Soil subsidence as a model for sea level rise

Han van Dobben Pieter Slim

Soil subsidence

- Gas extraction at Ameland-East started in 1986
- Soil subsidence in ~circular area, radius ≈ 6 km
- Subsidence increased ~linearly over time
- Max. subsidence ~38 cm in 2008
- No coastal defence

WAGENINGENUR

Soil subsidence is simulated sea level rise!

- Present soil subsidence at Ameland: ~38 cm
- IPCC: sea level rise ~44 cm in 2100
- Veerman: sea level rise ~100 cm in 2100 cm
- Main concerns:
 - will natural areas be flooded, i.e. will their area decrease?
 - will there be a loss of biodiversity?

Monitoring at Ameland since 1986

- ~100 plots in 9 transects
- Vegetation relevés at various intervals (1 6 years)
- Elevation, groundwater level, soil chemistry, precipitation and evaporation, flooding, grazing intensity, ... included in monitoring
- Wealth of information, can be used to predict effects of future sea-level rise
- Our focus is on
 - vegetation change
 - change in elevation

Plots are arranged in transects

red = 'dune' , blue = 'salt marsh'

Data analysis

- Mainly by mulitivariate statistics (ordination)
- Ordination diagrams can be used to demonstrate temporal change in vegetation and its relation to environmental change

Our conceptual model... topography sealevel climate regime flooding frequency DCA scores weather sedimentation vegetation elevation conditions biodiversity indicators phreatic level net precipitation

soil subsidence

And what happened over time

Most important changes up to now

zone	vegetation	soil
pioneer	little change	strong sedimentation,
		or cliff erosion
lower salt marsh	little change	sedimentation
	succession,	
upper salt marsh	increase of Elymus	some sedimentation
	athericus	
dune slack,	increase of salt	
incidentally flooded	marsh species after	very little sedimentation
incluentally hooded	flooding	
wet dune slack		no sedimentation
(incl. freshwater	increase of annuals	(accumulation of
pools)	in dry spring	organic matter may
pools)		occur)
dry dunes	succession,	sedimentation of wind-
	eutrophication	blown sand may occur

What will happen if sea level rises?

zone	with climate change	
pioneer zone	cliff erosion may increase	
lower salt marsh	sedimentation increases,	
lower sait maism	little change in vegetation	
upper salt marsh	sedimentation increases,	
upper sait maism	little change in vegetation	
dune slack,	vegatation changes into	
incidentally flooded	salt marsh	
wet dune slack	waterlevel increases,	
(incl. freshwater	'drowning' of shrub	
pools)	vegatation may occur	
dry dunes	no change	

Relation between flooding and sedimentation

AGENINGEN UR

Subsidence is compensated by sedimentation

Conclusions: sedimentation

- Total sedimentation over whole observation period:
 - Nieuwlandsreid 6.2 ± 9.0 mm.y⁻¹ (95% conf. interval)
 - Hon

- $5.1 \pm 6.6 \, \text{mm.y}^{-1}$ (95% conf. interval)
- Expected sea-level rise until 2100:
 - IPCC

- $4.4 \pm 3.3 \text{ mm.y}^{-1}$ (range)
- Veerman
- 8.8 <u>+</u> 3.2 mm.y⁻¹
- (range, excl. soil subsidence)

Conclusions: sea-level rise

- In pioneer zone and lower salt marsh sea-level rise will be largely compensated by sedimentation
- Present sedimentation rate is large enough to keep pace with sea-level rise according to IPCC, but not according to Veerman
- However, sedimentation increases as flooding frequency increases
- Strongest effect of sea level rise expected in wet dune slack, where sedimentation is low

Conclusions: vegetation

- Flooding-related vegetation gradient in salt marsh ('zonation') is extremely stable over time
 - this may partly explain the increase of sedimentation at higher flooding frequency
- But in dune slack, vegetation shifts along gradient as conditions change
 - with sea-level rise, this may lead to permanant changes
- Both in salt marsh, dune slack and dry dune, succession towards more eutrophic vegetation is the most prominent temporal trend

Conclusions: biodiversity

- Loss of species number, and conservancy value is mainly related to succession (both in salt marsh and dune slack)
- Succession is not related to soil subsidence, but is an autonomous process, accelerated by:
 - nitrogen deposition
 - lower cattle intensity
 - collapse of rabbit population
- Sea-level rise is expected to increase dynamics and thereby retard succession

Monitoring will continue!

© Wageningen UR

