

(induced) and non-induced mycelia and is essential for induction of gene expression by

cellulose and sophorose in vivo [35]. The CCAAT (=ATTGG) motif is recognised by a T.
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reesei homologue of Hap3, the GTAATA motif probably interacts with the specific

transcriptional activator. Since the 3’ area bears some resemblance to the A. niger XlnR

binding site, a T. reesei homologue of XlnR might be this transcriptional activator.

However, based on the results from competition experiments using oligonucleotides

derived from the A. niger xlnD promoter, it was concluded that the protein binding to the

fragment is not the XlnR homologue of T. reesei [35]. Furthermore, two putative

regulatory genes ace1 and ace2 (Activator of Cellulase Expression) of cbh1 were isolated

from T. reesei. The ace2 gene product, ACE II, contains a zinc binuclear DNA-binding

domain and was reported to bind to the DNA sequence 5’-GGCTAATAA-3’, but it is

less than half the size of A. niger XlnR [28,35]. Thus, it was speculated that ACE II and a

complex containing Hap3 are involved in cbh2 gene transcription [35].

Using the classification method based on hydrophobic cluster analysis as proposed

by Henrissat and Bairoch [10], both A. niger CbhA and CbhB proteins may be included

in the glycosyl hydrolases of family 7. CbhA showed the highest identity with CbhB

(65.3%) and CbhI from Penicillium janthinellum (62.9%). CbhB showed the highest

identity with CbhI from A. aculeatus (72.6%). All members of this family are

cellobiohydrolases of fungal origin and are mostly composed of three structural domains:

a core which contains the hydrolytic site, a Pro/Ser/Thr-rich hinge which protrudes the

catalytic core and tends to be highly glycosylated, and attached to the hinge a highly

conserved tail which binds crystalline cellulose [20]. The deduced amino acid sequence

of CbhB is similar to that of most other cellobiohydrolases of family 7 in that it contains

the conserved CBD at its C-terminal end attached to the catalytic domain via a Ser/Thr-

rich linker peptide. The CBD does not only decrease the effective Km of the enzyme with

natural substrates but also releases cellulose chains from the cellulose crystal prior to

hydrolysis by the catalytic domain [17]. It is now well established that the removal of the

CBD has little effect on the activity of cellulases towards soluble substrates while their

activity towards insoluble cellulose is clearly decreased [20]. The proteolytic removal of

the linker peptide and the CBD may serve as an in vivo mechanism to alter the properties

of cellulases during hydrolysis, when complex insoluble substrates are gradually

shortened to soluble and more accessible substrates [29]. However, CbhA lacks a CBD

and a linker peptide and only consists of a catalytic domain. A similar gene organisation

was found in the white-rot fungus Phanerochaete chrysosporium [4]. Apparently, both A.

niger and P. chrysosporium utilise a different strategy to achieve the same goal, since
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both organisms, in contrast to Trichoderma species, are able to produce

cellobiohydrolases with and without a CBD. Recently, the isolation of the gene (exo1)

and characterisation of the enzymatic properties of a major exoglucanase of the fungus

Humicola grisea without a cellulose-binding domain was reported [30]. Exo1 is 45 %

and 47.5 % identical to A. niger CbhA and CbhB, respectively. The transcription levels

of exo1 and cbh1, encoding a cellobiohydrolase with a CBD, are high on Avicel and

repressed by D-glucose. The addition of a CBD and a hinge region to Exo1 caused a

decrease in its enzymatic activity. However, detailed enzyme activity studies suggested

that Exo1 is not a cellobiohydrolase but rather an exoglucanase hydrolysing cellulosic

substrates by releasing exowise D-glucose units.

Cellulose and hemicelluloses, for example arabinoxylan, and lignin are the major

polymeric constituents of plant cell walls and form the largest reservoir of fixed carbon

in nature. Degradation of these polysaccharides is an important process in recycling

carbohydrates from plant cell walls. Microorganisms play a crucial role in this recycling

process, due to their capacity to secrete a wide range of polysaccharide degrading

enzymes. The plant cell walls are composed of complex polysaccharides and structural

proteins that interlace long, crystalline ribbons of cellulose spooled around each cell in

several strata. The two most abundant structural polysaccharides are cellulose and the

hemicellulose xylan, which are closely associated in the plant cell walls [3]. All the

extracellular polysaccharide hydrolases from P. fluorescence contain a CBD which are

required for efficient hydrolysis of xylan and cellulose [9]. In the normal environment of

soil saprophytes, where efficient degradation of plant structural polysaccharides demands

prolonged association of active enzymes with relatively recalcitrant substrates, CBDs

would confer a selective advantage on plant-cell-wall-degrading enzymes by promoting

intimate contact between enzyme and substrate. It was therefore proposed that the

diversity of xylan structure coupled with the high concentration of cellulose in different

plant species could be the basis for the evolution of a single CBD, rather than protein

domains which bind to each plant cell wall polysaccharide [15]. However, S. lividans

AbfB has a binding domain binding specifically to xylan and most other α-L-

arabinofuranosidases, e.g. AxhA, lack any binding domains. This suggest that the

molecular architecture of the P. fluorescence polysaccharide degrading system is not a

common feature, but rather a strategy to degrade plant cell wall material.
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The data described in this thesis suggests a different strategy employed by A. niger.

The genes xlnB and xlnD, encoding endoxylanase B and β-xylosidase respectively, are

expressed at a low basal level [8]. This would be analogous to what is observed in T.

reesei. Transcripts of two members of the cellulase system, cbh1 and egl1, are present at

low basal levels in non-induced conditions. This basal cellulase activity would digest

cellulose, which releases oligosaccharides that are able to enter the cell and trigger

Fig. 1: Schematic model for the regulation of genes encoding enzymes involved in the degradation of
plant cell wall polysaccharides in A. niger. The model presumes that low levels of endoxylanase B
(XlnB) and β-xylosidase (XlnD) liberate small amounts of D-xylose from the cellulose-hemicellulose
matrix of the plant cell wall. XlnR, which is induced by the presence of D-xylose, activates apart from
genes encoding xylanolytic also a number of genes involved in the release of monosaccharides other
than D-xylose. These monosaccharides then induce the expression of genes which are not directly
controlled by XlnR, e.g. the arabinanases encoding genes abfA, abfB and abnA, or genes encoding
pectinolytic enzymes. These enzymes are directly or indirectly involved in the degradation of other
polysaccharides present in the wall matrix.
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expression of all cellulases. The transcript levels of cbh1 and egl1 are induced at least

1100-fold in the presence of cellulose [2].

In A. niger xylanase B and β-xylosidase, encoded by xlnB and xlnD respectively,

would be present at low basal levels in the uninduced fungus or alternatively due to C-

limitation these genes might be the first ones that become derepressed [8]. These

enzymes liberate D-xylose which then enters the cell and induces the xylanolytic genes

via the xylanolytic transcriptional activator protein XlnR (Fig. 1). However, this would

not only trigger the induction of the main xylanolytic enzymes, but also the induction of

accessory enzymes (AguA, AxeA, AxhA and FaeA), cellulolytic enzymes (CbhA, CbhB,

EglA and EglB) and enzymes able to liberate D-galactosyl residues from polysaccharides

(α-galactosidase B (AglB) and β-galactosidase A (LacA))[34]. These enzymes are then

able to release other mono- or oligosaccharides being able to induce the expression of

other polysaccharide-degrading enzymes. For example, the two cellulases and two

endoglucanases regulated by XlnR will release sugar compounds that induce the

complete cellulolytic system. AxhA releases L-arabinose being the inducer of the

arabinan-degrading enzyme system [32] and the galactosidases will induce the galactan-

degrading system. Moreover, the β-galactosidase LacA is also involved in pectin

degradation [34] and might therefore be involved in triggering the expression of pectin

degrading enzymes as well. According to this model, plant-cell-wall-degrading enzymes

would be induced in a cascade enabling the fungus to interact in a fast and efficient

manner with its environment.
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Glycosylhydrolases, zoals bijv. cellulases en xylanases, zijn ecologisch belangrijk

door hun rol in het recyclen van biomassa. Bovendien is er een groeiende interesse voor

deze enzymen vanwege hun potentie in industriële applicaties. In hun natuurlijke

omgeving komen Aspergilli allerlei polysacchariden tegen zoals cellulose,

hemicelluloses (bijv. arabinoxylan) en pectine. Deze grote moleculen kunnen niet direct

opgenomen worden door de schimmel, maar moeten eerst in kleinere stukken

afgebroken worden. Aspergilli zijn in staat om een grote verscheidenheid aan enzymen

uit te scheiden die deze complexe polymeren op kunnen splitsen in momomere suikers.

Deze suikers worden vervolgens opgenomen door de schimmel en fungeren dan als

koolstofbron. Het in dit proefschrift beschreven onderzoek concentreert zich op de

moleculaire genetica van genen die betrokken zijn bij de afbraak van cellulose en de

hemicellulose arabinoxylan.

In hoofdstukken 2, 3 en 4 staat de afsplitsing van L-arabinose residuen van

arabinoxylan centraal. Hoofdstuk 2 beschrijft de isolatie van Aspergillus niger creA

mutanten en het effect van deze mutaties op de expressie van arabinanases en L-

arabinose katabole enzymen. Koolstof kataboliet repressie is een algemeen regulatie

mechanisme waarbij de aanwezigheid van D-glucose of een andere snel metaboliseerbare

koolstofbron de expressie remt van genen die betrokken zijn bij de utilisatie van minder

snel metaboliseerbare koolstofbronnen. In Aspergillus speelt het repressor eiwit CreA

een belangrijke rol in koolstof repressie. De in dit hoofdstuk beschreven creA mutanten

vertoonden allen koolstof derepressie, d.w.z. dat arabinanases en L-arabinose katabole

enzymen ook in aanwezigheid van D-glucose tot expressie gebracht worden. De A. niger

creA mutanten werden geïsoleerd uit een areA ouderstam door kolonies te selecteren die

beter groeiden op de combinatie 4-aminobutaanzuur (GABA) en D-glucose. De

verkregen creA mutanten werden gebruikt om de betrokkenheid van CreA in de repressie

van D-glucose op de expressie van arabinanases en L-arabinose katabolisme beter te

bestuderen. In de A. niger wild type stam werd de expressie van α-L-

arabinofuranosisdase A (AbfA), α-L-arabinofuranosidase B (AbfB), endo-arabinanase A

(AbnA), L-arabinose reductase en L-arabitol dehydrogenase geïnduceerd door L-

arabinose, maar toevoeging van D-glucose remde de biosynthese van deze enzymen. In

de creA mutanten werd de repressie door D-glucose in verschillende mate opgeheven,

hetgeen wijst op controle de biosynthese van arabinanases en L-arabinose katabole

enzymen door CreA.
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Verschillende studies laten zien dat de biosynthese hemicellulases in zowel A.

niger als A. nidulans op vergelijkbare wijze worden gereguleerd. Dit maakt het mogelijk

om resultaten van vergelijkbare studies verricht met A. nidulans te extrapoleren naar A.

niger. Dat laatste is belangrijk voor de resultaten beschreven in hoofdstuk 3. In dit

hoofdstuk wordt de klonering, karakterisering en disruptie van het A. nidulans abfB gen

beschreven. De afgeleide aminozuur sequentie van AbfB vertoont een hoge mate van

homologie met α-L-arabinofuranosidases uit andere schimmels die zijn ingedeeld in

familie 54 van glycosylhydrolases. Tevens werd de expressie van abfB geanalyseerd in

een A. nidulans wild type stam en een aantal mutanten. De mutaties in deze stammen

beïnvloeden onder andere de reactie op veranderingen van de externe pH (palA1 en

pacCc14), de koolstof kataboliet repressie (creAd4) of het vermogen om L-arabitol als

koolstofbron te gebruiken (araA1). Doordat er goed gedefinieerde mutanten van A.

nidulans beschikbaar zijn is deze schimmel bij uitstek geschikt om het effect te

bestuderen van verschillende allelen op de abfB expressie. In de wild type stam en

mutanten werden de accumulatie van abfB mRNA, de totale α-L-arabinofuranosidase

activiteit en het AbfB eiwitgehalte bepaald. De verkregen data lieten duidelijk zien dat

de expressie van abfB transcriptioneel gereguleerd is. Het transcriptie niveau van abfB

was verhoogd in de palA1 stam terwijl de expressie werd gerepresseerd in de pacCc14

stam, hetgeen suggereert dat AbfB tot expressie wordt gebracht bij een zure externe pH.

De expressie van AbfB werd super-geinduceerd door de ophoping van de inducer in een

koolstof gederepresseerde genetisch achtergrond in de araA1/creAd4 dubbelmutant. Met

andere woorden, het effect van de combinatie van beide mutaties op de expressie is

groter dan de som van allelen apart. Gendisruptie van abfB in A. nidulans toont aan dat

dit gen inderdaad codeert voor de voornaamste α-L-arabinofuranosidase activiteit.

Daarnaast werden er ook andere α-L-arabinofuranosidase activiteiten gevonden in deze

schimmel. Mede gebaseerd op immunologische data werd geconcludeerd dat één van die

activiteiten veroorzaakt word door een enzym dat overeenkomstig is met arabinoxylan-

arabinofuranohydrolase A (AxhA) van A. niger/Aspergillus tubingensis (zie ook

hoofdstuk 4).

Hoofdstuk 4 beschrijft de isolatie en karakterisatie van de genen die coderen voor

arabinoxylan-arabinofuranohydrolase A (AxhA) van de nauw verwante schimmels A.

niger en A. tubingensis. AxhA is alleen actief op arabinoxylan en is in staat om de L-

arabinose zijgroepen af te splitsen van de xylan hoofdketen. De aminozuur sequenties

van deze genen vertoonden geen verwantschap met α-L-arabinofuranosidases, behalve
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met XylC. XylC is een bacteriële α-L-arabinofuranosidase uit Pseudomonas fluorescens

subsp. cellulosa dat eveneens alleen actief is op xylan. Onlangs zijn beide AxhA eiwitten

en XylC van P. fluorescens ingedeeld in familie 62 van de glycosyl hydrolases. Voor

deze indeling, gebaseerd op hydrofobe cluster analyse, werd de afgeleide aminozuur

sequentie van de katalytische domeinen van de enzymen gebruikt. De AxhA enzymen

bevatten namelijk geen specifiek substraat bindings domein, dit in tegenstelling tot de

bacteriële enzymen die tot deze familie behoren.

De expressie van axhA wordt gereguleerd op transcriptioneel niveau. De

transcriptie van axhA werd gederepresseerd in creAd mutanten en koolstof gerepresseerd

door D-glucose. Uit northern blot analyses bleek dat de transcriptie van axhA door andere

koolstofbronnen werd geïnduceerd dan de transcriptie van abfB. Terwijl axhA het sterkst

geïnduceerd werd door xylan, en in mindere mate door L-arabitol en L-arabinose, zijn

deze laatste twee suikers juist de sterkste inducers voor abfB transcriptie. Ondanks dat

zowel AbfB als AxhA L-arabinose groepen van xylan kunnen verwijderen worden beide

corresponderende genen dus op verschillende wijze op het niveau van transcriptie

gereguleerd.

De resultaten beschreven in hoofdstuk 5 bevestigen deze conclusie nog eens. Het

axhA gen wordt duidelijk transcriptioneel gereguleerd door XlnR, terwijl dit niet het

geval is voor abfB. XlnR is een activator eiwit dat de transcriptie activeert van

xylanolytische genen. Het is een DNA-bindend eiwit en herkent het sequentie element

5’-GGCTAA-3’. Dit sequentie motief is gevonden in een aantal promoters van

xylanolytische genen in verschillende Aspergillus soorten, Trichoderma reesei en

Penicillium chrysogenum. Hoofdstuk 5 geeft een meer gedetailleerde transcriptie analyse

in A. niger van genen die coderen voor enzymen betrokken bij de afbraak van xylan en

twee endoglucanases die betrokken zijn bij de afbraak van cellulose. Om te onderzoeken

welke van deze genen gereguleerd worden door XlnR werd gebruik gemaakt van een

stam met een loss-of-function mutatie in het xlnR gen, een stam met extra kopieën van

dit gen en een wild type stam. De data laten zien dat XlnR de transcriptie reguleert van

xlnB, xlnC en xlnD welke coderen voor de xylanolytische enzymen die inwerken op de

xylan hoofdketen (respectievelijk, endoxylanases B en C en β-xylosidase). Ook reguleert

XlnR de transcriptie van genen die coderen voor enzymen die zij-groepen verwijderen

van de xylan hoofdketen, zoals α-glucuronidase A (aguA), acetylxylanesterase A (axeA),

arabinoxylan arabinofuranohydrolase A (axhA) en feruloylesterase A (faeA). Bovendien
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worden ook de genen die coderen voor twee endoglucanases, namelijk eglA en eglB,

gereguleerd door XlnR.

Het feit dat XlnR de transcriptie reguleert van twee endoglucanases bewoog ons

ertoe om deze studie uit te breiden naar twee andere genen die betrokken zijn bij de

afbraak van cellulose, namelijk de genen coderend voor de cellobiohydrolases CbhA en

CbhB. Deze resultaten zijn beschreven in hoofdstuk 6. cDNA klonen van beide genen

werden geïsoleerd uit een xylan-geinduceerde cDNA bank van A. niger. Deze cDNA

klonen werden vervolgens gebruikt om de corresponderende genen te isoleren. In de

literatuur wordt sophorose vaak aangeduid als de belangrijkste inducer van genen die

coderen voor cellulolytische enzymen. De resultaten beschreven in hoofdstuk 6 laten

echter zien dat in A. niger de transcriptie van beide cbh genen geïnduceerd worden door

D-xylose en niet door sophorose. De expressieniveaus in A. niger liggen echter wel lager

dan die gerapporteerd voor bijv. T. reesei wat een goede producent is van cellulolytische

enzymen. In A. niger worden cbhA en cbhB transcriptioneel gereguleerd door XlnR. De

regulatie van de transcriptie van beide cbh genen vertoont grote gelijkenis met die van

andere xylanolytische genen en de twee voor endoglucanase coderende genen eglA en

eglB, d.w.z. ten opzichte van de wild type stam geen detecteerbare transcriptieniveaus in

de stam waarin het xlnR gen uitgeschakeld is, en verhoogde expressie in de xlnR

multicopy stam. Ook bleek het niveau van transcriptie van deze genen gerelateerd aan

het aantal kopieën van het A. tubingensis endoxylanase A gen (xlnA) dat geïntegreerd

was in het A. niger genoom. De promoter van xlnA bevat 3 XlnR bindingsplaatsen en

komt niet voor in A. niger. De introductie van meerdere xlnA genen in het A. niger

genoom resulteerde in verlaagde transcriptieniveau’s voor cbhA en cbhB. Deze resultaten

suggereren titratie van een regulatie factor die al deze genen gemeen hebben. Deze factor

blijkt XlnR te zijn.

Volgens de classificatie methode zoals voorgesteld door Henrissat en Biaroch

worden zowel A. niger CbhA als CbhB ingedeeld in familie 7 voor glycosyl hydrolases.

Vergelijking van aminozuur sequenties liet zien dat CbhA het meest leek op CbhB

(65,3% identiek) en CbhI van P. janthinellum (62,9%). CbhB vertoonde de hoogste

homologie met CbhI van A. aculeatus (72,6% identiek). Vrijwel alle enzymen uit familie

7 zijn cellobiohydrolases uit schimmels en zijn meestal opgebouwd uit 3 structurele

domeinen: een katalytisch domein, een Pro/Ser/Thr-rijke linker-peptide die vaak sterk

geglycosyleerd is en een cellulose bindingsdomein (CBD). Het CBD is een domein dat

aan kristallijn cellulose kan binden. Dit CBD is met name belangrijk wanneer
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onoplosbare cellulose afgebroken moet worden omdat het de effectieve

bindingsconstante (Km) van het eiwit voor het substraat verlaagt. Wanneer het substraat

oplosbaar is zijn de CBDs minder van belang omdat de katalytische domeinen nu een

betere toegang tot het substraat hebben. De CBD wordt onder deze condities vaak

proteolytisch afgesplitst. CbhB heeft net als vele andere cellobiohydrolases eveneens een

CBD. CbhA heeft echter geen linker-peptide noch een CBD. Het feit dat A. niger zowel

een cellobiohydrolase met een CBD alsmede een cellobiohydrolase zonder CBD tot

expressie kan brengen suggereert dat deze schimmel zich in de evolutie een andere

strategie heeft aangemeten.

Zoals al eerder opgemerkt bestaat de celwand van planten uit een complex

netwerk van cellulose, hemicelluloses (bijv. arabinoxylan) en pectine. Micro-

organismen, waaronder schimmels, zijn belangrijk omdat ze in staat zijn een grote

verscheidenheid aan enzymen te producren die deze polysacchariden kunnen afbreken.

Daardoor zijn deze schimmels in staat deze polysacchariden af te breken tot kleine

monomere suikers die opgenomen kunnen worden door de cel om dan als koolstofbron

te dienen. Het in dit proefschrift beschreven onderzoek heeft geleid tot een model voor

de wijze waarop A. niger, en wellicht ook andere schimmels, deze complexe structuren

afbreken. De genen xlnB en xlnD, die respectievelijk coderen voor endoxylanase B en β-

xylosidase, worden als eerste in geringe mate tot expressie gebracht wanneer de

schimmel een suikertekort heeft. Deze twee enzymen zorgen ervoor dat kleine

hoeveelheden D-xylose worden afgesplitst van het aanwezige xylan. D-xylose wordt

vervolgens opgenomen door de schimmel en zorgt ervoor dat via XlnR alle

xylanolytische genen sterk geïnduceerd worden. Naast genen coderend voor enzymen

die betrokken zijn bij de afbraak van de xylan hoofdketen staan ook verschillende genen

die coderen voor cellulolytische enzymen en genen coderend voor enzymen die

zijgroepen van de xylan hoofdketen verwijderen onder controle van XlnR. Hierdoor

komen naast D-xylose ook andere monosacchariden vrij die op hun beurt andere

specifieke polysaccharide-afbrekende enzymsystemen induceren. In dit model is voor

XlnR een sleutelrol weggelegd in de regulatie van de afbraak van plantencelwanden.

Volgens dit model kunnen alle plantencelwand-afbrekende enzymen geïnduceerd

worden in een cascade die de schimmel in staat stelt op een snelle en efficiënte manier in

te spelen op zijn omgeving.
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