Landinventarisatie en ruimtelijke systeemanalyse van het herinrichtingsgebied De Vechtstreek, fase 2

Resultaten van een bodemgeografisch onderzoek

E. Bronov, S.F. van Dril en H.N. Hamers
Landinventarisatie en ruimtelijke systeemanalyse van het herinrichtingsgebied De Vechtstreek, fase 2
Landiaventarisatie en ruimtelijke systeemanalyse van het herinrichtingsgebied De Vechtstreek, fase 2

Resultaten van een bodemgeografisch onderzoek

F. Brouwer
S.P.J. van Delft
R.H. Kemmers

Alterra-rapport 379

Alterra, Research Instituut voor de Groene Ruimte, Wageningen, 2002

In 2000 is door Alterra een vormenstudie verricht naar beschikbare kennis over landbouw, natuur, archeologie en milieu van het heerinrichtingsgebied "De Vechtsteek" en verwerkt tot een briefadvies met kaarten (lire 1). In dit rapport (lire 2) uit voor de thema's landbouw en natuur de adviezen verder onderzocht en uitgewerkt. Voor het thema landbouw is voor een deel van het heerinrichtingsgebied een bodem- en grondwatertrappenkaart, schaal 1 : 100.000, vervaardigd. Voor het thema natuur is voor een deel van de Hoornsterpolder een bodem- en grondwatertrappenkaart, schaal 1 : 5.000, aangelegd en tevens een huurnaamlokaart en een kaart met standplaatsen. Hieruit is een kaart met potentiële vegetatietypen geconstrueerd.

Trefwoorden: bodemkaart, bodemkaart, grondwater, humus, vegetatie, Vechtsteek.

ISSN 1566-7197

© 2002 Alterra, Research Instituut voor de Groene Ruimte,
Postbus 47, NL-6700 AA Wageningen.
Tel: (0317) 474700; fax: (0317) 419000; e mail: postkamer@alterra.wag-nl.nl

Niet uit deze uitgave mag worden vervelooid en/of openbaar gemaakt door middel van druk, fotokopie, microfilm of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming van Alterra.

Alterra aanvaardt geen aansprakelijkheid voor eventuele schade voortvloeiend uit het gebruik van de resultaten van dit onderzoek of de toepassing van de adviezen.

Projectnummer 10716 | [Alterra rapport 379/IS/06.2002]
Inhoud

Woord vooraf 7

Samenvatting 9

1 Inleiding 11
 1.1 Aanleiding en doel 11
 1.2 Leeswijzer 11

2 Fysiografie 17
 2.1 Ligging en oppervlakte 17
 2.2 Geogenese 17
 2.2.1 Hollandse IJven 18
 2.2.2 Afzettingen van Duinkerke 18
 2.2.3 Afzettingen van Tiel 19
 2.2.4 Formatie van Twente 19

3 Bodemvorming 20
 2.5 Bodemvorming 20

4 Bodem en landschap 20
 4.1 Topografie 20
 4.2 Ontginning en bodemgebruik 20

5 Waterhuishouding 21

6 Bodemgeografisch onderzoek en digitale verwerking/manipulatie van bodemkundige gegevens 23
 6.1 Bodemgeografisch onderzoek 23
 6.2 Toegevolg van metenresultaten 24
 6.2.1 Bemonstering en laboratoriumanalyse 24
 6.2.2 Grondwatertandmetingen 29

7 Indeling van de gronden 35
 7.1 Indeling van de gronden 35
 7.2 Opzet van de legersla 36

8 Digitale verwerking/manipulatie van bodemkundige gegevens 36
 8.1 Humusprofielbeschrijvingen 37
 8.2 Humusvormenkaart 37

9 Waterhuishouding 39

10 Bodemgeografisch onderzoek en digitale verwerking/manipulatie van bodemkundige gegevens 41
 10.1 Veengronden 41
 10.2 Moerengronden 43
 10.3 Zeekleigronden 43
 10.4 Rivierkleigronden 44
 10.5 Sandgronden 45
 10.6 Toevoegingen 46
 10.7 Grondwatertrappen 48
 10.8 Overige onderscheidingen 50
5 Kennen leren en verbreiding van humusvormen 51
 5.1 Kennen leren van de humusprofielen 51
 5.2 Humusvormtypologie 54
 5.3 Minerale humusvormen 56
 5.4 Orgaanische humusvormen 58
 5.5 Toevoeging 59
6 Standplaattypen en te verwachten vegetatietypen 61
 6.1 Standplaattypen 61
 6.2 Potentiële vegetatietypen 62
Literatuur 67

Aanhangsels
1 Oppervlakte (ha en %) van de eenheden op de bodem- en
 grondwatertrappenkaart, schaal 1 : 10.000 69
2 Gegevens per kaarteenheid van de bodem- en grondwatertrappenkaart,
 schaal 1 : 10.000 75
3 Vergelijking van de codeering van de legenda-eenheden op de bodemkaart,
 schaal 1 : 10.000 (kaart 1), met die van de Bodemkaart van Nederland,
 schaal 1 : 50.000 79
Woord vooraf

In opdracht van de Dienst Landelijk Gebied (DLG) in de provincie Noord-Holland heeft Alterra de bodemgesteldheid in kaart gebracht voor een gedeelte van het hemelvaartsgedeelte "De Vechtstreek". Voor een deel van de Horstermeer polder is verder een humusprofielonderzoek uitgevoerd waaruit een potentiële vegetatietypenkaart is afgeleid.

P. Brouwer heeft vooral de tekst over de bodem- en gr-kaart, achtal 1 : 10.000 (hoofdstuk 1 t/m 3) uitgewerkt, S.P.J. van Delft het onderzoek naar humusvormen (paragraaf 2.7 t/m 2.9 en hoofdstuk 4) en R.H. Comnens heeft het gedeelte over de potentiële vegetatietypen geschreven (hoofdstuk 5).

Onze dank gaat uit naar de grondgebruikers die toestemming verleenden voor het vakwerk en naar A.J. van Kekem die dit rapport redigeerde.
Het hernieuwingsgebied (Strategisch Groen Project) “De Vechtstreek” ligt bijna geheel in de provincie Noord-Holland en bestaat uit twee droogmakerijen en een aantal polders gelegen in het bovenland. In 2000 is door Alterra een voorstudie verricht naar beschikbare kennis over landbouw, natuur, archeologie en milieu van dit gebied en verwerkt tot een briefadvies met kaarten (fase 1). In dit rapport zijn voor de thema’s landbouw en natuur de adviezen verder onderzocht en uitgewerkt.

Landbouw

De geolologische opbouw bestaat uit Hollandsche en Mijtmatten van Huneke en Tiel uit het Holocène en de Formatie van Twente uit het Pleistoceen. De bodemgesteldheid van het hernieuwingsgebied is voor twee derde delen ondersocht: een noordelijk gedeelte, aan weerszijden van de A1 (ca. 715 ha) en een zuidelijk gedeelte, waarin opgenomen de Horstermeerpad (ca. 580 ha). Voor beide delen is een bodem- en grondwatertrappenkaart, schaal 1 : 10.000 gemaakt. De kaart is gebaseerd op intensieve veldschatten en getoetst zowel op bodem als op grondwaterfrequenties aan de hand van grondmonitornanalyses en grondwaterstandmetingen. De bodemgesteldheid van de twee gebieden is onder te verdelen in:

- veengronden, met name in het noorden,
- moerse gronden, vooral in de Horstermeerpad,
- rivierkolkgronden in de Horstermeerpad,
- zeekolkgronden in het noordelijk deel,
- zandgronden in beide gebieden vooral in het oosten.

Natuur

Voor een gedeelte van de Horstermeerpad (ca. 50 ha) is een humussvormen- en een standsplaatstypen- en een potentiële vegetatietypenkaart vervaardigd. Hoewel hier het bodemgebruik agrarisch is, komen toch verschillen voor op de humussvormenkaart die vooral veroorzaakt worden door vorming van wortelhorizonten, verandering van veen, antropogone invloed, klei- en zandlagen in de bovengrond en kweekverschijnselen. We hebben de volgende humussvormen onderscheiden:

- terresstrische null;
- hydromullmoder;
- bodemullmoder;
- akkermullmoder;
- woelmullmoder;
- beekerdalmoder;
- moererdalmoder.

Bij de standsplaatstypenkaart is onderscheid gemaakt in:

- aard van de bovengrond;
- GHRG;
- grondwatertype.
Uit de humusvormen- en standplassen- en standplaatstypenkaarten is een potentiële vegetatietypen-kaart afgeleid die de vegetatie aangeeft die na verloop van tijd kan ontstaan bij een beheer gericht op natuurontwikkeling. Op deze kaart staan de locaties voor negen vegetatietypen (verlonden en gemeenschappen (subassociaties).
1 Inleiding

1.1 Aanleiding en doel

In het gebied tussen Muiden, Wesp, Bussum en Hilversum vindt vanaf 2001 een herinrichting plaats in het kader van het Strategisch Groen Project (SGP) "De Vechtschans". Voor de planvorming en uitvoering van de te nemen inrichtingsmaatregelen is onder andere behoefte aan ruimtelijke kennis van bodem en grondwater in relatie tot mogelijkheden voor landbouwkundig gebruik en natuurontwikkeling en het inschatten van archeologisch waardevolle gebieden en van milieuklassering via uitspraak van nutriënten naar oppervlaktewater.

Op regionaal niveau is voldoende kennis beschikbaar om een integrale, ruimtelijke visie voor het gebied te ontwikkelen en om aan te geven waar voor de verschillende thema’s (landbouw, natuur/ecologie, archeologie, malacologie) problemen of knelpunten zijn te verwachten bij inrichtingsmaatregelen. Waar problemen of knelpunten zijn te verwachten, zal aanvullend en meer gedetailleerd onderzoek noodzaakelijk zijn ten behoeve van de inrichting.

Om bovengenoemde integrale, ruimtelijke visie te verkrijgen is in eerste instantie benodigd om betrekkingen en kennis geïnventariseerd via literatuuronderzoek en geïnterpreteerd via Alterra-expertise (fase 1: vooronderzoek). In deze eervolkmende fase is de reeds beschikbare kennis betreffende het gebied per thema geïnventariseerd en uitgezet in een (bijgesloten) briefing. Dit vooronderzoek had als primair doel de lezer in kennis te brengen.

De adviezen in de voorstudie zijn in dit rapport (fase 2: vervolgonderzoek) voor twee thema’s verder uitgewerkt in kaarten: landbouw (schaal 1 : 10.000) en natuur (schaal 1 : 5.000) en beschrijvingen:
- landbouw: een gedetailleerde bodem- en grondwatertrappencartaan (hooigroei 1 t/m 3);
- natuur/ecologie: voor een gedeelte van ca. 50 ha in de voormalige polderiaan een hoomaarsvegetatiekaart (hooigroei 4);
- standplaatsenkracht (een ecologische interpretatie van de bodemkaart naar vochtstoestand, basenrijkdom en veedrilrijkdom) en een potentiële vegetatiekaart (hooigroei 5) getekend.

1.2 Leeswijzer

Het voorliggende rapport (Rap. nr. 379) is het resultaat van twee aparte studies van Alterra over het herinrichtingsgebied "De Vechtschans" en bestaat uit:
- fase 1: vooronderzoek (verkennende fase);
- fase 2: resultaten van een bodemgeografisch onderzoek van een deel van het herinrichtingsgebied (vervolgonderzoek).

Alterra rapport 379
In het gebied tussen Moedonk, Weep, Bussum en Hilversum is vanaf begin 2000 een hernieuwende grondwaterbeheer bij een hervorming van het kader van het Strategisch Grond Project (SGP) "De Veerhouttrek." Voor de plannen en uitvoering van de te nemen inrichtingsmaatregelen was onder andere een kennis van bodem en grondwater in relatie tot mogelijke bodemproductiviteit en grondwaterontwikkeling en voor het inschatting van archeologische waardevolle gebieden en van milieubescherming via uitspoeling van nutriënten naar het oppervlaktewater.

Fase I: vooronderzoek

Het vooronderzoek heeft plaatsgevonden in de eerste helft van 2000 en heeft voor vier thema’s (landbouw, natuur, archeologie en milieu) de reeds beschikbare kennis betreffende het onderzoeksgebied "De Veerhouttrek" geïnventariseerd en waar mogelijk verwerkt in kaarten. Dit vooronderzoek had als primair doel de kenmerken in kennis van deze vier thema’s in beeld te brengen. Op basis van de conceptresultaten zijn, samen met specialisten van DILG Noord-Holland, adviezen voor vervolgonderzoek opgesteld en uitgewerkt tot een briefadvies. Omdat dit briefadvies belangrijk is voor een goed begrip van de aanpak van het vervolgonderzoek is het bij dit rapport begaan.

De resultaten en adviezen uit het vooronderzoek zijn (verwijzingen zijn naar het briefadvies):

- **landbouw:** kaart met advies voor opnameschaal van bodem- en grondwatertrappentekeningen (hoofdstuk 2 en fig. 2a), waarbij het onderzoeksgebied is geoplaatst in gebieden met een te verwachten grote/mate/gegene: variatie in bodemoppervlak en grondwatertrappen. Na overleg met specialisten van DILG Noord-Holland is deze kennis omgezet in een definitief advies voor opnameschaal (fig. 2b);

- **natuur/ecologie:** fysischopenkaart (hoofdstuk 3 en fig. 3a en 3b), waarbij een ecologische interpretatie van de bodemkaart (1:50.000) plaatsvond naar veenbosnestland, basinsnelijden en voedselrijkdom. Per fysischop zijn de belangrijkste ecosystemebepalende factoren betoond, waaraan bij gewenst detailonderzoek primaal aandacht zou moeten worden besteed. Van gemis in deze kaart is de kleindiepte die erg bepalend kan zijn bij afzetting ten behoeve van natuurrondontwikkeling. Daarom is een extra kaart gemaakt (fig. 4) die de kleindieptes aangeeft in drie klassen;

- **archeologie:** archeologische verwachtingekaart (potentiekaart, hoofdstuk 4), waarbij binnen het onderzoeksgebied is aangegeven welke gebieden kansen hebben voor aanwezigheid van archeologie, de toegangsweg er van en welke condities invloed kunnen uitoefenen op de kwaliteit;

- **milieu:** kaart met dierop aangegeven de kansen op nutriëntenuitsooping naar het oppervlaktewater bij voorzetting van de normen 2003 (hoofdstuk 5).

12

Alterra-rapport 379
Fase 2: vervolgonderzoek
Het vervolgonderzoek (fase 2) heeft plaatsgevonden in de tweede helft van 2000 en
de eerste helft van 2001. Na overleg met speciali构建 van DLO Noord-Holland is
besloten om de thema’s landbouw en milieu in fase 2 niet verder te onderzoeken.

Voor het thema landbouw is besloten om voor een aantal deelgebieden (polders) van
het herinrichtinggebied een bodem- en grondwatertrappenkaart, schaal 1 : 10.000, te
vervaardigen met gebruikmaking van MIN (Netueel Hoogtebestand Nederland).
Voor de twee polders de Horstermeer en de Nieuwe Keverlijkse Polder is de
boodschap vanwege de grote bodemvariatie 1 beschreven boring per hekter;
voor de overige polders is de boodschap 1 beschreven boring per 3 haertare. De
methode is uitvoerig beschreven in hoofdstuk 1 en 2 van dit rapport (Kap. nr. 379)
en de resultaten staan op de kaarten 1 t/m 3 en is beschreven in hoofdstuk 3.

Voor het thema natuur is besloten om voor een deel van de Horstermeerpolder een
bodem- en grondwatertrappenkaart, schaal 1 : 5.000, samen te stellen. Hier vond
tevens een onderzoek plaats naar humusprofielen en standplaatsen om uiteindelijk
een potentiële vegetatiekaart te vervaardigen. Deze potentiële vegetatiekaart kan
worden gebruikt bij de pleintoving om de natuurontwikkeling. De methode van
het humusproficondonderzoek is beschreven in hoofdstuk 2 par. 2.7 t/m 2.9. De
kenmerken en verbreding van humusvormen zijn beschreven in hoofdstuk 4. De
standplaatsen en potentiële vegetatiertypen zijn beschreven in hoofdstuk 5. De
resultaten van het theme natuur zijn de kaarten 4 t/m 10, schaal 1 : 5.000.

Alterra rapport 379
Lagenda:

- huidig cultuurland
- huidig natuurtorein (eigendom Natuurmonumenten en SBB)
- water

Fig. 1 Locatie van het onderzoeksgebied
Tabel 1: Stratigrafische tabel van het jonge Pleistoceen en het Holocence

Stratigrafie van het kaartbladgebied
Utrecht Oost (310)

Tijdspanne

N.N.E.
E.
S.
W.

10000
5000
3000
1500
0

SUB - ATLANTICUM
SUBBOREAL
ATLANTICUM
BOREAL
PREBOREAL
WEICHSELIEN
EEMIEN
SAALIEN

Formatie van Krefeldhoek
Formatie van Uek

Organische afzettingen (veen)
Digitaal, nieuwe (sneeuw)
Windafzettingen (oost- en westzand)
Estuarine deposits
Periglacial erosion and frost clast deposits
Lagunaire en windafzettingen
Lagunaire and mudflat deposits
Riverine deposits
Fluvio-littoral deposits
Littoral deposits

Bron: Toelichting bij de Geologische kaart van Nederland 1 : 50000 Utrecht Oost

Altaira rapport 379

15
2 Fysiografie

2.1 Ligging en oppervlakte

2.2 Geogenese

De geologische opbouw van het herinrichtingsgebied wordt besproken voor zover deze van belang is voor een goed begrip van het landschap, de bodem, het bodempatroon en de waterhuishouding. Vooral aan of nabij het oppervlak gelegen afzettingen zijn in dit verband belangrijk. Zij vormen het zogenoemde moerassenmateriaal, waarin door bodemvervorming (geogenese) allerlei veranderingen zijn ontstaan. Tabel 1 geeft een overzicht van de belangrijkste afzettingen. Alleen de formaties die binnen boombereik zijn aangetroffen, worden besproken. Voor meer informatie over de geologische opbouw van de omgeving van het herinrichtingsgebied wordt verwiesen naar de Toelichtingen bij de Geologische kaart van Nederland, schaal 1 : 50 000, blad Utrecht Oost (Van De Meene et al., 1988).

Het herinrichtingsgebied "De Vechtstreek" bestaat aan of nabij het oppervlak voornamelijk uit afzettingen uit het Holocene. Deze Holocene afzettingen bestaan uit verschillende soorten veen en klei. We kunnen ze onderscheiden in:
- Hollandveen (vl. bosveen, (riet)zeggeveen/brok veen en veenmosveen);
- Afzettingen van Vlienerke (jonge zeeklei);
- Afzettingen van Tiel (rivierklei).
Een klein gedeelte van de oppervlakte bestaat uit afzettingen uit het Pleistoceen:
- Formatie van Twente (dekzand).

2.2.1 Hollandvloed

Het Hollandvloed is onder invloed van verschillende factoren gevormd:
- stijging van de grondwaterspiegel samenhangend met de zeespiegelstijging,
- kwest van de hooggelegen pleistoceene randgebieden,
- overstroomingen door de rivieren,
- stagnerende regenwater.

Tot omstreeks 6000 BP is de veengroei binnen het onderzoeksgebied niet gehinderd door sedimentatie van zee- en/of rivierklei. Waar het veen buiten het invloed van zee of rivier bleef, kon de veengroei ongestoord doorgaan, waarbij pakketten van 7-8 m dikte ontstaan zijn. Venen kunnen op grond van de voedselinhoud van het milieu waarin zij zijn gevormd, worden ingedeeld in de klassen oligotrof (voedselarm), mesotrof (matig voedselhoudend) en eutrof (voedseldrijf). Op grond van hun botanische samenstelling kunnen in het onderzoeksgebied de volgende hoofdgroepen worden onderscheiden: veenmosvoet (oligotrof), zeggevoet en bosvoet (mesotrof) en rietvoet (eutrof). Deze veentype kunnen ook geïntegreerd voor of gaan geïntegreerd in elkaar over. Oligotrof veen bestaat voornamelijk uit bladerstukken van veermossen en plus van zaden van het veenplus en enenrug wolfgers. Het mesotrof veen bevat behalve zegge vaak zaden van Waterdrilblad (Minuartia). In het eutrofveen komen binnen het bosvoet regelmatig stukjes kienhout voor en binnen het rietvoet komen algasten (rietde) voor.

In het herinrichtingsgebied "De Vechtstreek" komt bosvoet vooral voor langs de Vecht (voedselrijk, zout water), rietvoet langs de kust van de voormalige Zuiderzee (tegenwoordig de randmeren; voedselrijk, zout/brak water), zeggevoet vooral in "De Horstermerpolder" (matig voedselrijk, zout water) en veenmosvoet in het oostelijk deel van het herinrichtingsgebied, op de grens naar de Utrechtse Heuvelrug (stagnatie van regenwater).

2.2.2 Afzettingen van Duinkerke

De klei (op enkele plaatsen kleiig zand) in het noorden van het onderzoeksgebied behoort tot de afzetting van Duinkerke (ontbreekt in tabel 1, ligt op of tussen Hollandvloed; in tijd vergelijkbaar met Afzettingen van Tirol). De marine klei, die hier zijn oorsprong heeft in de voormalige Zuiderzee, is binnen het onderzoeksgebied vooral afgezet langs de kust van de huidige randmeren en langs de monding van de Vecht. Meestal betreft het een pakket kalkloze, matig zware tot zware klei die op het Hollandvloed is afgezet. Deze afzettingen kunnen echter ook dieper in het profiel
voorkomen en overdreven met een laag vegen. Wanneer de afzettingen van Duninkerkse slipper in het profiel liggen, zijn ze vaak doorwrekt met niet (nietklei) of zijn ze lichter van structuur (zandiger) en kalkrijk.

2.2.3 Afzettingen van Tiel

De afzettingen van Tiel zijn rivierafzettingen en worden in twee hoofdtypen onderscheiden: stroomgedeelte- en koraalafzettingen.

De stroomgedeelte-afzettingen bestaan onderscheiden uit grofkorrelig, soms grindhoudend zand; ze worden naar boven toe geleidelijk aan minder grof en gaan veelal over in zavel. Ze komen niet aan of nabij het oppervlak binnen het onderzoekgebied voor, maar liggen wel in de buurt, namelijk langs de Vecht ten zuiden van het nivinrichtingsgebied.

De koraalafzettingen komen daarentegen wel voor. In het bovenland komen de koraalafzettingen voor langs het soms sterk vertakte geulnetwerk van de Vecht in het zuidelijk deel van het onderzoekgebied. Bij lage rivierstanden zorgen veenstroompjes voor de afbraak van het uitgestrekte veengebied, maar bij hoge rivierstanden stroomt het water weer terug. Bij hoge zeestand kan het opgestuwde water eveneens in het veengebied terugstromen en daarmee tijdelijk het doorgaans zachte milieu veranderen in een brak milieu. De stroomsnelheid in deze relatief smalle gedeelten was meestal erg laag, waardoor kleine lichte sedimenten konden sedimenteren. We vinden daarom op deze locaties meestal een pakket zware klei. Door inklinking van het omliggende veen liggen deze stroompjes meestal als lagergrond, soms (inversie)ruggen in het landschap. Vooral op plaatsen waar onderbemalen wordt, is dit goed te zien.

In de droogmakerij “De Horstermeeppolder” is door veeing in eerste instantie een plas ontstaan, die later is drooggemalen. In deze polder is de bovenste 2,5-3 m grond (bestaande uit veen) weggehaald. De vrij zware klei die nu op veel plaatsen aan of nabij het oppervlak gevonden wordt, behoort eveneens tot de afzettingen van Tiel.

2.2.4 Formatie van Twente

Zowel in “De Horstermeeppolder” als in het bovenland, met name in het oostelijke deel van het nivinrichtingsgebied, komt de kalk (Pleistocene) aan het oppervlak voor. In het bovenland bereiken de dekozanddringen een hoogte van ca. 0-4,5 m NAP. De bovenkant van het Pleistocene daalt sterk in noordwestelijke richting. Aan de zuidzijde van Amsterdam ligt de bovenkant van het Pleistocene ongeveer op 10 m NAP. Tijdens de Würm-pijp daalde het zeeniveau sterk en breidde het landje zich opnieuw uit. Het bereikte echter ons land niet. Wel hoorde hier een toward-klimaat. Door het grotere steeds ontbreken van een begroeiing, konden door noordwestelijke tot zuidwestelijke winden grote hoeveelheden zand worden

Alterra rapport 379 19
verplaatst. Het dekzand ondervindt zich met bijv. het zand uit de stuwwal van de Utrechtse Heuvelrug door zijn grote uniformiteit. De mediaan van het zand ligt veelal tussen 150 en 180 mg.

2.3 Bodemvorming

De volgende bodemvormende processen hebben een rol gespeeld bij het ontstaan van de bodems in het henneprichtingsgebied "De Veluwestreek":
- humusvorming;
- oksieling;
- opsmag;
- podsolering;
- gleyvorming;
- homogenisatie;
- anthropogene processen.

Voor een bespreking van deze processen wordt verwezen naar bijgesloten rapport 157 (Brouwer, Ten Cate en Scholten 1996, tweede, gewijzigde druk, bandenrek 4).

2.4 Bodem en landschap

De verbreding van de verschillende bodemeenheden en hun onderlinge verband, het zogenoemde bodempatroon, is het resultaat van geologische processen en van bodemvormende processen die op het moedermateriaal hebben ingewerkt. In combinatie met de vegetatie ontstaat een natuurlijk landschap. De mens heeft dit landschap door onder andere ontginning en ontwatering omgevormd tot een cultuurlandschap.

2.4.1 Topografie

De hoogteligging varieert van ca. 0,5-0 meter boven N.A.P. langs de oostzijde tot 1,5 - 3 meter boven N.A.P. in de droogmakerij "De Horstermeerderkleden".

2.4.2 Ontginning en bodemgebruik

Voor een uitvoeriger bespreking van deze onderwerpen wordt verwezen naar het bijgesloten briefadvies van fase 1 (Bont De, 2000). De hieronder volgende tekst is een uittreksel uit de Toelichtingen bij de bodemkaart van Nederland, schaal 1 : 50 000, blad M1 West en Oost Utrecht, Sichting voor Bodemkartering, 1969/1970.

Het onderzoeksgebied bestond ca. 800 à 900 na Chr. uit grote veenmoerassen, doorsneden door een aantal veenstroompjes. De belangrijkste rivier in de omgeving
was de Vecht, die tot het einde van de negentiende eeuw de hoofdwatering verzorgde en het Rijnwater afvoerde. Ten noorden van de Vecht zijn de veengebieden sedert de twaalfde eeuw ontgonnen en verkaveld (Grothschaal, 1966). Het landschap en de bodemgesteldheid in de veengebieden zijn ook ingrijpend veranderd door zijn natte verveningen. Daarbij werden onder water dikke pâketten veen weggegraven voor de turffabriek. Er ontstonden hierbij enorme plassen die gekenmerkt worden door meer of minder brede stukken water waaruit het veen is weggegraven, zgn. pektaten en langgerichte, smalle stroken onverenigd land, zgn. zeekwallen waarop het veen te drogen werd gelagd. De Loosdrechtsehe en Ankeveense Plassen zijn voorbeelden van deze verveningen.

De bovengrond van de veengebieden kan aanzienlijk verschillen. Dit komt deels door kleistikeringen, deels door het gebruik van de zgn. toomak, een mengsel van stalmest, slootbugger en in vele gevallen duinzand. Het effect van het gebruik van toomak is bij de veengebieden duidelijk herkenbaar aan de dikkere, donker gekleurde bovengrond en aan het vrij grote percentage zand en rode brokjes puinsteen. De toomakdikken komen op enkele locaties binnen het onderzoekgebied bij de veengebieden voor.

Aan weerszijden van de Vecht liggen hoge oeverwalen die reeds omstreeks het begin van de jaartelling bewoond waren.

Het herinrichtingsgebied "De Vechtstreek" maakt deel uit van het Noord-Hollandse veenweidegebied. Melkveehouderij is de overweerende vorm van agrarisch grondgebruik. In de Horstemerveenpolder was vroeger veel tuinbouw. Tegenwoordig resteren vooral nog enkele boom- en bloemweckers (o.a. orchideeën).

2.5 Waterhuishouding

Kenmerkend voor veengebieden zijn de smalle, langgerichte perrons. Daar waar intensief is gelagd vinden we bovendien brede sloten. De afwatering van de veengebieden is aangepast aan de bodemgesteldheid. Om verdere zakking van het waterpeil te voorkomen, streeft men naar een waterbeheersing, waarbij in de zomer de grondwaterstand niet beneden 80 cm - ev. daalt. De ontsluiting is sterk afhankelijk van de vorm en onderhoud van de greppels en de sloten en de mate van drainatie. In het algemeen komen (zeer) hoge wintergronddwaterstanden voor. Op een aantal plaatsen komen onderbemalingen voor, deze zijn in particulier bezit.
Fig. 2 Opnameschaal van bodem- en grondwatertrappenkaart
3 Bodemgeografisch onderzoek en digitale verwerking/manipulatie van bodemkundige gegevens

3.1 Bodemgeografisch onderzoek

Voor een beschrijving van de methode van het bodemgeografisch onderzoek verwijzen we naar bijgesloten rapport 157 (Bouwer, Ten Cate en Scholten 1996, tweede, gewijzigde druk, pnr. 2 f). Tijdens het bodemgeografisch onderzoek hebben we, in gebied A ca. 1 bodemprofielmonster per ha, in gebied B ca. 1 bodemprofielmonster per 3 ha en in de gebieden C en D ca. 4 bodemprofielmonsters per ha genomen (fig. 2). Gebied A bestaat uit ca. 450 ha, gebied B uit ca. 734 ha, gebied C uit ca. 50 ha en gebied D uit ca. 18 ha. De reden voor deze verschillen in aangepak is de variatie in bodemopbouw en grondwatertrappen op de Bodem- en grondwatertrappenkaart van Nederland, schaal 1 : 50.000 (bijgesloten houtfakkel van fase 1, hoofdstuk 2).

De bodemprofielmonsters hebben we in de gebieden A, B en D genomen met een grondboor tot een diepte van ca. 0,80 m – mv. (onverzadigde zone) en vervolgens met een steekboor (guts) verder tot ca. 1,50 à 2,20 m – mv. (verzadigde zone). In gebied C hebben we de bodemprofielmonsters genomen met een zgn. “Humusrapper” tot een diepte van ca. 0,40 m – mv. en vervolgens met een grondboor of steekboor verder tot ca. 1,50 m – mv. De bodemprofielmonsters zijn beschreven en geregistreerd met een veldcomputer (Husky Hunter). In totaal zijn 614 bodemprofielmonsters beschreven en geregistreerd met een veldcomputer. In gebied C zijn 194 bodemprofielmonsters, die genomen zijn met de humusrapper, niet geregistreerd met een veldcomputer maar handmatig opgenomen op formulieren, omdat voor deze beschrijving een ander format wordt gebruikt. Binnen gebied C zijn wel de bodemprofielmonsters genomen met de grondboor geregistreerd met een veldcomputer.

In gebieden met grote variatie in profielopbouw op korte afstand is een aantal bodemprofielmonsters genomen, waarvan de resultaten niet zijn geregistreerd met een veldcomputer. Deze extra profielmonsters, ook wel tussenborrigen genoemd, waren nodig om de bodem- en Gr-gezien nauwkeurig vast te stellen.

De gegevens van de bodemprofielmonsters, de zgn. boortatoen, zijn opgeslagen in een computerbestand (Arc-View), dat alleen aan de opdrachtgever is toegestuurd. Plaats en nummer van de bodemprofielmonsters zijn weergegeven op 16 veldkaarten en op een boortatoenkaart (kaart 3).

De resultaten en conclusies van het onderzoek zijn samengevat op een bodemkaart (kaart 1) en een grondwatertrappenkaart (kaart 2), beide op schaal 1 : 10 000. De
3.2 Toetsing aan meetresultaten

Om onze schattingen van textuur, humusgehalten en grondwaterstanden te kunnen toetsen aan meetresultaten hebben we laboratoriumanalyses van grondmonster gebruikt en grondwaterstandsmetingen verricht. Schattingen van textuur en humusgehalten konden we al tijdens het onderzoek toetsen, omdat de analyses reeds voorhanden waren. De meetresultaten van grondwaterstanden waren pas aan het einde van het veldwerk beschikbaar. In de praktijk betekent dit dat de uitkomsten van de grondmonsteranalyses ons bij het schatten gestaard hebben. De grondwaterstandsmetingen worden in hoofdzaak gebruikt om achteraf vast te stellen waar de schattingen afwijken van metingen.

3.2.1 Bemonstering en laboratoriumanalyse

Voor het toetsen van de schattingen van textuur en humusgehalten hebben we van 27 monsterplaatsen analysegegevens gebruikt uit het relieft van DLO-Staringcentrum (codes beginnend met 251 of 31P). Hoewel deze gegevens door hun leeftijd niet altijd meer overeenstemmen met de huidige situatie, geven ze toch een redelijke indicatie van de granulaire samenstelling in de directe omgeving. Daarnaast hebben we op negen verschillende monsterplekken (codes beginnend met A) de boorgrond voor aanvang van het veldwerk bemonsterd en laten analyseren door het Bedrijfslaboratorium voor Grond- en Gewasonderzoek te Oosterbeek. De ligging en nummers van de bemonsteringsplaatsen staan afgebeeld op figuur 3. De analyseresultaten staan weergegeven in tabel 2.
<table>
<thead>
<tr>
<th>Altern</th>
<th>Perfor</th>
<th>Bomenkaart</th>
<th>Jaarg</th>
<th>Pemorse</th>
<th>pH</th>
<th>Oog. strof.</th>
<th>Feinzuiiverdeling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nummer</td>
<td>livrering</td>
<td></td>
<td>sterstm</td>
<td>km</td>
<td></td>
<td>(%) van de mineralen</td>
</tr>
<tr>
<td>25H1</td>
<td>pMaas6C/III</td>
<td>1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>4.0</td>
<td>1.0</td>
<td>14</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-30</td>
<td>4.0</td>
<td>1.0</td>
<td>11</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-50</td>
<td>3.9</td>
<td>1.0</td>
<td>5</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-80</td>
<td>7.3</td>
<td>1.0</td>
<td><1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-110</td>
<td>7.9</td>
<td>1.0</td>
<td><1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110-130</td>
<td>7.9</td>
<td>1.0</td>
<td><1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25H1</td>
<td>Moas6C/III</td>
<td>1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>3.4</td>
<td>1.0</td>
<td>22</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-30</td>
<td>3.4</td>
<td>1.0</td>
<td>22</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-50</td>
<td>3.3</td>
<td>1.0</td>
<td>9</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-80</td>
<td>3.7</td>
<td>1.0</td>
<td>4</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-110</td>
<td>3.7</td>
<td>1.0</td>
<td>14</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110-130</td>
<td>6.6</td>
<td>1.0</td>
<td>3</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25H1</td>
<td>Moas6C/III</td>
<td>1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>6.0</td>
<td>1.0</td>
<td>10</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>3.8</td>
<td>1.0</td>
<td>9</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-50</td>
<td>3.3</td>
<td>1.0</td>
<td>7</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-80</td>
<td>6.4</td>
<td>1.0</td>
<td>11</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-110</td>
<td>7.5</td>
<td>1.0</td>
<td><1</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25H1</td>
<td>Moas6C/III</td>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>3.9</td>
<td>1.0</td>
<td>15</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>3.4</td>
<td>1.0</td>
<td>15</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-50</td>
<td>4.4</td>
<td>1.0</td>
<td>17</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25H1</td>
<td>Moas6C/III</td>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>3.0</td>
<td>1.0</td>
<td>20</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>4.7</td>
<td>1.0</td>
<td>24</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-50</td>
<td>3.6</td>
<td>1.0</td>
<td>35</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25H1</td>
<td>Moas6C/III</td>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>6.7</td>
<td>1.0</td>
<td>11</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>6.3</td>
<td>1.0</td>
<td>13</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25H1</td>
<td>Moas6C/III</td>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>3.9</td>
<td>1.0</td>
<td>14</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>4.6</td>
<td>1.0</td>
<td>14</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25H1</td>
<td>Moas6C/III</td>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>4.8</td>
<td>1.0</td>
<td>19</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>4.7</td>
<td>1.0</td>
<td>10</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25H1</td>
<td>Moas6C/III</td>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>4.6</td>
<td>1.0</td>
<td>18</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>4.6</td>
<td>1.0</td>
<td>18</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25H1</td>
<td>Moas6C/III</td>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>4.6</td>
<td>1.0</td>
<td>18</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>4.6</td>
<td>1.0</td>
<td>18</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alterra rapport 379 25
<table>
<thead>
<tr>
<th>Central profielnummer</th>
<th>Feuchtigkeitsklassering</th>
<th>Jaar</th>
<th>Bemonstering</th>
<th>pH</th>
<th>Oogst</th>
<th>Fractieverdeling (% van de mineralen delen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(cm - mv.)</td>
<td></td>
<td></td>
<td>(<2 µm) (<30 µm) (<50 µm)</td>
</tr>
<tr>
<td>2St1.13</td>
<td>hVs III</td>
<td>1963</td>
<td>0.23</td>
<td>3.2</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.6</td>
<td>9</td>
<td>105</td>
</tr>
<tr>
<td>2St1.14</td>
<td>gGlu/IV</td>
<td>1966</td>
<td>200-225</td>
<td>7.6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>2St1.27</td>
<td>Moers (No I)</td>
<td>1993</td>
<td>0.10</td>
<td>2.8</td>
<td>96</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.30</td>
<td>3.4</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30-60</td>
<td>3.7</td>
<td>23</td>
</tr>
<tr>
<td>2St1.28</td>
<td>Moers (No I)</td>
<td>1993</td>
<td>0.10</td>
<td>3.4</td>
<td>92</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10-30</td>
<td>3.4</td>
<td>57</td>
</tr>
<tr>
<td>2St1.29</td>
<td>Moers (No I)</td>
<td>1993</td>
<td>0.10</td>
<td>3.4</td>
<td>92</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10-30</td>
<td>3.2</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30-60</td>
<td>1.1</td>
<td>38</td>
</tr>
<tr>
<td>3St1.2</td>
<td>pRus9 II</td>
<td>1960</td>
<td>40-50</td>
<td>7.6</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90-100</td>
<td>7.6</td>
<td>4 35</td>
</tr>
<tr>
<td>3St1.5</td>
<td>ReV4C III</td>
<td>1963</td>
<td>3.30</td>
<td>5.3</td>
<td>25</td>
<td>51</td>
</tr>
<tr>
<td>3St1.6</td>
<td>pRus9 II</td>
<td>1963</td>
<td>3.30</td>
<td>7.0</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>3St1.7</td>
<td>hVk II</td>
<td>1963</td>
<td>3.30</td>
<td>5.7</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>3St1.8</td>
<td>hVl II</td>
<td>2000</td>
<td>3.30</td>
<td>5.7</td>
<td>38</td>
<td>31</td>
</tr>
<tr>
<td>3St1.9</td>
<td>pRus9/p III</td>
<td>2000</td>
<td>3.30</td>
<td>7.0</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>3St1.10</td>
<td>hVl II</td>
<td>1963</td>
<td>0.25</td>
<td>5.3</td>
<td>12</td>
<td>3 16</td>
</tr>
<tr>
<td>3St1.17</td>
<td>ReV3A III</td>
<td>1965</td>
<td>0.17</td>
<td>7.1</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.38</td>
<td>7.4</td>
<td>3 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.70</td>
<td>7.3</td>
<td><1 61</td>
</tr>
<tr>
<td>3St1.18</td>
<td>pRus9/p III</td>
<td>1963</td>
<td>0.13</td>
<td>7.3</td>
<td>8</td>
<td>9 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.30</td>
<td>7.4</td>
<td>8 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30-50</td>
<td>7.4</td>
<td>2 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50-70</td>
<td>7.3</td>
<td><1 2</td>
</tr>
<tr>
<td>3St1.19</td>
<td>Wo II</td>
<td>1965</td>
<td>0.17</td>
<td>6.6</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38-53</td>
<td>7.5</td>
<td>4 37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60-80</td>
<td>7.5</td>
<td>4 35</td>
</tr>
<tr>
<td>A1</td>
<td>cRus21 III</td>
<td>2000</td>
<td>0.23</td>
<td>6.8</td>
<td>6</td>
<td>4 175</td>
</tr>
<tr>
<td>A2</td>
<td>pRus9/p III</td>
<td>2000</td>
<td>0.25</td>
<td>7.3</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>A3</td>
<td>kVl III</td>
<td>2000</td>
<td>0.25</td>
<td>5.9</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>A4</td>
<td>hVl II</td>
<td>2000</td>
<td>0.25</td>
<td>4.6</td>
<td>33</td>
<td>16</td>
</tr>
<tr>
<td>A5</td>
<td>pRus9 II</td>
<td>2000</td>
<td>0.25</td>
<td>5.9</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>A6</td>
<td>Mo/IVC III</td>
<td>2000</td>
<td>0.25</td>
<td>4.6</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>A7</td>
<td>kVl II</td>
<td>2000</td>
<td>0.20</td>
<td>4.4</td>
<td>13</td>
<td>38</td>
</tr>
<tr>
<td>A9</td>
<td>kVl II</td>
<td>2000</td>
<td>0.14</td>
<td>4.5</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>A10</td>
<td>ReV4C III</td>
<td>2000</td>
<td>0.36</td>
<td>6.2</td>
<td>17</td>
<td>40</td>
</tr>
</tbody>
</table>

26
Alterra rapport 379
Fig. 3 Ligging en nummering van de goudmonsters
Fig. 4 Ligging en nummering van de grondwaterstandsbuizen
3.2.2 Grondwaterstandmetingen

Om de veldschotten van de gemiddeld hoogste grondwaterstand in de winterperiode (GHG) en de gemiddeld laagste grondwaterstand in de zomerperiode (GILG) te toetsen, hebben we meetgegevens gebruikt van:
- grondwaterstandbeuken van het Nederlands Instituut voor Toepaste Geowetenschappen NITIG-TNO (L- en P-buizen);
- grondwaterstandbeuken van Alterra (A-buizen);
- eigen opnamen in boorten (gerichte opnamen).

Meepunten en meetresultaten

De tien A-buizen die speciaal in het kader van dit onderzoek door Alterra zijn geplaatst, hebben een meetreik van circa één jaar (oktober 2000-augustus 2001). De meeste buizen hebben een filterlengte van 1 meter. De lengte van de buizen (incl. filter) loopt uiteen van 1,3-3 m (tabel 3 en 4).

De ligging van bovengenoemde buizen staat afgebeeld op figuur 4. De administratieve gegevens van de buizen staan in tabel 3 en de meetresultaten van de buizen staan in tabel 4.

<table>
<thead>
<tr>
<th>Buizencode</th>
<th>Filterlengte (cm - mv.)</th>
<th>Meetperiode</th>
<th>Meetpunt NAP (cm)</th>
<th>Anuual metingen in afgel.</th>
<th>GHG (cm - mv.)</th>
<th>Standafw. (cm)</th>
<th>GILG (cm - mv.)</th>
<th>Standafw. (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25H-10047</td>
<td>198</td>
<td>1932-1994</td>
<td>7</td>
<td>18</td>
<td>(89)</td>
<td>16</td>
<td>(96)</td>
<td>16</td>
</tr>
<tr>
<td>25H-10048</td>
<td>159</td>
<td>1932-1999</td>
<td>52</td>
<td>78</td>
<td>(133)</td>
<td>11</td>
<td>(63)</td>
<td>10</td>
</tr>
<tr>
<td>25H-10051</td>
<td>190</td>
<td>1932-1999</td>
<td>7</td>
<td>71</td>
<td>(70)</td>
<td>4</td>
<td>(78)</td>
<td>6</td>
</tr>
<tr>
<td>25H-10053</td>
<td>168</td>
<td>1972-1998</td>
<td>142</td>
<td>63</td>
<td>(68)</td>
<td>15</td>
<td>(83)</td>
<td>26</td>
</tr>
<tr>
<td>25H-17898</td>
<td>231</td>
<td>1993-1999</td>
<td>18</td>
<td>143</td>
<td>56</td>
<td>5</td>
<td>72</td>
<td>5</td>
</tr>
<tr>
<td>31H-10004</td>
<td>216</td>
<td>1932-2000</td>
<td>7</td>
<td>252</td>
<td>73</td>
<td>13</td>
<td>96</td>
<td>10</td>
</tr>
<tr>
<td>31H-10012</td>
<td>190</td>
<td>1932-1996</td>
<td>7</td>
<td>28</td>
<td>(53)</td>
<td>20</td>
<td>(71)</td>
<td>15</td>
</tr>
</tbody>
</table>

* de GHG / GILG waarden die tussen buizen zijn geplaatst, zijn vanwege te weinig metingen slechts benaderingen.
Berekening van GHG en GLG van buizen met 6-8 jaren meegegevens of meer

Voor de beschrijving van de methode voor de berekening van GHG en GLG van buizen met 6-8 jaren meegegevens of meer verwijzen we naar bijgesloten rapport 157 (Brouwer, Ten Cate en Scholten 1996, tweede, gewijzigde druk; par. 2.2.2). Alleen van de pelbuizen 25H1-P7982, 25H1-P7998 en 31H1-00104 zijn bij de aanvraag van het onderzoek de GHG en GLG berekend, omdat deze bui aan de gestelde voorwaarden in paragraaf 2.2.2 van rapport 157 voldoen (tabel 3). De andere pelbuizen vielen af, omdat deze buizen niet vaker genoeg zijn opgenomen. Ze zijn niet geschikt als stamhuis, maar kunnen wel als tijdelijke buizen fungeren. In tabel 3 zijn voor deze resterende buizen wel een benaming van de GHG en GLG, tussen haakjes, meegegeven op grond van de ca. 4 aanwezige grondwaterstanden per jaar.

Schatting van GHG en GLG van tijdelijke buizen met een korte meetreeks door regressie-analyse met stambuizen

Voor de beschrijving van de methode voor de schatting van GHG en GLG van tijdelijke pelbuizen (korte meetreeks) door regressie-analyse met stambuizen (lange meetreeks) verwijzen we naar bijgesloten rapport 157 (Brouwer, Ten Cate en Scholten 1996, tweede, gewijzigde druk; par. 2.2.2.f). Voor ons onderzoeksgebied zijn drie stambuizen aanwezig. Deze stambuizen liggen net binnen de oostgrens van het onderzoekgebied. De fluctuatie van de stambuizen is hieraan te gering (GHG –

<table>
<thead>
<tr>
<th>Weekcode</th>
<th>Filter-</th>
<th>13-4</th>
<th>14-2</th>
<th>15-2</th>
<th>16-2</th>
<th>17-3</th>
<th>18-3</th>
<th>19-3</th>
<th>20-3</th>
<th>21-3</th>
<th>22-3</th>
<th>23-3</th>
<th>24-3</th>
<th>25-3</th>
<th>26-3</th>
<th>27-3</th>
<th>28-3</th>
<th>29-3</th>
<th>30-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5H1-0074</td>
<td>120</td>
<td>37</td>
<td>74</td>
<td>65</td>
<td>67</td>
<td>65</td>
<td>67</td>
<td>69</td>
<td>71</td>
<td>73</td>
<td>75</td>
<td>77</td>
<td>79</td>
<td>81</td>
<td>83</td>
<td>85</td>
<td>87</td>
<td>89</td>
<td>91</td>
</tr>
<tr>
<td>2.5H1-0148</td>
<td>159</td>
<td>45</td>
<td>74</td>
<td>42</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
</tr>
<tr>
<td>2.5H1-0151</td>
<td>199</td>
<td>53</td>
<td>57</td>
<td>52</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
</tr>
<tr>
<td>2.5H1-0193</td>
<td>168</td>
<td>54</td>
<td>57</td>
<td>52</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
</tr>
<tr>
<td>2.5H1-0510</td>
<td>300</td>
<td>61</td>
<td>62</td>
<td>55</td>
<td>54</td>
</tr>
<tr>
<td>2.5H1-0782</td>
<td>231</td>
<td>51</td>
<td>52</td>
<td>46</td>
<td>45</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>2.5H1-0790</td>
<td>83</td>
<td>65</td>
<td>67</td>
<td>58</td>
<td>56</td>
</tr>
<tr>
<td>31H1-0012</td>
<td>140</td>
<td>12</td>
<td>12</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>A1</td>
<td>144</td>
<td>57</td>
<td>54</td>
<td>57</td>
<td>52</td>
<td>56</td>
</tr>
<tr>
<td>A2</td>
<td>125</td>
<td>38</td>
<td>41</td>
<td>36</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>A3</td>
<td>130</td>
<td>14</td>
<td>15</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>A4</td>
<td>178</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>A5</td>
<td>140</td>
<td>0</td>
</tr>
<tr>
<td>A6</td>
<td>105</td>
<td>0</td>
</tr>
<tr>
<td>A7</td>
<td>105</td>
<td>0</td>
</tr>
<tr>
<td>A8</td>
<td>105</td>
<td>0</td>
</tr>
<tr>
<td>A9</td>
<td>105</td>
<td>0</td>
</tr>
<tr>
<td>A10</td>
<td>105</td>
<td>0</td>
</tr>
<tr>
<td>Doorweg</td>
<td>206</td>
<td>0</td>
</tr>
</tbody>
</table>

| Tabel 4 | Grondwaterstanden (nr. met) en filterlogie in de periode augustus 1997 tot en met 1998 |
Fig. 5a Gerichte grondwateropnamen in 2001; nooddelijk deel
Legende:
- gekarteerd gebied
- niet-gekarteerd gebied
- water

39/44 betekent 39 cm - m.v. op 16 februari en 44 cm - m.v. op 30 augustus

Schaal 1 : 25 000

Fig. 5b Gerichte grondwateropnamen in 2001; zuidelijk deel
Resultaten van de gerichte opname voor de GHG en GLG

Om onze schattingen van GHG en GLG zoveel mogelijk op basis van gemeten zanden te toetsen, hebben we in het herinrichtingsgebied "De Vechtstreek" voor beide karakterstukken een momentopname (gerichte opname) uitgevoerd. De gerichte opname is uitgevoerd op 16 februari 2008 (GHG-benadering) en op 30 augustus 2000 (GLG-benadering). Op deze twee data gaven de grondwaterstanden in de zandbuisen aan dat het niveau van de berekende GHG resp. GLG bij benadering aanwezig was. De meting van 16 februari was ongeveer 5 cm droger dan GHG-niveau, terwijl de meting van 30 augustus ongeveer 20 cm natter dan GLG-niveau was. Er zijn grondwaterstanden gemeten in 20 polttubingen en in 62 boorputten. De resultaten van de gerichte opname staan afgebeeld op figuur 5a en b. Figuur 5 en tabel 4 laten duidelijk zien dat de grondwaterstanden in het herinrichtingsgebied "De Vechtstreek" maar weinig fluctueren (gem. fluctuatie ca. 40 cm). In de kleigronden is de fluctuatie veelal iets groter dan in de veengronden.

3.3 Indeling van de gronden

In het veld hebben we de gronden per boorput gestandaardiseerd volgens het systeem van bodemclassificatie voor Nederland van De Bakker en Schellink (1989). In bijgesloten rapport 157 (Brouwer, Ten Cate en Scholten 1996, tweed. gewijzigde druk, par. 2.3) wordt uitvoerig ingegaan op het classificatiesysteem, de differentiërende kenmerken en de indelingen. Voor het herinrichtingsgebied "De Vechtstreek" hebben we op het hoogste niveau de gronden als volgt ingedeeld:

- veengronden;
- moerse gronden;
- zeediegriepgronden;
- rivierdiegriepgronden;
- zandgronden.

Naar de differentiërende kenmerken (n.a. bodemvorming, hydromorfie kenmerken, dikte bouwgrond), textuur en profielverloop hebben we de gronden verder onderverdeeld in 57 bodempenningen. Hoewel aantal bodempenningen kenmerken konden we niet gebruiken als criterium bij het indelen van de gronden, vooral omdat dan het aantal bodempenningen te groot zou worden. Daarom hebben we deze kenmerken in kaart gebracht in de vorm van toekomstige bodemvorming. We hebben 12 toekomstige bodemvormingen (w.o. 3 vergravingen) onderscheiden.

Alterra rapport 379

35
3.4 Indeling van het grondwaterstandsverloop

Voor een beschrijving van de indeling van het grondwaterstandsverloop in grondwatertrappen verwijzen we naar bijgesloten rapport 157 (Brouwer, Ten Cate en Scholten 1996, tweede, gewijzigde druk, par. 2.4). We hebben 8 grondwatertrappen onderscheiden.

3.5 Opzet van de legenda

Bij de rapportage van het heinrichtingsgebied “De Vechtstreek” is gekozen voor een beschrijvende legenda. In de legenda's van de bodem- en grondwatertrappenkaart zijn de verschillen in bodemgesteldheid weergegeven in de vorm van:
- legenda-eenheden;
- toevoegingen (incl. vergravingen);
- grondwatertrappen.

Voor algemene informatie over de begrippen legenda-eenheden, toevoegingen en grondwatertrappen en de combinaties daarvan verwijzen we naar bijgesloten rapport 157 (Brouwer, Ten Cate en Scholten 1996, tweede, gewijzigde druk, par. 2.5).

Overige onderscheidingen omvatten delen van het heinrichtingsgebied “De Vechtstreek” die niet of slechts gedeeltelijk in het onderzoek zijn betrokken, zoals:
- bebouwing, spoorlijn, sportvelden, wegen en bermen;
- water;
- kassen;
- kade;
- sterk opgehoogde terreinen;
- perceelen waarvan de eigenaar/gebruiker geen toestemming voor het onderzoek wilde verlenen;
- terp.

3.6 Digitale verwerking/manipulatie van bodemkundige gegevens

Voordat de bodemkundige data definitief wordt opgeslagen, hebben ze verschillende controleprogramma's doorlopen. De locatie en de profielbeschrijvingen van de grondboringen zijn samen met de bodem- en grondwatertrappenplakken opgeslagen in een GIS-bestand (AreInfo/AveView). De locatie en de profielbeschrijvingen van de grondboringen zijn opgeslagen in een AreInfo-puntencoverage, terwijl de bodem- en grondwatertrappenplakken zijn opgeslagen in een AreInfo-polygonencoverage. Voor de beschrijving van de digitale verwerking/manipulatie van bodemkundige gegevens verwijzen we verder naar bijgesloten rapport 157 (Brouwer, Ten Cate en Scholten 1996, tweede, gewijzigde druk, hoofdstuk 4).

Het heinrichtingsgebied “De Vechtstreek” is opgesplitst in 4 zogenaamde LI-D-vakken.
3.7 Humusprofielbeschrijvingen

Het humusprofiel is dat deel van de bodem waarin de biologische activiteit zich grootsteels afspeelt. Een uitgebreid voedselweb van insecten, wormen, adlib, schimmels en micro-organismen zorgt ervoor dat strooisel wordt gefragmenteerd, gemineraliseerd, gehumifieerd en al dan niet met de mineralen ondergrond vermengd. De mate waarin de verschillende bodemorganismen actief zijn, wordt sterk beïnvloed door n.a. de bodemvoorraad, de acidië, het vochtgehalte en de aanwezigheid van rotsige stoffen. Het humusprofiel is daardoor in verband te brengen met factoren als bodemvoorraad en acidië. Omdat strooiselontwikkeling een relatief snel proces is, verstrekt het humusprofiel dus informatie over dynamische bodemonprocessen en veranderlijke bodemfactoren. Het humusprofiel weerspiegelt daarom de actuele bodemtoestand.

Daarnaast is ook het beheer van invloed op het humusprofiel. Er bestaat een markant verschil tussen humusprofielen van grasland- en bosheiligdomen. In bos vormen bladeren, takken, ’doed hout’ en schors de belangrijkste bronnen van strooisel. In grasland vormt het afgesorteerd wortelmateriaal de belangrijkste bron van organisch materiaal. Het humusprofiel reageert daarom zowel op beheersingsovergangen (moer, kappen, bewezen) als op milieuveranderingen (mensen ingrijpen, verdrijving, versurning), waardoor het humusprofiel in hoge mate indicerend is voor veranderingen in het ecosystem.

Alcema rapport 379 37
Bij de humusprofielsbeschrijvingen hebben we de volgende kenmerken van de horizonsten gemeten en geschreven:
- typeering van de horizon, op grond van moedermateriaal en bodemvorming; Dit komt tot uiting in de horizoncode, die op een aantal punten afwijkt van de code die gebruikt wordt bij bodemprofielmonitoring (zie tabel 5).
- begin- en einddiepte van de horizon;
- afmeting van de grens;
- organische stof gehalte;
- aard van de organische stof of de veensoort;
- textuur (% lutum, %s leem en zandgehalte);
- pH van een aantal horizonsten, gemeten met indicatorstroken;
- kalkklasse;
- geologische formatie;
- structuurtypen;
- dichtheid, dikte en oriëntatie van aanwezige horizonsten;
- waargenomen (sporen van) bodemfauna.

De gebruikte indeling voor deze kenmerken komen voor een groot deel overeen met de gebruikelijke indelingen bij bodemprofielbeschrijvingen. Voor de horizoncode, afmeting van de grens, pH, structuurtypen, wortelkenmerken en bodemfauna gebruiken we afwijkende indelingen.

<table>
<thead>
<tr>
<th>Tabel 5</th>
<th>Omschrijving</th>
<th>Toevoeging</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>wortelmateriaal</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>matten van onvruchtbare dek wortelresten</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>gedeeltelijk versteende wortelresten</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>sterk verteerde wortelresten</td>
<td></td>
</tr>
<tr>
<td>OM</td>
<td>veen (moerse laag)</td>
<td></td>
</tr>
<tr>
<td>C, m, h</td>
<td>veer onder M;</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>veen (moerse laag)</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>onverwoest veen</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>verwoest veen</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>erfsoof verwoest veen</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>anatuur verwoest mesofloor veen (grotge)</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>anatuur algemesofloor verwoest veen (gledet)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>moerse horizon (15 - 30% organische stof) die ontstaan is door overlast van veen waarbij het resultaat meer dan 30% organische stof bevat</td>
<td></td>
</tr>
<tr>
<td>A/B</td>
<td>overgangs horizont tussen een A- en een B-horizont, ontstaan door accumulatie van wortels in een mineralen A-horizont (≤ 30% humus)</td>
<td></td>
</tr>
<tr>
<td>A/B</td>
<td>gelijkmateriaal organisch materiaal dat door directe activiteit (humurenhalt) vermengd is met de minerale ondergrond</td>
<td></td>
</tr>
<tr>
<td>A/B</td>
<td>A-horizont die slechts door antropogene invloed is verrijkt met organische stof</td>
<td></td>
</tr>
<tr>
<td>A/B</td>
<td>A-horizont met duidelijke uitlegkingenmerken (overgang van A- naar B-horizont)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>ontdaan van en uitgelekte minerale horizon</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>humus met over- en humusinspoeling</td>
<td></td>
</tr>
<tr>
<td>B/C</td>
<td>mineralen C-horizont met aanwezig van humus, vaak door bioturbation (overgang van een A- naar een C-horizont)</td>
<td></td>
</tr>
<tr>
<td>B/C</td>
<td>mineralen C-horizont met inspoeling van humus (overgang van een B naar een C-horizont)</td>
<td></td>
</tr>
</tbody>
</table>

Alcerea-rapport 379
3.8 **Humusvormtypologie**

De humusvorm is een specifieke vorm waarin het humusprofiel voor komt. Dit wordt bepaald door het voorkomen en de dikte van horizonsten tot 40 cm - mr. Op basis van een humusvormclassificatie (of humusvormtypologie) wordt een humusprofiel ingedeeld bij een humusvorm. Dit is vergelijkbaar met een bodemprofiel dat wordt ingedeeld bij een bodemsoort. Op basis van de dikte van verschillende horizonsten hebben we bepaald bij welke humusvorm het profiel gerekend moet worden. In het rapport "Ecologische typering van bodems; Deel 2 Humusvormtypologie Korte vegetatie" (Van Delft 2001) wordt een humusvormclassificatie voor korte vegetaties besproken. De benaming voor de hier besproken humusprofielen is gebaseerd op deze humusvormclassificatie. De onderscheidene humusvormen worden besproken in hoofdstuk 4.

3.9 **Humusvormenkaart**

In het bijgesloten briefing (De Vechtert век, fase 1) en paragraaf 2.1 staat beschreven dat voor een deel van de "Hontemeerpolder" (gebied G van figuur 2) de variatie in bodemsoortstelling en grondwatertrappen op de Bodemkaart van Nederland, schaal 1 : 50.000 zog. Groot is dat in dit gebied en binnen dit onderzoek gekozen is voor het vervaardigen een bodem- en grondwatertrappenkaart, schaal 1 : 5.000 en een humusvormenonderzoek.

In tegenstelling tot de bodemkaart hebben we de verbreiding van de humusvormen in vlakken niet in het veld gekarteerd. Ten tijde van het veldwerk was de gebruikte humusvormtypologie nog niet beschikbaar. Op basis van de humusprofiel-beschrijvingen hebben we achteraf aan elk punt (kaart 6) een humusvorm toegelaten en de verbreiding hieruit op een kaart gezet, waarbij zoveel mogelijk is aangegeven bij grenzen van de bodem- en grondwatertrappenkaart van het gebied (kaart 4 en 5). De humusvormen staan aangegeven op kaart 7.
4 Bodemgesteldheid; beschrijving van de bodem- en grondwatertrappenkaart

De bodemgesteldheid van het herinrichtingsgebied "De Vechtstreek" is weergegeven op de bodemkaart (kaart 1), schaal 1 : 10 000. Deze kaart geeft informatie over de gronden en het grondwaterstandsverloop, maar is alleen naar de bodemkenmerken ingelekt. De grondwatertrappenkaart (kaart 2), schaal 1 : 20 000, geeft dezelfde informatie, maar is alleen naar de grondwatertrappen ingelekt. Voor een verklaring of definitie van de gebruikelijke terminologie verwijzen we naar bijgesloten rapport 157 (Brouwer, ten Cate en Scholten 1996, tweede gewijzigde druk, bladzijde 5).

In de volgende paragrafen bespreken we de belangrijkste kenmerken van de onderscheiden gronden in het onderzoeksgebied. Voor meer informatie omtrent de profielopbouw verwijzen we naar de profielbeschrijvingen van de boringen die digitaal beschikbaar zijn. Voor een overzicht van de oppervlakteverdeling van de onderscheiden bodemkaart en grondwatertrappenkaart, de gegevens per kaartteken en de vergelijking met de code op de Bodemkaart van Nederland, schaal 1 : 50 000, verwijzen we naar de aangaande kaarten 1, 2 en 3.

4.1 Veengronden

Veengronden zijn gronden die binnen 80 cm diep voor meer dan de helft van die diepte uit moerig materiaal bestaan. De veengronden bestaan in het onderzoeksgebied uit oppervlakte van ca. 548 ha (42%). Deze gronden zijn opgebouwd uit een minerale of een moerige bovengrond waarin veelal een celdlaag is ontwikkeld. De eerste laag van het veen is meestal door oxidatie sterk verweerd/beraad. De ondergrond bestaat over het algemeen uit onverweerd, meestal goed herkenbaar veen, wel of niet binnen boorbereik overgaand in zand of klei. In het onderzoeksgebied komen vrij veel veensoorten voor:
- bosveen langs de Vecht,
- nietveen langs de kust van de voormalige Zuiderzee (rookli, lutumrij, nietveen), komt veel voor langs de monding van de Vecht onder het bosveen);
- broekveen en zeggveen vooraf in de IJsservenmeerzolder, vaak binnen 1,20 m – mw; overgaand in Pleistocene zand;
- veenmosveen in het oostelijk deel van het herinrichtingsgebied, op de grens naar de Utrechtse Heuvelrug.

De veengronden zijn naar de aard van de bovengrond onderscheid in veer-, made-, koop-, weide-, waard- en veerzengronden.

Vlierveengronden

Vlierveengronden zijn veengronden met een (klein) moerige bovengrond zonder celdlaag. Deze gronden zijn, in één bodemvlak, in de Gemeenschapspolder onderscheiden, in het uiterste noordwesten van het onderzoeksgebied onder
aangelegd bos. Ze vertegenwoordigen een oppervlakte van ca. 2 ha. De vrijveengronden zijn niet verder onderverdeeld en bestaan dus uit 1 legenda-eenheid.

Madeveengronden
Madeveengronden zijn veengronden met een zandige, moerige bovengrond waarin een eerdlaag is ontwikkeld. Ze zijn alleen onderscheiden in het zuidoosten van de Horstermeerpoolder. De oppervlakte madeveengronden bedraagt ca. 13 ha. De madeveengronden zijn eveneens niet verder onderverdeeld.

Koopveengronden
Koopveengronden zijn veengronden met een kleig, moerige eerdlaag. In het noordelijk deel van het onderzoeeksgebied liggen ze vooralsnog op enige afstand van de voormalige Zuidereekse kust en de Vecht (vanwege beperkte klei-aanvoer). In de Horstermeerpoolder komen ze met name in het oosten voor. De koopveengronden vertegenwoordigen een oppervlakte van ca. 221 ha. Ze zijn naar de aard van de ondergrond onderverdeeld in 7 legenda-eenheden.

Weideveengronden
Weideveengronden zijn veengronden met een kleidek, waarin een mineralische eerdlaag is ontwikkeld. Het humusgehalte is in het onderzoeeksgebied vaak hoog (ca. 12-17%), maar niet voldoende om hem moerig te maken. De weideveengronden komen verspreid voor, vaak als overganggebied tussen de koopveengronden enzijds en de waardeveengronden anderzijds. In de Horstermeerpoolder komen de weideveengronden vooralsnog voor in het noorden. De weideveengronden vertegenwoordigen een oppervlakte van ca. 160 ha. De weideveengronden zijn naar de aard van de ondergrond onderverdeeld in 7 legenda-eenheden.

Waarveengronden
Waarveengronden zijn veengronden met een kleidek zonder mineralische eerdlaag. Het humusgehalte is in het onderzoeeksgebied vaak wel hoog (ca. 10-14%), maar niet voldoende zóó of homogezen voor een eerdlaag. In de Bloemendalpoolder komen waarveengronden voor met een (bij het dunne) mineralische eerdlaag, waaronder een scherpe, kalkloze, zware-kleilaag voorkomt. Volgens de definitie vallen deze gronden onder de waardeveengronden. De waarveengronden zijn alleen in het noordelijk deel van het onderzoeeksgebied onderscheiden, vaak als overganggebied tussen de weideveengronden enzijds en de idegronden anderzijds, en langs de voormalige Zuidereekse kust. De waarveengronden vertegenwoordigen een oppervlakte van ca. 140 ha. De waarveengronden zijn naar de aard van de ondergrond onderverdeeld in 4 legenda-eenheden.

Meergronden
Meergronden zijn veengronden met een zanddek, waarin vaak een mineralische eerdlaag is ontwikkeld. Het humusgehalte is in het onderzoeeksgebied vaak hoog (ca. 10-15%), maar niet voldoende om hem moerig te maken. De meergronden zijn, in tegenstelling tot de waarveengronden, alleen onderscheiden in het zuidoosten, namelijk in het oosten van de Horstermeerpoolder. De zuidbovengrond is hier
door menselijk ingrijpen (droogmakr) ontstaan. De meervleugelgronden vertegenwoordigen een oppervlakte van ca. 13 ha. De meervleugelgronden zijn niet onder verdienste en bestaan dus uit 1 legenda-eenheden.

4.2 Moerige gronden

Moerige gronden zijn minerale gronden met een moerige bovengrond of een moerige tussenlaag. Ze vormen de overgang van de veeggronden naar de minerale gronden. De moerige gronden bestaan in het onderzoeksgebied een oppervlakte van ca. 20 ha (2%). Deze gronden zijn opgebouwd uit een minerale of een moerige bovengrond waarin veelal een eerdlaag ontwikkeld. De moerige bovengrond of moerige tussenlaag is meestal door oxidatie sterk verweerd/vernield. De ondergrond bestaat uit Pleistocen zand.

De moerige gronden zijn naar de aard van de ondergrond onderscheid in moerige podzolgronden en moerige eerdgronden.

Moerige podzolgronden

Moerige podzolgronden zijn moerige gronden met een pleistocene zandondergrond waarin zich een humuspodzol-B heeft ontwikkeld. In de minerale of moerige bovengrond is veelal een eerdlaag ontwikkeld. Behalve één klein bodemvlak in de Nieuwe Keverdijkse Polder zijn de moerige podzolgronden alleen in het noorden en oosten van de Horstermeer polder onderscheiden. De moerige podzolgronden vertegenwoordigen een oppervlakte van ca. 17 ha. Deze gronden zijn naar de aard van de bovengrond onderscheid in 4 legenda-eenheden.

Moerige eerdgronden

Moerige eerdgronden zijn moerige gronden met een pleistocene zandondergrond waarin zich geen humuspodzol-B heeft ontwikkeld. In de minerale bovengrond is veelal een eerdlaag ontwikkeld. Ze komen met één bodemvlak voor in het noorden van de Meerneerderdijkse Polder en één bodemvlak in het oosten van de Horstermeer polder. De moerige eerdgronden vertegenwoordigen een oppervlakte van ca. 3 ha. Deze gronden zijn naar de aard van de bovengrond onderscheid in 2 legenda-eenheden.

4.3 Zeekleigronden

Zeekleigronden zijn gronden die binnen 80 cm diepte voor meer dan de helft van die diepte zeeklei zijn. De zeekleigronden bestaan in een vaste eilandvorming en een op de kust van de Vecht, een relatief smalle, met klei opgevulde, veengeul. Afhankelijk van de gevalideerde kunnen ze, binnen boorbereik, grijs of gedeeltelijk bestaan uit zeeklei. Hoewel de meeste zeekleigronden in het onderzoeksgebied geen minerale eerdlaag besitzen, kunnen als onzekerheid binnen deze gronden gedeeltelijke
voorkomen met een minerale eerdlaag. De zeekleigronden worden naar de aard van de ondergrond onderverdeeld in drechtvaag- en poldervaaggronden.

Drechtvaaggronden

Drechtvaaggronden zijn kleigronden, zonder minerale eerdlaag, waar binnen 80 cm – mv. een veenlaag begint die tenminste 40 cm dik is, meestal boven en/of niveteen (nietklei). Ze zijn oorzaken in het noordelijk deel van het onderzoeksgebied onderscheiden en komen daar voor langs de Vecht. Fijn bodemvlak bevindt zich in de Nieuwe Keerderdijsche Polder vlak bij het Naardenmeer. Meestal vormen deze gronden een overgang tussen enerzijds de waardveengronden en anderzijds de poldervaaggronden. De oppervlakte van de drechtvaaggronden bedraagt ca. 19 ha. Naar de zwaarte van de bovengrond zijn deze gronden onderverdeeld in 3 legenda- enheid:

Poldervaaggronden

Poldervaaggronden zijn kleigronden zonder minerale eerdlaag. De ondergrond bestaat uit gejirte klei (ten minste t/m 80 cm – mv. gerijpte en geen veenlaag binnen 80 cm – mv. van 40 cm of dikker. Net als de drechtvaaggronden zijn de poldervaaggronden alleen in het noordelijk deel onderscheiden, en wel direct langs de rivier de Vecht. Ze vertegenwoordigen een oppervlakte van ca. 21 ha. Naar de zwaarte van de bovengrond zijn deze gronden onderverdeeld in 4 legenda- enheid.

4.4 **Rivierkleigronden**

Rivierkleigronden zijn gronden die binnen 80 cm diepere voor meer dan de helft van die diepste uit rivierklei bestaan. De rivierkleigronden bezitten een gezamenlijke oppervlakte van ca. 147 ha (11%). In het onderzoeksgebied zijn ze, in tegenstelling tot de zeekleigronden, juist alleen onderscheiden in het zuidelijk deel, namelijk in de Meesruiterdijsche Polder en in het westen en midden van de Honstermeer polder. De rivierkleigronden in het onderzoeksgebied hebben een minerale eerdlaag, die 15 tot 50 cm dik kan zijn. Naar de aard van de ondergrond zijn ze onderverdeeld in leek-/woudeergronden, tochteergronden en lieveergronden.

Leek-/Woudeergronden

Leek-/Woudeergronden zijn kleigronden met een minerale eerdlaag (leekereergronden: 15-30 cm dik en woudeergronden: 30-50 cm dik). In dit bodemonderzoek zijn deze gronden niet afzonderlijk afgegrensd, vanwege de heterogeniteit van dit kenmerk binnen deze gronden. De ondergrond bestaat uit gejirte klei (ten minste t/m 80 cm – mv. gerijpte en geen veenlaag binnen 80 cm – mv. van 40 cm of dikker. De leek-/woudeergronden zijn onderscheiden in de Meesruiterdijsche Polder en in het midden van de Honstermeer polder. Hun oppervlakte bedraagt ca. 54 ha. De leek-/woudeergronden zijn naar de zwaarte van de bovengrond en het kaligehalte onderverdeeld in 10 legenda- enheid.
Tochteerdgronden
Tochteerdgronden zijn kleigronden met een, doorgaans sterk humerige, minerale erdgave. Plaatselijk kunnen deze gronden als oranjezwart en met een meerige bovengrond worden beschouwd. De ondergrond bestaat, binnen 80 cm, uit veelal kalkrijke, ongeregen rivierklei. Ze zijn alleen in het westen van de Horstermeeerpolder onderscheiden en beslaan daar ca. 59 ha. De tochteerdgronden zijn naar de zwaarte van de bovengrond en het kalkgehalte onderverdeeld in 4 leden-aantallen.

Lieddeerdgronden
Lieddeerdgronden zijn kleigronden met een minerale erdgave. De ondergrond bestaat uit veen, veelal (niet)zeggeregev. Ze zijn alleen in het midden van de Honstermeer onderscheiden. De oppervlakte van deze gronden bedraagt ca. 34 ha. De lieddeerdgronden zijn naar de zwaarte van de bovengrond en het kalkgehalte onderverdeeld in 3 leden-aantallen.

4.5 Zandgronden
Zandgronden zijn gronden die binnen 80 cm diepere voor meer dan de helft van die diepte uit zand bestaan. De zandgronden bestaan een gezamenlijke oppervlakte van ca. 42 ha (3%). In het onderzoeksgebied zijn ze vooral onderscheiden in de Nieuwe Keerderijksche Polder, in het noorden van de Nieuwe Keerderijksche Polder en in het noorden en oosten van de Horstermeeerpolder. De meeste zandgronden liggen in het Quaternaire dekolzandopdrukvingen, maar we hebben ook zandgronden onderscheiden die zijn ontstaan na menselijk ingrijpen (zandophopingen). Naar de dikte van de bovengrond en de aard van de ondergrond zijn ze onderverdeeld in veldpodzolgronden, laarpodzolgronden, vlakvaaggronden en groeiverdeerdgronden.

Veldpodzolgronden
Veldpodzolgronden zijn zandgronden met een humuspodzol-B en met een dichte (<30 cm) bovengrond. Ze komen voor in de Nieuwe Keerderijksche Polder en in het noorden en oosten van de Horstermeeerpolder. Een bovengrondziekte komt voor in de Bloemendaler Polder en ten westen van de stroomscheiding van de Vecht. Ze vertegenwoordigen een oppervlakte van ca. 31 ha. Naar de aard van de bovengrond zijn deze gronden onderverdeeld in 2 leden-aantallen.

Laarpodzolgronden
Laarpodzolgronden zijn zandgronden met een humuspodzol-B en met een middel-dikke (30-50 cm) bovengrond. Ze zijn alleen onderscheiden in het noorden van de Horstermeeerpolder. Ze vertegenwoordigen een oppervlakte van ca. 4 ha. De laarpodzolgronden zijn niet verder onderverdeeld.

Vlakvaaggronden
Vlakvaaggronden zijn zandgronden zonder humuspodzol-B en met een dichte (<15 cm) of onduidelijke bovengrond. Ze zijn met één bovengrondnieuwenheid in het noorden van de Nieuwe Keerderijksche Polder en beslaan een gemiddelde oppervlakte van ca. 1 ha. De vlakvaaggronden zijn met verder onderverdeeld.
Gooireedgronden
Gooireedgronden zijn zandgronden zonder humuspoldrol-8 en met een eerdlaag. Ze komen met twee bodemvlakken voor in de Nieuwe Keerbergse Polder, één bodemvlak in de Zuidpolder bestaande Muiden, twee bodemvlakken in het noorden van de Meeneerdenlokaal Polder, en één bodemvlak in het midden van de Horstermeerpolder. Ze vertegenwoordigen een oppervlakte van ca. 5 ha. Naar de aard van de bovengrond zijn deze gronden ondervensteed in 2 legende-eenheden.

4.6 Toevoegingen
De toevoegingen die op de bodemkaart voorkomen, geven informatie over kenmerken van de bodem die we niet konden of wilden gebruiken als criterium bij het indelen van de gronden. De toevoegingen staan op de bodemkaart met een raster of signatuur aangegeven. De meeste toevoegingen geven (extra) informatie over de aard, textuur en begroeiing van een specifieke laag.

I/-..: IJzerrijk, binnen 0,50 m beginnend en tenminste 0,10 m dik
Verhouding: Twee bodemvlakken verspreid in de Horstermeerpolder.
Oppervlakte: ca. 1 ha.
Voorlichting: De gronden met deze toevoeging zijn opgehoogd. Het betreft een bodemvlak bestaande uit meerveengronden en een bodemvlak bestaande uit leek-/woodeedgronden.

O/-..: Opgebracht moerig of humustrijk dek, 0,15-0,50 m dik (toenaamdeek)
Verhouding: Alleen in het noorden van het onderzoeksgebied, met name in de Zuidpolder bestaande Muiden.
Oppervlakte: ca. 16 ha.
Voorlichting: Deze toevoeging komt vooral voor bij veengronden (koopveengronden en in mindere mate waardveengronden).

.../W: Moerige laag, beginnend tussen 0,40 en 0,80 m - mv en 0,15-0,40 m dik
Verhouding: In het noorden twee bodemvlakken langs de Vecht en in het zuiden verspreid door het gebied.
Oppervlakte: ca. 32 ha.
Voorlichting: Deze toevoeging is in het noorden alleen onderscheiden bij de zekedgronden (poldervaanhegen) en in het zuiden alleen bij de rivierkleedgronden (vooral leek-/woodeedgronden).

.../v: Veen, beginnend tussen daa 0,80 en 1,20 m - mv
Verhouding: In het noorden twee bodemvlakken en in het zuiden alleen in het westen van de Horstermeerpolder.
Oppervlakte: ca. 34 ha.
Voorlichting: Vooral bij toecherdeedgronden kan deze toevoeging voorkomen, in beduidend mindere mate bij leek-/woodeedgronden, poldervaanhegen en gooreedgronden.
.../rk: rietklei, beginnend tussen 0,80 en 1,50 m - mv.
Verbreiding: Alleen in het noorden van het gebied, in de Bloemendaalpolder, in een mooc gelenpatroon langs de Vecht.
Oppervlakte: ca. 33 ha.
Toelichting: Rietklei is onderscheiden bij drechtvaargronden, waardveengronden en weideveengronden.

.../z: marien, lutumhoudend, kalkrijk zand, beginnend tussen 0,80 en 1,50 m - mv.
Verbreiding: Alleen in het noorden van het gebied, vooral in noordwesten van de Zuidpolder boven Muiden.
Oppervlakte: ca. 17 ha.
Toelichting: Toevoeging .../z is onderscheiden bij poldervlaggronden, drechtvaargronden, waardveengronden en weideveengronden.

.../p: pleistocene zand, beginnend tussen 0,40 en 1,50 m - mv. (bij veengronden beginnend tussen 1,20 en 1,50 m - mv.)
Verbreiding: In het noorden van het onderzoeksgebied slechts één bodemvlak in de Nieuwe Keerberlapische Polder tegen de westrand van het Naardermeer. In het zuiden algemeen voorkomend, met name in de Horstermeerpolder.
Oppervlakte: ca. 93 ha.
Toelichting: Deze toevoeging komt vooral voor binnen de rivierkleigronden. Binnen de veengronden is toevoeging .../p alleen onderscheiden bij de loofveengronden en de weideveengronden.

.../g: grof zand, beginnend tussen 0,40 en 1,20 m - mv.
Verbreiding: Slechts één bodemvlak in het noordwesten van de Zuidpolder boven Muiden.
Oppervlakte: ca. 1 ha.
Toelichting: Deze toevoeging is onderscheiden bij poldervlaggronden.

.../k: ongeërgapt klei, beginnend tussen 0,40 en 1,50 m - mv. (bij veengronden beginnend tussen 1,20 en 1,50 m - mv.)
Verbreiding: Eén bodemvlak in het oosten van de Zuidpolder boven Muiden, één bodemvlak in het zuiden van de Horstermeerpolder, en twee bodemvlakken in het noorden van de Meerwijkpolder.
Oppervlakte: ca. 5 ha.
Toelichting: De toevoeging van ongeërgipte klei is gebruikt bij weideveengronden, loof- /woordvleggronden, vlakvaargronden en gruutveengronden.

.../F: voeggraven
Verbreiding: Verspreid in het gebied.
Oppervlakte: ca. 15 ha.
Todichting: Gronden met deze toevoeging zijn tot minimaal 0,40 m diepte verwerkt. De horizonten in het profiel zijn met elkaar vermengd. Meestal zijn nog voldoende profielkernstenen aanwezig om de gronden bij de onderscheiden legenda-onderheden onder te brengen. Het verwerken of vergraven van een grond heeft meestal als doel een grond te verbeteren. Die ingreep resulteert veelal in een betere beworteling, doordat storende lagen worden verbroken (vermengd), en/of in een betere draagkracht door bijmenging van humusschort en schraler materiaal. In het ondersoortsgebied komen ook gronden voor die om een geheel andere reden zijn verwerkt, bijvoorbeeld voor een geplande of een oude weg. Bij deze gronden is de ingreep vaak geen verbetering, doch eerder een verschlechtering vanwege het structurenheeft. Tegenwoordig zijn er ook veel pellen geëgaliseerd; ook deze cultuurtuinbouwsche ingreep leidt veelal tot verwerkings gronden. Het is in het veld soms moeilijk te achterhalen wat het oorspronkelijke doel (egaliseren of profielverbetering) was van een ingreep.

.../H. opgehoogd
Verbinding: Verspreid in het gebied.
Oppervlakte: ca. 28 ha.

Todichting: De ophogingen kunnen zijn ontstaan vanwege (punt)stort, sterke oplozing van een geëgaliseerd perceel, verlaten bewoningsplekken, en/of versteigingen van de slappe veenbogengrond (meestal oud paad).

.../E. geëgaliseerd
Verbinding: Alleen onderscheiden in het noorden van de Nieuwe Keerbergense Polder.
Oppervlakte: ca. 2 ha.

Todichting: De geëgaliseerde gronden zijn gronden waarbij niet in eerste instantie is gestreefd naar een verbetering van het profiel, maar naar een vlakkere ligging. Egalisatie houdt vaak in dat op oorspronkelijk lagere plekken het profiel (door meer bovengrond) verbeterd, terwijl op oorspronkelijk hoger plekken het profiel (door afschuwen van bovengrond) slechter wordt. Het doel is natuurlijk om gemiddeld een beter, vaak ophollend, perceel te krijgen. Egalisatie houdt soms ook in dat, van oorsprong aanwezige, perceelsgrenzen (vaak sloten) verdwijnen.

4.7 Grondwatertrappen

In deze paragraaf geven we een toedichting op de gekartonneerde grondwatertrappen (kaart 2). De grondwaterstanden zijn van grote betekenis voor de water- en luchthuishouding van de grond en daardoor een belangrijke factor bij de bepaling van de bruikwaardelijke van de grond. Er zijn 7 grondwatertrappen onderscheiden.

<table>
<thead>
<tr>
<th>Naam</th>
<th>GHG < 0,25 m - onv.</th>
<th>GLG < 0,50 m - onv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbinding</td>
<td>Slechts drie vlakken in het noorden van het gebied, waarvan twee vlakken in het westen van de Gemeenschapspolder en één in het oosten van de Nieuwe Keerbergense Polder. Deze grondwatertrap is alleen onderscheiden bij veenmatten.</td>
<td></td>
</tr>
<tr>
<td>Oppervlakte</td>
<td>ca. 6 ha.</td>
<td></td>
</tr>
</tbody>
</table>

48

Alterra-rapport 379
Voedselving: Deze gronden zijn langdurig erg nat en staan bij veel neerslag snel onder water.

IIa: GHG ≤ 0,25 m - mv.; GLG = 0,50-0,80 m - mv.
Verbreiding: Algemeen verspreid in het gehele gebied, maar vooral in het noorden.
Oppervlakte: ca. 533 ha.

Voedselving: Met name in de winterperiode zijn deze gronden erg nat en kunnen gedeelten onder water staan. In het algemeen zullen de gronden met een kleiige bovengrond en/of tussenlaag lagere wateroverlast hebben dan de gronden met een moerige bovengrond en/of tussenlaag.

IIb: GHG = 0,25-0,40 m - mv.; GLG = 0,50-0,80 m - mv.
Verbreiding: Verspreid in het gebied, maar vooral in de Horstermeerpolder.
Oppervlakte: ca. 153 ha.

Voedselving: Dankzij een combinatie van een beekrest waterpoel en een relatief hogere ligging (buiten de droogmakken) de Horstermeerpolder meestal in de vorm van een "rug") zien deze geringe fluctuaties haalbaar. In zachte perioden kunnen deze gronden toch egaal vrij nat worden.

IIia: GHG < 0,25 m - mv.; GLG = 0,80-1,20 m - mv.
Verbreiding: Deze grondwatertrap is alleen onderscheiden in de Meerudderijdsche Polder.
Oppervlakte: ca. 14 ha.

Voedselving: Gronden met deze C1 hebben een kleiprofiel (leek-/mossedijstgronden). De klei zorgt voor een grotere fluctuatie. Het zijn gronden die met name in de winter, tijdens de grote waterstanden kenmerkend en daarmee gedeeltelijk grond wateroverlast hebben.

IIib: GHG = 0,25-0,40 m - mv.; GLG = 0,80-1,20 m - mv.
Verbreiding: Verspreid in het gebied, maar vooral langs de Veelt.
Oppervlakte: ca. 28 ha.

Voedselving: Ook deze gronden hebben klip in het profiel, of het zijn gronden die vanwege hun ligging droger zijn dan hun omgeving. Ze hebben over het algemeen een redelijke ontwatering.

IVa: GHG = 0,40-0,80 m - mv.; GLG = 0,80-1,20 m - mv.
Verbreiding: In het noorden van het onderzoekgebied is deze grondwatertrap voorzij in de Nieuwe Keerderijdsche Polder onderscheiden, terwijl in het zuiden grondwatertrap IVa alleen voorkomt in de Horstermeerpolder.
Oppervlakte: ca. 62 ha.

Voedselving: De gronden met deze grondwatertrap liggen in het noorden op kleine dekzandpoldrukken, in de Horstermeerpolder kunnen ze ook op relatief hoge kleiorgenen voorkomen. Ze zijn over het algemeen goed ontwaterd en hebben eveneens niet snel voedseltrekorten.

Vla: GHG = 0,40-0,80 m - mv.; GLG = 1,20-1,80 m - mv.
Verbreiding: Eén vlak in het noorden van de Horstermeerpolder.
Oppervlakte: ca. 1 ha
Toescholing: Gronden met deze Gt liggen op een (deels) opgehoogde zandrug. Over het algemeen zijn de goed omwaterde gronden waarbij echter in het groeiseizoen, afhankelijk van productieopbouw en C.I.G., zelfs in een gemiddeld jaar vochtteknollen op kunnen treden.

4.8 Overige onderscheidingen

De overige onderscheidingen zijn eenheden op de bodem- en grondwatertrappenkaart die vanwege uiteenlopende redenen niet zijn ondergebracht in de gangbare legende-eenheden. Het gaat hier om een oppervlakte van ca. 497 ha (38%).

Bebouwing, wegen, enz.
Dit zijn vlakken gevormd door bebouwing (zoals dorpjes, nieuwbouw, boerderijen en waterzuiveringen) maar ook wegen (zoals de A1) en spoorlijnen.

Water
De grootste vlakken zijn het Amsterdam-Rijnkanaal en de Vecht. Kleinere vlakken zijn kunstmatige meerjes langs de A1 en belangrijke waterlopen.

Kassen
In de Horstmerpolder komen een aantal kassen en kascomplexen voor.

Kade
Langs de Vecht, de Horstermeer en de Meerwijkse Polder komen, dikwils lange, lades voor.

Sterk opgehoogd
Het betreft hier vuil- en puinstort, grondopslag en paardenbakken.

Geen toestemming
Dit zijn percelen, waarvoor de eigenaar geen toestemming verleende voor bodemonderzoek.

Terp
In het noorden van het onderzoeksgebied op de grens met de Gemeenschapspolder en de Bloemendaler Polder komen drie terpen voor. De terpgrenzen bestaan hier uit, niet erg hurneuzen, kalkrijke klei.
5 Kenmerken en verbreiding van humusvormen

5.1 Kenmerken van de humusprofielen

De ontwikkeling van een humusprofiel wordt bepaald door het evenwicht tussen aanvoer en afbraak van organische stof. Alle gronden binnen de Horstemmer hebben een agrarisch beleid en worden in meer of mindere mate bemest en/of beknelt. Enkele percelen hebben, naar de vegetatie te oordelen enige tijd braak gelegen, maar nergens is sprake van een voedselarme standplaats. Onder deze omstandigheden is de omzetting van organische stof meestal goed en komen in de bovengrond Ah-horizonten voor, en Oh- of Oh-horizonten bij moerige profielen (tabel 5). Toch komen binnen de humusprofielen verschillen voor, die verband houden met standplaatskenmerken. Hierbij spelen enkele bodemvormende processen een rol die van invloed zijn op het humusprofiel:
- Homogenitatie;
- Humusvorming;
- Verharding.

Een deel van de profielenkenmerken heeft niet direct betrekking op organische stof, maar geeft wel informatie over standplaatskenmerken die mede de humusprofielenontwikkeling bepalen, maar ook de verwachting voor de potentiële vegetatie:
- Vorming van wortelhorizonten;
- Verharding van veen;
- Antropogene invloed;
- Klei- en zandlagen in de bovengrond;
- Kwelverschijnselen.

Vorming van wortelhorizonten

In de bovengrond van graslandprofielen vindt input van vers organisch materiaal plaats in de vorm van afgestorven wortels. De aanvoer van strooisel is klein, omdat bij begrazing of maaien de bovengrondse delen van de vegetatie worden verwijderd. Bij een actief bodemleven (met veel regenwormen) wordt dit snel door de grond gemengd (homogenitatie) en verder afgebroken (humusvorming). Wanneer de activiteit van het bodemleven aflat, bijvoorbeeld als gevolg van een lagere zuurgraad, zal de afbraak van organische stof achterblijven bij de aanvoer en vindt accumulatie van organisch materiaal plaats. In het humusprofiel komt dat tot uiting in de vorming van wortelhorizonten. In een minerale bovengrond onderscheiden we eerst een Ah-horizont, zolang de horizon een mineral karakter heeft. Bij voortgaande accumulatie komt de wortelbasis los op het profiel te liggen en spreken we van een wortelmat of M-horizont. Een beginnende wortelhorizont in een moerige bovengrond noemen we een OMh-horizont. Ook deze kan uitgroeien tot een M-horizont. M-horizonten komen in de Horstemmer zelden voor. Wel hebben we op meer dan de helft van het oppervlak AAh- en OMb-horizonten aangetroffen.
Veraarding van veen

In de bovengrond van veenprofielen is veraarding een belangrijk bodemvormend proces. Veraarding van veen is een vorm van veenafbraak of -verwering, waarbij bodemleven—vooral actief in de bovengrond—vooral zorgd voor een zekere homogenisatie zorgt. Veen ontstaat doordat onder natuurlijke omstandigheden de afbraak van organische stof beperkt wordt. Meestal zijn in het jonge veen de planten waarmee het is ontstaan nog goed herkenbaar. In de niet ontwaterde ondergrond van een veenprofiel is dat vaak ook nog het geval. We spreken dan van een Of-horizont (tabel 5). Bij veenmosveen gaat de afbraak zeer traag, waardoor een Of-horizont lange tijd kan voortbestaan. Veezoorten die kenmerkend zijn voor voedselrijke milieu, zoals zeggereven en broekevene, waaruit de ondergrond van de Horstermer voornamelijk bestaat, worden al snel gedeeltelijk afgebroken, waardoor een Om-horizont ontstaat. Uitgebreid bestuderen (grond)waterdynamiek en -kwaliteit, hoe snel, en door welke organen de organische stof afgebroken wordt. Als regelmatig perioden voorbomen waarin lucht in het veenprofiel kan doordringen zal voornamelijk een anaerobe veraarding plaatsvinden. Hierbij worden Oh-horizonten gevormd. Bij voortgaande veraarding neemt het organische stofgehalte verder af en ontstaan OA-horizonten met 15 – 30 % organische stof. Bij de gronden in de Horstermer met een mager bovengrond kunnen binnen 40 cm – m.v. vrijwel alleen Oh- en OA-horizonten voor. Dieper dan 40 cm komen vaak wel Om-horizonten voor. In figuur 6 is een voorbeeld opgenomen van een profiel waar wel binnen 40 cm een Om-horizont voor komt.

![Figuur 6. Vluchterprofiel van baring 9048. De Oan-horizont bestaat uit scheel verwoud aarde.](image)

Antropogene invloed

Veel profielen zijn bezien of opgebouwd met mengsel van klei, zand en veen. Vaak is de opbouw van de bovengrond hierdoor heterogeen. Voor een deel bestaat de profielen tot dieper dan 40 cm – m.v. uit opgebracht materiaal. Hierin is vaak een homogene eerdag ontstaan (Ah- Oh- of OA-horizonten), eventueel met een vordemant (figuur 7).

52 Alterra-rapport 379
Klei- en zandlagen in de bovengrond

Bij de veen- en moerse gronden in de Hoornsemeer komen vaak minerale bovengrondlagen voor. Deels is dit opgebracht materiaal (zie alias harsboven). Voor een deel betreft dit ook avieklei afzettingen van de Formatie van Tiel (par. 1.2.1). Ze komen plaatselijk ook voor op dekzandopbouwling. Bij veen- en moerse gronden betekent dit dat het humusprofiel als een minerale humusvorm beschouwd wordt, wanneer binnen 40 cm meer dan de helft van het profiel uit zand of klei bestaat (par. 1.2).

Kwelverschijnselen

Bij een aantal profielen komen duidelijke kwelverschijnselen voor in de bovengrond. Dit komt onder meer tot uiting in sterke moestvinging en de afzetting van moeraskalk (figuur 8). Met kwelwater worden onder andere ijzer- en calciumionen aangevoerd die in de onverzadigde zone neerslaan als Fe-hydroxide en CaCO₃. Deze vorm van kallieneerslag noemen we moeraskalk. Dit hebben we in een aantal profielen aangetroffen in de onverzadigde zone. Boven- en onderliggende horizonten zijn dan vaak kalkloos. Informatie over roest en moeraskalk is niet gebruikt bij de indeling van de humusvormen, maar is wel gebruikt bij het opstellen van de standplaatsstypenkaart (kaart 8, hoofdstuk 5).
5.2 Humusvormtypologie

Voor de indeling van de humusprofielen is gebruik gemaakt van de humusvormtypologie voor korte vegetatie (Van Delft 2001). Deze is aangepast aan de situatie in de Horstermeer (tabel 6).

<table>
<thead>
<tr>
<th>Orde</th>
<th>Suborde</th>
<th>Groep</th>
<th>Subgroep</th>
<th>Code</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulj</td>
<td>AMb < 2 cm</td>
<td>Terrestisch</td>
<td></td>
<td></td>
<td>HLD, Alle terrestische mullosen</td>
</tr>
<tr>
<td></td>
<td>AMb of OM > 2 cm,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah > bovenstaande Terrestisch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mijlnoorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
De humusvormingstypologie is hierarchisch opgebouwd met vier niveaus. Om het aantal eindheden op de laagste niveaus een aantal eindheden samen te voegen in een celheid op een hoger niveau. De oppervlakte terestrische modder (LP) is bijvoorbeeld zo gering, dat de verschillende eindheden samengevoegd zijn op suborde-niveau. Ook de oppervlakte hydromuder (HDI) is zeer klein, maar hierbinnen komt naar één subgroep voor, de warmhydromuder (HDW).

Deze hebben we dus wel op het lagere niveau onderscheiden. De indeling in humusvormen vindt plaats op grond van het voorkomen en de onderlinge dikte-verhouding van horizonten. Afhankelijk van de dominante horizonten in de bovenste 40 cm van het profiel zijn de onderscheiden humusvormen in te delen in minerale en moerige humusvormen. Omdat alleen de bovenste 40 cm beoordeeld wordt, kunnen minerale humusvormen voorkomen op een veenprofiel.

Op het hoogste niveau worden de humusvormen in de Horstsemier ingedeeld in 3 orden (modder, modderen en moden). Hierbij is de mate waarin organische stof is verzadigd of geaccumuleerd doorlaggevend voor de indeling. De modder en modderen zijn minerale profielen, waarbij enige accumulatie van organische stof kan plaats vinden, voornamelijk in de vorm van AMh- en OMy-horizonten. Zolang deze danner zijn dan 2 cm wordt het profiel tot de modder (L) gerekt, zijn ze dikker dan 2 cm, maar danner dan de Z-horizont, is het een modderen (LD). Minerale profielen met een wortelmat die dikker is dan 2 cm en dikker dan de Z-horizont worden tot de moden (D) gerekt. Dit geldt ook voor humusprofie len waarin een moerige eeldlaag (OH, of OH-horizont) dominant is.

Het onderscheid tussen terestrische en semiterestrische standplaatsen zorgt voor de indeling in subordes. Standplaatsen die sterk onder invloed van (gro)water staan noemen we semiterestrisch. Uit zijn behalve veengronden en moergegronden, minerale gronden met gley binnen 25 cm, of GHG < 25 cm of GLG < 60 cm. Standplaatsen die niet aan deze criteria voldoen noemen we terestrisch. In de Horstsemier komen vrijwel alleen semiterestrische standplaatsen voor. Minerale profielen met groswatertrap IVa of VIa zijn tot de terestrische humusvormen gerekt. Het grootste deel van de Horstsemier heeft groswatertrap IIIb, met een GHG > 25 cm – mv. Deze gronden hebben we toch tot de semiterestrische standplaatsen gerekt, omdat er meestal gleyverschijnselen hoog in het profiel voorkomen. Vaak komt de GLG in deze gronden ook dicht bij 60 cm. Bovendien betreft het grootste deel veengronden.

Op het groen niveau hebben we onderscheid gemaakt tussen semiterestrische subordes in een moerig humusprofiel (semmelmoder; LID) en in een minerale humusprofiel (hydromuders; HII).

De modderen (LID) hebben we op het laagste (subgroep) niveau verdeeld in beekmodderen (LIDb) en akkermodderen (LIDa). Hierbij is de aard van de minerale profielen waarin het humusprofiel zich ontwikkelt van belang. De beekmodderen komen voor op een podzolprofiel, terwijl voor de akkermodderen het voorkomen van een Aa- of Ap-horizont doorlaggevend is. Op hetzelfde niveau zijn de eelmoders (LID) onderverdeeld in beeksemmelmoders (LIDb) met een dominante OH-horizont en
mullermoyers (I:3:3a) waarbij een OA-horizont domineert. Dit onderscheid is gebaseerd op het organische stof gehalte in de moerse eerdlaag, dat bij de Oh-horizont groter is dan 30% en bij de OA-horizont kleiner dan 30%. Dit is een gevolg van verschillen in de mate van vernarding. Bij de orndoyers kan nog een schubfase onderscheid worden gemaakt op grond van het voorkomen van een AMb- of OMb-horizont dieker dan 2 cm. Op de humusvormenkaart (kaart 7) is de orndoyers deze fase als toevloed (raster) in de legenda opgenomen. Bij de mullermoyers (I:3) en de warmhydromoyers (I:1:3a) geldt het onderscheid van deze wortelhoortoren niet als fase maar is het een kenmerk van de humussvorm zelf.

In de paragrafen 4.3 en 4.4 worden de onderranden van de humusvormenkaart besproken. Hierbij worden in de figuren 9 t/m 16 schematische weergaven gegeven van een aantal van de voorkomende humusprofielen per onderrand. Omdat deze figuren vrij technisch van aard zijn, staan ze in een aanhangsel (aanh. 4). De codes voor de boring bestaan uit de letters ‘HM’ om aan te geven dat het gaat om de Horstmeren en het nummer van de boring zoals aangegeven op de boorpuntenkaart (kaart 6). Onder de code voor de boring is meestal een letter ‘W’ aangegeven of in het profiel het regenwater zijn waargenomen. Hierbij is geen onderscheid gemaakt naar de hoeveelheid regenwater en de activiteit. Voor zover pl-H-bepalingen gedaan zijn in horizonten (met indicator staafjes), is maat de schematische profielen het verloop van de plH met de diepte weergegeven. De gebruikte indicatorstaafjes van het merk ‘Merek’ geven een waarde die vrij goed overeen komt met de plH-KCI van de grond (Breueaussma 1976).

5.3 Mineraal humusvormen

Bij mineraal humusvormen bestaat het humusprofiel (ca. 40-50 cm – mvt.) voor meer dan de helft uit zand of klei. Het mineraal materiaal kan opgebracht zijn. Mineraal humusvormen komen zowel bij klei- en zandgronden, als bij veen- en moerse gronden voor. De oppervlakte bedraagt ca. 14 ha (40%)

Terrestrial mull

De terrestrial mull (I.) komen voor in twee kleine vlakjes in het zuiden van het gebied (ca. 0,3 ha, 1%). Het bestaat in beide gevallen opgehoogde profielen, waarbij de bovengrond homogeen heeft gevormd zijn door de bodemfauna. Het profiel in figuur 7 is een voorbeeld van een terrestrial mull, die bestaat uit heterogeen materiaal in een opgehoogde kopakker. Hier is zand opgebracht vanuit de aan het perceel grenzende bocht (ingaard). Het bovenste deel van het profiel is homogeniseerd, maar het voorkomen van een dunne AMb-horizont wijst op een ontwikkeling in de richting van een akkerhydromull (I:3a). In aanhangsel 4, figuur 9 wordt een schematische weergave gegeven van een terrestrial mull.

Hydromullmulloder

Hydromullmulloders (I:H.D) komen voor voor bij ten noorden van de Middenweg, op klei- en poldergronden, en op veen- en moerse gronden met een zand- of kleidek. De
De meeste wortelhorizonten bestaan uit een 4-8 cm dikke OMh-horizont, of een OMm-horizont als er veel veel veranderde wortels in voorkomen. De bewortelingsconcentraties in dit deel van het profiel. Hemogenisatie met de minerale lagen onder de wortelmat is beperkt, waardoor ook de omtrekste hurnas zich bovenin het profiel opbouwt. Hierdoor hebben deze horizonten een moeizig karakter gekregen, waardoor ze gevoelig zijn voor vetvertraging. In een enkel geval komt op de overgang naar de minerale lagen een OH-horizont voor. Onder deze wortelhorizonten bestaat het profiel meestal uit een AHb-horizont met gleyverschijnselen (Aghg), eventueel met een overgang naar een C-horizont (Acg), of verwerkt met C materiaal (AC). Bij moeizige- of vegetegronden komen hieronder recreatieve organische lagen voor (OH- en OMM-horizonten).

De pH-waarden in de bovengrond lopen sterk uiteen van 4,5 tot 7. Lage waarden zijn hier waarschijnlijk het gevolg van stagnatie van regenwater in de OM-horizont. Op de overgang naar de onderliggende minerale lagen is de doorlatendheid voor water beperkt, waardoor dit in de moeizige bovengrond stagneert. Van diepere lagen zijn minder pH-haalingen beschikbaar, maar deze zijn wel inderdaad hoger dan de pH-waarden in de bovengrond.

Heidemuilmoder
Heidemuilmoders (L.Dh) komen voor in een aantal verspreide vlakken op hogere delen, vooral ten noorden van de Middenweg (ca. 3 ha, 9%). Dit zijn vooral dekzanddragers met een podsol, en ze zijn soorten opgehoogd. De podsolprofielen die in de Horstermeer voorkomen zijn waarschijnlijk gevormd in het vroege Holocene, voordat veenvernietiging plaats vond. Gezien de diepe ligging van de droogmakers (par. 1.4) is actuele podsolisering zeer onwaarschijnlijk. Voor de veningen waren deze gronden nog bedekt met enkele meters Hollandse grond. Ook onder het restvreet komen plaatjes van podsolisering met een hurnas-podsol voor. Door de relatief hoge ligging van de heidemuilmoders vindt hier doorgaans veel meer veenvernietiging plaats. In aanhangsel 4, figuur 11 geven we schematische weergaven van een aantal heidemuilmoders.

Bovenin het profiel is een 3 tot 7 cm dikke OMh-horizont gevormd, welke meestal direct op een AHb-horizont ligt. Deze gaat over in een, vaak verwerkt, podsolprofiel. In tegenstelling tot de hydromuillmoders (H.Dd) is de accumulatie van hurnas in de wortelzone niet zodanig dat er een moeizige OM-horizont ontstaat.

De pH-waarden (5,5-7) zijn vrij hoog, voor een podsolprofiel en zijn waarschijnlijk het gevolg van bemesting en beïnvloeding van de bodem.

Akkermuilmoder
De akkermuillmoders (L.Dd) komen voor in enkele vlakken in het noordwesten, en in een vlak ten zuiden van de Middenweg. De oppervlakte beslaat ca. 3 ha (7%). Deze hurnasvorm is ontstaan in opgehoogde klei- en zandgronden. Op de bodemkaart uitvoer rapport 379
(kaart 4) komen hier podzolgronden en kleigronden door elkaar voor in een associatie (Hum/pRtu). Binnen deze vlakken komen ook heidemullmolders (LDb) voor. Dit moet beschouwd worden als een onzuiverheid in het kaartvlak die te maken heeft met de heterogeniteit van de bodem in dit deel van de Horstmeer. In aanhangsel 4, figuur 12 geven we schematische weergaven van een aantal akkermullmolders.

De AMh-horizont is hier vergelijkbaar met de heidemullmolder (4-8 cm). De laag is ontwikkeld in het bovenste deel van een Aa-horizont, of in opgebrachte materiaal, waarin zowel lutumhoudend A-materiaal als podzolzaten verwerkt zijn.

De pH-waarden van 6,5 à 7 zijn waarschijnlijk het gevolg van bemesten en/of bekalken.

Wormhydromoder

De wormhydromoder (LHw) komt voor in één vlakje in het noorden van het gebied (ca. 0,2 ha, 1%). Deze humusvorm is ontstaan in veengronden met een minerale bovengrond (pVcV en pKcVc). Vanwege de dominantie van minerale lagen in het bovenste deel van het profiel, worden deze profielen bij de minerale humusvormen gerekend. In aanhangsel 4, figuur 13 is één profiel schematisch weergegeven.

Bovenin het profiel is zowel organische stof opgeaccumuleerd, dat er een magere OMs-horizont is gevormd. De onderliggende laag bestaat uit opgebrachte klei- of zand, waarin zich een Ah-horizont heeft ontwikkeld. Daaronder begint het veenprofiel.

5.4 Organische humusvormen

Bij de magerige humusvormen bestaat het humusprofiel voornamelijk uit organische horizonen. In de Horstmeer komt hierin vaak wel klei voor, in de vorm van kleilaagjes, of als kleing veneer. Het is niet altijd duidelijk of de klei opgebracht is, of afgezet. Ook door verslapping van lutumhoudende veneer kan het kleigehalte relatief toenemen, omdat organische stof wordt vrijgegeven. In de humusvormtopologie (Van Delft 2001, Kemmers et al. 2001) kan op grond van kleigrond en met andere onderscheidingen worden. Dat hebben wij in de Horstmeer niet gedaan, omdat het hier in feite voor vrijwel alle organische humusvormen geldt. De oppervlakte bedraagt ca. 22 ha (60%).

Beekeerdmoder

De bekeerdmoder (LdD) komen voornamelijk voor ten zuiden van de Middenweg op ca. 13 ha (36%). Bij ongeveer de helft van deze gronden komt een OMh-horizont dikker dan 2 cm voor. Deze behoren tot de "schrale bekeerdmoders" (aDd). In aanhangsel 4, figuur 14 en 15 worden voorbeelden van bekeerdmoders en de schrale fase hiervan schematisch weergegeven.

De bekeerdmoders bestaan voor het grootste deel uit lutumhoudende O-lutumhorizonten. Bij enkele profielen komt een OAh-horizont met een lager organische stof
gehalte voor. Incidenteel komt een sterk toeneigde minerale tussenlaag voor. De pH varieert van 5,3 tot 7 en neemt in het algemeen toe met de diepte. Bij een deel van de profielen is moeraskalk aangetroffen. Plaatselijk komt binnen 40 cm een gereduceerde Omb-horizont voor (figuur 6).

De schrale boekstaadvormers (\(A_{2}D_{2}\)) komen grotendeels overeen met de gewone boekstaadvormers (\(A_{1}D_{2}\)), hoewel hier wat vaker minerale tussenlagen in voorkomen. Het belangrijkste verschil is het voorkomen van een 3-8 cm dikke OMB-horizont bovenin het profiel. Deze is ontstaan door accumulatie van dode wortels en een OHy-horizont, dit in tegenstelling tot de OMB-horizont bij de hydromullmoders (\(B_{H}D_{1}\)), waar het hoge organische stof gehalte een gevolg is van accumulatie van humus bovenin een minerale humusvorm.

De pH-waarden liggen iets lager dan bij de gewone boekstaadvormers, hoewel de verschillen niet significant zijn. Ook komt slechts incidenteel moeraskalk voor (figuur 8).

Moreeersmoder

De **moreeersmoders** (\(E_{2}D_{2}\)) komen voor in enkele grote vlakken ten noorden van de Middenweg en wat kleinere vlakken verspreid door het gebied. De oppervlakte bedsagt ca. 9 ha (24%). Alle moreeersmoders hebben een OMB-horizont dikker dan 2 cm en worden tot **schrale moreeersmoders** (\(A_{1}D_{2}\)) gerekend. In aanhangsel 4, figuur 16 wordt een aantal voorbeelden van schrale moreeersmoders schematisch weergegeven.

De **schrale moreeersmoders** bestaan voor het grootste deel uit een lutumhoudende OAH-horizont met 15-30 % organische stof. Hierin is een 2 tot 10 cm dikke OMB-horizont ontstaan. Het verloop van de zuurgraad is vergelijkbaar met dat van de boekstaadvormers. In enkele gevallen komt moeraskalk voor.

5.5 Toevoeging

AMh of OMB > 2 cm

Op meer dan de helft van het oppervlak van gebied C (ca. 16 ha, 44%) hebben we AMh of OMB-horizonten dikker dan 2 cm aangetroffen. Dit is op de humusvormenkaart (kaart 7) met een puntenmeter weergegeven. Bij de mullmoders en de mullhydromoder is dit een vast differentiërend kenmerk van de humusvorm. Hier wordt dus geen aparte fase onderscheiden. Voor de eemmoders doen we dat wel, omdat de OMB-horizont die hier voorkomt geen differentiërend kenmerk is voor de humusvorm. Waar deze horizont voorkomt bij de eemmoders hebben we een **schrale fase** onderscheiden. Bij de boekstaadvormers gaat het om ongeveer de helft van de oppervlakte, bij de moreeersmoders komt het overal voor.
6 Standplaatsen en te verwachten vegetatietypen

Om een voorspelling te kunnen doen van te verwachten vegetatietypen is uitgegaan van de humusvormenkaart (kaart 7) en een standplaatsenkaart (kaart 8). De humusvormenkaart hebben we besproken in hoofdstuk 4. In par. 5.1 wordt de standplaatsenkaart besproken; waarna in par. 5.2 de potentiële vegetatietypen worden toegelicht. De verbinding van de potentiële vegetatietypen is weergegeven op kaart 10.

6.1 Standplaatsen

De standplaatsenkaart (kaart 8) is gebaseerd op een combinatie van relevante informatie van andere kaarten die is geïnterpreteerd om de standplaats te kunnen typen naar voor de potentiële vegetatie relevante kenmerken:

- Aard van de bovengrond;
- GHG;
- Grondwatertype.

Aard van de bovengrond

De aard van de bovengrond is afgeleid van de bodemkaart (kaart 4) en is op kaart 8 ingedeeld in drie categorieën:

- Veeën (paars/blauw);
- Klei (groen);
- (Kleine) zand (geel).

De aard van de bovengrond is van belang voor de voedselrijkdom en het zuurbufferend vermogen van de standplaats.

GHG

De diepte van de GHG is genomen als maat voor de vochttoestand van de standplaats. De vochttoestand beïnvloedt de vegetatie op een directe manier, via de beschikbaarheid van vocht en de mate van aangifte van de wortelzone. Indirect is de vochttoestand van belang omdat de mate van verandering van het voornamelijk organische stof de voedselrijkdom van een standplaats beïnvloedt via de beschikbaarheid van nutriënten. De klassengrenzen zijn gelijk genomen aan de grenzen die gebruikt worden voor het bepalen van de grondwatertrappen. De beperking van de vlakken is overgenomen van de grondwatertrappenkaart (kaart 9). Op kaart 8 wordt de kleur intensiver (donkerder) naar binnen de GHG ondieper wordt.

Grondwatertype

De overheersende stromingsrichting van het (grond)water in de wortelzone bepaalt of de aanwezige zuurbuffer wordt aangevuld (bij kwel) of wordt uitgeput (bij infiltatie). In het geval dat hevige kwel tot in de wortelzone doordringt, heeft dat via het zoutgehalte (salinité) ook invloed op de vegetatie. We hebben geen

Alterra rapport 379
gedetailleerd onderzoek gedaan naar de mate van infiltratie en kwel in het gebied. In een modelstudie door WACO (bestand gebreken van DILG) is een kaart met kwelintensiteiten opgesteld (kaart 9). Deze kaart geeft in hoofdlijnen een beeld, waarbij in een strook van Noordoost naar Zuidoosten sprake is van wegginging en in de rest van het gebied kwel in verschillende intensiteiten. Uit deze kaart kan niet afgeleid worden of deze kwel ook in het maaiveld reikt, en ook niet of het om zoete of brakke kwel gaat. Wij hebben op basis van eigen waarnemingen in de humusprofielen en aanvullende EGV metingen in boorgaten en sloten een inschatting gemaakt van de verdeling van infiltratie en van zowel zoete als zoute kwel. Het voorkomen van roest en kalk in de bovengrond kan een aanwijzing zijn voor de aanwezigheid van kwel. Hetzelfde geldt ook voor een hoger pH, hoewel deze ook door bemesting verhoogd kan zijn. Roest en kalk zijn daarom betere indicatoren. De EGV-waarden die we gemeten hebben in de boorgaten en de sloten hangen af van de hoeveelheid opgeloste ijzen. Bij geïnfiltratie regenwater is dit het laagst, bij brakke kwel het hoogst. Zoute kwel neemt een tussenpositie in. Bij gronden met een GHG > 25 cm zal de invloed van kwel in de wortelszoon beperkt zijn. In tabel 7 zijn de criteria opgenomen waarop de grondwaterhygiëne bepaald wordt. De grondwaterstatus zijn op kaart 8 aangegeven met een verschillend raster (kleur en signatuur).

<table>
<thead>
<tr>
<th>Modaal waarschijnlijke grondwaterstatus</th>
<th>EGV (mS/m)</th>
<th>pH van de bodem, bepaald met indicatormetod 8% sal. KCl</th>
<th>Roest</th>
<th>Kalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>zoete kwel</td>
<td>< 20</td>
<td>< 5,3</td>
<td>geen</td>
<td>geen</td>
</tr>
<tr>
<td>brakke kwel</td>
<td>20 - 150</td>
<td>5,3 - 6,5</td>
<td>plaselijk</td>
<td>plaselijk</td>
</tr>
<tr>
<td></td>
<td>> 150</td>
<td>> 6,5</td>
<td>plaselijk</td>
<td>veel</td>
</tr>
</tbody>
</table>

6.2 Potentiële vegetatietypen

Bij de bepaling van potentiële vegetatietypen (kaart 10) wordt ervan uitgegaan dat er een beheer zal worden ingezet gericht op natuurontwikkeling. Aangegeven is welke vegetaties waarschijnlijk op de langere termijn zijn te verwachten. Deze verwachting is gebaseerd op de standplastityperkaart (kaart 8) en ontwikkelingen die in het humusprofiel zijn waargenomen (kaart 7). De actuele toestand van de vegetatie kan nog ver verwijderd zijn van de potentiële toestand.

Wat de invloed van het huidige landbouwkundige gebruik (bemesting, drainage) komt deels tot uiting in het humusprofiel. Zo heeft bemesting of drainage tot voedselrijke omstandigheden, die tot gevolg hebben dat er intensieve omzetting van organische stof is, waardoor in het profiel geen sterke accumulatie van dode wortels zal optreden. Van belang is te realiseren dat in veel situaties sprake is van een bascisch kleisubstraat, dat dezelfde effecten heeft op de omzetting van organische stof. Afwezigheid van bemesting, of zuurere omstandigheden (bijv. door regenwaterstagnatie of afwijkend substantiële omstandigheden) komen tot uiting in de actuele toestand van de humusvorm. Dit geldt ook voor veranderingen in de vochttoestand, voedselrijkdom of omgezet, die leiden tot een verandering van de humusvorm. De humusvorm geeft dus een sterke indicatie van het effect van het huidige beheer op
de actuele standplaatsgezinschappen en integreert als het ware de invloed van landschapskarakteristieken op de standplaatsfactoren.

Hieronder volgt een korte bespreking op te verwachten vegetatietyphen bij de verschillende humusvormen. Omdat de humusvormen zijn gekarakteriseerd kan een indicatie worden verkregen van de ruimtelijke verspreiding van de vegetatietyphen. In figuur 17 zijn de humusvormen en de potentiële vegetatietyphen uitgezet tegen de hydrologische positie en het substraat waar ze optimaal bij voorkomen.

Beekerdemsmoder (EDE)

Beekerdemsmoders komen vooral voor in kweekgebieden met een bovengrond van klei of kleibaar veen. Hierbij is er een zeer basenrijk (klei) milieu aanwezig waardoor de organische stof snel wordt omgezet en nauwelijks acuutanteert. Dit heeft een voedselrijk milieu tot gevolg. Hier zijn begroeiingen van het Grote zeegrasverbond (Martoceae, A) te verwachten. Afhankelijk van de substantie van het kweekwater zijn verschillende gemeenschappen te verwachten:

A1: Carextrum ripariae basenrijk, klei-op-veen, zwak brak (zoer voedselrijk, ca. 2 ha, 5%)
A2: Carextrum gracilis basenrijk, klei-op-veen; zeer (ca. 4 ha, 11%)
Vegetaties Scherpe zeegras (Carex gracilis, A2) komen voor in ootmoer, zeer water op minerale grond (met name klei of leem) (vaandeem, koepven, weideveen).
Vegetaties van Oeverzeegras (Carextrum ripariae, A1) zijn aan zwak brak water gebonden.

Schrade beekerdemsmoder (sEDE)

De schrade beekerdemsmoders komen voor in hetzelfde substraat als de gewone beekerdemmoder, maar hier is de kweekmogelijkheider kleiner als gevolg van drainage. Vaak is sprake van infiltratie van regenwater. Hier zijn OMh-horizonten tot ontwikkeling gekomen die wijzen op wat minder basenrijke en mesotrofe, maar nog steeds rauwe omstandigheden als gevolg van verwering van kweekwater door regenwater in de top van het profiel. De organische stof wordt minder intensief afgebroken. Er is een subassociatie van A2 te verwachten:

A21: Carextrum gracilis-cornicetosum (ca. 7 ha, 20%)
Op de schrade beekerdemsmoders tegen overgangen verwacht worden naar gemeenschappen van de kleine zeegras (Parvocaricetum).

Bij sterkere stagnatie van regenwater boven in het profiel komt een andere associatie tot ontwikkeling:

A3: Carextrum vesicariae (ca. 0,1 ha, 0,3%)
Vegetaties van Blaaszeegras (Carex vesicaria) komen voor op zwak, tot matig zure standplaatsen; regenwaterstagnatie; humuceuze gronden

Altem rapport 379
Schrale moerenoemoder (sEDo)

De schrale moerenoemoders komen voor op plaatsen waar periodiek een flinke aëracie van de bovengrond optreedt tijdens lagere grondwaterstanden. Er is hierbij vaak nog wel sprake van enige kleinvloed. Het veen is door de toegenomen aëracie sterk verdaard, waardoor een residuwe aanrijking van het profiel met klei kan zijn opgetreden. Desondanks zijn OMM-horizonten tot ontwikkeling gekomen die wijzen op periodieke natte omstandigheden met een geringe zuurbuffer. Dit wijst op het effect van stagnerend regenwater. Op deze standplaatsen zijn de halfvannatuurige vervangingsgemeenschappen van (A) te verwachten: de Molinietalia. Op de rijker, licht ontwaterde delen met veel organische stof en stikstofmineralisatie mag het Callithion (B, Dotterverband) worden verwacht. Binnen het Callithion is te verwachten het:

III:

Baumea-Seneconion aquatici (ca. 9 ha, 24%)

Deze gemeenschap komt voor op (klei-op-) veengronden, over het algemeen licht gedraineerde basinsneeuw, humusze klei (op-veen) gronden met een sterke N-mineralisatie.

Op de wat minder stikstofrijke kleiige veengronden (pV) ook wel het Junco-Molinion (C).

Hydromullmoder (HLD)

Deze komen over het algemeen voor op de wat minder natte, vochtige standplaatsen. Meestal is hierbij sprake van infiltratie. In de minerale bovengrond is door accumulatie van humus een moerige OMM-horizont ontstaan. Hierin kan stagnatie van regenwater plaatsvinden, waardoor de toplaag wat zuinderig is dan de onderliggende miniere lagen. De minerale bovengrond bestaat meestal uit klei.

Begroeiingen van het Junco-Molinion (C) zijn hier te verwachten. Ook kan het minerale substraat zandig zijn, waardoor er een zandige humusze (ceraaltje) is ontstaan (zie B2). Bij verschijnen beheer is met een kleiige bovengrond een ontwikkeling naar C1 te verwachten. Binnen het Junco-Molinion is daarom te verwachten het:

C1:

Casio dissecti-Molinietum peucedanetosum, gekenmerkt door veel soorten uit de Parvocaricetea (ca. 6 ha, 17%)

Deze subassociatie heeft zijn hoofdverbreiding in het Holocene. Belangrijk is de aanwezigheid van een 'kleidiek' met een minerale ceraaltje. Dit zou betekenen dat deze subassociatie vooral kans heeft in de gebieden met weideveen (pV).

In situaties met een meer zandige bovengrond zijn begroeiingen met Veldbrus (Juncoa aestivalis) te verwachten. Hoewel deze begroeiingen worden ingedeeld bij het Dotterverband nemen ze een intermediaire positie in met het Junco-Molinion. Te verwachten is daarom dat op de wat zandiger standplaatsen voorkomt het:

Alterra rapport 379 65
B2: Cepido-Juncetum acutiflorus (Veldbrussenassociatie, ca. 2 ha, 5%)

Op plaatsen met zoute klei tot in de bovengrond (combinatie van natte omstandigheden en zoute klei) kan een gemeenschap van het kleine zegenverbond tot stand komen die typisch is voor breuk omstandigheden (A4). Deze gemeenschap zou tevens tot ontwikkeling kunnen worden gebracht door 'afgraving' (> 25 cm) van plekken die gekenmerkt worden door aanwezigheid van zoute klei, maar momenteel matig nat zijn:

A4: Pallavicino-Sphagnumetum (Veenvoederheider, onder de huidige omstandigheden nog niet op kaart 10 onderscheiden)

Heidemullmoder (L Db)

De heidemullmoders vertegenwoordigen de droogste en relatief schrale (matig zure) omstandigheden. Er is sprake van regenwaterinfiltratie zonder dat er stagnatie van regenwater optreedt. De AM-horizont wijst in dit geval op accumulatie van organische stof door droge en zure omstandigheden. De omstandigheden zijn te droog voor Calithion- of Junco-Molinion vegetaties en te nat en te rijk (veel lutum) voor vegetaties van de droge graslanden (Koelerio-Corynephoretea). Het meest waarschijnlijk zijn vegetaties die aan ak droge en schrale kant van de Molinio-Artemisietea voorkomen: het Arthemisietea (Glanshaververband, D). Binnen dit verbond zou dan het meest waarschijnlijk tot ontwikkeling kunnen komen:

D1: Arrhenatheretum elatioris luzuletum ampestris (ca. 3 ha, 9%)

Deze subassociatie komt voor op 's zomers uitdrogende neutrale tot zwaar zure grond met een laag lutumgehalte.

Akkermallmoder (LDa)

Ook deze standplaats behoort tot de droogsten van het gebied. Het substraat is echter lutumrijk, waardoor er wel een rijk maar geen schrale karakter aanwezig is. Er is enige accumulatie van organische stof in de voorn van een AM-horizont. Het meest waarschijnlijk zullen hier begroeiingen voorkomen van het:

D2: Arrhenatheretum elatioris typicum (ca. 2 ha, 7%)

Deze associatie is vrij algemeen voor niet te droge, veedehnklei- en zavelgronden.

Voor de overige hunaasvormen (Warmhydromoder en Terrestriële mull, ca. 0,5 ha, 1%) is de potentiële vegetatieontwikkeling onbekend.
Literatuur

Bakker, H. de en J. Schelling, 1989. Systeem van Bodemclassificatie voor Nederland; de lager
minuscule. Wageningen, Pudoc. Tweede, gewijzigde druk.

Bodemkaart van Nederland, 1970. Bodemkaart van Nederland, schaal 1 : 50 000; Tolkhiet bij kaartholde 31 Ontl, Utrecht. Wageningen, STBOKA.

Bodemkaart van Nederland, 1969. Bodemkaart van Nederland, schaal 1 : 50 000; Tolkhiet bij kaartholde 31 West, Utrecht. Wageningen, STBOKA.

Brouwer, P. J.A.M. ten Cate en A. Scholten, 1996. Bodemgeografisch onderzoek in
landbouwelderschappen; bodemvoorsiening, methoden en begrippen. Wageningen, Delta Staring

Delft, S.P.J. van, 2001. Ecologische typering van bodem; Deel 2: Humaanvormtopologie voor korte
categorieën. Wageningen, ALTERRA Rapport nr. 268.

Geologische kaart van Nederland, 1988. Tolkhietingen bij de Geologische kaart van
Nederland, schaal 1 : 50 000, blad Utrecht-Oost (31 O). Haarlem, Rijks Geologische
Dienst.

Kemmers, R.H. & R.W. de Waal, 1999. Ecologische typering van bodem; Deel 1: Ruimte
en humaanvormtopologie. Wageningen, ALTERRA Rapport nr. 667-1.

Niet-gepubliceerde bronnen

Altova rapport 379

67
Aanhangsel 1 Oppervlakte (ha en %) van de eenheden op de bodem- en grondwatertrappenkaart, schaal 1 : 10.000

<table>
<thead>
<tr>
<th>Eenheid</th>
<th>la</th>
<th>IIa</th>
<th>IIIa</th>
<th>IIIB</th>
<th>IVa</th>
<th>Vla</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vr</td>
<td>1.7</td>
<td>1.7</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
<td>1.7</td>
<td>0.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Uitvoergronden</td>
<td>1.7</td>
<td>1.7</td>
<td>0.1</td>
<td>0.1</td>
<td>1.7</td>
<td>1.7</td>
<td>0.1</td>
<td>1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eenheid</th>
<th>la</th>
<th>IIa</th>
<th>IIIa</th>
<th>IIIB</th>
<th>IVa</th>
<th>Vla</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDr</td>
<td>0.6</td>
<td>0.4</td>
<td>12.8</td>
<td>1.0</td>
<td>12.8</td>
<td>1.0</td>
<td>1</td>
<td>13.8</td>
</tr>
<tr>
<td>Neutralegronden</td>
<td>0.6</td>
<td>0.4</td>
<td>12.8</td>
<td>1.0</td>
<td>12.8</td>
<td>1.0</td>
<td>1</td>
<td>13.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eenheid</th>
<th>la</th>
<th>IIa</th>
<th>IIIa</th>
<th>IIIB</th>
<th>IVa</th>
<th>Vla</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDr</td>
<td>0.5</td>
<td>0.2</td>
<td>12.4</td>
<td>0.3</td>
<td>12.4</td>
<td>0.3</td>
<td>1</td>
<td>12.7</td>
</tr>
<tr>
<td>Wvb</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Wve</td>
<td>2.4</td>
<td>3.4</td>
<td>72.6</td>
<td>9.6</td>
<td>72.6</td>
<td>9.6</td>
<td>10.3</td>
<td>82.5</td>
</tr>
<tr>
<td>Wvr</td>
<td>2.7</td>
<td>1.1</td>
<td>12.2</td>
<td>0.2</td>
<td>12.2</td>
<td>0.2</td>
<td>1.3</td>
<td>13.5</td>
</tr>
<tr>
<td>Wvs</td>
<td>0.5</td>
<td>0.3</td>
<td>10.7</td>
<td>0.2</td>
<td>10.7</td>
<td>0.2</td>
<td>0.8</td>
<td>11.5</td>
</tr>
<tr>
<td>Wvp</td>
<td>8.2</td>
<td>0.1</td>
<td>12.4</td>
<td>0.3</td>
<td>12.4</td>
<td>0.3</td>
<td>0.3</td>
<td>12.7</td>
</tr>
<tr>
<td>Wvsa</td>
<td>1.8</td>
<td>1.8</td>
<td>12.4</td>
<td>1.8</td>
<td>12.4</td>
<td>1.8</td>
<td>1.8</td>
<td>13.2</td>
</tr>
<tr>
<td>Wvss</td>
<td>2.2</td>
<td>1.1</td>
<td>12.4</td>
<td>1.1</td>
<td>12.4</td>
<td>1.1</td>
<td>1.1</td>
<td>13.6</td>
</tr>
<tr>
<td>Koopje- en groenrassen</td>
<td>0.3</td>
<td>14.6</td>
<td>1.1</td>
<td>0.3</td>
<td>14.6</td>
<td>1.1</td>
<td>17.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eenheid</th>
<th>la</th>
<th>IIa</th>
<th>IIIa</th>
<th>IIIB</th>
<th>IVa</th>
<th>Vla</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>voM</td>
<td>1.8</td>
<td>1.8</td>
<td>3.8</td>
<td>0.3</td>
<td>3.8</td>
<td>0.3</td>
<td>0.3</td>
<td>4.1</td>
</tr>
<tr>
<td>pHb</td>
<td>42.6</td>
<td>42.6</td>
<td>7.6</td>
<td>7.6</td>
<td>42.6</td>
<td>7.6</td>
<td>7.6</td>
<td>50.3</td>
</tr>
<tr>
<td>pHc</td>
<td>4.0</td>
<td>4.0</td>
<td>11.9</td>
<td>0.9</td>
<td>11.9</td>
<td>0.9</td>
<td>0.9</td>
<td>12.8</td>
</tr>
<tr>
<td>pHr</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>pHsa</td>
<td>4.8</td>
<td>4.8</td>
<td>45.8</td>
<td>45.8</td>
<td>45.8</td>
<td>45.8</td>
<td>45.8</td>
<td>45.8</td>
</tr>
<tr>
<td>pHss</td>
<td>4.0</td>
<td>4.0</td>
<td>45.8</td>
<td>45.8</td>
<td>45.8</td>
<td>45.8</td>
<td>45.8</td>
<td>45.8</td>
</tr>
<tr>
<td>pHva</td>
<td>2.2</td>
<td>10.7</td>
<td>0.1</td>
<td>13.0</td>
<td>0.1</td>
<td>13.0</td>
<td>0.1</td>
<td>13.2</td>
</tr>
<tr>
<td>pHvb</td>
<td>6.6</td>
<td>6.6</td>
<td>12.4</td>
<td>12.4</td>
<td>12.4</td>
<td>12.4</td>
<td>12.4</td>
<td>12.4</td>
</tr>
<tr>
<td>pHvc</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>pHvr</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>pHvs</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Weid. en groenrassen</td>
<td>2.3</td>
<td>136.7</td>
<td>21.9</td>
<td>0.4</td>
<td>160.9</td>
<td>21.9</td>
<td>0.4</td>
<td>160.9</td>
</tr>
</tbody>
</table>

Altecca-rapport 379

69
Aanhangsel 1 Vervolg

<table>
<thead>
<tr>
<th>Uniteit</th>
<th>Ia</th>
<th>IIa</th>
<th>IIIb</th>
<th>IIIa</th>
<th>Vb</th>
<th>Vc</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>kVb</td>
<td>83.6</td>
<td>0.9</td>
<td>86.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kVr</td>
<td>6.5</td>
<td>0.1</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kVr</td>
<td>41.5</td>
<td></td>
<td>41.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kVs</td>
<td>5.2</td>
<td></td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kVc</td>
<td>5.0</td>
<td></td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waardesewgronden</td>
<td>138.6</td>
<td>0.9</td>
<td>139.5</td>
<td>10.7</td>
<td>0.1</td>
<td>10.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uniteit</th>
<th>Ia</th>
<th>IIa</th>
<th>IIIb</th>
<th>IIIa</th>
<th>Vb</th>
<th>Vc</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>pV/Vr</td>
<td>1.9</td>
<td>6.8</td>
<td>4.4</td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meervloedgronden</td>
<td>0.1</td>
<td>0.5</td>
<td>0.3</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uniteit</th>
<th>Ia</th>
<th>IIa</th>
<th>IIIb</th>
<th>IIIa</th>
<th>Vb</th>
<th>Vc</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>msp</td>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bsp</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pmc</td>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pkm</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gom</td>
<td>5.4</td>
<td>2.2</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meervloedzulgronden</td>
<td>0.2</td>
<td>0.4</td>
<td>0.1</td>
<td>0.4</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uniteit</th>
<th>Ia</th>
<th>IIa</th>
<th>IIIb</th>
<th>IIIa</th>
<th>Vb</th>
<th>Vc</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMs</td>
<td>0.1</td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMks</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woerige oerlgronden</td>
<td>1.4</td>
<td>2.1</td>
<td>1.4</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

70 Alterra-rapport 379
Aanhangsel 1 Vervolg

<table>
<thead>
<tr>
<th>Onheil</th>
<th>la</th>
<th>lla</th>
<th>IIIb</th>
<th>IIIa</th>
<th>IIIb</th>
<th>IVa</th>
<th>Vio</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeC</td>
<td></td>
<td></td>
<td>0.3</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>NeGC</td>
<td>3.1</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td>NeHC</td>
<td></td>
<td></td>
<td>12.3</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.8</td>
</tr>
<tr>
<td>NeV</td>
<td>1.0</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>Brechtv.aagronden</td>
<td>15.7</td>
<td></td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Onheil</th>
<th>la</th>
<th>lla</th>
<th>IIIb</th>
<th>IIIa</th>
<th>IIIb</th>
<th>IVa</th>
<th>Vio</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeB</td>
<td></td>
<td></td>
<td>0.9</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>NeS</td>
<td>5.6</td>
<td></td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.9</td>
</tr>
<tr>
<td>NeSC</td>
<td>0.4</td>
<td></td>
<td>2.1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>NeS2</td>
<td>0.8</td>
<td></td>
<td>11.3</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.9</td>
</tr>
<tr>
<td>Polderv.aagronden</td>
<td>6.3</td>
<td></td>
<td>14.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.6</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td></td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Onheil</th>
<th>la</th>
<th>lla</th>
<th>IIIb</th>
<th>IIIa</th>
<th>IIIb</th>
<th>IVa</th>
<th>Vio</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHB</td>
<td>2.6</td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td>pHB15G</td>
<td></td>
<td></td>
<td>4.5</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td>pHB12G</td>
<td>0.6</td>
<td></td>
<td></td>
<td>0.3</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>pHB32G</td>
<td>1.7</td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>pHN5 A</td>
<td>0.1</td>
<td></td>
<td>2.3</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>pHN15B</td>
<td>0.6</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>pHN53 A</td>
<td>1.6</td>
<td></td>
<td>4.8</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.5</td>
</tr>
<tr>
<td>pHN53B</td>
<td>0.1</td>
<td></td>
<td>0.4</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>pHN55B</td>
<td>0.0</td>
<td></td>
<td>0.0</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>pHNO5C</td>
<td>3.3</td>
<td></td>
<td>3.7</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>LDD/-/Abnormaalgronden</td>
<td>3.3</td>
<td>5.4</td>
<td>13.9</td>
<td>6.5</td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
<td>54.2</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.4</td>
<td>1.3</td>
<td>0.5</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td>4.2</td>
</tr>
</tbody>
</table>

Alterra rapport 379 71
Aanhangsel 1 Vervolg

<table>
<thead>
<tr>
<th>Eigenheid</th>
<th>Ia</th>
<th>IIa</th>
<th>IIb</th>
<th>IIIa</th>
<th>IIIb</th>
<th>IVa</th>
<th>Vlo</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHo35C</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>pHo35h</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>PHO35m</td>
<td>5.0</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td>PHO35m</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>PHO35C</td>
<td>5.6</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.1</td>
</tr>
<tr>
<td>Zochterboden</td>
<td>1.4</td>
<td>0.8</td>
<td></td>
<td>0.7</td>
<td></td>
<td>0.7</td>
<td>1.5</td>
<td>0.8</td>
<td>3.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eigenheid</th>
<th>Ia</th>
<th>IIa</th>
<th>IIb</th>
<th>IIIa</th>
<th>IIIb</th>
<th>IVa</th>
<th>Vlo</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTV1C</td>
<td>2.1</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2</td>
</tr>
<tr>
<td>PTV1d</td>
<td>0.6</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>PTV1c</td>
<td>0.6</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Liedebergden</td>
<td>0.6</td>
<td>1.1</td>
<td></td>
<td>0.1</td>
<td></td>
<td>0.1</td>
<td>1.0</td>
<td>0.1</td>
<td>2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eigenheid</th>
<th>Ia</th>
<th>IIa</th>
<th>IIb</th>
<th>IIIa</th>
<th>IIIb</th>
<th>IVa</th>
<th>Vlo</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHim</td>
<td>3.9</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td>Hn33</td>
<td>3.4</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
<td>1.5</td>
<td>0.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Vuldopzoolgronden</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eigenheid</th>
<th>Ia</th>
<th>IIa</th>
<th>IIb</th>
<th>IIIa</th>
<th>IIIb</th>
<th>IVa</th>
<th>Vlo</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN653</td>
<td>4.1</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.4</td>
</tr>
<tr>
<td>Laarpodzoolgronden</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eigenheid</th>
<th>Ia</th>
<th>IIa</th>
<th>IIb</th>
<th>IIIa</th>
<th>IIIb</th>
<th>IVa</th>
<th>Vlo</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn73</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Vlaavooggronden</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Ia</td>
<td>Iib</td>
<td>IIIa</td>
<td>IIIb</td>
<td>IVa</td>
<td>IVb</td>
<td>Geen</td>
<td>Totaal</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>pHZN</td>
<td>2.5</td>
<td>1.1</td>
<td>0.8</td>
<td>0.3</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH Valentia</td>
<td>0.9</td>
<td>0.1</td>
<td>0.8</td>
<td>0.3</td>
<td>1.3</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geen</td>
<td>5.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ia</th>
<th>Iib</th>
<th>IIIa</th>
<th>IIIb</th>
<th>IVa</th>
<th>IVb</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grootte & grootte</td>
<td>2.5</td>
<td>1.1</td>
<td>2.1</td>
<td>0.1</td>
<td>3.4</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geen</td>
<td>0.2</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ia</th>
<th>Iib</th>
<th>IIIa</th>
<th>IIIb</th>
<th>IVa</th>
<th>IVb</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nabuw</td>
<td>149.5</td>
<td>199.5</td>
<td>31.6</td>
<td>11.4</td>
<td>149.5</td>
<td>149.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yaoq</td>
<td>94.9</td>
<td>94.9</td>
<td>7.3</td>
<td>7.3</td>
<td>94.9</td>
<td>94.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sportl</td>
<td>11.8</td>
<td>11.8</td>
<td>0.9</td>
<td>0.9</td>
<td>11.8</td>
<td>11.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lao</td>
<td>5.1</td>
<td>5.1</td>
<td>0.4</td>
<td>0.4</td>
<td>5.1</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaol</td>
<td>10.8</td>
<td>20.8</td>
<td>1.6</td>
<td>1.6</td>
<td>10.8</td>
<td>20.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terp</td>
<td>62.0</td>
<td>62.0</td>
<td>0.2</td>
<td>0.2</td>
<td>62.0</td>
<td>62.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geentoe</td>
<td>12.5</td>
<td>12.5</td>
<td>3.2</td>
<td>3.2</td>
<td>12.5</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>42.0</td>
<td>42.0</td>
<td>0.7</td>
<td>0.7</td>
<td>42.0</td>
<td>42.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opkoop</td>
<td>9.5</td>
<td>9.5</td>
<td>0.7</td>
<td>0.7</td>
<td>9.5</td>
<td>9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diversen</td>
<td>497.3</td>
<td>497.3</td>
<td>38.4</td>
<td>18.4</td>
<td>497.3</td>
<td>497.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ia</th>
<th>Iib</th>
<th>IIIa</th>
<th>IIIb</th>
<th>IVa</th>
<th>IVb</th>
<th>Geen</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>6.0</td>
<td>522.7</td>
<td>152.4</td>
<td>11.2</td>
<td>38.4</td>
<td>105.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aanhangsel 2 Gegevens per kaarteenheid van de bodem- en grondwatertrappenkaart, schaal 1 : 10.000

<table>
<thead>
<tr>
<th>Kasboorders</th>
<th>Opp. (ha)</th>
<th>DHU (cm - mvl)</th>
<th>DG (cm - mvl)</th>
<th>Bew. diepte (cm - mvl)</th>
<th>Bovenrand (dkl 8 cm)</th>
<th>org. stol (%)</th>
<th>lutum (%)</th>
<th>laem (%)</th>
<th>MSG</th>
<th>kalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI-la</td>
<td>1,7</td>
<td>0</td>
<td>30</td>
<td>25</td>
<td>15</td>
<td>45</td>
<td>15</td>
<td>15</td>
<td>155</td>
<td>15</td>
</tr>
<tr>
<td>avZ-la</td>
<td>7,5</td>
<td>20</td>
<td>60</td>
<td>40</td>
<td>25</td>
<td>24</td>
<td>15</td>
<td>15</td>
<td>160</td>
<td>18</td>
</tr>
<tr>
<td>avZ-lib</td>
<td>5,2</td>
<td>25</td>
<td>65</td>
<td>35</td>
<td>15</td>
<td>26</td>
<td>20</td>
<td>20</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>hotW-lib</td>
<td>0,5</td>
<td>15</td>
<td>55</td>
<td>40</td>
<td>15</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>hWVd-lb</td>
<td>0,5</td>
<td>30</td>
<td>50</td>
<td>70</td>
<td>45</td>
<td>22</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hWVdPh-lib</td>
<td>1,1</td>
<td>25</td>
<td>65</td>
<td>45</td>
<td>20</td>
<td>24</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hN-ba</td>
<td>0,5</td>
<td>30</td>
<td>70</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hNvb-lib</td>
<td>2,7</td>
<td>15</td>
<td>40</td>
<td>55</td>
<td>25</td>
<td>22</td>
<td>28</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hNc-lib</td>
<td>59,1</td>
<td>60</td>
<td>55</td>
<td>55</td>
<td>15</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hNc-lib</td>
<td>3,6</td>
<td>25</td>
<td>60</td>
<td>60</td>
<td>15</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hNclib</td>
<td>9,9</td>
<td>35</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hNcF-lib</td>
<td>2,2</td>
<td>5</td>
<td>45</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hW-lib</td>
<td>14,0</td>
<td>10</td>
<td>50</td>
<td>30</td>
<td>15</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hW-lib</td>
<td>29,5</td>
<td>10</td>
<td>55</td>
<td>40</td>
<td>15</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hWvb-lib</td>
<td>2,6</td>
<td>15</td>
<td>55</td>
<td>40</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hWvb-lib</td>
<td>0,2</td>
<td>25</td>
<td>65</td>
<td>40</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hWp-lib</td>
<td>1,2</td>
<td>10</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hWvb-lib</td>
<td>0,8</td>
<td>20</td>
<td>60</td>
<td>45</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hWvb-lib</td>
<td>1,0</td>
<td>5</td>
<td>50</td>
<td>40</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hWvb-lib</td>
<td>11,8</td>
<td>25</td>
<td>65</td>
<td>40</td>
<td>20</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pW-lib</td>
<td>1,3</td>
<td>30</td>
<td>70</td>
<td>40</td>
<td>35</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWVd-lib</td>
<td>7,4</td>
<td>25</td>
<td>60</td>
<td>35</td>
<td>20</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWVd-lib</td>
<td>37,2</td>
<td>15</td>
<td>55</td>
<td>40</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>6,4</td>
<td>10</td>
<td>55</td>
<td>40</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>4,0</td>
<td>15</td>
<td>55</td>
<td>40</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>4,4</td>
<td>25</td>
<td>65</td>
<td>45</td>
<td>25</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>3,3</td>
<td>25</td>
<td>65</td>
<td>45</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvbPh-lib</td>
<td>1,4</td>
<td>40</td>
<td>80</td>
<td>60</td>
<td>20</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pW-lib</td>
<td>64,2</td>
<td>15</td>
<td>55</td>
<td>40</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>1,4</td>
<td>20</td>
<td>60</td>
<td>35</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>0,2</td>
<td>25</td>
<td>65</td>
<td>40</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>2,2</td>
<td>5</td>
<td>45</td>
<td>30</td>
<td>15</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>10,7</td>
<td>10</td>
<td>60</td>
<td>40</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>0,1</td>
<td>25</td>
<td>85</td>
<td>40</td>
<td>20</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>6,4</td>
<td>20</td>
<td>60</td>
<td>40</td>
<td>25</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>6,1</td>
<td>30</td>
<td>70</td>
<td>40</td>
<td>25</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>6,4</td>
<td>5</td>
<td>55</td>
<td>35</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>2,9</td>
<td>30</td>
<td>70</td>
<td>45</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>0,1</td>
<td>25</td>
<td>65</td>
<td>40</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWvb-lib</td>
<td>0,5</td>
<td>30</td>
<td>85</td>
<td>35</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kVb-la</td>
<td>65,5</td>
<td>15</td>
<td>55</td>
<td>45</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kVbPh-la</td>
<td>18,1</td>
<td>15</td>
<td>55</td>
<td>45</td>
<td>5</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kVbPh-lib</td>
<td>0,9</td>
<td>25</td>
<td>85</td>
<td>45</td>
<td>25</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kw-la</td>
<td>34,5</td>
<td>15</td>
<td>55</td>
<td>40</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kw-la</td>
<td>7,0</td>
<td>10</td>
<td>60</td>
<td>50</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kV-la</td>
<td>8,7</td>
<td>10</td>
<td>55</td>
<td>40</td>
<td>15</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kV-la</td>
<td>2,2</td>
<td>10</td>
<td>55</td>
<td>45</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kWV-la</td>
<td>1,7</td>
<td>15</td>
<td>80</td>
<td>35</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kWV-la</td>
<td>2,9</td>
<td>10</td>
<td>60</td>
<td>40</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kwZ-la</td>
<td>1,3</td>
<td>15</td>
<td>50</td>
<td>30</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kwV-la</td>
<td>6,7</td>
<td>30</td>
<td>70</td>
<td>50</td>
<td>25</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kasteelheid</td>
<td>Opp.</td>
<td>O.H.G.</td>
<td>G.L.G.</td>
<td>B..isSuccess</td>
<td>Bovengrond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ha)</td>
<td>(cm - m.)</td>
<td>(cm - m.)</td>
<td>(cm - m.)</td>
<td>(cm - m.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-17-lb</td>
<td>0,2</td>
<td>40</td>
<td>75</td>
<td>70</td>
<td>35</td>
<td>10</td>
<td>18</td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>1,4</td>
<td>45</td>
<td>80</td>
<td>35</td>
<td>25</td>
<td>11</td>
<td>13</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-VH-14-vlu</td>
<td>1,0</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>40</td>
<td>8</td>
<td>14</td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-VH-14-vlu</td>
<td>3,0</td>
<td>40</td>
<td>85</td>
<td>40</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wWb-8a</td>
<td>0,2</td>
<td>15</td>
<td>60</td>
<td>35</td>
<td>30</td>
<td>40</td>
<td>16</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wWb-lb</td>
<td>0,4</td>
<td>25</td>
<td>65</td>
<td>35</td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wWb-lb</td>
<td>0,4</td>
<td>45</td>
<td>90</td>
<td>35</td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wWb-14-lb</td>
<td>0,9</td>
<td>25</td>
<td>85</td>
<td>55</td>
<td>15</td>
<td>24</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWb-8a</td>
<td>0,2</td>
<td>15</td>
<td>65</td>
<td>40</td>
<td>25</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWb-lb</td>
<td>4,7</td>
<td>35</td>
<td>75</td>
<td>40</td>
<td>25</td>
<td>9</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWb-lb</td>
<td>2,4</td>
<td>50</td>
<td>95</td>
<td>50</td>
<td>25</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWb-lb</td>
<td>1,4</td>
<td>15</td>
<td>65</td>
<td>40</td>
<td>25</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWb-lb</td>
<td>0,4</td>
<td>25</td>
<td>80</td>
<td>50</td>
<td>15</td>
<td>13</td>
<td>16</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWb-lb</td>
<td>0,2</td>
<td>60</td>
<td>90</td>
<td>50</td>
<td>15</td>
<td>9</td>
<td>13</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWb-lb</td>
<td>2,1</td>
<td>25</td>
<td>70</td>
<td>45</td>
<td>25</td>
<td>10</td>
<td>14</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pWb-14-lb</td>
<td>0,5</td>
<td>25</td>
<td>85</td>
<td>55</td>
<td>40</td>
<td>14</td>
<td>23</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-17-lb</td>
<td>3,9</td>
<td>15</td>
<td>75</td>
<td>55</td>
<td>25</td>
<td>17</td>
<td>28</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>5,6</td>
<td>15</td>
<td>65</td>
<td>50</td>
<td>5</td>
<td>11</td>
<td>35</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>6,4</td>
<td>15</td>
<td>65</td>
<td>55</td>
<td>10</td>
<td>5</td>
<td>35</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>0,4</td>
<td>5</td>
<td>55</td>
<td>45</td>
<td>5</td>
<td>5</td>
<td>35</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>2,5</td>
<td>25</td>
<td>85</td>
<td>60</td>
<td>5</td>
<td>7</td>
<td>35</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>0,9</td>
<td>25</td>
<td>85</td>
<td>55</td>
<td>5</td>
<td>10</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>5,6</td>
<td>10</td>
<td>65</td>
<td>45</td>
<td>5</td>
<td>11</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>2,1</td>
<td>25</td>
<td>85</td>
<td>55</td>
<td>60</td>
<td>6</td>
<td>25</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>0,8</td>
<td>20</td>
<td>70</td>
<td>50</td>
<td>15</td>
<td>6</td>
<td>35</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>9,0</td>
<td>25</td>
<td>85</td>
<td>65</td>
<td>10</td>
<td>6</td>
<td>35</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>0,5</td>
<td>25</td>
<td>80</td>
<td>40</td>
<td>35</td>
<td>8</td>
<td>35</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>1,8</td>
<td>25</td>
<td>85</td>
<td>50</td>
<td>10</td>
<td>6</td>
<td>35</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>1,1</td>
<td>20</td>
<td>75</td>
<td>50</td>
<td>20</td>
<td>4</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>1,4</td>
<td>10</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>6,6</td>
<td>60</td>
<td>115</td>
<td>75</td>
<td>40</td>
<td>8</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>0,9</td>
<td>50</td>
<td>95</td>
<td>50</td>
<td>20</td>
<td>9</td>
<td>17</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>2,2</td>
<td>40</td>
<td>80</td>
<td>50</td>
<td>35</td>
<td>8</td>
<td>21</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>1,8</td>
<td>30</td>
<td>65</td>
<td>50</td>
<td>25</td>
<td>8</td>
<td>19</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>10,3</td>
<td>50</td>
<td>90</td>
<td>50</td>
<td>25</td>
<td>5</td>
<td>19</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>0,5</td>
<td>45</td>
<td>85</td>
<td>45</td>
<td>15</td>
<td>7</td>
<td>22</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>1,7</td>
<td>50</td>
<td>90</td>
<td>55</td>
<td>15</td>
<td>7</td>
<td>20</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>0,8</td>
<td>30</td>
<td>75</td>
<td>45</td>
<td>15</td>
<td>7</td>
<td>21</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>1,1</td>
<td>40</td>
<td>90</td>
<td>65</td>
<td>15</td>
<td>10</td>
<td>21</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>0,4</td>
<td>60</td>
<td>95</td>
<td>80</td>
<td>25</td>
<td>5</td>
<td>17</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>0,7</td>
<td>50</td>
<td>90</td>
<td>65</td>
<td>25</td>
<td>8</td>
<td>23</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>0,6</td>
<td>35</td>
<td>65</td>
<td>45</td>
<td>45</td>
<td>5</td>
<td>24</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>1,7</td>
<td>5</td>
<td>75</td>
<td>60</td>
<td>25</td>
<td>3</td>
<td>34</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>1,2</td>
<td>15</td>
<td>120</td>
<td>75</td>
<td>25</td>
<td>5</td>
<td>34</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>3,7</td>
<td>10</td>
<td>95</td>
<td>70</td>
<td>25</td>
<td>6</td>
<td>31</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>1,7</td>
<td>30</td>
<td>85</td>
<td>60</td>
<td>25</td>
<td>5</td>
<td>34</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>0,8</td>
<td>5</td>
<td>95</td>
<td>80</td>
<td>25</td>
<td>6</td>
<td>28</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>0,6</td>
<td>10</td>
<td>120</td>
<td>80</td>
<td>30</td>
<td>5</td>
<td>32</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>3,7</td>
<td>30</td>
<td>85</td>
<td>65</td>
<td>25</td>
<td>7</td>
<td>27</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>1,5</td>
<td>0</td>
<td>70</td>
<td>50</td>
<td>20</td>
<td>6</td>
<td>32</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>1,5</td>
<td>20</td>
<td>70</td>
<td>60</td>
<td>15</td>
<td>7</td>
<td>27</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVvH-14-lu</td>
<td>7,7</td>
<td>5</td>
<td>85</td>
<td>55</td>
<td>15</td>
<td>5</td>
<td>28</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kennenmerk</td>
<td>Opp. (m)</td>
<td>GWD (cm - mV)</td>
<td>(SL.G.) (cm - mV)</td>
<td>Bew. diepte</td>
<td>Bovengrond</td>
<td>dakop (cm)</td>
<td>arg. aflo (%)</td>
<td>lutum (%)</td>
<td>leer (%)</td>
<td>MSG</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>pR13C1H-Ilb</td>
<td>10,1</td>
<td>36</td>
<td>70</td>
<td>40</td>
<td>28</td>
<td>8</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S4AV-Ilb</td>
<td>7,0</td>
<td>15</td>
<td>60</td>
<td>45</td>
<td>15</td>
<td>8</td>
<td>20</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S4AV-Ilb</td>
<td>3,8</td>
<td>30</td>
<td>75</td>
<td>45</td>
<td>15</td>
<td>12</td>
<td>22</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S4AP-Ilb</td>
<td>2,3</td>
<td>30</td>
<td>65</td>
<td>50</td>
<td>25</td>
<td>6</td>
<td>24</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5B-Ilb</td>
<td>1,1</td>
<td>20</td>
<td>70</td>
<td>65</td>
<td>25</td>
<td>14</td>
<td>22</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5Blv-Ilb</td>
<td>1,0</td>
<td>20</td>
<td>60</td>
<td>45</td>
<td>35</td>
<td>16</td>
<td>22</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5Blp-Ilb</td>
<td>0,7</td>
<td>20</td>
<td>55</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>22</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5Blv-Ilb</td>
<td>2,1</td>
<td>35</td>
<td>75</td>
<td>65</td>
<td>15</td>
<td>11</td>
<td>23</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5Blp-Ilb</td>
<td>1,7</td>
<td>30</td>
<td>65</td>
<td>55</td>
<td>15</td>
<td>11</td>
<td>20</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5Bwep-Ilb</td>
<td>0,3</td>
<td>30</td>
<td>70</td>
<td>60</td>
<td>15</td>
<td>12</td>
<td>23</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5Blp-Ilb</td>
<td>0,8</td>
<td>45</td>
<td>80</td>
<td>70</td>
<td>25</td>
<td>10</td>
<td>23</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5C-Ilb</td>
<td>1,0</td>
<td>15</td>
<td>60</td>
<td>55</td>
<td>25</td>
<td>12</td>
<td>21</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5Cv-Ilb</td>
<td>4,1</td>
<td>15</td>
<td>60</td>
<td>50</td>
<td>25</td>
<td>16</td>
<td>23</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5Cp-Ilb</td>
<td>0,8</td>
<td>20</td>
<td>60</td>
<td>55</td>
<td>25</td>
<td>12</td>
<td>23</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5C-Ilb</td>
<td>10,3</td>
<td>40</td>
<td>70</td>
<td>75</td>
<td>35</td>
<td>12</td>
<td>22</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5Cv-Ilb</td>
<td>12,8</td>
<td>30</td>
<td>65</td>
<td>55</td>
<td>25</td>
<td>13</td>
<td>22</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5Cp-Ilb</td>
<td>6,5</td>
<td>30</td>
<td>65</td>
<td>55</td>
<td>25</td>
<td>13</td>
<td>22</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13S5C-Ilb</td>
<td>1,5</td>
<td>25</td>
<td>80</td>
<td>60</td>
<td>35</td>
<td>12</td>
<td>22</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13H1CpH-Vu</td>
<td>0,7</td>
<td>65</td>
<td>115</td>
<td>65</td>
<td>35</td>
<td>13</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13H1Acp-Vu</td>
<td>7,1</td>
<td>20</td>
<td>65</td>
<td>55</td>
<td>25</td>
<td>8</td>
<td>23</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13H1Acp-Ilb</td>
<td>25,2</td>
<td>30</td>
<td>65</td>
<td>50</td>
<td>25</td>
<td>8</td>
<td>23</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13H1CpV-Fb</td>
<td>0,6</td>
<td>15</td>
<td>65</td>
<td>40</td>
<td>45</td>
<td>14</td>
<td>21</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pR13H1CpV-Vf</td>
<td>0,8</td>
<td>60</td>
<td>120</td>
<td>55</td>
<td>15</td>
<td>9</td>
<td>18</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pkH1-Vb</td>
<td>2,7</td>
<td>40</td>
<td>80</td>
<td>40</td>
<td>25</td>
<td>7</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pkH1F-Vb</td>
<td>0,7</td>
<td>35</td>
<td>80</td>
<td>70</td>
<td>35</td>
<td>2</td>
<td>8</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pkH1VF-Vu</td>
<td>9,8</td>
<td>50</td>
<td>90</td>
<td>45</td>
<td>35</td>
<td>7</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pkH1F-Vu</td>
<td>0,4</td>
<td>45</td>
<td>115</td>
<td>65</td>
<td>25</td>
<td>4</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pkH1H-Vf</td>
<td>0,7</td>
<td>55</td>
<td>100</td>
<td>40</td>
<td>35</td>
<td>3</td>
<td>8</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pkH1H-Vv</td>
<td>1,2</td>
<td>55</td>
<td>125</td>
<td>60</td>
<td>25</td>
<td>7</td>
<td>8</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hrd1-Ilb</td>
<td>2,4</td>
<td>30</td>
<td>75</td>
<td>45</td>
<td>25</td>
<td>7</td>
<td>14</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hrd1-Ilb</td>
<td>0,2</td>
<td>35</td>
<td>85</td>
<td>45</td>
<td>25</td>
<td>5</td>
<td>14</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hrd1-Vv</td>
<td>12,9</td>
<td>55</td>
<td>95</td>
<td>55</td>
<td>35</td>
<td>5</td>
<td>13</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hrd1F-Vv</td>
<td>0,4</td>
<td>55</td>
<td>95</td>
<td>55</td>
<td>35</td>
<td>5</td>
<td>13</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chm1-Ilv</td>
<td>4,4</td>
<td>45</td>
<td>85</td>
<td>50</td>
<td>35</td>
<td>6</td>
<td>13</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pkH1-Vu</td>
<td>2,5</td>
<td>20</td>
<td>65</td>
<td>30</td>
<td>30</td>
<td>5</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pkH1-Vb</td>
<td>1,1</td>
<td>25</td>
<td>70</td>
<td>30</td>
<td>30</td>
<td>5</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pkH1F-Vu</td>
<td>0,3</td>
<td>45</td>
<td>90</td>
<td>50</td>
<td>25</td>
<td>3</td>
<td>8</td>
<td>356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhn3H1F-Ilb</td>
<td>0,7</td>
<td>30</td>
<td>70</td>
<td>40</td>
<td>20</td>
<td>1</td>
<td>12</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pZhn3H1cV-Vf</td>
<td>1,1</td>
<td>30</td>
<td>85</td>
<td>40</td>
<td>25</td>
<td>1</td>
<td>11</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pZhn3F-Vv</td>
<td>0,2</td>
<td>50</td>
<td>100</td>
<td>45</td>
<td>15</td>
<td>3</td>
<td>11</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pZhn3F-Vv</td>
<td>0,2</td>
<td>50</td>
<td>90</td>
<td>50</td>
<td>50</td>
<td>2</td>
<td>8</td>
<td>160</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bebouw	149,5
Wog	94,9
Spooni	11,4
Kas	5,1
Kade	20,8
Terp	5,1
Goedere	162,0
Water	42,0
Oploog	9,5
Aanhangsel 3 Vergelijking van de codering van de legenda-eeenheden op de bodemkaart, schaal 1 : 10.000 (kaart 1), met die van de Bodemkaart van Nederland, schaal 1 : 50.000

<table>
<thead>
<tr>
<th>Naam</th>
<th>Code schaal 1 : 10.000</th>
<th>Code schaal 1 : 50.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlengrondenn</td>
<td>Vr</td>
<td>Vr</td>
</tr>
<tr>
<td>Madelengrondenn</td>
<td>zVz</td>
<td>zVz</td>
</tr>
<tr>
<td>Koopeengrondenn</td>
<td>hVd</td>
<td>hVd</td>
</tr>
<tr>
<td></td>
<td>hVb</td>
<td>hVb</td>
</tr>
<tr>
<td></td>
<td>hVc</td>
<td>hVc</td>
</tr>
<tr>
<td></td>
<td>hVr</td>
<td>hVr</td>
</tr>
<tr>
<td></td>
<td>hVs</td>
<td>hVs</td>
</tr>
<tr>
<td></td>
<td>hVp</td>
<td>hVz</td>
</tr>
<tr>
<td></td>
<td>hVz</td>
<td>hVz</td>
</tr>
<tr>
<td>Wendeengrondenn</td>
<td>pVd</td>
<td>pVd</td>
</tr>
<tr>
<td></td>
<td>pVb</td>
<td>pVb</td>
</tr>
<tr>
<td></td>
<td>pVc</td>
<td>pVc</td>
</tr>
<tr>
<td></td>
<td>pVr</td>
<td>pVr</td>
</tr>
<tr>
<td></td>
<td>pVs</td>
<td>pVs</td>
</tr>
<tr>
<td></td>
<td>pVp</td>
<td>pVz</td>
</tr>
<tr>
<td></td>
<td>pVz</td>
<td>pVz</td>
</tr>
<tr>
<td>Waardengegrondenn</td>
<td>kVb</td>
<td>kVb</td>
</tr>
<tr>
<td></td>
<td>kVr</td>
<td>kVr</td>
</tr>
<tr>
<td></td>
<td>kVs</td>
<td>kVs</td>
</tr>
<tr>
<td></td>
<td>kVz</td>
<td>kVz</td>
</tr>
<tr>
<td>Meerengegrondenn</td>
<td>pzVz</td>
<td>zVz</td>
</tr>
<tr>
<td>Moeirige: Grondeen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moeinge: peetzolgrondenn</td>
<td>zWp</td>
<td>sWp</td>
</tr>
<tr>
<td></td>
<td>hWp</td>
<td>sWp</td>
</tr>
<tr>
<td></td>
<td>pkWp</td>
<td>kWp</td>
</tr>
<tr>
<td></td>
<td>pzWp</td>
<td>zWp</td>
</tr>
<tr>
<td>Moeinge: eeltgronden</td>
<td>pkWz</td>
<td>kWz</td>
</tr>
<tr>
<td></td>
<td>pzWz</td>
<td>zWz</td>
</tr>
<tr>
<td>Zeekekleigrondenn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drechtaaggrondenn</td>
<td>Mv31C</td>
<td>Mv61C</td>
</tr>
<tr>
<td></td>
<td>Mv51C</td>
<td>Mv61C</td>
</tr>
<tr>
<td></td>
<td>Mv71C</td>
<td>Mv41C</td>
</tr>
<tr>
<td>Poeldraaggrondenn</td>
<td>Mn12C</td>
<td>Mn52C</td>
</tr>
<tr>
<td></td>
<td>Mn35C</td>
<td>Mn25C</td>
</tr>
<tr>
<td></td>
<td>Mn53C</td>
<td>Mn86C</td>
</tr>
<tr>
<td></td>
<td>Mn73C</td>
<td>Mn86C</td>
</tr>
</tbody>
</table>

Alterra-rapport 379
<table>
<thead>
<tr>
<th>Naam</th>
<th>Code schaal 1 : 10.000</th>
<th>Code schaal 1 : 50.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivierkliigronden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leek-/Wouwseerrondgronden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pRn122;</td>
<td>pRn59</td>
<td></td>
</tr>
<tr>
<td>pRn15C;</td>
<td>pRn59</td>
<td></td>
</tr>
<tr>
<td>pRn32A;</td>
<td>pRn59</td>
<td></td>
</tr>
<tr>
<td>pRn32B;</td>
<td>pRn59</td>
<td></td>
</tr>
<tr>
<td>pRn35A;</td>
<td>pRn59</td>
<td></td>
</tr>
<tr>
<td>pRn35B;</td>
<td>pRn59</td>
<td></td>
</tr>
<tr>
<td>pRn53C;</td>
<td>pRn59</td>
<td></td>
</tr>
<tr>
<td>pRn55A;</td>
<td>pRn89</td>
<td></td>
</tr>
<tr>
<td>pRn55B;</td>
<td>pRn89</td>
<td></td>
</tr>
<tr>
<td>pRn55C;</td>
<td>pRn89</td>
<td></td>
</tr>
<tr>
<td>Tachteerrondgronden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pRoo15C;</td>
<td>Ro60C</td>
<td></td>
</tr>
<tr>
<td>pRoo35A;</td>
<td>Ro60A</td>
<td></td>
</tr>
<tr>
<td>pRoo35B;</td>
<td>Ro60A</td>
<td></td>
</tr>
<tr>
<td>pRoo35C;</td>
<td>Ro60C</td>
<td></td>
</tr>
<tr>
<td>Liechederrondgronden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pRv11C;</td>
<td>pRv51</td>
<td></td>
</tr>
<tr>
<td>pRv31A;</td>
<td>pRv51</td>
<td></td>
</tr>
<tr>
<td>pRv31C;</td>
<td>pRv51</td>
<td></td>
</tr>
<tr>
<td>Zandgronden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veldpodzolgronden</td>
<td>pHIn</td>
<td>HIn21</td>
</tr>
<tr>
<td>HIn53;</td>
<td>HIn12</td>
<td></td>
</tr>
<tr>
<td>Laarpodzolgronden</td>
<td>cHIn53</td>
<td>cHIn21</td>
</tr>
<tr>
<td>Vlakvaaggronden</td>
<td>Zn33</td>
<td>Zn30</td>
</tr>
<tr>
<td>Grotereerrondgronden</td>
<td>pZn53;</td>
<td>pZn21</td>
</tr>
<tr>
<td>pZn53;</td>
<td>pZn21</td>
<td></td>
</tr>
</tbody>
</table>
L-Terrestrische muil

Vignette 9: Schematische weergave van een terrestrische muil

HLD-Hydromullmoder

Vignette 10: Schematische weergave en pH-profiel van een hydromullmoder.

Alterra rapport 379
Figuur 11: Schematische weergave van pH-profiel van enkele heidemullmoders.

Figuur 12: Schematische weergave van pH-profiel van enkele akkermullmoders.

Figuur 13: Schematische weergave van een wormhydromoder.

82 Alterra-rapport 379

Figuur 15. Schematische smering en pH profiel van een aantal schrale beekeerdemmers.
Figuur 16: Schematische overzicht en pH profielen van een aantal schrale moereerdonders.