A Contingency model of quality management and business-to-business relationships

Dr. Brian Fynes1, Dr. Seán de Búrca2 and Dr. Sean Ennis3
1Department of Business Administration, Michael Smurfit Graduate School of Business, University College Dublin, Carysfort Avenue, Blackrock, Co. Dublin, Ireland, Telephone: +353 1 7168841, Fax: +353 1 7168954, Email: Brian.Fynes@ucd.ie
2Department of Marketing, Michael Smurfit Graduate School of Business, University College Dublin, Carysfort Avenue, Blackrock, Co. Dublin, Ireland, Telephone: +353 1 7168835, Fax: +353 1 7168019, Email: Sean.deBurca@ucd.ie
3Department of Marketing, University of Strathclyde, Stenhouse Building, 173 Cathedral St., Glasgow, Scotland, Telephone: + 44 141 5524400, Fax: + 44 141 5522802, Email: seane@market.strath.ac.uk

Abstract

This paper aims to contribute to, and link the areas of quality management and business-to-business relationships. To date, there has been limited empirical work at the interface of these areas. Accordingly, this study proposes and tests an integrated model based on both research areas. In doing so, we seek to address the following research question: what is the relationship between quality practices, quality performance and business-to-business relationships? To address this question, we develop a conceptual model, which draws on the contingency approach to research that is common in the strategy literature. We then test model with data collected from suppliers in the electronics sector in the Republic of Ireland. Data analysis of the data indicated considerable support for the conceptual model. We conclude with some reflections of the implications of our findings for both theory and practice.

1. Introduction

Evidence suggests that while many firms have invested substantial resources in adopting and implementing quality management programmes, the results have been mixed (Powell, 1995). In addition, buyers are concerned with getting the right quality product at the right price while suppliers are concerned with supplying the right quality product at a price that is profitable. Thus the interaction between quality and buyers-supplier relationships provides a fertile area for investigating why quality practices have an impact (or otherwise) on quality performance.

This paper aims to contribute to, and link the areas of quality management and business-to-business relationships. With the exception of Forker (1997), there is little or no evidence of empirical work linking these areas. Accordingly, this study proposes and tests an integrated theoretical framework based on both research areas. In doing so, we seek to address two broad research questions:

a. to what extent do quality practices impact upon the various dimensions of quality performance?

b. to what extent is the relationship between quality practices and quality performance contingent upon the nature of business-to-business relationships?

In addressing these questions, we develop a conceptual framework, which draws on the contingency approach to research that is common in the strategy literature. The structure of such frameworks is that “when contingency theorists assert there is a relationship between two variables ... which predicts a third variable ... they are stating that an interaction exists between the first two variables” (Schoonhoven, 1981, p. 351).

The remainder of this paper is structured as follows: firstly, we first review the literatures in both areas; secondly, we describe our methodology: thirdly we develop and test a model of quality management and business-to-business relationships; finally, we conclude with some reflections on the implications of our study.

2. Review of the Literature

Quality Management

One of the most problematic issues confronting the researcher in quality management is the search for an appropriate definition. Reeves and Bednar (1994) suggest a four-way classification of quality definitions that incorporates excellence, value, conformance to specifications and meeting and/or exceeding customer requirements. They argue that the diversity inherent in these definitions implies that the complexity and multiple perspectives historically associated with the concept have made theoretical and research advances difficult. What are the research implications of this complexity? Flynn et al. (1994) caution
that a key issue in theory development is the “articulation of the distinction between quality management practices (input) and quality performance (output), which to date has been blurred under the broad heading of quality” (p. 340).

Empirical advances in the area initially focussed on the identification of core quality practices that included top management support, quality information, process management, product design, workforce management, supplier involvement and customer orientation (Flynn, Schroeder and Sakakibara, 1994; Black and Porter, 1996). Whilst these studies are important in themselves, equally they prompt questions about the nature of quality performance and its various dimensions. In this regard, Flynn, et al. (1997) emphasised the need to distinguish between internal quality performance in the plant (the extent to which a product conforms to its manufacturing specification) and external quality performance in the marketplace (customer satisfaction). Internal quality performance incorporates both design quality and conformance quality while external quality performance incorporates customer value and satisfaction (Fujimoto, 1989). Furthermore, while a number of studies have addressed the relationship between the various dimensions of quality performance (Choi and Eboch, 1998; Forza and Filippini, 1998), design quality in particular has received relatively scant attention in the literature with the exception of Garvin (1986) and Clark (1987). This is somewhat surprising given that as much as 85 per cent of total product costs are committed by the time early product design is completed (Fleischer and Liker, 1992). Furthermore, design is not only a cost driver; it is also recognised as a major determinant of quality because “quality is designed into the product ... and good design contributes to a firm’s ability to develop and produce new products more quickly by minimising engineering changes which delay production. Thus design makes major contributions to the three primary outcomes of cost, quality and timeliness” (Fleischer and Liker, 1992, p. 254). Design quality incorporates elements of both engineering design (the development of a product from its technical conception through detail design and the design of the related manufacturing process and tooling) and industrial design (styling and aesthetics) (Dixon and Duffy, 1990). As such the negligible attention paid to design quality as a key construct in the domain of quality performance represents a significant gap in the literature.

Likewise, there have been very few empirical studies of the effects of contingency variables on the relationship between quality practices and quality performance. Forker (1997) investigated the impact of suppliers on the relationship between quality practices and quality performance. Significantly, she concluded that efficient quality management further up the supply chain was one of the most significant contributors to explaining variation in supplier quality performance which underlines the importance of managing quality throughout the value chain.

Business-to-business Relationships

The study of buyer-seller relationships is grounded in some well-established frameworks such as transaction cost theory, political economy theory, social exchange theory and resource dependence theory (Robicheaux and Coleman, 1994). In addition, empirical models, drawing on a variety of management disciplines have been proposed and tested in the literature. These include the IMP (Industrial Marketing and Purchasing Group) interaction model (Håkansson, 1982), network models (Jarillo, 1988), channel models (Heide and John, 1992) and partnership models (Helper and Sako, 1995). These studies differ somewhat in their approach to purpose (descriptive versus theoretical), research design (cross-sectional versus longitudinal), unit of analysis (firm, dyad or network) and schools of thought (European and North American). Is there any evidence of convergence between these models? Wilson and Kristian Moller (1991, p. 103) conclude that a relational paradigm has emerged from the various research streams and note that “what becomes apparent is the number of constructs that are shared in the different models”.

Empirical models of business-to-business relationships, while divergent in many respects, complement each other in terms of the relationship dimensions considered. In their review of seven of the most influential studies of the ‘relational paradigm’, Wilson and Moller (1991) identify trust as the most frequently used dimension. Other frequently cited dimensions were satisfaction, adaptation/transaction specific investments, power/dependence, communication, commitment and cooperation. We now consider each of these dimensions in more detail more detail.

Trust has been defined as “the firm’s belief that that another company will perform actions that will result in positive actions for the firm, as well as not take unexpected actions that would result in negative outcomes for the firm” (Anderson and Narus, 1990, p.45). This is because the presence of trust can reduce the specification and monitoring of contracts, provide material incentives for co-operation, and reduce uncertainty (Hill, 1990). Adaptation occurs when suppliers adapt to the needs of specific important customers and that customers adapt to the capabilities of specific suppliers (Hallén, Johanson and Seyed-Mohamed, 1991). Such adaptation frequently occurs by way of investing in
transaction specific assets such as product/process technology and human resources (Håkansson, 1982). *Satisfaction* is the positive feeling that results from an evaluation of all aspects of an exchange relationship (Wilson and Kristan Moller, 1991). The domain of satisfaction includes all of the characteristics the relationship that a firm considers to be, on the one hand rewarding, profitable and of value, and on the other hand, costly, unfair or frustrating (Rukert and Churchill, 1984; Ping, 1993). *Communication* has been defined as “the formal as well as informal sharing of meaningful and timely information between firms” (Anderson and Narus, 1990, p. 44). Frequent and timely communication is important because it assists in resolving disputes and aligning perceptions and expectations (Morgan and Hunt, 1994). Effective communication is therefore essential for successful collaboration. *Power/dependence* is also an important dimension of relationships. Power is a function of the extent to which two members in a channel are dependent on each other for satisfaction of their goals and the relative sources/bases of each channel member’s power (El-Ansary and Stern, 1972). Dependence refers to a firm’s need to maintain an exchange relationship to achieve desired goals (Frazier and Rody, 1991). In exchange relationships, both parties may be, to some degree, dependent on each other (Gundlach and Cadotte, 1994). *Commitment* has been defined as “an implicit or explicit pledge of relational continuity between exchange partners” (Dwyer, Schurr and Oh, 1987, p. 19). It refers to the willingness of trading partners to exert effort on behalf of the relationship and suggests a future orientation in which firms attempt to build a relationship that can be sustained in the face of unanticipated problems. There is thus a temporal dimension to commitment associated with the duration or age of the relationship. *Co-operation* refers to situations in which firms work together to achieve mutual goals (Anderson and Narus, 1990). De Toni et al. (1994) argue that the form of co-operation that characterises the partnership model of business-to-business relationships does not necessarily mean harmonious collaboration, with unconditional faith in each party.

Do the dimensions complement each other? Mohr and Spekman’s (1994) empirical findings suggest significant positive correlation between the dimensions of business-to-business relationships. Likewise Monckza et al. (1995) found that such dimensions reinforce each other in terms of enhanced buyer-seller relationships. As such, the comprehensive measurement of business-to-business relationships should include these dimensions. However, while many empirical studies have tended to focus on individual relational dimensions, very few have incorporated an aggregate measure.

Accordingly, we propose therefore, that these dimensions are strong indicators of a higher order construct that we will refer to as *relationship strength*. We define relationship strength as the degree to which both parties in a relationship are engaged in an active, long-term working relationship and operationalise the construct using indicators of communication, trust, communication, commitment, interdependence, solidarity, satisfaction and co-operation (Figure 1).

Our conceptualisation of relationship strength is intended to capture the dimensions of a given business-to-business relationship at a given point in time. Thus, while we acknowledge that all relationships may be influenced by past, present and future events, we argue that a comprehensive measure such as relationship strength substantially captures such temporal dimensions.

Figure 1. Relationship strength.
3. Research Hypotheses

The foregoing reviews identify gaps in both the quality management and business-to-business literatures that reinforce the importance of addressing the research questions posed at the beginning of this paper. We now restate these questions as a sequence of specific hypotheses and present our research model incorporating the contingency effects of buyer supplier relationships.

We argued in our review of the literature of the need to deconstruct quality performance into its constituent dimensions. The empirical studies reviewed all support the relationship between quality practices and conformance quality. Furthermore, empirical evidence (see Hanson, Voss, Blackmon and Claxton, 1996) suggests that designing quality into a product can have a positive impact on conformance quality. This gives:

H1: Quality practices have a positive effect on conformance quality.

Likewise, Fujimoto’s (1989) work supports a hypothesised relationship between quality practices and design quality. Formally, this gives:

H2: Design quality has a positive effect on conformance quality.

The relationships between design quality, conformance quality and product cost have received considerable attention in the cost of quality literature. Juran (1986) has consistently argued that better quality practices can reduce the cost associated with quality prevention, inspection, appraisal and warranty returns. In addition, the adoption of techniques such as value engineering, design for manufacturability (DFM) and quality function deployment (QFD) suggests that design quality also has an inverse relationship with product cost. This gives:

H3: Quality practices have a positive effect on design quality.

Voss and Blackmon (1994), in emphasising the importance of customer-driven definitions of quality, found a significant relationship between conformance quality and customer satisfaction. We further posit that customer satisfaction is inversely related to product cost (or price from the customer’s perspective) because measures of satisfaction can incorporate both quality and cost dimensions (Choi and Eboch, 1998). Formally, this gives:

H4: Design quality has a negative effect on product cost.

H5: Conformance quality has a negative effect on product cost.

Voss and Blackmon (1994), in emphasising the importance of customer-driven definitions of quality, found a significant relationship between conformance quality and customer satisfaction. We further posit that customer satisfaction is inversely related to product cost (or price from the customer’s perspective) because measures of satisfaction can incorporate both quality and cost dimensions (Choi and Eboch, 1998). Formally, this gives:

H6: Product cost has a negative effect on customer satisfaction.

With the exception of Forker’s (1997) study, there has been no major empirical study of the interaction between quality practices, quality performances and the strength of business-to-business relationships. We also observed that one of the major weaknesses of existing studies is their limited conceptualisation of the nature of business-to-business relationships. As a result, we posited relationship strength as a comprehensive construct that captured the critical dimensions of relationships. We now hypothesise that the relationships between quality practices and design quality, and quality practices and conformance quality are moderated by relationship strength. The rationale for this hypothesis is that strong partnership-type relationships, which score positively across all dimensions of a business-to-business relationship, will have a positive impact on the relationship between quality practices and design quality and conformance quality. We focus on the moderator effects specifically on these two relationships (rather than other quality performance constructs) because we believe that relational exchange with regard to product and process development can particularly impact upon design quality and conformance quality. Formally, this gives:

H7: Relationship strength moderates the relationship between quality practices and design quality.

H8: Relationship strength moderates the relationship between quality practices and conformance quality.

Figure 2 incorporates these hypotheses sequentially.

4. Methodology

The population chosen for this study was manufacturing companies in the electronics sector in the Republic of Ireland. In order to establish the size of the survey population databases from the Irish Trade Board and Enterprise Ireland were consulted. This produced an initial listing of 821 companies. Telephone contact was established with each of these companies and the key informant (i.e. the individual with a detailed knowledge of quality practices, quality performance, business performance and business-to-business relationships) was identified. From the initial frame of 821 companies, 283 were removed from the sample as they were either no longer in business or service organisations.

The instrument used to test the stated hypotheses was a mail survey. A questionnaire based on existing measurement scales for the research constructs (see Appendix 1) was initially drafted. This draft questionnaire then was pre-tested and piloted before mailing. Two repeat mailings of the instrument were carried out to improve the overall response rate. Each of the remaining 538 companies were then sent a copy of the questionnaire. A total of 202
questionnaires were returned, of which 200 were usable giving an overall response rate of 38%.

From a methodological perspective, business-to-business relationships can also be studied using different units of analysis such as a single party, both parties (the dyad) and multiple parties (the network). Measuring relationship strength is further confounded by the fact that many suppliers frequently supply their customers with different types of product, and these relationships differ according to product type. For the purposes of this study, we adopted the approach used by Sako, Lamming and Helper (1994), where respondents were asked to reply to questions with respect to the basis of the most important or focal customer-product relationship.

5. Analysis and Discussion

Descriptive and Focal Customer Characteristics
The degree to which the sample is representative of the population was addressed by carrying out a series of standard chi-square goodness-of-fit tests with respect to employee numbers, plant ownership and plant age. For each of the characteristics, we found no significant difference between the population percentages and the sample percentages. This suggests that the sample response profile is not significantly different from the population profile and that the sample is broadly representative on key variables.

Reliability and Factor Analysis
Appendix 1 shows that the quality practice scales adapted from Flynn Schroeder and Sakakibara (1994) have Cronbach values of 0.70 or greater which is the standard threshold level for acceptance of the scale. Only four items, QIR3, FB3, FB6 and NPQ2, displayed low item total correlation co-efficients, and were subsequently removed from the scale for purposes of analysis. With respect to the quality performance scales, all generate α values in excess of 0.70 with the exception of engineering design. However, given that this is a new scale and its α value is greater than 0.60, we have included it. Other scales dropped were TRT5, INDP1, INDP2, COMM7 and COMM8. Factor analysis using principal components with no rotation was performed separately for each construct; the factor analysis results supported the uni-dimensionality of the set of measurement statements for each construct.

Hypothesis Testing
The hypothesised relationships between the various constructs were tested using regression analysis. The correlation/covariance matrix for the regression model is shown in Table 1. The covariances are shown above the diagonal and the correlation coefficients below the diagonal. Correlation coefficients greater than 0.152 are significant at the 5 per cent level and greater than 0.182 are significant at the 1 per cent level. Correlation coefficients for hypothesised relationships are in bold. An examination of Table 1 provides preliminary support for the model.

Figure 2. Research model.
The standardised regression coefficients (betas) and coefficients of determination (R^2) are shown in Tables 2 and 3. The significance of the hypotheses was tested using t-statistic, with beta estimates considered significantly different from zero when $t > 1.96$ ($p < 0.05$). The analysis reveals all six hypotheses are supported at the 5 per cent level. The data thus provides broad support for the overall model.

Both hypotheses linking quality practices with conformance quality (H1) and design quality with conformance quality (H2) are supported. While the former has been tested and strongly supported in previous studies, the latter provides has not and thus provides an additional insight into the relationship between these two measures of internal quality performance. This finding thus provided strong support for the argument that the use of techniques such as design for manufacturability (DFM) and Taguchi methods impact strongly on conformance quality. Furthermore, as with H1, the relationship between quality practices and design quality is significant (H3). While Clark et al. (1987) provided prima facie support for this finding using a ranking approach, the testing procedure used in this study was more rigorous in terms of statistical procedure and analysis.

Another important finding relates to the ‘cost of quality’ argument that appears in the quality literature. The basis of this argument is that higher levels of product quality can reduce unit manufacturing costs. While the conformance quality-cost relationship is supported (H4), our study indicates that, additionally, design quality had a significant inverse effect on product cost (H5).

Turning to the impact of cost on quality performance, we found that low levels of product cost when coupled with higher levels of quality, lead to higher levels of customer satisfaction (H6). This extends the traditional ‘improved conformance quality-lower manufacturing cost’ argument to include customer-based measures of quality performance such as satisfaction which incorporates both price (which is based on manufacturing cost) and quality. Indeed our conceptualisation and measurement of customer satisfaction may be an indicator of value. This is an interesting insight because economists have traditionally ignored the role of quality in purchasing behaviour while researchers investigating quality have, to a considerable extent, ignored the role of price (Reeves and Bednar, 1994).

Table 1. Regression model: construct means, standard deviations and correlation/covariance matrix

<table>
<thead>
<tr>
<th>Construct</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conformance Quality</td>
<td>2.34</td>
<td>0.64</td>
<td>1.00</td>
<td>0.14</td>
<td>0.21</td>
<td>-0.15</td>
<td>0.09</td>
</tr>
<tr>
<td>Design Quality</td>
<td>2.17</td>
<td>0.46</td>
<td>0.46</td>
<td>1.00</td>
<td>0.17</td>
<td>-0.13</td>
<td>0.06</td>
</tr>
<tr>
<td>Customer Satisfaction</td>
<td>2.03</td>
<td>0.68</td>
<td>0.48</td>
<td>0.56</td>
<td>1.00</td>
<td>-0.16</td>
<td>0.11</td>
</tr>
<tr>
<td>Cost</td>
<td>3.65</td>
<td>0.69</td>
<td>-0.35</td>
<td>-0.42</td>
<td>-0.35</td>
<td>1.00</td>
<td>-0.04</td>
</tr>
<tr>
<td>Quality Practices</td>
<td>2.32</td>
<td>0.44</td>
<td>0.32</td>
<td>0.34</td>
<td>0.37</td>
<td>-0.16</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 2. Model coefficients.

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Description</th>
<th>Estimate</th>
<th>t-value</th>
<th>Direction</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Quality Practices (Conformance Quality</td>
<td>0.189</td>
<td>2.888</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H2</td>
<td>Design Quality (Conformance Quality</td>
<td>0.397</td>
<td>6.064</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H3</td>
<td>Quality Practices (Design Quality</td>
<td>0.337</td>
<td>5.055</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H4</td>
<td>Design Quality (Product Cost</td>
<td>-0.325</td>
<td>-4.558</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H5</td>
<td>Conformance Quality (Product Cost</td>
<td>-0.196</td>
<td>-2.752</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H6</td>
<td>Product Cost (Customer Satisfaction</td>
<td>0.181</td>
<td>-2.886</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3. Coefficients of determination.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Independent variable(s)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design quality</td>
<td>Quality practices</td>
<td>0.114</td>
</tr>
<tr>
<td>Conformance quality</td>
<td>Quality practices</td>
<td>0.244</td>
</tr>
<tr>
<td></td>
<td>Design quality</td>
<td>0.203</td>
</tr>
<tr>
<td>Product cost</td>
<td>Design quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conformance quality</td>
<td></td>
</tr>
<tr>
<td>Customer satisfaction</td>
<td>Product cost</td>
<td>0.294</td>
</tr>
</tbody>
</table>
Hypothesis Testing: Moderator Effects

The first step in testing for moderator effects was to calculate the construct means, standard deviations and the correlation/covariance matrix for the relationship constructs (Table 4). As with quality practices, the means were calculated as an equally weighted average of the item scores. Likewise, the mean for relationship strength is calculated as an equally weighted average of the individual relationship construct means. The mean relationship strength score was 2.34 with a standard deviation of 0.46. Coupled with the fact that the mean for four of the seven relationship constructs (commitment, communication, satisfaction and trust) had even smaller means than 2.34, and only cooperation (with a mean of 3.02), exceeded the median point of the scale, indicates that partnership forms of business-to-business relationships in the electronics may not be as sophisticated as it is sometimes claimed.

Correlations are shown below the diagonal and covariances above the diagonal in Table 4. With the sole exception of the association between satisfaction and interdependence, all correlation coefficients are significant at the 1 per cent level. This provides support for our argument that the relationship strength construct incorporates the various relationship dimensions that have appeared in the literature. Sub-group analysis was used to test the moderating effect of business-to-business relationship strength. A moderator effect implies that the moderator variable (relationship strength) modifies the form of the relationship (i.e. the slope of the regression line as represented by the regression coefficient) between the independent variable (quality practices) and the dependent variable (quality performance) (Sharma, Durand and Gur-Arie, 1981). Accordingly, the sample was sorted in ascending order of the hypothesised moderator (relationship strength). Relationship strength scores were used to trichotomise the sample. The top and bottom terciles of cases were selected so as to obtain two subgroups reflecting high and low scores on the moderator. This procedure provided two subgroups, labelled ‘high’ relationship strength and ‘low’ relationship strength. A Chow test was then used to test whether or not both subgroups are significantly different with respect to the quality practices-design quality and quality practices-conformance quality relationships (Chow, 1960). Table 5 shows the results of the Chow test.

The hypothesis (H7) that relationship strength moderates the quality practices-design quality relationship is supported at the 5 per cent level as the observed F value of 7.88 exceeds the critical value of 3.05 (i.e. there is a significant difference between the regression coefficients). On the other hand, the hypothesis (H8) that relationship strength moderates the quality practices-conformance quality relationship is not supported at the 5 per cent level as the observed F value is less than the critical value of 3.05.

<table>
<thead>
<tr>
<th>Construct</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptation</td>
<td>2.64</td>
<td>0.67</td>
<td>1.00</td>
<td>0.24</td>
<td>0.12</td>
<td>0.12</td>
<td>0.23</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>Co-operation</td>
<td>3.02</td>
<td>0.98</td>
<td>0.36</td>
<td>1.00</td>
<td>0.16</td>
<td>0.26</td>
<td>0.16</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>Commitment</td>
<td>1.64</td>
<td>0.55</td>
<td>0.31</td>
<td>0.29</td>
<td>1.00</td>
<td>0.15</td>
<td>0.11</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Communication</td>
<td>2.14</td>
<td>0.55</td>
<td>0.33</td>
<td>0.47</td>
<td>0.48</td>
<td>1.00</td>
<td>0.13</td>
<td>0.15</td>
<td>0.21</td>
</tr>
<tr>
<td>Interdependence</td>
<td>2.70</td>
<td>0.73</td>
<td>0.46</td>
<td>0.22</td>
<td>0.26</td>
<td>0.32</td>
<td>1.00</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>Satisfaction</td>
<td>2.05</td>
<td>0.89</td>
<td>0.18</td>
<td>0.23</td>
<td>0.35</td>
<td>0.31</td>
<td>0.10</td>
<td>1.00</td>
<td>0.21</td>
</tr>
<tr>
<td>Trust</td>
<td>2.17</td>
<td>0.59</td>
<td>0.31</td>
<td>0.37</td>
<td>0.51</td>
<td>0.64</td>
<td>0.25</td>
<td>0.40</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 5. Chow test (n=140).

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Moderator variable</th>
<th>Moderator level</th>
<th>Independent variable</th>
<th>Chow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Quality</td>
<td>Relationship</td>
<td>High</td>
<td>Quality Practices</td>
<td>7.88</td>
</tr>
<tr>
<td></td>
<td>Strength</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conformance Quality</td>
<td>Relationship</td>
<td>High</td>
<td>Quality Practices</td>
<td>2.69</td>
</tr>
<tr>
<td></td>
<td>Strength</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[F_{2, 136} \text{ at 5\% level } = 3.05 \]
of 2.69 is less than the critical value of 3.05 (i.e. there is not a significant difference between the regression coefficients).

Overall then, the results from the analysis of the moderator effects are somewhat mixed. On the one hand, our central proposition that companies that have developed strong relationships with their customers will see significant improvements in design quality is supported. This finding underpins the arguments developed in our model and points to the importance of addressing the potential effects of moderating variables. On the other hand, relationship strength does not moderate the quality practices-conformance quality relationship. A possible explanation for this finding is that conformance quality, while perhaps more critical a decade ago, may be evolving from ‘order winner’ to ‘order qualifier’ status where high conformance to standards is a prerequisite for even being in the marketplace (Flynn, Schroeder, Flynn, Sakakibara and Bates, 1997). Thus, achieving high levels of conformance quality is a fundamental competitive pre-requisite, irrespective of the nature and strength of a business-to-business relationship with a focal customer.

In contrast, design quality has more of the characteristics of an ‘order-winner’. By developing and engaging in true partnership types of buyer-seller relationships, suppliers can become much more involved in the design and new product development process. As more and more of design responsibility devolves to such suppliers, customers will recognise their competitive edge with respect to design capability. Suppliers with such design capability can thus contribute much more than merely conforming to a manufacturing specification. Demonstrating more than just basic manufacturing competence, they can provide a significant contribution to the new product development processes of their customers and, in doing so, further consolidate such relationships. Such consolidation can lead to a virtuous circle of interdependence whereby even greater design responsibility is devolved in subsequent new product introductions.

6. Implications and Conclusion

This study adds to the emerging literature at the interface of quality management and business-to-business relationships. It is also one of the first studies to incorporate design quality as a pivotal dimension of quality performance. Previous studies, while considering this construct, have not addressed it as comprehensively (see Clark, Chew and Fujimoto, 1987; Forker, Vickery and Drooge, 1996). Its inclusion in our research model, its operationalisation and measurement, and the study findings in relation to a number of key hypotheses represents an important extension of Voss and Blackmon’s (1994) conceptualisation of quality performance in terms of understanding the ‘enabling’ role of design quality.

What then are the implications for quality management theory? The first implication is the need to comprehensively address the various dimensions of quality performance. On the one hand, most studies to date have focussed on quality practices, and more recently, the relationship between various quality practices. On the other hand, this study has identified critical relationships between various dimensions of quality performance. Ultimately however, if a theory of quality management is to emerge, it will be necessary to combine both approaches.

This study also has implications for both operations and marketing managers. From the supplier’s perspective, the first implication is the need to recognise the central role design quality plays in the overall spectrum of quality performance. Not only is it necessary to focus on quality practices which have a direct impact on design quality; in addition, firms must recognise the influential role of design quality on other measures of quality performance such as conformance quality and external quality-in-use. As we argued above, conformance quality is more likely to be an ‘order-qualifier’. Design quality, however, has more the hallmarks of an ‘order-winner’.

The second, and related, implication for suppliers is with respect to the development of buyer-seller relationships. The results suggest that one way suppliers can improve design quality and related measures of quality performance is through forging closer linkages with customers. By developing trust and commitment, adapting to each other’s needs and improving communication and co-operation, a stronger relationship should emerge which ultimately will create a closer bonding between supplier and customer. This in itself could be self-perpetuating, because if stronger relationships ultimately improve customer satisfaction, it is also probable that the effect will be reciprocated.

The study also has implications for the customers of supplier companies. There is considerable evidence in the literature that new product development is more and more becoming a boundary spanning process involving many companies. While this typically has taken the form of joint ventures, mergers and research consortia, partnership models of joint product development are becoming increasingly popular (Millson, Raj and Wilemon, 1996). Increasingly, multinational enterprises also need to consider supplier linkages in product development. The process of relationship formation and development may be less critical in instances...
where a simple production task is subcontracted. However, in situations involving more complex product and process technologies, customers of supplier companies will need to address how supplier relationships are managed.

There are also a number of limitations associated with this study. These relate to the currency of the sampling frame, the use of the focal or “most important” customer and relying on a single key informant’s perceptions. In addition, it can be argued that the perceptions of relationship in our study are somewhat one-sided in that they represent the views of just one party and ignore the views of customers. However, this limitation implicitly suggests a significantly different research design based on the relationship dyad (in itself, not without difficulties in terms of sample size, dyad access, confidentiality and accuracy of response). Finally, while it is probably true that quality managers would be familiar with measures of internal conformance, it can be argued that they would be less well informed with regard to measures of design quality, external quality-in-use and customer satisfaction and that objective measures of quality or customer perceptions of quality performance would be more appropriate in such instances.

Finally, this study also points to areas of potential future research. As is often the case, longitudinal research could provide valuable contributions to theory development and refinement in the fields of quality management. There is a considerable body of knowledge in the quality management literature which suggests that best quality practices evolve over a considerable period of time within companies and that different challenges are faced at different points in time (see Wacker and Sheu, 1994). Research from the customer’s perspective would complement and add to the findings of this study. Future research could examine issues such as customer perceptions of quality. The impact of other contingency variables on the quality practices-quality performance relationship should also be considered given the findings of this study. Identifying the circumstances or variables that have an intervening effect on the quality practice-quality performance relationship could provide both the academic and practitioner communities with potentially compelling answers to the question of why quality improvement programmes sometimes fail.

Appendix 1

Construct Items, Sources and Cronbach (Scores

<table>
<thead>
<tr>
<th>Item</th>
<th>Quality Practices (Flynn, Schroeder and Sakakibara, 1994)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI1</td>
<td>Our customers seldom visit our plant (R)</td>
</tr>
<tr>
<td>CI2</td>
<td>Our customers give us feedback on quality and delivery performance</td>
</tr>
<tr>
<td>CI3</td>
<td>We are frequently in close contact with our customers</td>
</tr>
<tr>
<td>FB1</td>
<td>Charts plotting the frequency of machine breakdowns are posted on the shopfloor</td>
</tr>
<tr>
<td>FB2</td>
<td>Charts showing defect rates are posted on the shopfloor</td>
</tr>
<tr>
<td>FB3*</td>
<td>Employees are never told whether or not they are doing a good job (R)</td>
</tr>
<tr>
<td>FB4</td>
<td>Information on quality performance is readily available to employees</td>
</tr>
<tr>
<td>FB5</td>
<td>Charts showing schedule compliance are posted on the shopfloor</td>
</tr>
<tr>
<td>FB6*</td>
<td>Management never comments about the quality of employees’ work (R)</td>
</tr>
<tr>
<td>FB7</td>
<td>Information on productivity is readily available to employees</td>
</tr>
<tr>
<td>IDP1</td>
<td>Direct labour employees are involved to a great extent (on teams, or consulted) before introducing new products or making product changes</td>
</tr>
<tr>
<td>IDP2</td>
<td>Manufacturing engineers are involved to a great extent before the introduction of new products</td>
</tr>
<tr>
<td>IDP3</td>
<td>There is little involvement of manufacturing and quality people in the early design of products, before they reach the plant (R)</td>
</tr>
<tr>
<td>IDP4</td>
<td>We work in teams, with members from a variety of areas (marketing, manufacturing etc.) involved in the introduction of new products</td>
</tr>
<tr>
<td>NPQ1</td>
<td>Customer requirements are thoroughly analysed in the new product design process</td>
</tr>
<tr>
<td>NPQ2*</td>
<td>New product designs are thoroughly reviewed before the product is produced and sold</td>
</tr>
<tr>
<td>NPQ3</td>
<td>Reducing the cost of new products is a more important priority than new product quality (R)</td>
</tr>
<tr>
<td>NPQ4</td>
<td>In the new product development process, schedule concerns are more important than quality (R)</td>
</tr>
<tr>
<td>PC1</td>
<td>A large percentage of the processes or equipment on the shopfloor are currently subject to statistical quality control procedures</td>
</tr>
<tr>
<td>PC2</td>
<td>Processes in our plant are designed to be robust</td>
</tr>
<tr>
<td>PC3</td>
<td>We make extensive use of statistical techniques to identify and reduce variance in processes</td>
</tr>
<tr>
<td>PM1</td>
<td>Our plant is disorganised and dirty (R)</td>
</tr>
<tr>
<td>PM2</td>
<td>Our plant is kept clean at all times</td>
</tr>
<tr>
<td>PM3</td>
<td>Employees often have trouble finding the tools/equipment they need (R)</td>
</tr>
</tbody>
</table>
PM4 Our plant emphasises the importance of good housekeeping with tools and fixtures in their normal storage location

PM5 We take pride in keeping our plant neat and clean

Quality Improvement Rewards ($\alpha = 0.76$)

QIR1 If an employee improves quality, management will reward him/her

QIR2 Non-financial incentives are used to reward quality improvement

QIR3* Our plant has an annual bonus system based on plant productivity

QIR4 Supervisors are rewarded for quality improvement

QIR6 Workers are rewarded for quality improvement

Quality Leadership ($\alpha = 0.72$)

QL1 All managers within our plant accept their responsibility for quality

QL2 All managers within our plant work towards encouraging just-in-time production

QL3 At plant level, management provides personal leadership for quality products and quality improvement

QL4 The top priority in evaluating plant management is quality performance

QL5 Top management strongly encourages employee involvement in the production process

Supplier Involvement ($\alpha = 0.70$)

SI1 Our suppliers are actively involved in our new product development process

SI2 Quality is our number one criterion in selecting suppliers

SI3 We rely on a small number of high quality suppliers

SI4 We strive to establish long-term relationships with suppliers

Selection for Teamwork Potential ($\alpha = 0.70$)

STP1 We use ability to work in a team as a criterion in employee selection

STP2 We use problem-solving ability as a criterion in selecting employees

STP3 We use work values and ethics as a criterion in employee selection

Teamwork ($\alpha = 0.71$)

TW1 During problem solving sessions, we make an effort to get all team members opinions and ideas before making a decision

TW2 In the past three years, many problems have been solved through small team sessions

TW3 Our plant forms teams in order to solve problems

TW4 Our plant is organised into permanent production teams

Conformance Quality ($\alpha = 0.82$) (Voss and Blackmon, 1994)

COQU1 Internal scrap and rework costs as a % of product cost

COQU2 Internal yield on new product introduction

COQU3 Defect rate for this product at final inspection

Cost

COST Unit cost of the product over its life cycle

Customer Satisfaction ($\alpha = 0.78$) (Voss and Blackmon, 1994)

CSAS1 Frequency of customer complaints

CSAS2 Adequacy of customer complaint tracking/feedback systems

Design Quality: Engineering Design ($\alpha = 0.69$) and Industrial Design ($\alpha = 0.71$) (Fleischer and Liker, 1992), Pre-test interviews

EDQ1 Average number of engineering change orders in first year after product introduction due to production problems

EDQ2 Technical performance

EDQ3 Meets the customers criteria for material, design and cost

EDQ4 Meets the criteria for ease of production or assembly

IDQ1 Unique features to provide for special customer requirements

Adaptation ($\alpha = 0.80$) (Heide and John, 1992), Pre-test interviews

ADPT1 Our technology and processes match those of this customer

ADPT2 Training to meet this customer’s requirements has involved substantial commitments of time and money on our part

ADPT3 Gearing up to deal with this customer requires highly specialised tools and equipment

ADPT4 Our production system has been tailored to meet the requirement of this customer

ADPT5 We have made significant investments in tooling and equipment that are dedicated to our relationship with this customer

ADPT6 Our production system has been tailored to produce the items supplied to this customer

ADPT7 This customer has some unusual technological standards and norms that have required extensive adaptation on our part

Communication ($\alpha = 0.72$) (Heide and John, 1992), Pre-test interviews

COM1 Exchange of information in this relationship takes place frequently and informally, and not only according to a pre-specified agreement
COM2 This customer’s personnel do not fully understand the capabilities of our production process (R)

COM3 In this relationship, any information that might help the other party will be provided for them

COM4 This customer operates inflexible signing-off procedures for new product designs (R)

COM5 Both parties in the relationship will provide proprietary information if it can help the other party

COM6 Both parties keep each other informed about events or changes that may affect the other party

COM7* The communication of new designs from this customer frequently causes us problems (R)

COM8* This customer will ramp up its in-house production without consulting us (R)

COMT1 The relationship that our firm has with this customer deserves our maximum effort to maintain

COMT2 The relationship that we have with this customer is something we intend to maintain indefinitely

COMT3 The relationship that our firm has with this customer is something we are very committed to

INDP1* What percentage of your sales of this product/component can be accounted for by this customer?

INDP2* What percentage of this customer’s total volume requirement of this product/component does your plant provide for?

INDP3 It would be difficult for our company to find a new customer for this product if we lost this business

INDP4 Our firm relies heavily on this customer to achieve our business objectives

INDP5 It would be difficult for this customer to find an alternative supplier to us

INDP6 This customer relies heavily on us to achieve its own business objectives

INDP7 Our firm and this customer are heavily reliant on each other for the success of our respective businesses

SAT1 In general, how satisfied are you with the working relationship between your firm and this customer?

SAT2 Our firm’s relationship with this customer has been a happy one

COOP1 We co-operate extensively with this customer with respect to product design

COOP2 We co-operate extensively with this customer with respect to process design

COOP3 We co-operate extensively with this customer with respect to joint cost analysis

COOP4 We co-operate extensively with this customer with respect to forecasting and production planning

COOP5 We co-operate extensively with this customer with respect to quality practices

COOP6 We co-operate extensively with this customer with respect to inventory holdings

COOP7 We co-operate extensively with this customer with respect to information and communication technologies

TRT1 Based on your past and present experience, how would you characterise the level of trust your firm has in its working relationship with this customer

TRT2 We feel that this customer can be counted on to help us

TRT3 We feel that we can trust this customer completely

TRT4 This customer has a high level of integrity

TRT5 There are times when this customer cannot be trusted (R)

TRT6 This customer is perfectly truthful and honest with us

TRT7 This customer treats us fairly and justly

*= Item/scale dropped; R = reverse coded

References

