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Abstract  

In theory, treating the multi-destination trips (MDTs) as single-destination trips (SDT)

does not necessarily lead to biased results, because negative effect of price increase

may be offset by the shift of the estimated demand curve. However, in our empirical

application of the TCM zonal model to the valuation of the economic benefits of the

Bellenden Kerr National Park in Australia we find (statistically significant) evidence

that ignoring the MDTs leads to a dramatic overestimation of the consumer surplus.

This is in sharp contrast to the earlier empirical evidence from other type of TCM

models, which have either excluded the MDT visitors from the data set or treated

them as single-destination trips, suggesting the opposite conclusion. 
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1. INTRODUCTION

The problem of multi-destination trips (MDT) is as old as the travel cost method

(TCM) itself. Although the issue has received considerable attention in the TCM

literature a satisfactory solution still remains to be found. Indeed, empirical

applications of the TCM often do not even consider any correction for MDT bias.

Some argue that as though their data set only contained a few MDT visitors they

could easily be left out, or treated as if they were single purpose respondents (Loomis

and Walsh, 1997). Others believe that any correction would be arbitrary and it would

thus be better not to make any correction at all (e.g. Beal, 1995). Nevertheless,

considering MDT can be important under particular circumstances. There are studies

suggesting that ignoring them can result in an underestimation of the recreational

value of 50% and more (Loomis et al., 2000; Mendelsohn et al., 1992). 

In the spirit of Hotelling (see Ward and Beal, 2000, pp. 217-218), Mendelsohn et

al. (1992) suggest including all alternative sites, and combinations thereof, in the

estimation of the demand function, to take into account the substitution possibilities.

However, the number of demand equations rises exponentially, and the information to

be collected increases tremendously. 

Loomis and Walsh (1997) identify two alternatives for estimating a fully-blown

demand system. The simpler one is to drop all observations involving multiple

destination trips, estimate demand with data of the single destination users, and

compute a per-visit consumer surplus figure based on these functions. However, by

omitting multi-destination visitors, and thus only including single destination visitors,

one is oblivious to the fact that single destination visitors might differ considerably

from multi-destination visitors with respect to demographic and socio-economic

characteristics. Alternatively, one can try to allocate total costs among multiple
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destinations. One approach is to use a quantifiable variable, such as ‘nights spent’ at

the different sites, as a proxy for relative importance (Knapman and Stanley, 1991;

Stoeckl 1993), another, to try to use visitor’s preferences to allocate the cost. Bennett

(1995) notes that, although the second approach is much more subjective, it does

enable the recognition of the possibility that the importance of visits may not be

simply a function of time allocation. Unfortunately, plenty of evidence from

experimental studies clearly illustrates the difficulty of expressing preferences in

measurable quantities (e.g. Hajkowicz et al., 2000).

The objective of this paper is to shed further light on how the way of dealing with

MDT can influence the consumer surplus estimates obtained by the TCM. To this

end, three distinct routes will be pursued: First, we seek further analytical depth to this

issue by decomposing the MDT effect into two measurable components: the direct

effect of the price change, and the indirect effect of the shift of the empirical demand

function. Second, we consider the possibility of using ordinal rankings of the

alternative MDT sites as a basis for extracting cardinal cost-shares required by the

TCM. In particular, we will re-examine the extreme value approach initially proposed

by Kmietowitcz and Pearman (1981) in the present TCM context. Third, we apply the

extreme value approach and present some empirical evidence of the influence of the

MDTs on the TCM consumer surplus estimates. Using the data of the TCM study for

the Bellenden Kerr National Park in Australia by Nillesen et al. (2002), we estimate

the theoretical minimum and maximum bounds for the TCM both with and without a

MDT-correction, using a parametric weighted-ordinary-least-squares and a non-

parametric trapezoid-rule approach for estimating the demand functions. 

The rest of the paper unfolds as follows: Section 2 analytically decomposes the

effect of MDT on consumer surplus, and concludes that considering MDT will not
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necessarily increase the consumer surplus. This is followed by an introduction of the

modified extreme value approach for MDT, which is then applied to a case study

from Australia where about half of the visitors of a National Park visited the park as

part of a MDT. We close with a discussion of our results and draw conclusions for the

TCM.

2. CONSUMER SURPLUS

Consumer surplus (CS) is a measure of consumer welfare: It is the sum of money

consumers were willing to pay for a particular product over what they actually had to

pay. Formally, let 1: n
ix +

+ +→� �  denote the Marshallian demand of commodity i as a

function of price vector : np +� and income I. Let ip  denote the prevailing price for

commodity I. The consumer surplus of commodity i can be written as

1( ) ( ,..., , )
i

i n i
p

CS i x p p I dp
∞

= ∫ . (1)

In other words, CS can be seen as the area under the Marshallian demand curve above

the current price level.2

The purpose of the TCM approach is to estimate the demand function ix  for the

recreational site. We investigate how dealing with multi-destination trips influences

the estimated consumer surplus. We compare the ‘ideal’ situation where the true but

                                                          
2 For convenience, the definition above described consumer surplus in terms of Marshallian (market)

demand curves rather than Hicksian (compensated) demand curves. Marshallian curves are easier to

estimate empirically, and they can reasonably approximate the Hicksian ones for small prices changes

and for goods with few substitutes and compliments.
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unknown travel cost share is correctly assigned to the destination to the two common

approaches of ignoring the multi-destination trips:

1) Respondents with multi-destination visits are omitted from the data.

2) Total travel cost is used without any adjustments to the multi-destination

visitation.

The first case does not necessarily involve any systematic error, provided that data

availability does not introduce problems. Omitting the multi-destination visitors may

have an undesirable side-effect of decreased sample size, but that is a statistical matter

which might be taken into account in the design of the study. A more serious

difficulty is that the profiles of the single purpose respondents and omitted multi-

destination visitors might differ, since the single-purpose visitors tend to live closer to

the nature reserve than the multi-destination visitors. In such circumstances, the

omission of long-distance multi-destination travelers might leave some important

influences of demographic variables undetected because of little variation in the

sample. This can also influence the shape of the estimated demand curve, and hence

CS estimate. The existing empirical evidence (Loomis et al., 2000; Mendelsohn et al.,

1992) unanimously suggests that the omission of MDT visitors from the data set leads

to an underestimation of the CS, which can amount up to 50% or higher.

Together, the effects of decreased sample size and the respondent profile may

become an issue in zonal models, where it may be difficult to find enough single-

destination visitors from distant zones. Therefore, the omission of multi-destination

visitors seems a more viable strategy in individual traveler models where plenty of
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data are available. As the zonal approach is the more often applied one we focus

exclusively on the approach without any adjustment to MDT.

In this case, the treatment of MDT influences the consumer surplus in two

mutually offsetting ways. We call them the direct effect and the indirect effect. When

the total travel cost is used instead of the effective (correct) cost share, the price of the

commodity increases. This has the direct effect of decreasing the consumer surplus:

Taking the sub-differential of the consumer surplus we see:

1 1
( ) ( ,..., ,..., , ) 0 ,..., ,i i n n
i

CS i x p p p I p p I
p

∂
= − ≤ ∀

∂
(2)

Consequently, if total travel costs are used without correcting for the MDT, the

prevailing MDT price M
ip  will increase to ( )O O M

i i ip p p> , and hence the CS will be

smaller. In other words, the direct effect is always non-positive. We can quantify this

direct effect as 

1( ,..., , )
O
i

M
i

p

i n i
p

DE x p p I dp= ∫ (3)

However, the previous effect does not take into account the indirect effect of the MDT

to the estimated demand function xi. Let ˆM
ix  and ˆO

ix  denote the demand functions

estimated from data adjusted for MDT and omitting adjustment, respectively. Since

the observed costs are always lower for the multi-destination adjusted cost data,

sensible estimation technique will yield coefficients with the property that

1 1 1ˆ ˆ( ,..., , ) ( ,..., , ) ,..., ,M O
i n i n nx p p I x p p I p p I≤ ∀ . (4)

That is, for any given prices and income the estimated demand will be higher if the

total cost of travel is assigned to the nature reserve, compared to the case where only
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the effective fraction of the costs is used. This is because we have the same demand

observations in the data, but the price observations are higher in the former case.

Typically, we would expect that the slope of the demand curve will be flatter when

the travel costs are adjusted for MDT, because the multi-destination trips tend to be

more important for the long-distance visitors associated with higher travel costs. 

The explicit analytical representation of the latter effect depends, among others,

on the estimation technique to be used, the specified function form (if applicable), and

the specified error distribution. Given the empirical demand functions ˆM
ix  and ˆO

ix , we

can quantify the indirect effect as 

( )1 1ˆ ˆ( ,..., , ) ( ,..., , )
TC
i

O M
i n i n i

p

IE x p p I x p p I dp
∞

= −∫ . (5)

INSERT: Figure A. Illustration of the direct and the indirect effects.

Figure A illustrates these effects graphically. The direct effect (DE) of accounting for

multi-destination trips is due to the price increase from pM to pO, given the original

demand curve ˆM
ix . The indirect effect (IE) is the shift of the demand curve from ˆM

ix

to ˆO
ix , given the new price pO. Whether accounting for MDT makes a difference, and

by how much, depends on the relative difference of the areas DE and IE in Figure A.

This is solely an empirical question, which probably depends on the proportion of

MDTs in the sample. We address this issue from the empirical perspective in Section

4.
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3. WEIGHTING MDT USING THE EXTREME VALUE APPROACH

As the previous discussion illustrated, ignoring MDT can but not necessarily will

result in biased estimation of the consumer surplus. In this section we consider the

possibility of using ordinal rankings for valuing MDT in TCM. Hajkowicz et al.,

(2000) evaluated five weighting methods, for ranking criteria, applied to multi-criteria

decision making in natural resource management. The five methods include fixed

point scoring; rating; ordinal ranking; geographical weighting and paired

comparisons. Evaluation was based on ease of use, and how much they helped clarify

the problem. Their results showed that decision-makers felt most uncomfortable when

applying fixed point scoring, i.e. distribute a fixed number of points among the

criteria as is occasionally used within TCM (e.g. Willis and Garrod, 1991; Hanley and

Ruffell, 1992). Ordinal ranking appeared to be the most preferred method. Hajkowicz

et al. (2000) hypothesizes that a reason for favoring this method may have been that it

does not require anything else than purely ordinal information from decision-makers. 

A critical part of using the ordinal information of ranked multiple destinations is

allocating part of the total travel costs to one destination. TCM necessitates a

conversion of ordinal ranking numbers into cardinal cost-shares. There are several

techniques that could be used for this conversion. Nillesen et al. (2002) apply the

mean-expected value approach (Rietveld, 1989) in their application of TCM to the

valuation of the Bellenden Kerr National Park in Australia. In this paper we adapt the

extreme value approach of Kmietowicz and Pearman (1981) to the TCM context. We

use these extreme values for sensitivity analysis of the estimated demand curve and

the consumer surplus. It is simple to make calculations for two different scenarios,

one using the minimum cost shares for all respondents to derive the lower bound

estimates, another involving the maximum cost shares to derive the upper bound
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estimate. If the lower bound does not differ too significantly from the upper bound,

we can be assured that the estimated consumer surplus is robust with respect to the

treatment of the multi-destination trips. Even if there is considerable deviation, we can

use the lower and/or the upper bound for making safe and sound policy inference.

Finally, if the estimated range is way too wide to support any sensible conclusions,

then at least we can demonstrate a strong case for imposing additional structure and

assumptions. 

Assume the respondent has visited n destinations, and can rank the destinations in

non-increasing ordering according to their importance, i.e., from the most important

to the least important. Let the unknown travel-cost shares of each destination be

denoted by vector ( )1
n

nγ γ γ += ∈K � , satisfying the following properties 1)

nγγγ ≥≥≥ K21 , and 2) 1
1

=∑
=

n

i
iγ . 

Let the ranking of the destination we are interested in be :1j j n+∈ ≤ ≤� , and

the cost share of this destination jγ . We would like to know the value of jγ  to

calculate the effective travel cost to the destination for this particular visitor, but given

the ordinal information only, we cannot infer the exact value. But still, we can derive

the minimum and the maximum value of jγ  such that all cost shares satisfy

conditions 1) and 2). It is straightforward to show (see Kmietowitcz and Pearman,

1981) that 

{ jγγ
min nγγγ ≥≥≥ K21 , }1

1
=∑

=

n

i
iγ  





 =

=
otherwise     0

1for   1 jn (6)

and 
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{ jγγ
max nγγγ ≥≥≥ K21 , }1

1

=∑
=

n

i
iγ = j

1 . (7)

These minimum and maximum values characterize the feasible range of the unknown

cost share jγ .

The travel costs of a specific site that was ranked first among several sites would

be included by hundred per cent, while the travel costs of a site that was ranked e.g.

third would be considered with about 33 per cent.

From the methodological perspective, it is interesting to note that the extreme

value approach is well in line with the traditional Hotelling approach that simply

excludes multi-destination visitors from the sample. Observe that the minimum

weight equals zero, except for the topmost ranking destination. Therefore, if our

nature reserve does not typically rank as the primary destination, then the traditional

approach comes very close (or even coincides) with our lower bound estimate. In this

sense, the "safe-play" extreme value approach is built in to the traditional travel cost

method. Still, our more systematic approach that uses additional ordinal information

can improve even the lower bound estimate by assigning a strictly positive weight

whenever the respondent ranks our destination j as his/her primary destination. 

4. EMPIRICAL EVIDENCE

We applied the extreme value approach to survey data of a zonal TCM analysis of

the Bellenden Ker National Park in Australia reported by Nillesen et al. (2002). Since

the proportion of MDT respondents was as high as 48 per cent in this application, it

proves a fruitful case for examining the impact of ignoring the MDT. 

The survey included questions about the number of sites visited and respondents

were asked to rank up to five places visited during the trip. Of the total of 482
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questionnaires posted, a total of 96 were returned unopened. A total of 142 responses

were received, representing a fair response rate of 36.8 percent.

4.1 Selecting the demand function form

Given the data set, the first step of the empirical analysis was to estimate the

demand function. The traditional estimation technique is the Ordinary Least Squares

(OLS). Unfortunately, the economic theory does not forward much useful guidelines

for the specification of the function form for the recreational demand of e.g. a national

park, besides the fact that the demand curve should be downward sloping since the

recreational trips are clearly a normal good. We therefore did not restrict to a single

“ideal” model, but experimented with multiple approaches. We applied the OLS

technique to various different function forms, to identify the best fitting one, but also

a non-parametric trapezoid-rule approach (Cooper, 2000), which does not impose any

function form at all.

The advantages of the nonparametric technique are its theoretical consistency with

the demand theory, and avoidance of strong ad hoc assumptions, which makes it very

robust to specification errors. On the downside, the nonparametric estimators require

a large sample size, and they are generally sensitive to sampling errors and data

perturbations. We achieved a reasonable sample size of 142 observations by ignoring

the zonal structure imposed in Nillesen et al. (2002). Moreover, we investigated the

exposure to sampling errors by bootstrapping. Nevertheless, the problem of possible

data perturbations still remains. We find the demand quantities highly reliable, but for

some visitors, the actual travel costs can differ from the travel costs Nillesen et al.

(2002) had estimated per each zone. The OLS error term may be better able to
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accommodate the possible data errors. The main problem of OLS is the sensitivity of

the CS estimates to the (ad hoc) specification of the function form. 

As a conclusion, we fail to prioritize one approach over another, and we hence

report both the OLS and non-parametric estimates for cross-checking each other. In

principle, if two very different approaches yield similar results, we can be better

reassured that the estimates are not completely out of line.

4.2 OLS demand curve

Systematic testing revealed that the visitation rate, VI, per thousand inhabitants

per zone j, VIj, can best be described by a reciprocal functional form of the zonal

travel costs TCj only (Appendix A). For the purpose of comparison the same

functional form will be used for the extreme value approach:

j
j TC

baVI += (8)

As maximum expected values are based on the ranking position, i.e. the method

would not allow for a maximum value ‘zero’ to be assigned to any destination, the

initial number of eighteen zones could be maintained. Analogously, zones with

minimum expected values have been used for regression analysis. Those zones for

which the average minimum expected value appeared to be zero were omitted from

the data set. Thus, a total of thirteen zones were used for regression analysis using the

minimum expected value approach.

When we inspected the residuals of the regression equation estimated with the

standard OLS technique more closely, we discovered that zones with a high

population tended to be associated with positive errors while low-population zones

were matched with negative errors. Hence, even though the predicted visitation rates
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were unbiased, the total number of visitors turned to be hugely overestimated. As a

consequence, the CS estimates based on the OLS figures were also biased upwards.

To obtain unbiased demand and CS estimates, we estimated the parameters a and

b of Equation 8 again using the Weighted Least Squares (WLS) technique. Instead of

the unweighted sum of squares of the error terms minimized by OLS, we minimized

the weighted sum of squares of residuals, using the proportions of the zonal

population to the total population as the weights. This yields unbiased estimates of the

total number of visitors, and hence more reliable CS estimates. Table 1 reports the

summary statistics for the extreme value (min and max) approach, and compares to

the results treating MDT as single destination trips (i.e., ignores MDT treatment).

Insert: TABLE I Summary Statistics of the WLS Regressions Using Different MDT

Approaches.

If we look at the empirical fit (Table I), then the best results were obtained by

ignoring the MDT. From the econometric point of view this is nothing surprising,

recalling that our MDT treatment decreases the variance of prices (travel costs) in the

sample. In the Max case the fit is still very good, but the Min case is quite

disappointing. In all three cases, the parameter estimates for the slope b are

statistically significant at very high confidence levels, while the estimates of the

intercept a have huge standard errors, and hence fail the significance test in all cases. 

The estimated equations have been used to calculate total predicted visitation, at

increasing entrance fees, and corresponding consumer surplus. By taking the definite

integral over the zonal inverse demand functions and summing over all zones, we

obtain the consumer surplus as:
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( ) ( )ˆ ˆˆ ˆln( ) ln( )OLS j j j
j

CS b k a k b p a p P = ⋅ − ⋅ − ⋅ − ⋅ ⋅ ∑ (9)

where k is the choke price at which demand equals zero, P is the population, and xj the

average travel cost from zone j. Table 2 reports the estimated CS per visit for each of

the three MDT scenarios. 

INSERT: TABLE II Consumer Surpluses Estimated from OLS Demand Curve

INSERT: TABLE III Testing Statistical Significance of the CS Differences

The results show that using the minimum value approach results in a very large

difference compared to treating multi-destination visitors as single destination

visitors, MDT SDT� , or using the maximum value approach. The difference is more

than 470 percent. The difference between MDT SDT�  and the maximum approach

by about 20 percent is relatively small. The large differences in consumer surplus

strengthen the argument to pay specific attention to MDT in applied TCM with a high

fraction of MDT visitors, although the differences in consumer surplus are statistically

insignificant at the ten per cent level.3

We next considered the magnitudes of the direct and the indirect effect. In case of

the OLS-regressions, they can be calculated by using Equation (10) and Equation

(11): 

( ) ( )
:

ˆ ˆˆ ˆln( ) ln( )
O
j

M M M M O M O
OLS OLS j j j

j p k

DE CS b k a k b p a p P
≤

 = − ⋅ − ⋅ − ⋅ − ⋅ ⋅ ∑ (10)

                                                          
3 The standard error of the estimated consumer surpluses was calculated using the approach mentioned
by Adamowicz et al. (1989)
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( ) ( )
:

ˆ ˆˆ ˆln( ) ln( )
O
j

O M M M O M O
OLS OLS j j j

j p k

IE CS b k a k b p a p P
≤

 = − ⋅ − ⋅ − ⋅ − ⋅ ⋅ ∑ (11)

Table IV reports the magnitudes of these effects for the min and the max cases.

The table illustrates starting from the MDT-corrected (min or max) CS estimate the

subtraction of the direct effect and subsequently the addition of the indirect effect to

arrive at the MDT SDT�  CS estimate. In the min-case the indirect effect dominates,

and hence the MDT SDT�  estimate is greater than the MDT-corrected one.

Conversely, in the max-case dominates the direct effect and hence ignoring MDT

leads to a lower CS estimate.

Insert TABLE IV

It is important to note the relatively high levels of these two offsetting effects

compared to the levels of the CS estimates. (Note that MDE CS≤  and OIE CS≤ .) As

a consequence, the CS estimates are highly sensitive in the sense that a minor

estimation error in either effect, the indirect effect in particular, can have a major

impact on the CS estimates. This is aptly illustrated by our results: even when

applying the same estimation method and the same data, the way of allocating the

travel costs of MDT visitors leads to dramatic differences in the relative magnitudes

of the direct and indirect effect, i.e., in the min-case the indirect effect is determinant

whereas in the max-case the direct effect dominates. 

As a final remark, we suspect that the high levels of the direct and indirect effect

compared to the CS estimates are at least partly due to the curvature of the estimated

demand function. According to our econometric model, the own price elasticity of

recreational demand for the present nature park is relatively high, that is, demand

drops rapidly as the price increases. Still, there are visitors who are observed to pay

considerable sums of money (i.e., travel across the continent) to visit the park.
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Consequently, the estimated demand functions are highly non-linear (convex). If the

demand functions were linear, as in Figure 1, then these two offsetting effects would

tend to be smaller compared to the CS estimates.

4.2 Non - parametric demand function

Next, the demand function was estimated in the non-parametric fashion to obtain a

conservative estimate of the CS. Due to the small number of zones, we pooled all

zones together for this exercise and in contrast to the OLS regressions did not estimate

zone-specific demand functions but the overall demand curve using the actual

numbers of visitors, and the travel costs estimated for each zone. Due to the limited

sample size, no demographic variables were considered.

Our approach builds on the following two assumptions: 1) Every visitor is willing

to pay any price less than or equal to the observed price. 2) No visitor is willing to pay

a higher price. Under these two intuitive assumptions, we obtain the nonparametric

estimates of the demand functions and the consumer surplus. The computational

procedures are described in more detail in Appendix B.

Figure II illustrates these piece-wise linear demand functions for all three cases

considered (plotting the inverse demand like in Figure I). In all three cases, demand is

very sensitive to price changes at low price levels. Still, the max-case and especially

the MDT SDT�  scenario suggest that small but persistent demand exist even at very

high price levels.

Insert Figure II: Piece-wise linear inverse demand curves estimated in

nonparametric fashion.
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Table V reports the CS estimates for the min- and max-cases, and their

decomposition into the direct and indirect effect, resulting as the MDT SDT�

estimate. Overall, our nonparametric CS estimates come relatively close to our

parametric OLS estimates, which provides us extra reassurance that our estimates

should not be too far off. However, in contrast to the OLS case, the indirect effect is

found to strongly dominate both in the min and max scenarios. In other words,

ignoring the MDT seems to lead to a substantial overestimation in this case. The

levels of the two effect are very high in the min scenario, but the max case seems

much more robust to these effects. 

INSERT TABLE V 

Unfortunately, there is no tractable analyticaly method of testing hypotheses and

deriving confidence intervals within this nonparametric framework. Therefore, we

resorted to the bootstrapping approach (Efron, 1979), the standard technique in the

nonparametric literature. Assuming the uniform density over the observed price range,

we drew 2000 pseudo-samples, size 18 observations like the original sample, from the

empirical piece-wise linear demand curve for each of the three cases. We

subsequently applied the same nonparametric method to fit the piece-wise linear

demand curve to each pseudo-sample, and calculated the consumer surplus. The

distribution of CS values in the set of these 2000 pseudo-samples should hence give

us an idea of magnitudes of the sampling bias and standard error in the original

estimation. 

Insert TABLE VI

Table VI reports the key statistics from the bootstrapping analysis. The

bootstrapping results suggest a relatively large standard error in the results, from
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8.65% ( MDT SDT� ) up to 35.9% (min) of the mean. It also revealed a significant

downward bias in the estimates, from 5.2% ( MDT SDT� ) all the way to 61.9%

(min). That is, the mean CS value of the bootstrap pseudo-samples was in all cases

significantly lower than the original CS estimate. Therefore, if our pseudo-sampling

procedure reasonably mimics the actual sampling procedure, we may expect our

original estimate to be similarly downward biased. Consequently, we adjusted our CS

estimates upwards by the measured bias factor.

We can also derive confidence intervals directly from the simulated error

distribution. Comparing the confidence intervals, we find that the differences between

the CS estimates in the three scenarios are convincingly statistically significant at the

95 per cent confidence level. Note that the error distribution need not be symmetric or

conform to normality, and hence our point estimates do not generally coincide with

the median value of the confidence interval. 

5. CONCLUSIONS

The treatment of MDT as SDT can result in a biased, either positive or negative,

estimate of the consumer surplus. Most of the empirical evidence indicates a positive

bias, indicating that treating MDT as SDT results in an underestimation of the

consumer surplus. We show this will not always be the case. In our example

recognizing MDT by applying the extreme value approach reduces the consumer

surplus. In the non-parametric case we observe a significant upward bias of more than

300 percent. 

The minimum value approach is well in line with the often-used approach of

excluding MDT. While excluding the MDT from the sample may result in a biased



20

consumer surplus calculation, which can be very large, as others and we have shown,

the minimum value approach can be applied including MDT and their characteristics.
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APPENDIX A

Six different functional forms of the trip demand function have been tested, first

with socio-economic variables included, however as they appeared to be insignificant

in all but one case, a second regression was ran for each form with only travel costs

included. Results for all three cases have been displayed in Tables A1, A2 and A3

respectively.

Clearly, the model with inverse travel cost outperformed all other models in terms

of LL, adjusted R2, and F- and t-values, for max, min and total travel costs. We have

thus chosen to proceed, for all three cases, with a reciprocal form. Furthermore, as

mentioned before, due to the fact that the socio-economic variables appeared to be

insignificant, we decided they had to be discarded. 

TABLE AI

Testing of Six Functional Forms for Max Values

Functional
form

Variables
included

LL R2adj F-value t-value C t-value

TC

t-value

edu

t-value 

income

t-value 

age

t-value 

TC^2
linear all -39.26 0.04 1.2 1.56 -1.61 -1.18 -0.2 -0.37
linear tc -40.59 0.09 2.88 2.66 -1.70
log tc all -32.18 0.57 6.51 3.91 -4.61 -0.88 -0.85 0.01
log tc tc -33.17 0.61 27.09 5.64 -5.21
log vi all -32.78 -0.01 0.97 0.78 -1.11 -1.4 0.13 -0.13
log vi tc -34.24 0.03 1.66 -1.56 -1.29
log tc/log vi all -30.54 0.21 2.16 1.68 -2.29 -1.14 0.33 -0.27
log tc/log vi tc -31.45 0.29 8.08 2.12 -2.84
tc ^2 all -34.49 0.39 3.18 1.94 -3.33 -1.62 -0.88 1.07 2.9
tc ^2 tc -36.81 0.37 5.97 4.19 -3.26 2.8
1/tc all -18.14 0.91 43.23 -0.76 12.25 0.35 0.04 0.64
1/tc tc -18.47 0.92 204.44 -1.43 14.30
*Notes:
‘LL’ = Log-Likelihood 
‘tc’ = travel costs
‘vi’ = visitation rates
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Table AII

Testing of Six Functional Forms for Min Values

Functional
form

variables
included

LL R2 adj F-value t-value
 C

t-value
TC

t-value
edu

t-value
income

t-value
age

t-value
TC^2

Linear all -28.39 0.14 1.48 0.86 -1.76 -1.41 0.51 0.67
Linear tc -30.18 0.18 3.56 2.84 -1.88
log tc all -26.20 0.39 2.88 2.17 -2.75 -1.36 0.61 0.72
log tc tc -28.09 0.40 9.05 3.39 -3.01
log vi all -18.92 0.42 3.2 0.47 -1.79 -2.31 0.83 1.47
log vi tc -23.74 0.12 2.62 -0.05 -1.62
log tc/log vi all -16.70 0.59 5.32 1.78 -2.79 -2.41 1.86 0.81
log tc/log vi tc -22.36 0.29 5.86 2.00 -2.42
tc ^2 all -26.15 0.30 2.04 1.22 -2.22 -1.28 0.12 0.99 1.70
tc ^2 tc -28.80 0.27 3.18 3.26 -2.10 1.54
1/tc all -24.09 0.56 4.75 0.11 3.68 -1.05 0.84 0.35
1/tc tc -25.66 0.59 18.18 -0.82 4.26
*Notes:
‘LL’ = Log-Likelihood 
‘tc’ = travel costs
‘vi’ = visitation rates

Table AIII 

Testing of Six Functional Forms for Total Travel Costs

Functional form variables
included

LL R^2 F-value t-value
C

t-value
TC

t-value
edu

t-value
income

t-value
age

t-value
tc^2

Linear all -38.49 0.12 1.59 1.59 -2 -1.34 -0.28 0.07
Linear tc -39.87 0.17 4.47 3 -2.11
log tc all -29.19 0.69 10.37 4.52 -5.89 -1.08 0.37 -0.52
log tc Tc -30.09 0.72 44.67 7.21 -6.68
log vi all -31.86 0.09 1.42 0.86 -1.66 -1.54 0.31 -0.12
log vi tc -33.47 0.12 3.22 -1.03 -1.8
log tc/log vi all -27.65 0.43 4.21 2.2 -3.49 -1.24 -0.16 0.55
log tc/log vi tc -28.66 0.48 16.81 3.2 -4.09
tc ^2 all -32.69 0.5 4.41 1.91 -3.89 -1.86 -0.34 1.37 3.3
tc^2 tc -35.27 0.47 8.49 4.89 -3.79 3.16
1/tc all -13.21 0.95 77.15 -1.01 16.4 0.55 1.33 -0.13
1/tc tc -14.46 0.95 328.45 -0.25 18.12
*Notes:
‘LL’ = Log-Likelihood 
‘tc’ = travel costs
‘vi’ = visitation rates
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APPENDIX B

The nonparametric estimates of the demand functions are obtained as follows.

First, rank the zones in ascending order according to the observed travel costs. Let the

travel costs be denoted by 1 2 18...p p p≤ ≤ ≤ , and the corresponding visitor volumes by

1 2 18, ,...,x x x . Construct a cumulative index of the number of visitors as

1 2 18...X X X≥ ≥ ≥ , where 
1

j

j i
i

X x
=

≡ ∑ . Value jX  indicates the actual number of

visitors who have paid the price (travel cost) less than or equal to jp , and hence it is

reasonable to assume ˆ( )j jx p X= . Using the trapezoidal-rule (see e.g. Cooper, 2000,

p. 453, for further details), we obtain nonparametric, piece-wise linear demand

functions as

:: :

max
ˆ( ) max min max

min max
j

jj j

j j

jp p
j j jj p pj p p j p p

j jp p p p

p p
x p X X X

p p
≤

≥≤ ≤
≥ ≤

 −
  = + −  −  

  

(12)

Let p  denote the weighted average of the zonal travel costs, using the number of

visitors per zone as the weights. To calculate the CS estimate, we use p  for the

prevailing price level. By basic geometry, the nonparametric CS estimate is then

given by

1 1 1 1
:

:

1( ) ( )( )2

1 ˆmin (min ) (min ) ( ) (min )2

j

j j j j

j j j j j j j
j p p

j j j jj p p p p p p p p

CS X p p X X p p

X p p X x p p p

+ + + +
≥

≥ ≥ ≥ ≥

 = − + − − 

    + − + − −    
    

∑
(13)

The decomposition is obtained using the following formulas:
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1 1 1 1
:

:

:

1( ) ( )( )2

( min ) (min )

1 ˆ( min ) ( ) ( min )2

M O
j

M O M
j j

M O M O
j j

M M M M M M M M
NP j j j j j j j

j p p

M M O
j j

j p p p p

M M O M O
j j

j p p p p

DE CS X p p X X p p

X p p

X x p p p

+ + + +
≥

≥ ≥

≥ ≥

 = − − + − − 

  ⋅ − +    −
    − ⋅ −        

∑

(14)

1 1 1 1
:

:

:

1( ) ( )( )2

( min ) (min )

1 ˆ( min ) ( ) ( min )2

M O
j

M O M
j j

M O M O
j j

O M M M M M M M
NP j j j j j j j

j p p

M M O
j j

j p p p p

M M O M O
j j

j p p p p

IE CS X p p X X p p

X p p

X x p p p

+ + + +
≥

≥ ≥

≥ ≥

 = − − + − − 

  ⋅ −    −
    + − ⋅ −        

∑

(15)
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Figure I. Illustration of the direct and the indirect effects.
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Figure II: Piece-wise linear inverse demand curves estimated in nonparametric

fashion.
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TABLE I

Summary Statistics of the WLS Regressions Using Different MDT Approaches.

Min Max MDT SDT�
R2 0.279 0.887 0.945
F statistic 1.305 8.330** 17.197**
intercept â -0.388 -0.555 -0.283
st.error 5678577 256241 87043
slope b̂ 204.43** 549.43** 623.72**
st.error 0.180 0.012 0.004

* significant at 95% confidence level
** significant at 99% confidence level

TABLE II

Consumer Surpluses Estimated from OLS Demand Curve*

Min Max MDT SDT�
Choke price 527 990 2204
CS per visit 137 773 645 
* All numbers are in AUD.

TABLE III

Testing Statistical Significance of the CS Differences

Min vs. Max Min vs. MDT SDT� Max vs. MDT SDT�
t-test statistic 1.652 0.724 0.132

p-value 0.117 0.479 0.896
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TABLE IV

Decomposition of the MDT-Effect: the Min and the Max Models.* 

Min Max
CSM 137 773
DE (-) 113.4 (-) 713.1
IE (+) 622.1  (+) 585.0
= CSO 645 645

*All figures in AUD per visit.

TABLE V

Non-Parametric CS Estimates and their Decomposition.* 

Min Max
CSM 100 343
DE   (-) 93.3 (-) 116.3
IE (+) 572.3  (+) 352.6
= CSO 579 579
*All figures in AUD per visit.

TABLE VI

Bootstrapping Analysis

Min Max MDT SDT�
Point estimate:
CS per visit 100 343 579
Sampling bias (+) 62.0 (+) 25.0 (+) 29.7
= Bias corrected CS estimate 162 368 609
Std. error 13.67 39.95 47.56
95% confidence interval (42 – 213) (275– 416) (475– 662)
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